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SUMMARY

Relational arrays represent measures of association between pairs of actors, often in varied contexts
or over time. Trade flows between countries, financial transactions between individuals, contact frequen-
cies between school children in classrooms and dynamic protein-protein interactions are all examples
of relational arrays. Elements of a relational array are often modelled as a linear function of observable
covariates. Uncertainty estimates for regression coefficient estimators, and ideally the coefficient estima-
tors themselves, must account for dependence between elements of the array, e.g., relations involving
the same actor. Existing estimators of standard errors that recognize such relational dependence rely on
estimating extremely complex, heterogeneous structure across actors. This paper develops a new class of
parsimonious coefficient and standard error estimators for regressions of relational arrays. We leverage an
exchangeability assumption to derive standard error estimators that pool information across actors, and are
substantially more accurate than existing estimators in a variety of settings. This exchangeability assump-
tion is pervasive in network and array models in the statistics literature, but not previously considered
when adjusting for dependence in a regression setting with relational data. We demonstrate improvements
in inference theoretically, via a simulation study, and by analysis of a dataset involving international trade.

Some key words: Array data; Dependent data; Generalized least squares; Weighted network.

1. INTRODUCTION

Entries in relational arrays quantify pairwise interactions between actors that may be of multiple types or
observed over time. Examples include annual flows of migrants between countries (Aleskerov et al., 2017)
and interactions between students over the course of a semester (Han et al., 2016). In economics, relational
arrays are used to describe monetary transfers between individuals as part of informal insurance markets (see
Bardham, 1984; Foster & Rosenzweig, 2001; Fafchamps, 2006; Attanasio et al., 2012; Banerjee et al.,
2013). Other examples of data that are naturally represented as relational arrays include gene expressions
(Zhang & Horvath, 2005) and international relations (Fagiolo et al., 2008).
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A relational array ¥ = (y;), where i,j = 1,...,n,i & j,r = 1,...,R, is composed of a series of R
matrices of size (n x n), each of which describes the directed pairwise relationships among » actors of
type r, e.g., time period r or relation context . The diagonal elements of each matrix, for example y;;,, are
assumed to be undefined, as we do not consider, e.g., international relations of a country with itself. The
relationship from actor i to actor j may differ than that from j to 7, such that y;; & y;; in general; however,
the methods we propose extend to the symmetric relation case, see the Supplementary Material.

The primary goal in our setting is inference for linear regressions, exploring the effects of exogenous
covariates on the values in the relational array, expressed as

yijr:ﬁTxijr"i_sijr (i9j=1"'->msi:':jsr:1,"-7R)a (1)

where y;;, is a continuous directed measure of the rth relation from actor i to actor j, x;;, is a (p x 1) vector
of covariates and &, is an unobserved, scalar random error. For example, considering informal insurance
markets, Fafchamps & Gubert (2007) examined how covariates such as geographical proximity and kinship
relate to risk sharing relations after economic shocks.

A core challenge in making inference on g arises from the innate dependencies among error relations
involving the same actor. For example, dependence often exists between trade relations involving the
same country or between economic transfers originating from the same individual. This dependence may
arise due to variation unaccounted for in the covariates, for example, from differences in production
levels between nations or from individual differences in risk aversion. Standard regression techniques may
lead to poor estimates of S and/or incorrect conclusions regarding the significance of the estimate of S.
Approaches to account for error dependence in relational arrays have appeared in the statistics, biostatistics
and econometrics literatures and can be characterized into two broad classes.

The first set of approaches impose a parametric model on the errors. Specifically, they either use latent
variables to model the array measurements as conditionally independent given the latent structure (Holland
et al., 1983; Wang & Wong, 1987; Hoff et al., 2002; Li & Loken, 2002; Hoff, 2005) or model the error
covariance structure directly subject to a set of simplifying assumptions (Hoff, 2011, 2015; Fosdick &
Hoff, 2014). While these methods allow for possibly improved estimation of 8 and appropriate standard
error estimators in the presence of relational dependence, the accuracy of inference on 8 depends on the
extent to which the true error structure is consistent with the specified parametric model. In addition, many
of these models are estimated in a Bayesian paradigm using Markov chain Monte Carlo approaches, which
are commonly computationally expensive to estimate.

