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A B S T R A C T   

Exoskeletons are promising physical augmentation tools that have shown potential to transform civil engineering 
operations, but the training is inherently challenging due to the diverse exoskeleton designs, functions, and 
guidelines across different occupational sectors. Traditional hands-on exoskeleton training is time-consuming 
and resource-extensive, while virtual training, such as video demonstrations, is ineffective for motor skill 
learning needed for the exoskeleton. It is unknown if an enhanced virtual environment can facilitate motor skill 
gaining for exoskeleton training. This paper proposes a haptic-based sensation transfer approach that migrates 
the egocentric motor experience of an expert exoskeleton user to another novice user, via a passive haptic system 
in virtual reality. The result of a human-subjects experiment (n = 30) showed that the proposed haptic-based 
sensation transfer approach significantly improved the motor learning rate in exoskeleton training, and vali
dated the effectiveness of virtual training for even motor-intensive tasks. The proposed haptic-based sensation 
transfer approach can enrich the embodied motor learning experience and thus can benefit broader applications 
of motor training at work. It is worth exploring optimal haptic configurations in the future, to enhance 
embodiment whilst avoiding potential over-reliance on feedback.   

1. Introduction 

The labor-intensive nature of the construction industry makes con
struction practitioners more frequently exposed to work-related 
musculoskeletal disorders (WMSD) [1]. The construction industry’s 
WMSDs rate was about 29% higher than all other industries combined in 
2019 [2]. The back and the shoulder were the most impacted body re
gions, respectively accounting for 43% and 16% of all cases, with a 
median of 8 and 25 lost workdays [3]. This high burden of WMSDs is 
attributed to the high physical demands of construction work, involving 
overuse associated with frequent and repetitive exposures to well- 
documented risk factors such as lifting, bending, carrying, use of 
hand-held tools, or non-neutral/prolonged static postures [4]. To help 
reduce the occurrence of WMSD in the construction industry, there is an 
increasing interest in exploring the use of exoskeletons to augment 
users’ physical capabilities and provide additional support [5]. Exo
skeletons, defined as wearable, assistive devices, comprised of joints, 
links, and actuators to assist or support the physical capacity of the 
wearer [6,7] are emerging as innovative and promising solutions for 

reducing the physical demands on severely impacted body regions such 
as the shoulders and back [8,9]. For example, passive exoskeleton sys
tems have been utilized to support construction workers in repetitive 
handling tasks, which can effectively reduce lumbar erector spinae 
muscle activities, improve comfort, and reduce perceived pressure [10]. 
Yet, despite several successful laboratory studies showing the effec
tiveness of exoskeleton technologies [11–13] and their rapid pace of 
commercialization, there are few successful examples of successful 
deployment. Broader adoption of exoskeleton technologies in con
struction operations can be potentially transformative for improving 
worker productivity and safety in construction. 

In terms of practical applications, current evidence suggests that the 
effectiveness of the exoskeleton implementation in operations is largely 
driven by the specific task contexts and users’ characteristics [8]. 
Certain types of exoskeletons are more appropriate for given industrial 
tasks than other tasks. Within a chosen exoskeleton, different configu
rations and motions (e.g., bending angle) trigger different torque out
puts which further lead to varying restrictions on safe ranges of motion 
[14]. Correspondingly, the users may also have to engage in a variety of 
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different movement strategies to optimally derive the best benefits from 
an exoskeleton: for instance, the springs in a passive back-support 
exoskeleton would engage only when the trunk bent by more than a 
certain angle. So, if a user only squatted down to handle loads without 
any bending, they would not experience the beneficial physical effects of 
the exoskeleton while lifting the load (compared to some degree of 
bending the back to achieve the same motion). Misunderstanding of 
exoskeleton capacities and restrictions can also present users with a false 
sense of security, and when applied to tasks where their use is inap
propriate, exoskeletons may also interfere with safety [15]. Exo
skeletons also have a variety of torque profiles to choose from. From a 
sensory perspective, the enhancement of human physical capacity has 
the potential to make the user unaware of their contribution to the 
motion (versus the device contributions), and hence have difficulty in 
predicting the outcome of the human+exoskeleton system, thereby 
potentially losing balance or moving unintentionally beyond safety 
ranges of motion and torques [16]. Hence, it is critical to develop good 
training programs that allow a user to safely explore an exoskeleton’s 
capacities and understand their benefits and risks, before extensively 
using them in safety-critical environments. This is all the more impor
tant as powered exoskeletons are now being developed, which have 
significantly greater augmentation potential, thereby accentuating the 
potential sensorimotor deficits described above: early evidence points to 
the need for training to utilize such devices safely and effectively [17]. A 
motor training system that enables users to experience various types of 
exoskeletons and various motion tasks to develop an understanding of 
exoskeleton properties and safety ranges, while developing necessary 
human motor skills for the safe and effective operation of the exoskel
eton, would support such needs. Given the limited accessibility (from 
the user’s side) and the high cost associated with physical prototype 
development and human subjects evaluations of exoskeleton systems 
(from the developer side), enabling a virtual and distributed learning 
experience to experience exoskeletons, would accelerate both exoskel
eton development and use. 

This paper proposes a distributed exoskeleton motor training system 
based on the so-called “sensation transfer” that migrates the human 
motor experience from a person wearing a real exoskeleton to another 
person who does not have the access to the exoskeleton. The sensation 
transfer is realized through a whole-body hapto-tactile system in an 
immersive virtual environment. The active motion data of the expert 
exoskeleton user is collected via motion tracking sensors. The tracked 
motion data can be then “displayed” and reproduced on the novice 
user’s end via the media of haptics. A Virtual Reality (VR) headset, 
motion tracking devices, and haptic devices are used to digitalize the 
sensorimotor experience and transfer it to a prospective exoskeleton 
user via the haptic stimulation. A VR headset is used to create an 
immersive virtual environment that enables risk-free training for 
various scenarios and tasks. A whole-body tracking device (MVN 
Awinda, Xsens Technologies B.V., the Netherlands) captures an 
exoskeleton user’s whole-body kinematics and streams them into the VR 
environment. Digitalized body motions of the exoskeleton user are 
reconstructed in VR to create an egocentric training experience, and 
data are also collected from the VR interaction logs to enable real-time 
assessment. As a novel measure, the haptic device generates haptic 
guidelines to transfer the sensation of wearing an exoskeleton including 
the feeling of touching and resistance in movement. Combining these 
systems, a virtual training environment can be simulated to transfer the 
human motor experience of wearing an exoskeleton with visual and 
haptic guidance in correspond to the real-time motor performance of the 
user. We conducted an experiment to assess the feasibility and effec
tiveness of this motor training system. We pre-recorded motions from an 
exoskeleton expert while he used a passive back-support exoskeleton to 
perform lifting tasks, and re-constructed the motions in VR. We recruited 
30 novice users and instructed them to follow the motion and helped 
them recreate and learn the human motor experience in VR under 
different view perspectives and the novel hapto-tactile system. We 

implemented a within-subject experiment design with randomized 
condition orders to minimize the statistical intervention from cross- 
condition learning effect and individual differences. The rest of this 
paper addresses the point of departure, framework design, experiment 
pipeline, and findings. 

