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Exoskeletons are promising physical augmentation tools that have shown potential to transform civil engineering
operations, but the training is inherently challenging due to the diverse exoskeleton designs, functions, and
guidelines across different occupational sectors. Traditional hands-on exoskeleton training is time-consuming
and resource-extensive, while virtual training, such as video demonstrations, is ineffective for motor skill
learning needed for the exoskeleton. It is unknown if an enhanced virtual environment can facilitate motor skill
gaining for exoskeleton training. This paper proposes a haptic-based sensation transfer approach that migrates
the egocentric motor experience of an expert exoskeleton user to another novice user, via a passive haptic system
in virtual reality. The result of a human-subjects experiment (n = 30) showed that the proposed haptic-based
sensation transfer approach significantly improved the motor learning rate in exoskeleton training, and vali-
dated the effectiveness of virtual training for even motor-intensive tasks. The proposed haptic-based sensation
transfer approach can enrich the embodied motor learning experience and thus can benefit broader applications
of motor training at work. It is worth exploring optimal haptic configurations in the future, to enhance

embodiment whilst avoiding potential over-reliance on feedback.

1. Introduction

The labor-intensive nature of the construction industry makes con-
struction practitioners more frequently exposed to work-related
musculoskeletal disorders (WMSD) [1]. The construction industry’s
WMSDs rate was about 29% higher than all other industries combined in
2019 [2]. The back and the shoulder were the most impacted body re-
gions, respectively accounting for 43% and 16% of all cases, with a
median of 8 and 25 lost workdays [3]. This high burden of WMSDs is
attributed to the high physical demands of construction work, involving
overuse associated with frequent and repetitive exposures to well-
documented risk factors such as lifting, bending, carrying, use of
hand-held tools, or non-neutral/prolonged static postures [4]. To help
reduce the occurrence of WMSD in the construction industry, there is an
increasing interest in exploring the use of exoskeletons to augment
users’ physical capabilities and provide additional support [5]. Exo-
skeletons, defined as wearable, assistive devices, comprised of joints,
links, and actuators to assist or support the physical capacity of the
wearer [6,7] are emerging as innovative and promising solutions for

* Corresponding author.

reducing the physical demands on severely impacted body regions such
as the shoulders and back [8,9]. For example, passive exoskeleton sys-
tems have been utilized to support construction workers in repetitive
handling tasks, which can effectively reduce lumbar erector spinae
muscle activities, improve comfort, and reduce perceived pressure [10].
Yet, despite several successful laboratory studies showing the effec-
tiveness of exoskeleton technologies [11-13] and their rapid pace of
commercialization, there are few successful examples of successful
deployment. Broader adoption of exoskeleton technologies in con-
struction operations can be potentially transformative for improving
worker productivity and safety in construction.

In terms of practical applications, current evidence suggests that the
effectiveness of the exoskeleton implementation in operations is largely
driven by the specific task contexts and users’ characteristics [8].
Certain types of exoskeletons are more appropriate for given industrial
tasks than other tasks. Within a chosen exoskeleton, different configu-
rations and motions (e.g., bending angle) trigger different torque out-
puts which further lead to varying restrictions on safe ranges of motion
[14]. Correspondingly, the users may also have to engage in a variety of
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different movement strategies to optimally derive the best benefits from
an exoskeleton: for instance, the springs in a passive back-support
exoskeleton would engage only when the trunk bent by more than a
certain angle. So, if a user only squatted down to handle loads without
any bending, they would not experience the beneficial physical effects of
the exoskeleton while lifting the load (compared to some degree of
bending the back to achieve the same motion). Misunderstanding of
exoskeleton capacities and restrictions can also present users with a false
sense of security, and when applied to tasks where their use is inap-
propriate, exoskeletons may also interfere with safety [15]. Exo-
skeletons also have a variety of torque profiles to choose from. From a
sensory perspective, the enhancement of human physical capacity has
the potential to make the user unaware of their contribution to the
motion (versus the device contributions), and hence have difficulty in
predicting the outcome of the human+exoskeleton system, thereby
potentially losing balance or moving unintentionally beyond safety
ranges of motion and torques [16]. Hence, it is critical to develop good
training programs that allow a user to safely explore an exoskeleton’s
capacities and understand their benefits and risks, before extensively
using them in safety-critical environments. This is all the more impor-
tant as powered exoskeletons are now being developed, which have
significantly greater augmentation potential, thereby accentuating the
potential sensorimotor deficits described above: early evidence points to
the need for training to utilize such devices safely and effectively [17]. A
motor training system that enables users to experience various types of
exoskeletons and various motion tasks to develop an understanding of
exoskeleton properties and safety ranges, while developing necessary
human motor skills for the safe and effective operation of the exoskel-
eton, would support such needs. Given the limited accessibility (from
the user’s side) and the high cost associated with physical prototype
development and human subjects evaluations of exoskeleton systems
(from the developer side), enabling a virtual and distributed learning
experience to experience exoskeletons, would accelerate both exoskel-
eton development and use.

This paper proposes a distributed exoskeleton motor training system
based on the so-called “sensation transfer” that migrates the human
motor experience from a person wearing a real exoskeleton to another
person who does not have the access to the exoskeleton. The sensation
transfer is realized through a whole-body hapto-tactile system in an
immersive virtual environment. The active motion data of the expert
exoskeleton user is collected via motion tracking sensors. The tracked
motion data can be then “displayed” and reproduced on the novice
user’s end via the media of haptics. A Virtual Reality (VR) headset,
motion tracking devices, and haptic devices are used to digitalize the
sensorimotor experience and transfer it to a prospective exoskeleton
user via the haptic stimulation. A VR headset is used to create an
immersive virtual environment that enables risk-free training for
various scenarios and tasks. A whole-body tracking device (MVN
Awinda, Xsens Technologies B.V., the Netherlands) captures an
exoskeleton user’s whole-body kinematics and streams them into the VR
environment. Digitalized body motions of the exoskeleton user are
reconstructed in VR to create an egocentric training experience, and
data are also collected from the VR interaction logs to enable real-time
assessment. As a novel measure, the haptic device generates haptic
guidelines to transfer the sensation of wearing an exoskeleton including
the feeling of touching and resistance in movement. Combining these
systems, a virtual training environment can be simulated to transfer the
human motor experience of wearing an exoskeleton with visual and
haptic guidance in correspond to the real-time motor performance of the
user. We conducted an experiment to assess the feasibility and effec-
tiveness of this motor training system. We pre-recorded motions from an
exoskeleton expert while he used a passive back-support exoskeleton to
perform lifting tasks, and re-constructed the motions in VR. We recruited
30 novice users and instructed them to follow the motion and helped
them recreate and learn the human motor experience in VR under
different view perspectives and the novel hapto-tactile system. We
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implemented a within-subject experiment design with randomized
condition orders to minimize the statistical intervention from cross-
condition learning effect and individual differences. The rest of this
paper addresses the point of departure, framework design, experiment
pipeline, and findings.

