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ABSTRACT: We present a weighted-graph-theoretic approach to adaptively
compute contributions from many-body approximations for smooth and accurate
post-Hartree−Fock (pHF) ab initio molecular dynamics (AIMD) of highly fluxional
chemical systems. This approach is ONIOM-like, where the full system is treated at a
computationally feasible quality of treatment (density functional theory (DFT) for
the size of systems considered in this publication), which is then improved through a
perturbative correction that captures local many-body interactions up to a certain
order within a higher level of theory (post-Hartree−Fock in this publication)
described through graph-theoretic techniques. Due to the fluxional and dynamical
nature of the systems studied here, these graphical representations evolve during
dynamics. As a result, energetic “hops” appear as the graphical representation
deforms with the evolution of the chemical and physical properties of the system. In
this paper, we introduce dynamically weighted, linear combinations of graphs, where
the transition between graphical representations is smoothly achieved by considering
a range of neighboring graphical representations at a given instant during dynamics. We compare these trajectories with those
obtained from a set of trajectories where the range of local many-body interactions considered is increased, sometimes to the
maximum available limit, which yields conservative trajectories as the order of interactions is increased. The weighted-graph
approach presents improved dynamics trajectories while only using lower-order many-body interaction terms. The methods are
compared by computing dynamical properties through time-correlation functions and structural distribution functions. In all cases,
the weighted-graph approach provides accurate results at a lower cost.

I. INTRODUCTION

Ab initio molecular dynamics1−5 (AIMD) is an important
computational tool that is often used to (a) study reactive
systems,6−9 (b) construct ensemble averages that help define
expectation values for observables,10,11 and (c) treat systems
beyond the standard harmonic approximation to compute
vibrational properties.12−22 It is generally considered to be a
good starting point for the study of anharmonic systems that
tend to be fluxional and require adequate sampling of the
potential energy surface beyond that described by the harmonic
normal vibrational mode coordinates. This dynamic sampling of
the local potential energy surface proves to be a critical approach
to obtain vibrational density of states (VDOS), through time-
correlation functions,10−12,17−20,23,24 and other experimentally
observable properties for fluxional systems.12,25 In AIMD, the
instantaneous electronic energies and gradients are needed to
compute the classical trajectories corresponding to the nuclear
degrees of freedom. On account of the steep algebraic scaling of
post-Hartree−Fock (pHF) methods,26−28 most practical AIMD
studies on moderately sized systems are limited to “on-the-fly”
density functional theory (DFT) studies.29−33 Although DFT

methods have proved to be extremely useful for a wide variety of
problems, a number of critical challenges remain.34−36 To
remedy this dilemma, we have developed graph-theoretic
methods that, based on the studies in refs 37−45 appear to
achieve post-Hartree−Fock accuracy at DFT cost for “on-the-
fly” AIMD trajectories and potential surface calculations. The
key idea in these studies begins with ONIOM;46 however, then,
the “model” and “real” system energies and gradients are
constructed using many-body expansions up to the arbitrary
rank. Furthermore, these many-body expansions are obtained in
a general fashion using adaptive graph-theoretic techniques,
which is time-dependent in AIMD trajectories and degrees of
freedom dependent on potential energy surface calculations.
The use of accurate analytical gradients associated with the
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resulting energy expression yields both extended Lagrangian38,39

and Born−Oppenheimer37−39 (BOMD)-based ab initio molec-
ular dynamics simulation protocols that have been shown to
provide accuracy comparable to CCSD and MP2 levels of
theory, with DFT-computational expense.
The methods in refs 37−45 are strongly influenced by recent,

