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Abstract—Consider a (multiple-access) wireless communica-
tion system where users are connected to a unique base station
over a shared-spectrum radio links. Each user has a fixed
number k of bits to send to the base station, and his signal
gets attenuated by a random channel gain (quasi-static fading).
In this paper we consider the many-user asymptotics of Chen-
Chen-Guo’2017, where the number of users grows linearly
with the blocklength. Differently, though, we adopt a per-user
probability of error (PUPE) criterion (as opposed to classical
joint-error probability criterion). Under PUPE the finite energy-
per-bit communication is possible, and we are able to derive
bounds on the tradeoff between energy and spectral efficiencies.
We reconfirm the curious behaviour (previously observed for
non-fading MAC) of the possibility of almost perfect multi-user
interference (MUI) cancellation for user densities below a critical
threshold. Further, we demonstrate the suboptimality of standard
solutions such as orthogonalization (i.e., TDMA/FDMA) and
treating interference as noise (i.e. pseudo-random CDMA without
multi-user detection). Notably, the problem treated here can be
seen as a variant of support recovery in compressed sensing for
the unusual definition of sparsity with one non-zero entry per
each contiguous section of 2

k coordinates. This identifies our
problem with that of the sparse regression codes (SPARCs) and
hence our results can be equivalently understood in the context
of SPARCs with sections of length 2

100. Finally, we discuss the
relation of the almost perfect MUI cancellation property and the
replica-method predictions.

Index Terms—Finite blocklength, many-user MAC, per-user
probability of error, approximate message passing, replica-
method

I. INTRODUCTION

We clearly witness two recent trends in the wireless com-
munication technology: the increasing deployment density
and miniaturization of radio-equipped sensors. The first trend
results in progressively worsening interference environment,
while the second trend puts ever more stringent demands on
communication energy efficiency. This suggests a bleak picture
for the future networks, where a chaos of packet collisions and
interference contamination prevents reliable connectivity.

This paper is part of a series aimed at elucidating the
fundamental tradeoffs in this new “dense-networks” regime
of communication, and on rigorously demonstrating subopti-
mality of state-of-the-art radio-access solutions (ALOHA, or-
thogonalization, or FDMA/TDMA 1, and treating interference
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1In this paper we do not distinguish between TDMA, FDMA or any other
orthogonalization strategy. From here on, all orthogonalization strategies will
be referred to as “TDMA”

as noise, or TIN). This suboptimality will eventually lead to
dramatic consequences. For example, environmental impact of
billions of toxic batteries getting depleted at 1/10 or 1/100 of
the planned service time is easy to imagine. In order to future-
proof our systems, we should avoid locking in on outdated
and unfixable multiple-access architectures causing tens of dB
losses in energy efficiency. The information-theoretic analysis
in this paper demonstrates that the latter is indeed unavoidable
(with state-of-the-art schemes). However, our message is in
fact optimistic, as we also demonstrate existence of protocols
which are partially immune to the increase of the sensor
density.

Specifically, in this paper we consider a problem of K
nodes communicating over a frame-synchronized multiple-
access channel. When K is fixed and the frame size n (which
we will also call “blocklength” or the “number of degrees of
freedom”) is taken to infinity we get the classical regime [1], in
which the fundamental limits are given by well-known mutual
information expressions. A new regime, deemed many-access,
was put forward by Chen, Chen and Guo [2]. In this regime
the number of nodes K grows with blocklength n. It is clear
that the most natural scaling is linear: K = µn, n → ∞,
corresponding to the fact that in time n there are linearly many
users that will have updates/traffic to send [3]. That is, if each
device wakes up once in every T seconds and transmits over
a frame of length t, then in time (proportional to) t there are
K ≈ t/T users where t is large enough for this approximation
to hold but small that no device wakes up twice. Further,
asymptotic results obtained from this linear scaling have been
shown to approximately predict behavior of the fundamental
limit at finite blocklength, e.g. at n = 30000 and K <= 300
[3, 4]. The analysis of [2] focused on the regime of infinitely
large payloads (see also [5] for a related massive MIMO MAC
analysis in this setting). In contrast [3] proposed to focus on a
model where each of the K = µn nodes has only finitely many
bits to send. In this regime, it turned out, one gets the relevant
engineering trade-offs. Namely, the communication with finite
energy-per-bit is possible as n→ ∞ and the optimal energy-
per-bit depends on the user density µ. For this to happen,
however, a second crucial departure from the classical MAC
model was needed: the per-user probability of error, PUPE,
criterion [3].

These two modifications (the scaling K = µn and the
PUPE) were investigated in the case of the AWGN channel
in [3, 4, 6]. We next describe the main discovery of that work.
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The channel model is:

Y n =
K
∑

i=1

Xi + Zn , Zn ∼ CN (0, In) , (1)

and Xi = fi(Wi) ∈ C
n is the codeword of i-th user

corresponding to Wi ∈ [2k] chosen uniformly at random.
The system is said to have PUPE ε if there exist decoders
Ŵi = Ŵi(Y

n) such that

Pe,u =
1

K

K
∑

i=1

P

[

Wi 6= Ŵi

]

≤ ε . (2)

The energy-per-bit is defined as

Eb

N0
=

1

k
sup

i∈[K],w∈[2k]

‖fi(w)‖2.

The goal in [3, 6] was to characterize the asymptotic limit

E∗(µ, k, ε) , lim sup
n→∞

inf
Eb

N0
(3)

where infimum is taken over all possible encoders {fi} and
decoders {Ŵi} achieving the PUPE ε for K = µn users.
(Note that this problem may be recast in the language of
compressed sensing and sparse regression codes (SPARCs) –
see Section II-A below.)

To predict how E∗(µ, ε) behaves, first consider a naive
Shannon-theoretic calculation [7]: if K users want to send
k bits in n degrees of freedom, then their sum-power Ptot

should satisfy
n log(1 + Ptot) = kK .

In turn, the sum-power Ptot =
kK
n

Eb

N0
. Overall, we get

E∗ ≈ 2µk − 1

kµ
.

This turns out to be a correct prediction, but only in the large-µ
regime. The true behavior of the fundamental limit is roughly
given by

E∗(µ, k, ε) ≈ max

(

2µk − 1

kµ
, Es.u.

)

, (4)

where Es.u. = Es.u.(k, ε) does not depend on µ and corre-
sponds to the single-user minimal energy-per-bit for sending
k bits with error ε, for which a very tight characterization is
given in [8]. In particular, with good precision for k ≥ 10 we
have

Es.u.(k, ε) =
1

2

(

Q−1
(

2−k
)

−Q−1 (1− ε)
)2

(5)

where Q is the complementary CDF of the standard normal

distribution: Q(x) = 1√
2π

∫∞
x
e−

u2

2 du.
In all, results of [3, 4, 6] suggest that the minimal energy-

per-bit has a certain “inertia”: as the user density µ starts to
climb from zero up, initially the energy-per-bit should stay
the same as in the single-user µ = 0 limit. In other words,
optimal multiple-access architectures should be able to almost

perfectly cancel all multi-user interference (MUI), achieving
an essentially single-user performance for each user, provided

the user density is below a critical threshold. Note that this

is much better than orthogonalization, which achieves the
same effect at the expense of shortening the available (to
each user) blocklength by a factor of 1

K . Quite surprisingly,
standard approaches to multiple-access such as TDMA and
TIN2, while having an optimal performance at µ → 0
demonstrated a significant suboptimality for µ > 0 regime.
In particular, no “inertia” was observed and the energy-per-bit
for those suboptimal architectures is always a monotonically
increasing function of the user density µ. This opens the (so
far open) quest for finding a future-proof MAC architecture
that would achieve Es.u. energy-per-bit for a strictly-positive
µ > 0. A thorough discussion of this curious behavior and
its connections to replica-method predicted phase transitions
is contained in Section V-A.

(We note that in this short summary we omitted another
important part of [3]: the issue of random-access – i.e. com-
municating when the identities/codebooks of active users are
unknown a priori. We mention, however, that for the random-
access version of the problem, there are a number of low-
complexity (and quite good performing) algorithms that are
available [9–15]. See [16–19] for more recent developments.)

The contribution of this paper is in demonstrating the
same almost perfect MUI cancellation effect in a much more
practically relevant communication model, in which the ideal
unit power-gains of (1) are replaced by random (but static)
fading gain coefficients. We consider two cases of the channel
state information: known at the receiver (CSIR) and no channel
state information (noCSI).

Key technical ideas: For handling the noCSI case we employ
the subspace projection decoder similar to the one proposed
in [20], which can be seen as a version of the maximum-
likelihood decoding (without prior on fading coefficients) – an
idea often used in support recovery literature [21–23]. Another
key idea is to decode only a subset of users corresponding
to the strongest channel gains – a principle originating from
Shamai-Bettesh [24]. While the randomness of channel gains
increases the energy-per-bit requirements, in a related paper
we find [9] an unexpected advantage: the inherent random-
ization helps the decoder disambiguate different users and
improves performance of the belief propagation decoder. Our
second achievability bound improves projection decoder in the
the low user density (low spectral efficiency) regime by apply-
ing the Approximate Message Passing (AMP) algorithm [25].
The rigorous analysis of its performance is made possible by
results in [23, 26]. On the converse side, we leverage the recent
finite blocklength results for the noCSI channel from [20, 27].

The paper is organized as follows. In Section II we formally
define the problem and the fundamental limits. In Section II-A
relation with compressed sensing is discussed. In Section III as
a warm-up we discuss the classical regime (K–fixed, n→ ∞)
under the PUPE criterion. We show that our projection de-
coder achieves the best known achievability bound in this
setting [24]. (We also note that for the quasi-static fading

2Note that pseudo-random CDMA systems without multi-user detection and
large load factor provide an efficient implementation of TIN. So throughout
our discussions, conclusions about TIN also pertain to CDMA systems of this
kind.
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channel model the idea of PUPE is very natural, and implicitly
appears in earlier works, e.g. [24, 28], where it is conflated
with the outage probability.) After this short warm-up we go
to our main Section IV, which contains rigorous achievability
and converse bounds for the K = µn, n → ∞ scaling
regime. Some numerical evaluations are presented Section V,
where we also compare our bounds with the TDMA and TIN.
Finally, in Section V-A we discuss the effect of almost perfect
MUI cancellation and its relation to other phase transitions in
compressed sensing.

A. Notations

Let N denote the set of natural numbers. For n ∈ N, let
C

n denote the n–dimensional complex Euclidean space. Let
S ⊂ C

n. We denote the projection operator or matrix on to the
subspace spanned by S as PS and its orthogonal complement
as P⊥

S . For 0 ≤ p ≤ 1, let h2(p) = −p log2(p) − (1 −
p) log2(1− p) and h(p) = −p ln(p)− (1− p) ln(1− p), with
0 ln 0 defined to be 0. We denote by N (0, 1) and CN (0, 1)
the standard normal and the standard circularly symmetric
complex normal distributions, respectively. P and E denote
probability measure and expectation operator respectively. For
n ∈ N, let [n] = {1, 2, ..., n}. log denotes logarithm to base
2. Lastly, ‖·‖ represents the standard euclidean norm.

II. SYSTEM MODEL

Fix an integer K ≥ 1 – the number of users. Let {PY n|Xn =

PY n|Xn
1 ,Xn

2 ,...,Xn
K
:
∏K

i=1 Xn
i → Yn}∞n=1 be a multiple access

channel (MAC). In this work we consider only the quasi-static
fading AWGN MAC: the channel law PY n|Xn is described by

Y n =

K
∑

i=1

HiX
n
i + Zn (6)

where Zn∼CN (0, In), and Hi
iid∼ CN (0, 1) are the fading co-

efficients which are independent of {Xn
i } and Zn. Naturally,

we assume that there is a maximum power constraint:

‖Xn
i ‖2 ≤ nP. (7)

We consider two cases: 1) no channel state information
(no-CSI): neither the transmitters nor the receiver knows the
realizations of channel fading coefficients, but they both know
the law; 2) channel state information only at the receiver
(CSIR): only the receiver knows the realization of channel
fading coefficients. The special case of (6) where Hi = 1, ∀i
is called the Gaussian MAC (GMAC).

In the rest of the paper we drop the superscript n unless it
is unclear.

Definiton 1. An ((M1,M2, ...,MK), n, ε)U code for the MAC

PY n|Xn is a set of (possibly randomized) maps {fi : [Mi] →
Xn

i }Ki=1 (the encoding functions) and g : Yn → ∏K
i=1[Mi]

(the decoder) such that if for j ∈ [K], Xj = fj(Wj) constitute

the input to the channel and Wj is chosen uniformly (and

independently of other Wi, i 6= j) from [Mj ] then the average

(per-user) probability of error satisfies

Pe,u =
1

K

K
∑

j=1

P

[

Wj 6= (g(Y ))j

]

≤ ε (8)

where Y is the channel output.

We define an ((M1,M2, ...,MK), n, ε)J code similarly,
where Pe,u is replaced by the usual joint error

Pe,J = P





⋃

j∈[K]

{

Wj 6= (g(Y ))j

}



 ≤ ε (9)

Further, if there are cost constraints, we naturally modify
the above definitions such that the codewords satisfy the
constraints.

Remark 1. Note that in (8), we only consider the average per-

user probability. But in some situations, it might be relevant

to consider maximal per-user error (of a codebook tuple)

which is the maximum of the probability of error of each user.

Formally, let C[K] = {C1, ..., CK} denote the set of codebooks.

Then

Pmax
e,u = Pmax

e,u (C[K])

= max
{

P

[

W1 6= Ŵ1

]

, ...,P
[

WK 6= ŴK

]}

(10)

where the probabilities are with respect to the channel and

possibly random encoding and decoding functions. In this

paper we only consider the fundamental limits with respect

to Pe,u and PUPE always refers to this unless otherwise

noted. But we note here that for both asymptotics and FBL the

difference is not important. See appendix C for a discussion

on this – there we show that by random coding E
[

Pmax
e,u

]

is

asymptotically equal to E [Pe,u] (expectations are over random

codebooks).

A. Connection to compressed sensing and sparse regression

codes

The system model and coding problem considered in this
work (see eqn. (6)) can be cast as a support recovery problem
in compressed sensing. Suppose we have K users each with a
codebook of size M and blocklength n. Let Ai be the n×M
matrix consisting of the codewords of user i as columns. Then
the codeword transmitted by the user can be represented as
Xi = AiWi where Wi ∈ {0, 1}M with a single nonzero entry.
Since each codeword is multiplied by a scalar random gain Hi,
we let Ui = HiWi which is again a 1 sparse vector of length
M . Finally the received vector Y can be represented as

Y =
∑

i∈[K]

HiXi + Z = AU + Z (11)

where A = [A1, · · · , AK ] is n × KM matrix obtained by
concatenating the codebooks, U = [UT

1 , · · · , UT
K ]T is the

MK × 1 length vector denoting the codewords (and fading
gains) of each user. In our problem, the vector U has a
block-sparse structure, namely U has K sections, each of
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length M , and there is only a single non-zero entry in each
section. (Majority of compressed sensing literature focuses
on the non-block-sparse case, where U has just K non-zero
entries, which can be spread arbitrarily inside KM positions.)
Decoding of the codewords, then, is equivalent to the support
recovery problem under the block-sparse structure, a problem
considered in compressed sensing. In our setup, we keep M
fixed and let K,n→ ∞ with constant µ = K/n. Hence 1/M
is the sparsity rate and Mµ is the measurement rate.

This connection is not new and has been observed many
times in the past [29, 30]. In [30] the authors consider a the
exact support recovery problem in the case when the vector U
is just sparse (with or without random gains). This corresponds
to the random access version of our model where the users
share a same codebook [31]. They analyze the fundamental
limits in terms of the rate (i.e., ratio of logarithm of signal
size to number of measurements) necessary and sufficient to
ensure exact recovery in both cases when sparsity is fixed and
growing with the signal size. For the fixed sparsity case and U
having only 0, 1 entries, this fundamental limit is exactly the
symmetric capacity of an AWGN multiple access channel with
same codebook (with non colliding messages). With fading
gains, they recover the outage capacity of quasi-static MAC
[32, 33] (but with same codebook).

In [29], the authors discuss necessary and sufficient con-
ditions for the exact and approximate support recovery (in
Hamming distortion), and L2 signal recovery with various
conditions on signal X and matrix A (deterministic versus
random, discrete versus continuous support etc.). These results
differ from ours in the sense that they are not for block
sparse setting and more importantly, they do not consider
approximate support recovery with Hamming distortion when
the entries of the support of the signal are sampled from a
continuous distribution, which is the case we analyze. Hence
our results are not directly comparable.

Work [23] comes closest to our work in terms of the
flavor of results of achievability. As pointed out in [23]
itself, many other works like [29] focus on the necessary
and sufficient scalings (between sparsity, measurements and
signal dimension) for various forms of support recovery.
But the emphasis in [23] and this work is on the precise
constants associated with these scalings. In particular, the
authors in [23] consider the approximate support recovery
(in Hamming distortion) problem when the entries in the
support of the signal come from a variety of distributions.
They analyze various algorithms, including matched filter and
AMP, to find the minimum measurement rate required to attain
desired support distortion error in terms of signal to noise
ratio and other parameters. Furthermore, they compare these
results to that of the optimal decoder predicted by the replica
method [34].

The result on using replica method in [23] is not directly
applicable since our signal has block sparse (as opposed to
i.i.d.) coordinates. But the AMP analysis presented there can
be extended to our setting. Because of the generality of the
analysis in [26], it turns out to be possible to derive rigorous
claims (and computable expressions) on the performance of

the (scalar) AMP even in the block sparse setting. This is
the content of Section IV-C below. Unlike the achievability
side, for the converse we cannot rely on bounds in [23]
proven for the i.i.d. coordinates of X . Even ignoring the
difference between the structural assumptions on X , we point
out also that our converse bounds leverage finite-length results
from [27], which makes them tighter than the genie-based
bounds in [35].

The block-sparse assumption, however, comes very natu-
rally in the area of SPARCs [36–38]. The section error rate
(SER) of a SPARC is precisely our PUPE. The vector AMP
algorithm has been analyzed for SPARC with i.i.d Gaussian
design matrix in [38] and for the spatially-coupled matrix
in [39] but for the AWGN channel (i.e., when non-zero
entries of U in (11) are all 1). In[40], heuristic derivation
of state evolution of the vector-AMP decoder for spatially-
coupled SPARCS was presented for various signal classes (this
includes our fading scenario). However, the the resulting fixed
point equations may not be possible to solve for our block size
as it amounts to computing 2100 dimensional integrals (and this
also prevents evaluation of replica-method predictions from
[40]).

III. CLASSICAL REGIME: K FIXED, n→ ∞
In this section, we focus on the channel under classical

asymptotics where K is fixed (and large) and n→ ∞. Further,
we consider two distinct cases of joint error and per-user error.
We show that subspace projection decoder (14) achieves a) ε–
capacity region (Cε,J ) for the joint error and b) the best known
bound for ε–capacity region Cε,PU under per-user error. This
motivates using projection decoder in the many-user regime.

