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Abstract—Consider a (multiple-access) wireless communica-
tion system where users are connected to a unique base station
over a shared-spectrum radio links. Each user has a fixed
number k of bits to send to the base station, and his signal
gets attenuated by a random channel gain (quasi-static fading).
In this paper we consider the many-user asymptotics of Chen-
Chen-Guo’2017, where the number of users grows linearly
with the blocklength. Differently, though, we adopt a per-user
probability of error (PUPE) criterion (as opposed to classical
joint-error probability criterion). Under PUPE the finite energy-
per-bit communication is possible, and we are able to derive
bounds on the tradeoff between energy and spectral efficiencies.
We reconfirm the curious behaviour (previously observed for
non-fading MAC) of the possibility of almost perfect multi-user
interference (MUI) cancellation for user densities below a critical
threshold. Further, we demonstrate the suboptimality of standard
solutions such as orthogonalization (i.e., TDMA/FDMA) and
treating interference as noise (i.e. pseudo-random CDMA without
multi-user detection). Notably, the problem treated here can be
seen as a variant of support recovery in compressed sensing for
the unusual definition of sparsity with one non-zero entry per
each contiguous section of 2* coordinates. This identifies our
problem with that of the sparse regression codes (SPARCs) and
hence our results can be equivalently understood in the context
of SPARCs with sections of length 2'°C. Finally, we discuss the
relation of the almost perfect MUI cancellation property and the
replica-method predictions.

Index Terms—TFinite blocklength, many-user MAC, per-user
probability of error, approximate message passing, replica-
method

I. INTRODUCTION

We clearly witness two recent trends in the wireless com-
munication technology: the increasing deployment density
and miniaturization of radio-equipped sensors. The first trend
results in progressively worsening interference environment,
while the second trend puts ever more stringent demands on
communication energy efficiency. This suggests a bleak picture
for the future networks, where a chaos of packet collisions and
interference contamination prevents reliable connectivity.

This paper is part of a series aimed at elucidating the
fundamental tradeoffs in this new “dense-networks” regime
of communication, and on rigorously demonstrating subopti-
mality of state-of-the-art radio-access solutions (ALOHA, or-
thogonalization, or FDMA/TDMA I and treating interference
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UIn this paper we do not distinguish between TDMA, FDMA or any other
orthogonalization strategy. From here on, all orthogonalization strategies will
be referred to as “TDMA”

as noise, or TIN). This suboptimality will eventually lead to
dramatic consequences. For example, environmental impact of
billions of toxic batteries getting depleted at 1/10 or 1/100 of
the planned service time is easy to imagine. In order to future-
proof our systems, we should avoid locking in on outdated
and unfixable multiple-access architectures causing tens of dB
losses in energy efficiency. The information-theoretic analysis
in this paper demonstrates that the latter is indeed unavoidable
(with state-of-the-art schemes). However, our message is in
fact optimistic, as we also demonstrate existence of protocols
which are partially immune to the increase of the sensor
density.

Specifically, in this paper we consider a problem of K
nodes communicating over a frame-synchronized multiple-
access channel. When K is fixed and the frame size n (which
we will also call “blocklength” or the “number of degrees of
freedom”) is taken to infinity we get the classical regime [1], in
which the fundamental limits are given by well-known mutual
information expressions. A new regime, deemed many-access,
was put forward by Chen, Chen and Guo [2]. In this regime
the number of nodes K grows with blocklength n. It is clear
that the most natural scaling is linear: K = pn,n — oo,
corresponding to the fact that in time n there are linearly many
users that will have updates/traffic to send [3]. That is, if each
device wakes up once in every 1" seconds and transmits over
a frame of length ¢, then in time (proportional to) ¢ there are
K = t/T users where ¢ is large enough for this approximation
to hold but small that no device wakes up twice. Further,
asymptotic results obtained from this linear scaling have been
shown to approximately predict behavior of the fundamental
limit at finite blocklength, e.g. at n = 30000 and K <= 300
[3, 4]. The analysis of [2] focused on the regime of infinitely
large payloads (see also [5] for a related massive MIMO MAC
analysis in this setting). In contrast [3] proposed to focus on a
model where each of the ' = pn nodes has only finitely many
bits to send. In this regime, it turned out, one gets the relevant
engineering trade-offs. Namely, the communication with finite
energy-per-bit is possible as n — oo and the optimal energy-
per-bit depends on the user density u. For this to happen,
however, a second crucial departure from the classical MAC
model was needed: the per-user probability of error, PUPE,
criterion [3].

These two modifications (the scaling K = pn and the
PUPE) were investigated in the case of the AWGN channel
in [3, 4, 6]. We next describe the main discovery of that work.



The channel model is:
K
Yr=3) Xi+2",  Z"~CN(O.L), (1)
i=1

and X; = fi(W;) € C" is the codeword of i-th user
corresponding to W; € [2¥] chosen uniformly at random.
The system is said to have PUPE e if there exist decoders
W; = W;(Y™) such that
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The energy-per-bit is defined as
E, 1
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The goal in [3, 6] was to characterize the asymptotic limit

E
E*(u, k, €) = limsup inf = 3)
n— 00 NO

where infimum is taken over all possible encoders {f;} and
decoders {W;} achieving the PUPE ¢ for K = pun users.
(Note that this problem may be recast in the language of
compressed sensing and sparse regression codes (SPARCs) —
see Section II-A below.)

To predict how E£*(u,c) behaves, first consider a naive
Shannon-theoretic calculation [7]: if K users want to send
k bits in n degrees of freedom, then their sum-power P;,;
should satisfy

nlog(l+ Pyot) = kK .

In turn, the sum-power P,y = %% Overall, we get
P ok — 1

kp
This turns out to be a correct prediction, but only in the large-u
regime. The true behavior of the fundamental limit is roughly

given by
2k _
E*(u, k, €) ~ max (k‘u’ Es_u_) , ())
where &, = & u. (k,€) does not depend on p and corre-

sponds to the single-user minimal energy-per-bit for sending
k bits with error €, for which a very tight characterization is
given in [8]. In particular, with good precision for k£ > 10 we
have
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where Q is the complementary CDF of the standard normal
distribution: Q(z) = i [>° e du.

In all, results of [3, 4, 6]wsuggest that the minimal energy-
per-bit has a certain “inertia”: as the user density u starts to
climb from zero up, initially the energy-per-bit should stay
the same as in the single-user y = 0 limit. In other words,
optimal multiple-access architectures should be able to almost
perfectly cancel all multi-user interference (MUI), achieving
an essentially single-user performance for each user, provided
the user density is below a critical threshold. Note that this

is much better than orthogonalization, which achieves the
same effect at the expense of shortening the available (to
each user) blocklength by a factor of % Quite surprisingly,
standard approaches to multiple-access such as TDMA and
TIN?, while having an optimal performance at p — 0
demonstrated a significant suboptimality for p > 0 regime.
In particular, no “inertia” was observed and the energy-per-bit
for those suboptimal architectures is always a monotonically
increasing function of the user density u. This opens the (so
far open) quest for finding a future-proof MAC architecture
that would achieve &, energy-per-bit for a strictly-positive
© > 0. A thorough discussion of this curious behavior and
its connections to replica-method predicted phase transitions
is contained in Section V-A.

(We note that in this short summary we omitted another
important part of [3]: the issue of random-access — i.e. com-
municating when the identities/codebooks of active users are
unknown a priori. We mention, however, that for the random-
access version of the problem, there are a number of low-
complexity (and quite good performing) algorithms that are
available [9-15]. See [16-19] for more recent developments.)

The contribution of this paper is in demonstrating the
same almost perfect MUI cancellation effect in a much more
practically relevant communication model, in which the ideal
unit power-gains of (1) are replaced by random (but static)
fading gain coefficients. We consider two cases of the channel
state information: known at the receiver (CSIR) and no channel
state information (noCSI).

Key technical ideas: For handling the noCSI case we employ
the subspace projection decoder similar to the one proposed
in [20], which can be seen as a version of the maximum-
likelihood decoding (without prior on fading coefficients) — an
idea often used in support recovery literature [21-23]. Another
key idea is to decode only a subset of users corresponding
to the strongest channel gains — a principle originating from
Shamai-Bettesh [24]. While the randomness of channel gains
increases the energy-per-bit requirements, in a related paper
we find [9] an unexpected advantage: the inherent random-
ization helps the decoder disambiguate different users and
improves performance of the belief propagation decoder. Our
second achievability bound improves projection decoder in the
the low user density (low spectral efficiency) regime by apply-
ing the Approximate Message Passing (AMP) algorithm [25].
The rigorous analysis of its performance is made possible by
results in [23, 26]. On the converse side, we leverage the recent
finite blocklength results for the noCSI channel from [20, 27].

The paper is organized as follows. In Section II we formally
define the problem and the fundamental limits. In Section II-A
relation with compressed sensing is discussed. In Section III as
a warm-up we discuss the classical regime (K—fixed, n — c0)
under the PUPE criterion. We show that our projection de-
coder achieves the best known achievability bound in this
setting [24]. (We also note that for the quasi-static fading

2Note that pseudo-random CDMA systems without multi-user detection and
large load factor provide an efficient implementation of TIN. So throughout
our discussions, conclusions about TIN also pertain to CDMA systems of this
kind.



channel model the idea of PUPE is very natural, and implicitly
appears in earlier works, e.g. [24, 28], where it is conflated
with the outage probability.) After this short warm-up we go
to our main Section IV, which contains rigorous achievability
and converse bounds for the KX = pun,n — oo scaling
regime. Some numerical evaluations are presented Section V,
where we also compare our bounds with the TDMA and TIN.
Finally, in Section V-A we discuss the effect of almost perfect
MUI cancellation and its relation to other phase transitions in
compressed sensing.

A. Notations

Let N denote the set of natural numbers. For n € N, let
C™ denote the n—dimensional complex Euclidean space. Let
S C C™. We denote the projection operator or matrix on to the
subspace spanned by S as Ps and its orthogonal complement
as Pg. For 0 < p < 1, let ha(p) = —plogy(p) — (1 —
p)logy(1 —p) and h(p) = —pln(p) — (1 — p) In(1 — p), with
0In0 defined to be 0. We denote by N(0,1) and CN(0,1)
the standard normal and the standard circularly symmetric
complex normal distributions, respectively. P and E denote
probability measure and expectation operator respectively. For
n € N, let [n] = {1,2,...,n}. log denotes logarithm to base
2. Lastly, ||-|| represents the standard euclidean norm.

II. SYSTEM MODEL

Fix an integer K > 1 — the number of users. Let { Pyn|x» =
Pynixn xp,. xp - Hfil X — Y"1} | be a multiple access

channel (MAC). In this work we consider only the quasi-static
fading AWGN MAC: the channel law Py x~ is described by

K
Y=Y H,X}+ 2" (6)

i=1

where Z" ~CN(0,1,,), and H; Y CN(0,1) are the fading co-
efficients which are independent of {X'} and Z™. Naturally,
we assume that there is a maximum power constraint:

|X7? < nP. (7)

We consider two cases: 1) no channel state information
(no-CSI): neither the transmitters nor the receiver knows the
realizations of channel fading coefficients, but they both know
the law; 2) channel state information only at the receiver
(CSIR): only the receiver knows the realization of channel
fading coefficients. The special case of (6) where H; = 1,Vi
is called the Gaussian MAC (GMAC).

In the rest of the paper we drop the superscript n unless it
is unclear.

Definiton 1. An ((My, M>, ..., Mk ),n,€),, code for the MAC
Py xn is a set of (possibly randomized) maps { f; : [M;] —
XP}YE | (the encoding functions) and g : Y™ — H1K:1[Mz]
(the decoder) such that if for j € [K], X; = f;(W;) constitute
the input to the channel and W; is chosen uniformly (and

independently of other W;, i # j) from [Mj] then the average
(per-user) probability of error satisfies

K
Pow=2 Y P[W; £ (4(V)),] < ®)
j=1

where Y is the channel output.

We define an ((My, My, ..., Mk),n,€); code similarly,
where P, , is replaced by the usual joint error

Po=P| U {wi#6o),} <e  ©
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Further, if there are cost constraints, we naturally modify
the above definitions such that the codewords satisfy the
constraints.

Remark 1. Note that in (8), we only consider the average per-
user probability. But in some situations, it might be relevant
to consider maximal per-user error (of a codebook tuple)
which is the maximum of the probability of error of each user.
Formally, let Ci) = {C1, ...,Cx } denote the set of codebooks.
Then

P = Pl (Ciry)
— max {IP’ [Wl ” Wl] P [WK ” WK]} (10)

where the probabilities are with respect to the channel and
possibly random encoding and decoding functions. In this
paper we only consider the fundamental limits with respect
to P., and PUPE always refers to this unless otherwise
noted. But we note here that for both asymptotics and FBL the
difference is not important. See appendix C for a discussion
on this — there we show that by random coding E [Pemjx} is

asymptotically equal to E [P, ,,] (expectations are over random
codebooks).

A. Connection to compressed sensing and sparse regression
codes

The system model and coding problem considered in this
work (see eqn. (6)) can be cast as a support recovery problem
in compressed sensing. Suppose we have K users each with a
codebook of size M and blocklength n. Let A; be the n x M
matrix consisting of the codewords of user ¢ as columns. Then
the codeword transmitted by the user can be represented as
X; = A;W; where W; € {0,1}™ with a single nonzero entry.
Since each codeword is multiplied by a scalar random gain H;,
we let U; = H;W,; which is again a 1 sparse vector of length
M. Finally the received vector Y can be represented as

Y = Z HX,+Z=AU+Z
1€[K]

(1)

where A = [A1, -+, Ak| is n x KM matrix obtained by
concatenating the codebooks, U = [U{,--- ,UL]T is the
MK x 1 length vector denoting the codewords (and fading
gains) of each user. In our problem, the vector U has a
block-sparse structure, namely U has K sections, each of



length M, and there is only a single non-zero entry in each
section. (Majority of compressed sensing literature focuses
on the non-block-sparse case, where U has just K non-zero
entries, which can be spread arbitrarily inside K M positions.)
Decoding of the codewords, then, is equivalent to the support
recovery problem under the block-sparse structure, a problem
considered in compressed sensing. In our setup, we keep M
fixed and let K,n — oo with constant i = K /n. Hence 1/M
is the sparsity rate and My is the measurement rate.

This connection is not new and has been observed many
times in the past [29, 30]. In [30] the authors consider a the
exact support recovery problem in the case when the vector U
is just sparse (with or without random gains). This corresponds
to the random access version of our model where the users
share a same codebook [31]. They analyze the fundamental
limits in terms of the rate (i.e., ratio of logarithm of signal
size to number of measurements) necessary and sufficient to
ensure exact recovery in both cases when sparsity is fixed and
growing with the signal size. For the fixed sparsity case and U
having only 0, 1 entries, this fundamental limit is exactly the
symmetric capacity of an AWGN multiple access channel with
same codebook (with non colliding messages). With fading
gains, they recover the outage capacity of quasi-static MAC
[32, 33] (but with same codebook).

In [29], the authors discuss necessary and sufficient con-
ditions for the exact and approximate support recovery (in
Hamming distortion), and Lo signal recovery with various
conditions on signal X and matrix A (deterministic versus
random, discrete versus continuous support etc.). These results
differ from ours in the sense that they are not for block
sparse setting and more importantly, they do not consider
approximate support recovery with Hamming distortion when
the entries of the support of the signal are sampled from a
continuous distribution, which is the case we analyze. Hence
our results are not directly comparable.