2. Related work 

2.1. Exoskeleton and exoskeleton motor training 

Robotic exoskeletons can generally be classified according to the 
intended application domain [18]: rehabilitation robots that focus on 
lost motor function recovery, functional assistive robots like assisting 
grasping for disabled people, and occupational exoskeletons for 
enhancing/augmenting healthy industrial workers. Occupational exo
skeletons have received increasing attention for augmenting human 
physical capacity and reducing bodily physical demands in a wide range 
of industries such as the military [19,20], medical [21,22], 
manufacturing [23–25], agriculture [26,27], and construction [5,8,10]. 
Specifically, previous studies [5] have suggested that exoskeletons show 
strong potential for reducing the occurrence of WMSD during con
struction operations that involve repetitive motion [28], kneeling or 
crawling [22], awkward position [29], and vibrations. For instance, 
back-support exoskeleton use (e.g., BackX [30], Laevo [31], SPEXOR 
[32]) produced reductions in trunk muscle activity and spinal 
compression force during bending and lifting tasks, which could have 
the potential for specific tasks in construction trades like brick masonry, 
concrete work, and roofing [5]; and shoulder-support exoskeletons (e.g., 
Eksovest [33], ShoulderX [34]) that could provide external joint torques 
and/or re-distribute the load and thereby reduce shoulder load during 
overhead work could be applicable to tasks in carpentry, electrical, and 
painting work [5]. Since many of these previous studies have utilized a 
variety of exoskeletons with different mechanical design features, and 
since different exoskeletons may hence need distinctly different strate
gies for ideal operation, universal training strategies are neither plau
sible nor likely to be successful. Hence, as an exploratory and novel 
paradigm, we attempted a new training protocol where instead of 
playing back videos or using voice instructions to a novice user, we 
captured an expert’s use of a complex exoskeleton and transferred the 
motion patterns to a novice user through haptic sensations. As an expert 
can be considered to have already adapted to using an exoskeleton, the 
mechanical features of an exoskeleton can be considered to be reflected 
in the expert’s motion patterns. With the advent of Industry 5.0, where 
the focus is on maintaining flexibility in production by combining 
humans and robots collaboratively, exoskeletons are thus promising 
tools for the future industrial workforce [35] to ease WMSD risks and 
increase productivity [5]. 

Exoskeleton control methods [18,36] generally involve a complex 
interaction between human and robotic exoskeletons [37]. Although the 
control and usage of exoskeletons are generally safe, training for using 
the exoskeleton is essential [38]. In addition, to acquaint new users with 
the operation methods, users should also be familiar with the triggering 
postures and safety ranges which are important knowledge and motor 
skills for ensuring safe operation [39]. For instance, the exoskeleton that 
Wang et al. [40] designed utilized the center of mass of the user to 
control the mechanical response. If users failed to move the center of 
mass in a defined pattern, the exoskeleton would not be actuated, and 
potential safety hazards could occur. Other than triggering exoskeletons, 
the user’s motion could also impact the effectiveness of the exoskeleton. 
The experiment that Young et al. [41] performed on a pneumatically 
powered exoskeleton proved that the torque output profile and the 
user’s rectified physical load were closely related to the user’s motion. In 
worse cases, improper motion like misalignment between exoskeleton 
joints and user’s joints can cause body injuries such as bone fracture 
[39]. Thus, it is critical to train the users on what’s the correct motion in 
the exoskeleton and how to perform the motions [42]. 

Y. Ye et al.                                                                                                                                                                                                                                       



Automation in Construction 141 (2022) 104411

3

Typical exoskeleton training adopted hands-on training with multi
ple sessions that spanned several weeks [42–44]. However, the broader 
implementation of such training methods not only faced challenges in 
financial feasibility and time efficiency [45] due to the expensive 
exoskeleton products but also exposed users to higher risks. In addition, 
exoskeleton designs varied with the use cases [8,46], which further 
reduced the availability and accessibility of hands-on exoskeleton motor 
training [8]. An accessible training method that can facilitate exoskel
eton motor training by accelerating the convergence when real 
exoskeleton systems are not available remains a question to be 
answered. 

2.2. VR and haptics for human motor learning 

With the capability of providing immersive multimodalities experi
ence [47,48], VR has been rapidly recognized and implemented for 
training [49,50]. Motor training is one of the emerging topics for VR 
implementation [51]. In motor training tasks, VR can provide multiple 
forms of supporting information including movement visualization, 
performance feedback, and contextual guidelines [51,52]. Among the 
different modalities, visual feedback is the most commonly adopted 
method for human motor learning in VR. Doniger et al. [53] conducted 
an experiment with the focus of studying the influence of VR visuali
zations on the lower extremities motor rehabilitation of Alzheimer’s 
disease patients, and the result suggested the augmented visual infor
mation in VR played a key role in improving motor learning. Lee et al. 
[54] tested a VR motor training scheme for stroke patients’ upper ex
tremities rehabilitation and found that the visual information in VR was 
significantly effective. 

A VR-based motor skill training paradigm also enables self-directed 
learning, with a virtual instructor and automated feedback, where 
trainees can practice motor skills as long and many as they wish without 
further costs, in a safe manner [55,56]. In addition, game-like exercises 
or activities and immersive interaction in VR may promote enjoyment 
and motivation for training, which may enhance engagement in training 
and thus promote efficient human motor learning [57]. VR-based 
human motor learning studies have also been pioneered in various do
mains, including rehabilitation [58], military [59], and industry [60], 
using game-like scenarios and different types of feedback modalities to 
promote human motor learning. 

Other than VR, haptic guidance is widely used for motor training as 
well [61,62]. However, it is still not clear whether haptic guidelines are 
effective for the human motor learning process [61]. Some scholars 
implemented vibrotactile guidelines to instruct motion spatial pattern 
[63] and force amplitude [64], and reported that motor task perfor
mance was significantly improved. Bark et al. [65] tested arm motion 
learning with visual and vibrotactile feedback, and discovered that the 
vibrotactile group had significantly lower motion errors. In contrast, 
Sigrist et al. [66] reported that people performed worse during haptic 
feedback condition than visual feedback condition in a rowing-type task. 
On the one hand, a consensus conclusion on the effectiveness of haptic 
sensation in motor training has not been reached. On the other hand, the 
existing literature focused on partial bodily motions such as hand mo
tion and arm motion. The body coordination function of whole-body 
motion has not been thoroughly discussed. In addition, VR and haptic 
guidance have great potential to be applied for exoskeleton-related 
motor training, which remains an area that is under-researched. 

3. Methodology 

3.1. System overview 

As described in the introduction, although it is ideal to have new 
users trained with real exoskeleton systems, the financial cost (as well as 
any unintended risks) are current barriers for implementation. Thus, we 
would like to provide a scenario of training without real exoskeletons, as 

an intermediate step, to improve the safety and efficiency of further 
training when the user can access a real exoskeleton. We propose a 
whole-body haptic system for this purpose utilizing user sensation 
transfer as shown in Fig. 1. The system consists of an exoskeleton expert 
module, offline data processing, and an exoskeleton novice user module. 
The exoskeleton expert module collects and models the motion to be 
trained. The offline data processing module processes the collected 
motion data and configures the motion in VR, while instantiating visual 
and haptic guidelines to assemble the expert’s motion dataset. Then the 
dataset is transferred to the exoskeleton user’s module where novice 
users can follow the motion in VR with visual and haptic sensations. 

This framework establishes a pipeline that transfers the visual and 
haptic effects of motions from an expert to exoskeleton novice users via 
the game engine processor. 