A. Joint error

A rate tuple (R1, ..., RK) is said to be ε–achievable [33]
for the MAC if there is a sequence of codes whose rates
are asymptotically at least Ri such that joint error is asymp-
totically smaller than ε. Then the ε–capacity region Cε,J is
the closure of the set of ε–achievable rates. For our channel
(6), the Cε,J does not depend on whether or not the channel
state information (CSI) is available at the receiver since the
fading coefficients can be reliably estimated with negligible
rate penalty as n → ∞ [32][24]. Hence from this fact and
using [33, Theorem 5] it is easy to see that, for 0 ≤ ε < 1,
the ε–capacity region is given by

Cε,J = {R = (R1, ..., RK) : ∀i, Ri ≥ 0 and P0(R) ≤ ε}
(12)

where the outage probability P0(R) is given by

P0(R) =

P





⋃

S⊂[K],S 6=∅

{

log

(

1 + P
∑

i∈S

|Hi|2
)

≤
∑

i∈S

Ri

}



 (13)

Next, we define a subspace projection based decoder, in-
spired from [20]. The idea is the following. Suppose there
were no additive noise. Then the received vector will lie in
the subspace spanned by the sent codewords no matter what
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the fading coefficients are. To formally define the decoder,
let C denote a set of vectors in C

n. Denote PC as the
orthogonal projection operator onto the subspace spanned by
C. Let P⊥

C = I − PC denote the projection operator onto the
orthogonal complement of span(C) in C

n.
Let C1, ..., CK denote the codebooks of the K users respec-

tively. Upon receiving Y from the channel the decoder outputs
g(Y ) which is given by

g(Y ) =
(

f−1
1 (ĉ1), ..., f

−1
K (ĉK)

)

(ĉ1, ...ĉK) = arg max
(ci∈Ci)Ki=1

∥

∥P{ci:i∈[K]}Y
∥

∥

2
(14)

where fi are the encoding functions.
In this section, we show that using spherical codebook with

projection decoding, Cε,J of the K–MAC is achievable. We
prove the following theorem

Theorem III.1 (Projection decoding achieves Cε,J ). Let R ∈
Cε,J of (6). Then R is ε–achievable through a sequence of

codes with the decoder being the projection decoder (14).

Proof. We generate codewords iid uniformly on the power
sphere and show that (14) yields a small Pe,J . See appendix
A for details.

Remark 2. Note that [30] also analyzed capacity region of the

quasi-static MAC, but under the same codebook requirement,

for the joint error probability (as opposed to PUPE), and with

a different decoder.

B. Per-user error

In this subsection, we consider the case of per-user error
under the classical setting. Further, we assume availability of
CSI at receiver (CSIR) which again can be estimated with little
penalty.

The ε–capacity region for the channel under per-user error,
Cε,PU is defined similarly as Cε,J but with per-user error
instead of joint error. Cε,PU is unknown, but the best lower
bound is given by the Shamai-Bettesh capacity bound [24]:
given a rate tuple R = (R1, ..., RK), an upper bound on the
per-user probability of error under the channel (6), as n→ ∞,
is given by

Pe,u ≤ PS
e (R)

≡ 1− 1

K
E sup

{

|D| : D ⊂ [K], ∀S ⊂ D,S 6= ∅,

∑

i∈S

Ri < log

(

1 +
P
∑

i∈S |Hi|2
1 + P

∑

i∈Dc |Hi|2
)

}

(15)

where the maximizing set, among all those that achieve the
maximum, is chosen to contain the users with largest fading
coefficients. The corresponding achievability region is

CS.B
ε,PU =

{

R : PS
e (R) ≤ ε

}

(16)

and hence it is an inner bound on Cε,PU .
We note that, in [24], only the symmetric rate case i.e, Ri =

Rj ∀i, j is considered. So (15) is the extension of that result
to the general non-symmetric case.

Here, we show that the projection decoding (suitably mod-
ified to use CSIR) achieves the same asymptotics as (15)
for per-user probability of error i.e., achieves the Shamai-
Bettesh capacity bound. Next we describe the modification
to the projection decoder to use CSIR.

Let {Ci}Ki=1 denote the codebooks of the K users with
|Ci| = Mi. We have a maximum power constraint given by
(7). Using the idea of joint decoder from [24], our decoder
works in 2 stages. The first stage finds the following set

D ∈ argmax

{

|D| : D ⊂ [K], ∀S ⊂ D,S 6= ∅,

∑

i∈S

Ri < log

(

1 +
P
∑

i∈S |Hi|2
1 + P

∑

i∈Dc |Hi|2
)

}

(17)

where D is chosen to contain users with largest fading
coefficients. The second stage is similar to (14) but decodes
only those users in D. Formally, let ? denote an error symbol.
The decoder output gD(Y ) ∈∏K

i=1 Ci is given by

(gD(Y ))i =

{

f−1
i (ĉi) i ∈ D

? i /∈ D

(ĉi)i∈D = arg max
(ci∈Ci)i∈D

∥

∥P{ci:i∈D}Y
∥

∥

2
(18)

where fi are the encoding functions. Our error metric is the
average per-user probability of error (9).

The following theorem is the main result of this section.

Theorem III.2. For any R ∈ CS.B
ε,PU there exists a sequence of

codes with projection decoder (17)(18) with asymptotic rate

R such that the per-user probability of error is asymptotically

smaller than ε

Proof. We generate iid (complex) Gaussian codebooks
CN (0, P ′In) with P ′ < P and show that for R ∈ CS.B

ε,PU ,
(18) gives small Pe,u. See appendix A for details.

In the case of symmetric rate, an outer bound on Cε,PU can
be given as follows.

Proposition 1. If the symmetric rate R is such that Pe,u ≤ ε,
then

R ≤ min

{

1

K(θ − ε)
E






log2






1 + P min

S⊂[K]
|S|=θK

∑

i∈S

|Hi|2











,

log2 (1− P ln(1− ε))

}

, ∀θ ∈ (ε, 1] (19)

Proof. The first of the two terms in the min in (19) follows
from Fano’s inequality (see (136), with µ = K/n, M = 2nR

and taking n → ∞). The second is a single-user based
converse using a genie argument. See appendix A-C for
details.

Remark 3. We note here that the second term inside the

minimum in (19) is the same as the one we would obtain

if we used strong converse for the MAC. To be precise, let

{|H(1)| > |H(2)| > ... > |H(K)|} denote the order statistics

of the fading coefficients. If R > log(1 + P |H(t)|2) then,
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using a Genie that reveals the codewords (and fading gains)

of t−1 users corresponding to t−1 largest fading coefficients,

it can be seen that Pe,u ≥ K−t+1
K . Setting t = θK and

considering the limit as K → ∞ (with P = Ptot/K) we

obtain S ≤ −Ptot log2(1− ε) which is same as that obtained

from the second term in (19) under these limits.

C. Numerical evaluation

First notice that Cε,J (under joint error) tends to {0} as
K → ∞ because, it can be seen, for the symmetric rate, by
considering that order statistics of the fading coefficients that
P0(R) → 1 for Ri = O(1/K). Cε,PU , however, is more
interesting. We evaluate trade-off between system spectral
efficiency and the minimum energy-per-bit required for a target
per-user error for the symmetric rate, in the limit K → ∞ and
power scaling as O(1/K).

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

TDMA

Shamai-Bettesh capacity bound

Converse

Fig. 1: S vs Eb/N0 for per-user error ε ≤ 0.1, n → ∞ and
then K → ∞

In the above figure we have also presented the performance
of TDMA. That is, if we use orthogonalization then for any
number of users K (not necessarily large), we have

ε = P
[

R > 1/K log(1 +KP |H|2)
]

(20)

where ε is the PUPE. Thus the sum-rate vs Eb/N0 formula
for orthogonalization is

Eb/N0 =
2S − 1

S

1

− ln(1− ε)
(21)

where S is the sum-rate or the spectral efficiency.
We see that orthogonalization is suboptimal under the PUPE

criterion. The reason is that it fails to exploit the multi-user
diversity by allocating resources even to users in deep fades.
Indeed, under orthogonalized setting the resources allocated
to a user that happens to experience a deep fade become
completely wasted, while non-orthogonal schemes essentially
adapt to the fading realization: the users in deep fades create
very little interference for the problem of decoding strong
users. This is the effect stemming from the PUPE criterion
for error rate.

IV. MANY USER MAC: K = µn, n→ ∞
This is our main section. We consider the linear scaling

regime where the number of users K scales with n, and
n→ ∞. We are interested in the tradeoff of minimum Eb/N0

required for the PUPE to be smaller than ε, with the user
density µ (µ < 1). So, we fix the message size k. Let S = kµ
be the spectral efficiency.

We focus on the case of different codebooks, but under
symmetric rate. So if M denotes the size of the codebooks,
then S = K logM

n = µ logM . Hence, given S and µ, M
is fixed. Let Ptot = KP denote the total power. Therefore
denoting by E the energy-per-bit, E = Eb/N0 = nP

log2 M =
Ptot

S . For finite Eb/N0, we need finite Ptot, hence we consider
the power P decaying as O(1/n).

Let Cj = {cj1, ..., cjM} be the codebook of user j, of

size M . The power constraint is given by
∥

∥

∥c
j
i

∥

∥

∥

2

≤ nP =

E log2M, ∀j ∈ [K], i ∈ [M ]. The collection of codebooks
{Cj} is called an (n,M, ε, E ,K)–code if it satisfies the power
constraint described before, and the per-user probability of
error is smaller than ε. Then, we can define the following
fundamental limit for the channel

E∗(M,µ, ε) = lim
n→∞

inf {E : ∃(n,M, ε, E ,K = µn)− code} .

We make an important remark here that all the following
results also hold for maximal per-user error (PUPE-max) (10)
as discussed in appendix C.

A. No-CSI

In this subsection, we focus on the no-CSI case. The
difficulty here is that, a priori, we do not know which subset
of the users to decode. We have the following theorem.

Theorem IV.1. Consider the channel (6) (no-CSI) with K =
µn where µ < 1. Fix the spectral efficiency S and target

probability of error (per-user) ε. Let M = 2S/µ denote the

size of the codebooks and Ptot = KP be the total power. Fix

ν ∈ (1− ε, 1]. Let ε′ = ε− (1− ν). Then if E > E∗
no−CSI =

sup ε′

ν <θ≤1 supξ∈[0,ν(1−θ)]
Ptot,ν(θ,ξ)

S , there exists a sequence

of (n,M, εn, E ,K = µn) codes such that lim supn→∞ εn ≤ ε,
where, for ε′

ν < θ ≤ 1 and ξ ∈ [0, ν(1− θ)],

Ptot,ν(θ, ξ) =
f̂(θ, ξ)

1− f̂(θ, ξ)α (ξ + νθ, ξ + 1− ν(1− θ))
(22)

f̂(θ, ξ) =
f(θ)

α(ξ, ξ + νθ)
(23)

f(θ) =

1+δ∗1 (1−Vθ)
Vθ

− 1

1− δ∗2
(24)

Vθ = e−Ṽθ (25)

Ṽθ = δ∗ +
θµν lnM

1− µν
+

1− µν(1− θ)

1− µν
h

(

θµν

1− µν(1− θ)

)

+

µ(1− ν(1− θ))

1− µν
h

(

θν

1− ν(1− θ)

)

(26)
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δ∗ =
µh(1− ν(1− θ))

1− µν
(27)

cθ =
2Vθ

1− Vθ
(28)

qθ =
µh(1− ν(1− θ))

1− µν(1− θ)
(29)

δ∗1 = qθ(1 + cθ) +
√

q2θ(c
2
θ + 2cθ) + 2qθ(1 + cθ) (30)

δ∗2 = inf

{

x : 0 < x < 1,

− ln(1− x)− x >
µh(1− ν(1− θ))

1− µν(1− θ)

}

(31)

α(a, b) = a ln(a)− b ln(b) + b− a. (32)

Hence E∗ ≤ E∗
no−CSI .

Proof Idea. Before we present the full proof, the main ideas
are presented here. Also, over the course, we explain the
quantities that are present in the statement of the theorem. We
start with choosing independent random Gaussian codebooks
for all users. That is, for each message of each user there is an
independent complex Gaussian CN (0, P ′In) codeword where
P ′ < P . The choice P ′ < P is to ensure we can control the
maximum power constraint violation events.

For simplicity we will consider ν = 1. Here ν represents the
fraction of users that the decoder can choose to decode. Due
to random coding, we can assume that a particular tuple of
codewords (c1, c2, · · · , cK) were transmitted i.e., the received
vector at the decoder is Y =

∑K
i=1Hici + Z. Then the

decoder performs subspace projection decoding. The idea is
that in the absence of noise, the received vector lies in the
subspace spanned by the K codewords. Since we assume
µ = K/n < 1, and the K codewords are linearly independent,
we can uniquely decode them by projecting the received vector
onto various K dimensional subspaces formed by taking a
codeword from each of the codebooks. Formally,

{ĉi : i ∈ [K]} = arg max
(ci∈Ci:i∈[K])

∥

∥P{ci:i∈S}Y
∥

∥

2
(33)

Notice that the PUPE is given by

Pe =
1

K

∑

i∈[K]

P [ci 6= ĉi] .

We will bound this error with the probability of events Ft–
event that exactly t users were misdecoded. That is

Pe ≤ ε+ P

[

⋃

t>εK

Ft

]

(34)

Hence it is enough to find conditions under which the second
term (call it p1) in the above display goes to 0 in our scaling.
To analyze Ft, we consider subsets S ⊂ [K] with |S| = t
and a choice of incorrect codewords (c′i ∈ Ci : i ∈ S) where
c′i 6= ci, and bound Ft as union (over S and (c′i : i ∈ [S]))

of events

{

∥

∥

∥Pc′
[S]

,c[[K]\S]
Y
∥

∥

∥

2

>
∥

∥Pc[[K]]
Y
∥

∥

2
}

. With abuse of

notation, denote this set as F (S, t).

Let c[S] = {ci : i ∈ S}, similarly we have H[S]. We
make a crucial observation that, conditioned on c[K], H[K] and

Z, the random variable
∥

∥

∥Pc′
[S]

,c[[K]\S]
Y
∥

∥

∥

2

can be written as
∥

∥Pc[K\S]
Y
∥

∥

2
+
∥

∥

∥P⊥
c[K\S]

Y
∥

∥

∥

2

Beta(t, n−K) where Beta(a, b)

is a beta distributed random variable with parameters a and b.

Let GS =

∥

∥

∥

∥

P⊥
c[[K]]

Y

∥

∥

∥

∥

2

∥

∥

∥

∥

P⊥
c[K\S]

Y

∥

∥

∥

∥

2 . Then we show that

P
[

F (S, t)|c[K], H[K], Z
]

= P
[

Beta(n−K, t) < GS |c[K], H[K], Z
]

≤
(

n−K + t− 1

t− 1

)

(GS)
n−K (35)

Next, we use the idea of random coding union (RCU) bound
[41] to get

P

[

⋃

t

Ft

]

≤ E

[

min

{

1,
∑

t,S

P
[

F (S, t)|c[K], H[K], Z
]

}]

(36)
Let θ = t/K, which is the fraction of misdecoded users.

Now, by thresholding the value of GS (this threshold is
parameterized by a δ > 0) we get from (36) a sum of an
exponentially decaying term with combinatorial factors and
the probability that GS violates this threshold for some S and
t (call this probability p2). Choosing the right threshold (δ∗

and corresponding threshold value Vθ in the theorem) the first
term vanishes (in the limit) and we are left with p2.

This is analyzed by conditioning on c[K] and H[K] along
with using concentration of non-central chi-squared distributed
variables (see claim 3). We follow similar procedure to above
(using RCU and thresholding) multiple times to obtain thresh-
olds parameterized by δ∗1 and δ∗2 to vanish combinatorial
factors (like qθ in the theorem which is the exponent of a
binomial coefficient) and finally we are left with the bottleneck

term:

lim sup
n

Pe ≤ ε+

lim sup
n

P

[

⋃

t,S

{

P ′ ∑

i∈[S]

|Hi|2 < g (δ∗1 , δ
∗
2 , δ

∗
3 ,M, µ, θ)

}]

(37)

where g is some specific function. In essence, this bottleneck
term is precisely the event that > ε fraction of users are outside
the Gaussian capacity region!

Next step is to replace ∪S with minS and use the conver-
gence of order statistics of fading coefficients i.e., |H(1)| >
· · · > |H(K)|:

lim sup
n

Pe ≤ ε+ lim sup
n

P

[

⋃

t

{

P ′
K
∑

i=K−t+1

|H(i)|2 <

g (δ∗1 , δ
∗
2 , δ

∗
3 ,M, µ, t/K)

}]

(38)

Then we show that, for t = θK, 1
K

∑K
i=K−t+1 |H(i)|2 →

∫ 1

1−θ
F−1
|H|2(1− γ) dγ ≡ α(1− θ, 1) in probabilty as n→ ∞.
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Hence the bottleneck term becomes deterministic in the limit.
The choice Ptot such that this terms vanishes is precisely the
one given in the statement of the theorem.

Proof. The proof uses random coding. Let each user gen-
erate a Gaussian codebook of size M and power P ′ < P
independently such that KP ′ = P ′

tot < Ptot. Let Wj

denote the random (in [M ]) message of user j. So, if
Cj = {cji : i ∈ [M ]} is the codebook of user j, he/she

transmits Xj = cjWj
1

{

∥

∥

∥c
j
Wj

∥

∥

∥

2

≤ nP

}

. For simplicity let

(c1, c2, ..., cK) be the sent codewords. Hence the received
vector is Y =

∑

i∈[K]Hici + Z where Z is the noise vector.
Fix ν ∈ (1− ε, 1]. Let K1 = νK be the number of users that
are decoded. Since there is no knowledge of CSIR, it is not
possible to, a priori, decide what set to decode. Instead, the
decoder searches of all K1 sized subsets of [M ]. Formally, let ?
denote an error symbol. The decoder output gD(Y ) ∈∏k

i=1 Ci
is given by

[

Ŝ, (ĉi)i∈Ŝ

]

= arg max
S⊂[K]
|S|=K1

max
(ci∈Ci)i∈S

∥

∥P{ci:i∈S}Y
∥

∥

2

(gD(Y ))i =

{

f−1
i (ĉi) i ∈ Ŝ

? i /∈ Ŝ
(39)

where fi are the encoding functions. The probability of error
(averaged over random codebooks) is given by

Pe =
1

K

K
∑

j=1

P

[

Wj 6= Ŵj

]

(40)

where Ŵj = (g(Y ))j is the decoded message of user j.
We perform a change of measure to Xj = cjWj

. Since Pe is
the expectation of a non-negative random variable bounded
by 1, this measure change adds a total variation distance

which can bounded by p0 = KP

[

χ2(2n)
2n > P

P ′

]

→ 0 as

n → ∞, where χ2(d) is the distribution of sum of squares
of d iid standard normal random variables (the chi-square
distribution). The reason is as follows. If we have two random
vectors U1 and U2 on a the same probability space such that
U1 = U21[U2 ∈ E], where E is a Borel set, then for any Borel
set A, we have

|P [U1 ∈ A]− P [U2 ∈ A] |
= |1[0 ∈ A]P [U2 ∈ Ec]− P [U2 ∈ A ∩ Ec] |
≤ P [U2 ∈ Ec] . (41)

Henceforth we only consider the new measure.
Let ε > 1− ν and ε′ = ε− (1− ν). Now we have

Pe ≤ ε+ P

[

1

K

K
∑

j=1

1[Wj 6= Ŵj ] > ε

]

= ε+ P

[ K
∑

j=1

1[Wj 6= Ŵj ] > Kε′ +K −K1

]

= ε+ p1. (42)

where

p1 = P

[ νK
⋃

t=ε′K

{ K
∑

j=1

1[Wj 6= Ŵj ] = K −K1 + t

}]

.

