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ABSTRACT
The study of Brownian ratchets has taught how time-periodic driving supports a time-periodic steady state that generates nonequilibrium
transport. When a single particle is transported in one dimension, it is possible to rationalize the current in terms of the potential, but
experimental efforts have ventured beyond that single-body case to systems with many interacting carriers. Working with a lattice model
of volume-excluding particles in one dimension, we analyze the impact of interactions on a flashing ratchet’s current. To surmount the
many-body problem, we employ the time-dependent variational principle applied to binary tree tensor networks. Rather than propagating
individual trajectories, the tensor network approach propagates a distribution over many-body configurations via a controllable variational
approximation. The calculations, which reproduce Gillespie trajectory sampling, identify and explain a shift in the frequency of maximum
current to higher driving frequency as the lattice occupancy increases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097332

I. INTRODUCTION

The rectification of thermal noise into directed motion via a
ratchet effect has attracted sustained fascination and attention.1–4

Theoretical studies of that ratcheting effect are dominated by mod-
els of one-body dynamics driven by a time-dependent potential,
with a particular focus on how the generated current varies with
system parameters, such as a driving frequency5–7 or a diffusion
constant.8–11 These models have captured the essential ratcheting
effect and have guided experimental efforts, but they leave out
an important control that experimentalists have over their sys-
tems: the collective effects that can emerge out of interactions
between multiple ratcheted particles.12–16 Similar collective effects
are known to generate rich dynamical behavior in nonequilibrium
steady states (NESS), for example, in coupled molecular motors17–21

and in the asymmetric simple exclusion process (ASEP).22,23 In
the case of ASEP, powerful numerical methods built upon ten-
sor networks have been employed to interrogate those dynamic
phase transitions,24–26 opening the door to also consider the impact
of interactions on time-periodic steady states in many-particle
ratchets.

In this Communication, we apply those tensor network tools
to compute steady-state currents in a multi-particle 1D ratchet.
Our approach mixes the spectral large-deviation theoretic analysis
of one-body ratchets we previously reported27 with the quantum
dynamics literature’s tensor network methods28,29 that are presently
finding applications to classical stochastic dynamics.24,25,30–35 Those
tensor network tools are essential for handling the many-body
problem because more traditional matrix algebra techniques can-
not be applied when the state space grows exponentially with the
number of interacting particles. In the quantum many-body con-
text, the density matrix renormalization group (DMRG) technique36

solves for ground states of spin lattices while the time depen-
dent variational principle (TDVP) technique propagates a many-
body state in time.29,37–41 For classical NESS stochastic dynam-
ics, a scaled cumulant-generating function (SCGF) for currents
is analogous to the quantum ground state energy calculation,
so DMRG has been applied to calculate the SCGF in the 1D
and 2D ASEP24,25,42–44 as well as in other kinetically constrained
models.30,45,46

Unlike those NESS problems, here we consider a time-
dependent steady state generated by a time-dependent rate matrix.
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As such, it is not sufficient to use DMRG to compute the SCGF
as an eigenvalue optimization problem. Instead, we use TDVP
to propagate a tensor network state until a time-periodic steady
state is reached and we extract the SCGF for the period-averaged
current from this long-time limit. In this work, we focus on a
flashing ratchet with a square wave driving, but we highlight that
the application of TDVP to evolve many-body classical stochas-
tic dynamics is straightforwardly extended to arbitrary driving
potentials.

II. DISCRETE-STATE RATCHET MODEL
The tensor network methods thrive on discrete-state mod-

els. While we imagine a 1D flashing ratchet as being generated
from turning on and off a smooth continuous potential as in
Fig. 1, we immediately discretize that potential onto an N-site
lattice with periodic boundary conditions, following our prior
work.27,47 Dynamics of that discrete-space model is governed by
the master equation, @�p��@t =W�p�. Here, �p� is a state vector
consisting of configurational probabilities and W is a time-varying
rate matrix, with the rates constructed so that the continuous-
space limit alternates between evolution on a potential U(x)
= −Vmax� a1

2 sin� 2πx
xmax
� + a2

2 sin� 4πx
xmax
�� for time τ�2 and evolution on

a flat potential for time τ�2. The tunable parameters Vmax, a1, and
a2 sculpt the form of the biharmonic potential, while xmax sets a box
length and τ sets a period of driving. Corresponding to the scales
of some experimental Brownian ratchets,48 we set xmax = 1, a1 = 1,
a2 = 0.25, and Vmax = 0.1.