Work [23] comes closest to our work in terms of the
flavor of results of achievability. As pointed out in [23]
itself, many other works like [29] focus on the necessary
and sufficient scalings (between sparsity, measurements and
signal dimension) for various forms of support recovery.
But the emphasis in [23] and this work is on the precise
constants associated with these scalings. In particular, the
authors in [23] consider the approximate support recovery
(in Hamming distortion) problem when the entries in the
support of the signal come from a variety of distributions.
They analyze various algorithms, including matched filter and
AMP, to find the minimum measurement rate required to attain
desired support distortion error in terms of signal to noise
ratio and other parameters. Furthermore, they compare these
results to that of the optimal decoder predicted by the replica
method [34].

The result on using replica method in [23] is not directly
applicable since our signal has block sparse (as opposed to
ii.d.) coordinates. But the AMP analysis presented there can
be extended to our setting. Because of the generality of the
analysis in [26], it turns out to be possible to derive rigorous
claims (and computable expressions) on the performance of

the (scalar) AMP even in the block sparse setting. This is
the content of Section IV-C below. Unlike the achievability
side, for the converse we cannot rely on bounds in [23]
proven for the i.i.d. coordinates of X. Even ignoring the
difference between the structural assumptions on X, we point
out also that our converse bounds leverage finite-length results
from [27], which makes them tighter than the genie-based
bounds in [35].

The block-sparse assumption, however, comes very natu-
rally in the area of SPARCs [36-38]. The section error rate
(SER) of a SPARC is precisely our PUPE. The vector AMP
algorithm has been analyzed for SPARC with i.i.d Gaussian
design matrix in [38] and for the spatially-coupled matrix
in [39] but for the AWGN channel (i.e., when non-zero
entries of U in (11) are all 1). In[40], heuristic derivation
of state evolution of the vector-AMP decoder for spatially-
coupled SPARCS was presented for various signal classes (this
includes our fading scenario). However, the the resulting fixed
point equations may not be possible to solve for our block size
as it amounts to computing 2'°° dimensional integrals (and this
also prevents evaluation of replica-method predictions from
[40D).

III. CLASSICAL REGIME: K FIXED, n — 00

In this section, we focus on the channel under classical
asymptotics where K is fixed (and large) and n — oo. Further,
we consider two distinct cases of joint error and per-user error.
We show that subspace projection decoder (14) achieves a) e—
capacity region (C¢, s) for the joint error and b) the best known
bound for e—capacity region C, pr; under per-user error. This
motivates using projection decoder in the many-user regime.

A. Joint error

A rate tuple (Ry,..., Rk) is said to be e—achievable [33]
for the MAC if there is a sequence of codes whose rates
are asymptotically at least R; such that joint error is asymp-
totically smaller than e. Then the e—capacity region C¢ j is
the closure of the set of e—achievable rates. For our channel
(6), the C, ; does not depend on whether or not the channel
state information (CSI) is available at the receiver since the
fading coefficients can be reliably estimated with negligible
rate penalty as n — oo [32][24]. Hence from this fact and
using [33, Theorem 5] it is easy to see that, for 0 < e < 1,
the e—capacity region is given by

C.y={R=(Ry,...Rg):Vi,R; >0 and Py(R) < ¢}
(12)
where the outage probability Py(R) is given by

Py(R) =

P U {log (1 +Py |Hi2>
SC[K],S#0 i€s

Next, we define a subspace projection based decoder, in-
spired from [20]. The idea is the following. Suppose there
were no additive noise. Then the received vector will lie in
the subspace spanned by the sent codewords no matter what

< ZRl} (13)

i€S



the fading coefficients are. To formally define the decoder,
let C' denote a set of vectors in C™. Denote P as the
orthogonal projection operator onto the subspace spanned by
C. Let Pé = I — P¢ denote the projection operator onto the
orthogonal complement of span(C) in C".

Let Cy, ...,Cx denote the codebooks of the K users respec-
tively. Upon receiving Y from the channel the decoder outputs
g(Y) which is given by

g(Y) = (ffl(él)a 7f[;1(éK))

(61, éK) = arg(qrencz?iil ”P{Ci’ie[K]}YHQ

(14)

where f; are the encoding functions.

In this section, we show that using spherical codebook with
projection decoding, C. ; of the K-MAC is achievable. We
prove the following theorem

Theorem III.1 (Projection decoding achieves C¢ ). Let R €
Ce.; of (6). Then R is e—achievable through a sequence of
codes with the decoder being the projection decoder (14).

Proof. We generate codewords iid uniformly on the power
sphere and show that (14) yields a small P, ;. See appendix
A for details. L]

Remark 2. Note that [30] also analyzed capacity region of the
quasi-static MAC, but under the same codebook requirement,
for the joint error probability (as opposed to PUPE), and with
a different decoder.

B. Per-user error

In this subsection, we consider the case of per-user error
under the classical setting. Further, we assume availability of
CSI at receiver (CSIR) which again can be estimated with little
penalty.

The e—capacity region for the channel under per-user error,
Ce.pyu is defined similarly as C, ; but with per-user error
instead of joint error. C, pyy is unknown, but the best lower
bound is given by the Shamai-Bettesh capacity bound [24]:
given a rate tuple R = (Ry, ..., Rk ), an upper bound on the
per-user probability of error under the channel (6), as n — oo,
is given by

P.. < P’(R)

1
=1-— K]Esup{|D| :D C [K|,VS CD,S #0,

PY s | Hil?
R;<log(1+ i€S ) 15
Z o8 ( 1+ PZieDc |Hi|2 ( )

i€S

where the maximizing set, among all those that achieve the
maximum, is chosen to contain the users with largest fading
coefficients. The corresponding achievability region is

Cofy ={R:PS(R) < ¢} (16)

and hence it is an inner bound on C; py.

We note that, in [24], only the symmetric rate case i.e, R; =
R; Vi, j is considered. So (15) is the extension of that result
to the general non-symmetric case.

Here, we show that the projection decoding (suitably mod-
ified to use CSIR) achieves the same asymptotics as (15)
for per-user probability of error i.e., achieves the Shamai-
Bettesh capacity bound. Next we describe the modification
to the projection decoder to use CSIR.

Let {C;}X, denote the codebooks of the K users with
ICi| = M;. We have a maximum power constraint given by
(7). Using the idea of joint decoder from [24], our decoder
works in 2 stages. The first stage finds the following set

De argmax{|D| :D C [K],VS C D,S #0,

Py cs|Hil?
R, <log |1 €S 17
2 <°g( +1+PzieDc|m|2> (a7

€S

where D is chosen to contain users with largest fading
coefficients. The second stage is similar to (14) but decodes
only those users in D. Formally, let 7 denote an error symbol.
The decoder output gp(Y) € Hfil C; is given by
fii@) ieD
Y);=<""
(9p(Y)) {? i¢ D

(¢i)iep = arg  max HP{cl:ieD}YHQ (18)

(ci€Ci)iep
where f; are the encoding functions. Our error metric is the
average per-user probability of error (9).
The following theorem is the main result of this section.

Theorem IIL.2. Forany R € Cf 'IJDBU there exists a sequence of
codes with projection decoder (17)(18) with asymptotic rate
R such that the per-user probability of error is asymptotically
smaller than €

Proof. We generate iid (complex) Gaussian codebooks
CN(0,P'I,) with P’ < P and show that for R € C5/%},
(18) gives small P, ,. See appendix A for details. O

In the case of symmetric rate, an outer bound on C, py can
be given as follows.

Proposition 1. If the symmetric rate R is such that P, , < ¢,
then

1
< min{ ——F |1 1+ P mi § H* ||,
Rmm{K(H—e) o8z | L JuR < |
|S|=6K €3

log, (1 — Pln(1 — e))}, V8 € (e, 1] (19)
Proof. The first of the two terms in the min in (19) follows
from Fano’s inequality (see (136), with p = K/n, M = 2"
and taking n — o0). The second is a single-user based
converse using a genie argument. See appendix A-C for
details. O

Remark 3. We note here that the second term inside the
minimum in (19) is the same as the one we would obtain
if we used strong converse for the MAC. To be precise, let
{lHqy| > [Hg)| > ... > |H()|} denote the order statistics
of the fading coefficients. If R > log(1 + P|H)|?) then,



using a Genie that reveals the codewords (and fading gains)
of t—1 users corresponding to t—1 largest fading coefficients,
it can be seen that P, > % Setting t = 0K and
considering the limit as K — oo (with P = Pyt /K) we
obtain S < — Pyt logy (1 — €) which is same as that obtained
from the second term in (19) under these limits.

C. Numerical evaluation

First notice that C. ; (under joint error) tends to {0} as
K — oo because, it can be seen, for the symmetric rate, by
considering that order statistics of the fading coefficients that
Py(R) — 1 for R, = O(1/K). C¢ py, however, is more
interesting. We evaluate trade-off between system spectral
efficiency and the minimum energy-per-bit required for a target
per-user error for the symmetric rate, in the limit ' — oo and
power scaling as O(1/K).

Svs By/Nyfor P,=01,n =00, K0
T T T

—TOMA
—— Shamai-Bettesh capacity bound| |
—Comverse

0 3 2
Ey/Ny (dB)

Fig. 1: S vs E,/Ny for per-user error € < 0.1, n — oo and
then K — oo

In the above figure we have also presented the performance
of TDMA. That is, if we use orthogonalization then for any
number of users K (not necessarily large), we have

e=P[R>1/Klog(l+ KP|H|?)] (20)

where € is the PUPE. Thus the sum-rate vs Ej/Ny formula
for orthogonalization is

25 1 1
S —In(l—c¢)

Ey/No = 2y
where S is the sum-rate or the spectral efficiency.

We see that orthogonalization is suboptimal under the PUPE
criterion. The reason is that it fails to exploit the multi-user
diversity by allocating resources even to users in deep fades.
Indeed, under orthogonalized setting the resources allocated
to a user that happens to experience a deep fade become
completely wasted, while non-orthogonal schemes essentially
adapt to the fading realization: the users in deep fades create
very little interference for the problem of decoding strong
users. This is the effect stemming from the PUPE criterion
for error rate.

IV. MANY USER MAC: K = un, n — o0

This is our main section. We consider the linear scaling
regime where the number of users K scales with n, and
n — oo. We are interested in the tradeoff of minimum E} /Ny
required for the PUPE to be smaller than e, with the user
density i (1 < 1). So, we fix the message size k. Let S = ku
be the spectral efficiency.

We focus on the case of different codebooks, but under
symmetric rate. So if M denotes the size of the codebooks,
then S = W = plog M. Hence, given S and pu, M
is fixed. Let P,,; = K P denote the total power. Therefore
denoting by & the energy-per-bit, £ = E;,/Ny = logf =
%. For finite E} /Ny, we need finite Py, hence we consider
the power P decaying as O(1/n).

Let C; = {c],...,c),;} be the codebook of user j, of
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size M. The power constraint is given by HCZH < nP =
Elogy, M,¥j € [K],i € [M]. The collection of codebooks
{C;} is called an (n, M, €, &, K)—code if it satisfies the power
constraint described before, and the per-user probability of
error is smaller than e. Then, we can define the following
fundamental limit for the channel

E* (M, p,e) = li_>m inf {€ : I(n, M,e,E, K = un) — code} .

We make an important remark here that all the following
results also hold for maximal per-user error (PUPE-max) (10)
as discussed in appendix C.

A. No-CSI

In this subsection, we focus on the no-CSI case. The
difficulty here is that, a priori, we do not know which subset
of the users to decode. We have the following theorem.

Theorem IV.1. Consider the channel (6) (no-CSI) with K =
un where . < 1. Fix the spectral efficiency S and target
probability of error (per-user) €. Let M = 25/t denote the
size of the codebooks and P;,; = K P be the total power. Fix
ve(l—ell. Lete =e—(1—v). Thenif E> &)\ _cgr =

Prot(0.6)
SUD/ <y SUPgel0.w(1-0)] 5

of (n,M, e, E, K = pun) codes such that limsup,,_, . €, < €,
where, for < <0 <1 and £ € [0,v(1 —0)],

, there exists a sequence

f(0,6)
Piot,v 97 = ~ (22
ot o) = o a4 v0 £ T T (1= 0))
f0,6) = __Je) (23)
’ (&, €+ vh)
1407 (1-Vo) _ 4
f(0) = 1@7—5; (24)
Vo=e " (25)
Vo = 6 + Lfy_lziw +
1—puv(l—20) Opv
1—pv h(luy(19)>+

p(l—v(1-120)) v
1— v h(lu(l@)) (26)



_ ph(1—v(1—10))

6" = 27)
1—pv
o,
Cop = -V, (28)
_ ph(1= (1 0))
Q== uv(1—0) (29)
07 = qo(1 +co) +
\/qg(cg + 2c9) + 2q9(1 + ¢p) (30)

5§:inf{x:0<m<1,

—x >

—In(1—=x) 'uill(i ;Vi(ll_;))) }(31)
(32)

ala,b) = aln(a) — bln(b) + b — a.

Hence £* < & _ g1

Proof Idea. Before we present the full proof, the main ideas
are presented here. Also, over the course, we explain the
quantities that are present in the statement of the theorem. We
start with choosing independent random Gaussian codebooks
for all users. That is, for each message of each user there is an
independent complex Gaussian CN (0, P'I,,) codeword where
P’ < P. The choice P’ < P is to ensure we can control the
maximum power constraint violation events.

For simplicity we will consider v = 1. Here v represents the
fraction of users that the decoder can choose to decode. Due
to random coding, we can assume that a particular tuple of
codewords (¢, ca, -+ ,cx) were transmitted i.e., the received
vector at the decoder is ¥ = Zszl H;c; + Z. Then the
decoder performs subspace projection decoding. The idea is
that in the absence of noise, the received vector lies in the
subspace spanned by the K codewords. Since we assume
u = K/n <1, and the K codewords are linearly independent,
we can uniquely decode them by projecting the received vector
onto various K dimensional subspaces formed by taking a
codeword from each of the codebooks. Formally,

(¢ i€ [K]} = arg | Presicsy Y|

max
(c; €Ci:i€[K])

Notice that the PUPE is given by

ZPQ#Q-

zG[K

(33)

We will bound this error with the probability of events F;—
event that exactly ¢ users were misdecoded. That is

U 7]

t>eK

P.<e+ P[ (34)
Hence it is enough to find conditions under which the second
term (call it p;) in the above display goes to 0 in our scaling.
To analyze F;, we consider subsets S C [K]| with |S| = ¢
and a choice of incorrect codewords (c¢; € C; : i € S) where
¢; # ¢;, and bound F; as union (over S and (¢ : i € [S]))

YH > | P YHQ}. With abuse of
notation, denote thlS set as F(S,¢).

ClIEIN\S]

of events { ’

Let cig) = {¢; : i € S}, similarly we have Hg. We
make a crucial observation that, conditioned on CIK]> H, (K] and

Z, the random variable

c[S],C[ _— YH can be written as

| Pepser s K\S YH Beta(t,n — K) where Beta(a, b)

is a beta dlstrlbuted ranc210m variable with parameters a and b.
£
’ °[LK]]

Let Gg = ' >. Then we show that

P Y‘
[\ 5]
=P [Beta(n — K, t) < Gs|cik,

< (n—K+t—1> (GS)”‘K

Hix, Z]
35
£ 1 (35)
Next, we use the idea of random coding union (RCU) bound
[41] to get

P{gFt}gE{min{ Z}P’ (S, t)|eix), Hixel,s ]H

(36)

Let § = t/K, which is the fraction of misdecoded users.
Now, by thresholding the value of Gg (this threshold is
parameterized by a § > 0) we get from (36) a sum of an
exponentially decaying term with combinatorial factors and
the probability that G'g violates this threshold for some S and
t (call this probability ps). Choosing the right threshold (§*
and corresponding threshold value Vj in the theorem) the first
term vanishes (in the limit) and we are left with po.