The second set of approaches to accounting for relational dependence relies heavily on empirical esti-
mates of the error structure based on the regression residuals, first proposed by Fafchamps & Gubert (2007)
and based on the spatial dependence work of Conley (1999). This framework is model agnostic, making
as few assumptions as possible about the data generating process. One empirical approach estimates the
regression coefficients using ordinary least squares, and then utilizes a sandwich covariance estimator,
which is robust to a wide array of error structures, for the standard errors of the regression coefficients
(Fafchamps & Gubert, 2007; Aronow et al., 2015). In finite samples, this estimator is hindered by the need
to estimate a large number of covariance parameters with limited observations, see King & Roberts, 2015
for a discussion in other contexts, and is the reason why Wakefield (2013) suggests such estimators be
labelled empirical rather than robust. We observe that standard errors from this empirical framework are
often highly variable and are anticonservative.

In this work, we introduce an empirical estimation approach for relational arrays that incorporates
an exchangeability assumption. This assumption is implicit in many of the model-based approaches
discussed previously, and is a hallmark of Bayesian hierarchical models within, and outside, the
relational context (Orbanz & Roy, 2015). Our key contribution is to define the covariance matrix,
and a corresponding estimator, of the relational error array under exchangeability. Use of our par-
simonious estimator produces superior estimates of B and its standard errors relative to existing
approaches, and our estimator is easier to compute than existing Bayesian model-based and exchange-
able bootstrapping (Menzel, 2017; Green & Shalizi, 2022) approaches. Reproduction code is available
at https://github.com/fmarrs3/netreg public and methods are implemented in the R
package netregR (R Development Core Team, 2022).
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2. INFERENCE IN RELATIONAL REGRESSION
2.1. Estimation of regression coefficients

We employ a least squares framework to perform inference on g in the relational regression model
in (1) (Aitkin, 1935). An unbiased estimator for 8 is the ordinary least squares estimator, B =X"X)"!
XTy, where X is an {Rn(n — 1) x p} matrix of (p x 1) covariate vectors (x;.) and y is a vectorized
representation of (y;;,). The least squares estimator is the best linear unbiased estimator for 8 when the
covariance matrix 2 = var(y | X) is proportional to the identity matrix. Dependence is expected in
relational data, e.g., between relations (i,7,r) and (i, k, r) that share actor i. If Q2 were known, the best
linear unbiased estimator for § is the generalized least squares estimator of Aitkin (1935),

Bos = XTQ7X) T XTQ . ()

In practice, €2 is unknown and must be estimated. Given estimator , alternating estimation of €2 with (2),
replacing © with € at each iteration, is termed feasible generalized least squares. When €2 is consistent,
feasible generalized least squares is asymptotically efficient for § (Greene, 2003; Hansen, 2015).

Regardless of whether the ordinary least squares estimator or (2) is used to estimate §, uncertainty
estimates are required for inference. A common approach is to approximate the distribution of the g
estimate as a multivariate normal random variable, and construct confidence intervals using an estimator
of its variance: in the ordinary least squares setting,

var(B | X) = X" X) "' XTQX (X "X) !, 3)
and in the feasible generalized least squares setting,
var(Bars | X) = XTQ X)) XTQ'QQ XY (X TQTX) T, (4)

where  is the final estimate of Q from the generalized least squares procedure. Variance estimators are
often constructed by substituting an estimator for €2 in (3) and (4), and are commonly termed sandwich
estimators (Huber, 1967; White, 1980). Thus, inference for 8 requires an estimator for 2, regardless of
how B is estimated, and properties of the estimator of Var(ﬁ | X) depend strongly on the estimator of €2.