3.2. Exoskeleton expert module 

The exoskeleton expert module is used in the phase for the expert 
motion collection. Exoskeleton experts are instructed to perform a 
selected training task in a defined tracking space wearing exoskeleton. 
The training is defined by the type of motions and the model of the 
exoskeleton. Exoskeleton types and models are chosen according to the 
motion characteristics to fit the task context or can be customized ac
cording to the objective of training managers. A variety of motions can 
be collected and assembled. Whole-body motion kinematics was 
collected (MVN Awinda, Xsens Technologies B.V., the Netherlands 
[67]), with 17 sensors deployed at proper positions on the exoskeleton 
expert according to product specifications to track and document the 
whole-body motion at a frequency of 60 Hz. The collected data shows 
tracking positions and corresponding time series spatial position and 
rotation data, in addition to the logic correlation between components. 
Fig. 5 (a) shows an example in which a back-exoskeleton expert is 
wearing the XSENS sensors for motion capture. 

3.3. Offline data processing 

Expert motions are transferred to a game-engine-based offline data 
processing pipeline. This pipeline reconstructs visual and haptic char
acteristics from the raw motion data. The first step is re-constructing the 
expert’s motion in VR through data formatting, body components 
registration, and configuring animation. The collected XSENS data can 
be transformed to film box (FBX) format which is accessible by Unity 
Engine in terms of hierarchy time-series datasets [68]. To establish the 
connection between FBX files and VR avatars, the FBX files are manually 
or automatically configured in Unity depending on the data collection 
mode. The two middle pictures in the Fig. 1 Motion Reconstruction in 
VR block show the key point registration process where the XSENS 
tracked points are mapped in a VR-supported virtual avatar. This 
configuration explicitly links the virtual avatar’s whole-body motion to 
the real-life expert’s motion. Then the configured files can be accessed as 
animation documents in Unity which are further attached to animation 
controllers to control the virtual avatar’s motion. By configuring the 
animation controller with a virtual expert, the exoskeleton expert’s 
motions in the physical world can be reconstructed in VR. The recon
structed animations are used as visual guides for the training. 

The haptic guidance is configured based on the recorded motion in 
the form of hapto-tactile generated by bHaptics devices [69]. We 
designed a whole-body haptic stimulation system based on the bHaptics 
suit and the corresponding vibrators (Knoxlabs Inc., Los Angeles, CA). 
Fig. 2 (a) illustrates the configuration and deployment of the system. As 
shown, the upper body is equipped with a Tact-suit vest that includes 40 
vibrotactile motors. Haptic sleeves with 12 motors each are placed at the 
left and right elbow. Two haptic gloves with 6 motors each are placed on 
the left and right hands respectively. The selection of body locations is 
based on the consideration of the key body parts in intensive human 
motor activities. Based on these principles, we placed the haptic 
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vibrators on two knees instead of feet. The vibration magnitude is 
adjustable based on the manufacturing guidelines of bHaptics devices 
(120 Hz at 3 V input, with a strength of 5 g), depending on the degree of 
discrepancy between actual motion and target motion, such that closer 
the motion to the required target motion, the stronger the vibration 
experienced by the user. 

It should be noted that the VR game engine is calculating and 
broadcasting data frame by frame instead of continuously. In VR, the 
hapto-tactile feedback is triggered at certain frames. The VR update 
frequency is typically not the same as the motion capture frequency of 
expert behaviors. In addition, the specific points in space tracked by the 
XSENS system may not be the same as the hapto-tactile points. For 
instance, SteamVR, a widely used VR platform, updates VR frames at 90 
Hz by default; VR tracking devices (e.g., HTC VIVE [70]) track a hand 
using the position of the hand-held controller while the XSENS IMU 

system tracks a band worn at the wrist. This misalignment makes it 
infeasible to set up haptic feedback directly from the collected data. This 
problem can be solved by motion reconstruction. We tuned the VR fre
quency and selected new tracked points in VR to resample and log the 
spatial-temporal information. The resampled data thus contains the 
position of new body components with desired frequency. For example, 
the position of the right palm is computed at 90 Hz although the original 
XSENS data only had the position of the right wrist at 60 Hz. This 
resampled data, which specifies the location of the expert’s desired body 
parts at desired time points, is then used as training data for the novice 
users. 

After resampling the points of interest in VR, to create haptic guid
ance, the basic principle is to instantiate invisible haptic senders at the 
expert’s position and haptic receivers at the novice user’s body. Hapto- 
tactile feedback will be triggered once the sending and corresponding 

Fig. 1. System Framework of Exoskeleton Haptic Motor Training.  

Fig. 2. (a) Haptic Simulation System Deployment; (b) Joint Layout for Whole-body Tracking and evaluating the performance.  
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receivers collide with each other in space. The flowchart on the right 
side of Fig. 1 shows the logic behind haptic guidance. Once training is 
started, starting from the first frame of the whole-body motion of the 
expert, frames are refreshed in real-time. Each frame is subjected to a 
computational process to determine the haptic response according to the 
current novice user motion. In each frame, the program will activate the 
haptic senders that are within a certain period that covers k frames 
before and k frames after the current ith frame. In other words, haptics 
will be triggered when haptic receivers (from the novice user) collide 
with any haptic senders (from the expert) that are no more than k frames 
before or after the current frame. Fig. 3 shows the time correspondence 
between the novice user’s timeline and the expert’s timeline. A novice 
user’s timeline represents the online process that flows corresponding to 
real-time. The expert’s timeline is the time-series data that we processed 
in previous steps and is stored offline. The value of k can be customized 
according to desired tolerance and computational resources. A lower k- 
value means a more accurate tracking and a larger k value results in a 
larger temporal tolerance, and the parameter k can be set according to 
both task needs (how accurate does the training need to be), and the 
availability of computational resources. The expert’s effective frames 
are nonrecurrent in boundary conditions. Depending on the haptic 
pattern of bHaptics devices, a single vibration signal might last longer 
than one frame, which can result in a stacked haptic activation signal. To 
solve this problem, stacked haptic activation signals need to be cleared 
so the signals will not accumulate or cause residual effects. The activa
tion of the expert’s frames can be turned to be continuous as shown in 
Fig. 3 or can be discrete, for instance, activating once every t frames. 
According to how sparse the expert’s frames are activated, discrete 
activation of the expert’s frame might lead to an inaccurate haptic 
feeling due to some missing frames. The advantage of a discrete pattern 
is to save computational resources thus lowering the hardware burden. 

Each frame of both novice user and expert contains a matrix of po
sitional data of all interest points as expressed below: 

Ai =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

P1
̅→

P1
̅→

…
Pm
̅→

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

x1 y1 z1
x2 y2 z2
… … …
xm ym zm

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

, m is the number of interest points 

The program will run through all body components (interest points) 
from P1

̅→ to Pm
̅→ per user’s frame. A body component at a certain frame 

has a 3-dimensional position P→, where a haptic receiver is activated. The 
algorithm checks whether the distance between P→ and any active haptic 
senders with the same body component ID are smaller than a threshold 
value ⍺. If no effective sender is found, the program will continue to 
check the next body component until all components are finished. 
Otherwise, if any effective sender is within the threshold range, the al
gorithm will trigger the hapto-tactile feedback in the current frame at 

the corresponding body components and then continue to loop overall 
body components. Once a Bhaptics device is triggered, the embedded 
motors will vibrate with a pre-determined pattern. This algorithm runs 
in each frame until the training finishes. 