This is analyzed by conditioning on c[x] and H[g) along
with using concentration of non-central chi-squared distributed
variables (see claim 3). We follow similar procedure to above
(using RCU and thresholding) multiple times to obtain thresh-
olds parameterized by J7 and 63 to vanish combinatorial
factors (like gy in the theorem which is the exponent of a
binomial coefficient) and finally we are left with the bottleneck
term:

limsup P, < e+

hmsupP{U{P’ > HP <g<6f,6;,6§,M,u,e)H
" t,5 i€[S]
(37)

where g is some specific function. In essence, this bottleneck
term is precisely the event that > e fraction of users are outside
the Gaussian capacity region!
Next step is to replace Ug with ming and use the conver-
gence of order statistics of fading coefficients i.e., [H)| >
- > ‘H (K) ‘Z

K
limsup P. < e—}—limsup]P’{U{P’ Z |Hy? <
n n t i=K—t+1
(67,63, Mot/ )}
(38)
Then we show that, for ¢t = 0K, + Z

f1179 \HP(

iek—e1 [ H* —
~v)dy = a1l — 6,1) in probabilty as n — oo.



Hence the bottleneck term becomes deterministic in the limit.
The choice P;,; such that this terms vanishes is precisely the
one given in the statement of the theorem. O

Proof. The proof uses random coding. Let each user gen-
erate a Gaussian codebook of size M and power P’ < P
independently such that KP' = P/, < P,y Let W,
denote the random (in [M]) message of user j. So, if
C; = {c] : i € [M]} is the codebook of user j, he/she

transmits X; = cyy 1

(c1,¢2,...,cx) be the sent codewords. Hence the received
vector is Y = Zie[K] H,c; + Z where Z is the noise vector.
Fix v € (1 —¢,1]. Let K; = vK be the number of users that
are decoded. Since there is no knowledge of CSIR, it is not
possible to, a priori, decide what set to decode. Instead, the
decoder searches of all K sized subsets of [}/]. Formally, let ?
denote an error symbol. The decoder output gp(Y') € Hle C;
is given by

2
{HCJWJ,H < nP}. For simplicity let

. 2
[S, (Ci)iES} =erg uax mex | Pee,siesy Y ||
|SI=FK:
f—il(éi) 1€ S'
V) =17 ’ 39
(9p(1) {7 o )

where f; are the encoding functions. The probability of error
(averaged over random codebooks) is given by

1 & .
i Seefm )
j=1

where TW; = (g(Y)); is the decoded message of user j.

We perform a change of measure to X; = cW Since P, is
the expectation of a non-negative random variable bounded
by 1, this measure change adds a total variation distance
which can bounded by py = KP [% > %}
n — oo, where ya(d) is the distribution of sum of squares
of d iid standard normal random variables (the chi-square
distribution). The reason is as follows. If we have two random
vectors U1 and U on a the same probability space such that
Uy = Us1[U; € E], where FE is a Borel set, then for any Borel
set A, we have

(40)

— 0 as

|[P[U; € A] —P[U; € A] |
=10 € A]P[Us € E°] = P[Us € AN E“]|
<P[U; € E]. (41)
Henceforth we only consider the new measure.
Lete >1—vand € =¢— (1 —v). Now we have
1K
Peﬁe—HE”[KZlW + W) }
=1
K
:e—HP’{Zl |> K +K— Kl]
j=1
=e+Dpi. (42)

where
vK K
plzP[ U { W, #W,] = K — K1+tH
t=e’K * j=1
Let F, = {EK W, £ W,] = K — K1 + t}. Let cjg) =
{ci i€ S} and Hg) = {H; : i € S}, where S C [K
Conditioning on c(x7, H(x) and Z, we have
P [Filex), Hix), Z]

SP|:E|SC [K] : |S‘ =K-K;+t,35,CS: |Sl|:t,

2
H{CQECi:iESl,CQ#ci}:‘P YH >

511 CUEINS]

max
SaCS
[S2|=t

|

C[K H[K] Z:|

ClS2]C[K\S]

u U u

SC[K] S51CS  {cleC;:
|S|=K—Ki+t|S1]= tzeslc;écl}

o]

F(S,83,51,t) (43)

cx)s Hixs Z}
where

F(S,85,51,t) =

{ ersgl-Cll K]\S]YH }

and S3 C S is a possibly random (depending only on H[gj)
subset of size ¢, to be chosen later. Next we will bound
P [F(Sa S;aslat”C[K]vH[K]aZ]

2
YH >

5,17 CUKINS]

For the sake of brevity, let Ay = s3] Y Cr\s)» A =
crx\s) and By = c[ si)° We have the following claim.

Claim 1. For any S C S with |Sl\ =1t condmoned on

ck), Hig el ],C[[K]\S YH is same

as the law of ||PA1Y|| + (I - PAl)YH Beta(t,n — K;)
where Beta(a,b) is a beta distributed random variable with
parameters a and b.

Proof. Let us write V = span{A;, B1} = A® B where A L
B are subspaces of dimension K7 — ¢ and ¢ respectively, with
A = span(A;) and B is the orthogonal complement of A;
in V. Hence ||PyY|* = |[PAY|” + |£PBY||2 (by definition,
P4 = P4,). Now we analyze |PgY||”. We can further write
PpY = PpP4Y. Observe that the subspace B is the span of
P+ By, and, conditionally, P4 By ~ CcN @IS0, P'P#) which
is the product measure of |S| complex normal vectors in a
subspace of dlmenswn n — K +t. Hence, the conditional law
of HPBPjYH is the law of squared length of projection of a
fixed n — K +t dimensional vector of length ||(I — P4)Y|?
onto a (uniformly) random ¢ dimensional subspace.

Further, the law of the squared length of the orthogonal
projection of a fixed unit vector in C% onto a random t—
dimensional subspace is same as the law of the squared length
of the orthogonal projection of a random unit vector in C¢



onto a fixed {—dimensional subspace, which is Beta(¢,d — t)
(see for e.g. [42, Eq. 79]): that is, if w is a unit random
vector in C? and L is a fixed ¢ dimensional subspace, then

{HPLqu < x} =P [%%17}2:2 < 33} = Fg(z;t,n — Kq)

where Z; “YCN(0,1) and Fj(x;a,b) F(a’;}rbb) Jow
w)*~'dw denotes the CDF of the beta distribution w1th

parameters a and b. Hence the conditional law of HPB Py YH
is ||(I — Pa)Y|]? Beta(t,n — K1).

al]__

O
Therefore we have,
P [F(SaS;aslat)|C[K]7H[K]7Zj|
=P [Beta(n — Kl,t) < G5|C[K],H[K],Z]
where
Y= 1Pa Y1
=1L . (45)
1Y]]" = 1P, Y|

Since t > 1, we have

- K t—1
Iy (Gs;n—Kl,t) < (TL t1—+1 >GgK1.

Let us denote J/™, - as U,, U

SCIK] as US,Kl’ and
[S|=K—Ki+t
U:U  scixp as U, gk, similarly for 3 and (1 for the
[S|I=K—K1+t 77

ease of notation. Using the above claim, we get,

P [Filey), Hix, Z] <
(e
S,K1

Therefore p; can be bounded as

Ur]

Lot

<E min{l,

—Ki+t—1

P )GgKl. (46)

p1 =P

Z (K—KH—t)Mt'

t
t,S, K1

’I’L—Kl +t—1 _K
Gri
(" e
E min{l, > e<"—K1>SfMtGgK1H (47)
- t,S, K1

K—K1+f n—Kq4+t—1
where s; —1n(( )( i1 ))

Now we can bound the b1n0m1a1 coefﬁment [43, Ex. 5.8]
as

( t—1
n—K1—|—t—1 e
27Tt—]. n—Kl)

@)

) n(1—pv(l— 9))h(m)

—K1+t—1>

(n—K1+t=Dh(s=rg7=1)

IN

(f @

Similarly,

(K—K1+t>
t

1
<0 nu(1—v(1-0))h(=5%—)
B (ﬁ) ‘

Let ry = s¢ + ““M . For § > 0, define V,, +=7+ 6 and
Vot = eV, Let El be the event

(49)

By = ﬂ {-InGg — 1 > 6}
t,8,K1
= [ {Gs<Vai}. (50)
t,8,K,
Letpy =P {Ut’S’Kl {Gg > Vn’t}}. Then
P1
<]E mm{ Z €(n Kl)rtG“ Kl}(l[El]_’_l[Eﬂ):|
t,5,K1
Z e—(n K1)5 +p2
fSK1
—(n—K1)6 . 51
zt: K - K —I—t)e T2 Gh

Observe that, for t = 0K, = v K,
1-— 1-6
_1-w(-9), (

1—pv
u(1 - v(1 - 9))
1—pv

Ouv
1—pv(l— 9)> +

(r=imm) ()

- In M. Therefore n — oo with 8 fixed, we

and e = S¢ +
have

lim Vn m Ve

n—oo

(52)

where Vj is given in (26).
Now, note that, for 1 < t < K7,

K
K—-K, +t

<\/ X
- 27T(K—K1 +t>(K1—t)

. Kh(E=Eitty |
Hence choosing § > —— —&— will ensure that the first

term in (51) goes to 0 as n — oo. So for t = 0K, = OvK,
we need to have

K—-Kq+t
KRBt

(53)

5> 5% (54)

where §* is given in (27).
Let us bound ps. Let Z = Z + ZieS\S; Hc;. We have



Claim 2.

P2 = P[ U {Gs> Vn,t}}

t,8,K,

P[U

t,S,K1

2

IN

{Hu ~Vot)PA,Z — Vit PL Z Hic;

i€S;
2}]

> Vou|Pa, Y Hici

i€S3

(55)

Proof. See appendix B.
O

Let x5 (A, d) denote the non-central chi-squared distributed
random variable with non-centrality A and degrees of freedom
d. That is, if Wi ~ N'(us, 1), € [d] and A = 37, 417, then
X5(X, d) has the same distribution as that of 5, W7. We
have the following claim.

Claim 3. Conditional on Hg) and Ay,

2

- V
1 _ n,t o
‘ Pi (Z T Z Hzcl)

v ieSy

1
~ (1 + P | > |Hi|2> X2 (2F,2n) (56)

1€S\S3
where
2
Vit 1 .
o H -V, 1A 2uieS; Hic; 57)
(1 + P ZieS\s; \Hi\Z)

n=n—K; +t. (58)

Hence its conditional expectation is
w=n'+F. (59)
Proof. See appendix B. O

Now let
1
T = 5xz(2F,20) — (60)
2
Vn t Hpj_l ZZES; Hici '
U= i V —n' (61)
nt) (14 P Ciegs; [Hil?)
1

U= —— (V. Wsg—1 62
T (Vo Ws — 1) (62)

where
2

Hi|2) )

Hpil EieS; Hie;
Ws =1+
W (14 P Siesnsy

Notice that U = n/U? and F' = 25n/(1+ U).

Then we have

RHS of (55)

P U]

)

:IPLSLQ( {TzU}}

Now, let 61 > 0, and Ey = Ny 5.k, {U1 > 61}. Taking
expectations over £ and its complement, we have

1}»{ U {TZU}}

t,5,K1
< Y P[T>UU"> 6] +P[ES]
t,S, K1
> E[P[T > U|Hgy, Ag] 1[U" > 61]]
t,5,K,
+ P[ES)]

2

. V.
1 n,t 1
Pnd = =yt 2 e

i€S3

(63)

(64)

which follows from the fact that {U' > 61} € o(H{k], Ao).
To bound this term, we use the following concentration result
from [44, Lemma 8.1].

Lemma IV.2 ([44]). Let x = x5(A,d) be a non-central chi-
squared distributed variable with d degrees of freedom and
non-centrality parameter \. Then Yz > 0

P [x (d+N) > 2 /d+ 2Nz + 2x] <e®

(65)
P {X_ (d+A\) < —2 (d+2A)x} <e "

Hence, for x > 0, we have

P [X _ (d + )\) Z J)] S e—%(r+d+2>\—\/d+72)\\/m). (66)

and for < (d + X), we have

1 (da—=2)?

P[XSJE]SB 17 dfan

(67)

Observe that, in (66), the exponent is always negative for
x > 0 and finite A due to AM-GM inequality. When A = 0,
we can get a better bound for the lower tail in (67) by using
[23, Lemma 25].

Lemma IV.3 ([23]). Let x = x2(d) be a chi-squared dis-
tributed variable with d degrees of freedom. Then Yx > 1

P {x < d] < e i) (68)
x
Therefore, from (55), (63), (64) and (66), we have
po < Z E {e—n’fn(Ul)l[Ul > 61]} +
t,S, K4
(69)

At



where f,, is given by

Wi,
fala) =z +14 T (1 +2)
n,t
2V, 2Vi,
— 14 L (1 4a)y 20+ 1+ L (1+x). (70)
1_Vn,t 1- n,t

Next, we have the following claim.

Claim 4. For 0 < Vs < 1 and x > 0, fo(x) is a
monotonically increasing function of .

Proof. See appendix B. [

From this claim, we get

s Y e s,
t,5,K,

(71)

where p3 = P [F$].
Now, if, for each ¢, d; is chosen such that f,(d1) >
Kh(K—K1+t)

7KK+t , then the first term in (102) goes to 0 as n — oo.

Therefore, for t = 0K, setting ¢y and gy as in (28) and (29)
respectively, and choosing d; such that

8, > ot (72)

with 7 given by (30), will ensure that the first term in (71)
goes to 0 as n — o0.
Note that

p3 = P[E3]

:p[ U

t,S,K1

(73)
{uLtWS_1<61(1_ nt)}:|~ (74)

Conditional on H (K]>

‘ Pj'l Z Hz'ci

i€S;
where X2(2n’) is a chi-squared distributed random variable
with 2n’ degrees of freedom (here the superscript S; denotes
the fact that this random variable depends on the codewords
corresponding to S5). For 1 > J5 > 0, consider the event

Xa2 (2n") .
1= sk, | 2o 1— 02 . Using (68)

bound p3 as

K /
< —n/(—1In(1—-682)—982) 75
—Z(KKlH)e +pi (5)

t

2
1, 2 85 ’
~ 5P > HiPx53 (2n)

i€S3

, wWe can

P'Y s (L= 6) )
(1 + P ies\s; |Hi|2)

<1+601- Vn,t)}] . (76)
Again, it is enough to choose Jo such that
9o > 65 )

with 05 given by (31), to make sure that the first term in (75)
goes to 0 as n — oo.

Note that the union bound over S is the minimum over
S, and this minimizing S should be contiguous amongst the
indices arranged according the decreasing order of fading
powers. Further, S5 is chosen to be corresponding to the top
t fading powers in S. Hence, we get

=e[U P (= 6)
0<7<K1 t 1+PlZJ+t+K Ky |H(i)‘

=j+t+1
1 + 51( n t)
— 2 1. 78
o ‘/n,t ( )
We make the following claim
Claim 5.
lim su <1
mown<1] U
0e(s,1]1NQ
{ inf ( (1 — 62)Pt/ota(§7§ + 1/9) )
celo,v(1-\ 1+ P/ ,a(§ +v0,6+1—v(l —0))
1 1—
< + 01( Vo) _ 1}] (79)
Vo
where a(a,b) is given by (32).
Proof. We have |Hi|?, ...,|Hg|*> with CDF F(z) = (1 —

e ™)1z >= 0]. Let Fx(z) = & S8 1[|H;]> < 2] be the
empirical CDF (ECDF). Then standard Chernoff bound gives,
for 0 <r <1,

P [|Fie(x) -

where c is some constant.
From [45], we have the following representation. Let 0 <
v < 1. Then

F(z)| > rF(z)| < 2 KeF@r  (30)

| H ()
Fr(F7'(1-7))—(1-
F_l(].—’y)— K( ( — P)/)) ( A/)
fEH 1 =9))
where f is the pdf corresponding to F, and with probability 1,
we have Ri = O(n=3/*log(n)) as n — co.