ONIOM-based,46−52 molecular fragmentation methods53−65 as
well as developments in the many-body theory.66−77 The key
ingredient in the developments discussed in refs 37−45 involves
a geometric and graph-theoretic interpretation that efficiently
combines molecular fragmentation, ONIOM, and many-body
expansions. This results in a powerful algorithm that rapidly
converges as a function of many-body rank43 and allows the
simultaneous utilization of multiple electronic structural pack-
ages within a single AIMD step and potential energy surface
calculation. This graph-theoretic approach partitions the
chemical system considered into a set of chemical groups
(such as water and hydronium in refs 43 and 42 or a single amino
acid group in a polyalanine chain in refs 40 and 41) that are
considered as geometric nodes used to provide approximations
to local molecular one-body electronic energetic contributions.
First-order interactions between these discrete nodes are
captured by creating edges, which are the union of two nodes.
Once the nodes and edges are defined, the chemical system of
interest is now represented as a graph. Higher-order (or n-body)
terms can then be considered based upon the connectivity of the
nodes, and the criteria to determine this connectivity are
discussed in detail in refs 40 and 43 and summarized in
Appendix A. Since the local interactions and bonding networks
may change as the system evolves either in dynamics or while
sampling the molecular potential energy surface, the graphical
representation should adaptively consider and reweigh local
many-body effects. This adaptability requirement leads to an
evolving representation of the system as a function of nuclear
configuration. These graphical evolutions can occur in two ways:
(a) the definition of the nodes may change due to local chemical
transformations such as hydrogen/proton transfer or other
reactive events or (b) the formation/elimination of edges
(which in this work represents hydrogen bonds or higher-order
nonbonded interactions) due to the change in local, internal,
interactions within the system studied. These two dynamical
properties of the graphical representation force this approach to
adapt to the changing physics inherent to both dynamics
trajectories and potential energy surface calculations. The
adaptive nature of this graphical approach complicates its direct
application to AIMD trajectories of reactive systems where they
will experience “graphical hops” or the associated “hotspots”.78

Previously, we have developed schemes42 for using multiple
graphical representations simultaneously to construct smooth
and differentiable quantum nuclear potential surfaces. Here, we
consider all graphical representations arising within a given
simulation time window, and the energy surface may be thought
of as arising from a linear combination of such “local” graphical
representations. To properly evaluate our methods, AIMD
trajectories are studied for protonated water clusters due to their
highly fluxional characteristics.12,13,17,79−81 Furthermore, the
resultant trajectories are compared with those obtained from
progressively growing ranks of many-body theory to analyze the
convergence of trajectories with respect to many-body rank
contributions.
The paper is organized as follows: in Section II, we provide a

brief survey of our graph-theory-based ab initio molecular
dynamics methodology that has strong connections to many-

body approximations66−75,77 as well as fragmentation-based
techniques48−52,57,58,60−63,73,75,82−89 and ONIOM.46,90−92 In
Section III, we introduce an approach that provides a weighted
combination of multiple graphical representations found during
an AIMD trajectory to arrive at a conservative dynamics
protocol. In Section IV, we then go on to highlight our results on
small- and medium-sized protonated water clusters. One
significant highlight of our work is being able to achieve the
conservative CCSD level AIMD on the protonated 21-water
cluster (H43O21

+ ), which has provided a long-standing challenge
to theory and experiment.12,17,79,93,94 The rapid convergence
properties of this approach with increasing many-body terms are
presented in Section IV.II. Structural properties such as radial
distribution functions (RDFs) and dynamical properties such as
time-correlation functions are compared for various trajectories
in Section IV.III. Conclusions are given in Section V.

II. GRAPHICAL REPRESENTATION OF LOCAL
MANY-BODY INTERACTIONS FOR AB INITIO
MOLECULAR DYNAMICS

In a series of publications,37−44 we have developed graph-
theory-based techniques to compute efficient and adaptive
many-body expansions that have strong connections to
molecular fragmentation and ONIOM. The salient features of
this approach are as follows: the molecular assembly is
partitioned into a set of nodes or vertices. These nodes are
then connected through edges based on a chosen edge length
cutoff that captures the extent to which bonded and nonbonded
interactions are to be captured. Together, the set of nodes and
edges produce a graph, ≡ { }̅