FIG. 1. (Top) Volume-excluding particles (blue) and their periodic replicas (light
purple) in a one-dimensional flashing ratchet. The impact of interactions on the
current can be ascertained by following individual trajectories. (Bottom) Alterna-
tively, a superposition of one or more many-body configurations can be encoded
in a binary tree tensor network (BTTN), formed from gray tensors [A], brown aux-
iliary indices with maximum bond dimension m, and red physical indices that take
the values one or zero to reflect occupied or unoccupied sites. For sufficiently
large m, the tree tensor network’s time evolution approximates the propagation of
the initial probability density under a time-dependent rate matrix W.

In the rate matrix description, the dynamics involves toggling
between two constant-in-time rate matrices, W1 and W2. The flat-
potential rate matrix W2 has rates between neighboring lattice sites
given by r2,i→i±1 = D�h2 in terms of the lattice spacing h = xmax�N
and a diffusion constant D, taken to be 12.64, except where otherwise
noted. The other rate matrix, W1, has nearest-neighbor transitions
with the same diffusive contribution but with a drift term as well:
r1,i→i±1 = ±U′(x)�2h +D�h2. As in the ASEP, we construct an exclu-
sion process, so while the lattice can have more than one particle,
each lattice site can house at most one particle. Consequently, the
rate rk,i→i±1 is zero if site i ± 1 is already occupied. As always, diago-
nal elements of the rate matrices are set to ensure that the columns
sum to zero and probability is conserved.49

Our focus is on the impact of the exclusion interactions on the
period-averaged current |̄ = (1�τ)∫ τ

0 dt∑iji→i+1(t), where ji→i+1(t)
is the current from site i to site i + 1 at time t. Due to the peri-
odic boundary conditions, we associate N + 1 ≡ 1. The statistics of |̄
can be extracted from the SCGF, ψ|̄(λ) = lim

n→∞(ln �eλn|̄ �n�n), where
�⋅�n denotes an average over trajectories with n driving periods. For
example, the mean is the first derivative at λ = 0: �|̄� = ψ′(0). We
compute ψ(λ) by first constructing tilted rate matrices Wk(λ) with
modified jump rates rk,i→i±1(λ) = rk,i→i±1e±λ for k = 1, 2. The tilted
rate matrices’ diagonal elements are unmodified from Wk, so Wk(λ)
are not themselves rate matrices. Rather, they generate dynamics
with an extra exponential bias on the current.50,51 For the NESS,
it has become standard practice to compute ψ(λ) from the maxi-
mal eigenvector of W(λ). Because the NESS tilted rate matrix shares
eigenvectors with the tilted propagator eW(λ)t , the SCGF can be
computed without evolving dynamics. For the time-periodic steady
state, we instead compute ψ(λ) as the maximal eigenvalue of the full-
period tilted propagator T(λ) ≡ eW2(λ)τ�2eW1(λ)τ�2 extracted using
the power iteration method.27 An arbitrary initial state vector �p� is
evolved via TDVP for many periods to reach a normalized steady
state �π(λ)�, at which point the SCGF measures the rescaling of�π(λ)� under one more period of dynamics,

ψ(λ) = ln�π(λ)�T(λ)�π(λ)��τ. (1)

III. TENSOR NETWORK STRUCTURE AND METHODS
For single-body dynamics, �p� may be sufficiently low dimen-

sional that the Wk(λ) are constructed as explicit matrices and
the time-propagation is computed with a numerically evaluated
matrix exponential.27 As more particles are added to the ratchet
model, that direct calculation becomes intractable, demanding
the time evolution be executed with a tensor network approxi-
mation. Before making any approximations, a vector in the full
state space can be expanded in terms of local basis states as�p� = ∑s1,...,sN

cs1,...,sN �s1 ⋅ ⋅ ⋅ sN�, where the coefficient tensor cs1...sN

expresses how the state is built up as a superposition of states�s1 ⋅ ⋅ ⋅ sN� with s1 particles in site 1, s2 particles in site 2, . . ., and sN
particles in site N. The tensor network approximation restricts the
correlations between sites by requiring that the coefficient tensor be
constructed as a partially contracted binary tree formed from a set
of smaller-rank tensors [A] (see Fig. 1). With N dangling legs (red),
that network is a rank-N tensor whose physical indices indicate
whether a lattice site is occupied. The tensor network additionally
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consists of many contracted auxiliary indices (brown) shared by two
tensors, and the largest dimension m of those auxiliary indices serves
as a variational parameter that controls the extent to which informa-
tion is communicated from tensor to tensor. A choice of m defines
a variational subspace spanned by states that are parameterized by
the set of tensors used to construct the coefficient tensor cs1...sN and,
hence, the tensor network state �p[A]�.