Let 7 > 0. Then using (80) and (81), we have

+ Ri (81)

B 1
[ H ey |? = F71H (1 =) SO(nlgf) (82)

with probability atleast 1 — e=©("),

Hence, for 0 < ¢ < ¢ < 1, we have, with probability
| — =00,

[BK]

1
% 2 Hol =

i=[aK]

K
l;ZwiFl[bgwilzga} +o(1) (83)
i=1



where a 1 —¢) and b = F71(1 — (). Now, by
law of large numbers (and Bernstein’s inequality [46]), with
overwhelming probability (exponentially close to 1), we have

K a
%Z |H;|’1[b < |H;|* < a] = / zdF (z) + o(1) (84)
i=1 b

and [;' zdF(z
Define the events
[(€+v8)K]

{( P Y ittercip HeplP(A = 6)
Jnoe =

[(§+1-v(1-0))K]
1+ P Zz [(+vO) K +1 |H(i)‘2

< 1+61(1 = Vajovy) 1}

Vn,]’@uK]
( (1 = d2) Plyr(§, € + v0)

v)dy = a(§, Q).

)

= JF

(85)

In,@,.f =

—

)
)

1+ P a(6+v0,E+1—v(l—0))
1+51(1—V TovKT) _1}
Vn,WUK]
(1 = d2) Plyr(§, € + v0)
1+ P a(6+v0,E+1—v(l—0))
1+51(1—V3) _1}

Vo
|H(i)|2 —a(€E+vh) < 0(1)‘}

(86)

’ VAN

\ /\

87)

G +§>KW

i=[EK]+1
fer1 u(l 0)K1

{‘ |Hi)|* -

1
K

Enﬂ,f = { ‘

i= r(£+ua)m+1

ateruteri-—va-o<an|} @

Ev=1| () [\ Ense (89)
9cA, €€Bx,o

where A, = %,1} N {Kil (i€ [Kl]} and Bggy =

[0,v(1 —0)]N{% :i € [K]}. Note that, from (83) and (84),

P |E} ¢ ¢| is exponentially small in n.
Then we have

pa=P| ) U Jnoc

€A, E€EBK .o
= P{ U U Jueen En,ef}
€A, EEBK .o
+ D D PlE
0cA, £E€EBK.o
S1|: In9xz]+0(1)
0cA, E€EBK.o
<1 |: In797§:| +o(1). (90)

1] €€[0, V(l )]

12

Therefore
lim sup ps < 1[ U U 194 (91)
n—roo
9e(< 1] £€[0,v(1-0)]
This concludes the proof of claim 5.
O

The statement of the theorem follows by choosing P/, to
make sure that lim sup,,_, . p4 = 0.

Remark 4. In retrospect, our analysis is rather similar to the
one in [23]. We remind that the problem considered there can
be seen (as argued in [3]) as a version of the many-MAC
problem with random-access, cf. Section II-A for more.

O

B. CSIR

In this subsection, we focus on the CSIR scenario. We could
use projection decoding to decode a fraction of users where
decoding set is a function of CSIR. But a better bound is
obtained by directly using euclidean metric to decode, similar
to [3]. Then have the following theorem.

Theorem IV.4. Consider the channel (6) (with CSIR) with
K = un where u < 1. Fix the spectral efficiency S and
target probability of error (per-user) e. Let M = 25/
denote the size of the codebooks and P,y = KP be the
total power. Fix v € (1 — ¢,1]. Let € — (1 =)
Then if € > Etgrp = Sup <p<1 mfo<p<t %(Gp), there
exists a sequence of (n, M, e,,E, K = un) codes such that
limsup,,_, . €n < € Where, for ;l <6<1,

Ptot,u(ea p)
h(0)

(14 p) (e

a(v(l—0),v) — (e#u(@wlm\l) - 1) a(r,1)(1+p)
92)
93)

+0In M) _ 1)

ala,b) = aln(a) — bln(b) + b — a.

Hence £ < Efgrp.
The proof idea is a combination of techniques similar to [3]
and theorem V.1

Proof. Let each user generate a Gaussian codebook of size M
and power P’ < P independently such that KP' = P/, <
Pioi. Let W denote the random (in [M]) message of user
j. So, if C; = {c! : i € [M]} is the codebook of user j,

2
he/she transmits X; = ¢f;, 1 {Hc’wj H < nP}. For simplicity

let (c1,c¢a,...,cK) be the sent codewords. Fix v € (1 — ¢, 1].
Let K7 = vK be the number of users that are decoded. Fix
a decoding set D C [K], possibly depending on H[g such
that [D| = K1, a.s. Since the receives knows Hjx), we can
use the euclidean distance used in [3] as the decoding metric.
Formally, the decoder output gp(Y) € Hzl(zl C; is given by



2
Y — Z HiCi
ieD
The probability of error is given by
| K
P.= 3P (W # W]
j=1
where W; = (g(Y)); is the decoded message of user j.

Similar to the no-CSI case, we perform a change of measure
to X; = c{,v by adding a total variation distance bounded by

(¢é;)iep = arg  min
(ci€Ci)iep

(94)

K]P’[XZ(Q”) > £ | —0asn— oo
Let ¢ = ¢ — (1 — v). Now we have

Po =

1« .
E ?Zl{Wj#Wj}

Jj=1

P

K- K,
K

1 N
e >y £ W)

+E | —
jeED

IN

1 o
(1—v)+é +vP ?Zl{Wj#Wj}ze’
jeD

=€e+VUp ©5)

[UtVKe’K {E]ED 1{W # W; } = tH

From now on, we just write [ J, to denote Ut o 2 for

t”KE,K, and ) ¢ for Z%C‘[; Let cig) = {c; : i € [S]} and
H[K] = {Hi = [K]}

Let F, = {zjeD W, £ W) = t}. Let p € [0,1]. We
bound P [F}] using Gallager’s rho trick similar to [3] as

where p; =

P [Ft|Z7 C[K]aH[K]]

§IP’[HSCD:|S:t,ﬂ{cQECi:iGS,cg#Ci}:

2
i€S ieD\S
H ZH C; Z CK], [ ]:|
€D
2
s ci€C;HieS ies i€s
C;?ﬁci
2
’ZD } Z, C[K];H[K]}
< ZMPHPH Zp —i—ZHCZ ZHC <
€S €S
2 P
’ Zp|| 1% ks H[K]:| (96)
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where Zp = 7 + Zie[K]\D H;c; and c’[S] in the last display
denotes a generic set of unsent codewords corresponding to
codebooks of users in set .S.

We use the following simple lemma which is a trivial
extension of a similar result used in [3] to compute the above
probability.

Lemma IV.5. Let Z ~ CN(0,1,,) and w € C". Let D =
diag(dy,....,d,) € C"*™ be a diagonal matrix. If v >
SUPje[n] —ﬁ, then

luy|?

1 VY Xjem Tiaia, 2

e (L +14,P)

E {e—quzw\F} -

Proof. Omitted.

So, using the above lemma, we have, for A\; > 0,

ol

1Zo] ]zm, » ]} }
= E{C/S} [P[exp (—)\1 Zp + ZHZ'Q — Zch;
€S €8
P
exp (A1 |Zo| )’ZCK]’ |

—plZp+5ies Hicil)?
1+A1 P Yies [H; |12

<

ZD—FZHCL ZHC

i€S €S

).

eprillZol?
7

< mn
T (L MNP Y s | H?)

where [, denotes taking expectation with respect to {c:i¢e

S} alone, and 1+ A\ Py, o |H;|* > 0.
_ 281 . .

Let Ao = TS, AT .Note that A\ is a'functlon of
Hg. Now using lemma IV.5 again to take expectation over cg,
we get

ePA1\|ZDH2 —pM|Zp+5ies Hicq?
cs o 1+ P Ties [H; |2
/ 12
(1 + AP Y g | Hil )
1 1

< n n
T (L MP e [H)T (L4 X P s [Hil?)

_ Ao 2
e(ml TP Sies 1H; 12 ) Izoll 98)

with 1+ X\oP' Y, o |H;|* > 0. Finally, taking expectation
over Z, we get

P [Ft|H[K]] < ZMPte—”EO(A1§P7H[K],S) (99)

S



where

Eo(A1; p, Hig), S)
= p]n(l + AlP’Z |H1|2) + 111(1 + /\QP,Z |HL|2> +
i€S i€S
1n<1—-<L+P’§:|£hF>-
i€eD¢
Ao
Al — 100
(p ' 1+)‘2P/ZieSHi|2)> (1o
with
1> 1+P’Z\H'\2 (pAl— L2 >
ieDe L+ 2P ) ies [Hil?

It is easy to see that the optimum value of A; that maximizes
Ej is given by

1
(14 P Y icpe [Hil?) (1 +p)

and hence the maximum value of the exponent

Eo(p, Hix), S) = Eo(Ms p, Hixe), S)

*
1=

A

(101)

is given by
Eo(p, H[K]7 S)

=pln <1+ 1+

Therefore, we have

P’ ZieS |H2|2
(1 + P ZieDC ‘HiP)

) |

] . (102)

p <E [Z Z ePtIn M ,—nEo(p,Hk),S)

t S

Since we want an upper bound for (102), we would like to
take minimum over S C D : |S| = t. For a given choice of D,
this corresponds to minimizing P’ ", |H;|* which mean we
take .S to contain indices in D which correspond to ¢ smallest
fading coefficients (within D). Then, the best such bound is

P'Yies | Hil?
(H‘P’ > iepe |Hi‘2) '
Clearly this corresponds to choosing D to contain indices

corresponding to top [; fading coefficients.
Therefore, we get

obtained by choosing D that maximizes

El[z )|

t
LetAnf[ 11 n .Forf e A, and t =
0K, using [43, Ex. 5.8] again, we have

()=

P’ ZfilKl—t+1 |H(i)‘2
o) (14P SE o) 4y 1H(5)12)

Kl —npln <1+
( . ept In M6

i

i€ [Kl]}

v

Ky
t

K

- th(%l) =0 L nuvh(0)
2mt(K1 — )" <ﬁ> o

(103)
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The choice of p was arbitrary, and hence,
—n sup

( pe[0,1]<

P1 <E{min{1,
/Zz v(1-0)K+1 ‘H( |2

pln<1+
1+p) 0+ P Y [Hl?)

— uvh(8) — pfln M)> H
—n inf sup

S]E[min{lalAMeXp( 0€An pefo,1]
n p€E

vK
(pln(1—|— Py ek Hal
(1) + P S ey [Hw )

~ uh(6) - o) ) |

where we have used min since p; < 1. Now, using similar
arguments as in the proof of claim 5 and taking limits, we can

Z exp

0€A,

)

)

(104)

see that
P H. 2
inf sup (pln(1+ ZZ dess) K+1| | )
0€An pefo,1] p)(1+ P Zz v H@ %)

— pvh(0) — ,ull@lnM) =

Pl aw(l—-0),v)
inf sup < ln(l—l— tot :
o e\ (1+ p)(1+ Ploya(v. 1))
— pvh(8) — pvb 1nM> +o(1) (105)
with exponentially high probability. Hence,
P <E[An exp(on —n inf sup
L B[4l exp(ofm) —n jnf s
Pl ,a(v(l—6),v) )
In( 1 tot ’ — uvh(0
(om(1+ TR o)
—uu@lnM))] +o0(1)
<E||A,|exp (0 —n inf sup
nlex (o) —n ot sup
Pl ,a(v(l—-0),v) >
In1 tot ) — pvh(6
(o1 TR oy et
- uu@lnM))] +o(1) (106)
where A = [%, 1].

Therefore, choosing Pf,; > supge 4 inf ,c(0,1) Prot (0, p) Will
ensure that lim sup,, ,..p1 = 0.
O

Remark 5. Note that the analysis of the CSIR case in this
paper and the AWGN case in [3] are similar, in particular
both analyze a (suboptimal for PUPE) maximum likelihood
decoder. However, there are two new subtleties, compared



to [3]. First, [3] applies Gallager’s p-trick twice, where the
second application (with parameter py in the notation of [3])
is applied just before taking the expectation over Z in (99). In
the CSIR case, the summands of ¢ actually depend on the
subset S through the fading gains, which makes the p-trick
less appealing, and that is why we omitted it here. Secondly,
because the summands depend on S, we upper bound each
by taking the maximum over S, and this requires analysis of
order statistics which is, of course, not present in the AWGN
case.

C. Achievability bound via scalar AMP

In this section, we will given an achievability bound on
Ey /Ny for the no-CSI case by the asymptotic analysis of the
scalar AMP algorithm [23, 25, 26, 40]. Here, we recall the
compressed sensing view of our model (11) where U is block
sparse. As discussed in section II-A, a better algorithm to use
in this case would be the vector or block version of AMP,
whose analysis is also well studied, e.g. [40]. However, as
we discussed in Section II-A evaluation of performance of
this block-AMP requires computing M = 2!%° dimensional
integrals, and thus does not result in computable bounds.
Instead, here we take a different approach by analyzing the
scalar AMP algorithm, whose asymptotic analysis in [26] in
fact only requires that the empirical distribution of entries of
U be convergent — a fact emphasized in [23]. Let us restate
the signal model we have:

Ai; ZCN(0, Pior/p),i € [n], ] € [KM],

(107)
where U € CEM is block sparse with K = pn blocks each of
length M, with a single non-zero entry U; in each block with
U; ~ CN(0,1) (Rayleigh fading), and Z ~ CN (0, I,,). The
support of U, denoted by S € {0, 1} is sampled uniformly
from all such block sparse supports (there are M X of them).
The goal is to get an estimate S = S(Y, A) of S where our
figure of merit is the following:

ép[s

which is also known as section error rate (SER) in the SPARC
literature [37].

The AMP-based algorithm operates as follows. First we
estimate U iteratively, then after estimating U we threshold
its values to obtain an estimator for S.

To describe scalar AMP we first introduce the following
scalar problem. For each o > 0 define u(") = Px v to be the
joint distribution of variables X and V:

Y = AU+ Z,

N 1

PUPE(S) = — KM

o # ST ar| > (108)

V=X+oW, X1W~CN(©01) (109
and
1
X ~BG(1,1/M) = CN(0.1) wp. 57 . (110
0 w.p.1— 47

We also define

n(z,0%) £ BE[X|V = 2], mmse(c?) 2 E[(X — E[X|V])?].
(111)
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Next, start with U(®) =0 € CKM, RO) =Y, 52 = me +
. Then for ¢t = 1,2,--- we have the following iterations
U® =y (A*R(t‘l) + U, a—t{l) (112)
R® =y — AU® 4
| KM
MMR(t_l)KM Z 7 ((A*R(t—l) n U(t—l))i 7315271>
i=1
(113)
1 2
52 = — HR“) (114)
n

1 Bn(aj-‘riy,oj) B i@n(z-‘riy,az))
2 ox oy

and i = /—1 is the imaginary unit (see [47, 48] for a more
general derivation of complex AMP). The estimate of U after
t steps is given by (see [23] for more details)

0® — A*R® L y®

where 7/ (z + iy, o?) denotes

(115)
To convert U® into S®) we perform a simple thresholding:
SOy = {i e [KM]: |UD? > 6} (116)

Theorem IV.6 (Scalar AMP achievability). Fix any p > 0,
Pyt > 0 and M > 1. Then for every £ > ullc?éth there exist
a sequence of (n, M, e,,E, K = un) codes (noCSI) such that
AMP decoder (116) (with a carefully chosen 0 = 0(E, M, 1)
and sufficiently large t) achieves

2
00

limsupe, < 7*(cs,, M),

n— oo

where (1, M) =1 —
found from

= Ugo(M»Ptot,M)

1

147

(M—1)(2+1))"" and o2 is

g

_ K
Ptot

Proof. Denote the Hamming distance

= sup {7’20 o Jr,qunmse(T)} (117)

. 1 KM X
dy (S, S) = WZI[& + 5] (118)
1=1

Note that according to the definition (108) we have a bound

PUPE(S® () < ME [dH(s, S<f>(9)))] (119)

Indeed, this is a simple consequence of upper bounding each
probability in (108) by the union bound.