2. Related work
2.1. Exoskeleton and exoskeleton motor training

Robotic exoskeletons can generally be classified according to the
intended application domain [18]: rehabilitation robots that focus on
lost motor function recovery, functional assistive robots like assisting
grasping for disabled people, and occupational exoskeletons for
enhancing/augmenting healthy industrial workers. Occupational exo-
skeletons have received increasing attention for augmenting human
physical capacity and reducing bodily physical demands in a wide range
of industries such as the military [19,20], medical [21,22],
manufacturing [23-25], agriculture [26,27], and construction [5,8,10].
Specifically, previous studies [5] have suggested that exoskeletons show
strong potential for reducing the occurrence of WMSD during con-
struction operations that involve repetitive motion [28], kneeling or
crawling [22], awkward position [29], and vibrations. For instance,
back-support exoskeleton use (e.g., BackX [30], Laevo [31], SPEXOR
[32]) produced reductions in trunk muscle activity and spinal
compression force during bending and lifting tasks, which could have
the potential for specific tasks in construction trades like brick masonry,
concrete work, and roofing [5]; and shoulder-support exoskeletons (e.g.,
Eksovest [33], ShoulderX [34]) that could provide external joint torques
and/or re-distribute the load and thereby reduce shoulder load during
overhead work could be applicable to tasks in carpentry, electrical, and
painting work [5]. Since many of these previous studies have utilized a
variety of exoskeletons with different mechanical design features, and
since different exoskeletons may hence need distinctly different strate-
gies for ideal operation, universal training strategies are neither plau-
sible nor likely to be successful. Hence, as an exploratory and novel
paradigm, we attempted a new training protocol where instead of
playing back videos or using voice instructions to a novice user, we
captured an expert’s use of a complex exoskeleton and transferred the
motion patterns to a novice user through haptic sensations. As an expert
can be considered to have already adapted to using an exoskeleton, the
mechanical features of an exoskeleton can be considered to be reflected
in the expert’s motion patterns. With the advent of Industry 5.0, where
the focus is on maintaining flexibility in production by combining
humans and robots collaboratively, exoskeletons are thus promising
tools for the future industrial workforce [35] to ease WMSD risks and
increase productivity [5].

Exoskeleton control methods [18,36] generally involve a complex
interaction between human and robotic exoskeletons [37]. Although the
control and usage of exoskeletons are generally safe, training for using
the exoskeleton is essential [38]. In addition, to acquaint new users with
the operation methods, users should also be familiar with the triggering
postures and safety ranges which are important knowledge and motor
skills for ensuring safe operation [39]. For instance, the exoskeleton that
Wang et al. [40] designed utilized the center of mass of the user to
control the mechanical response. If users failed to move the center of
mass in a defined pattern, the exoskeleton would not be actuated, and
potential safety hazards could occur. Other than triggering exoskeletons,
the user’s motion could also impact the effectiveness of the exoskeleton.
The experiment that Young et al. [41] performed on a pneumatically
powered exoskeleton proved that the torque output profile and the
user’s rectified physical load were closely related to the user’s motion. In
worse cases, improper motion like misalignment between exoskeleton
joints and user’s joints can cause body injuries such as bone fracture
[39]. Thus, it is critical to train the users on what’s the correct motion in
the exoskeleton and how to perform the motions [42].
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Typical exoskeleton training adopted hands-on training with multi-
ple sessions that spanned several weeks [42-44]. However, the broader
implementation of such training methods not only faced challenges in
financial feasibility and time efficiency [45] due to the expensive
exoskeleton products but also exposed users to higher risks. In addition,
exoskeleton designs varied with the use cases [8,46], which further
reduced the availability and accessibility of hands-on exoskeleton motor
training [8]. An accessible training method that can facilitate exoskel-
eton motor training by accelerating the convergence when real
exoskeleton systems are not available remains a question to be
answered.

2.2. VR and haptics for human motor learning

With the capability of providing immersive multimodalities experi-
ence [47,48], VR has been rapidly recognized and implemented for
training [49,50]. Motor training is one of the emerging topics for VR
implementation [51]. In motor training tasks, VR can provide multiple
forms of supporting information including movement visualization,
performance feedback, and contextual guidelines [51,52]. Among the
different modalities, visual feedback is the most commonly adopted
method for human motor learning in VR. Doniger et al. [53] conducted
an experiment with the focus of studying the influence of VR visuali-
zations on the lower extremities motor rehabilitation of Alzheimer’s
disease patients, and the result suggested the augmented visual infor-
mation in VR played a key role in improving motor learning. Lee et al.
[54] tested a VR motor training scheme for stroke patients’ upper ex-
tremities rehabilitation and found that the visual information in VR was
significantly effective.

A VR-based motor skill training paradigm also enables self-directed
learning, with a virtual instructor and automated feedback, where
trainees can practice motor skills as long and many as they wish without
further costs, in a safe manner [55,56]. In addition, game-like exercises
or activities and immersive interaction in VR may promote enjoyment
and motivation for training, which may enhance engagement in training
and thus promote efficient human motor learning [57]. VR-based
human motor learning studies have also been pioneered in various do-
mains, including rehabilitation [58], military [59], and industry [60],
using game-like scenarios and different types of feedback modalities to
promote human motor learning.

Other than VR, haptic guidance is widely used for motor training as
well [61,62]. However, it is still not clear whether haptic guidelines are
effective for the human motor learning process [61]. Some scholars
implemented vibrotactile guidelines to instruct motion spatial pattern
[63] and force amplitude [64], and reported that motor task perfor-
mance was significantly improved. Bark et al. [65] tested arm motion
learning with visual and vibrotactile feedback, and discovered that the
vibrotactile group had significantly lower motion errors. In contrast,
Sigrist et al. [66] reported that people performed worse during haptic
feedback condition than visual feedback condition in a rowing-type task.
On the one hand, a consensus conclusion on the effectiveness of haptic
sensation in motor training has not been reached. On the other hand, the
existing literature focused on partial bodily motions such as hand mo-
tion and arm motion. The body coordination function of whole-body
motion has not been thoroughly discussed. In addition, VR and haptic
guidance have great potential to be applied for exoskeleton-related
motor training, which remains an area that is under-researched.

3. Methodology
3.1. System overview

As described in the introduction, although it is ideal to have new
users trained with real exoskeleton systems, the financial cost (as well as

any unintended risks) are current barriers for implementation. Thus, we
would like to provide a scenario of training without real exoskeletons, as
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an intermediate step, to improve the safety and efficiency of further
training when the user can access a real exoskeleton. We propose a
whole-body haptic system for this purpose utilizing user sensation
transfer as shown in Fig. 1. The system consists of an exoskeleton expert
module, offline data processing, and an exoskeleton novice user module.
The exoskeleton expert module collects and models the motion to be
trained. The offline data processing module processes the collected
motion data and configures the motion in VR, while instantiating visual
and haptic guidelines to assemble the expert’s motion dataset. Then the
dataset is transferred to the exoskeleton user’s module where novice
users can follow the motion in VR with visual and haptic sensations.