This haptic configuration calculates the accuracy of motion in real- 
time and provides haptic feedback to reward correct motion. Haptic 
feedback functions as a positive feedback which denotes relatively ac
curate motion. When the exoskeleton novice user repeats the motions 
accurately, i.e., following the desired motion trajectories and velocities 
in the 3D body motion space, the haptic devices provide hapto-tactile 
feedback, creating an illusion of physical contact, or the feeling of 
wearing an exoskeleton. When the exoskeleton user veers off the track of 
more than a customized threshold value, the haptic-based sensation 
disappears completely, generating a feeling of having taken off the 
exoskeleton. Hapto-tactile is triggered once per activated haptic spot 
with an intensity of 50% of the maximum bHaptics device intensity. A 
demonstration video can be found here: https://youtu.be/S9bqf7fwaAQ 

3.4. Exoskeleton user module 

The visual guidance (reconstructed expert’s motion) and haptic 
guidance are assembled to provide novice users with appropriate motion 
guidance in VR. While creating the data in VR, to tackle the differences 
in height between novice users and the expert, the expert dataset is 
scaled in space according to each novice user’s height. VR motor 
training can be conducted under different virtual environments, 
mimicking various working conditions. Tuning the visual and haptic 
configurations can also provide different training conditions. Sensors 
from HTC VIVE are used to track the novice users’ real-time whole-body 
motion [71]. The number of HTC VIVE sensors and their locations need 
to be carefully designed to track motions accurately while minimally 
interfering with the motion. The VIVE trackers are placed on the lateral 
sides of the right and left elbows, on the back, and on the right and left 
feet as shown in Fig. 2(b). The HTC VIVE controllers and headset also 
track the hands and head respectively. The captured data is instanta
neously streamed into Unity engine to establish a connection between 
novice users’ physical motions in the real world and their virtual bodies 
in VR. So, the novice user can see their body movement in VR which 
provides an immersive egocentric training scenario. 

Visual guidance is delivered in the form of virtual experts demon
strating the performance of sample motions for the novice user to follow. 
Novice users can observe the motion from multiple view perspectives (i. 
e., the third-person view and the first-person view) and follow along. 
When activated, haptic receivers are activated on the novice user’s body 
while haptic senders are activated and deactivated in space according to 
the time. Fig. 3 (a) and (b) demonstrate the VR visual and haptic 
guidelines for users at different stages of motion. The semi-transparent 
figure together with the two solid figures is the visual guidance that 

Fig. 3. Time Correspondence between novice user’s and expert’s timeline; Solid green circle denotes the current frame in which the novice user is being trained; 
Solid blue circles denote effective (active) frames that expert is performing the motion. When the novice user’s motion in the current frame is the same as any 
effective expert frame, hapto-tactile will be triggered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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users can observe and follow. A semi-transparent figure is a visual for an 
egocentric expert tutor, where users can align their body with the expert 
and observe the expert’s motion from a first-person view. Solid figures 
are the virtual experts in the third-person view. The red spheres inside 
the semi-transparent figure demote the points at which users receive 
haptic guidance. The haptic senders are invisible when implemented, 
and are rendered with red color in Fig. 4 only for demonstration 
purposes. 

4. Human subjects experiment 

4.1. Overview 

This haptic-based sensation transfer framework establishes a pipe
line for transferring the motor skills of an exoskeleton expert to a novice 
user. Compared with traditional motion training methods that use 2D 
media (slides, documents, videos) or demonstration-and-follow 
methods, this framework enables an egocentric training experiment 
and haptic-based sensation transfer. We conducted a human-subject 
experiment using 30 healthy participants, to test the effectiveness of 
the proposed framework, as well as the marginal contributions of 
haptics-only against 3rd person view motor training method. 

4.2. Experiment tasks 

Since bending and lifting are common motions that result in WMSD 
in construction operations [1,72], we chose a standard Direct Ground 
Lift (DGL) motion [73] as the target motion for exoskeleton training. 
DGL started with half kneeling and then bending at the back to reach the 
object and lift it. After standing up with the object held, the DGL 
performer needed to walk to the destination and finally lay the object on 
a table. 

A back exoskeleton was used to assist DGL motion. An exoskeleton 
expert was recruited to perform DGL motion wearing a back exoskeleton 
using standard approaches. Fig. 5 (a) shows the expert using a BackX 
exoskeleton system in the DGL task. XSENS trackers are used to track the 
expert’s whole-body motion. The exoskeleton expert repeated the mo
tion multiple times, and that each motion had small deviations in speed, 
timing, and amplitudes that characterize the natural variation in human 
movements. The recorded motions were processed through offline data 
processing to initiate visual and haptic guidance as shown in Fig. 5(b), 
which were used as the expert tutor motion for this experiment. 

Recruited subjects were instructed to perform the exoskeleton tasks 
in the user module. View perspective as a variable that was proved to be 
impactful for the learning process, and hence we added it as a control 
variable in this experiment. To validate the effectiveness of haptic-based 
sensation transfer, we designed four conditions with variances in view 
perspective and haptic feedback: Third-person view (TPV), Third-person 
view with Haptic (TPVH), First-person view (FPV), and First-person 
view with Haptic (FPVH). TPV, in which novice users simply observed 
replayed motions in third-person view with no haptic cues, served as the 

baseline control condition to which all other experimental conditions 
were compared. The experiment procedure block in Fig. 6 showed some 
visuals of conditions. Human figures denote expert’s motion. Yellow 
icons in space denote haptic senders and were invisible during the 
experiment. 

In the TPV condition, two virtual experts performed correct motions 
in front of the subjects. One expert was facing the participant while the 
other had their back facing the participant. Participants were asked to 
observe the two virtual experts’ motion whilst following the motion as 
accurately as possible, simulating a typical traditional demonstrate-and- 
follow method. In the TPVH condition, haptic feedback was added, i.e., 
novice users could feel vibrations on their body parts with the haptic 
system when the corresponding body components were moving accu
rately. In an egocentric visual condition, or “FPV”, novice users could 
observe the motion from the first-person perspective. We set a virtual 
avatar semi-transparent (Fig. 4, Fig. 6) so the novice users could see 
through the expert while observing their motion. Instead of seeing the 
two experts that exhibited the motion in the third-person view, they 
observed a semi-transparent virtual expert performing target motions 
standing at the same location as the novice users. The novice users were 
instructed to align with the virtual expert before starting and follow the 
motion accurately. The novice users observed the virtual expert from an 
egocentric view, simulating the visual effect of doing the motion on their 
own. In addition to FPV, the FPVH condition activated positive haptic 
feedback when the novice user’s motions were correct. In all conditions, 
novice users’ tasks were to follow the experts’ motions as accurately as 
possible. This controlled experiment design could distinguish the 
effectiveness of haptic-based sensation transfer by comparing TPV with 
TPVH, and FPV with FPVH, while providing implications on the role of 
view perspectives. Novice users were asked to perform the task for six 
continuous trials per condition to examine performance improvements 
and learning. 

The hardware and parameter configurations used were the same 
across all conditions. The bHaptic devices were placed at points of in
terest as described earlier. The haptic senders (expert’s frames) were 
continuously activated with a time window of 100 ms (90 Hz, k = 4). 
The haptic spatial tolerance α was 10 cm. 