TDVP evolves �p[A]� with the restriction that each step of the
evolution remains in the variational subspace, and at every moment
in time, the new state can also be written in the form �p[A′]� for some
new set of tensors [A′]. Although more commonly utilized with a
matrix product state (MPS), TDVP has been previously developed
for the binary tree tensor network (BTTN)39,52,53 that we employ.
The algorithm, discussed in greater detail elsewhere,54 consists of
sweeps that pass through the tree to advance each tensor of the set[A] by one timestep �t. It is crucial that the tree’s rank-3 tensors
can be efficiently updated one at a time, an efficiency gained because
a gauge freedom can be leveraged to bring the loopless BTTN into
a canonical form. By contrast, an MPS treatment would require a
looped MPS, and the loops in the tensor network are known to
degrade computational performance.28,55 It is also important that the
action of Wk(λ) on �p[A]� can be computed without ever construct-
ing the explicit tilted rate matrices. In lieu of constructing the matrix
form of the operators, they are cast in a second quantized form as

Wk(λ) = N�
i=1

rk,i→i+1(eλaia†
i+1 − nivi+1)

+ N�
i=1

rk,i+1→i(e−λa†
i ai+1 − vini+1), (2)

where ai, a†
i , ni, and vi are fermionic annihilation, creation, parti-

cle number, and vacancy number operators at site i, respectively.
The nearest-neighbor structure of Wk(λ) allows the operators to
be factorized into a matrix product operator (MPO) that associates
with each physical index a low-rank tensor. Action of Wk(λ) on a

state �p[A]� is practically computed by contracting over the physical
indices that connect the MPO to the BTTN state.

IV. CALCULATIONS
Calculations with Nocc particles spread over N lattice sites were

initialized in a random pure state that placed the particles into sites
in an arbitrary manner. Starting from that initial seed, the (λ = 0)
steady-state of W2, �π2�, was reached by DMRG. Although the initial
seed has a trivial bond dimension of one, a version of DMRG that
performs subspace expansion56 was employed to systematically grow
the bond dimension such that �π2� would have a maximum bond
dimension of m. As W2 is itself a rate matrix, the eigenvalue asso-
ciated with �π2� is zero, making clear when the DMRG procedure
was fully converged. Starting from this �π2�, the TDVP algorithm
evolved the BTTN state in time subject to tilted propagators W1(λ)
and W2(λ) for very small positive and negative biasing values
λ = ±δ. Sufficiently many periods of driving were evolved so the
BTTN state converged to �π(±δ)�, and the SCGF could be computed
from Eq. (1). The mean current was then computed as the finite dif-
ference �|̄� ≈ (ψ(δ) − ψ(−δ))�2δ. Our companion paper discusses
the convergence properties of both DMRG and TDVP algorithms,
which were implemented using the ITensor library.57 There we
demonstrate that, provided the bond dimension m is sufficiently
large, the mean current agrees with that of trajectories sampled from
a version of the Gillespie algorithm for time-dependent driving.54,58

For an N = 32 lattice, m = 200 is sufficient, allowing us to ana-
lyze how the many-particle ratchets respond to both the driving
frequency f ≡ 1�τ and the diffusion constant.

V. RESULTS
We illustrate those responses by computing a particle’s period-

averaged velocity �vx� as a function of Nocc. Since each particle is
statistically equivalent, �vx� = �|̄�h�Nocc, and �vx� can be interpreted
as a period-averaged current per particle. Plots of that per-particle

FIG. 2. Mean per-particle current induced by ratcheting Nocc volume-excluding particles on a 32-site lattice. Currents were computed by the TDVP SCGF method using
time step �t = 10−6, δ = 10−4, and maximum bond dimension m = 200 (lines) and were found to agree with Gillespie sampling (points, one standard error of the mean
error bars). (a) Current vanishes in the low- and high-frequency limit. Current is induced at intermediate frequencies, with the frequency of maximal current shifting higher
as particles are added. The inset shows TDVP data that highlight that shift. (b) Agreement between TDVP and Gillespie persisted across a range of diffusion coefficients,
plotted here with f = 100.
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FIG. 3. (a) By contracting all but site i with a vector of ones, the time-periodic steady state BTTN can be efficiently traced over to give the steady-state probability of finding a
particle at site i. (b) Performing that trace for all sites and at all times gives the spatiotemporal evolution of particle density on a 32-site lattice. At low frequency ( f = 10), the
density is approximately the equilibrium Boltzmann distribution with particles filling the potential well in the first half-period of driving and distributing themselves uniformly
in the second half-period. Due to particle interactions, the Nocc = 16 (green) distribution must spread the particles across the entire well, whereas they congregate more
narrowly in the bottom of the well for Nocc = 8 (orange). (c) At high frequency ( f = 103), the temporal variation in the density is smoothed out. Increasing Nocc again forces
density to spread more broadly, but it is not straightforward to relate densities to energy wells when the particles move on a comparable timescale as the driving frequency.

current in Fig. 2 show excellent agreement with the Gillespie sam-
pling, capturing even the effects of interactions as the carrier density
is increased.