This framework establishes a pipeline that transfers the visual and
haptic effects of motions from an expert to exoskeleton novice users via
the game engine processor.

3.2. Exoskeleton expert module

The exoskeleton expert module is used in the phase for the expert
motion collection. Exoskeleton experts are instructed to perform a
selected training task in a defined tracking space wearing exoskeleton.
The training is defined by the type of motions and the model of the
exoskeleton. Exoskeleton types and models are chosen according to the
motion characteristics to fit the task context or can be customized ac-
cording to the objective of training managers. A variety of motions can
be collected and assembled. Whole-body motion kinematics was
collected (MVN Awinda, Xsens Technologies B.V., the Netherlands
[671), with 17 sensors deployed at proper positions on the exoskeleton
expert according to product specifications to track and document the
whole-body motion at a frequency of 60 Hz. The collected data shows
tracking positions and corresponding time series spatial position and
rotation data, in addition to the logic correlation between components.
Fig. 5 (a) shows an example in which a back-exoskeleton expert is
wearing the XSENS sensors for motion capture.

3.3. Offline data processing

Expert motions are transferred to a game-engine-based offline data
processing pipeline. This pipeline reconstructs visual and haptic char-
acteristics from the raw motion data. The first step is re-constructing the
expert’s motion in VR through data formatting, body components
registration, and configuring animation. The collected XSENS data can
be transformed to film box (FBX) format which is accessible by Unity
Engine in terms of hierarchy time-series datasets [68]. To establish the
connection between FBX files and VR avatars, the FBX files are manually
or automatically configured in Unity depending on the data collection
mode. The two middle pictures in the Fig. 1 Motion Reconstruction in
VR block show the key point registration process where the XSENS
tracked points are mapped in a VR-supported virtual avatar. This
configuration explicitly links the virtual avatar’s whole-body motion to
the real-life expert’s motion. Then the configured files can be accessed as
animation documents in Unity which are further attached to animation
controllers to control the virtual avatar’s motion. By configuring the
animation controller with a virtual expert, the exoskeleton expert’s
motions in the physical world can be reconstructed in VR. The recon-
structed animations are used as visual guides for the training.

The haptic guidance is configured based on the recorded motion in
the form of hapto-tactile generated by bHaptics devices [69]. We
designed a whole-body haptic stimulation system based on the bHaptics
suit and the corresponding vibrators (Knoxlabs Inc., Los Angeles, CA).
Fig. 2 (a) illustrates the configuration and deployment of the system. As
shown, the upper body is equipped with a Tact-suit vest that includes 40
vibrotactile motors. Haptic sleeves with 12 motors each are placed at the
left and right elbow. Two haptic gloves with 6 motors each are placed on
the left and right hands respectively. The selection of body locations is
based on the consideration of the key body parts in intensive human
motor activities. Based on these principles, we placed the haptic
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(2)

Fig. 2. (a) Haptic Simulation System Deployment; (b) Joint Layout for Whole-body Tracking and evaluating the performance.

vibrators on two knees instead of feet. The vibration magnitude is
adjustable based on the manufacturing guidelines of bHaptics devices
(120 Hz at 3 V input, with a strength of 5 g), depending on the degree of
discrepancy between actual motion and target motion, such that closer
the motion to the required target motion, the stronger the vibration
experienced by the user.

It should be noted that the VR game engine is calculating and
broadcasting data frame by frame instead of continuously. In VR, the
hapto-tactile feedback is triggered at certain frames. The VR update
frequency is typically not the same as the motion capture frequency of
expert behaviors. In addition, the specific points in space tracked by the
XSENS system may not be the same as the hapto-tactile points. For
instance, SteamVR, a widely used VR platform, updates VR frames at 90
Hz by default; VR tracking devices (e.g., HTC VIVE [70]) track a hand
using the position of the hand-held controller while the XSENS IMU

(b)

system tracks a band worn at the wrist. This misalignment makes it
infeasible to set up haptic feedback directly from the collected data. This
problem can be solved by motion reconstruction. We tuned the VR fre-
quency and selected new tracked points in VR to resample and log the
spatial-temporal information. The resampled data thus contains the
position of new body components with desired frequency. For example,
the position of the right palm is computed at 90 Hz although the original
XSENS data only had the position of the right wrist at 60 Hz. This
resampled data, which specifies the location of the expert’s desired body
parts at desired time points, is then used as training data for the novice
users.

After resampling the points of interest in VR, to create haptic guid-
ance, the basic principle is to instantiate invisible haptic senders at the
expert’s position and haptic receivers at the novice user’s body. Hapto-
tactile feedback will be triggered once the sending and corresponding
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receivers collide with each other in space. The flowchart on the right
side of Fig. 1 shows the logic behind haptic guidance. Once training is
started, starting from the first frame of the whole-body motion of the
expert, frames are refreshed in real-time. Each frame is subjected to a
computational process to determine the haptic response according to the
current novice user motion. In each frame, the program will activate the
haptic senders that are within a certain period that covers k frames
before and k frames after the current i frame. In other words, haptics
will be triggered when haptic receivers (from the novice user) collide
with any haptic senders (from the expert) that are no more than k frames
before or after the current frame. Fig. 3 shows the time correspondence
between the novice user’s timeline and the expert’s timeline. A novice
user’s timeline represents the online process that flows corresponding to
real-time. The expert’s timeline is the time-series data that we processed
in previous steps and is stored offline. The value of k can be customized
according to desired tolerance and computational resources. A lower k-
value means a more accurate tracking and a larger k value results in a
larger temporal tolerance, and the parameter k can be set according to
both task needs (how accurate does the training need to be), and the
availability of computational resources. The expert’s effective frames
are nonrecurrent in boundary conditions. Depending on the haptic
pattern of bHaptics devices, a single vibration signal might last longer
than one frame, which can result in a stacked haptic activation signal. To
solve this problem, stacked haptic activation signals need to be cleared
so the signals will not accumulate or cause residual effects. The activa-
tion of the expert’s frames can be turned to be continuous as shown in
Fig. 3 or can be discrete, for instance, activating once every t frames.
According to how sparse the expert’s frames are activated, discrete
activation of the expert’s frame might lead to an inaccurate haptic
feeling due to some missing frames. The advantage of a discrete pattern
is to save computational resources thus lowering the hardware burden.

Each frame of both novice user and expert contains a matrix of po-
sitional data of all interest points as expressed below:

—
P, XYt 2
—
X z . . .
A= Prj®2 »n 2 ,mis the number of interest points
Pm Xm Ym Zm

The program will run through all body components (interest points)
from P—f to P—,,: per user’s frame. A body component at a certain frame
has a 3-dimensional position ?, where a haptic receiver is activated. The

algorithm checks whether the distance between P and any active haptic
senders with the same body component ID are smaller than a threshold
value a. If no effective sender is found, the program will continue to
check the next body component until all components are finished.
Otherwise, if any effective sender is within the threshold range, the al-
gorithm will trigger the hapto-tactile feedback in the current frame at
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the corresponding body components and then continue to loop overall
body components. Once a Bhaptics device is triggered, the embedded
motors will vibrate with a pre-determined pattern. This algorithm runs
in each frame until the training finishes.