4.3. Experiment procedure 

Fig. 6 shows the experiment procedure. Thirty healthy participants, 
with no recent (last 12 months) musculoskeletal or neurological disor
ders were recruited in this paper. Eligible participants were briefed on 
the experiment’s purpose and procedure. We facilitated the participants 
to set up the VR headset, VIVE trackers, and the bHaptic devices. Then 
we demonstrated the use of the devices to the participants. This exper
iment adopted a within-subject design to minimize individual differ
ences [74]. To rule out the initial adaptation process to our system from 
the final data, we demonstrated the experiment task (standard DGL 
motion) in great detail and allowed participants to practice an example 
task with the system for 3 min. This allowed enough time for the 

Fig. 4. Visual and Haptic Guidelines in Exoskeleton User Module.  
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participants to familiarize themselves with the system and the task. 
After the pre-experiment briefing and training, we formally started 

the experiment. Each participant needed to go through all four condi
tions. The sequence of four conditions was randomly shuffled to further 
reduce the learning effect. A total of six training trials plus one retention 
trial were collected in each condition to reduce the significance of 
random error. In contrast to training trials, the retention trial was per
formed without visual cues or haptic guidance such that the participants 
needed to rely on their acquired muscular memory to repeat the motion. 
A NASA TLX questionnaire was conducted after finishing all 6 trials in 

each condition. Participants were allowed to take a short break between 
each condition. We collected the whole-body motion data during the 
experiment, which was further processed in data analysis. This study 
was approved by the Internal Review Board (IRB) at UF under 
IRB202100144. 

4.4. Data collection 

4.4.1. Data structure 
Fig. 7 shows an example of a participant performing the task. After 

Fig. 5. (a): DGL by an experienced exoskeleton expert with a back exoskeleton. (b): Re-constructed VR expert according to the DGL motion by the experienced 
expert. (c): Training scenario where a system user (novice user) is following the DGL motion in VR. 

Fig. 6. Experiment Procedure.  
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reconstructing the virtual whole-body motion, we sampled the time 
series of the 3-dimensional spatial data of both hands, both elbows, 
waist, and both feet. The seven sampled positions were used to evaluate 
motion performance. Fig. 8(a) shows a visualization of the trajectory of 
these sampled positions from a randomly selected trial. Each point in 
Fig. 8(a) represents the corresponding spatial position in one frame. 
Because the data were sampled with the same interval, the density of the 
data indicates the moving speed – with a faster movement leading to 
sparse data points. It shows that the data points were denser at some 
locations than others, suggesting that the participant’s moving speed 
varied during the motion. 

4.4.2. Motion performance evaluation methods 
Expert’s and novice user’s motions were recorded in the same game 

engine environment with the same initial position. The explicit in
struction provided to participants in this study was to copy the behavior 
of the experts to the greatest extent possible. If this were a naturalistic 
scenario where people were asked to accomplish a task, different in
dividuals will show variability in “how” they accomplish the task. But 
given this experiment was designed for asking novices to mimic the 
expert motions, the performance measurement in this study focused on 
the motion trajectory alignment, i.e., how the motion trajectory of the 
participants varied from the desired one. This is the most relevant 
measure in the context of a motion task. We quantified human motor 
performance by comparing the cumulative spatial offset across the seven 
selected body components between the expert’s motions and the 

participants’ motions, with the idea that the greater the error in cu
mulative joint position difference (discrepancy) between expert’s mo
tion and the participants’ motion, poorer the performance. Eq. (1) 
describes the how to evaluate the performance by measuring the motion 
discrepancy: 

g(i) =
∑m

n=1
(f (i, n) ) (1)  

where g(i) is the discrepancy for trial i, m is the number of selected body 
components (shown in Fig. 2(b)), f(i,n) is the discrepancy between the 
participant and expert at trial i for component n. Fig. 8(b) compares a 
participant’s spatial position (green scatter plot) against the expert’s 
motion (red scatter plot). The criteria of selecting body location for 
analysis is whether the motion of such body location could be impacted 
by exoskeleton. In this study, we used BackX exoskeleton as a use case. 
BackX has passive springs at the hip joints on both sides, and these 
springs are producing additional torque at the hip joints and lower limb. 
Meanwhile, BackX imposes force on the chest to balance the overall 
mechanics [10]. The sum of the external torques, and any restrictions in 
joint range of motion produced by wearing the device are the main 
reasons to expect changes in movement strategies [11]. Changes in joint 
torques and muscle activities among hip, lower limb and chest could 
impact trunk and lower limbs motion. In addition, not only the chest is 
the positional base of shoulders and arms, but also the contraction of 
pectoral muscles could control the overall motion of arms in a higher 
level [12]. Thus, chest position and muscular activities are closely 
related to the motion of upper limbs. Although there is not sufficient 

Fig. 7. Example of a participant performing the task.  

Fig. 8. Motion Trajectory: (a) spatial position of selected body components including right and left hand, right and left elbow, waist, right and left foot; (b) 
comparison of the trajectories between a participant and the expert’s motion. 
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evidence showing how back-support exoskeleton impacts the motion of 
upper limbs, it is still necessary to include upper limbs in our analysis 
considering that back-support exoskeletons impact chest muscle activ
ities, especially during bending and lifting tasks [10]. Thus, we sampled 
7 body points (shown in Fig. 2(b)) across upper limbs, lower limbs, and 
trunk to evaluate users’ motion in this study. 

f(i,n) is calculated in Pairwise Euclidean Distance (PED) and Inter
polated Dynamic Time Wrapping (IDTW) to extract difference patterns. 
PED has been widely used for spatial similarity calculation [75] [76]. 
PED is indicated by the average Euclidean Distance between the par
ticipant’s position and the expert’s position for each frame and each 
component as shown in the equation: 

f (i, n) =

∑t
k=1

(
pi,n,k − p′

i,n,k

)

t
=

∑t
k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
dx2

k + dy2
k + dz2

k

)√

t
(2)  

where i and n are the trial ID and component ID respectively; t is the 
number of effective frames; p and p′ are the spatial arrays of the 
participant and expert respectively; dxk, dyk, dzkare the Euclidean dis
tance between participant and expert at frame k in x, y, and z di
mensions. PED took the temporal correlation into account. In other 
words, a mismatch between velocities is considered in PED, which cal
culates the spatial-temporal discrepancy as shown in Fig. 9(a). 

On the other hand, IDTW emphasizes the spatial discrepancy only. 
The datasets are interpolated to smooth the curve such that the influence 
of velocity is decreased. Then DTW method is used to calculate the 
spatial discrepancy. DTW is commonly used to compare the spatial 
similarity between two temporal sequences which may have different 
speeds. As shown in Fig. 9(b), DTW warps non-linearly in the time 
dimension to find the optimal shape match between two spatial trajec
tories. Compared with PED, DTW weakens the influence of time (speed) 
and thus provides results prone to a shape comparison. 

Both PED and IDTW are applied in this experiment to extract 
different features. 

4.4.3. Learning stage and learning rate 
We collected 6 trials in each condition for each participant. In order 

to examine if the human motor skill can be improved as the number of 
training trials increases, we categorized the experiment trails into 
different phases according to their sequence. The trials with clear in
structions and guidance were considered as learning stages, while the 
trials without any additional guidance constituted the retention stage. 
To reduce random error, we grouped 2 trials into one learning stage, i.e., 
the early stage corresponded to trials 1 and 2, the middle stage corre
sponded to trials 3 and 4, late stage corresponded to trials 5 and 6. The 
task performance in each stage was evaluated by the average discrep
ancy of the corresponding two trials. 