Let Ft =
{

∑K
j=1 1[Wj 6= Ŵj ] = K −K1 + t

}

. Let c[S] ≡
{ci : i ∈ S} and H[S] ≡ {Hi : i ∈ S}, where S ⊂ [K].
Conditioning on c[K], H[K] and Z, we have

P
[

Ft|c[K], H[K], Z
]

≤ P

[

∃S ⊂ [K] : |S| = K −K1 + t, ∃S1 ⊂ S : |S1| = t,

∃{c′i ∈ Ci : i ∈ S1, c
′
i 6= ci} :

∥

∥

∥
Pc′

[S1]
,c[[K]\S]

Y
∥

∥

∥

2

>

max
S2⊂S
|S2|=t

∥

∥

∥Pc[S2],c[[K]\S]
Y
∥

∥

∥

2
∣

∣

∣

∣

c[K], H[K], Z

]

≤ P

[

⋃

S⊂[K]
|S|=K−K1+t

⋃

S1⊂S
|S1|=t

⋃

{c′i∈Ci:

i∈S1,c
′
i 6=ci}

F (S, S∗
2 , S1, t)

∣

∣

∣

∣

c[K], H[K], Z

]

(43)

where

F (S, S∗
2 , S1, t) =

{

∥

∥

∥Pc′
[S1]

,c[[K]\S]
Y
∥

∥

∥

2

>
∥

∥

∥Pc[S∗
2 ],c[[K]\S]

Y
∥

∥

∥

2
}

and S∗
2 ⊂ S is a possibly random (depending only on H[K])

subset of size t, to be chosen later. Next we will bound
P
[

F (S, S∗
2 , S1, t)|c[K], H[K], Z

]

.

For the sake of brevity, let A0 = c[S∗
2 ]

∪ c[[K]\S], A1 =
c[[K]\S] and B1 = c′[S1]

. We have the following claim.

Claim 1. For any S1 ⊂ S with |S1| = t, conditioned on

c[K], H[K] and Z, the law of

∥

∥

∥Pc′
[S1]

,c[[K]\S]
Y
∥

∥

∥

2

is same

as the law of ‖PA1
Y ‖2 + ‖(I − PA1

)Y ‖2 Beta(t, n − K1)
where Beta(a, b) is a beta distributed random variable with

parameters a and b.

Proof. Let us write V = span{A1, B1} = A⊕B where A ⊥
B are subspaces of dimension K1− t and t respectively, with
A = span(A1) and B is the orthogonal complement of A1

in V . Hence ‖PV Y ‖2 = ‖PAY ‖2 + ‖PBY ‖2 (by definition,
PA = PA1 ). Now we analyze ‖PBY ‖2. We can further write
PBY = PBP

⊥
A Y . Observe that the subspace B is the span of

P⊥
AB1, and, conditionally, P⊥

AB1 ∼ CN⊗|S|(0, P ′P⊥
A ) which

is the product measure of |S| complex normal vectors in a
subspace of dimension n−K1+ t. Hence, the conditional law
of
∥

∥PBP
⊥
A Y

∥

∥

2
is the law of squared length of projection of a

fixed n−K1 + t dimensional vector of length ‖(I − PA)Y ‖2
onto a (uniformly) random t dimensional subspace.

Further, the law of the squared length of the orthogonal
projection of a fixed unit vector in C

d onto a random t–
dimensional subspace is same as the law of the squared length
of the orthogonal projection of a random unit vector in C

d
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onto a fixed t–dimensional subspace, which is Beta(t, d− t)
(see for e.g. [42, Eq. 79]): that is, if u is a unit random
vector in C

d and L is a fixed t dimensional subspace, then

P

[

‖PLu‖2 ≤ x
]

= P

[
∑t

i=1 |Zi|2
∑d

i=1 |Zi|2 ≤ x
]

= Fβ(x; t, n − K1)

where Zi
iid∼ CN (0, 1) and Fβ(x; a, b) =

Γ(a+b)
Γ(a)Γ(b)

∫ x

0
wa−1(1−

w)b−1dw denotes the CDF of the beta distribution with
parameters a and b. Hence the conditional law of

∥

∥PBP
⊥
A Y

∥

∥

2

is ‖(I − PA)Y ‖2 Beta(t, n−K1).

Therefore we have,

P
[

F (S, S∗
2 , S1, t)|c[K], H[K], Z

]

= P
[

Beta(n−K1, t) < GS |c[K], H[K], Z
]

= Fβ (GS ;n−K1, t) (44)

where

GS =
‖Y ‖2 − ‖PA0

Y ‖2

‖Y ‖2 − ‖PA1
Y ‖2

. (45)

Since t ≥ 1, we have

Fβ (GS ;n−K1, t) ≤
(

n−K1 + t− 1

t− 1

)

Gn−K1

S .

Let us denote
⋃νK

t=ε′K as
⋃

t,
⋃

S⊂[K]
|S|=K−K1+t

as
⋃

S,K1
, and

⋃

t

⋃

S⊂[K]
|S|=K−K1+t

as
⋃

t,S,K1
; similarly for

∑

and
⋂

for the

ease of notation. Using the above claim, we get,

P
[

Ft|c[K], H[K], Z
]

≤
∑

S,K1

(

K −K1 + t

t

)

M t

(

n−K1 + t− 1

t− 1

)

Gn−K1

S . (46)

Therefore p1 can be bounded as

p1 = P

[

⋃

t

Ft

]

≤ E

[

min

{

1,
∑

t,S,K1

(

K −K1 + t

t

)

M t ·
(

n−K1 + t− 1

t− 1

)

Gn−K1

S

}]

= E

[

min

{

1,
∑

t,S,K1

e(n−K1)stM tGn−K1

S

}]

(47)

where st =
ln((K−K1+t

t )(n−K1+t−1
t−1 ))

n−K1
.

Now we can bound the binomial coefficient [43, Ex. 5.8]
as

(

n−K1 + t− 1

t− 1

)

≤
√

n−K1 + t− 1

2π(t− 1)(n−K1)
e(n−K1+t−1)h( t−1

n−K1+t−1 )

= O

(

1√
n

)

en(1−µν(1−θ))h( θµν
1−µν(1−θ)

). (48)

Similarly,
(

K −K1 + t

t

)

≤ O

(

1√
n

)

enµ(1−ν(1−θ))h( θν
1−ν(1−θ) ) (49)

Let rt = st +
t lnM
n−K1

. For δ > 0, define Ṽn,t = rt + δ and

Vn,t = e−Ṽn,t . Let E1 be the event

E1 =
⋂

t,S,K1

{− lnGS − rt > δ}

=
⋂

t,S,K1

{GS < Vn,t} . (50)

Let p2 = P

[

⋃

t,S,K1
{GS > Vn,t}

]

. Then

p1

≤ E

[

min

{

1,
∑

t,S,K1

e(n−K1)rtGn−K1

S

}

(1[E1] + 1[Ec
1])

]

≤ E





∑

t,S,K1

e−(n−K1)δ



+ p2

=
∑

t

(

K

K −K1 + t

)

e−(n−K1)δ + p2. (51)

Observe that, for t = θK1 = θνK,

st =
1− µν(1− θ)

1− µν
h

(

θµν

1− µν(1− θ)

)

+

µ(1− ν(1− θ))

1− µν
h

(

θν

1− ν(1− θ)

)

−O

(

ln(n)

n

)

and rt = st +
θµν
1−µν lnM . Therefore n→ ∞ with θ fixed, we

have

lim
n→∞

Ṽn,θνµ = Ṽθ (52)

where Ṽθ is given in (26).
Now, note that, for 1 < t < K1,

(

K

K −K1 + t

)

≤
√

K

2π(K −K1 + t)(K1 − t)
eKh(

K−K1+t
K ). (53)

Hence choosing δ >
Kh(

K−K1+t
K )

n−K1
will ensure that the first

term in (51) goes to 0 as n → ∞. So for t = θK1 = θνK,
we need to have

δ > δ∗. (54)

where δ∗ is given in (27).
Let us bound p2. Let Ẑ = Z +

∑

i∈S\S∗
2
Hici. We have
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Claim 2.

p2 = P

[

⋃

t,S,K1

{GS > Vn,t}
]

≤ P

[

⋃

t,S,K1

{∥

∥

∥

∥

(1− Vn,t)P
⊥
A1
Ẑ − Vn,tP

⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2

≥ Vn,t

∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2}]

. (55)

Proof. See appendix B.

Let χ′
2(λ, d) denote the non-central chi-squared distributed

random variable with non-centrality λ and degrees of freedom
d. That is, if Wi ∼N (µi, 1), i ∈ [d] and λ =

∑

i∈[d] µ
2
i , then

χ′
2(λ, d) has the same distribution as that of

∑

i∈[d]W
2
i . We

have the following claim.

Claim 3. Conditional on H[K] and A0,

∥

∥

∥

∥

P⊥
A1

(

Ẑ − Vn,t
1− Vn,t

∑

i∈S∗
2

Hici

)∥

∥

∥

∥

2

∼
(

1 + P ′ ∑

i∈S\S∗
2

|Hi|2
)

1

2
χ′
2 (2F, 2n

′) (56)

where

F =

∥

∥

∥

Vn,t

1−Vn,t
P⊥
A1

∑

i∈S∗
2
Hici

∥

∥

∥

2

(

1 + P ′∑
i∈S\S∗

2
|Hi|2

) (57)

n′ = n−K1 + t. (58)

Hence its conditional expectation is

µ = n′ + F. (59)

Proof. See appendix B.

Now let

T =
1

2
χ′
2(2F, 2n

′)− µ (60)

U =
Vn,t

(1− Vn,t)

∥

∥

∥P⊥
A1

∑

i∈S∗
2
Hici

∥

∥

∥

2

(

1 + P ′∑
i∈S\S∗

2
|Hi|2

) − n′ (61)

U1 =
1

1− Vn,t
(Vn,tWS − 1) (62)

where

WS =

(

1 +

∥

∥

∥P⊥
A1

∑

i∈S∗
2
Hici

∥

∥

∥

2

n′
(

1 + P ′∑
i∈S\S∗

2
|Hi|2

)

)

.

Notice that U = n′U1 and F =
Vn,t

1−Vn,t
n′(1 + U1).

Then we have

RHS of (55)

= P

[

⋃

t,S,K1

{∥

∥

∥

∥

P⊥
A1
Ẑ − Vn,t

(1− Vn,t)
P⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2

− µ ≥ U

}]

= P

[

⋃

t,S,K1

{T ≥ U}
]

. (63)

Now, let δ1 > 0, and E2 = ∩t,S,K1

{

U1 > δ1
}

. Taking
expectations over E1 and its complement, we have

P

[

⋃

t,S,K1

{T ≥ U}
]

≤
∑

t,S,K1

P
[

T > U,U1 > δ1
]

+ P [Ec
2]

=
∑

t,S,K1

E
[

P
[

T > U |H[K], A0

]

1[U1 > δ1]
]

+ P [Ec
2] (64)

which follows from the fact that {U1 > δ1} ∈ σ(H[K], A0).
To bound this term, we use the following concentration result
from [44, Lemma 8.1].

Lemma IV.2 ([44]). Let χ = χ′
2(λ, d) be a non-central chi-

squared distributed variable with d degrees of freedom and

non-centrality parameter λ. Then ∀x > 0

P

[

χ− (d+ λ) ≥ 2
√

(d+ 2λ)x+ 2x
]

≤ e−x

P

[

χ− (d+ λ) ≤ −2
√

(d+ 2λ)x
]

≤ e−x
(65)

Hence, for x > 0, we have

P [χ− (d+ λ) ≥ x] ≤ e−
1
2 (x+d+2λ−

√
d+2λ

√
2x+d+2λ). (66)

and for x < (d+ λ), we have

P [χ ≤ x] ≤ e−
1
4

(d+λ−x)2

d+2λ . (67)

Observe that, in (66), the exponent is always negative for
x > 0 and finite λ due to AM-GM inequality. When λ = 0,
we can get a better bound for the lower tail in (67) by using
[23, Lemma 25].

Lemma IV.3 ([23]). Let χ = χ2(d) be a chi-squared dis-

tributed variable with d degrees of freedom. Then ∀x > 1

P

[

χ ≤ d

x

]

≤ e−
d
2 (ln x+ 1

x−1) (68)

Therefore, from (55), (63), (64) and (66), we have

p2 ≤
∑

t,S,K1

E

[

e−n′fn(U
1)1[U1 > δ1]

]

+

P

[

⋃

t,S,K1

{

U1 ≤ δ1

}]

(69)
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where fn is given by

fn(x) = x+ 1 +
2Vn,t

1− Vn,t
(1 + x)

−
√

1 +
2Vn,t

1− Vn,t
(1 + x)

√

2x+ 1 +
2Vn,t

1− Vn,t
(1 + x). (70)

Next, we have the following claim.

Claim 4. For 0 < Vn,t < 1 and x > 0, fn(x) is a

monotonically increasing function of x.

Proof. See appendix B.

From this claim, we get

p2 ≤
∑

t,S,K1

e−n′fn(δ1) + p3 (71)

where p3 = P [Ec
2].

Now, if, for each t, δ1 is chosen such that fn(δ1) >
Kh(

K−K1+t
K )

n−K1+t , then the first term in (102) goes to 0 as n→ ∞.
Therefore, for t = θK1, setting cθ and qθ as in (28) and (29)
respectively, and choosing δ1 such that

δ1 > δ∗1 (72)

with δ∗1 given by (30), will ensure that the first term in (71)
goes to 0 as n→ ∞.

Note that

p3 = P [Ec
2] (73)

= P

[

⋃

t,S,K1

{

Vn,tWS − 1 ≤ δ1(1− Vn,t)

}]

. (74)

Conditional on H[K],
∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2

∼ 1

2
P ′ ∑

i∈S∗
2

|Hi|2χS∗
2

2 (2n′)

where χ2(2n
′) is a chi-squared distributed random variable

with 2n′ degrees of freedom (here the superscript S∗
2 denotes

the fact that this random variable depends on the codewords
corresponding to S∗

2 ). For 1 > δ2 > 0, consider the event

E4 =
⋂

t,S,K1

{

χ
S∗
2

2 (2n′)
2n′ > 1− δ2

}

. Using (68) , we can

bound p3 as

p3 ≤
∑

t

(

K

K −K1 + t

)

e−n′(− ln(1−δ2)−δ2) + p4 (75)

where

p4 = P [Ec
4]

= P

[

⋃

t,S,K1

{

Vn,t

(

1 +
P ′∑

i∈S∗
2
|Hi|2(1− δ2)

(

1 + P ′∑
i∈S\S∗

2
|Hi|2

)

)

≤ 1 + δ1(1− Vn,t)

}]

. (76)

Again, it is enough to choose δ2 such that

δ2 > δ∗2 (77)

with δ∗2 given by (31), to make sure that the first term in (75)
goes to 0 as n→ ∞.

Note that the union bound over S is the minimum over
S, and this minimizing S should be contiguous amongst the
indices arranged according the decreasing order of fading
powers. Further, S∗

2 is chosen to be corresponding to the top
t fading powers in S. Hence, we get

p4 = P

[

⋃

t

{

min
0≤j≤K1−t

(

P ′∑j+t
i=j+1 |H(i)|2(1− δ2)

1 + P ′∑j+t+K−K1

i=j+t+1 |H(i)|2

)

≤ 1 + δ1(1− Vn,t)

Vn,t
− 1

}]

. (78)

We make the following claim

Claim 5.

lim sup
n→∞

p4 ≤ 1

[

⋃

θ∈( ε′

ν ,1]∩Q
{

inf
ξ∈[0,ν(1−θ)]

(

(1− δ2)P
′
totα(ξ, ξ + νθ)

1 + P ′
totα(ξ + νθ, ξ + 1− ν(1− θ))

)

≤ 1 + δ1(1− Vθ)

Vθ
− 1

}]

(79)

where α(a, b) is given by (32).

Proof. We have |H1|2, ..., |HK |2 with CDF F (x) = (1 −
e−x)1[x >= 0]. Let F̃K(x) = 1

K

∑K
i=1 1[|Hi|2 ≤ x] be the

empirical CDF (ECDF). Then standard Chernoff bound gives,
for 0 < r < 1,

P

[

|F̃K(x)− F (x)| > rF (x)
]

≤ 2e−KcF (x)r2 (80)

where c is some constant.
From [45], we have the following representation. Let 0 <

γ < 1. Then

|H(dnγe)|2 =

F−1(1− γ)− F̃K(F−1(1− γ))− (1− γ)

f (F−1(1− γ))
+RK (81)

where f is the pdf corresponding to F, and with probability 1,
we have RK = O(n−3/4 log(n)) as n→ ∞.

Let τ > 0. Then using (80) and (81), we have

∣

∣|H(dnγe)|2 − F−1(1− γ)
∣

∣ ≤ O

(

1

n
1−τ
2

)

(82)

with probability atleast 1− e−O(nτ ).
Hence, for 0 < ξ < ζ < 1, we have, with probability

1− e−O(nτ ),

1

K

dβKe
∑

i=dαKe
|H(i)|2 =

[

1

K

K
∑

i=1

|Hi|21
[

b ≤ |Hi|2 ≤ a
]

]

+ o(1) (83)
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where a = F−1(1 − ξ) and b = F−1(1 − ζ). Now, by
law of large numbers (and Bernstein’s inequality [46]), with
overwhelming probability (exponentially close to 1), we have

1

K

K
∑

i=1

|Hi|21
[

b ≤ |Hi|2 ≤ a
]

=

∫ a

b

xdF (x) + o(1) (84)

and
∫ a

b
xdF (x) =

∫ ζ

ξ
F−1(1− γ)dγ = α(ξ, ζ).

Define the events

Jn,θ,ξ =

{(

P ′∑d(ξ+νθ)Ke
i=dξKe+1 |H(i)|2(1− δ2)

1 + P ′∑d(ξ+1−ν(1−θ))Ke
i=d(ξ+νθ)Ke+1 |H(i)|2

)

≤ 1 + δ1(1− Vn,dθνKe)

Vn,dθνKe
− 1

}

(85)

In,θ,ξ =

{(

(1− δ2)P
′
totα(ξ, ξ + νθ)

1 + P ′
totα(ξ + νθ, ξ + 1− ν(1− θ))

)

≤ 1 + δ1(1− Vn,dθνKe)

Vn,dθνKe
− 1

}

(86)

Iθ,ξ =

{(

(1− δ2)P
′
totα(ξ, ξ + νθ)

1 + P ′
totα(ξ + νθ, ξ + 1− ν(1− θ))

)

≤ 1 + δ1(1− Vθ)

Vθ
− 1

}

(87)

En,θ,ξ =

{∣

∣

∣

∣

1

K

d(ξ+νθ)Ke
∑

i=dξKe+1

|H(i)|2 − α (ξ, ξ + νθ) ≤ o(1)

∣

∣

∣

∣

}

⋂

{∣

∣

∣

∣

1

K

d(ξ+1−ν(1−θ))Ke
∑

i=d(ξ+νθ)Ke+1

|H(i)|2 −

α (ξ + νθ, ξ + 1− ν(1− θ)) ≤ o(1)

∣

∣

∣

∣

}

(88)

En =





⋂

θ∈An

⋂

ξ∈BK,θ

En,θ,ξ



 (89)

where An =
(

ε′

ν , 1
]

∩
{

i
K1

: i ∈ [K1]
}

and BK,θ =

[0, ν(1− θ)] ∩
{

i
K : i ∈ [K]

}

. Note that, from (83) and (84),

P

[

Ec
n,θ,ξ

]

is exponentially small in n.

Then we have

p4 = P





⋃

θ∈An

⋃

ξ∈BK,θ

Jn,θ,ξ





≤ P

[

⋃

θ∈An

⋃

ξ∈BK,θ

Jn,θ,ξ ∩ En,θ,ξ

]

+
∑

θ∈An

∑

ξ∈BK,θ

P
[

Ec
n,θ,ξ

]

≤ 1

[

⋃

θ∈An

⋃

ξ∈BK,θ

In,θ,xi

]

+ o(1)

≤ 1

[

⋃

θ∈( ε′

ν ,1]

⋃

ξ∈[0,ν(1−θ)]

In,θ,ξ

]

+ o(1). (90)

Therefore

lim sup
n→∞

p4 ≤ 1

[

⋃

θ∈( ε′

ν ,1]

⋃

ξ∈[0,ν(1−θ)]

Iθ,ξ

]

(91)

This concludes the proof of claim 5.