2.2. Dyadic clustering estimator

Fafchamps & Gubert (2007), Cameron et al. (2011), Aronow et al. (2015) and Tabord-Meehan (2018)
proposed and described the properties of a flexible standard error estimator for relational regression that
makes the sole assumption that two relations (7,7, 7) and (k, [, s) are independent if (i,7) and (k, /) do not
share an actor. This assumption implies that cov(y;, yus | X) = cov(&;, &us | X) = 0 for non-overlapping
relation pairs, but places no restrictions on the covariance elements for pairs of relations that share an actor.
Let Qpc denote the covariance matrix of &, subject to this non-overlapping pair independence assumption.
Fafchamps & Gubert (2007) proposed estimating each nonzero entry of Qp¢ with a product of residuals,
i.e., using e;.ey, to estimate cov(§;, i), Where e = yyr — ﬂATx,;,-,. The estimator QDC can be seen as
that which takes the empirical covariance of the residuals defined by ee”, where e is a vector of the set
of residuals (e;), and introduces zeros to enforce the non-overlapping pair independence assumption.

Fafchamps & Gubert (2007) proposed a sandwich variance estimator for Var(B | X) in (3) based on $oc,
Voe = X"X) ' X" Qpe X (XX (5)

We refer to I7DC as the dyadic clustering estimator as it owes its derivation to the extensive literature on
cluster-robust standard error estimators.

The dyadic clustering estimator in (5) has the attractive properties that it is asymptotically consistent
under a wide range of error dependence structures and is fast to compute. However, Qe estlmates O(R?*n?)
nonzero covariance elements separately based on O(R*n?) dependent observations, and thus Vpc is inher-
ently quite variable. Only when there is extreme heterogeneity in the true covariance structure is the dyadic
clustering method optimal and it will suffer a loss of efficiency otherwise. Lastly, Qo is always singular
and thus Qpc cannot be inverted for use in a feasible generalized least squares estimator of .
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Fig. 1. Left: six distinguishable configurations of relation pairs (black and grey arrows) in an exchangeable relational
model with unlabelled actors, corresponding to 12 covariance values (six each for s = » and s & r). Right: block
structure in 2z for R = 4, where blocks 2| and 2, correspond to s =  and s 5 r, respectively.

3. STANDARD ERRORS UNDER EXCHANGEABILITY

3.1. Exchangeability in relational models

A common modelling assumption for relational and array structured errors is exchangeability. Defined
by de Finetti for a univariate sequence of random variables, exchangeability was generalized to array
data by D. N. Hoover in his 1979 Princeton Institute for Advanced Study preprint and Aldous (1981).
The errors in a relational data model are jointly exchangeable if the probability distribution of the error
array € = (&;,) is invariant under any simultaneous permutation of the rows and columns, and secondary
permutation of the third dimension. Mathematically, this means that pr(E) = pr{I1(E)}, where [1(E) =
{&x(=gw( ) 18 the error array with its indices reordered according to permutation operators m and v.
Intuitively, exchangeability in the regression context means that the observed covariates are sufficiently
informative such that the labels of the rows and columns in the error array are uninformative. Similarly, the
ordering of the third dimension of the error array is uninformative to its distribution. This assumption may
be appropriate when the third dimension of the array represents different contexts of observations, such
as economic trade sectors, that have no inherent ordering, or when the third dimension represents time
periods, but the bulk of the temporal variation is accounted for in the covariates. Many of the conditionally
independent parametric latent variable models cited in § 1 have this joint exchangeability property (Hoff,
2008; Bickel & Chen, 2009).

3.2. Impact of exchangeability on the covariance structure

Li & Loken (2002) and Hoff (2005) described several particular random effects models for R = 1. The
corresponding error covariance matrices have different entries depending on the model, yet all covariance
matrices have at most six unique entries. A key contribution of this paper is to formalize and extend this
observation, showing that any jointly exchangeable model for relational array E results in an €2 of the same
form, with at most six unique terms when R = 1 and at most 12 unique terms when R > 1.

PROPOSITION 1. If'a probability model for a directed relational array E is jointly exchangeable and has
finite second moments, then the covariance matrix of B contains at most 12 unique values.