This haptic configuration calculates the accuracy of motion in real-
time and provides haptic feedback to reward correct motion. Haptic
feedback functions as a positive feedback which denotes relatively ac-
curate motion. When the exoskeleton novice user repeats the motions
accurately, i.e., following the desired motion trajectories and velocities
in the 3D body motion space, the haptic devices provide hapto-tactile
feedback, creating an illusion of physical contact, or the feeling of
wearing an exoskeleton. When the exoskeleton user veers off the track of
more than a customized threshold value, the haptic-based sensation
disappears completely, generating a feeling of having taken off the
exoskeleton. Hapto-tactile is triggered once per activated haptic spot
with an intensity of 50% of the maximum bHaptics device intensity. A
demonstration video can be found here: https://youtu.be/S9bqf7fwaAQ

3.4. Exoskeleton user module

The visual guidance (reconstructed expert’s motion) and haptic
guidance are assembled to provide novice users with appropriate motion
guidance in VR. While creating the data in VR, to tackle the differences
in height between novice users and the expert, the expert dataset is
scaled in space according to each novice user’s height. VR motor
training can be conducted under different virtual environments,
mimicking various working conditions. Tuning the visual and haptic
configurations can also provide different training conditions. Sensors
from HTC VIVE are used to track the novice users’ real-time whole-body
motion [71]. The number of HTC VIVE sensors and their locations need
to be carefully designed to track motions accurately while minimally
interfering with the motion. The VIVE trackers are placed on the lateral
sides of the right and left elbows, on the back, and on the right and left
feet as shown in Fig. 2(b). The HTC VIVE controllers and headset also
track the hands and head respectively. The captured data is instanta-
neously streamed into Unity engine to establish a connection between
novice users’ physical motions in the real world and their virtual bodies
in VR. So, the novice user can see their body movement in VR which
provides an immersive egocentric training scenario.

Visual guidance is delivered in the form of virtual experts demon-
strating the performance of sample motions for the novice user to follow.
Novice users can observe the motion from multiple view perspectives (i.
e., the third-person view and the first-person view) and follow along.
When activated, haptic receivers are activated on the novice user’s body
while haptic senders are activated and deactivated in space according to
the time. Fig. 3 (a) and (b) demonstrate the VR visual and haptic
guidelines for users at different stages of motion. The semi-transparent
figure together with the two solid figures is the visual guidance that

FrameID 1 2 3 i-k i-1 i it i+k -2 n-l #
User .\
Expert ‘ ‘ . ‘ ‘
H_/
k frames
. _
Sy
k + 1 frames

Fig. 3. Time Correspondence between novice user’s and expert’s timeline; Solid green circle denotes the current frame in which the novice user is being trained;
Solid blue circles denote effective (active) frames that expert is performing the motion. When the novice user’s motion in the current frame is the same as any
effective expert frame, hapto-tactile will be triggered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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users can observe and follow. A semi-transparent figure is a visual for an
egocentric expert tutor, where users can align their body with the expert
and observe the expert’s motion from a first-person view. Solid figures
are the virtual experts in the third-person view. The red spheres inside
the semi-transparent figure demote the points at which users receive
haptic guidance. The haptic senders are invisible when implemented,
and are rendered with red color in Fig. 4 only for demonstration
purposes.

4. Human subjects experiment
4.1. Overview

This haptic-based sensation transfer framework establishes a pipe-
line for transferring the motor skills of an exoskeleton expert to a novice
user. Compared with traditional motion training methods that use 2D
media (slides, documents, videos) or demonstration-and-follow
methods, this framework enables an egocentric training experiment
and haptic-based sensation transfer. We conducted a human-subject
experiment using 30 healthy participants, to test the effectiveness of
the proposed framework, as well as the marginal contributions of
haptics-only against 3rd person view motor training method.

4.2. Experiment tasks

Since bending and lifting are common motions that result in WMSD
in construction operations [1,72], we chose a standard Direct Ground
Lift (DGL) motion [73] as the target motion for exoskeleton training.
DGL started with half kneeling and then bending at the back to reach the
object and lift it. After standing up with the object held, the DGL
performer needed to walk to the destination and finally lay the object on
a table.

A back exoskeleton was used to assist DGL motion. An exoskeleton
expert was recruited to perform DGL motion wearing a back exoskeleton
using standard approaches. Fig. 5 (a) shows the expert using a BackX
exoskeleton system in the DGL task. XSENS trackers are used to track the
expert’s whole-body motion. The exoskeleton expert repeated the mo-
tion multiple times, and that each motion had small deviations in speed,
timing, and amplitudes that characterize the natural variation in human
movements. The recorded motions were processed through offline data
processing to initiate visual and haptic guidance as shown in Fig. 5(b),
which were used as the expert tutor motion for this experiment.

Recruited subjects were instructed to perform the exoskeleton tasks
in the user module. View perspective as a variable that was proved to be
impactful for the learning process, and hence we added it as a control
variable in this experiment. To validate the effectiveness of haptic-based
sensation transfer, we designed four conditions with variances in view
perspective and haptic feedback: Third-person view (TPV), Third-person
view with Haptic (TPVH), First-person view (FPV), and First-person
view with Haptic (FPVH). TPV, in which novice users simply observed
replayed motions in third-person view with no haptic cues, served as the
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baseline control condition to which all other experimental conditions
were compared. The experiment procedure block in Fig. 6 showed some
visuals of conditions. Human figures denote expert’s motion. Yellow
icons in space denote haptic senders and were invisible during the
experiment.

In the TPV condition, two virtual experts performed correct motions
in front of the subjects. One expert was facing the participant while the
other had their back facing the participant. Participants were asked to
observe the two virtual experts’ motion whilst following the motion as
accurately as possible, simulating a typical traditional demonstrate-and-
follow method. In the TPVH condition, haptic feedback was added, i.e.,
novice users could feel vibrations on their body parts with the haptic
system when the corresponding body components were moving accu-
rately. In an egocentric visual condition, or “FPV”, novice users could
observe the motion from the first-person perspective. We set a virtual
avatar semi-transparent (Fig. 4, Fig. 6) so the novice users could see
through the expert while observing their motion. Instead of seeing the
two experts that exhibited the motion in the third-person view, they
observed a semi-transparent virtual expert performing target motions
standing at the same location as the novice users. The novice users were
instructed to align with the virtual expert before starting and follow the
motion accurately. The novice users observed the virtual expert from an
egocentric view, simulating the visual effect of doing the motion on their
own. In addition to FPV, the FPVH condition activated positive haptic
feedback when the novice user’s motions were correct. In all conditions,
novice users’ tasks were to follow the experts’ motions as accurately as
possible. This controlled experiment design could distinguish the
effectiveness of haptic-based sensation transfer by comparing TPV with
TPVH, and FPV with FPVH, while providing implications on the role of
view perspectives. Novice users were asked to perform the task for six
continuous trials per condition to examine performance improvements
and learning.