The key result of [26] shows the following. Let the empirical
joint distribution of entries in (U, 7)) be denoted by

| KM

~ A

Foom = ear Z 5(Ui7Uf”) ’
i=1

where J,, is the Dirac measure at . Then as n — oo this (ran-
dom) distribution on C? converges weakly to a deterministic
limit pxy almost surely. More precisely, from [26, Lemma
1(b)] and proof of [23, Theorem 5] for any bounded Lipschitz
continuous function f : C2 — R we have

T [ Fdiygo = [ Fanas

(120)



where (7) is the joint distribution of (X,V = X + ;W)
defined in (109), and o; can further be determined from the
so called state evolution sequence: Set o = -+ 4 and then

__H
Ptot

where mmse is defined in (111).

Note that the assumptions on U A and Z in [26, Lemma
1(b)] hold in our case. In particular, since the support of U
is sampled uniformly from all block sparse supports of size
K and the entries in the support are iid CA/(0,1) random
variables, we have that the empirical distribution of entries of
U converge weakly almost surely to the distribution Px of
X defined in (110). Further the moment conditions in [26,
Theorem 2] are also satisfied. We note here that although [23,
26] consider only real valued signals, the results there also hold
for the complex case (see [49, Theorem III.15], [50, Chapter
7D.

We next consider the support recovery in the scalar model
(109). Let Sy = 1[X # 0] denote the indicator of the event
when X is non-zero. Let Sy = So(#) = 1[|V|? > 6] denote an
estimator of Sy using the observation V = X + oW in (109).
Let

2

o; + M mmse(o? ;)

(121)

¥(0%,0,M) =P [ # |

denote the probability of error in the scalar model (109) with
o dependence made explicit as an argument of ). The from
the convergence of fi;; ;) we conclude as in [23] that for any

number ¢ of steps of the AMP algorithm S(*)(6) achieves

(122)

lim PUPE(S")(0)) < My(a2,6, M).

n—oo

(123)

Since this holds for any ¢ and any € we can optimize both by
taking ¢ — oo and infy~ . From the proof of [23, Theorem 6]
it follows that lim;_, oo 0,52 = Jgo exists and o, satisfies (117).

The proof is completed by the application of the following
Claim, which allows us to compute infimum over ¢ in closed

form. O
Claim 6.
Minfy(r,0, M) =1 1 1 (124)
11 T, 0, = - T
0 1+7((M-1)(2+1))

Proof. Let us define 7 = o2. We have

¥(r,6,M) =P [So # S

- %JP’ [S’Ozmsozq +
(1—]\14)113{5*0 — 1|8, :0}

Now conditioned on Sy = 1, [V|?> ~ (1 + 7)Exp(1) and
conditioned on Sy = 0, |V|? ~ 7Exp(1) where Exp(1) is
the Exponential distribution with density function p(x) =

e ®1[z > 0]. Hence
1 )
(1 —e 1+7) + (

1 1
M

(.6, M) = -

) e 7 (125)
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The claim follows by optimizing (125) over . The optimum
occurs at

1+7
T

o* :T(1+T)1n< (M—l))

Substituting 6* in (125) proves the claim.

D. Converse
In this section we derive a converse for £*, based on the
Fano inequality and the results from [27].

Theorem IV.7. Let M be the codebook size. Given € and 1, let
S = plog M. Then assuming that the distribution of |H|? has
a density with E [|H?| =1 and E [|H|*] < oo, £*(M, u,€)
satisfies the following two bounds

1y
E* (M, p,e) > inf% (126)
where infimum is taken over all P,,; > 0 that satisfies
0S — eulog (25/“ — 1) — pha(e) <
log (1 + Pt (1 —6,1)), V8 € [0,1]

where a(a,b) = f; F‘;{lp(l —y)dy, and Fip is the
CDF of squared absolute value of the fading coefficients.

(127)

2)
* . Ptot
EX(M,p,e) > me (128)

where infimum is taken over all P.,; > 0 that satisfies
Q (Q‘l (

where Q is the complementary CDF function of the
standard normal distribution.

1
e>1-E

Proof. First, we use the Fano inequality.

Let W = (W7, ..., Wk), where W; %iUm'f[M] denote the
sent messages of K users. Let X = (X1, ..., Xi) where X; €
C™ be the corresponding codewords, Y € C" be the received
vector. Let W = (Wl, WK) be the decoded messages. Then
W — X — Y — W forms a Markov chain. Then € = P, =
* Yiex P [Wz # Wz}

Suppose a genie G reveal a set S; C [K] for transmitted
messages Wg, = {W; : i € S;} and the corresponding fading
coefficients Hg, to the decoder. So, a converse bound in the
Genie case is a converse bound for our problem (when there
is no Genie). Further, the equivalent channel at the receiver is

Yo = Z HX,+Z (130)
1€S>

where Sy = [K] \ S1, and the decoder outputs a [K] sized
tuple. So, PUPE with Genie is given by

Pe = ;{%:qp[wﬁémc’].

(131)



Now, it can be seen that the optimal decoder must have
the codewords revealed by the Genie in the corresponding
locations in the output tuple, i.e., if WE denotes the output
tuple (in the Genie case), for ¢ € S7, we must have that W, =
WG Otherwise, PUPE can be strictly decreased by including
these Genie revealed codewords.

So, letting E; = 1[W; # W] and ¢ = E[E;], we have
that € = 0 for i € S;. For i € S, a Fano type argument
gives

I(Wis W) > log M — €€ log(M — 1) — ha('). (132)

So, using the fact that

> I(Ws W) < I(Ws,; W)
1€S>
<nE [log(l +P Z |Hz|2)‘|
1€Sy
we have

|Sallog M — >~ €€ log(M = > ha(e

i€S2 1€S
<nE llog(l +PY |Hi|2)] . (133)

1€Sy
By concavity of ho, we have
1
= > ha(ef) Z ha(e¥) < ho(PS).  (134)
i€S2 16 (K]
Hence we get
S
|;| log M — P%log(M — 1) — hy(PS)
n 2
< E log(1+ P Z |H;| )] . (135)
1€ES>
Next, notice that P¢ < P, < I_M and hence PS log(M —

)+h2(PeG) <P log(M 1)+ ha(P,). Further the inequality
above hols for all Sy C [K] (which can depend of Hjg as
well). Hence, letting |S2| = 0K

)] a3

Olog M — P.log(M — 1) —
log <1 +

Now, taking limit as K — oo and using results on strong

laws of order statistics [51, Theorem 2.1], we get that
. Ptot 2

1 1 H,

Og( +s |§\ =0k K ;' |

1€Sa

—log (14 Pra(1—16,1)). 137)

For any a,b € [0,1] with @ < b, let Sg = Sk(a,b) =
LK | Hp|? Note that S — a(a,b) as K — oo. Then

ha(Pe)

Ptot Z|H|2

1
< -E inf 73
I S2:|Sa|=0K =

B (5] < ( S |2)
-1+ ULK]_ <E[H*]. (138)
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Hence the family of random variables {Sk
uniformly integrable. Further

0 <log(l+ PiptSk) < PiotSk-

. K € N} is

Hence the family {log(1+ Pt Sk ) : K > 1} is also uniformly
integrable. Then from theorem [52, Theorem 9.1.6],

E [log(1 4+ PiotSk)] — log(1 + Piorcx(a,d)).

Using this in (136) with a = 1—6 and b = 1, we obtain (127).
Next we use the result from [27] to get another bound.
Using the fact that S/u bits are needed to be transmitted

under a per-user error of €, we can get a converse on the

minimum FEj /Ny required by deriving the corresponding re-
sults for a single user quasi-static fading MAC. In [27], the
authors gave the following non-asymptotic converse bound on
the minimum energy required to send % bits for an AWGN

channel. Consider the single user AWGN channel Y = X 47,

Y, X € R®, Z; " N(0,1). Let M*(E, €) denote the largest

M such that there exists a (E, M, ¢) code for this channel:

codewords (cy, ..., car) with ||¢;[|> < E and a decoder such

that probability of error is smaller than e. The following is a

converse bound from [27].

Lemma IV.8 ([27]). Any (E, M, ¢) code satisfies
1
—2Q(VIE+Q 7 (1-9)
(139)

Translating to our notations, for the channel Y = HX + 7,
conditioned on H, if ¢(H) denotes the probability of error for
each realization of H, then we have

<1 [ S tot 2Fio1 |H2 +Q ' (1— e(H))> . (140)

Further E [¢(H)] = e. Therefore we have

) . /%mz)] 4
o

Hence we have the required converse bound.

1
= >
M_Q

e>1-FE Q(Q‘1<J\1/[

Remark 6. We also get the following converse from [20,

. . .. _ P,
theorem 7] by taking the appropriate limits P = T and
n — oo.

¢t ProclHI?
logM < —log [ E | Q \/ﬁ (142)
I
where c satisfies
¢ — ProelH|?
E £ =1-—e (143)

2P0t |H|?
\/ o

But this is strictly weaker than (141). This is because,
using lemma IV.8, we perform hypothesis testing (in the meta-
converse) for each realization of H but in the bound used in
[20], hypothesis testing is performed over the joint distribution
(including the distribution of H). This is to say that if H is



presumed to be constant (and known), then in (142) and (143)
we can remove the expectation over H and this gives precisely
the same bound as (140).

O

Bounds tighter than (127) can be obtained if further assump-
tions are made on the codebook. For instance, if we assume
that each codebook consists of iid entries of the form % where
C is sampled from a distribution with zero mean and finite
variance, then using ideas similar to [35, Theorem 3] we have
the following converse bound.

Theorem IV.9. Let M be the codebook size, and let un users
(n < 1) generate their codebooks independently with each
code symbol iid of the form % where C' is of zero mean and
variance Pyiot. Then in order for the iid codebook to achieve
PUPE ¢ with high probability, the energy-per-bit £ should
satisfy

(144)

InM —eln(M — 1) — h(e)

< (MV (ul

where infimum is taken over all P.,; > 0 that satisfies
1
BEVE Ptot DR Ptot

where V is given by [35]

(3 o

V(r,y) =rin(l+v—F(r,y) +In(1+ry = F(r,7))

M

~ F(r,v) (146)

T 2

F(r,v) = i <\/7 (Vr+ 1)2+1— \/7 (\/¥—1)2+1)
(147)

Proof sketch. The proof is almost the same as in [35, Theorem
3] (see [35, Remark 3] as well). We will highlight the major
differences here. First, our communication system can be
modeled as a support recovery problem as follows. Let A be
the n x K M matrix consisting of n x M blocks of codewords
of users. Let H be the KM x KM block diagonal matrix
with block 7 being a diagonal M x M matrix with all diagonal
entries being equal to H;. Finally let W € {0, 1}%M with K
blocks of size M each and within each M sized block, there
is exactly one 1. So the position of 1 in block ¢ of W denotes
the message or codeword corresponding to the user ¢ which is
the corresponding column in block i of matrix A. Hence our

channel can be represented as
Y=AHW +Z (148)

with the goal of recovering W.
Next the crucial step is bound RX (e, M) in (132) as

R¥ (e, M) < I(W;Y|A)
= I(HW;Y|A) — I(HW;Y|A, W) (149)
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where the equality in the above display follows from [35,
equation (78)]. The first term in above display is bounded
as

I(HW;Y|A = Ay) = I(HW; A\ HW + Z)

< supI(U; AU +2)  (150)
U

where A; is a realization of A and supremum is over random

vectors U € CEM guch that E[U] = 0 and E[UU*] =
2
E[(HW)HW)*] = E“f{;' i ate scar. Now similar to [35],

the supremum is achieved when

E [|H:|?]
M

U~CN (O, IKMxKM) .

Hence
I(HW;Y|A = A;) <logdet <In><n + 1\14AA*> (151)

Next, for any realization A; and W; of A and W respec-
tively, we have
I(HW;Y|A= A, W =W))
I(HW; A\ HW, + 2)

I(H; (Ay)w, H + 2)
> I(H; H + (A1)}, Z)

(152)

where H = [H, ..., Hk]T and (A;)w, is the nx K submatrix
of A; formed by columns corresponding to the support of
W1 and t denotes the Moore-Penrose inverse (pseudoinverse).
The last equality in the above follows from the data processing
inequality. Now, by standard mutual information of Gaussians,
we have

I(H; H + (Al)rT/VIZ)
=logdet (Ixxx + ((A1)w,)" (A1)w,) . (153)
Hence

I(HW;Y|A,W) =E[logdet (Ixxx + Al Aw)] (154)

Hereafter, the we can proceed similarly to the proof of [35,
Theorem 3] using results from random-matrix theory [53, 54]
to finish the proof. O

We remark here that for a general fading distribution, the
term I(H; H + (Al)LV1 Z) can be lower bounded similar to
the proof of [35, Theorem 3] using EPI (and its generalization
[55]) to get

I(H; H + (A)w,)" 2)

> K log (1+ Nir (det ((AD)w,)" (4)w:)) * ) (159)

where Ny = L exp(h(H)) is the entropy power of fading
distribution. Hence

I(HW;Y|A, W)

> KE [1og (1 + Ny (det (A;VAW))%)} . (156)

Again, we can use results from random-matrix theory [54]
and proceed similarly to the proof of [35, Theorem 3] to get



a converse bound with the second term in (145) replaced by

Vip (4. Por) and
r—1 1
) )

We make a few observations regarding the preceding the-
orem. First and foremost, this hold only for the case of
no-CSI because the term analogous to I[(HW;Y|A, W) in
the case of CSIR is I(HW;Y|A, H,W) which is zero.
Next, it assumes that the codebooks have iid entries with
variance scaling ©(1/n). This point is crucial to lower
bounding I(HW;Y|A,W), and this is where a significant
improvement comes when compared to (127). Indeed, EPI and
results from random matrix theory give O(n) lower bound for
I(HW;Y|A,W). This once again brings to focus the the
difference between classical regime and the scaling regime,
where in the former, this term is negligible. Further this leaves
open the question of whether we could improve performance
in the high-density of users case by using non-iid codebooks.

Now, as to what types of codebooks give a ©(n) lower
bound for I(HW;Y|A, W), a partial answer can be given by
carefully analyzing the full proof of the theorem. In particular,
if S = suppW i.e, the support of W, then as seen from [35,
equation (85)], any non zero lower bound on det(Aj‘SAs)l/ K
in the limit is enough. So if the matrix A% As possesses strong
diagonal dominance then it is possible to have such a non zero
lower bound on det(AgAg)l/ K for every S [56]. These could
be ensured by having codewords that are overwhelmingly close
to orthogonal.

r
r—1

Vig(r,y) =1In (1 + 97 < (157)

V. NUMERICAL EVALUATION AND DISCUSSION

In this section, we provide the results of numerical evalu-
ation of the bounds in the paper. We focus on the trade-off
of user density p with the minimum energy-per-bit £* for a
given message size k and target probability of error P,.