The statement of the theorem follows by choosing P ′
tot to

make sure that lim supn→∞ p4 = 0.

Remark 4. In retrospect, our analysis is rather similar to the

one in [23]. We remind that the problem considered there can

be seen (as argued in [3]) as a version of the many-MAC

problem with random-access, cf. Section II-A for more.

B. CSIR

In this subsection, we focus on the CSIR scenario. We could
use projection decoding to decode a fraction of users where
decoding set is a function of CSIR. But a better bound is
obtained by directly using euclidean metric to decode, similar
to [3]. Then have the following theorem.

Theorem IV.4. Consider the channel (6) (with CSIR) with

K = µn where µ < 1. Fix the spectral efficiency S and

target probability of error (per-user) ε. Let M = 2S/µ

denote the size of the codebooks and Ptot = KP be the

total power. Fix ν ∈ (1 − ε, 1]. Let ε′ = ε − (1 − ν).

Then if E > E∗
CSIR = sup ε′

ν <θ≤1 inf0≤ρ≤1
Ptot,ν(θ,ρ)

S , there

exists a sequence of (n,M, εn, E ,K = µn) codes such that

lim supn→∞ εn ≤ ε, where, for ε′

ν < θ ≤ 1,

Ptot,ν(θ, ρ)

=
(1 + ρ)

(

eµν(
h(θ)
ρ +θ lnM) − 1

)

α(ν(1− θ), ν)−
(

eµν(
h(θ)
ρ +θ lnM) − 1

)

α(ν, 1)(1 + ρ)

(92)

α(a, b) = a ln(a)− b ln(b) + b− a. (93)

Hence E∗ ≤ E∗
CSIR.

The proof idea is a combination of techniques similar to [3]

and theorem IV.1

Proof. Let each user generate a Gaussian codebook of size M
and power P ′ < P independently such that KP ′ = P ′

tot <
Ptot. Let Wj denote the random (in [M ]) message of user
j. So, if Cj = {cji : i ∈ [M ]} is the codebook of user j,

he/she transmits Xj = cjWj
1

{

∥

∥

∥c
j
Wj

∥

∥

∥

2

≤ nP

}

. For simplicity

let (c1, c2, ..., cK) be the sent codewords. Fix ν ∈ (1 − ε, 1].
Let K1 = νK be the number of users that are decoded. Fix
a decoding set D ⊂ [K], possibly depending on H[K] such
that |D| = K1, a.s. Since the receives knows H[K], we can
use the euclidean distance used in [3] as the decoding metric.
Formally, the decoder output gD(Y ) ∈∏K

i=1 Ci is given by
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(gD(Y ))i =

{

f−1
i (ĉi) i ∈ D

? i /∈ D

(ĉi)i∈D = arg min
(ci∈Ci)i∈D

∥

∥

∥

∥

∥

Y −
∑

i∈D

Hici

∥

∥

∥

∥

∥

2

.

The probability of error is given by

Pe =
1

K

K
∑

j=1

P

[

Wj 6= Ŵj

]

(94)

where Ŵj = (g(Y ))j is the decoded message of user j.
Similar to the no-CSI case, we perform a change of measure
to Xj = cjWj

by adding a total variation distance bounded by

p0 = KP

[

χ2(2n)
2n > P

P ′

]

→ 0 as n→ ∞.

Let ε′ = ε− (1− ν). Now we have

Pe = E





1

K

K
∑

j=1

1{Wj 6= Ŵj}





=
K −K1

K
+ E





1

K

∑

j∈D

1{Wj 6= Ŵj}





≤ (1− ν) + ε′ + νP





1

K

∑

j∈D

1{Wj 6= Ŵj} ≥ ε′





= ε+ νp1 (95)

where p1 = P

[

⋃νK
t=ε′K

{

∑

j∈D 1{Wj 6= Ŵj} = t
}]

.

From now on, we just write
⋃

t to denote
⋃νK

t=ε′K ,
∑

t for
∑νK

t=ε′K , and
∑

S for
∑

S⊂D
|S|=t

. Let c[S] ≡ {ci : i ∈ [S]} and

H[K] = {Hi : i ∈ [K]}.

Let Ft =
{

∑

j∈D 1{Wj 6= Ŵj} = t
}

. Let ρ ∈ [0, 1]. We

bound P [Ft] using Gallager’s rho trick similar to [3] as

P
[

Ft|Z, c[K], H[K]

]

≤ P

[

∃S ⊂ D : |S| = t, ∃{c′i ∈ Ci : i ∈ S, c′i 6= ci} :

∥

∥

∥

∥

Y −
∑

i∈S

Hic
′
i −

∑

i∈D\S
Hici

∥

∥

∥

∥

2

<

∥

∥

∥

∥

Y −
∑

i∈D

Hici

∥

∥

∥

∥

2∣
∣

∣

∣

Z, c[K], H[K]

]

≤
∑

S

P

[

⋃

c′i∈Ci:i∈S

c′i 6=ci

{∥

∥

∥

∥

ZD +
∑

i∈S

Hici −
∑

i∈S

Hic
′
i

∥

∥

∥

∥

2

<

∥

∥

∥

∥

ZD

∥

∥

∥

∥

2}∣
∣

∣

∣

Z, c[K], H[K]

]

≤
∑

S

Mρt
P

[∥

∥

∥

∥

ZD +
∑

i∈S

Hici −
∑

i∈S

Hic
′
i

∥

∥

∥

∥

2

<

∥

∥

∥

∥

ZD

∥

∥

∥

∥

2∣
∣

∣

∣

Z, c[K], H[K]

]ρ

(96)

where ZD = Z +
∑

i∈[K]\DHici and c′[S] in the last display
denotes a generic set of unsent codewords corresponding to
codebooks of users in set S.

We use the following simple lemma which is a trivial
extension of a similar result used in [3] to compute the above
probability.

Lemma IV.5. Let Z ∼ CN (0, In) and u ∈ C
n. Let D =

diag(d1, ..., dn) ∈ C
n×n be a diagonal matrix. If γ >

supj∈[n] − 1
|dj |2 , then

E

[

e−γ‖DZ+u‖2
]

=
1

∏

j∈[n] (1 + γ|dj |2)
e
−γ
∑

j∈[n]

|uj |
2

1+γ|dj |
2

Proof. Omitted.

So, using the above lemma, we have, for λ1 > 0,

E{c′S}

[

P

[∥

∥

∥

∥

ZD +
∑

i∈S

Hici −
∑

i∈S

Hic
′
i

∥

∥

∥

∥

2

<

‖ZD‖2
∣

∣

∣

∣

Z, c[K], H[K]

]ρ]

= E{c′S}

[

P

[

exp

(

−λ1
∥

∥

∥

∥

ZD +
∑

i∈S

Hici −
∑

i∈S

Hic
′
i

∥

∥

∥

∥

2
)

>

exp
(

−λ1 ‖ZD‖2
)

∣

∣

∣

∣

Z, c[K], H[K]

]ρ]

≤ eρλ1‖ZD‖2

(

1 + λ1P ′∑
i∈S |Hi|2

)ρn e
−ρλ1‖ZD+

∑

i∈S Hici‖2

1+λ1P ′∑
i∈S |Hi|

2 (97)

where Ec′S
denotes taking expectation with respect to {c′i : i ∈

S} alone, and 1 + λ1P
′∑

i∈S |Hi|2 > 0.

Let λ2 = ρλ1

1+λ1P ′
∑

i∈S |Hi|2 . Note that λ2 is a function of
HS . Now using lemma IV.5 again to take expectation over cS ,
we get

EcS

[

eρλ1‖ZD‖2

(

1 + λ1P ′∑
i∈S |Hi|2

)ρn e
−ρλ1‖ZD+

∑

i∈S Hici‖2

1+λ1P ′∑
i∈S |Hi|

2

]

≤ 1
(

1 + λ1P ′∑
i∈S |Hi|2

)ρn
1

(

1 + λ2P ′∑
i∈S |Hi|2

)n ·

e

(

ρλ1− λ2
1+λ2P ′∑

i∈S |Hi|
2

)

‖ZD‖2

(98)

with 1 + λ2P
′∑

i∈S |Hi|2 > 0. Finally, taking expectation
over Z, we get

P
[

Ft|H[K]

]

≤
∑

S

Mρte−nE0(λ1;ρ,H[K],S) (99)
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where

E0(λ1; ρ,H[K], S)

= ρ ln

(

1 + λ1P
′∑

i∈S

|Hi|2
)

+ ln

(

1 + λ2P
′∑

i∈S

|Hi|2
)

+

ln

(

1−
(

1 + P ′ ∑

i∈Dc

|Hi|2
)

·
(

ρλ1 −
λ2

1 + λ2P ′∑
i∈S |Hi|2

))

(100)

with

1 >

(

1 + P ′ ∑

i∈Dc

|Hi|2
)

(

ρλ1 −
λ2

1 + λ2P ′∑
i∈S |Hi|2

)

.

It is easy to see that the optimum value of λ1 that maximizes
E0 is given by

λ∗1 =
1

(

1 + P ′∑
i∈Dc |Hi|2

)

(1 + ρ)
(101)

and hence the maximum value of the exponent

E0(ρ,H[K], S) = E0(λ
∗
1; ρ,H[K], S)

is given by

E0(ρ,H[K], S)

= ρ ln

(

1 +
P ′∑

i∈S |Hi|2
(1 + ρ)

(

1 + P ′∑
i∈Dc |Hi|2

)

)

.

Therefore, we have

p1 ≤ E

[

∑

t

∑

S

eρt lnMe−nE0(ρ,H[K],S)

]

. (102)

Since we want an upper bound for (102), we would like to
take minimum over S ⊂ D : |S| = t. For a given choice of D,
this corresponds to minimizing P ′∑

i∈S |Hi|2 which mean we
take S to contain indices in D which correspond to t smallest
fading coefficients (within D). Then, the best such bound is

obtained by choosing D that maximizes
P ′∑

i∈S |Hi|2

(1+P ′
∑

i∈Dc |Hi|2)
.

Clearly this corresponds to choosing D to contain indices
corresponding to top K1 fading coefficients.

Therefore, we get

p1 ≤

E

[

∑

t

(

K1

t

)

eρt lnMe
−nρ ln

(

1+
P ′∑K1

i=K1−t+1
|H(i)|

2

(1+ρ)(1+P ′∑K
i=K1+1

|H(i)|
2)

)

]

.

Let An = [ ε
′

ν , 1] ∩
{

i
K1

: i ∈ [K1]
}

. For θ ∈ An and t =

θK1, using [43, Ex. 5.8] again, we have

(

K1

t

)

≤
√

K1

2πt(K1 − t)
eK1h(

t
K1

) = O

(

1√
n

)

enµνh(θ).

(103)

The choice of ρ was arbitrary, and hence,

p1 ≤ E

[

min

{

1,
∑

θ∈An

exp

(

− n sup
ρ∈[0,1]

(

ρ ln

(

1 +
P ′∑νK

i=ν(1−θ)K+1 |H(i)|2

(1 + ρ)(1 + P ′∑K
i=νK+1 |H(i)|2)

)

− µνh(θ)− µνθ lnM

))}]

≤ E

[

min

{

1, |An| exp
(

− n inf
θ∈An

sup
ρ∈[0,1]

(

ρ ln

(

1 +
P ′∑νK

i=ν(1−θ)K+1 |H(i)|2

(1 + ρ)(1 + P ′∑K
i=νK+1 |H(i)|2)

)

− µνh(θ)− µνθ lnM

))}]

(104)

where we have used min since p1 ≤ 1. Now, using similar
arguments as in the proof of claim 5 and taking limits, we can
see that

inf
θ∈An

sup
ρ∈[0,1]

(

ρ ln

(

1 +
P ′∑νK

i=ν(1−θ)K+1 |H(i)|2

(1 + ρ)(1 + P ′∑K
i=νK+1 |H(i)|2)

)

− µνh(θ)− µνθ lnM

)

=

inf
θ∈An

sup
ρ∈[0,1]

(

ρ ln

(

1 +
P ′
totα(ν(1− θ), ν)

(1 + ρ)(1 + P ′
totα(ν, 1))

)

− µνh(θ)− µνθ lnM

)

+ o(1) (105)

with exponentially high probability. Hence,

p1 ≤ E

[

|An| exp
(

o(n)− n inf
θ∈An

sup
ρ∈[0,1]

(

ρ ln

(

1 +
P ′
totα(ν(1− θ), ν)

(1 + ρ)(1 + P ′
totα(ν, 1))

)

− µνh(θ)

− µνθ lnM

))]

+ o(1)

≤ E

[

|An| exp
(

o(n)− n inf
θ∈A

sup
ρ∈[0,1]

(

ρ ln

(

1 +
P ′
totα(ν(1− θ), ν)

(1 + ρ)(1 + P ′
totα(ν, 1))

)

− µνh(θ)

− µνθ lnM

))]

+ o(1) (106)

where A = [ ε
′

ν , 1].
Therefore, choosing P ′

tot > supθ∈A infρ∈[0,1] Ptot(θ, ρ) will
ensure that lim supn→∞ p1 = 0.

Remark 5. Note that the analysis of the CSIR case in this

paper and the AWGN case in [3] are similar, in particular

both analyze a (suboptimal for PUPE) maximum likelihood

decoder. However, there are two new subtleties, compared
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to [3]. First, [3] applies Gallager’s ρ-trick twice, where the

second application (with parameter ρ1 in the notation of [3])

is applied just before taking the expectation over Z in (99). In

the CSIR case, the summands of
∑

S actually depend on the

subset S through the fading gains, which makes the ρ-trick

less appealing, and that is why we omitted it here. Secondly,

because the summands depend on S, we upper bound each

by taking the maximum over S, and this requires analysis of

order statistics which is, of course, not present in the AWGN

case.

C. Achievability bound via scalar AMP

In this section, we will given an achievability bound on
Eb/N0 for the no-CSI case by the asymptotic analysis of the
scalar AMP algorithm [23, 25, 26, 40]. Here, we recall the
compressed sensing view of our model (11) where U is block
sparse. As discussed in section II-A, a better algorithm to use
in this case would be the vector or block version of AMP,
whose analysis is also well studied, e.g. [40]. However, as
we discussed in Section II-A evaluation of performance of
this block-AMP requires computing M = 2100 dimensional
integrals, and thus does not result in computable bounds.
Instead, here we take a different approach by analyzing the
scalar AMP algorithm, whose asymptotic analysis in [26] in
fact only requires that the empirical distribution of entries of
U be convergent – a fact emphasized in [23]. Let us restate
the signal model we have:

Y = AU+Z, Ai,j
iid∼ CN (0, Ptot/µ), i ∈ [n], j ∈ [KM ] ,

(107)
where U ∈ C

KM is block sparse with K = µn blocks each of
length M , with a single non-zero entry Uj in each block with
Uj ∼ CN (0, 1) (Rayleigh fading), and Z ∼ CN (0, In). The
support of U , denoted by S ∈ {0, 1}KM , is sampled uniformly
from all such block sparse supports (there are MK of them).
The goal is to get an estimate Ŝ = Ŝ(Y,A) of S where our
figure of merit is the following:

PUPE(Ŝ) =
1

K

K
∑

k=1

P

[

SkM
1+(k−1)M 6= ŜkM

1+(k−1)M

]

, (108)

which is also known as section error rate (SER) in the SPARC
literature [37].

The AMP-based algorithm operates as follows. First we
estimate U iteratively, then after estimating U we threshold
its values to obtain an estimator for S.

To describe scalar AMP we first introduce the following
scalar problem. For each σ > 0 define µ(σ) = PX,V to be the
joint distribution of variables X and V :

V = X + σW, X ⊥W ∼ CN (0, 1) (109)

and

X ∼ BG(1, 1/M) =

{

CN (0, 1) w.p. 1
M

0 w.p. 1− 1
M

(110)

We also define

η(z, σ2) , E[X|V = z] ,mmse(σ2) , E[(X − E[X|V ])2] .
(111)

Next, start with U (0) = 0 ∈ C
KM , R(0) = Y , σ̂2

0 = µ
Ptot

+
µ. Then for t = 1, 2, · · · we have the following iterations

U (t) = η
(

A∗R(t−1) + U (t−1), σ̂2
t−1

)

(112)

R(t) = Y −AU (t) +

µMR(t−1) 1

KM

KM
∑

i=1

η′
((

A∗R(t−1) + U (t−1)
)

i
, σ̂2

t−1

)

(113)

σ̂2
t =

1

n

∥

∥

∥R(t)
∥

∥

∥

2

(114)

where η′(x+ iy, σ2) denotes 1
2

(

∂η(x+iy,σ2)
∂x − i∂η(x+iy,σ2)

∂y

)

and i =
√
−1 is the imaginary unit (see [47, 48] for a more

general derivation of complex AMP). The estimate of U after
t steps is given by (see [23] for more details)

Û (t) = A∗R(t) + U (t) (115)

To convert Û (t) into Ŝ(t) we perform a simple thresholding:

Ŝ(t)(θ) = {i ∈ [KM ] : |Û (t)
i |2 > θ} . (116)

Theorem IV.6 (Scalar AMP achievability). Fix any µ > 0,

Ptot > 0 and M ≥ 1. Then for every E > Ptot

µ log2 M there exist

a sequence of (n,M, εn, E ,K = µn) codes (noCSI) such that

AMP decoder (116) (with a carefully chosen θ = θ(E ,M, µ)
and sufficiently large t) achieves

lim sup
n→∞

εn ≤ π∗(σ2
∞,M) ,

where π∗(τ,M) = 1− 1
1+τ

(

(M − 1)
(

1
τ + 1

))−τ
and σ2

∞ is

found from

σ2
∞ ≡ σ2

∞(µ, Ptot,M)

= sup

{

τ ≥ 0 : τ =
µ

Ptot
+ µM mmse(τ)

}

(117)

Proof. Denote the Hamming distance

dH(S, Ŝ) =
1

KM

KM
∑

i=1

1[Si 6= Ŝi] (118)

Note that according to the definition (108) we have a bound

PUPE(Ŝ(t)(θ)) ≤ME

[

dH(S, Ŝ(t)(θ)))
]

(119)

Indeed, this is a simple consequence of upper bounding each
probability in (108) by the union bound.

The key result of [26] shows the following. Let the empirical
joint distribution of entries in (U, Û (t)) be denoted by

µ̂U,Û(t) ,
1

KM

KM
∑

i=1

δ
(Ui,Û

(t)
i )

,

where δx is the Dirac measure at x. Then as n→ ∞ this (ran-
dom) distribution on C

2 converges weakly to a deterministic
limit µX,V almost surely. More precisely, from [26, Lemma
1(b)] and proof of [23, Theorem 5] for any bounded Lipschitz
continuous function f : C2 → R we have

lim
n→∞

∫

f dµ̂U,Û(t) =

∫

f dµ(σt) a.s. (120)
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where µ(σt) is the joint distribution of (X,V = X + σtW )
defined in (109), and σt can further be determined from the
so called state evolution sequence: Set σ2

0 = µ
Ptot

+µ and then

σ2
t =

µ

Ptot
+ µM mmse(σ2

t−1) (121)

where mmse is defined in (111).
Note that the assumptions on U A and Z in [26, Lemma

1(b)] hold in our case. In particular, since the support of U
is sampled uniformly from all block sparse supports of size
K and the entries in the support are iid CN (0, 1) random
variables, we have that the empirical distribution of entries of
U converge weakly almost surely to the distribution PX of
X defined in (110). Further the moment conditions in [26,
Theorem 2] are also satisfied. We note here that although [23,
26] consider only real valued signals, the results there also hold
for the complex case (see [49, Theorem III.15], [50, Chapter
7]).