̅ ̅V V;x
x x
0 1 , which is obtained from

the instantaneous molecular structure, x . Here, V0
x is the set of

vertices and V1
x is the set of edges for the molecular graph

depicting the instantaneous structure, x  . This graph is now said
to represent local interactions, where through the presence of
edges, two-body local interactions are captured. However,
inherently present in this graph are also higher-order
interactions represented by triangles, tetrahedrons, and objects
with five or more nodes. The critical aspect here, which makes
the connections to many-body theory rigorous, is that these
higher-order objects are completely connected. That is, here, all
pairs of nodes in the included higher-order objects are
connected through edges and such objects are known as affine
simplexes.95−97 Each set of rank-r simplexes, { = }V r 0,...,r ,
thus arises from a (truncated) power set of the elements within
the graph

{ = } ≡ { }rV V V V V V0, ..., , , , ..., , ...,r r0 1 2 (1)

The elements of such a power set provide a general and robust
scheme to construct many-body expansions for arbitrary
systems. One part of this publication includes trajectories
computed with predefined maximum ranks, ranging from edges
( = 1) to pentahedrons, or “pentatopes”, ( = 4), which
determines the maximum many-body contribution considered
within the graphical representation.
The above graphical description allows a dynamic and flexible

representation of local many-body interactions. The energetic
measure we begin within this paper, and considered in refs
37−44, consists of a perturbative, ONIOM-type, correction to a
result obtained at a lower level of theory, where the perturbative
correction is the difference between two many-body expansions
(replacing the standard “model-high” minus “model-low”
portion in ONIOM) given by the graphical representation
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above. Consistent with the notions behind ONIOM,46 we have
introduced37−44 an energy expression that conveys this general
idea

̅ = ̅ + ̅ − ̅E E E Ex x x x( ) ( ) ( ) ( )MBE,gt
ONIOM level,0

MBE
level,1

MBE
level,0

(2)

where the left side, EMBE,gt
ONIOM(x  ), denotes the graph-theoretically

obtained many-body correction to ONIOM and the term
EMBE
level,I(x ) on the right side may encompass the full system or a

chosen “active site”, and we have considered both options within
AIMD37−41 and quantum nuclear potential surface treat-
ments.42,45 In addition to the extrapolatory, ONIOM-like
form of eq 2, each term in the extrapolation is a many-body
expansion, which is now written in a general and computation-
ally robust fashion up to order (or rank) as
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where pα
r,m is the number of times the αth (r + 1)-body term (in

set Vr) appears in all (m + 1)-body terms (in set Vm for m ≥ r)

and consequently
Ä
Ç
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É
Ö
ÑÑÑÑÑÑ∑ − α= p( 1)m r

m r m, is the overcounting

correction for the number of times the αth (r + 1)-body term
appears in all objects of rank greater than or equal to r. It is
important to emphasize that eq 3 is essentially identical to
standard many-body expressions but presented now using graph
theory. An illustration of such a graphical decomposition of a
protonated water cluster treated later in this publication is
shown in Figure 1; the dynamical nature of such a graphical
representation is also shown and addressed in Section III. Thus,
the full energy expression, which combines eqs 2 and 3, becomes
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(4)

Figure 1.Here, the protonated 21-water cluster is represented as a graph, as required by eq 3, for each structure considered in the AIMD trajectory. As
the system evolves, the graphical representation changes to better represent the local interactions and local chemistry of the system. Three structures of
the protonated 21-water system, and their respective graphical representations, are considered above. For illustration of this graphical representation
change, there is a hydrogen bond formation between (a) and (b), which is captured by the creation of an additional edge in the graphical
representation. Here, the orange nodes represent the protonated water; there is a transition from an eigen-like structure (b) with the proton localized to
one water to a Zundel-like structure (c) with the proton shared between two waters. These changes in the graphical representation often lead to
energetic hops, as shown in Figure 4. Equation 5 is later employed to smoothen the energy and forces of these graphical transitions.