The 12 (possibly) unique entries in Q2 correspond to the 12 distinguishable configurations of relation
pairs (i,/,r) and (k,/,s) with unlabelled actors. The 12 configurations can be separated into two sets of
six identical configurations of relations (i, ) and (k, /) with unlabelled actors, as depicted in Fig. 1, where
each set corresponds to » = s and & 5. A proof is provided in the Supplementary Material.

3.3. Covariance matrices of exchangeable relational arrays

Similar to the dyadic clustering estimator, we assume that non-overlapping relation pairs are indepen-
dent, such that cov(§y;, &) = 0 for any s and » when (i, , &, /) are distinct. This assumption sets two of
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the 12 parameters in €2 to zero. We introduce a new class of covariance matrices that contain 10 possibly
nonzero entries, ¢(({’), ", ¢>l§”), ", d)fl") (n = 1,2), associated with Fig. 1(a). The separation of covariances
by r = s and r & s implies that 2 consists of blocks of €2, and €2,, each consisting of five nonzero terms
forr =s(n =1)andr £ s (n = 2), respectively; see Fig. 1(b). We define an exchangeable covariance
matrix as any covariance matrix of this form and denote it Q2¢.

4. EXCHANGEABLE ESTIMATOR DEFINITION AND EVALUATION
4.1. Exchangeable covariance estimator

Consider relational regression models with €2 of the exchangeable form €2;. The proposed exchangeable
estimator of var(8 | X) is then

2 d
e = X0 TXTQXXTX) T, Q=) drs,

n=1 u=0

where 87 denotes the {Rn(n— 1) x Rn(n— 1)} binary matrix with 1s in the entries corresponding to relation
pairs of type (v = 0,a,b,c,d; n = 1,2), as defined in Fig. 1. We propose estimating the 10 parameters in
2 by averaging the residual products that share the same index configurations, corresponding to (a)—(d) in
Fig. 1. For example, the estimate of cov(&y, &), corresponding tou = band n = 2, is

A R\ 1
#=(2) o Er (T w)

res 0 i ket

The remaining nine estimators for (s = 0,a,...,e;n = 1,2) are defined analogously, and fZE may be
interpreted as the projection of Q2pc into the vector space over symmetric matrices of the form of Q.

4.2. Comparison of the exchangeable estimator with dyadic clustering

It is intuitive that the moment-based exchangeable estimator is consistent, and more efficient than the
dyadic clustering estimator, whenever the exchangeability assumption is satisfied. One might expect the
highly parameterized dyadic clustering estimator to trade-off high variance for reduced bias. However,
we derive the result that the dyadic clustering estimator is biased downwards, and that this bias is larger
than twice the bias of the exchangeable estimator. One concludes that a trade-off for the robustness of the
dyadic clustering estimator is anticonservatism. The proof of Theorem 1 is provided in the Supplementary
Material.

THEOREM 1. Consider error vector & and normally distributed covariate vector x with zero means,
exchangeable covariance matrices and bounded fourth moments, where

Vi = B +x;8 +&;.
Then, the dyadic clustering estimator for V&I‘(Bz) is biased downwards,
n*Bias(Vpe) + O(n™ %) < —2n|Bias(Ve)| + O(n™'/?) <0,
noting that both n*Bias(Vpc) and |n*Bias(Vz)| are O(1).

We conducted a simulation study to compare the bias and 95% confidence interval coverage when using
the exchangeable and dyadic clustering estimators. We simulated from a model with three covariates, one
each of binary, positive real and real valued, with exchangeable and nonexchangeable error models, for R =
1 and n = 20,40, 80, 160, 320. Figure 2 shows the estimated mean coverage and middle 95% of coverages
across various X realizations. In all settings, the estimated mean coverage of the exchangeable estimator
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Fig.2. Estimated probability that the true coefficient is in the 95% confidence interval for each of three covariates

(binary, positive and real valued) when the errors are generated from exchangeable (circles) and nonexchangeable

(triangles) models. Points denote mean estimated coverage and lines represent the middle 95% of coverages for
exchangeable (black) and dyadic clustering (grey) estimators.

is closer to the nominal 0.95 level than the dyadic clustering estimator. This difference is most pronounced
for the binary covariate, where there is reduced signal to noise relative to the other covariates. The average
bias of the dyadic clustering estimator is typically more than four times that of the exchangeable estimator
under the exchangeable error model, confirming Theorem 1 and driving the poorer coverage performance.