We next consider the support recovery in the scalar model
(109). Let S0 = 1[X 6= 0] denote the indicator of the event
when X is non-zero. Let Ŝ0 ≡ Ŝ0(θ) = 1[|V |2 > θ] denote an
estimator of S0 using the observation V = X +σW in (109).
Let

ψ(σ2, θ,M) = P

[

S0 6= Ŝ0

]

(122)

denote the probability of error in the scalar model (109) with
σ dependence made explicit as an argument of ψ. The from
the convergence of µ̂U,Û(t) we conclude as in [23] that for any

number t of steps of the AMP algorithm Ŝ(t)(θ) achieves

lim
n→∞

PUPE(Ŝ(t)(θ)) ≤Mψ(σ2
t , θ,M) . (123)

Since this holds for any t and any θ we can optimize both by
taking t→ ∞ and infθ>0. From the proof of [23, Theorem 6]
it follows that limt→∞ σ2

t = σ2
∞ exists and σ∞ satisfies (117).

The proof is completed by the application of the following
Claim, which allows us to compute infimum over θ in closed
form.

Claim 6.

M inf
θ
ψ(τ, θ,M) = 1− 1

1 + τ

1
(

(M − 1)
(

1
τ + 1

))τ (124)

Proof. Let us define τ = σ2. We have

ψ(τ, θ,M) = P

[

S0 6= Ŝ0

]

=
1

M
P

[

Ŝ0 = 0|S0 = 1
]

+
(

1− 1

M

)

P

[

Ŝ0 = 1|S0 = 0
]

Now conditioned on S0 = 1, |V |2 ∼ (1 + τ)Exp(1) and
conditioned on S0 = 0, |V |2 ∼ τExp(1) where Exp(1) is
the Exponential distribution with density function p(x) =
e−x1[x ≥ 0]. Hence

ψ(τ, θ,M) =
1

M

(

1− e−
θ

1+τ

)

+

(

1− 1

M

)

e−
θ
τ (125)

The claim follows by optimizing (125) over θ. The optimum
occurs at

θ∗ = τ(1 + τ) ln

(

1 + τ

τ
(M − 1)

)

Substituting θ∗ in (125) proves the claim.

D. Converse

In this section we derive a converse for E∗, based on the
Fano inequality and the results from [27].

Theorem IV.7. Let M be the codebook size. Given ε and µ, let

S = µ logM . Then assuming that the distribution of |H|2 has

a density with E
[

|H|2
]

= 1 and E
[

|H|4
]

< ∞, E∗(M,µ, ε)
satisfies the following two bounds

1)

E∗(M,µ, ε) ≥ inf
Ptot

S
(126)

where infimum is taken over all Ptot > 0 that satisfies

θS − εµ log
(

2S/µ − 1
)

− µh2(ε) ≤
log (1 + Ptotα (1− θ, 1)) , ∀θ ∈ [0, 1] (127)

where α(a, b) =
∫ b

a
F−1
|H|2(1 − γ)dγ, and F|H|2 is the

CDF of squared absolute value of the fading coefficients.

2)

E∗(M,µ, ε) ≥ inf
Ptot

S
(128)

where infimum is taken over all Ptot > 0 that satisfies

ε ≥ 1− E

[

Q

(

Q−1

(

1

M

)

−
√

2Ptot

µ
|H|2

)]

(129)

where Q is the complementary CDF function of the

standard normal distribution.

Proof. First, we use the Fano inequality.

Let W = (W1, ...,WK), where Wi
iid∼ Unif [M ] denote the

sent messages of K users. Let X = (X1, ..., XK) where Xi ∈
C

n be the corresponding codewords, Y ∈ C
n be the received

vector. Let Ŵ =
(

Ŵ1, ...ŴK

)

be the decoded messages. Then

W → X → Y → Ŵ forms a Markov chain. Then ε = Pe =
1
K

∑

i∈[K] P

[

Wi 6= Ŵi

]

.

Suppose a genie G reveal a set S1 ⊂ [K] for transmitted
messages WS1 = {Wi : i ∈ S1} and the corresponding fading
coefficients HS1 to the decoder. So, a converse bound in the
Genie case is a converse bound for our problem (when there
is no Genie). Further, the equivalent channel at the receiver is

YG =
∑

i∈S2

HiXi + Z (130)

where S2 = [K] \ S1, and the decoder outputs a [K] sized
tuple. So, PUPE with Genie is given by

PG
e =

1

K

∑

i∈[K]

P

[

Wi 6= ŴG
i

]

. (131)
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Now, it can be seen that the optimal decoder must have
the codewords revealed by the Genie in the corresponding
locations in the output tuple, i.e., if ŴG denotes the output
tuple (in the Genie case), for i ∈ S1, we must have that Wi =
ŴG

i . Otherwise, PUPE can be strictly decreased by including
these Genie revealed codewords.

So, letting Ei = 1[Wi 6= ŴG
i ] and εGi = E [Ei], we have

that εGi = 0 for i ∈ S1. For i ∈ S2, a Fano type argument
gives

I(Wi; Ŵ
G
i ) ≥ logM − εGi log(M − 1)− h2(ε

G
i ). (132)

So, using the fact that
∑

i∈S2

I(Wi; Ŵ
G
i ) ≤ I(WS2 ; Ŵ

G
S2
)

≤ nE

[

log(1 + P
∑

i∈S2

|Hi|2)
]

we have

|S2| logM −
∑

i∈S2

εGi log(M − 1)−
∑

i∈S2

h2(ε
G
i )

≤ nE

[

log(1 + P
∑

i∈S2

|Hi|2)
]

. (133)

By concavity of h2, we have

1

K

∑

i∈S2

h2(ε
G
i ) =

1

K

∑

i∈[K]

h2(ε
G
i ) ≤ h2(P

G
e ). (134)

Hence we get

|S2|
K

logM − PG
e log(M − 1)− h2(P

G
e )

≤ n

K
E

[

log(1 + P
∑

i∈S2

|Hi|2)
]

. (135)

Next, notice that PG
e ≤ Pe ≤ 1− 1

M and hence PG
e log(M−

1)+h2(P
G
e ) ≤ Pe log(M−1)+h2(Pe). Further the inequality

above hols for all S2 ⊂ [K] (which can depend of H[K] as
well). Hence, letting |S2| = θK

θ logM − Pe log(M − 1)− h2(Pe)

≤ 1

µ
E

[

log

(

1 + inf
S2:|S2|=θK

Ptot

K

∑

i∈S2

|Hi|2
)]

. (136)

Now, taking limit as K → ∞ and using results on strong
laws of order statistics [51, Theorem 2.1], we get that

log

(

1 + inf
S2:|S2|=θK

Ptot

K

∑

i∈S2

|Hi|2
)

→ log (1 + Ptotα(1− θ, 1)) . (137)

For any a, b ∈ [0, 1] with a < b, let SK ≡ SK(a, b) =
1
K

∑bK
i=aK |H(i)|2. Note that SK → α(a, b) as K → ∞. Then

E
[

S2
K

]

≤ E





(

1

K

K
∑

i=1

|Hi|2
)2




= 1 +
E
[

|H|4
]

− 1

K
≤ E

[

|H|4
]

. (138)

Hence the family of random variables {SK : K ∈ N} is
uniformly integrable. Further

0 ≤ log(1 + PtotSK) ≤ PtotSK .

Hence the family {log(1+PtotSK) : K ≥ 1} is also uniformly
integrable. Then from theorem [52, Theorem 9.1.6],

E [log(1 + PtotSK)] → log(1 + Ptotα(a, b)).

Using this in (136) with a = 1−θ and b = 1, we obtain (127).
Next we use the result from [27] to get another bound.
Using the fact that S/µ bits are needed to be transmitted

under a per-user error of ε, we can get a converse on the
minimum Eb/N0 required by deriving the corresponding re-
sults for a single user quasi-static fading MAC. In [27], the
authors gave the following non-asymptotic converse bound on
the minimum energy required to send k bits for an AWGN
channel. Consider the single user AWGN channel Y = X+Z,

Y,X ∈ R
∞, Zi

iid∼ N (0, 1). Let M∗(E, ε) denote the largest
M such that there exists a (E,M, ε) code for this channel:
codewords (c1, ..., cM ) with ‖ci‖2 ≤ E and a decoder such
that probability of error is smaller than ε. The following is a
converse bound from [27].

Lemma IV.8 ([27]). Any (E,M, ε) code satisfies

1

M
≥ Q

(√
2E +Q−1 (1− ε)

)

(139)

Translating to our notations, for the channel Y = HX+Z,
conditioned on H , if ε(H) denotes the probability of error for
each realization of H , then we have

1

M
≥ Q

(
√

2Ptot

µ
|H|2 +Q−1 (1− ε(H))

)

. (140)

Further E [ε(H)] = ε. Therefore we have

ε ≥ 1− E

[

Q

(

Q−1

(

1

M

)

−
√

2Ptot

µ
|H|2

)]

. (141)

Hence we have the required converse bound.

Remark 6. We also get the following converse from [20,

theorem 7] by taking the appropriate limits P = Ptot

µn and

n→ ∞.

logM ≤ − log



E



Q





c+ Ptot|H|2
µ

√

2Ptot|H|2
µ











 (142)

where c satisfies

E



Q





c− Ptot|H|2
µ

√

2Ptot|H|2
µ







 = 1− ε. (143)

But this is strictly weaker than (141). This is because,

using lemma IV.8, we perform hypothesis testing (in the meta-

converse) for each realization of H but in the bound used in

[20], hypothesis testing is performed over the joint distribution

(including the distribution of H). This is to say that if H is
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presumed to be constant (and known), then in (142) and (143)
we can remove the expectation over H and this gives precisely

the same bound as (140).

Bounds tighter than (127) can be obtained if further assump-
tions are made on the codebook. For instance, if we assume
that each codebook consists of iid entries of the form C

K where
C is sampled from a distribution with zero mean and finite
variance, then using ideas similar to [35, Theorem 3] we have
the following converse bound.

Theorem IV.9. Let M be the codebook size, and let µn users

(µ < 1) generate their codebooks independently with each

code symbol iid of the form C
K where C is of zero mean and

variance Ptot. Then in order for the iid codebook to achieve

PUPE ε with high probability, the energy-per-bit E should

satisfy

E ≥ inf
Ptot

µ logM
(144)

where infimum is taken over all Ptot > 0 that satisfies

lnM − ε ln(M − 1)− h(ε)

≤
(

MV
(

1

µM
,Ptot

)

− V
(

1

µ
, Ptot

))

(145)

where V is given by [35]

V(r, γ) = r ln (1 + γ −F(r, γ)) + ln (1 + rγ −F(r, γ))

− F(r, γ)

γ
(146)

F(r, γ) =
1

4

(
√

γ
(√
r + 1

)2
+ 1−

√

γ
(√
r − 1

)2
+ 1

)2

(147)

Proof sketch. The proof is almost the same as in [35, Theorem
3] (see [35, Remark 3] as well). We will highlight the major
differences here. First, our communication system can be
modeled as a support recovery problem as follows. Let A be
the n×KM matrix consisting of n×M blocks of codewords
of users. Let H be the KM × KM block diagonal matrix
with block i being a diagonal M×M matrix with all diagonal
entries being equal to Hi. Finally let W ∈ {0, 1}KM with K
blocks of size M each and within each M sized block, there
is exactly one 1. So the position of 1 in block i of W denotes
the message or codeword corresponding to the user i which is
the corresponding column in block i of matrix A. Hence our
channel can be represented as

Y = AHW + Z (148)

with the goal of recovering W .
Next the crucial step is bound RK(ε,M) in (132) as

RK(ε,M) ≤ I(W ;Y |A)
= I(HW ;Y |A)− I(HW ;Y |A,W ) (149)

where the equality in the above display follows from [35,
equation (78)]. The first term in above display is bounded
as

I(HW ;Y |A = A1) = I(HW ;A1HW + Z)

≤ sup
U
I(U ;A1U + Z) (150)

where A1 is a realization of A and supremum is over random
vectors U ∈ C

KM such that E [U ] = 0 and E [UU∗] =

E [(HW )(HW )∗] =
E[|H1|2]

M IKM×KM . Now similar to [35],
the supremum is achieved when

U ∼ CN
(

0,
E
[

|H1|2
]

M
IKM×KM

)

.

Hence

I(HW ;Y |A = A1) ≤ log det

(

In×n +
1

M
AA∗

)

.(151)

Next, for any realization A1 and W1 of A and W respec-
tively, we have

I(HW ;Y |A = A1,W =W1)

= I(HW1;A1HW1 + Z)

= I(H̃; (A1)W1
H̃ + Z)

≥ I(H̃; H̃ + (A1)
†
W1
Z) (152)

where H̃ = [H1, ..., HK ]T and (A1)W1
is the n×K submatrix

of A1 formed by columns corresponding to the support of
W1 and † denotes the Moore-Penrose inverse (pseudoinverse).
The last equality in the above follows from the data processing
inequality. Now, by standard mutual information of Gaussians,
we have

I(H̃; H̃ + (A1)
†
W1
Z)

= log det
(

IK×K + ((A1)W1
)
∗
(A1)W1

)

. (153)

Hence

I(HW ;Y |A,W ) = E [log det (IK×K +A∗
WAW )] .(154)

Hereafter, the we can proceed similarly to the proof of [35,
Theorem 3] using results from random-matrix theory [53, 54]
to finish the proof.

We remark here that for a general fading distribution, the
term I(H̃; H̃ + (A1)

†
W1
Z) can be lower bounded similar to

the proof of [35, Theorem 3] using EPI (and its generalization
[55]) to get

I(H̃; H̃ + ((A1)W1
)
†
Z)

≥ K log
(

1 +NH

(

det
(

((A1)W1
)
∗
(A1)W1

))
1
K

)

(155)

where NH = 1
πe exp(h(H)) is the entropy power of fading

distribution. Hence

I(HW ;Y |A,W )

≥ KE

[

log
(

1 +NH (det (A∗
WAW ))

1
K

)]

. (156)

Again, we can use results from random-matrix theory [54]
and proceed similarly to the proof of [35, Theorem 3] to get
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a converse bound with the second term in (145) replaced by

VLB

(

1
µ , Ptot

)

and

VLB(r, γ) = ln

(

1 + γr

(

r

r − 1

)r−1
1

e

)

(157)

We make a few observations regarding the preceding the-
orem. First and foremost, this hold only for the case of
no-CSI because the term analogous to I(HW ;Y |A,W ) in
the case of CSIR is I(HW ;Y |A,H,W ) which is zero.
Next, it assumes that the codebooks have iid entries with
variance scaling Θ(1/n). This point is crucial to lower
bounding I(HW ;Y |A,W ), and this is where a significant
improvement comes when compared to (127). Indeed, EPI and
results from random matrix theory give O(n) lower bound for
I(HW ;Y |A,W ). This once again brings to focus the the
difference between classical regime and the scaling regime,
where in the former, this term is negligible. Further this leaves
open the question of whether we could improve performance
in the high-density of users case by using non-iid codebooks.

Now, as to what types of codebooks give a Θ(n) lower
bound for I(HW ;Y |A,W ), a partial answer can be given by
carefully analyzing the full proof of the theorem. In particular,
if S = suppW i.e, the support of W , then as seen from [35,
equation (85)], any non zero lower bound on det(A∗

SAS)1/K

in the limit is enough. So if the matrix A∗
SAS possesses strong

diagonal dominance then it is possible to have such a non zero
lower bound on det(A∗

SAS)1/K for every S [56]. These could
be ensured by having codewords that are overwhelmingly close
to orthogonal.

V. NUMERICAL EVALUATION AND DISCUSSION

In this section, we provide the results of numerical evalu-
ation of the bounds in the paper. We focus on the trade-off
of user density µ with the minimum energy-per-bit E∗ for a
given message size k and target probability of error Pe.

For k = 100 bits, we evaluate the trade-off from the bounds
in this paper for Pe = 0.1 and Pe = 0.001 in figures 3 and
2 respectively. For TDMA, we split the frame of length n
equally among K users, and compute the smallest Ptot the
ensures the existence of a single user quasi-static AWGN code
of rate S, blocklength 1

µ and probability of error ε using the
bound from [20]. The simulations of the single user bound is
performed using codes from [57]. TIN is computed using a
method similar to theorem IV.4. In particular, the codeword
of user i is decoded as ĉi = argminc′∈Ci

‖Y −Hici‖2 where
we assume that the decoder has the knowledge of CSI. The
analysis proceeds in a similar way as theorem IV.4.

Achievability bounds. It can be seen that for small µ the
scalar-AMP bound of Theorem IV.6 is better than the projec-
tion decoder bounds of Theorems IV.4 and IV.1. The latter
bounds have another artifact. For example, the no-CSI bound
on E∗ from Theorem IV.1 increases sharply as µ ↓ 0, in fact
one can show that the said bound behaves as E = Ω(

√− lnµ).
Engineering insights. From these figures, we clearly observe

the perfect MUI cancellation effect mentioned in the introduc-
tion and previously observed for the non-fading model [3, 6].

Namely, as µ increases from 0, the E∗ is almost a constant,
E∗(µ, ε, k) ≈ Es.u.(ε, k) for 0 < µ < µs.u.. As µ increases
beyond µs.u. the tradeoff undergoes a “phase transition” and
the energy-per-bit E∗ exhibits a more familiar increase with
µ. Further, standard schemes for multiple-access like TDMA
and TIN do not have this behavior. Moreover, although these
suboptimal schemes have an optimal trade-off at µ → 0 they
show a significant suboptimality at higher µ. We note again
that this perfect MUI cancellation which was observed in
standard GMAC [3, 6] is also present in the more practically
relevant quasi-static fading model. So, we suspect that this
effect is a general characteristic of the many-user MAC.

Suboptimality of orthogonalization. The fact that orthogo-
nalization is not optimal is one of the key practical implica-
tions of our work. It was observed before in the GMAC and
here we again witness it in the more relevant QS-MAC. How
to understand this suboptimality? First, in the fading case we
have already seen this effect even in the classical regime (but
under PUPE) – see (21). To give another intuition we consider
a K = µn user binary adder MAC

Y =

K
∑

i=1

Xi (158)

where Xi ∈ {0, 1} and addition is over Z. Now, using TDMA
on this channel, each user can send at most n/K = 1/µ bits.
Hence the message size is bounded by

logM ≤ 1

µ
. (159)

Next, let us consider TIN. Assume Xi∼Ber(1/2). For user
1, we can treat

∑µn
i=2Xi as noise. By central limit theorem,

this noise can be approximated as
√

1
4µnZ where Z∼N(0, 1).

Thus we have a binary input AWGN (BIAWGN) channel

Y = X1 +

√

1

4
µnZ. (160)

Therefore, the message size is bounded as

logM ≤ nCBIAWGN

(

1 +
4

µn

)

≤ n

2
log

(

1 +
4

µn

)

→ 2

µ ln 2
(161)

where CBIAWGN is the capacity of the BIAWGN channel.
Note that in both the above schemes the achievable message
size is a constant as n→ ∞.

On the other hand, the true sum-capacity of the K-user
adder MAC is given by

Csum = max
X1,··· ,XK

H(X1 + · · ·+XK) .

As shown in [58] this maximum as achieved at Xi
iid∼

Ber(1/2). Since the the entropy of binomial distributions [59]
can be computed easily, we obtain

Csum =
1

2
logK + o(logK) .
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In particular, for our many-user MAC setting we obtain from
the Fano inequality (and assuming PUPE is small)

logM /
log(µn)

2µ
.