Figure 2. Computational scaling and cost studies above are shown for MP2 extrapolations from B3LYP, with a Pople style basis of 6-31+G(d,p) for a
series of polyalanine stands with increasing chain lengths. (a) This method demonstrates lower-order scaling than the full-systemMP2 calculations and
is further expanded using parallel computing resources in (b).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.0c01287
J. Chem. Theory Comput. 2021, 17, 2672−2690

2674

https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01287?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.0c01287?rel=cite-as&ref=PDF&jav=VoR


In practice, the individual simplexes in eqs 3 and 4 are computed
independently and in parallel (see Figure 2). Furthermore, our
implementation also allows the use of separate electronic
structural packages for each level of treatment and currently
supports the simultaneous use of Gaussian,98 ORCA,99 Psi4,100

Quantum Espresso,101 and OpenMX.102 In this paper,
electronic structural calculations are solely computed using the
Gaussian package. While our previous studies38−41 achieved
parallelism through the use of MPI, here we utilize an
unconstrained asynchronous queue system that is implemented
in Python.

III. WEIGHTED-GRAPHICAL REPRESENTATION FOR
ADAPTIVE MANY-BODY CONTRIBUTIONS AND
CONSERVATIVE AIMD IN FLUXIONAL SYSTEMS

The manner in which the graphical representation of a given
molecular system is constructed is detailed in Appendix A and
allows for dynamic definitions of both nodes and edges, thereby
influencing the many-body contributions in eq 4. As a system
evolves during AIMD (or is sampled in potential energy surface
calculations as done in refs 42 and 45), the graphical
representation adapts to model the evolving nature of the
nuclear framework, as dictated by inter- and intramolecular
interactions captured by eq 4. One example of how these
graphical connectivities may change during dynamics is shown
in Figure 1, where both an edge creation/destruction and node
modifications are shown. Hence, when studying reactive and
fluxional systems, the application of the graphical approach is
complicated by its adaptive nature. This implies that the simplex
weights, pα

r,m, change over time (or space in the case of potential
energy surface calculations) as local interactions (edges) are
included and excluded from the graphical representation and the
intrinsic properties of the nodal decomposition also change, as
shown in Figure 1. Due to the adaptive definition of the graphical
representation, the evolution of the system creates singular,
nondifferentiable, hops in the potential energy surface as the
graphical representationmorphs to capture the changing physics
of the system. To properly account for these “graphical hops” or
the associated “hotspots”78 presented in AIMD, in ref 42, we
have also constructed a scheme that allows the simultaneous
description of multiple graphical representations of molecular
structures and assemblies
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where we have introduced a linear combination of expressions
arising from a family of individual time-dependent, molecular
structure adaptive graphs { }β

̅ tx( )

β≡ { } → [ ̅ ]β
β β̅
̅ ̅ E tV V x; ( );tx
x x

( ) 0, 1, MBE,gt
ONIOM

(6)

and each graph, β
̅ tx( ), has an energy expression as given in eq 4,

encoded within the expression EMBE,gt
ONIOM[x  (t); β]. Furthermore, in

eq 5, the sum over α is within the setVr,β
x , which includes all rank-

r simplexes in the family of graphs,{ }β
̅ tx( ) . The sum overm, as in

eqs 3 and 4, is an overcounting correction term, which removes
the additional number of appearances of the αth rank-r fragment
inside all higher-rank simplexes (or molecular fragments) within
a specific graph β

̅ tx( ). Note that this double counting factor in eq

5 now includes a β dependence unlike the case in eq 4. Thus, the
changes between graphs, β

̅ tx( ), capture the respective trans-

formation of nodes reflected in V0,β
x and new edge creation and

destruction, captured within V1,β
x . The change in edges in turn

affects the sets Vr,β
x for r > 1 and also affects the multiplicity

values in summation ofm in eq 5. The contribution to the energy
expressions from these graphs is modulated by a normalized
weighting term, υβ(t), acting on the family of graphs that are
present inside some AIMD time window, [t − Υ, t]. Thus