For k£ = 100 bits, we evaluate the trade-off from the bounds
in this paper for P, = 0.1 and P, = 0.001 in figures 3 and
2 respectively. For TDMA, we split the frame of length n
equally among K users, and compute the smallest P;,; the
ensures the existence of a single user quasi-static AWGN code
of rate S, blocklength l% and probability of error € using the
bound from [20]. The simulations of the single user bound is
performed using codes from [57]. TIN is computed using a
method similar to theorem IV.4. In particular, the codeword
of user i is decoded as ¢; = argmingcc, |Y — Hyc;||* where
we assume that the decoder has the knowledge of CSI. The
analysis proceeds in a similar way as theorem IV.4.

Achievability bounds. It can be seen that for small p the
scalar-AMP bound of Theorem IV.6 is better than the projec-
tion decoder bounds of Theorems IV.4 and IV.1. The latter
bounds have another artifact. For example, the no-CSI bound
on £* from Theorem IV.1 increases sharply as p | 0, in fact
one can show that the said bound behaves as £ = Q(/—In p).

Engineering insights. From these figures, we clearly observe
the perfect MUI cancellation effect mentioned in the introduc-
tion and previously observed for the non-fading model [3, 6].
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Namely, as p increases from 0, the £* is almost a constant,
E*(p e, k) = En.(e,k) for 0 < p < psu.. As p increases
beyond pus.,. the tradeoff undergoes a “phase transition” and
the energy-per-bit £* exhibits a more familiar increase with
w. Further, standard schemes for multiple-access like TDMA
and TIN do not have this behavior. Moreover, although these
suboptimal schemes have an optimal trade-off at ;4 — O they
show a significant suboptimality at higher ;. We note again
that this perfect MUI cancellation which was observed in
standard GMAC [3, 6] is also present in the more practically
relevant quasi-static fading model. So, we suspect that this
effect is a general characteristic of the many-user MAC.

Suboptimality of orthogonalization. The fact that orthogo-
nalization is not optimal is one of the key practical implica-
tions of our work. It was observed before in the GMAC and
here we again witness it in the more relevant QS-MAC. How
to understand this suboptimality? First, in the fading case we
have already seen this effect even in the classical regime (but
under PUPE) — see (21). To give another intuition we consider
a K = pn user binary adder MAC

(158)

where X; € {0, 1} and addition is over Z. Now, using TDMA
on this channel, each user can send at most n/K = 1/ bits.
Hence the message size is bounded by

1
logM < —. (159)

I

Next, let us consider TIN. Assume X; ~Ber(1/2). For user
1, we can treat Y ", X; as noise. By central limit theorem,

this noise can be approximated as /5 unZ where Z~N(0,1).
Thus we have a binary input AWGN (BIAWGN) channel

/1
Y=X;+ ZunZ.

Therefore, the message size is bounded as

4
1+ —

log M < nCgrawan (
un
)
%

§n10g<1+
2 un

where Cpiawgn is the capacity of the BIAWGN channel.
Note that in both the above schemes the achievable message
size is a constant as n — o0.

On the other hand, the true sum-capacity of the K-user
adder MAC is given by

(160)

>2

win?2

(161)

Csum =

max
1,0, XK

H(X) 4+ Xg).

As shown in [58] this maximum as achieved at X; i
Ber(1/2). Since the the entropy of binomial distributions [59]

can be computed easily, we obtain

1
Coum = §logK +o(log K).



In particular, for our many-user MAC setting we obtain from
the Fano inequality (and assuming PUPE is small)
1
log M < 08Hm)
Surprisingly, there exist explicit codes that achieve this limit
and with a very low-complexity (each message bit is sent
separately),— a construction rediscovered several times [60-
62]. Hence the optimal achievable message size is
logn

lo R ——

(162)

as n — oo. And again, we see that TDMA and TIN are
severely suboptimal for the many-user adder MAC as well.
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A. The “curious behavior” in phase transition

As we emphasized in the Introduction, the most exciting
conclusion of our work is the existence of the almost vertical
part on the u vs % plots of Fig. 3 and 2. In this section we
want to explain how this effect arises, why it can be called the
“almost perfect MUI cancellation” and how it relates (but is
not equivalent) to well-known phase transitions in compressed
sensing.

To make things easier to evaluate, however, we depart from
the model in the previous sections and do two relaxations.
First, we consider a non-fading AWGN. Second, we endow all
users with the same codebook. The second assumption simply
means that the decoding from now on is only considered up
to permutation of messages, see [3] for more on this. Tech-
nically, these two assumptions mean that we are considering
a model (11) with U vector that is K-sparse (as opposed to
block-sparse) and that all non-zero entries of U are equal to
1. Finally, we will consider the real-valued channel. In all, we
get the following signal model [4, Section IV]:

Y™ =AU + 72", Z" ~N(0,1,), (163)
with 4;; % N'(0,6%/n), (i,5) € [n] x [p]. Us “< Ber(K/p).
so that E[||U?||o] = K. We take the proportional scaling limit
with K = pn and p = K M. Further we let S denote the true
spectral efficiency of the system

1
=uMh| —
I h(M')

where H is the Shannon entropy and h(z) = —zInz — (1 —
x)In(1 — z) is the binary entropy, both in nats.

Interpretation of these parameters in the context of commu-
nication problem are:

H(UP)

S = (164)

e M as the number of messages that each user wants to
communicate

o 1 is the user density per (real) degree of freedom

o b2 = Lot where Py, is the total received power from all
K users at the receiver.

e S is the total number of nats per channel use communi-
cated, and is approximately equal to % In (Kéw )

n
: E, & Py ln2
Consequently, we may define energy-per-bit as N—g = et s,

Given (Y™, A), the decoder outputs an estimate U? €
{0,1}? with E [AWPHO} = K and we are interested in the
minimal achievable PUPE, or

PE (1, M)
1 .
£ limsu min — P|U; =1,U; = 0[(165)
e OrE[|0]o]=k K Z [ ]

i€lp]

To discuss performance of the optimal decoder, we need
to return to the scalar channel (109) with the following
modifications: X ~ Ber(1/M), W ~ N (0, 1). Now, for every
value of ¢ in (109) we may ask for the smallest possible error
€*(o,M) = minP [X #* X] where minimum is taken over

all estimators X = X (V) such that P [X’ =1| = 4. As
discussed in [4, Section IV.B], this minimal €*(o, M) satisfies
[4] is found from solving:

]'_ -1 € -1/ *
e () e

where Q(+) is the complementary CDF of the standard normal
distribution.

(166)
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Now the limit P} in (165) can be computed via the replica
method.? Namely, replica predictions tell us that

P, p) = € (0, M),

where 0° = el and the multiuser efficiency

n* =n"(M,b, )
is given by [4, 34, 65]

n* =ni, € arg min F(nb?) 167)
n€0,1]
where
Farls) = 1(1/s) + ——o - (168)
M B 2uM Py

where ¢(z) = x — 1 —Inx and I(0?) = I[(X; X + oW) is
the mutual information between the signal and observation in
the scalar channel (109) in nats.

In the figure 4 we have shown the plots of optimal PUPE
P, for the model (163) versus Ej,/Ny for various values
of 4 when M = 2'90 computed via replica predictions.
What is traditionally referred to as the phase transition in
compressed sensing is the step-function drop from P, ~ 1
to P, < 1. However, there is a second effect here as well.
Namely that all the curves with different x4 seem to have a
common envelope. The former has not only been observed in
compressed sensing, e.g. [23, 35, Fig.1] and [66, Fig.4] among
others, but also in a number of other inference problems:
randomly-spread CDMA [34], LDPC codes [67] and random
SAT [68]. However, the second effect appears to be a rather
different phenomenon, and in fact it is exactly the one that
corresponds to the existence of the vertical part of the curves
on Fig. 2-3.

Let us, for the moment, assume that the envelope is actually
exactly the same for all u. Fix a value of PUPE P, = 1073
(say) and consider how the intercept of the horizontal line
at P, = 1073 on Fig. 4 changes with . It is easy to see
that as long as the value of w is small enough the intercept
will not be moving (corresponding to constancy of the Ej}, /Ny
as a function of u). However, once the value of u exceeds
a value (dependent on the fixed value of P,.) the intercept
starts moving to the right together with the step-drop portion
of the curves. From this we conclude that indeed, existence
of the (almost) common envelope on Fig. 4 results in the
(almost) vertical part on Fig. 2-3. (As a side note, we also
note that since the slanted portions of the tradeoff curves on
those figures correspond to the vertical drop on the Fig. 4 and
hence the slanted portion is virtually independent of the fixed
value of P, — as predicted by (4).)

How can the curves have common envelope? Notice that in

the expression for P only n* is a function of y. Thus, we

3Note that in [63, 64] it was shown that the replica-method prediction
is correct for estimating I(U;; Y™, A) and Var[U;|Y™, A], but what we
need for computing the P is asymptotic distribution of a random variable
P[U; = 1|Y™, A]. Firs, it is known that AMP initialized at the true value U
converges to an asymptotically MMSE-optimal estimate. Second, distribution
of the AMP estimates are known to belong to a Px |y in (109) (with o iden-
tified from the replica method). Finally, any asymptotically MMSE-optimal

estimator U should satisfy U; @ E[U;|Y™, Al = P[U; = 1Y, A], and

thus P [U; = 1|Y™, A] should match the replica-method predicted one.
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2190 The solid lines correspond to n* = 7}, from (167). The
dashed lines correspond to 1’ defined in (172).

conclude that for small ;1 we must have n*(u) &~ const. But
as i — 0 we should get a n* — 1. Thus we see that common
envelopes are only possible if to the right of the step-drops on
Fig. 4 we get n* ~ 1. Is that indeed so? Fig. 5 provides an
affirmative answer.

In reality, the “vertical part” is not truly vertical and the
common envelope is not exactly common. In truth the right
portions of the curves on Fig. 4 (following the drop) are all
very slightly different, but this difference is imperciptible to
the eye (and irrelevant to an engineer). What makes them so
close is the incredible degree of sparsity - = 27100, Indeed,
as Fig. 6 demonstrates that as M — oo the value of n* to the
right of the step transition approaches 1.

To summarize, we conclude that what determines our “curi-
ous behavior” is not a sudden change in the estimation perfor-
mance (typically credited as “phase transition” in compressed
sensing), but rather a more subtle effect arising in the super-
low sparsity limit: the step-transition of the parameter n* from
a moderate value in the interior of (0,1) to a value close to
1. The fact that only the incredibly low sparsity values % are
relevant for the many-MAC problems makes this new effect
practically interesting.

Now we will provide an approximation to n* under the large
M limit. Based on [69, 70] we consider the following scaling
of M and p for fixed snr P,,; and spectral efficiency S.

_ S

-~ Mh(1/M)

This means that uInM — S as M — oo. Consider the
rescaled potential

M — o0, W

) ()

~ 1
From [70, Section 3], for every n € (0, 1] we have
lim Fa(n) = Foo(n) (170)
M — o0
where P .
- o . tot -
Foo() = min (17 Lo n) ool a7



Furthermore, for

1 1
S e (O, 5 ln(l + Ptot)) U (2 hl(l + Ptot)v OO) 5

Foo has a unique global minimizer 1}, given by

n;:{

Moreover, it can be deduced from the proofs in [70] that if
niy € argmin, Fys(n) = arg min, F(nb?) then

_1
1+ Piot?

L,

%ln(l +Ptot) < S

172
%ln(l + Pipt) > S (172)

M~ Mo
Putting everything together, we obtain

_1
1+ Piot’

v
which shows that 7}, indeed jumps from < 1 to ~ 1 in the
regime of extremely low sparsity.

In figures 5 and 6 we show both 13, and 1, and there is
an excellent agreement between the two.

Finally we will show how this phase transition in 7}, leads
to 0-1 jump in PUPE €* given in (166). Rewriting it in terms

%ln(1+PtOt) <S8

173
%ln(1+Ptot)>S ( )

lim ny, =
M—o00 "t s

of 1y
* Eb/NO o —1 6* —1 *
\/2nM1nM ™) =0 U1 + Q7 (€)
_ -1 € e
=e (M - 1) Q=)
(174)
Let E},/Ny > In2. Using the approximation
. 1 1
Q () ~ 21115 —1In 47rlng (175)

one can easily check that in this scaling

0 *Ep/Nog > 1n2
111’1’1 6* N ) 7700 b/ 0 > 1n 7
M —o0 1, U;OE()/NO <In2
which incidentally corresponds to the two cases 7];0]% s

~1.59 dB. Now we will use (173). If 2In(1 + Pypy) > S,
then clearly 1% E,/No > In2. But if § In(1+ P,o) < S then
using the inequality 7 < In(1 + z) for z > —1 we obtain

* Eb/NO _ 1 %<
> In2 1+Ptot 25

Thus
0
1

The above shown 0-1 jump in €* is same as the so-
called “All-or-Nothing” (AoN) phenomenon in sparse linear
regression [69, 70]. Logically speaking, AoN arises because
of the phase transition in n* from < 1 to 1 in the limit of
extremely low sparsity. But this is not to say that this jump in

n* is equivalent to AoN.

Ptot <1
(]. + Ptot) h’l(]. + Ptot) -

%ln(l +Ptot) > S

%ln(l+Ptot)<S ’

lim e — <7
M—o0 ,
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B. Future work

There are a lot of interesting directions for future work.
A natural extension, already undertaken for the setting of
random access [71], would be to analyze the many-user
massive MIMO fading channel with receiver having N > 1
antennas under different fading scenarios (block-fading and
quasi-static fading would probably be most relevant). Further,
different asymptotic scalings of N and n may lead to radically
different tradeoffs. Another interesting direction is to see how
much improvements would the (so far incomputable) vector-
AMP (and replica-method) yield over the bounds presented
in this work. Note that for practical systems the asymptotic
limit n — oo is less relevant than finite-n bounds. However,
AMP based bounds are inherently asymptotic. In this regard,
it would be interesting to derive finite-blocklength versions
of achievability bounds. Theorems IV.1 and IV.4 should be
possible to “de-asymptotize”. Similarly, recent bounds based
on Gaussian processes [4] should be extendable to both the
quasi-static fading and finite blocklength. From a practical
standpoint, the most pressing issue is finding any architecture



for the many-MAC setting that would have an approximately
perfect MUI cancellation (i.e. have vertical part in the £ vs u
tradeoff). One imagines such a system should be comprised
of a message-passing decoding alternating between interfer-
ence cancellation and signal re-estimation — as for example
proposed in [72].
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APPENDIX A
PROOFS OF SECTION III

A. Joint error
Proof of theorem IIl.1. Let

R=(Ry,...,Rg) € C..

We need to show that there exists a sequence of
(r™ Mg, o M) e )
J

codes with projection decoding, such that

lim inf * log (M(”)> > R,,Vi € [K] (176)
n—oo M

limsupe, <e. (177)
n—oo

Let n; > 0,4 € [K]. Choose

MM = [27Bi=n) | i e [K].

We use random coding: user j, independently generates M; (n)
vectors, each independently and umformly distributed on the
vnP—complex sphere. That is X; ~ ¢ Unif (\/ﬂ?(CS)" 1)
Hence the channel inputs are given by

X i (\/E(CS)”*) .

We will drop the superscript n for brevity.