Learning Rate (LR) is one of the most important parameters for 
evaluating learning effectiveness. In this 3-stage learning task, we can 
approach LR by dividing the late stage by the early stage. Considering 
that the stage performances are measured by the discrepancy, we 
calculate the inverse of the division, thus the LR θ is calculated by: 

θ =

(
D3

D1

)−1

=
D1

D3
(3)  

where D1 and D3 are the discrepancy in early-stage and late-stage 
respectively. If θ is larger than 1, it implies positive learning. The 
larger θ is, the higher LR is. 

5. Results 

5.1. Overview 

The participants included 11 females and 19 males. Participants’ age 
ranged from 19 to 32, with a median value of 25 years old. The par
ticipants on average did exercise 3.7 times per month with a median 
value of 4 times. 20 out of 30 participants had experienced VR previ
ously. We also collected the participants’ motor-control-related experi
ences, for instance, Yoga, Kung Fu, or gym training with specific 
muscular training goals. 18 out of 30 participants reported that they 
have had muscle-related training. Table 1 summarized the demographic 
factors. 

5.2. Task performance 

5.2.1. Whole body motion discrepancy 
Fig. 10 shows the whole-body (all 7 tracked body components) 

discrepancy data across all trials, conditions, and participants. Each data 
point represents the average discrepancy in meters across 7 tracked 
positions for all frames in one trial. Due to the complexity of whole-body 
motion and cognitive burden, we observed random cases in which 
participants cannot follow motion accurately. The average spatial dis
crepancies varied from 5 to 35 cm, and sometimes higher. To eliminate 
individual differences and form a comparison baseline, each subject’s 
data was normalized by its standard deviation of discrepancies before 
the statistical test. In a normality test (Anderson Darling Test), the 
normality assumption was rejected (with a confidence interval of 95% 
for both analysis methods).Left: spatial temporal result (PED); Right: 
Spatial result (IDTW). 

Non-parametric repeated measures (Friedman test) showed that 
there were significant differences between conditions for both PED and 
IDTW outcomes (p < 0.001), which implied that conditions did impose a 

Fig. 9. Pairwise correlation between two trajectories by using (a) PED; (b) IDTW.  

Table 1 
Demographic factors of recruited participants.  

Demographic Factors Response 
Range 

Mean/ 
Percentage 

Median 

Gender Male/Female 63% Male – 
Age 19–32 25.5 25 
Exercise Frequency (Per Month) 0–12 3.7 4 
Existing VR Experience Yes/No 67% Yes – 
Experienced in motor control/ 

learning (e.g, Yoga) 
Yes/No 60% Yes –  
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significant impact on the task performance. Then we sub-divided the 
dataset into learning stages. Fig. 11 shows the task performance broken 
down into early, middle and late stages. 

We conducted a pairwise non-parametric posthoc test (Wilcoxon 
signed-rank test) to estimate the effects of haptic feedback, and to esti
mate the effect of view perspective, separately. The Wilcoxon pairwise 
test was used to compare performances in the early stage, middle stage, 
and late stage of learning, as well as the retention result and Learning 
Rate (LR). Table 2 summarizes the Wilcoxon test results. PED results 
were generally non-significant except between the early stage of FPV 
and FPVH condition, with a p-value of 0.021; with FPVH condition 
producing worse results than FPV in the beginning. This indicates that in 
the first-person view, haptic feedback led to a deteriorated performance 
in the beginning, and did not significantly influence performance in the 
later stages. This may be because our subjects were not used to the 
haptic feedback they received, or due to some extra cognitive burden 
that subjects may have experienced. IDTW whole-body results were 
significant in the overall performance between TPV and TPVH condi
tions (p = 0.001), FPV and FPVH conditions (p < 0.001). In addition, 
IDTW results showed a significant difference between the late stage of 
TPV and TPVH (p = 0.030), and both early and late stages of FPV and 
FPVH conditions (both with a p-value <0.001). Thus, haptic signifi
cantly impacted the motion trajectory shape throughout the motion. 
Meanwhile, all performances exhibited significant differences between 
first-person view training and third-person view training. 

In general, the performance in the retention trial was worse than in 
the training trial, potentially due to the high spatial-temporal 
complexity of this task. PED results showed that the residual effect 
after training with FPVH was substantially different compared to after 

FPV (p = 0.098) and after TPVH (p = 0.063). Average retention per
formance results showed that FPVH had the lowest discrepancy (best 
performance) among other conditions. 

Learning rate results were not significant between the conditions 
with or without haptic. PED results’ learning rate had average and 
median values of 1.078 and 1.062 in condition TPV, 1.088 and 1.079 in 
condition TPVH, 1.109 and 1.111 in condition FPV, and 1.181 and 1.116 

Fig. 10. Whole-body overall discrepancy distribution.  

Fig. 11. Discrepancy in learning stages (whole-body).  

Table 2 
Significance by Wilcoxon Test (whole-body performance).  

Analysis 
Method 

Comparison p-value: 
TPV V.S. 
TPVH 

p-value: 
FPV V.S. 
FPVH 

p-value: 
TPV V.S. 
FPV 

p-value: 
TPVH V.S. 
FPVH 

PED 
All 0.256 0.090 <0.001* <0.001* 
Early Stage 0.457 0.021* <0.001* <0.001* 
Late Stage 0.273 0.279 <0.001* <0.001*  
Retention 0.633 0.098 0.893 0.063  
LR 0.877 0.192 0.517 0.039* 

LR Mean 
(Median) 

1.078/ 
1.088 
(1.062/ 
1.079) 

1.109/ 
1.181 
(1.111/ 
1.116) 

1.078/ 
1.109 
(1.062/ 
1.111) 

1.088/ 
1.181 
(1.079/ 
1.116) 

IDTW 
All 0.001* <0.001* <0.001* <0.001* 
Early Stage 0.059 <0.001* <0.001* 0.016* 
Late Stage 0.030* <0.001* <0.001* 0.003*  
Retention 0.191 0.705 0.345 0.874  
LR 0.530 0.766 0.033* 0.171 

LR Mean 
(Median) 

1.010/ 
1.007 
(1.001/ 
1.002) 

1.129/ 
1.182 
(1.045/ 
1.064) 

1.010/ 
1.129 
(1.001/ 
1.045) 

1.007/ 
1.182 
(1.002/ 
1.064)  
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in condition FPVH. IDTW results exhibited LR mean and median of 1.01 
and 1.001 for condition TPV, 1.007 and 1.002 for condition TPVH, 
1.129 and 1.045 for condition FPV, 1.182 and 1.064 for condition FPVH. 
However, from the perspective of the average learning rate, the addition 
of haptic accelerated the human motor learning process in general. 

To further investigate the mismatch between PED and IDTW results, 
we compared the distribution patterns. Table 3 summarizes the distri
bution parameters of all conditions with different analysis methods. 
Compared to the spatial-temporal trajectory (PED), the addition of 
haptics in pure spatial trajectory (IDTW) increased the variances for 
both view perspectives, which indicates that participants tended to 
overcorrect their motion with haptic sensation. 