5. PATTERNS IN INTERNATIONAL TRADE

We demonstrate the implications of using our exchangeable estimator in a study of international trade
among 58 countries over R = T = 20 years. These data were previously analysed and made available
by Westveld & Hoff (2011). Following Tinbergen (1962), Ward & Hoff (2007) and Westveld & Hoff
(2011) we use a modified gravity mean model to represent log yearly trade between each pair of countries
as a linear function of seven covariates in years 1981-2000. Westveld & Hoff (2011) proposed a model,
which we refer to as the mixed effects model, which explicitly decomposes the regression error term €;;
for each time period and pair of actors into time-dependent sender and receiver effects, resulting in 13
error covariance parameters that are estimated using a latent variable representation and Bayesian Markov
chain Monte Carlo methodology. We propose estimating the gravity mean model using feasible generalized
least squares, assuming that the errors are jointly exchangeable. As noted in § 4.1, the proposed approach
estimates 10 error covariance parameters.

We compared the exchangeable and mixed effects approaches, and ordinary least squares as a baseline,
in an out-of-sample prediction study. Here we estimated the regression coefficients using the first K years
oftrade data for K = 4, ..., 19 and used the estimates to predict trade values in the following year. Figure 3
provides the coefficient of determination, R?, for the three procedures when predicting trade flows in years
5 through 20. There is a median increase in R? of about 10% (30%) when using the proposed exchangeable
approach relative to the mixed effects approach (ordinary least squares). The proposed approach performs
better than the other approaches for all time periods, although the gap in performance decreases as K
increases. These results suggest that the more parsimonious exchangeable approach represents the data
better than the mixed effects model, and yet, the exchangeable approach runs in a small fraction of the
time of the mixed effects approach. See the Supplementary Material for additional details.

We compared the coefficients of the ordinary least squares, mixed effects and exchangeable approaches.
The R? between the ordinary least squares and mixed effects coefficients is about 0.46, while the
exchangeable and mixed effects coefficients have an R? of 0.78. About 40% of the ordinary least squares
coefficients, using dyadic clustering standard errors, were significantly different from the mixed effects
coefficients, while only 1% of the exchangeable coefficients were significantly different from the mixed
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Fig.3. The coefficient of determination R> when predicting one-year-ahead trade flows from exchangeable (black
circle), mixed effects (grey triangle) and ordinary least squares (light grey plus).

effects coefficients. Finally, the ordinary least squares coefficients have standard errors that are, on aver-
age, over 1.5 times the standard errors of the exchangeable coefficients, with exchangeable standard errors.
Together with the one-year-ahead prediction results, the coefficient and standard error comparisons suggest
that the proposed approach can revise ordinary least squares coefficients in the direction of a higher fidelity
model, giving more precise estimates of the coefficients, while requiring few modelling decisions and with
limited runtime penalty. Based on the success of the exchangeable approach in the trade data analysis and
simulation study, we recommend that researchers use the feasible generalized least squares estimator of
the coefficient vector 8 as demonstrated here, unless an unbiased estimator of the coefficient vector is
specifically desired.

6. DISCUSSION

The proposed exchangeable estimator leverages exchangeability for maximal symmetry and parsimony
in the covariance matrix of relational array Y. The exchangeability assumption may not be appropriate
when the true error covariances are substantially heterogeneous. We propose using a permutation test
based on the dyadic clustering estimator for testing the hypothesis of exchangeable errors. The procedure
consists of generating a null distribution of Ve in (5) by randomly permuting the residual array in a manner
consistent with exchangeability. If the observed estimator is extreme relative to the null distribution, this
suggests that the errors are nonexchangeable. Details and simulations are available in the Supplementary
Material.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains details of the estimator and analyses, proofs and a proposed test
for exchangeability.
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