Suppose the codewords (ci,ca,...,cx) € Hfil C; were
actually sent. Then by (14), error occurs iff (¢}, ch, ..., ¢k ) €
C1 % Cy... X Cg such that (¢, ¢, ..., c) # (c1,¢2, ..., cx) and
Y|I*. (178)

1P, Y 2 WP,

CK

This can be equivalently written as follows. Let S C [K] be
such that

1€S] <= & #¢ (179)

where (¢;)X, denote the decoded codewords.
Let cjg) = {c; : i € [S]}. Then, error occurs iff 35 C [K]

and S # (), and 3{c} : i € [S], ¢} # ¢;} such that
2
(12— YH Py Y| (180)
2 .
Let Bg = { CES]’C[SC]YH HPC[ - YH } (here primes

denote unsent codewords i.e., ¢; here means that it is inde-
pendent of the channel inputs/output and distributed with the
same law as c¢;). Note that, for the sake of brevity, we are
suppressing the dependence on ¢’

So, the average probability of error is given by

-
7

U U

SC[K] {ceCi:
S#D ieS,ch#e}

Uu U s

te[K] SC[K] {c,eC;:
IS|=t icS,ci#c;}

Bs|

(181)

|
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Using ideas similar to the Random Coding Union (RCU)
bound [73], we have

engnz[mm{ Z S ([Tos -

K] SC[K]:|S|=t \j€S
[Bs| k) H, ]72] H (182)
where Hix) = {H; :i € [K]}.
From now on we denote
te[K] SC[K] t,S
|S|=t
te[K] SC[K]:|S|=t t,S
te[K] SC[K] t,S
|S|=t
Claim 7. For t € [K] and S C [K] with |S| =1t,
2
PH Py e Y| > [P ) Hixg, ]
IYI° |17 Y||
—F n—K,t (183)
Y1 = || Pese, Y|

where F(x;a,b) is the cdf of beta distribution Beta(a,b).
Further, from [20], we have

t—1, n—K

Fla;n—K,t)<(n—-K+t—-1)""z (184)
Proof. See proof of claim 1. [
. _ 1 ‘ °lKD YH2
Letting Gg = g(Y,C[K],S) = >, Mg =
Y12~ Perse; Y|
HjGS(Mj_l) (t 1)71n(n K4t—1) and ry = St+7(1::i\/[[?),
we have the followmg from (1%2) (183) and (184)
€, <E [min I,Zexp (—(n—K)[-rs —InGg])
t,8
(185)
Let 9 > 0 and let £; be the following event
= {-InGs—r > 5} (186)
t,8
= m {—lnGs > f/n,s}
t,8
(187)

= [ {Gs < Vus}
t,5

where Vn,s =r+6and V, g e~Vn.s | Note that Va,s
depends on S and ¢.

Then, from (185) we have the following



Lemma A.l1. For the K-user MAC defined above, with the
projection decoder; the average probability of error is upper
bounded as

en <Y e 4P JGs > Vg
t,S t,S

(188)

Proof. By (185),

<E [mln 1 Ze( (n—K)[=ri—InGs]) (1[E4] + 1[EY)

<Y e (KN L PR (189)
t,S

O

Hence, as n — oo, it is the second term in the above
expression that potentially dominates.

Claim 8. Fort € [K], S C [K] with |S| =t, we have

P [GS > Vn,S]
< P[H(l ~Vos) Py Z = VasPay Y Hici
i€S
2
> Vs Paryey > Hici } (190)

€S
where PLSC] represents the orthogonal projection onto the

orthogonal complement of the space spanned by c(s).
Proof. See proof of claim 2 O

To evaluate the above probability, we condition on c(x and
Hk). For ease of notation, we will not explicitly write the
conditioning.

Let x4()\, d) denote the non-central chi-squared distributed
random variable with non-centrality A and degrees of freedom
d. That is, if Z; ~ N (pi,1),7 € [d] and A = 37, 417, then
X2(A, d) has the same distribution as that of >, Z2.

Since Z ~CN(0,I,,), we have

nS ZHQ N

zES

Z,

nS
ZHCH n

165'

Hence

”
€L n,S o

Feser (Z - m ZHC>

ZHC“ C[sc

€S

Now using the fact that if W = P +iQ ~ CN (,T,0) then

]~ (] 5 (R s]) o

Re(T")
we can show the following

~CN (=S

2
and n' =

n 1
Lemma A.2. Let F = J’ P S g Hie
n — K + t. Conditione

on Hr and c[x), we have
1 n S
Pc[so] (Z - g H; Cz)

Hence its conditional expectation is

~ 5)(2 (2F, 2n{)192)

pw=n'+F. (193)

Proof. See proof of claim 3. O
2

Let U = = "‘,S ) PCJ[-SC] ses Hicil| —n'. Hence F =

- ’{,S (U +n'). Note that V,, s, U ,\ all depend on ¢ and S.
Letting T' = 14 (2F,2n’) — (F + n'), we have,

P[P 7z Yns_ ZH 2
Clse] 1—V,.5 4 i€

t,S

V
“(1-V,5)? C[sq ZH Ci ]
€S
B 2
_ L _ 7, . _
p{UPSC]<Z 1—VnsZchl> sz]
t,S eSS
IEI[ HU{T>U}} K],H[K]” (194)
t,8
Next we use lemma IV.2 to bound (194).
First, note that
v 2
n,S 1 /
U= —">—||Pi. Y Hiil| —n
(1~ V"’S) ) i€S
2
_ n' v 1 ‘ P('[SC] ZiES Hici 1
T 1-— Va,s ™S n!
=n'U? (195)
where 1
Ul = VosWe — 1
1-— Vn,S ( ST )
and
‘ > .co Hic ’
c /L S (
W= |14 L0507
n
Hence
Va,s / / Vs 1
F = 2 =n —2 1). 196
1—Vn,s(U+n) nl—Vn7S(U+) (196)

Let 6; > 0. Let By = ﬂ&t{Ul > 41}. From (194) we
have

p|Ur =0l

CIK] H[K]] 1[E11]}



5eb]
6.5
+P[ET]

<Y E [e_"/f“(Ul)l[Ul > 51]}

+P[ET]

C[K],H[K]] l[Ul > 51]:|

(197)

where the last inequality follows from (66), and

fn(z)

2V,
— o414 S

1-Vus

2V, 2V,
— 1 S (L) 22+ 1+ (14 a)
1— S 1_Vn,S

Vi,
(198)
Now, from claim 4, we have that for 0 < V,, s < 1 and
x>0, fp(z) is a monotonically increasing function of
Hence we have

]P’{g{TzU}}

So, we have the following claim

(1+2)

<D e 4 PIEG.
t,S

(199)

Claim 9. Let Ag = {Vn75WS —1<L (51} and F9 = Ut,S Ag.
If0O<V,gs<1forallte[K] S CI[K|with |S| =t then
we have

P[U{GS > Vn,s}] <Y e L P(Ey,).
t,S t,S

(200)
Proof.
UtGs = Vas}| < D e "0+ P[E
t,S t,S
<D e O L P(Ey).
t,S
(201)
L]
Now, we need to upper bound P [E15].
We have
2 2
I _ 2
‘P[SC] ZHM - Z|H| ‘ cise) €
€S €S
+2 Y Re (< Ph.ci P c >HH ) (202)
i<jii,j€S
Further,
(Pitooycis Py 3 ) = (is €)= (Peggey s Peysey €5 )(203)

Hence we have

e

PJ_

€1
Cise) Cis PC[SC] Cj

28

‘<Ci7cj |+|<P sccivpsccj>|
[{eis €3] + || Pegse,
=nP (|{é,¢)| + || Py

IAIA

et Cil|

e Ci e (204)

i)

where hats denote corresponding normalized vectors. Since

these unit vectors are high dimensional, their dot products
and projection onto a smaller, fixed dimension surface is very
small. Indeed, we have the following two lemmas.

[S‘]

Lemma A.3. Ife1,e2 S Unif((CS)™™"), then for any 65 > 0,

we have ,
né
2

P [| <61, €2> | > 52] < 4e” (205)

Proof. First, lets take e, e % Gn=1 Let 2 be a fixed unit
vector in R™. Due to symmetry, we have P[{e;,z) > 0] =
1/2. Hence, by Levy’s Isoperimetric inequality on the sphere
[74], we have

P[(e1,z) > o] < e 93/2, (206)
Again by symmetry, and then taking x as ey, we have
P[|{e1, e2)| > ] < 2e7™02/2, (207)

Now uniform distribution on (CS)’F1 is same as the
uniform distribution on S$?"~!, and for complex vectors

21 = x1 + iy and zo = o + iys we have Re(z1,29) =
. iid —
af wa+yi Yo = (x1,51)" (x2,2). Hence if e1, e2~ (CS)"

and uy, us 45271 then Re (€1, e2) has same law as (u, u2>
Hence we have

P[|Re (1, e2) | > 2] < 2e™5° (208)

Also, Im (z1,29) = 2Tys — yTxo. Hence I'm (ey,e2) has
the same law as Re (eq, e5). Hence we have
Pl {e1, e2) | > 2]
=P[| (e, e2) |* > 53]
=P [|Re (eq, e2) 1> 4 [Im (e1,e2) |* > 55]

<P||Refer,e0)] > 52}+P[|fm<e1,e2>|> 52

V2 V2
(209)

O

Next we have a similar lemma for low dimensional projec-
tions from [75, Lemma 5.3.2]

Lemma A4 ([75]). Let © ~ Unif(S"') and P be a

projection to an m dimensional subspace of R". Then for
any 03 > 0, we have
P pr| - ,/m‘ > 53} < 2% (210)
n

where c is some absolute constant. Hence, by symmetry, the
result remains true if P is a uniform random projection,
independent of x.

Now we need to prove that a similar result holds for the
complex variable case as well. We have the following lemma



Lemma A.5. Let z~ Um'f(CS)nf1 and P be a projection to
an m dimensional subspace V' of C". Then for any 63 > 0,

we have
m
J| RN
n

where c is some absolute constant. Hence, by symmetry, the
result remains true if P is a uniform random projection,
independent of z.

@211)

> 63:| S 26—2C7L(5§

Proof. Consider ||Pz||. Let U be the unitary change of ba-
sis matrix which converts V' to first m coordinates. Hence
||[Pz|| = ||[UPz||. Therefore we can just consider the or-
thogonal projection onto first m coordinates. Hence the pro-
jection matrix P is real. Let ey, ...,e,, be the standard ba-
sis corresponding to the first m coordinates. Let A be the
n X m matrix whose columns are ey, ..., ¢,,. Then P = AA*
(* denotes conjugate transpose). Since A is real, we have
Re(Pz) = AA*Re(z) and Im(Pz) = AA*Im(z). Now,
if z~ Unif((CS)" ") then Re(z) has same law as Im(z).

Hence Re(Pz) has same law as Im(Pz). Further A* = AT,

Also note that, if z = x + iy then ||Pz||> = z*AA*Z =
0 x

AT 4 yTAATy = 27 "] T AAT} [ ]

P { ] H where P denotes the orthogonal projection from R?"

to a 2m dimensional subspace. Hence || Pz||* has the same law
as that of the projection of a uniform random vector on $2"~!
to a 2m dimensional subspace. Hence using lemma A.4, we

have
P H|Pz|| - ”m‘ > 63] < 2¢7 2%
n

Since H; ~ CN(0,1), we have |H;|> ~ $x2(2) = exp(1)
where x2(d) denotes the chi-squared distribution with d
degrees of freedom and exp(1) represents an exponentially
distributed random variable with rate 1. Therefore, for v > 0,

P[|H|*>v]=e" (213)
Now, we are in a position to bound P [E}s].

For S C [K] with |S| = t, define the events F5, E3 and
FE, as follows:

212)

O

By= () Alé)] <o} (213a)
i<j,j€[K]
K—t
E3(S,t) =) { (| Peyse, < 53}(21421)
€S
BEy= () {I1H <v} (214b)
1€[K]
where we choose 8§y = n~35 = 03 and v = ni. Hence we
have
P[Ep) <P U(AgﬁEgﬂEgﬁE;)
t,S
+P[ES] + P[ES] + Y PES(S,t)]. (215)

t.8

29

Using lemmas A.3 and A.5 and eq. (213), we have

P[ES) + P B + ) P[E5(S,1)]
t,8

2
S2K(K —1)e™ 2 +Ke ™ + Y 2te™%. (216)
t,S

1)e~

Note that the above quantity goes to 0 as n — oo due to the
choice of §5, d3 and v. Also, the choice of parameters is not
the optimum. Nevertheless, this is enough to prove the result.

Let )
| K —t
016 = |02+ <53 + )
n
2
0ot = (53 + )

Observe that on the sets F», F3 and F4, we have from (204)

= O(n~ 1) (217a)

K —

n

t

1 1
‘Re <PC[SC] i, P

se) c.7>

G 2 < vlgy = O(n_%)

|H;|? || Peyse, (217b)

So we have
7|

<p|

|

U(ASmEngng4)
> IH? =k

t,S
{‘/n S |:1 + {
€S

— Wy — t(t — 1)6“}] 1< 51}]
{vns |1+ 2 ]

<p|
t,S i€S
< 1+51+0(nfz)H

<P|J {m 1 +PZ |H*| < ngs} (218)
4,8 ies
where V! ¢ = Vi, s +1n(1+6; +O(n~/12)), and O depends
on K and t.
Let 6, = In(1 + 1 + O(n~/12)). We have 2Ms —
(Sies(Rs = m)) (1+o(1)) and s, = O (152,

By the choice of Mi(n), for sufficiently large n, sufficiently
small § and §;, we have

P U{m 1+ Py |H|? _V;SH
-t,S €S
=P Uln{1+PZ|H|2]< + nMs +5+5n}
i€S - K
=P U{log{1+PZ|Hi|2] < s¢logy(e) +

L¢,5

D (Ri-

i€S

€S

0 ) (14 0(1)) + (6 + ) oga(e) |

(



U

t,8

1+ P> |H

€S

Sn

i€S

< IP’{ (219)

(fr o]

Finally combining everything, we have

{ g |
—&-(Z(Ri -

i€S
nl/3 1/4
FOK(K — 1)e "% + Ke "
+ Z |:2t€—cn1/3 n e—é(n—K) + 6_7Lf"’(51):| ) (220)
t,S

)

€n

gp{ 1+ PY |H[?

€S

0 )(1-+o(1) + 5+ 8,) o (0}

] < sy logy(e)

Therefore for this choice of (Mi(n)), from (219) we have
limsup €,

Ayl e« (50}

<P |
t,8

Since 7; > 0 were arbitrary, we are done. That is (177) is
also satisfied.

1+PZ|Hi|2

€S

Sn

€S

<e

(221)

O

B. Per-user error

Proof of theorem II1.2. We need to show that there exists a

sequence of ((Ml(”),MQ(”),...,Mﬁ(n)),n,en) codes with
the decoder given by (17) and (18) such that
1 n .
lim inf — log (M} >) > R;,Vi € [K] (222)
n—oo nN
limsupe, <e. (223)
n— oo

Let PS(R) < e and 7; > 0,i € [K]. Choose M" =
[en(Bi=n)] Vi € [K]. We use random coding with Gaus-
sian codebooks: user i generates M; codewords {c; 1 j €

[M;]} <N (0,P)I,) independent of other users, where
P P . Here CN(1,Y) denotes the complex normal

n _1-

distributiJE)Tlll with mean p, covariance X and pseudo-covariance
0. For the (random) message W; € [M;], user ¢ transmits
X; = C@VZl{Hc%/VZ ||2 > nP}. The channel model is given in
(6) and the decoder is given by (17) and (18). The per-user
probability of error is given by (9)

1 K
= 31w # (9n(¥)), |

Jj=1

P.=E (224)

Similar to the proof of [3, Theorem 1], we change the
measure over which E is taken in (224) to the one where
X; = c%,vi at the cost of adding a total variation distance.

Hence the probability of error under this change of measure
becomes
Pe < p1+po
with
P
po = KP {wll2 > np,} (225)
1 X
p=E |23 1w £ M)} @

where w ~ CN (0, I,,) and, with abuse of notation, E in p; is
taken over the new measure. It can be easily seen that by the
choice of P/ and lemma IV.2, py — 0 as n — oo. From now
on, we exclusively focus on bounding p;.

p1 can also be written as

i€D
a *@ %E l;l{wj # (gD(Y))j} (227)

because, for ¢ € D€, l{Wj # (gD(Y))j} =1, a.s. Define
P2 as

py =P [Z 1 {Wj v (gD(Y))j} > 0] . (228)
ieD
So, it’s enough to show that po — 0 as n — oo. This is
because, if po — 0, then the non-negative random variables
An=>epl {Wj # (gD(Y))j} converge to 0 in probabil-
ity. Since A,, < K, a.s, we have, by dominated convergence,
E[A,] = E [z@ 1 {Wj ” (gD(Y))jH — 0. To this end,
we upper bound p,.