5.2.2. Dominant hand 
Haptics is an augmented sensation that may lead to cognitive over

load in this relatively complex (full body) task [77]. The dominant hand 
has more accurate motor positional control and sensation capabilities 
[78] which might magnify the influences in motor training. In addition 
to whole-body results, we analyzed the dominant hand results to 
examine the role that haptics played in the body parts that people 
generally have the most human motor control capability on. Fig. 12 
showed the overall result distribution with both PED and IDTW. The 
normality test failed for dominant hand data, so Wilcoxon signed-rank 
method was implemented. Fig. 13 visualizes the dominant hand 
discrepancy result.Left: spatial-temporal result (PED); Right: Spatial 
result (IDTW). 

Friedman’s test showed that the participants’ dominant hands mo
tion performances were significantly different in different conditions (p 
< 0.001 for both PED and IDTW). Table 4 summarized the Wilcoxon test 
results. PED method implicated that the spatial-temporal pattern be
tween the first-person view with and without haptic was significantly 
different in the late stage (p = 0.016) and LR (p = 0.037). Mean and 
median values of LR were 1.093 and 1.032 for first-person view condi
tion without haptic, 1.285 and 1.246 for the first-person view with 
haptic. Similar with whole-body retention results, dominant hand 
retention was substantially different between FPV and FPVH (p = 0.092) 
and between FPVH and TPVH (p = 0.063), and the residual effect after 
FPVH for dominant hand had the lowest average motion discrepancy. 

Significantly different LR implied that haptic improved human motor 
learning. The pure shape comparison (IDTW) results showed that first- 
person view with or without haptic was significantly different in late- 
stage (p = 0.037) and overall performance (p = 0.030) which echoed 
the visual interpretation of Fig. 13. 

6. Discussion 

The experiment results indicated that our proposed haptic-based 
sensation transfer impacted the human motor learning process in a 
positive way. Participants seemed to be confused with the haptic guid
ance at the very beginning, but quickly adapted to it and started to 
leverage it in complex human motor learning tasks. In this study, PED 
results can be interpreted as a holistic performance measurement, i.e., a 
good learner shall follow the desired motions in terms of both temporal 
and spatial accuracy. PED results in this experiment implied that as for 

the whole-body motion, the addition of haptic sensation had a signifi
cant negative impact on task performances at the early training stage but 
not significant in the middle and late stages. Fig. 11 visualizes such a 
result in which the early stage of the FPVH condition had a higher 
discrepancy than the early stage of condition FPV while the middle and 
late stages between these conditions were similar. The significant 
negative impact became non-significant when the training reached the 
middle and last stages, suggesting that the negative impact was reduced 
as the training proceeded. The higher average learning rate in haptic 
conditions echoed such an observation. Under this controlled experi
ment, the only changing variable within a condition across different 
trials was time and experience. Thus, the initial difficulty of working 
with the haptic feedback at the whole-body level can be described as a 
cognitive challenge for adapting to a multi-channel sensorimotor 
process. 

To better understand the haptic posed cognitive challenge, we 
analyzed the participant motion data in depth. We observed the 
mismatch between PED and IDTW, where PED mostly showed non- 
significance but IDTW showed significant differences between the 
first-person view with and without haptic. In contrast to PED, the IDTW 
result emphasized the pure spatial trajectory (shape) of motions. Haptic 
groups showed significantly higher discrepancies (p < 0.001) in the 
egocentric view of human motor learning. In the third-person view, 
haptic in early-stage, late-stage, and the overall result had p values of 
0.059, 0.030, and 0.001 respectively, which also implied significant 
differences. Thus, this implied that the spatial misalignment was the 
main contributor to the spatial-temporal discrepancy. On the other 
hand, from the perspective of data distribution, we found that the haptic 
groups had higher variances in IDTW results which means the motions’ 
spatial shapes under haptic guidelines were less stable. Considering that 
the addition of haptic did not impact visual perception, these pieces of 
evidence implied that haptic guidelines overburdened cognitive load at 
the early training stage. From the participants’ perspective, the addition 
of haptic streamed too much information to proceed, which deteriorated 
the performance in the first few trials. After getting familiar with the 
motion and motion-specific haptic guidelines, participants were capable 
to proceed with the information and improve their performance. It was 
also an interesting observation that the discrepancy in the late stage of 
PED was low but the late stage discrepancy of IDTW was high, which 
means in the late stage, although the participants were making mistakes 
in motion shape, their overall motion accuracies were significantly 
improved. This finding implied that after mastering the general motion 
pattern, haptic-based sensation transfer encouraged novice users to 
move boldly to feel the motion in small granularity, resulting in a worse 
spatial trajectory but better spatial-temporal motion. This finding 
echoed with participants’ subjective post-experiment feedback that they 
started to improve motion intentionally after the middle stage. This 
finding echoed the experiment by Säfström et al. [79] in which the 
sensorimotor learning process was found to have distinct stages, and the 
first stage was for familiarization and no learning effect was detected. 
Existing sensorimotor learning literature also observed a similar pattern 
[80,81]. 

Although the whole-body performance seems not to support the 
benefits of the additional haptic sensation, possibly due to the cognitive 
challenges required to adapt to this new experience, the dominant hand 
performance showed a different result. On the one hand, the dominant 
hand is the body component that people typically have the most motor 
control capability on and most mature neural interactivity [82]; On the 
other hand, the dominant hand is the end effector that is easier for motor 
adaptation. Under limited cognitive capability, dominant hand motion 
could imply the underlying influences more clearly. We found that the 
late stage in haptic condition was significantly better than non-haptic 
conditions. In addition, while the motor performance in the early 
stage was not significantly different, the FPVH condition had a signifi
cantly higher learning rate compared with the FPV condition. Pure 
spatial performance (IDTW) also proved that haptic sensation 

Table 3 
Overall Distribution Parameters.  

Analysis Method Conditions Expected Value Median Variance (e−3) 

PED 

TPV 0.218 0.214 1.8 
TPVH 0.223 0.222 1.8 
FPV 0.148 0.144 1.5 
FPVH 0.154 0.152 1.3 

IDTW 

TPV 0.188 0.178 2.9 
TPVH 0.211 0.201 3.4 
FPV 0.157 0.149 2.9 
FPVH 0.185 0.179 4.1  
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significantly improved DGL motor learning. These observations proved 
that haptic-based sensation transfer positively impacted the human 
motor learning process for the dominant hand. The significant 
improvement of haptic to dominant hand motor learning in contrast to 
the insignificant impact of haptic on whole-body implicated that haptic- 
based sensation transfer is a promising technique once cognitive over
load issue is relieved. This experiment also echoed the findings that an 

egocentric view improves motor training. 
We found that during the retention phase (i.e., after removing the 

visual and/or haptic guidance), performance was all worsened, no 
matter if haptics was used or not during the training sessions. It is un
derstandable as participants had to go through a sudden change in the 
guidance environment. We also found several interesting patterns. First, 
under different conditions (with and without haptic cues), the residual 
effects were different. Specifically, there was a substantial difference in 
terms of retention performance after the “first person view with haptics” 
training versus after the “first person view without haptics” training (p 
= 0.09). The average accuracy of the former one was better than the 
latter one. To be noted, we recognize that the p-value was not smaller 
than 0.05, but it was still small enough to indicate a possible difference 
in the future. It means that as for the accuracy, it did show that the use of 
haptics had a possible residual effect at the end, even after it was 
removed. Second, we found that the residual effects of using haptics 
during training were affected by the view point as well. There was a 
substantial difference in terms of the retention phase performance after 
the “third person view with haptics” versus after the “first person view 
with haptics” (p = 0.06). It indicates that the first person view may have 
strengthened the residual benefits of haptic cues in the retention of the 
gained motor skill. Overall, it was found that the pattern of retention 
benefits given haptics was not as clear as in the training sessions, but it 
did show a possible benefit of using haptic method in retaining a gained 
motor skill. The use of haptics could possibly improve the retention 
performance, and such an improvement seemed to be strengthened by 
the viewpoint during the training phase. 