The single-particle Nocc = 1 case recovers the well-studied
flashing ratchet behavior. At both low- and high-frequency driving,
the current vanishes, but leftward motion is induced at intermedi-
ate frequencies due to the asymmetric shape of the potential. Each
potential well is bordered by a close barrier to the left and a far bar-
rier to the right, barriers that go away during the free diffusion stage
of the driving protocol. The intermediate driving frequency allows
the particle’s W2 free diffusion to make it past the left barrier more
frequently than it passes the right, hence the current. At a fixed fre-
quency, that current is amplified by tuning D such that the typical
diffusion length exceeds the distance from the well to the left bar-
rier but not to the right. Our work supplements this single-particle
understanding to include the interacting neighbors whose presence
frustrates the flow.

That frustration decreases each particle’s effective diffusion
constant, but in a manner that is qualitatively distinct from merely
tuning D to smaller values. To appreciate the difference, imagine
starting with the Nocc = 1 ratchet with D = 40 and slowing the diffu-
sion either by decreasing D directly or by increasing Nocc. Whereas
decreasing D can enhance the asymmetry and amplify per-particle
current [red curve of Fig. 2(b)], slowing diffusion by jamming always
attenuates the per-particle current [red to blue curves of Fig. 2(b)].

The jamming-induced drop in per-particle current persists
across different driving frequencies, but Fig. 2(a) shows that the
extent of current attenuation is frequency dependent. In fact, the
frequency of maximal current shifts higher as Nocc increases. To
understand this trend, it is useful to convert the time-evolved BTTN
state into a spatiotemporal evolution of particle density. Although
our initial motivation for the BTTN TDVP was to compute the
mean scalar current �|̄�, the converged BTTN contains much more

information about the dynamics. For example, all but one site of the
BTTN can be traced over to leave the probability of occupying the
remaining site. Figure 3 shows the particle densities computed by
repeating the partial trace for all times and at all lattice sites. Those
many-particle densities rationalize the frequency shift of Fig. 2(a).
At low frequencies, the particles have time to relax into the poten-
tial well, concentrating them together so volume exclusion effects
are significant. At higher frequencies, the density is more uni-
formly distributed throughout the period because the particles do
not have enough time to settle in the bottom of the well before
the potential is switched. Due to that more uniform density, the
high-frequency ratchet is less strongly attenuated by interparticle
interactions, manifesting as a shift in the peak frequency.

VI. DISCUSSION
We have demonstrated how a many-body 1D flashing ratchet

responds to volume exclusion. In doing so, we have highlighted
that tensor networks offer a tantalizing new way to study classical,
many-body time-dependent steady states. The time-dependent mas-
ter equation we solve has traditionally been approached by sampling
realizations of the process via the Gillespie algorithm or by propa-
gating an initial distribution through time. Evolving the distribution
is appealing because it obviates the noise of trajectory sampling and
effectively integrates over all trajectories—rare and typical—but the
approach has always been limited by the size of the state space.
Whereas the one-body calculation is readily solved via a matrix
exponential, the many-body ratchet’s rate matrix grows combinato-
rially with system size, having a dimension equal to N choose Nocc.
For the N = 32, Nocc = 16 calculations we perform, a mere construc-
tion of the rate matrix with order 1017 elements would have been
utterly impossible, not to mention time-evolution with that object. It
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is remarkable that, even in the face of that combinatorial explosion,
the tensor network approach offers a way to evolve distributions
rather than trajectories.

Although it is possible to evolve the distribution, is it worth
the complexity and the computational expense? That is to say, can
this BTTN methodology outperform the extremely flexible and effi-
cient Gillespie approach? As discussed in Ref. 54, it appears that the
answer depends on the particular calculation. Trajectory sampling
with the Gillespie algorithm typically computes average proper-
ties a few orders of magnitude faster than the BTTN method, but
the BTTN approach offers advantages in regimes where sampling
becomes hard, e.g., when targeting rare events or propagating with
a time-dependent rate matrix.58 Furthermore, as a Monte Carlo
approach, trajectory sampling requires a large ensemble of trajec-
tories to be simulated, and that ensemble must be resampled (or
reweighted) if system parameters are altered. By contrast, in learn-
ing a tensor representation for the evolution of probability, the
BTTN calculations for one set of parameters can be leveraged as
a seed to more rapidly converge dynamics under another set of
parameters.
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