∑ υ =
β

β t( ) 1
(7)

which was already assumed in moving from the first line in eq 5
to the second line. Gradients for this energy expression in eq 5
are given in Appendix B, and these are responsible for providing
conservative dynamics later in the publication.
Equation 5 is similar in spirit to the work in refs 42 and 45 but

differs in that, in refs 42 and 45, the weights are obtained from an
eigenvalue problem that is constructed using all graphical
connectivities appearing inside the potential energy space for a
molecule.42,45 However, AIMD is local since the potential and
gradients only depend on the instantaneous nuclear framework.
This may be contrasted with quantum nuclear dynamics,15,42,45

where the potential energy surface may be global. This allows
one to only consider the time-dependent, local, neighborhood of
graphical representations in the vicinity of the current molecular
structure. Thus, for AIMD, instead of considering “all” of the
graphical representations available in the system, or those within
an energetic window, here we consider the graphical
representations accessible to the system inside some time or
position window,{ } ∈ [ − Υ ]β

̅
t t,tx( ) , modulated by υβ(t). For

example, if there are two graphical connectivities that appear
inside the time window, [t − Υ, t], then, the function, υβ(t),
smoothly interpolates between the potential surfaces repre-
sented by the two graphical connectivities. The precise form of
υβ(t) may be thought of as a smoothened version of the well-
known Heaviside function, and for simplicity here, we utilize a
cuberoot interpolation scheme. It is, of course, possible that
there could be more than two graphical representations inside
some specific time window, [t − Υ, t]. Thus, if there are a set of
graphs,{ }β

̅ tx( ) , encountered inside the time window [t − Υ, t],
at respective time steps, tβ ∈ [t − Υ, t], where the index β is an
ordered set, β = 0,..., N, for (N + 1) graphical topologies
encountered inside the time window, [t−Υ, t], then the weights
for the individual graphs used in eq 5 are obtained using the
expressions

i
k
jjjj

y
{
zzzzυ β=

− + Δ
Υ

=β
βt f

t t t
N( ) ;

(8)
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(9)

∑υ υ β= − =β
β

β
′=

′t t( ) 1 ( ); 0
N

1

(10)

Here, Δt is the molecular dynamics time step, and eq 10
explicitly enforces the normalization condition in eq 7 by
adapting the weights for the first topology, β = 0, inside the time
window based on the subsequent topologies, β = 1,..., N,
discovered during dynamics. When N = 2, eq 9 does not apply.
In this publication, we have chosen

= × − +f x x( ) 0.5 (2 1) 0.51/3
(11)

An illustration of the effect of υβ(t) is provided in Figure 3.
Specifically in this illustration, the creation of a new edge leads to
the graphical transition black→ red as shown in Figure 3a, with
graphs provided in Figure 3b,c. Thus, a little after the time of the
first hop noted as “0” on the horizontal axis in Figure 1a, the
energy is obtained from two graphical representations, black and
red, with weights as shown. The edge transition appears to
facilitate a proton hop, which leads to the transition (black|red)
→ blue. The use of eqs 9 and 10 within eq 5 provides for smooth
transitions across multiple graphical descriptions, resulting in
conservative dynamics, as is probed in Section IV.
This also allows us to reinterpret the instantaneous graphical

realization in eq 4 as a special case of eq 5, where the
interpolating probabilities, υβ(t), are chosen to be sharp step
functions and only one graphical term dominates the energy
expression at each instant in time. The appropriate choice of
υβ(t), within eq 5, allows a natural description through smoothly
evolving graphical descriptions of potentials. The choice of

sharp step functions for υβ(t), in eq 5, yields eq 2 and may be
expected to result in “hotspots” (as in ref 78) in AIMD, which
are then alleviated through proper choice of υβ(t), in eq 5.
To study the effectiveness of the algorithm presented here, in