The hardware and parameter configurations used were the same
across all conditions. The bHaptic devices were placed at points of in-
terest as described earlier. The haptic senders (expert’s frames) were
continuously activated with a time window of 100 ms (90 Hz, k = 4).
The haptic spatial tolerance a was 10 cm.

4.3. Experiment procedure

Fig. 6 shows the experiment procedure. Thirty healthy participants,
with no recent (last 12 months) musculoskeletal or neurological disor-
ders were recruited in this paper. Eligible participants were briefed on
the experiment’s purpose and procedure. We facilitated the participants
to set up the VR headset, VIVE trackers, and the bHaptic devices. Then
we demonstrated the use of the devices to the participants. This exper-
iment adopted a within-subject design to minimize individual differ-
ences [74]. To rule out the initial adaptation process to our system from
the final data, we demonstrated the experiment task (standard DGL
motion) in great detail and allowed participants to practice an example
task with the system for 3 min. This allowed enough time for the
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Fig. 4. Visual and Haptic Guidelines in Exoskeleton User Module.
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Fig. 5. (a): DGL by an experienced exoskeleton expert with a back exoskeleton. (b): Re-constructed VR expert according to the DGL motion by the experienced

expert. (c): Training scenario where a system user (novice user) is following the DGL motion in VR.
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Fig. 6. Experiment Procedure.

participants to familiarize themselves with the system and the task.
After the pre-experiment briefing and training, we formally started
the experiment. Each participant needed to go through all four condi-
tions. The sequence of four conditions was randomly shuffled to further
reduce the learning effect. A total of six training trials plus one retention
trial were collected in each condition to reduce the significance of
random error. In contrast to training trials, the retention trial was per-
formed without visual cues or haptic guidance such that the participants
needed to rely on their acquired muscular memory to repeat the motion.
A NASA TLX questionnaire was conducted after finishing all 6 trials in

each condition. Participants were allowed to take a short break between
each condition. We collected the whole-body motion data during the
experiment, which was further processed in data analysis. This study
was approved by the Internal Review Board (IRB) at UF under
IRB202100144.

4.4. Data collection

4.4.1. Data structure
Fig. 7 shows an example of a participant performing the task. After
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Fig. 7. Example of a participant performing the task.

reconstructing the virtual whole-body motion, we sampled the time
series of the 3-dimensional spatial data of both hands, both elbows,
waist, and both feet. The seven sampled positions were used to evaluate
motion performance. Fig. 8(a) shows a visualization of the trajectory of
these sampled positions from a randomly selected trial. Each point in
Fig. 8(a) represents the corresponding spatial position in one frame.
Because the data were sampled with the same interval, the density of the
data indicates the moving speed — with a faster movement leading to
sparse data points. It shows that the data points were denser at some
locations than others, suggesting that the participant’s moving speed
varied during the motion.

4.4.2. Motion performance evaluation methods

Expert’s and novice user’s motions were recorded in the same game
engine environment with the same initial position. The explicit in-
struction provided to participants in this study was to copy the behavior
of the experts to the greatest extent possible. If this were a naturalistic
scenario where people were asked to accomplish a task, different in-
dividuals will show variability in “how” they accomplish the task. But
given this experiment was designed for asking novices to mimic the
expert motions, the performance measurement in this study focused on
the motion trajectory alignment, i.e., how the motion trajectory of the
participants varied from the desired one. This is the most relevant
measure in the context of a motion task. We quantified human motor
performance by comparing the cumulative spatial offset across the seven
selected body components between the expert’s motions and the
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participants’ motions, with the idea that the greater the error in cu-
mulative joint position difference (discrepancy) between expert’s mo-
tion and the participants’ motion, poorer the performance. Eq. (1)
describes the how to evaluate the performance by measuring the motion
discrepancy:

sy =" (7(im) &)

where g(i) is the discrepancy for trial i, m is the number of selected body
components (shown in Fig. 2(b)), f(i,n) is the discrepancy between the
participant and expert at trial i for component n. Fig. 8(b) compares a
participant’s spatial position (green scatter plot) against the expert’s
motion (red scatter plot). The criteria of selecting body location for
analysis is whether the motion of such body location could be impacted
by exoskeleton. In this study, we used BackX exoskeleton as a use case.
BackX has passive springs at the hip joints on both sides, and these
springs are producing additional torque at the hip joints and lower limb.
Meanwhile, BackX imposes force on the chest to balance the overall
mechanics [10]. The sum of the external torques, and any restrictions in
joint range of motion produced by wearing the device are the main
reasons to expect changes in movement strategies [11]. Changes in joint
torques and muscle activities among hip, lower limb and chest could
impact trunk and lower limbs motion. In addition, not only the chest is
the positional base of shoulders and arms, but also the contraction of
pectoral muscles could control the overall motion of arms in a higher
level [12]. Thus, chest position and muscular activities are closely
related to the motion of upper limbs. Although there is not sufficient
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Fig. 8. Motion Trajectory: (a) spatial position of selected body components including right and left hand, right and left elbow, waist, right and left foot; (b)

comparison of the trajectories between a participant and the expert’s motion.
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evidence showing how back-support exoskeleton impacts the motion of
upper limbs, it is still necessary to include upper limbs in our analysis
considering that back-support exoskeletons impact chest muscle activ-
ities, especially during bending and lifting tasks [10]. Thus, we sampled
7 body points (shown in Fig. 2(b)) across upper limbs, lower limbs, and
trunk to evaluate users’ motion in this study.

f(,n) is calculated in Pairwise Euclidean Distance (PED) and Inter-
polated Dynamic Time Wrapping (IDTW) to extract difference patterns.
PED has been widely used for spatial similarity calculation [75] [76].
PED is indicated by the average Euclidean Distance between the par-
ticipant’s position and the expert’s position for each frame and each
component as shown in the equation:

_ Z;(:l (Pi,mk _p;.u,k) _ Zj‘:‘ (dxf + dyz + dzi)
t t

(2)

fin)

where i and n are the trial ID and component ID respectively; t is the
number of effective frames; p and p’ are the spatial arrays of the
participant and expert respectively; dxk, dyk, dzxare the Euclidean dis-
tance between participant and expert at frame k in %, y, and z di-
mensions. PED took the temporal correlation into account. In other
words, a mismatch between velocities is considered in PED, which cal-
culates the spatial-temporal discrepancy as shown in Fig. 9(a).

On the other hand, IDTW emphasizes the spatial discrepancy only.
The datasets are interpolated to smooth the curve such that the influence
of velocity is decreased. Then DTW method is used to calculate the
spatial discrepancy. DTW is commonly used to compare the spatial
similarity between two temporal sequences which may have different
speeds. As shown in Fig. 9(b), DTW warps non-linearly in the time
dimension to find the optimal shape match between two spatial trajec-
tories. Compared with PED, DTW weakens the influence of time (speed)
and thus provides results prone to a shape comparison.

Both PED and IDTW are applied in this experiment to extract
different features.