Surprisingly, there exist explicit codes that achieve this limit
and with a very low-complexity (each message bit is sent
separately),– a construction rediscovered several times [60–
62]. Hence the optimal achievable message size is

logM ≈ log n

2µ
→ ∞ (162)

as n → ∞. And again, we see that TDMA and TIN are
severely suboptimal for the many-user adder MAC as well.
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Fig. 2: µ vs Eb/N0 for ε ≤ 10−3, k = 100
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Fig. 3: µ vs Eb/N0 for ε ≤ 10−1, k = 100

A. The “curious behavior” in phase transition

As we emphasized in the Introduction, the most exciting
conclusion of our work is the existence of the almost vertical
part on the µ vs Eb

N0
plots of Fig. 3 and 2. In this section we

want to explain how this effect arises, why it can be called the
“almost perfect MUI cancellation” and how it relates (but is
not equivalent) to well-known phase transitions in compressed
sensing.

To make things easier to evaluate, however, we depart from
the model in the previous sections and do two relaxations.
First, we consider a non-fading AWGN. Second, we endow all
users with the same codebook. The second assumption simply
means that the decoding from now on is only considered up
to permutation of messages, see [3] for more on this. Tech-
nically, these two assumptions mean that we are considering
a model (11) with U vector that is K-sparse (as opposed to
block-sparse) and that all non-zero entries of U are equal to
1. Finally, we will consider the real-valued channel. In all, we
get the following signal model [4, Section IV]:

Y n = AUp + Zn , Zn ∼N (0, In) , (163)

with Ai,j
iid∼ N (0, b2/n), (i, j) ∈ [n]× [p], Ui

iid∼ Ber(K/p),
so that E[‖Up‖0] = K. We take the proportional scaling limit
with K = µn and p = KM . Further we let S denote the true
spectral efficiency of the system

S =
H(Up)

n
= µMh

(

1

M

)

(164)

where H is the Shannon entropy and h(x) = −x lnx− (1−
x) ln(1− x) is the binary entropy, both in nats.

Interpretation of these parameters in the context of commu-
nication problem are:

• M as the number of messages that each user wants to
communicate

• µ is the user density per (real) degree of freedom
• b2 = Ptot

µ where Ptot is the total received power from all
K users at the receiver.

• S is the total number of nats per channel use communi-
cated, and is approximately equal to 1

n ln
(

KM
K

)

Consequently, we may define energy-per-bit as Eb

N0
, Ptot ln 2

2S .

Given (Y n, A), the decoder outputs an estimate Ûp ∈
{0, 1}p with E

[

‖Ûp‖0
]

= K and we are interested in the

minimal achievable PUPE, or

P ∗
e (µ,M, b)

, lim sup
n→∞

min
Ûp:E[‖Û‖0]=K

1

K

∑

i∈[p]

P

[

Ui = 1, Ûi = 0
]

(165)

To discuss performance of the optimal decoder, we need
to return to the scalar channel (109) with the following
modifications: X ∼Ber(1/M), W ∼N (0, 1). Now, for every
value of σ in (109) we may ask for the smallest possible error

ε∗(σ,M) = minP
[

X̂ 6= X
]

where minimum is taken over

all estimators X̂ = X̂(V ) such that P

[

X̂ = 1
]

= 1
M . As

discussed in [4, Section IV.B], this minimal ε∗(σ,M) satisfies
[4] is found from solving:

1

σ
= Q−1

(

ε∗

M − 1

)

+Q−1 (ε∗) (166)

where Q(·) is the complementary CDF of the standard normal
distribution.
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Now the limit P ∗
e in (165) can be computed via the replica

method.3 Namely, replica predictions tell us that

P ∗
e (b, µ) = ε∗(σ,M) ,

where σ2 = 1
η∗b2 and the multiuser efficiency

η∗ = η∗(M, b, µ)

is given by [4, 34, 65]

η∗ ≡ η∗M ∈ arg min
η∈[0,1]

FM (ηb2) (167)

where

FM (s) = I(1/s) +
1

2µM
φ

(

sµ

Ptot

)

(168)

where φ(x) = x − 1 − lnx and I(σ2) = I(X;X + σW ) is
the mutual information between the signal and observation in
the scalar channel (109) in nats.

In the figure 4 we have shown the plots of optimal PUPE
Pe for the model (163) versus Eb/N0 for various values
of µ when M = 2100, computed via replica predictions.
What is traditionally referred to as the phase transition in
compressed sensing is the step-function drop from Pe ≈ 1
to Pe � 1. However, there is a second effect here as well.
Namely that all the curves with different µ seem to have a
common envelope. The former has not only been observed in
compressed sensing, e.g. [23, 35, Fig.1] and [66, Fig.4] among
others, but also in a number of other inference problems:
randomly-spread CDMA [34], LDPC codes [67] and random
SAT [68]. However, the second effect appears to be a rather
different phenomenon, and in fact it is exactly the one that
corresponds to the existence of the vertical part of the curves
on Fig. 2-3.

Let us, for the moment, assume that the envelope is actually
exactly the same for all µ. Fix a value of PUPE Pe = 10−3

(say) and consider how the intercept of the horizontal line
at Pe = 10−3 on Fig. 4 changes with µ. It is easy to see
that as long as the value of µ is small enough the intercept
will not be moving (corresponding to constancy of the Eb/N0

as a function of µ). However, once the value of µ exceeds
a value (dependent on the fixed value of Pe) the intercept
starts moving to the right together with the step-drop portion
of the curves. From this we conclude that indeed, existence
of the (almost) common envelope on Fig. 4 results in the
(almost) vertical part on Fig. 2-3. (As a side note, we also
note that since the slanted portions of the tradeoff curves on
those figures correspond to the vertical drop on the Fig. 4 and
hence the slanted portion is virtually independent of the fixed
value of Pe – as predicted by (4).)

How can the curves have common envelope? Notice that in
the expression for P ∗

e only η∗ is a function of µ. Thus, we

3Note that in [63, 64] it was shown that the replica-method prediction
is correct for estimating I(Ui;Y

n, A) and Var[Ui|Y
n, A], but what we

need for computing the Pe is asymptotic distribution of a random variable
P [Ui = 1|Y n, A]. First, it is known that AMP initialized at the true value U
converges to an asymptotically MMSE-optimal estimate. Second, distribution
of the AMP estimates are known to belong to a PX|V in (109) (with σ iden-
tified from the replica method). Finally, any asymptotically MMSE-optimal

estimator Û should satisfy Ûi

(d)
→ E[Ui|Y

n, A] = P [Ui = 1|Y n, A], and
thus P [Ui = 1|Y n, A] should match the replica-method predicted one.
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Fig. 4: AWGN same codebook model: Pe vs Eb/N0 for M =
2100. The solid lines correspond to η∗ ≡ η∗M from (167). The
dashed lines correspond to η∗∞ defined in (172).

conclude that for small µ we must have η∗(µ) ≈ const. But
as µ→ 0 we should get a η∗ → 1. Thus we see that common
envelopes are only possible if to the right of the step-drops on
Fig. 4 we get η∗ ≈ 1. Is that indeed so? Fig. 5 provides an
affirmative answer.

In reality, the “vertical part” is not truly vertical and the
common envelope is not exactly common. In truth the right
portions of the curves on Fig. 4 (following the drop) are all
very slightly different, but this difference is imperciptible to
the eye (and irrelevant to an engineer). What makes them so
close is the incredible degree of sparsity 1

M = 2−100. Indeed,
as Fig. 6 demonstrates that as M → ∞ the value of η∗ to the
right of the step transition approaches 1.

To summarize, we conclude that what determines our “curi-
ous behavior” is not a sudden change in the estimation perfor-
mance (typically credited as “phase transition” in compressed
sensing), but rather a more subtle effect arising in the super-
low sparsity limit: the step-transition of the parameter η∗ from
a moderate value in the interior of (0, 1) to a value close to
1. The fact that only the incredibly low sparsity values 1

M are
relevant for the many-MAC problems makes this new effect
practically interesting.

Now we will provide an approximation to η∗ under the large
M limit. Based on [69, 70] we consider the following scaling
of M and µ for fixed snr Ptot and spectral efficiency S.

M → ∞, µ =
S

Mh(1/M)

This means that µ lnM → S as M → ∞. Consider the
rescaled potential

F̃M (η) =
FM (ηb2)

h(1/M)
=
I
(

µ
ηPtot

)

h(1/M)
+

1

2S
φ(η) (169)

From [70, Section 3], for every η ∈ (0, 1] we have

lim
M→∞

F̃M (η) = F̃∞(η) (170)

where

F̃∞(η) = min

(

1,
Ptot

2S
η

)

+
1

2S
φ(η) (171)
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Furthermore, for

S ∈
(

0,
1

2
ln(1 + Ptot)

)

∪
(

1

2
ln(1 + Ptot),∞

)

,

F̃∞ has a unique global minimizer η∗∞ given by

η∗∞ =

{

1
1+Ptot

, 1
2 ln(1 + Ptot) < S

1, 1
2 ln(1 + Ptot) > S

(172)

Moreover, it can be deduced from the proofs in [70] that if
η∗M ∈ argminη F̃M (η) = argminη F(ηb2) then

η∗M → η∗∞.

Putting everything together, we obtain

lim
M→∞

η∗M =

{

1
1+Ptot

, 1
2 ln(1 + Ptot) < S

1, 1
2 ln(1 + Ptot) > S

(173)

which shows that η∗M indeed jumps from < 1 to ≈ 1 in the
regime of extremely low sparsity.

In figures 5 and 6 we show both η∗M and η∗∞, and there is
an excellent agreement between the two.

Finally we will show how this phase transition in η∗M leads
to 0-1 jump in PUPE ε∗ given in (166). Rewriting it in terms
of η∗M
√

2η∗M lnM
Eb/N0

ln 2
= Q−1

(

ε∗

M − 1

)

+Q−1 (ε∗)

= Q−1

(

ε∗

M − 1

)

−Q−1 (1− ε∗)

(174)

Let Eb/N0 > ln 2. Using the approximation

Q−1(δ) ≈
√

2 ln
1

δ
− ln

(

4π ln
1

δ

)

(175)

one can easily check that in this scaling

lim
M→∞

ε∗ →
{

0, η∗∞Eb/N0 > ln 2

1, η∗∞Eb/N0 < ln 2
,

which incidentally corresponds to the two cases η∗∞
Eb

N0
≶

−1.59 dB. Now we will use (173). If 1
2 ln(1 + Ptot) > S,

then clearly η∗∞Eb/N0 > ln 2. But if 1
2 ln(1+Ptot) < S then

using the inequality x
1+x ≤ ln(1 + x) for x > −1 we obtain

η∗∞
Eb/N0

ln 2
=

1

1 + Ptot

Ptot

2S
<

Ptot

(1 + Ptot) ln(1 + Ptot)
≤ 1

Thus

lim
M→∞

ε∗ →
{

0, 1
2 ln(1 + Ptot) > S

1, 1
2 ln(1 + Ptot) < S

,

The above shown 0-1 jump in ε∗ is same as the so-
called “All-or-Nothing” (AoN) phenomenon in sparse linear
regression [69, 70]. Logically speaking, AoN arises because
of the phase transition in η∗ from < 1 to 1 in the limit of
extremely low sparsity. But this is not to say that this jump in
η∗ is equivalent to AoN.
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Fig. 5: AWGN same codebook model: η∗ vs Eb/N0 for M =
2100. The solid lines correspond to η∗ ≡ η∗M from (167). The
dashed lines correspond to η∗∞ defined in (172).
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Fig. 6: AWGN same codebook model: η∗ vs Eb/N0 for µ =
0.006. The solid lines correspond to η∗ ≡ η∗M from (167). The
dashed lines correspond to η∗∞ defined in (172).

B. Future work

There are a lot of interesting directions for future work.
A natural extension, already undertaken for the setting of
random access [71], would be to analyze the many-user
massive MIMO fading channel with receiver having N > 1
antennas under different fading scenarios (block-fading and
quasi-static fading would probably be most relevant). Further,
different asymptotic scalings of N and n may lead to radically
different tradeoffs. Another interesting direction is to see how
much improvements would the (so far incomputable) vector-
AMP (and replica-method) yield over the bounds presented
in this work. Note that for practical systems the asymptotic
limit n → ∞ is less relevant than finite-n bounds. However,
AMP based bounds are inherently asymptotic. In this regard,
it would be interesting to derive finite-blocklength versions
of achievability bounds. Theorems IV.1 and IV.4 should be
possible to “de-asymptotize”. Similarly, recent bounds based
on Gaussian processes [4] should be extendable to both the
quasi-static fading and finite blocklength. From a practical
standpoint, the most pressing issue is finding any architecture
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for the many-MAC setting that would have an approximately
perfect MUI cancellation (i.e. have vertical part in the E vs µ
tradeoff). One imagines such a system should be comprised
of a message-passing decoding alternating between interfer-
ence cancellation and signal re-estimation – as for example
proposed in [72].
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APPENDIX A
PROOFS OF SECTION III

A. Joint error

Proof of theorem III.1. Let

R = (R1, ..., RK) ∈ Cε,J .

We need to show that there exists a sequence of
(

(M
(n)
1 ,M

(n)
2 , ...,M

(n)
K ), n, εn

)

J

codes with projection decoding, such that

lim inf
n→∞

1

n
log
(

M
(n)
i

)

≥ Ri, ∀i ∈ [K] (176)

lim sup
n→∞

εn ≤ ε. (177)

Let ηi > 0, i ∈ [K]. Choose

M
(n)
i = b2n(Ri−ηi)c, ∀i ∈ [K].

We use random coding: user j, independently generates M (n)
j

vectors, each independently and uniformly distributed on the√
nP–complex sphere. That is Xi

iid∼ Unif
(√

nP (CS)n−1
)

.

Hence the channel inputs are given by

X
(n)
i

iid∼
(√

nP (CS)n−1
)

.

We will drop the superscript n for brevity.
Suppose the codewords (c1, c2, ..., cK) ∈ ∏K

i=1 Ci were
actually sent. Then by (14), error occurs iff ∃(c′1, c′2, ..., c′K) ∈
C1×C2...×CK such that (c′1, c

′
2, ..., c

′
K) 6= (c1, c2, ..., cK) and

∥

∥Pc′1,...,c
′
K
Y
∥

∥

2 ≥ ‖Pc1,...,cKY ‖2 . (178)

This can be equivalently written as follows. Let S ⊂ [K] be
such that

i ∈ [S] ⇐⇒ ĉi 6= ci (179)

where (ĉi)
K
i=1 denote the decoded codewords.

Let c[S] ≡ {ci : i ∈ [S]}. Then, error occurs iff ∃S ⊂ [K]
and S 6= ∅, and ∃{c′i : i ∈ [S], c′i 6= ci} such that

∥

∥

∥Pc′
[S]

,c[Sc]
Y
∥

∥

∥

2

≥
∥

∥Pc[[K]]
Y
∥

∥

2
. (180)

Let BS =

{

∥

∥

∥Pc′
[S]

,c[Sc]
Y
∥

∥

∥

2

≥
∥

∥Pc[[K]]
Y
∥

∥

2
}

(here primes

denote unsent codewords i.e., c′i here means that it is inde-
pendent of the channel inputs/output and distributed with the
same law as ci). Note that, for the sake of brevity, we are
suppressing the dependence on c′.

So, the average probability of error is given by

εn = P

[

⋃

S⊂[K]
S 6=∅

⋃

{c′i∈Ci:

i∈S,c′i 6=ci}

BS

]

= P

[

⋃

t∈[K]

⋃

S⊂[K]
|S|=t

⋃

{c′i∈Ci:

i∈S,c′i 6=ci}

BS

]

(181)

Using ideas similar to the Random Coding Union (RCU)
bound [73], we have

εn ≤ E

[

min

{

1,
∑

t∈[K]

∑

S⊂[K]:|S|=t





∏

j∈S

(Mj − 1)



 ·

P

[

BS | c[K], H[K], Z

]}]

(182)

where H[K] = {Hi : i ∈ [K]}.
From now on we denote

⋃

t∈[K]

⋃

S⊂[K]
|S|=t

≡
⋃

t,S

∑

t∈[K]

∑

S⊂[K]:|S|=t

≡
∑

t,S

⋂

t∈[K]

⋂

S⊂[K]
|S|=t

≡
⋂

t,S

.

Claim 7. For t ∈ [K] and S ⊂ [K] with |S| = t,

P

[∥

∥

∥

∥

Pc′
[S]

,c[Sc]
Y

∥

∥

∥

∥

2

>
∥

∥Pc[[K]]
Y
∥

∥

2
∣

∣

∣

∣

c[K], H[K], Z

]

= F

(‖Y ‖2 −
∥

∥Pc[[K]]
Y
∥

∥

2

‖Y ‖2 −
∥

∥Pc[Sc]
Y
∥

∥

2 ;n−K, t

)

(183)

where F (x; a, b) is the cdf of beta distribution Beta(a, b).
Further, from [20], we have

F (x;n−K, t) ≤ (n−K + t− 1)t−1xn−K (184)

Proof. See proof of claim 1.

Letting GS ≡ g(Y, c[K], S) =
‖Y ‖2−

∥

∥

∥
Pc[[K]]

Y
∥

∥

∥

2

‖Y ‖2−
∥

∥

∥
Pc[Sc]

Y
∥

∥

∥

2 , MS =

∏

j∈S(Mj−1), st = (t−1) ln(n−K+t−1)
(n−K) and rt = st+

lnMS

(n−K) ,
we have the following from (182), (183) and (184)

εn ≤ E



min







1,
∑

t,S

exp (−(n−K) [−rt − lnGS ])











(185)

Let δ > 0 and let E1 be the following event

E1 =
⋂

t,S

{− lnGS − rt > δ} (186)

=
⋂

t,S

{

− lnGS > Ṽn,S

}

=
⋂

t,S

{GS < Vn,S} (187)

where Ṽn,S = rt + δ and Vn,S = e−Ṽn,S . Note that Vn,S
depends on S and t.

Then, from (185) we have the following
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Lemma A.1. For the K-user MAC defined above, with the

projection decoder, the average probability of error is upper

bounded as

εn ≤
∑

t,S

e−(n−K)δ + P





⋃

t,S

GS ≥ Vn,S



 (188)

Proof. By (185),

εn

≤ E



min







1,
∑

t,S

e(−(n−K)[−rt−lnGS ])







(1[E1] + 1[Ec
1])





≤
∑

t,S

e−(n−K)δ + P[Ec
1] (189)

Hence, as n → ∞, it is the second term in the above
expression that potentially dominates.

Claim 8. For t ∈ [K], S ⊂ [K] with |S| = t, we have

P [GS ≥ Vn,S ]

≤ P

[∥

∥

∥

∥

(1− Vn,S)P
⊥
c[Sc]

Z − Vn,SP
⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

2

≥ Vn,S

∥

∥

∥

∥

P⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

2]

(190)

where P⊥
c[Sc]

represents the orthogonal projection onto the

orthogonal complement of the space spanned by c[Sc].

Proof. See proof of claim 2

To evaluate the above probability, we condition on c[K] and
H[K]. For ease of notation, we will not explicitly write the
conditioning.

Let χ′
2(λ, d) denote the non-central chi-squared distributed

random variable with non-centrality λ and degrees of freedom
d. That is, if Zi ∼N (µi, 1), i ∈ [d] and λ =

∑

i∈[d] µ
2
i , then

χ′
2(λ, d) has the same distribution as that of

∑

i∈[d] Z
2
i .

Since Z ∼ CN (0, In), we have

Z − Vn,S
1− Vn,S

∑

i∈S

Hici ∼ CN (− Vn,S
1− Vn,S

∑

i∈S

Hici, In).