Let ¢ = (e1 € Cq,...,cx € Ck) be the tuple of sent
codewords. Let K1 = |D|. Let ¢(p) denote the ordered tuple
corresponding to indices in D. That is, if 1 < iy < ... < ik,
are the elements of D, then (c¢(p)); = ¢;;,Vj € [Ki]. Let
Bg = {‘ P, YH2 > HPC[D]YHZ}. Then po can also be

Crs1:€18¢]

written as
ps =P Zl{WJ#@D(Y))j}w} (229)
-i€D
=PESCD,S£0:ViesS (gp(Y)); # W] (230)
_ ; )
= P|3cp) # cmy ¢ [Py Y| > 1P Y| } (231)
—P U U U BS]. (232)
“te[K1] SCD ceCi\{ci}
|S|= i€s
2
Let 6 > 0. Gs = g(Voene5.0) = NP
5 S = 5 [ESS) = 5
] VIE=|Pepser ¥
My = [Ties(M; = 1), s = (¢ — DEEIEEY o
st + 1;1_1\[4(51, Vps = o+ 6 and V,, 6 = e V5. Denote
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Usex) USCD as |J; g f,» similarly for (] and }. Further,
IS=

denote ;¢ (g U sc| K] as |, ¢ again, similarly for () and } .

IS]=
Note that, since D is random, both Mg and V,, g are

random. But in the symmetric case only Mg is not random.
Now, following steps similar to (182), (183), (185) and (188),
we have

p2 < E{ > e“”“”] +P[ U és> vn,s]<233)
t,S,Kl t;S;KI
< 264"*’05 +IP’[ U Gs> Vmg} (234)
t,K t,S,K1

So, the first term goes to 0 as n — oc.
Let Zp = Z + ) ,cpe Hici. It can be easily seen that,
similar to (190), we have

]P’{Gs > Vn,S:|
< PH‘(I —Vos)Pitoo Zp — Vas P, > Hic,
€S
> Vos||P SCZHCZ ] (235)
€S

Now, conditional of H[K] and c[py, Zp ~ CN(0, (1
P> .cpe |Hil?)). Hence

1 n S’
P (ZD S ) ~
1€S
CN( 1_ P> Hici, 1+ P, Y |H*)P, )
€S i€De
Therefore
v 2
Pt |\ zZp——25 N Hy;
( S o)
<1+P’ > |H; |2> —x4 (2F,2n/) (236)
i€eDe¢
where
2
V’FL, l
_ H 1*Vns,s orse) 2uies Hici 237)
(1 + P, ZieDc |Hi|2)
n=n—K; +t. (238)
Let
N 2
U — Vn7S Clse] ZiGS Hici B n/ (239)
(1=Vas) (L+ Py Y cpe | Hil?)
1
Ul ——— (V, sWg—1 240
Vs (Vn,sWs = 1) (240)
N 2
Pc c Z? H7‘,C7‘,
where Wg = [ 1+ [se] Tie5

”/(1+P7/z ZiEDC |Hi|2)

31

nS

HenceU—nUlandF—1 v,

to (194), we have

n'(1+U"). So, similar

P| |J {Gs=Vast| <P | |J {T=U}| @41
t,S,Kl t7S7K1
where T' = 1x4(2F, 2n’) — (F +n').

Let 6 > 0 and Ell_mtSKl{U >(51}€0'( (K] [D])'
Now, similar to (199), we have
U {r>u}

7| |
t,8, K1

<E[ $ e

t,S, K1

} +P[ES]. (242)

where f,, (now a random function) was defined in (198). So,
again by claim 4 and dominated convergence, the first term in
(242) converges to 0 as n — oo. Next, we upper bound the
second term P [EY,].

Let Ag = {VmSWs -1 (51} and Fo = Ut,S,Kl Ag.
Similar to (201), we have

P[Eﬁ] =P

U Ut <o}

t,S, K1

< P [Elg] .

(243)

Let ¢; = C,’/ ||Cl|| Let 6o > 0, 03 > 0, 64 > 0 and v > 1.
Define the events

Ey= () {l{@.é)] <6} (244a)
i1<j:i,j€[K]
K —t
Eg(S,t>:ﬂ{HPqSC] —4/ 1n <63}(244b>
€S
Ey= () {lH:|* <v} (244c)
i€[K]
Es= () {lleill = VoPy <P} 44d)

i€[K]

and choose 0y = O(n~3) = 83 = 04 and v = O(n'/4).
Using these events we can bound P [EY,] as

P[E}] < P[ U <As NEyN E3(S,t)NEyN E5>}
t,5, K1
+P[ES]+P[E]] + P[EE]
+ E{ Z P [E(S, t)|H[K]]} . (245)
t,5,K1
From [75, Theorem 3.1.1], we have
P[ES] < 2Ke™em% (246)

for some constant ¢; > 0. So, from lemma A.3, lemma A.5,
(213) and (246), we have



PES) <P | |J (AsNE2NEs(S,t)NEsNEs)| +
t,5, K,
ns3 5
2K (K —1)e™ 2 + +Ke ™V 4 2Ke "%

(247)

+ 3 2teends,
t,S

So, by the chose of §;,i € {2,3,4} and v, the exponential
terms in the last expression go to 0 as n — 0o.
Let N = (1+ P, Y. cpe |Hil?),
2
Ky —t
=)

2
K, —t
024 = (53+ ! )
n

’ 2
Let SINR, = fnxicslhil
(218), we get

IF’[U

t,S,K1

016 = |02+ (53 +

Now, arguing similar to

<A5 N Ey N Es(S,t) N EyN E;,)}

) SINR,

1—64)?
<[p>[ U {V’I‘L,Slil—’_{/n(/zl
1,5, K, n

P! Plt(t—1
— (14 64)2 (nn_’}(tyéu + TLZEK)Csl,t) H
—1<6 } (248)
< IF’[ U {111 [1+SINR,]| <V}, SH (249)
t,S7K1

where V)| ¢ =V, s +In(1 + 6, + O(n=1/12)).

Let 0, = In(1 + & + O(n~/'2). We have 12&Ms —
i + o0 ere for sufficient arge n
(Cies(Bi—m)) (1 (1)). There fi fficiently larg

and sufficiently small § and 01, we have V) ¢ <>, g Ri a.s.
Hence

P | |J log[l+ SINR,] <log,(e)V; s
t,8,K1

<P| |J log[l+SINR, <) R

t,5,K, i€S

(250)

But we know that P/ — P, and on D, from (17) we have

Py ics | Hil?
g R; <log <1 + ies ) a.s.
1+ P} iepe [Hil?

i€S

(251)

Hence the probability in (250) goes to 0 as n — oo.

So combining everything from (234), (243), (247), (248),
(249), (250) and (251), we get po — 0 as n — oo. Therefor
pr—1— % as n — oo. Hence we have

E[D
en:Peﬁl—%<e. (252)

Hence limsup,, ., €, < e. Further, since n; > 0 were
arbitrary, we can ensure liminf, . + log Mi(") > R;,Vi €
(K.

O

C. Proof of proposition 1

Proof. We prove the second upper bound in (19). This is based
on a single-user converse using the genie argument. Formally,
since we consider per-user error, it is enough to look at the
event that a particular user is not decoded. Let W; " uni f [M]
be the message of user ¢. The channel (6) can be written
as Y = Hi X, + Z + Z where 7 = ZZ o H; X; denotes
the interference. Let L(Y') be the decoder output. Also, let
L(Y, Z) be the decoder output when it has knowledge of Z.
Hence a converse bound P [W; # (L(Y')),] > e is implied
by P [Wl ” (L(Y, Z))l] > ¢ for all L(-,-). Since ¥ — Z
is a sufficient statistic of (Y Z) for Wy, we have, equiv-
alently, P [Wl £ (L(Y— ZA))J > ¢ for all L(-). Letting
Y=Y _-Z , this is equivalent to a converse for the channel
V=HX +2:P [Wl + (L(f/)) } > ¢ for all L(-). This
is just the usual single user conversle, and hence the bound
is given by R < Cc = sup{¢ : P [log,(1 + P|H:|?) < ¢ <
€} =logy(1 — Pln(1 — €))[20].

O

APPENDIX B
PROOFS OF CERTAIN CLAIMS

N1
Proof of claim 2. We have ||[Y|* — || P4, Y| = HPXOZH <
112 112 112
I L e et
Also,
we have

2 N2
J_IYH = Hpjﬁ Zies; HiCi+Pj‘12H . Hence

)
)

Y|? - ||Ps Y2
sz{ U {I H2 | Pa, ||22
tsirc, YT = [1Pa, Y|

112 ~ 12
aOR{E
t,S, K1

Pi, Z Hic; + P17
i€ Sy
’2

gp{ U {Hpjlz
t,S, K1

Py, Y Hic;+ Py Z
i€S}
’2

= IP’[ U {(1 — Vi)
t,5, K1
— 2V, Re <le2, Px, Z Hici>

i€S5
€L § :
PA1 HiCi

ZH
€Sy

Z Vn,t

Z Vn,t

i

P2

Z ‘/n,t




U

t,S, K1

— 2Vn,t(]— - Vnﬁt)Re <

{(1 CV)? HleZ

L 7 L
P3,Z,P4y, > Hic;
i€S;

;

2

> Vou(1 = Voa)||Pa, > Hic; H

i€SS

2
— P[ {H (1 —Vu)PL Z — Vo PY, Z Hic;
t,5,K1 i€Sy

2

> V|| Pa, Y Hici H (253)
i€ Sy
O

Proof of claim 3. Conditional of H{x) and Ao,

)

i€S\S3

ZNCJ\/'(O, (1+P’

Hence
N Vv t
Ptz - —2 Hic; | ~
Al( 17‘/”’%';3:* C)
2
Vot o1 2\ pL
N (- e Xt (17 S )y

= i€S\S;

(254)
Now, the rank of Pj(l is n — K1 + t because the vectors in
A; are linearly independent almost surely. Let &/ be a unitary

change of basis matrix that rotates the range space of le to
the space corresponding to first (n— K7 +t) coordinates. Then

Vnt

HCN(— WPXI Z Hic;,
€S53
2
(1+P’ > |Hi|2>Pj1)
i€5\ S}
Vnt
= HU<CN(_ 1_Vmpfhl;yﬂcl,
2
(1+P’ > |Hi|2>le)>
i€S\S3
HCN< Yt _yp} > Hic;
11—V, AlzeS* v

2
(1+P’ > |Hi|2>L{leu*) (255)

i€S\S3

Observe that L[leu* is a diagonal matrix with first (n —
K, + t) diagonal entries being ones and rest all 0. Also, if
W = P+iQ ~CN(u,T') (with pseudo-covariance being 0)

then
] ) . (256)

- () 1

] "2 [Im(r) ey

Re(T")
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Using this and the definition of non-central chi-squared
distribution the claim follows.

O
Proof of Claim 4. We have
2Vt
= 1+ —(1
x + +1_Vn,t( + )
QVnt 2 n,t
— /1 ~ (1 2 14+ —>(1
\/ +1—Vn,t( +z)\/x+ +1—Vn,t( + )
1
= 1 T 1
1+ V,e)2\> (1-V2)?
—24/Va . - 257
V,t\/<$+ 4Vt 16Vn2t ( )
Hence
Fla) = — 14V — 2T
L) — 1_Vn,t n,t n,tm
1 — +b
- _Vn,t( Vn,t - a—b) .
a—>b
Vit —
( ! +b>
(258)
2
where a = (x + M) and b = 14‘/\:”:. Also a > 0

and b > 0. Further a +b > a — b and
n,t 1+Vnt+2.’lf)

Vi< \/1+Vt+2vntx

<~ 2Vn,tx+1+vn,t < 2x+1+Vn,t
—= 0<V,, <1

which is true. Hence both the factors in (258) are negative.
Therefore f'(z) > 0. O

APPENDIX C
MAXIMAL PER-USER ERROR

In this section we briefly describe relations between max-
imal per-user error (PUPE-max) defined in (10) and PUPE.
First, we represent our system as in (148)

Y = AHW + Z. (259)

Let P. ;( [W #* W} We are interested in bounding
the variance of P. ;(A) so that
[Pmax( )] E [max{P. ;(A) : i € [K]}]

can be related to E[P. ;(A)] = E[P.,] due to symmetry on
users by random codebook generation. Consider two coupled
systems
Y=AHW + Z
Y =AHW +Z

(260)
261)



where A and A’ are fixed so that the channels are dependent
on these.
Now we have

|Pei(A) — Pei(A)| < dov(Py,a,w, Py omw)

1
< \/2D (Py,a,w!|| Py m,w) (262)

where dry (P, Q) = sup{|P(A) — Q(A)| : Aismeasurable}
is the total variation distance between measures P and Q,
D(P||Q) = Ep {m %} is the Kullback-Leibler divergence
(in nats) and the last inequality is the Pinsker’s inequality (see
[76]). Now using properties of D (see [77, Theorem 2.2])
D (Py,uw||Py . m,w)
= D(Py\uwl|Py\aw|Pw)

= / D(Pyt=n,w=uwl|Py'|H=h,w=w)dPm,w (h, w)
HW

(263)

Now note that conditioned on H = h,W = w, we have
Y ~CN(Ahw, I,,) and Y/ ~ CN (A’hw, I,,). Hence a simple
computation shows that D(Py|g—pn w—uw||Py/|H=hw=w) =
| Ahw — A’hw||*. Therefore we have

D (Pyawl [Py aw) =E[l[(A = AV HW]|?] . 264)
Now let B=A — A" and X = HW. Then
E[IBXI?] = > E
i€[n]

Note that E [X;X;]| is zero if j # k and it is 1/M
otherwise. Hence

> BiiBixXiXy| (265)
J,k€[K M)

2 1 = 1 2
EIBXI") = 57 3 X BBy =57 1BI%-
i€[n] jE[K M]
(266)
Therefore
1
D (Pyuwl||Py mw) = i A= A5, @67)

So combining this with (262), we obtain

/1
|P.i(A) — P.i(A)] < BT |[A—Az. (268)

Now let each entry of A and A’ to be distributed iid as
CN(0, P) where P = Py, /K. Further, let A = ,/LA and

A= A’ So the entries of A and A’ are iid CA(0,1).
Therefore w1th slight abuse of notation, we can rewrite (268)

as
PealA) = Pus(A)] <[ oot | 4 -

Hence the function P, ; is Lipschitz with Lipschitz constant

— Piot
L = 2MK

(269)

. By concentration of Lipschitz functions of

34

Gaussian random vectors [46, Theorems 5.5, 5.6], we have

that P, ;(A) is sub-Gaussian with

2-Ptot

KM~
Hence, using bounds on the expected maximum of sub-

Gaussian random variables (see [46, Section 2.5]), we obtain

® s )

<E[Pe] + 1/ Var(Pei(4)) n K

WP INK Koo
E[P..] + 1/ J\;t - Ko BIP..).  (271)

Therefore, a random coding argument along with (271)
shows that PUPE-max has same asymptotics as PUPE in the
linear scaling regime. For FBL performance, if each user sends
k = 100 bits then M = 2* and hence E [P2*] ~ E [P,

Var(P, ;(A)) < 4L? = (270)

P.;(A
Znel[é}?]e()