Section IV, we first analyze the behavior of a family of
trajectories, where each is constructed at a prespecified
maximum edge length and global rank. Indeed, we find that at
any such specified level of truncation of eq 4, the observed
AIMD trajectory hops inside a bundle of trajectories defined at
fixed ranks, but the detrimental effect of these hops progressively
reduces as the rank increases. Furthermore, as the rank included
increases, we also show that the expression in eq 2 converges
much more rapidly as compared to the standard many-body
expressions written in eq 3 using the graph-theoretic notation.
Hence, by then considering a monotonic sequence of AIMD
trajectories, each at a progressively higher rank, or each
considering higher-order many-body contributions in eq 4, we
show that conservative AIMD dynamics is possible for many
practical systems. This situation is then compared with the more
effective weighted-graph trajectories, as allowed by eq 5, that
suitably interpolate between a neighborhood of trajectories and
provide good quality energy conservation properties and
comparable to those constructed at higher rank but now at a
lower cost.
An additional factor that must be noted here is the fact that the

time dependence of eq 5, given the weights described by eqs
8−11, automatically makes the AIMD Hamiltonian time-
dependent. Since time-correlations are computed here to obtain
dynamical properties, and these require a conservative
Hamiltonian, the time dependence of eq 5 is potentially
problematic from the perspective of dynamics. However, as we
will find in Section IV, the numerical effect of this time
dependence is essentially negligible. Furthermore, there is also
the question of preserving time-reversal symmetry given that the

Figure 3. Illustration of the effect of choice of νβ(t) in eq 10. In (a), we provide a time fragment of the AIMD trajectory for the protonated 21-mer
discussed later in the paper. Specifically, the region shown here has multiple graphical representations where the population (eq 10) of each graphical
representation is presented using colored traces. t = 0 marks the appearance of the second representation, which is the first change in the graphical
representation inside this time series. In (b)−(d), we present the associated graphical representations colored accordingly. As in Figure 1, the
protonated nodes are presented as orange.
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propagation scheme is classical. We use the velocity Verlet
integration scheme,103 which is a third-order Trotter factoriza-
tion104,105 of the classical Liouville propagator106 and thus
formally satisfies time-reversal symmetry under the conditions
that (a) the Hamiltonian is not time-dependent and (b) time
steps are small enough. However, as noted above, the
Hamiltonian in eq 5 is time-dependent. However, we find
later, in Section IV, that the total energy is well conserved during
dynamics and the deviation in classical forces also well
controlled. This numerical result, in conjunction with a
Trotter-factorized, time-reversible classical integrator,103 leads
us to expect that any loss in time-reversal symmetry would be
insignificant.

IV. RESULTS AND DISCUSSION

The graph-theoretic methodology, discussed above, is an
efficient approach to compute post-Hartree−Fock AIMD
trajectories38,39 and approximations to large basis set AIMD.41

However, the treatment of highly fluxional chemical structures
would inherently lead to energy hops due to “hotspots” created
by the evolving nature of the graphical representation in
fluxional systems. We examine these “hotspots” and reduce their
impact upon AIMD trajectories using the methods presented
above. We consider AIMD trajectories for two protonated water
clusters: (a) the small-sized solvated Zundel (H13O6

+) cation,
which is thought to play a significant role in the fundamental
study of proton transfer in condensed phase systems and a
variety of chemical, biological, and material prob-
lems,14,81,107−116 and (b) the medium-sized protonated 21-
water cluster79,117−125 (H43O21

+), which has presented a long-
standing challenge for theoretical as well as experimental
studies.12,17,117