Hence

P⊥
c[Sc]

(

Z − Vn,S
1− Vn,S

∑

i∈S

Hici

)

∼ CN (− Vn,S
1− Vn,S

P⊥
c[Sc]

∑

i∈S

Hici, P
⊥
c[Sc]

).

Now using the fact that if W = P + iQ∼ CN (µ,Γ, 0) then
[

P
Q

]

∼N
([

Re(µ)
Im(µ)

]

,
1

2

[

Re(Γ) −Im(Γ)
Im(Γ) Re(Γ)

])

(191)

we can show the following

Lemma A.2. Let F =
∥

∥

∥

Vn,S

1−Vn,S
P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

2

and n′ =
n−K + t. Conditioned on H[K] and c[K], we have

∥

∥

∥

∥

∥

P⊥
c[Sc]

(

Z − Vn,S
1− Vn,S

∑

i∈S

Hici

)∥

∥

∥

∥

∥

2

∼ 1

2
χ′
2 (2F, 2n

′)(192)

Hence its conditional expectation is

µ = n′ + F. (193)

Proof. See proof of claim 3.

Let U =
Vn,S

(1−Vn,S)

∥

∥

∥P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

2

− n′. Hence F =
Vn,S

1−Vn,S
(U + n′). Note that Vn,S , U ,λ all depend on t and S.

Letting T = 1
2χ

′
2(2F, 2n

′)− (F + n′), we have,

P

[

⋃

t,S

∥

∥

∥

∥

P⊥
c[Sc]

(

Z − Vn,S
1− Vn,S

∑

i∈S

Hici

)∥

∥

∥

∥

2

≥ Vn,S
(1− Vn,S)2

∥

∥

∥

∥

P⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

2]

= P

[

⋃

t,S

∥

∥

∥

∥

P⊥
c[Sc]

(

Z − Vn,S
1− Vn,S

∑

i∈S

Hici

)∥

∥

∥

∥

2

− µ ≥ U

]

= E

[

P

[{

⋃

t,S

{T ≥ U}
}∣

∣

∣

∣

c[K], H[K]

]]

. (194)

Next we use lemma IV.2 to bound (194).
First, note that

U =
Vn,S

(1− Vn,S)

∥

∥

∥

∥

∥

P⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

∥

2

− n′

=
n′

1− Vn,S






Vn,S






1 +

∥

∥

∥P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

2

n′






− 1







= n′U1 (195)

where

U1 =
1

1− Vn,S
(Vn,SWS − 1)

and

WS =






1 +

∥

∥

∥P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

2

n′






.

Hence

F =
Vn,S

1− Vn,S
(U + n′) = n′ Vn,S

1− Vn,S
(U1 + 1). (196)

Let δ1 > 0. Let E11 =
⋂

S,t{U1 > δ1}. From (194) we
have

P

[

⋃

t,S

T ≥ U

]

≤
∑

t,S

E

[

P

[

{T ≥ U}
∣

∣

∣

∣

c[K], H[K]

]

1[E11]

]

+ P [Ec
11]
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≤
∑

t,S

E

[

P

[

{T ≥ U}
∣

∣

∣

∣

c[K], H[K]

]

1[U1 > δ1]

]

+ P [Ec
11]

≤
∑

t,S

E

[

e−n′fn(U
1)1[U1 > δ1]

]

+ P [Ec
11] (197)

where the last inequality follows from (66), and

fn(x)

= x+ 1 +
2Vn,S

1− Vn,S
(1 + x)

−
√

1 +
2Vn,S

1− Vn,S
(1 + x)

√

2x+ 1 +
2Vn,S

1− Vn,S
(1 + x)

(198)

Now, from claim 4, we have that for 0 < Vn,S < 1 and
x > 0, fn(x) is a monotonically increasing function of x

Hence we have

P

[

⋃

t,S

{T ≥ U}
]

≤
∑

t,S

e−n′fn(δ1) + P [Ec
11] . (199)

So, we have the following claim

Claim 9. Let AS = {Vn,SWS − 1 ≤ δ1} and E12 =
⋃

t,S AS .

If 0 < Vn,S < 1 for all t ∈ [K], S ⊂ [K] with |S| = t then

we have

P

[

⋃

t,S

{GS ≥ Vn,S}
]

≤
∑

t,S

e−n′fn(δ1) + P [E12] .

(200)

Proof.

P





⋃

t,S

{GS ≥ Vn,S}



 ≤
∑

t,S

e−n′fn(δ1) + P [Ec
11]

≤
∑

t,S

e−n′fn(δ1) + P [E12] .

(201)

Now, we need to upper bound P [E12].
We have

∥

∥

∥

∥

P⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

2

=
∑

i∈S

|Hi|2
∥

∥

∥P⊥
c[Sc]

ci

∥

∥

∥

2

+ 2
∑

i<j:i,j∈S

Re
(〈

P⊥
c[Sc]

ci, P
⊥
c[Sc]

cj

〉

HiH̄j

)

. (202)

Further,
〈

P⊥
c[Sc]

ci, P
⊥
c[Sc]

cj

〉

= 〈ci, cj〉 −
〈

Pc[Sc]
ci, Pc[Sc]

cj
〉

(203)

Hence we have
∣

∣

∣
Re
〈

P⊥
c[Sc]

ci, P
⊥
c[Sc]

cj

〉∣

∣

∣

≤
∣

∣

∣

〈

P⊥
c[Sc]

ci, P
⊥
c[Sc]

cj

〉∣

∣

∣

≤ |〈ci, cj〉|+
∣

∣

〈

Pc[Sc]
ci, Pc[Sc]

cj
〉∣

∣

≤ |〈ci, cj〉|+
∥

∥Pc[Sc]
cj
∥

∥

∥

∥Pc[Sc]
ci
∥

∥

= nP
(

|〈ĉi, ĉj〉|+
∥

∥Pc[Sc]
ĉi
∥

∥

∥

∥Pc[Sc]
ĉj
∥

∥

)

(204)

where hats denote corresponding normalized vectors. Since
these unit vectors are high dimensional, their dot products
and projection onto a smaller, fixed dimension surface is very
small. Indeed, we have the following two lemmas.

Lemma A.3. If e1, e2
iid∼Unif((CS)n−1

), then for any δ2 > 0,

we have

P [| 〈e1, e2〉 | > δ2] ≤ 4e−
nδ22
2 (205)

Proof. First, lets take e1, e2
iid∼ Sn−1. Let x be a fixed unit

vector in R
n. Due to symmetry, we have P [〈e1, x〉 ≥ 0] =

1/2. Hence, by Levy’s Isoperimetric inequality on the sphere
[74], we have

P [〈e1, x〉 > δ2] ≤ e−nδ22/2. (206)

Again by symmetry, and then taking x as e2, we have

P [|〈e1, e2〉| > δ2] ≤ 2e−nδ22/2. (207)

Now uniform distribution on (CS)n−1 is same as the
uniform distribution on S2n−1, and for complex vectors
z1 = x1 + iy1 and z2 = x2 + iy2 we have Re 〈z1, z2〉 =

xT1 x2+y
T
1 y2 = (x1, y1)

T (x2, y2). Hence if e1, e2
iid∼ (CS)n−1,

and u1, u2
iid∼S2n−1 then Re 〈e1, e2〉 has same law as 〈u1, u2〉.

Hence we have

P [|Re 〈e1, e2〉 | > δ2] ≤ 2e−
2nδ22

2 . (208)

Also, Im 〈z1, z2〉 = xT1 y2 − yT1 x2. Hence Im 〈e1, e2〉 has
the same law as Re 〈e1, e2〉. Hence we have

P [| 〈e1, e2〉 | > δ2]

= P
[

| 〈e1, e2〉 |2 > δ22
]

= P
[

|Re 〈e1, e2〉 |2 + |Im 〈e1, e2〉 |2 > δ22
]

≤ P

[

|Re 〈e1, e2〉 | >
δ2√
2

]

+ P

[

|Im 〈e1, e2〉 | >
δ2√
2

]

≤ 4e−
nδ22
2 . (209)

Next we have a similar lemma for low dimensional projec-
tions from [75, Lemma 5.3.2]

Lemma A.4 ([75]). Let x ∼ Unif(Sn−1) and P be a

projection to an m dimensional subspace of R
n. Then for

any δ3 > 0, we have

P

[∣

∣

∣

∣

‖Px‖ −
√

m

n

∣

∣

∣

∣

> δ3

]

≤ 2e−cnδ23 (210)

where c is some absolute constant. Hence, by symmetry, the

result remains true if P is a uniform random projection,

independent of x.

Now we need to prove that a similar result holds for the
complex variable case as well. We have the following lemma
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Lemma A.5. Let z∼Unif(CS)n−1
and P be a projection to

an m dimensional subspace V of Cn. Then for any δ3 > 0,

we have

P

[∣

∣

∣

∣

‖Pz‖ −
√

m

n

∣

∣

∣

∣

> δ3

]

≤ 2e−2cnδ23 (211)

where c is some absolute constant. Hence, by symmetry, the

result remains true if P is a uniform random projection,

independent of z.

Proof. Consider ‖Pz‖. Let U be the unitary change of ba-
sis matrix which converts V to first m coordinates. Hence
‖Pz‖ = ‖UPz‖. Therefore we can just consider the or-
thogonal projection onto first m coordinates. Hence the pro-
jection matrix P is real. Let e1, ..., em be the standard ba-
sis corresponding to the first m coordinates. Let A be the
n×m matrix whose columns are e1, ..., em. Then P = AA∗

(∗ denotes conjugate transpose). Since A is real, we have
Re(Pz) = AA∗Re(z) and Im(Pz) = AA∗Im(z). Now,
if z ∼ Unif((CS)n−1

) then Re(z) has same law as Im(z).
Hence Re(Pz) has same law as Im(Pz). Further A∗ = AT .
Also note that, if z = x + iy then ‖Pz‖2 = z∗AA∗Z =

xTAATx + yTAAT y =
[

xT yT
]

[

AAT 0
0 AAT

] [

x
y

]

=
∥

∥

∥

∥

P̂

[

x
y

]∥

∥

∥

∥

where P̂ denotes the orthogonal projection from R
2n

to a 2m dimensional subspace. Hence ‖Pz‖2 has the same law
as that of the projection of a uniform random vector on S2n−1

to a 2m dimensional subspace. Hence using lemma A.4, we
have

P

[∣

∣

∣

∣

‖Pz‖ −
√

m

n

∣

∣

∣

∣

> δ3

]

≤ 2e−2cnδ23 (212)

Since Hi ∼ CN (0, 1), we have |Hi|2 ∼ 1
2χ2(2) = exp(1)

where χ2(d) denotes the chi-squared distribution with d
degrees of freedom and exp(1) represents an exponentially
distributed random variable with rate 1. Therefore, for ν ≥ 0,

P
[

|Hi|2 ≥ ν
]

= e−ν (213)

Now, we are in a position to bound P [E12].
For S ⊂ [K] with |S| = t, define the events E2, E3 and

E4 as follows:

E2 =
⋂

i<j:i,j∈[K]

{| 〈ĉi, ĉj〉 | ≤ δ2} (213a)

E3(S, t) =
⋂

i∈S

{∣

∣

∣

∣

∣

∥

∥Pc[Sc]
ĉi
∥

∥−
√

K − t

n

∣

∣

∣

∣

∣

≤ δ3

}

(214a)

E4 =
⋂

i∈[K]

{

|Hi|2 ≤ ν
}

(214b)

where we choose δ2 = n−
1
3 = δ3 and ν = n

1
4 . Hence we

have

P [E12] ≤ P





⋃

t,S

(AS ∩ E2 ∩ E3 ∩ E4)





+ P [Ec
2] + P [Ec

4] +
∑

t,S

P [Ec
3(S, t)] . (215)

Using lemmas A.3 and A.5 and eq. (213), we have

P [Ec
2] + P [Ec

4] +
∑

t,S

P [Ec
3(S, t)]

≤ 2K(K − 1)e−
nδ22
2 +Ke−ν +

∑

t,S

2te−cnδ23 . (216)

Note that the above quantity goes to 0 as n → ∞ due to the
choice of δ2, δ3 and ν. Also, the choice of parameters is not
the optimum. Nevertheless, this is enough to prove the result.

Let

δ1,t =



δ2 +

(

δ3 +

√

K − t

n

)2




δ2,t =

(

δ3 +

√

K − t

n

)2

Observe that on the sets E2, E3 and E4, we have from (204)
∣

∣

∣Re
〈

P⊥
c[Sc]

ci, P
⊥
c[Sc]

cj

〉

HiH̄j

∣

∣

∣ ≤ νδ1,t = O(n− 1
12 ) (217a)

|Hi|2
∥

∥Pc[Sc]
ĉi
∥

∥

2 ≤ νδ2,t = O(n− 5
12 ) (217b)

So we have

P

[

⋃

t,S

(AS ∩ E2 ∩ E3 ∩ E4)

]

≤ P

[

⋃

t,S

{

Vn,S

[

1 +
nP

n′

{

∑

i∈S

|Hi|2 ‖ĉi‖2

− tνδ2,t − t(t− 1)δ1,t

}]

− 1 ≤ δ1

}]

≤ P

[

⋃

t,S

{

Vn,S

[

1 +
nP

n′
∑

i∈S

|Hi|2
]

≤ 1 + δ1 +O(n− 1
12 )

}]

≤ P





⋃

t,S

{

ln

[

1 + P
∑

i∈S

|Hi|2
]

≤ V ′
n,S

}



 (218)

where V ′
n,S = Ṽn,S+ln(1+δ1+O(n−1/12)), and O depends

on K and t.
Let δn = ln(1 + δ1 + O(n−1/12)). We have logMS

n−K =
(
∑

i∈S(Ri − ηi)
)

(1 + o(1)) and st = O
(

logn
n

)

.

By the choice of M (n)
i , for sufficiently large n, sufficiently

small δ and δ1, we have

P

[

⋃

t,S

{

ln

[

1 + P
∑

i∈S

|Hi|2
]

≤ V ′
n,S

}]

= P

[

⋃

t,S

ln

[

1 + P
∑

i∈S

|Hi|2
]

≤ st +
lnMS

n−K
+ δ + δn

]

= P

[

⋃

t,S

{

log

[

1 + P
∑

i∈S

|Hi|2
]

≤ st log2(e) +

(

∑

i∈S

(Ri − ηi)

)

(1 + o(1)) + (δ + δn) log2(e)

}]
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≤ P

[

⋃

t,S

{

log

[

1 + P
∑

i∈S

|Hi|2
]

≤
(

∑

i∈S

Ri

)}]

(219)

Finally combining everything, we have

εn

≤ P

[

⋃

t,S

{

log

[

1 + P
∑

i∈S

|Hi|2
]

≤ st log2(e)

+

(

∑

i∈S

(Ri − ηi)

)

(1 + o(1)) + (δ + δn) log2(e)

}]

+ 2K(K − 1)e−
n1/3

2 +Ke−n1/4

+
∑

t,S

[

2te−cn1/3

+ e−δ(n−K) + e−nfn(δ1)

]

. (220)

Therefore for this choice of
(

M
(n)
i

)

, from (219) we have

lim sup
n→∞

εn

≤ P





⋃

t,S

{

log

[

1 + P
∑

i∈S

|Hi|2
]

≤
(

∑

i∈S

Ri

)}





≤ ε (221)

Since ηi > 0 were arbitrary, we are done. That is (177) is
also satisfied.

B. Per-user error

Proof of theorem III.2. We need to show that there exists a

sequence of
(

(M
(n)
1 ,M

(n)
2 , ...,M

(n)
K ), n, εn

)

PU
codes with

the decoder given by (17) and (18) such that

lim inf
n→∞

1

n
log
(

M
(n)
i

)

≥ Ri, ∀i ∈ [K] (222)

lim sup
n→∞

εn ≤ ε. (223)

Let PS
e (R) < ε and ηi > 0, i ∈ [K]. Choose M

(n)
i =

den(Ri−ηi)e, ∀i ∈ [K]. We use random coding with Gaus-
sian codebooks: user i generates Mi codewords {cij : j ∈
[Mi]} iid∼ CN (0, P ′

nIn) independent of other users, where
P ′
n = P

1+n− 1
3

. Here CN (µ,Σ) denotes the complex normal

distribution with mean µ, covariance Σ and pseudo-covariance
0. For the (random) message Wi ∈ [Mi], user i transmits
Xi = ciWi

1{
∥

∥ciWi

∥

∥

2
> nP}. The channel model is given in

(6) and the decoder is given by (17) and (18). The per-user
probability of error is given by (9)

Pe = E





1

K

K
∑

j=1

1
{

Wj 6= (gD(Y ))j

}



 . (224)

Similar to the proof of [3, Theorem 1], we change the
measure over which E is taken in (224) to the one where
Xi = ciWi

at the cost of adding a total variation distance.

Hence the probability of error under this change of measure
becomes

Pe ≤ p1 + p0

with

p0 = KP

[

‖w‖2 > n
P

P ′
n

]

(225)

p1 = E





1

K

K
∑

j=1

1
{

Wj 6= (gD(Y ))j

}



 (226)

where w ∼ CN (0, In) and, with abuse of notation, E in p1 is
taken over the new measure. It can be easily seen that by the
choice of P ′

n and lemma IV.2, p0 → 0 as n→ ∞. From now
on, we exclusively focus on bounding p1.
p1 can also be written as

p1 =
1

K
E

[

∑

i∈D

1
{

Wj 6= (gD(Y ))j

}

+ |Dc|
]

= 1− E [D]

K
+

1

K
E

[

∑

i∈D

1
{

Wj 6= (gD(Y ))j

}

]

(227)

because, for i ∈ Dc, 1
{

Wj 6= (gD(Y ))j

}

= 1, a.s. Define
p2 as

p2 = P

[

∑

i∈D

1
{

Wj 6= (gD(Y ))j

}

> 0

]

. (228)

So, it’s enough to show that p2 → 0 as n → ∞. This is
because, if p2 → 0, then the non-negative random variables

An =
∑

i∈D 1
{

Wj 6= (gD(Y ))j

}

converge to 0 in probabil-

ity. Since An ≤ K, a.s, we have, by dominated convergence,

E [An] = E

[

∑

i∈D 1
{

Wj 6= (gD(Y ))j

}]

→ 0. To this end,

we upper bound p2.
Let c = (c1 ∈ C1, ..., cK ∈ CK) be the tuple of sent

codewords. Let K1 = |D|. Let c(D) denote the ordered tuple
corresponding to indices in D. That is, if i1 < i2 < ... < iK1

are the elements of D, then (c(D))j = cij , ∀j ∈ [K1]. Let

BS =

{

∥

∥

∥Pc′
[S]

,c[Sc]
Y
∥

∥

∥

2

>
∥

∥Pc[D]
Y
∥

∥

2
}

. Then p2 can also be

written as

p2 = P

[

∑

i∈D

1
{

Wj 6= (gD(Y ))j

}

> 0

]

(229)

= P [∃S ⊂ D,S 6= ∅ : ∀i ∈ S, (gD(Y ))i 6=Wi] (230)

= P

[

∃c′(D) 6= c(D) :
∥

∥

∥Pc′
[D]
Y
∥

∥

∥

2

>
∥

∥Pc[D]
Y
∥

∥

2
]

(231)

= P

[

⋃

t∈[K1]

⋃

S⊂D
|S|=t

⋃

c′i∈Ci\{ci}
i∈S

BS

]

. (232)

Let δ > 0, GS ≡ g(Y, c[K], S,D) =
‖Y ‖2−

∥

∥

∥
Pc[D]

Y
∥

∥

∥

2

‖Y ‖2−
∥

∥

∥
Pc[Sc]

Y
∥

∥

∥

2 ,

MS =
∏

j∈S(Mj − 1), st = (t − 1) ln(n−K1+t−1)
n−K1

, rt =

st + lnMS

n−K1
, Ṽn,S = rt + δ and Vn,S = e−Ṽn,S . Denote
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⋃

t∈[K1]

⋃

S⊂D
|S|=t

as
⋃

t,S,K1
, similarly for

⋂

and
∑

. Further,

denote
⋃

t∈[K]

⋃

S⊂[K]
|S|=t

as
⋃

t,S , again, similarly for
⋂

and
∑

.