4.4.3. Learning stage and learning rate

We collected 6 trials in each condition for each participant. In order
to examine if the human motor skill can be improved as the number of
training trials increases, we categorized the experiment trails into
different phases according to their sequence. The trials with clear in-
structions and guidance were considered as learning stages, while the
trials without any additional guidance constituted the retention stage.
To reduce random error, we grouped 2 trials into one learning stage, i.e.,
the early stage corresponded to trials 1 and 2, the middle stage corre-
sponded to trials 3 and 4, late stage corresponded to trials 5 and 6. The
task performance in each stage was evaluated by the average discrep-
ancy of the corresponding two trials.

Learning Rate (LR) is one of the most important parameters for
evaluating learning effectiveness. In this 3-stage learning task, we can
approach LR by dividing the late stage by the early stage. Considering
that the stage performances are measured by the discrepancy, we
calculate the inverse of the division, thus the LR 0 is calculated by:
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where D; and D3 are the discrepancy in early-stage and late-stage
respectively. If 0 is larger than 1, it implies positive learning. The
larger 6 is, the higher LR is.

5. Results
5.1. Overview

The participants included 11 females and 19 males. Participants’ age
ranged from 19 to 32, with a median value of 25 years old. The par-
ticipants on average did exercise 3.7 times per month with a median
value of 4 times. 20 out of 30 participants had experienced VR previ-
ously. We also collected the participants’ motor-control-related experi-
ences, for instance, Yoga, Kung Fu, or gym training with specific
muscular training goals. 18 out of 30 participants reported that they
have had muscle-related training. Table 1 summarized the demographic
factors.

5.2. Task performance

5.2.1. Whole body motion discrepancy

Fig. 10 shows the whole-body (all 7 tracked body components)
discrepancy data across all trials, conditions, and participants. Each data
point represents the average discrepancy in meters across 7 tracked
positions for all frames in one trial. Due to the complexity of whole-body
motion and cognitive burden, we observed random cases in which
participants cannot follow motion accurately. The average spatial dis-
crepancies varied from 5 to 35 cm, and sometimes higher. To eliminate
individual differences and form a comparison baseline, each subject’s
data was normalized by its standard deviation of discrepancies before
the statistical test. In a normality test (Anderson Darling Test), the
normality assumption was rejected (with a confidence interval of 95%
for both analysis methods).Left: spatial temporal result (PED); Right:
Spatial result (IDTW).

Non-parametric repeated measures (Friedman test) showed that
there were significant differences between conditions for both PED and
IDTW outcomes (p < 0.001), which implied that conditions did impose a
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Table 1
Demographic factors of recruited participants.
Demographic Factors Response Mean/ Median
Range Percentage
Gender Male/Female 63% Male -
Age 19-32 25.5 25
Exercise Frequency (Per Month) 0-12 3.7 4
Existing VR Experience Yes/No 67% Yes -
Experienced in motor control/ Yes/No 60% Yes -
learning (e.g, Yoga)
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Fig. 9. Pairwise correlation between two trajectories by using (a) PED; (b) IDTW.
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Fig. 10. Whole-body overall discrepancy distribution.

significant impact on the task performance. Then we sub-divided the
dataset into learning stages. Fig. 11 shows the task performance broken
down into early, middle and late stages.

We conducted a pairwise non-parametric posthoc test (Wilcoxon
signed-rank test) to estimate the effects of haptic feedback, and to esti-
mate the effect of view perspective, separately. The Wilcoxon pairwise
test was used to compare performances in the early stage, middle stage,
and late stage of learning, as well as the retention result and Learning
Rate (LR). Table 2 summarizes the Wilcoxon test results. PED results
were generally non-significant except between the early stage of FPV
and FPVH condition, with a p-value of 0.021; with FPVH condition
producing worse results than FPV in the beginning. This indicates that in
the first-person view, haptic feedback led to a deteriorated performance
in the beginning, and did not significantly influence performance in the
later stages. This may be because our subjects were not used to the
haptic feedback they received, or due to some extra cognitive burden
that subjects may have experienced. IDTW whole-body results were
significant in the overall performance between TPV and TPVH condi-
tions (p = 0.001), FPV and FPVH conditions (p < 0.001). In addition,
IDTW results showed a significant difference between the late stage of
TPV and TPVH (p = 0.030), and both early and late stages of FPV and
FPVH conditions (both with a p-value <0.001). Thus, haptic signifi-
cantly impacted the motion trajectory shape throughout the motion.
Meanwhile, all performances exhibited significant differences between
first-person view training and third-person view training.

In general, the performance in the retention trial was worse than in
the training trial, potentially due to the high spatial-temporal
complexity of this task. PED results showed that the residual effect
after training with FPVH was substantially different compared to after
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Table 2
Significance by Wilcoxon Test (whole-body performance).
Analysis Comparison p-value: p-value: p-value: p-value:
Method TPV V.S. FPV V.S. TPV V.S. TPVH V.S.
TPVH FPVH FPV FPVH
All 0.256 0.090 <0.001* <0.001*
PED Early Stage 0.457 0.021* <0.001* <0.001*
Late Stage 0.273 0.279 <0.001* <0.001*
Retention 0.633 0.098 0.893 0.063
LR 0.877 0.192 0.517 0.039*
1.078/ 1.109/ 1.078/ 1.088/
LR Mean 1.088 1.181 1.109 1.181
(Median) (1.062/ 1111/ (1.062/ (1.079/
1.079) 1.116) 1.111) 1.116)
All 0.001* <0.001* <0.001* <0.001*
IDTW Early Stage 0.059 <0.001* <0.001* 0.016*
Late Stage 0.030* <0.001* <0.001* 0.003*
Retention 0.191 0.705 0.345 0.874
LR 0.530 0.766 0.033* 0.171
1.010/ 1.129/ 1.010/ 1.007/
LR Mean 1.007 1.182 1.129 1.182
(Median) (1.001/ (1.045/ (1.001/ (1.002/
1.002) 1.064) 1.045) 1.064)

FPV (p = 0.098) and after TPVH (p = 0.063). Average retention per-
formance results showed that FPVH had the lowest discrepancy (best
performance) among other conditions.

Learning rate results were not significant between the conditions
with or without haptic. PED results’ learning rate had average and
median values of 1.078 and 1.062 in condition TPV, 1.088 and 1.079 in
condition TPVH, 1.109 and 1.111 in condition FPV, and 1.181 and 1.116
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Fig. 11. Discrepancy in learning stages (whole-body).
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in condition FPVH. IDTW results exhibited LR mean and median of 1.01
and 1.001 for condition TPV, 1.007 and 1.002 for condition TPVH,
1.129 and 1.045 for condition FPV, 1.182 and 1.064 for condition FPVH.
However, from the perspective of the average learning rate, the addition
of haptic accelerated the human motor learning process in general.

To further investigate the mismatch between PED and IDTW results,
we compared the distribution patterns. Table 3 summarizes the distri-
bution parameters of all conditions with different analysis methods.
Compared to the spatial-temporal trajectory (PED), the addition of
haptics in pure spatial trajectory (IDTW) increased the variances for
both view perspectives, which indicates that participants tended to
overcorrect their motion with haptic sensation.