The rationale behind the choice of these two sets of systems is
clear upon the inspection of eqs 2 and 3. There are two
parameters that dictate the accuracy of these approximations.
First, a distance cutoff defines the maximum edge length, which
connects nodes in the graphical description of the molecular
framework. Then, for a chosen local edge length cutoff, one may
also consider different maximum ranks of the graph, as indicated
by eqs 1 and 3. As the maximum rank increases, it is critical to
note that the approximations in eqs 2 and 3 converge to the
correct full-system high-level energy. (Please see Section 2.1 and
Section 4 in ref 43 for a detailed analysis.) However, as the rank
and the edge length increase, the number of fragments increases
drastically as we will see and the average fragments get larger.
For the case of the solvated Zundel, however, the number and
size of fragments still remainmanageable. Thus, the choice of the
solvated Zundel cation allows us to gauge the convergence of
trajectories constructed using eq 2 for a growing family of edge

length cutoff and rank. This also allows us to compare the results
from the weighted-graph approximation, eq 5 in the previous
section, with the trajectories obtained using higher ranks and
edge lengths. Thus, the study on the solvated Zundel allows us to
gauge the extent to which the impact of “hotspots” may be
alleviated through appropriate modification of the edge length
cutoff as well as maximum rank, , along with the use of
weighted-graphical representations. While the solvated Zundel
cation allows us to probe the convergence of trajectories with
increasing rank and edge length cutoff, this kind of analysis is
impossible for the protonated 21-water cluster, where the
number and complexity of clusters grow tremendously. In both
cases, a maximum of pentameric structures ( = 4) are
considered and compared with the weighted-graphical ap-
proach.
The protonated 21-water cluster is considered to be a “magic”

cluster, which displays heightened stability,79,118,124,125 where
argon-tagged and deuterium-tagged vibrational action spectros-
copy79,117,120,126,127 and computational12,17,79,94,117,122,123,128

approaches have been employed to study its spectroscopic
features. Although this cluster has been studied with DFT to
capture the essential experimental findings,12,17,79,128 studying
this system at the post-Hartree−Fock level of treatment remains
untenable using standard full-system treatments. Thus, in
Section IV.III, coupled cluster quality trajectories are considered
to further elucidate the nature of the spectral evolution of these
OH peaks.

IV.I. Ascertaining the Impact of “Hotspots” on
Reduced Rank, = 1, AIMD Trajectories. The trajectories
for the solvated Zundel clusters are extrapolated from B3LYP/6-
31+G(d,p) to CCSD/6-31+G(d,p), and the trajectories for the
protonated 21-water clusters are extrapolated from B3LYP/6-
31++G(d,p) to CCSD/6-31++G(d,p), using the instantaneous
as well as weighted-graph-theoretic methodology in eq 2. Here,
the graph structure is dynamically computed at predefined levels
of rank, , andmaximum edge length. In addition, for the case of
water, we find a third critical parameter that is related to the
number of edges that are allowed for any given node. It might be
natural to only consider a maximum edge capacity cutoff
surrounding any given node, based on the expected tetrahedral
electron configuration geometry that surrounds a given water
molecule. However, this turns out to not be a good
approximation because proton hops are thought to be facilitated
by “special partners”129,130 that arise from a selected set of
important interactions from the second solvation shell of water
molecules surrounding the solvated proton that may instanta-
neously oversaturate the hydration. Given these prescriptions,
we have considered two sets of simulations listed in Table I,
where, in one case, the number of local edges are truncated at

Table I. Energy Conservation Properties for Dynamical Simulations (Microcanonical) Using the Adaptive Edge Formation
Scheme; These Trajectories Correspond to Figure 4

system edge cutoff (Å) Nf
a Δt (fs) simulation time (ps) TAve (K)

b Δ (kcal/mol) Drift
c (kcal/mol) ⟨F⟩d (10−6 kcal/Å)

