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Strong Data Processing Constant is Achieved

by Binary Inputs
Or Ordentlich and Yury Polyanskiy

Abstract—For any channel PY |X the strong data process-
ing constant is defined as the smallest number ηKL ∈ [0, 1]
such that I(U ;Y ) ≤ ηKLI(U ;X) holds for any Markov
chain U − X − Y . It is shown that the value of ηKL is
given by that of the best binary-input subchannel of PY |X .
The same result holds for any f -divergence, verifying a
conjecture of Cohen, Kemperman and Zbaganu (1998).

Consider an arbitrary channel PY |X : X → Y
with countable X . We define the strong data processing

inequality (SDPI) constant [1]

ηKL = sup
D(PY |X ◦ P‖PY |X ◦Q)

D(P‖Q)
, (1)

where optimization is over all pairs of distributions on

X , denoted P,Q ∈ P(X ), such that 0 < D(P‖Q) < ∞,

and PY |X ◦ P is the distribution of the output Y when

the input X is distributed according to P ∈ P(X ). We

refer to [2] for a survey of the properties and importance

of the SDPI, in particular for showing equivalence to the

definition in the abstract, and advertise [3] as a recent

application in statistics.

When the input alphabet X is binary, the value of ηKL

is relatively easy to compute, cf. [2, Appendix B]. Here

we prove that for general X determination of ηKL can

be reduced to the binary case.

Theorem 1: Optimization in (1) can be restricted to

pairs P,Q supported on two points in X (same for both).

Proof. For two distributions P and Q on X and λ ∈
(0, 1) define

Lλ(P,Q) , D(PY |X ◦ P‖PY |X ◦Q)− λD(P‖Q).

We assume that 0 < D(P‖Q) < ∞ as required by
the definition of ηKL. We will show that we can find

two distributions P̂ and Q̂ where Q̂ is supported on two

letters in supp(Q) , {x ∈ X : Q(x) > 0}, and

Lλ(P̂ , Q̂) ≥ Lλ(P,Q). This implies the statement, since

ηKL = sup
{

λ : supP,Q Lλ(P,Q) ≥ 0
}

.
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To that end define the convex set of distributions

S ,

{

Q̂ :supp(Q̂) ⊆ supp(Q),

∑

x∈supp(Q)

P (x)

Q(x)
· Q̂(x) = 1

}

.

Consider the function g : S → R defined as g(Q̂) =

Lλ

(

P
Q
Q̂, Q̂

)

. Note that Q ∈ S and g(Q) = Lλ(P,Q).

Consequently, max
Q̂∈S g(Q̂) ≥ Lλ(P,Q). Note that

Q̂ 7→ D

(

PY |X ◦ P

Q
Q̂

∥

∥

∥

∥

PY |X ◦ Q̂
)

is convex by convexity of (P,Q) 7→ D(P‖Q), and that

Q̂ 7→ D

(

P

Q
Q̂

∥

∥

∥

∥

Q̂

)

=
∑

x

Q̂(x)
P (x)

Q(x)
log

P (x)

Q(x)

is linear. Thus, Q̂ 7→ g(Q̂) is convex on S . It therefore

follows that max
Q̂∈S g(Q̂) is obtained at an extreme

point of S . Since S is the intersection of the simplex

with a hyperplane, its extreme points are supported on

at most two atoms.

Paired with [2, Appendix B] we get a corollary

bounding ηKL in terms of the Hellinger-diameter of the

channel:

1

2
diamH2(PY |X) ≤ ηKL ≤ g

(

1

2
diamH2(PY |X)

)

≤ diamH2(PY |X) (2)

where g(t) , 2t
(

1− t
2

)

, diamH2(PY |X) =
supx,x′ H2(PY |X=x, PY |X=x′) and H2(P,Q) = 2 −
2
∫ √

dPdQ.

Note that the only property of divergence that we have

used in the proof of Theorem 1 is convexity of (P,Q) 7→
D(P,Q). This property is shared by all f -divergences,

cf. [4]. In other words we proved:

Theorem 2: Let ηf = sup
Df (PY |X◦P‖PY |X◦Q)

Df (P‖Q) opti-

mized over all P,Q ∈ P(X ) with 0 < Df (P,Q) < ∞.

Then the optimization can be restricted to pairs P,Q

supported on two common points in X .

This fact was conjectured in [5, Open Problem 7.4].

There are two other noteworthy results that our tech-

nique entails. First, a moment of reflection confirms that



2

we, in fact, have shown that the upper concave envelope

of the set ∪PX ,QX
{(Df (PX‖QX), Df (PY ‖QY ))} is

unchanged if we restrict the union to pairs PX , QX

supported on two points.

Second, a similar argument holds for the post-SDPI

coefficient of a channel [6], defined as

η
(p)
KL(PY |X) = inf{η : I(U ;X) ≤ ηI(U ;Y ), X−Y−U}

Namely, we have that η
(p)
KL can be computed by re-

stricting X to take two values. Indeed, fix an arbitrary

PX,Y,U s.t. X − Y − U . As shown in [2, Theorem 4]

one can safely assume U to be binary. Now, consider

a set S of all P̂X such that the joint distribution

P̂X,Y,U = P̂XPY |XPU |Y satisfies P̂U = PU . Since U

is binary, S is an intersection of a hyperplane with a

simplex. Now, the function P̂X 7→ Î(U ;X)− λÎ(U ;Y )
is linear in P̂X over S . Consequently, the maximum (and

the minimum) of this function is attained at a binary P̂X .
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