5.2.2. Dominant hand

Haptics is an augmented sensation that may lead to cognitive over-
load in this relatively complex (full body) task [77]. The dominant hand
has more accurate motor positional control and sensation capabilities
[78] which might magnify the influences in motor training. In addition
to whole-body results, we analyzed the dominant hand results to
examine the role that haptics played in the body parts that people
generally have the most human motor control capability on. Fig. 12
showed the overall result distribution with both PED and IDTW. The
normality test failed for dominant hand data, so Wilcoxon signed-rank
method was implemented. Fig. 13 visualizes the dominant hand
discrepancy result.Left: spatial-temporal result (PED); Right: Spatial
result IDTW).

Friedman’s test showed that the participants’ dominant hands mo-
tion performances were significantly different in different conditions (p
< 0.001 for both PED and IDTW). Table 4 summarized the Wilcoxon test
results. PED method implicated that the spatial-temporal pattern be-
tween the first-person view with and without haptic was significantly
different in the late stage (p = 0.016) and LR (p = 0.037). Mean and
median values of LR were 1.093 and 1.032 for first-person view condi-
tion without haptic, 1.285 and 1.246 for the first-person view with
haptic. Similar with whole-body retention results, dominant hand
retention was substantially different between FPV and FPVH (p = 0.092)
and between FPVH and TPVH (p = 0.063), and the residual effect after
FPVH for dominant hand had the lowest average motion discrepancy.

Significantly different LR implied that haptic improved human motor
learning. The pure shape comparison (IDTW) results showed that first-
person view with or without haptic was significantly different in late-
stage (p = 0.037) and overall performance (p = 0.030) which echoed
the visual interpretation of Fig. 13.

6. Discussion

The experiment results indicated that our proposed haptic-based
sensation transfer impacted the human motor learning process in a
positive way. Participants seemed to be confused with the haptic guid-
ance at the very beginning, but quickly adapted to it and started to
leverage it in complex human motor learning tasks. In this study, PED
results can be interpreted as a holistic performance measurement, i.e., a
good learner shall follow the desired motions in terms of both temporal
and spatial accuracy. PED results in this experiment implied that as for

Table 3
Overall Distribution Parameters.

Analysis Method Conditions Expected Value Median Variance (e %)
TPV 0.218 0.214 1.8
PED TPVH 0.223 0.222 1.8
FPV 0.148 0.144 1.5
FPVH 0.154 0.152 1.3
TPV 0.188 0.178 2.9
TPVH 0.211 0.201 3.4
IDTW FPV 0.157 0.149 2.9
FPVH 0.185 0.179 4.1
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the whole-body motion, the addition of haptic sensation had a signifi-
cant negative impact on task performances at the early training stage but
not significant in the middle and late stages. Fig. 11 visualizes such a
result in which the early stage of the FPVH condition had a higher
discrepancy than the early stage of condition FPV while the middle and
late stages between these conditions were similar. The significant
negative impact became non-significant when the training reached the
middle and last stages, suggesting that the negative impact was reduced
as the training proceeded. The higher average learning rate in haptic
conditions echoed such an observation. Under this controlled experi-
ment, the only changing variable within a condition across different
trials was time and experience. Thus, the initial difficulty of working
with the haptic feedback at the whole-body level can be described as a
cognitive challenge for adapting to a multi-channel sensorimotor
process.

To better understand the haptic posed cognitive challenge, we
analyzed the participant motion data in depth. We observed the
mismatch between PED and IDTW, where PED mostly showed non-
significance but IDTW showed significant differences between the
first-person view with and without haptic. In contrast to PED, the IDTW
result emphasized the pure spatial trajectory (shape) of motions. Haptic
groups showed significantly higher discrepancies (p < 0.001) in the
egocentric view of human motor learning. In the third-person view,
haptic in early-stage, late-stage, and the overall result had p values of
0.059, 0.030, and 0.001 respectively, which also implied significant
differences. Thus, this implied that the spatial misalignment was the
main contributor to the spatial-temporal discrepancy. On the other
hand, from the perspective of data distribution, we found that the haptic
groups had higher variances in IDTW results which means the motions’
spatial shapes under haptic guidelines were less stable. Considering that
the addition of haptic did not impact visual perception, these pieces of
evidence implied that haptic guidelines overburdened cognitive load at
the early training stage. From the participants’ perspective, the addition
of haptic streamed too much information to proceed, which deteriorated
the performance in the first few trials. After getting familiar with the
motion and motion-specific haptic guidelines, participants were capable
to proceed with the information and improve their performance. It was
also an interesting observation that the discrepancy in the late stage of
PED was low but the late stage discrepancy of IDTW was high, which
means in the late stage, although the participants were making mistakes
in motion shape, their overall motion accuracies were significantly
improved. This finding implied that after mastering the general motion
pattern, haptic-based sensation transfer encouraged novice users to
move boldly to feel the motion in small granularity, resulting in a worse
spatial trajectory but better spatial-temporal motion. This finding
echoed with participants’ subjective post-experiment feedback that they
started to improve motion intentionally after the middle stage. This
finding echoed the experiment by Safstrom et al. [79] in which the
sensorimotor learning process was found to have distinct stages, and the
first stage was for familiarization and no learning effect was detected.
Existing sensorimotor learning literature also observed a similar pattern
[80,81].

Although the whole-body performance seems not to support the
benefits of the additional haptic sensation, possibly due to the cognitive
challenges required to adapt to this new experience, the dominant hand
performance showed a different result. On the one hand, the dominant
hand is the body component that people typically have the most motor
control capability on and most mature neural interactivity [82]; On the
other hand, the dominant hand is the end effector that is easier for motor
adaptation. Under limited cognitive capability, dominant hand motion
could imply the underlying influences more clearly. We found that the
late stage in haptic condition was significantly better than non-haptic
conditions. In addition, while the motor performance in the early
stage was not significantly different, the FPVH condition had a signifi-
cantly higher learning rate compared with the FPV condition. Pure
spatial performance (IDTW) also proved that haptic sensation
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Fig. 12. Dominant Hand overall discrepancy distribution.
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Fig. 13. Discrepancy in learning stages (dominant hand).

Table 4
Significance by Wilcoxon Test (dominant hand performance).
Analysis Comparison p-value: p-value: p-value: p-value:
Method TPV V.S. FPV V.S. TPV V.S. TPVH V.S.
TPVH FPVH FPV FPVH
All 0.530 0.444 <0.001* <0.001*
Early Stage 0.900 0.236 <0.001* <0.001*
Late Stage 0.457 0.016 * <0.001* <0.001*
Retention 0.524 0.092 0.846 0.063
PED LR 0.781 0.037* 0.910 0.008*
1.074/ 1.093/ 1.074/ 1.073/
LR Mean 1.073 1.285 1.093 1.285
(Median) (1.111/ (1.032/ (1.111/ (1.036/
1.036) 1.246) 1.032) 1.246)
All 0.816 0.030* <0.001* <0.001*
Early Stage 0. 257 0.393 <0.001* <0.001*
Late Stage 0.842 0.037* <0.001* <0.001*
Retention 0.644 0.846 0.838 0.966
IDTW LR 0.36 0.719 0.032* 0.254
1.159/ 1.525/ 1.159/ 1.190/
LR Mean 1.190 1.308 1.525 1.308
(Median) (1.016/ (1.194/ (1.016/ (1.133/
1.133) 1.176) 1.308) 1.176)

significantly improved DGL motor learning. These observations proved
that haptic-based sensation transfer positively impacted the human
motor learning process for the dominant hand. The significant
improvement of haptic to dominant hand motor learning in contrast to
the insignificant impact of haptic on whole-body implicated that haptic-
based sensation transfer is a promising technique once cognitive over-
load issue is relieved. This experiment also echoed the findings that an
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egocentric view improves motor training.