Note that, since D is random, both MS and Vn,S are
random. But in the symmetric case only MS is not random.
Now, following steps similar to (182), (183), (185) and (188),
we have

p2 ≤ E

[

∑

t,S,K1

e−(n−K1)δ

]

+ P

[

⋃

t,S,K1

GS ≥ Vn,S

]

(233)

≤
∑

t,K

e−(n−K)δ + P

[

⋃

t,S,K1

GS ≥ Vn,S

]

. (234)

So, the first term goes to 0 as n→ ∞.
Let ZD = Z +

∑

i∈Dc Hici. It can be easily seen that,
similar to (190), we have

P

[

GS ≥ Vn,S

]

≤ P

[∥

∥

∥

∥

(1− Vn,S)P
⊥
c[Sc]

ZD − Vn,SP
⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

2

≥ Vn,S

∥

∥

∥

∥

P⊥
c[Sc]

∑

i∈S

Hici

∥

∥

∥

∥

2]

. (235)

Now, conditional of H[K] and c[D], ZD ∼ CN (0, (1 +
P ′
n

∑

i∈Dc |Hi|2)). Hence

P⊥
c[Sc]

(

ZD − Vn,S
1− Vn,S

∑

i∈S

Hici

)

∼

CN
(

− Vn,S
1− Vn,S

P⊥
c[Sc]

∑

i∈S

Hici, (1 + P ′
n

∑

i∈Dc

|Hi|2)P⊥
c[Sc]

)

Therefore
∥

∥

∥

∥

∥

P⊥
c[Sc]

(

ZD − Vn,S
1− Vn,S

∑

i∈S

Hici

)∥

∥

∥

∥

∥

2

∼
(

1 + P ′
n

∑

i∈Dc

|Hi|2
)

1

2
χ′
2 (2F, 2n

′) (236)

where

F =

∥

∥

∥

Vn,S

1−Vn,S
P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

2

(

1 + P ′
n

∑

i∈Dc |Hi|2
) (237)

n′ = n−K1 + t. (238)

Let

U =
Vn,S

(1− Vn,S)

∥

∥

∥
P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

2

(

1 + P ′
n

∑

i∈Dc |Hi|2
) − n′ (239)

U1 =
1

1− Vn,S
(Vn,SWS − 1) (240)

where WS =



1 +

∥

∥

∥

∥

P⊥
c[Sc]

∑

i∈S Hici

∥

∥

∥

∥

2

n′(1+P ′
n

∑

i∈Dc |Hi|2)





Hence U = n′U1 and F =
Vn,S

1−Vn,S
n′(1 + U1). So, similar

to (194), we have

P





⋃

t,S,K1

{GS ≥ Vn,S}



 ≤ P





⋃

t,S,K1

{T ≥ U}



 (241)

where T = 1
2χ

′
2(2F, 2n

′)− (F + n′).
Let δ1 > 0 and E11 =

⋂

t,S,K1
{U1 > δ1} ∈ σ(H[K], c[D]).

Now, similar to (199), we have

P

[

⋃

t,S,K1

{T ≥ U}
]

≤ E

[

∑

t,S,K1

e−n′fn(δ1)

]

+ P [Ec
11] . (242)

where fn (now a random function) was defined in (198). So,
again by claim 4 and dominated convergence, the first term in
(242) converges to 0 as n → ∞. Next, we upper bound the
second term P [Ec

11].
Let AS = {Vn,SWS − 1 ≤ δ1} and E12 =

⋃

t,S,K1
AS .

Similar to (201), we have

P [Ec
11] = P





⋃

t,S,K1

{U1 ≤ δ1}



 ≤ P [E12] .

(243)

Let ĉi = ci/ ‖ci‖. Let δ2 > 0, δ3 > 0, δ4 > 0 and ν > 1.
Define the events

E2 =
⋂

i<j:i,j∈[K]

{| 〈ĉi, ĉj〉 | ≤ δ2} (244a)

E3(S, t) =
⋂

i∈S

{∣

∣

∣

∣

∣

∥

∥Pc[Sc]
ĉi
∥

∥−
√

K1 − t

n

∣

∣

∣

∣

∣

≤ δ3

}

(244b)

E4 =
⋂

i∈[K]

{

|Hi|2 ≤ ν
}

(244c)

E5 =
⋂

i∈[K]

{

| ‖ci‖ −
√

nP ′
n ≤ δ4

√
nP ′|

}

(244d)

and choose δ2 = O(n−
1
3 ) = δ3 = δ4 and ν = O(n1/4).

Using these events we can bound P [Ec
11] as

P [Ec
11] ≤ P

[

⋃

t,S,K1

(

AS ∩ E2 ∩ E3(S, t) ∩ E4 ∩ E5

)]

+ P [Ec
2] + P [Ec

4] + P [Ec
5]

+ E

[

∑

t,S,K1

P
[

Ec
3(S, t)|H[K]

]

]

. (245)

From [75, Theorem 3.1.1], we have

P [Ec
5] ≤ 2Ke−c1nδ

2
4 (246)

for some constant c1 > 0. So, from lemma A.3, lemma A.5,
(213) and (246), we have
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P [Ec
11] ≤ P





⋃

t,S,K1

(AS ∩ E2 ∩ E3(S, t) ∩ E4 ∩ E5)



+

2K(K − 1)e−
nδ22
2 ++Ke−ν + 2Ke−c1nδ

2
4

+
∑

t,S

2te−cnδ23 . (247)

So, by the chose of δi, i ∈ {2, 3, 4} and ν, the exponential
terms in the last expression go to 0 as n→ ∞.

Let N =
(

1 + P ′
n

∑

i∈Dc |Hi|2
)

,

δ1,t =



δ2 +

(

δ3 +

√

K1 − t

n

)2


 ,

δ2,t =

(

δ3 +

√

K1 − t

n

)2

.

Let SINRn =
P ′

n

∑

i∈S |Hi|2
N . Now, arguing similar to

(218), we get

P

[

⋃

t,S,K1

(

AS ∩ E2 ∩ E3(S, t) ∩ E4 ∩ E5

)]

≤ P

[

⋃

t,S,K1

{

Vn,S

[

1+

{

n(1− δ4)
2

n′ SINRn

− (1 + δ4)
2

(

nP ′
n

n−K
tνδ2,t +

nP ′
nt(t− 1)

n−K
δ1,t

)}]

− 1 ≤ δ1

}]

(248)

≤ P

[

⋃

t,S,K1

{

ln [1 + SINRn] ≤ V ′
n,S

}]

(249)

where V ′
n,S = Ṽn,S + ln(1 + δ1 +O(n−1/12)).

Let δn = ln(1 + δ1 + O(n−1/12). We have logMS

n−K =
(
∑

i∈S(Ri − ηi)
)

(1 + o(1)). There for sufficiently large n
and sufficiently small δ and δ1, we have V ′

n,S ≤∑i∈S Ri a.s.
Hence

P





⋃

t,S,K1

log [1 + SINRn] ≤ log2(e)V
′
n,S





≤ P





⋃

t,S,K1

log [1 + SINRn] ≤
∑

i∈S

Ri



 . (250)

But we know that P ′
n → P , and on D, from (17) we have

∑

i∈S

Ri < log

(

1 +
P
∑

i∈S |Hi|2
1 + P

∑

i∈Dc |Hi|2
)

a.s. (251)

Hence the probability in (250) goes to 0 as n→ ∞.
So combining everything from (234), (243), (247), (248),

(249), (250) and (251), we get p2 → 0 as n → ∞. Therefor
p1 → 1− E[D]

K as n→ ∞. Hence we have

εn = Pe → 1− E [D]

K
< ε. (252)

Hence lim supn→∞ εn ≤ ε. Further, since ηi > 0 were
arbitrary, we can ensure lim infn→∞

1
n logM

(n)
i ≥ Ri, ∀i ∈

[K].

C. Proof of proposition 1

Proof. We prove the second upper bound in (19). This is based
on a single-user converse using the genie argument. Formally,
since we consider per-user error, it is enough to look at the

event that a particular user is not decoded. Let Wi
iid∼ unif [M ]

be the message of user i. The channel (6) can be written
as Y = H1X1 + Ẑ + Z where Ẑ =

∑K
i=2HiXi denotes

the interference. Let L(Y ) be the decoder output. Also, let
L(Y, Ẑ) be the decoder output when it has knowledge of Ẑ.
Hence a converse bound P [W1 6= (L(Y ))1] ≥ ε is implied

by P

[

W1 6=
(

L(Y, Ẑ)
)

1

]

≥ ε for all L(·, ·). Since Y − Ẑ

is a sufficient statistic of (Y, Ẑ) for W1, we have, equiv-

alently, P

[

W1 6=
(

L(Y − Ẑ)
)

1

]

≥ ε for all L(·). Letting

Ŷ = Y − Ẑ, this is equivalent to a converse for the channel

Ŷ = H1X1 + Z: P
[

W1 6=
(

L(Ŷ )
)

1

]

≥ ε for all L(·). This

is just the usual single user converse, and hence the bound
is given by R ≤ Cε = sup{ξ : P

[

log2(1 + P |H1|2) ≤ ξ
]

≤
ε} = log2(1− P ln(1− ε))[20].

APPENDIX B
PROOFS OF CERTAIN CLAIMS

Proof of claim 2. We have ‖Y ‖2 − ‖PA0
Y ‖2 =

∥

∥

∥P⊥
A0
Ẑ
∥

∥

∥

2

≤
∥

∥

∥
Ẑ
∥

∥

∥

2

−
∥

∥

∥
PA1

Ẑ
∥

∥

∥

2

=
∥

∥

∥
P⊥
A1
Ẑ
∥

∥

∥

2

.

Also,
∥

∥P⊥
A1
Y
∥

∥

2
=
∥

∥

∥P⊥
A1

∑

i∈S∗
2
Hici + P⊥

A1
Ẑ
∥

∥

∥

2

. Hence

we have

p2 = P

[

⋃

t,S,K1

{‖Y ‖2 − ‖PA0Y ‖2

‖Y ‖2 − ‖PA1
Y ‖2

≥ Vn,t

}]

= P

[

⋃

t,S,K1

{

∥

∥

∥Ẑ
∥

∥

∥

2

−
∥

∥

∥PA0
Ẑ
∥

∥

∥

2

≥ Vn,t

∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici + P⊥
A1
Ẑ

∥

∥

∥

∥

2}]

≤ P

[

⋃

t,S,K1

{

∥

∥

∥P⊥
A1
Ẑ
∥

∥

∥

2

≥ Vn,t

∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici + P⊥
A1
Ẑ

∥

∥

∥

∥

2}]

= P

[

⋃

t,S,K1

{

(1− Vn,t)
∥

∥

∥P⊥
A1
Ẑ
∥

∥

∥

2

− 2Vn,tRe

〈

P⊥
A1
Ẑ, P⊥

A1

∑

i∈S∗
2

Hici

〉

≥ Vn,t

∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2}]
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= P

[

⋃

t,S,K1

{

(1− Vn,t)
2
∥

∥

∥P⊥
A1
Ẑ
∥

∥

∥

2

− 2Vn,t(1− Vn,t)Re

〈

P⊥
A1
Ẑ, P⊥

A1

∑

i∈S∗
2

Hici

〉

≥ Vn,t(1− Vn,t)

∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2}]

= P

[

⋃

t,S,K1

{∥

∥

∥

∥

(1− Vn,t)P
⊥
A1
Ẑ − Vn,tP

⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2

≥ Vn,t

∥

∥

∥

∥

P⊥
A1

∑

i∈S∗
2

Hici

∥

∥

∥

∥

2}]

(253)

Proof of claim 3. Conditional of H[K] and A0,

Ẑ ∼ CN
(

0,

(

1 + P ′ ∑

i∈S\S∗
2

|Hi|2
))

.

Hence

P⊥
A1

(

Ẑ − Vn,t
1− Vn,t

∑

i∈S∗
2

Hici

)

∼

CN
(

− Vn,t
1− Vn,t

P⊥
A1

∑

i∈S∗
2

Hici,

(

1 + P ′ ∑

i∈S\S∗
2

|Hi|2
)

P⊥
A1

)

(254)

Now, the rank of P⊥
A1

is n−K1 + t because the vectors in
A1 are linearly independent almost surely. Let U be a unitary
change of basis matrix that rotates the range space of P⊥

A1
to

the space corresponding to first (n−K1+t) coordinates. Then

∥

∥

∥

∥

CN
(

− Vn,t
1− Vn,t

P⊥
A1

∑

i∈S∗
2

Hici,

(

1 + P ′ ∑

i∈S\S∗
2

|Hi|2
)

P⊥
A1

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

U
(

CN
(

− Vn,t
1− Vn,t

P⊥
A1

∑

i∈S∗
2

Hici,

(

1 + P ′ ∑

i∈S\S∗
2

|Hi|2
)

P⊥
A1

))∥

∥

∥

∥

2

=

∥

∥

∥

∥

CN
(

− Vn,t
1− Vn,t

UP⊥
A1

∑

i∈S∗
2

Hici,

(

1 + P ′ ∑

i∈S\S∗
2

|Hi|2
)

UP⊥
A1

U∗
)∥

∥

∥

∥

2

. (255)

Observe that UP⊥
A1

U∗ is a diagonal matrix with first (n −
K1 + t) diagonal entries being ones and rest all 0. Also, if
W = P + iQ ∼ CN (µ,Γ) (with pseudo-covariance being 0)
then
[

P
Q

]

∼N
([

Re(µ)
Im(µ)

]

,
1

2

[

Re(Γ) −Im(Γ)
Im(Γ) Re(Γ)

])

. (256)

Using this and the definition of non-central chi-squared
distribution the claim follows.

Proof of Claim 4. We have

fn(x)

= x+ 1 +
2Vn,t

1− Vn,t
(1 + x)

−
√

1 +
2Vn,t

1− Vn,t
(1 + x)

√

2x+ 1 +
2Vn,t

1− Vn,t
(1 + x)

=
1

1− Vn,t

[

(1 + Vn,t)(x+ 1)

− 2
√

Vn,t

√

(

x+
(1 + Vn,t)2

4Vn,t

)2

− (1− V 2
n,t)

2

16V 2
n,t

]

(257)

Hence

f ′(x) =
1

1− Vn,t

[

1 + Vn,t − 2
√

Vn,t
a√

a2 − b2

]

=
1

1− Vn,t

(

√

Vn,t −
√

a+ b

a− b

)

·
(

√

Vn,t −
√

a− b

a+ b

)

(258)

where a =
(

x+
(1+Vn,t)

2

4Vn,t

)

and b =
1−V 2

n,t

4Vn,t
. Also a > 0

and b > 0. Further a+ b > a− b and

√

Vn,t <

√

a− b

a+ b
=

√

Vn,t(1 + Vn,t + 2x)

1 + Vn,t + 2Vn,tx

⇐⇒ 2Vn,tx+ 1 + Vn,t < 2x+ 1 + Vn,t

⇐⇒ 0 < Vn,t < 1

which is true. Hence both the factors in (258) are negative.
Therefore f ′(x) > 0.

APPENDIX C
MAXIMAL PER-USER ERROR

In this section we briefly describe relations between max-
imal per-user error (PUPE-max) defined in (10) and PUPE.
First, we represent our system as in (148)

Y = AHW + Z. (259)

Let Pe,i(A) = P

[

Wi 6= Ŵi

]

. We are interested in bounding

the variance of Pe,i(A) so that

E
[

Pmax
e,u (A)

]

= E [max{Pe,i(A) : i ∈ [K]}]

can be related to E [Pe,i(A)] = E [Pe,u] due to symmetry on
users by random codebook generation. Consider two coupled
systems

Y = AHW + Z (260)

Y ′ = A′HW + Z (261)
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where A and A′ are fixed so that the channels are dependent
on these.

Now we have

|Pe,i(A)− Pe,i(A
′)| ≤ dTV (PY,H,W , PY ′,H,W )

≤
√

1

2
D (PY,H,W ||PY ′,H,W ) (262)

where dTV (P,Q) = sup{|P (A) − Q(A)| : A ismeasurable}
is the total variation distance between measures P and Q,

D(P ||Q) = EP

[

ln dP
dQ

]

is the Kullback-Leibler divergence

(in nats) and the last inequality is the Pinsker’s inequality (see
[76]). Now using properties of D (see [77, Theorem 2.2])

D (PY,H,W ||PY ′,H,W )

= D(PY |H,W ||PY ′|H,W |PH,W )

=

∫

H,W

D(PY |H=h,W=w||PY ′|H=h,W=w)dPH,W (h,w)

(263)

Now note that conditioned on H = h,W = w, we have
Y ∼ CN (Ahw, In) and Y ′ ∼ CN (A′hw, In). Hence a simple
computation shows that D(PY |H=h,W=w||PY ′|H=h,W=w) =

‖Ahw −A′hw‖2. Therefore we have

D (PY,H,W ||PY ′,H,W ) = E

[

‖(A−A′)HW‖2
]

. (264)

Now let B = A−A′ and X = HW . Then

E

[

‖BX‖2
]

=
∑

i∈[n]

E





∑

j,k∈[KM ]

Bi,jB̄i,kXiX̄k



 (265)

Note that E
[

XjX̄k

]

is zero if j 6= k and it is 1/M
otherwise. Hence

E

[

‖BX‖2
]

=
1

M

∑

i∈[n]

∑

j∈[KM ]

Bi,jB̄i,j =
1

M
‖B‖2F .

(266)

Therefore

D (PY,H,W ||PY ′,H,W ) =
1

M
‖A−A′‖2F . (267)

So combining this with (262), we obtain

|Pe,i(A)− Pe,i(A
′)| ≤

√

1

2M
‖A−A′‖F . (268)

Now let each entry of A and A′ to be distributed iid as

CN (0, P ) where P = Ptot/K. Further, let Ã =
√

K
Ptot

A and

Ã′ =
√

K
Ptot

A′. So the entries of Ã and Ã′ are iid CN (0, 1).

Therefore, with slight abuse of notation, we can rewrite (268)
as

|Pe,i(Ã)− Pe,i(Ã′)| ≤
√

Ptot

2MK

∥

∥

∥Ã− Ã′
∥

∥

∥

F
. (269)

Hence the function Pe,i is Lipschitz with Lipschitz constant

L =
√

Ptot

2MK . By concentration of Lipschitz functions of

Gaussian random vectors [46, Theorems 5.5, 5.6], we have
that Pe,i(Ã) is sub-Gaussian with

Var(Pe,i(A)) ≤ 4L2 =
2Ptot

KM
. (270)

Hence, using bounds on the expected maximum of sub-
Gaussian random variables (see [46, Section 2.5]), we obtain

E

[

max
i∈[K]

Pe,i(A)

]

≤ E [Pe,u] +
√

Var(Pe,i(A)) lnK

= E [Pe,u] +

√

2Ptot

M

lnK

K

K→∞−−−−→ E [Pe,u] . (271)

Therefore, a random coding argument along with (271)
shows that PUPE-max has same asymptotics as PUPE in the
linear scaling regime. For FBL performance, if each user sends
k = 100 bits then M = 2k and hence E

[

Pmax
e,u

]

≈ E [Pe,u]
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