This sensation transfer approach is a novel method that can be used 
for transferring learning from an expert/experienced worker to novices 

Fig. 12. Dominant Hand overall discrepancy distribution.  

Fig. 13. Discrepancy in learning stages (dominant hand).  

Table 4 
Significance by Wilcoxon Test (dominant hand performance).  

Analysis 
Method 

Comparison p-value: 
TPV V.S. 
TPVH 

p-value: 
FPV V.S. 
FPVH 

p-value: 
TPV V.S. 
FPV 

p-value: 
TPVH V.S. 
FPVH 

PED 

All 0.530 0.444 <0.001* <0.001* 
Early Stage 0.900 0.236 <0.001* <0.001* 
Late Stage 0.457 0.016 * <0.001* <0.001* 
Retention 0.524 0.092 0.846 0.063 
LR 0.781 0.037* 0.910 0.008* 

LR Mean 
(Median) 

1.074/ 
1.073 
(1.111/ 
1.036) 

1.093/ 
1.285 
(1.032/ 
1.246) 

1.074/ 
1.093 
(1.111/ 
1.032) 

1.073/ 
1.285 
(1.036/ 
1.246) 

IDTW 

All 0.816 0.030* <0.001* <0.001* 
Early Stage 0. 257 0.393 <0.001* <0.001* 
Late Stage 0.842 0.037* <0.001* <0.001* 
Retention 0.644 0.846 0.838 0.966 
LR 0.36 0.719 0.032* 0.254 

LR Mean 
(Median) 

1.159/ 
1.190 
(1.016/ 
1.133) 

1.525/ 
1.308 
(1.194/ 
1.176) 

1.159/ 
1.525 
(1.016/ 
1.308) 

1.190/ 
1.308 
(1.133/ 
1.176)  
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learning any new task, such as a new operation or a new tool. In our 
study, we focus on exoskeleton use as a particular use-case for studying 
the potential of the sensation transfer method. We believe that 
exoskeleton use is a relevant and good use-case because there are so 
many kinds of exoskeletons emerging in the industrial market with a 
variety of design features, and a key factor in industrial adoption of this 
technology will be how efficiently workers can be trained in the use of 
these devices. Hence, the potential for our haptic sensation transfer 
approach to function as a universal training paradigm is significant and 
impactful. 

The gender difference was not considered in this paper. The 
musculoskeletal and cognitive differences between males and females 
might impact the effectiveness of haptic learning. In the future, we will 
expand our test with increased female participants to retrieve more solid 
evidence while adding gender difference as a cross-subject variable to 
the paper. In addition, the participants were mostly youngsters from the 
university. Senior age groups may have different musculoskeletal re
actions toward haptic sensations that deserve further investigation. 
Moreover, we are aware that long term retention was not assessed in this 
paper. Both the doses of learning needed and its longer-term retention 
are important next steps to understand and verify whether the learning 
produced by the haptic sensation transfer method can be retained as part 
of an individual’s motor-skill repertoire. 

It is worth exploring in the future whether the sensation transfer 
method can improve whole-body motion by relieving the cognitive load, 
which may be accomplished by reducing haptic magnitude, reducing the 
number of haptic spots, changing haptic frequency, adopting negative 
haptic feedback, or any other methods. In addition, whether the effec
tiveness of the proposed sensation transfer method varies according to 
motions is a question that remains to be answered. We could also explore 
the cognitive impact of the sensation transfer method by using eye data 
or brain activities. 

7. Conclusions 

In this paper, we designed a haptic-based sensation transfer system 
for migrating the haptic and kinematic feeling of using an exoskeleton 
system from the expert to any new user who has no access to the real 
exoskeleton system. A whole-body haptic system is used to generate 
haptic feedback of different patterns depending on how the novice users 
follow the motion trajectories of the expert, which is captured and 
recorded with motion tracking techniques. To test the effectiveness of 
the proposed method, we conducted a human-subject experiment with 
30 participants. The participants were asked to follow the motions of an 
expert exoskeleton user with the third-person view or first-person view, 
and with or without the whole-body haptic feedback. The performance 
was evaluated with the summed average of spatial discrepancies be
tween the participant’s motions and the expert’s sample motions. The 
experiment result indicates that the first-person view motor training that 
visualized motion information from an egocentric perspective was 
significantly better than the third-person view. Haptic sensation origi
nally induces a higher cognitive load at the whole-body scale but im
proves as the training proceeds. The general observation shows that 
haptics in VR may be an important approach for enhancing human 
motor learning, especially in complex motor tasks such as learning to use 
an exoskeleton system. In this paper, we also observed that not all body 
parts shared the same benefits from haptic feedback. To be more spe
cific, body components with a higher sensorimotor capacity (such as the 
dominant hand) could benefit more from our created vibrotactile feed
back, and thereby potentially reduce the required training time and 
cognitive load required for operation. It is worth exploring in future 
research how to tailor the configuration of haptic feedback to enhance 
motor learning while maintaining a reasonable cognitive load, based on 
the application of haptic feedback to different parts of the body and 
testing learning rates and cognitive load in more tasks. In addition, we 
found that the proposed egocentric haptic-based sensation transfer 

method could possibly improve learning retention, i.e., the residual ef
fects even after the haptic feedback was removed. To validate it, more 
comprehensive retention tests with longer time intervals and more trials 
are needed. 

In general, the proposed egocentric haptic-based sensation transfer 
method for exoskeleton motor training seems to be effective in DGL 
motion training with a back-exoskeleton. It inspires innovative learning 
frameworks for exoskeleton training in a cost-efficient, risk-free, scal
able, and accessible way, and for the wider and further implementation 
of the exoskeleton in the future construction industry. Furthermore, the 
proposed method can be extended to a broader scope of human motor 
training in addition to exoskeleton training, for example, gym training, 
athlete training, musician training, rehabilitation, and construction 
operation training. 

As for the future agenda, the retention effects of the proposed 
haptics-based sensation transfer should be further tested. Another 
experiment with more trials and longer retention periods can provide 
solid evidence about if the proposed method facilitates long-term motor 
skill gaining even in a virtual setting. The retention periods can be across 
multiple days based on the relevant literature. In addition, more mo
dalities and sensor configurations of the haptic system should be tested. 
In this paper, a fixed configuration was used. It is worth investigating if 
personalized solutions are needed to meet individual perception and 
musculoskeletal features. Last, more task contexts should be tested in the 
future to examine the transferability of the proposed method. This paper 
focuses on a DGL task. Other tasks such as hand pickup, moving, and 
upper limb raising are also relevant for future exoskeleton applications 
in the context of construction operations. The finite difference in 
training outcomes across different tasks can be tested. 
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