We found that during the retention phase (i.e., after removing the
visual and/or haptic guidance), performance was all worsened, no
matter if haptics was used or not during the training sessions. It is un-
derstandable as participants had to go through a sudden change in the
guidance environment. We also found several interesting patterns. First,
under different conditions (with and without haptic cues), the residual
effects were different. Specifically, there was a substantial difference in
terms of retention performance after the “first person view with haptics”
training versus after the “first person view without haptics” training (p
= 0.09). The average accuracy of the former one was better than the
latter one. To be noted, we recognize that the p-value was not smaller
than 0.05, but it was still small enough to indicate a possible difference
in the future. It means that as for the accuracy, it did show that the use of
haptics had a possible residual effect at the end, even after it was
removed. Second, we found that the residual effects of using haptics
during training were affected by the view point as well. There was a
substantial difference in terms of the retention phase performance after
the “third person view with haptics” versus after the “first person view
with haptics” (p = 0.06). It indicates that the first person view may have
strengthened the residual benefits of haptic cues in the retention of the
gained motor skill. Overall, it was found that the pattern of retention
benefits given haptics was not as clear as in the training sessions, but it
did show a possible benefit of using haptic method in retaining a gained
motor skill. The use of haptics could possibly improve the retention
performance, and such an improvement seemed to be strengthened by
the viewpoint during the training phase.

This sensation transfer approach is a novel method that can be used
for transferring learning from an expert/experienced worker to novices
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learning any new task, such as a new operation or a new tool. In our
study, we focus on exoskeleton use as a particular use-case for studying
the potential of the sensation transfer method. We believe that
exoskeleton use is a relevant and good use-case because there are so
many kinds of exoskeletons emerging in the industrial market with a
variety of design features, and a key factor in industrial adoption of this
technology will be how efficiently workers can be trained in the use of
these devices. Hence, the potential for our haptic sensation transfer
approach to function as a universal training paradigm is significant and
impactful.

The gender difference was not considered in this paper. The
musculoskeletal and cognitive differences between males and females
might impact the effectiveness of haptic learning. In the future, we will
expand our test with increased female participants to retrieve more solid
evidence while adding gender difference as a cross-subject variable to
the paper. In addition, the participants were mostly youngsters from the
university. Senior age groups may have different musculoskeletal re-
actions toward haptic sensations that deserve further investigation.
Moreover, we are aware that long term retention was not assessed in this
paper. Both the doses of learning needed and its longer-term retention
are important next steps to understand and verify whether the learning
produced by the haptic sensation transfer method can be retained as part
of an individual’s motor-skill repertoire.

It is worth exploring in the future whether the sensation transfer
method can improve whole-body motion by relieving the cognitive load,
which may be accomplished by reducing haptic magnitude, reducing the
number of haptic spots, changing haptic frequency, adopting negative
haptic feedback, or any other methods. In addition, whether the effec-
tiveness of the proposed sensation transfer method varies according to
motions is a question that remains to be answered. We could also explore
the cognitive impact of the sensation transfer method by using eye data
or brain activities.

7. Conclusions

In this paper, we designed a haptic-based sensation transfer system
for migrating the haptic and kinematic feeling of using an exoskeleton
system from the expert to any new user who has no access to the real
exoskeleton system. A whole-body haptic system is used to generate
haptic feedback of different patterns depending on how the novice users
follow the motion trajectories of the expert, which is captured and
recorded with motion tracking techniques. To test the effectiveness of
the proposed method, we conducted a human-subject experiment with
30 participants. The participants were asked to follow the motions of an
expert exoskeleton user with the third-person view or first-person view,
and with or without the whole-body haptic feedback. The performance
was evaluated with the summed average of spatial discrepancies be-
tween the participant’s motions and the expert’s sample motions. The
experiment result indicates that the first-person view motor training that
visualized motion information from an egocentric perspective was
significantly better than the third-person view. Haptic sensation origi-
nally induces a higher cognitive load at the whole-body scale but im-
proves as the training proceeds. The general observation shows that
haptics in VR may be an important approach for enhancing human
motor learning, especially in complex motor tasks such as learning to use
an exoskeleton system. In this paper, we also observed that not all body
parts shared the same benefits from haptic feedback. To be more spe-
cific, body components with a higher sensorimotor capacity (such as the
dominant hand) could benefit more from our created vibrotactile feed-
back, and thereby potentially reduce the required training time and
cognitive load required for operation. It is worth exploring in future
research how to tailor the configuration of haptic feedback to enhance
motor learning while maintaining a reasonable cognitive load, based on
the application of haptic feedback to different parts of the body and
testing learning rates and cognitive load in more tasks. In addition, we
found that the proposed egocentric haptic-based sensation transfer

13

Automation in Construction 141 (2022) 104411

method could possibly improve learning retention, i.e., the residual ef-
fects even after the haptic feedback was removed. To validate it, more
comprehensive retention tests with longer time intervals and more trials
are needed.

In general, the proposed egocentric haptic-based sensation transfer
method for exoskeleton motor training seems to be effective in DGL
motion training with a back-exoskeleton. It inspires innovative learning
frameworks for exoskeleton training in a cost-efficient, risk-free, scal-
able, and accessible way, and for the wider and further implementation
of the exoskeleton in the future construction industry. Furthermore, the
proposed method can be extended to a broader scope of human motor
training in addition to exoskeleton training, for example, gym training,
athlete training, musician training, rehabilitation, and construction
operation training.

As for the future agenda, the retention effects of the proposed
haptics-based sensation transfer should be further tested. Another
experiment with more trials and longer retention periods can provide
solid evidence about if the proposed method facilitates long-term motor
skill gaining even in a virtual setting. The retention periods can be across
multiple days based on the relevant literature. In addition, more mo-
dalities and sensor configurations of the haptic system should be tested.
In this paper, a fixed configuration was used. It is worth investigating if
personalized solutions are needed to meet individual perception and
musculoskeletal features. Last, more task contexts should be tested in the
future to examine the transferability of the proposed method. This paper
focuses on a DGL task. Other tasks such as hand pickup, moving, and
upper limb raising are also relevant for future exoskeleton applications
in the context of construction operations. The finite difference in
training outcomes across different tasks can be tested.
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