H13O6
+ 1.1 × Di 1 11.0 0.2 6.00 164.16 ± 24.8 0.511 1.155 6.7

H43O21
+ 1.1 × Di 1 44.9 0.4 11.31 277.17 ± 21.7 3.978e 12.917 14.9

H43O21
+ 1.1 × Di 1 47.2 0.4 11.92 273.52 ± 23.3 2.724f 7.50 14.7

aAverage number of fragments. bBy use of the equipartition theorem, (3/2)(N − 1)kT, we convert the kinetic energy into average and root-mean-
square (RMS) temperatures. Here, the temperature is a measure of the available energy to sample the conformational space. The initial kinetic
energies were randomly distributed along the nuclear degrees of freedom. cThe drift in the Hamiltonian (total energy) is computed as the
difference between the average for the first 100 fs and last 100 fs. In kcal/mol. dEquation 12 over the full trajectory. eWhen “special partners” are
not included, this number escalates to 570.202 kcal/mol. fProperly accounting for “special partners” as allowed by the availability of a larger number
of edges (greater than four) around each water molecule as part of the dynamics calculation.
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four and a second set of simulations where these are dynamically
determined to allow additional second solvation shell partners
that may appear inside the edge length cutoff, perhaps to
facilitate proton transfer.
The evolution of the total energy for these trajectories shows

hotspots that correspond to instantaneous changes in the overall
graphical representation of the clusters, and the cumulative
conservative properties for these trajectories are shown in Table
I. To ascertain the quality of dynamics, we present three different
parameters in Table I and in all further studies in this paper. The
quantities Δ and Drift represent the standard deviation of
total energy and the drift in total energy during the AIMD
trajectories. It is generally desirable to have these quantities
remain in the sub-kcal/mol range, and clearly, the dynamics of
the larger system violates these criteria in Table I. In addition to

the energy criteria, we also inspect the forces computed during
AIMD trajectories. Thus, we compute

∫ ∑⟨ ⟩ =
=

F t F t
1

d ( )
i

N

i
0 1 2

Atoms

(12)

where F i(t) is the atomic force on atom i at time t. For a strictly
conservative system, there are no external forces and hence the
time evolution of the total force must be negligible. Thus, eq 12
provides a measure of the accumulation of residual forces over
the entire trajectory.
Clearly, the energy parameters in Table I show insufficient

conservation due to the change in graphical connectivity during
the dynamics. Resulting from these hops, in Figure 4, we present
a distribution of the interstep energetic change, given by E(t +
Δt) − E(t). This quantity, when large, defines an energetic hop,

Figure 4.Hotspots or energetic hops in the two-body ( = 1 in eq 2) AIMD occur due to a variety of reasons. Here, we present the energetic change
between two steps of AIMD. For smaller clusters, a proton transfer is the most likely reason for the lack of energy conservation. However, in the larger
clusters, a variety of other events, related to the changing hydrogen bond environment, cause energetic hotspots in two-body ( = 1 in eq 2) AIMD
trajectories. In each case, the vertical axis represents the relative probability of occurrence of each such event.

Table II. Energy Conservation Properties for Dynamical Simulations (Microcanonical) Using Expanded Edge Length Cutoffs
and Larger-Rank Many-Body Terms

system cutoff (Å) Nf
a Δt (fs) simulation time (ps) TAve (K)

b Δ (kcal/mol) Drift
c (kcal/mol) ⟨F⟩d (10−6 kcal/Å)

H13O6
+ 1.1 × Di 1 11.0 0.2 6.00 164.16 ± 24.8 0.511 1.155 6.7

6.00 1 18.8 0.2 6.00 181.68 ± 33.3 1.921 4.989 13.8
6.00 2 29.9 0.2 6.00 160.22 ± 23.0 0.436 0.966 18.0
6.00 3 35.2 0.2 6.00 156.10 ± 23.0 0.063 0.078 9.4
6.00 4 34.6 0.2 6.00 154.73 ± 22.4 0.049 −0.044 7.1

H43O21
+ 1.1 × Di 1 47.0 0.4 7.00 277.23 ± 22.5 1.907 6.283 14.8

4.00 3 74.0 0.4 7.00 271.24 ± 21.1 1.092 0.109 14.5
4.50 4 173.0 0.4 6.49 273.95 ± 22.5 0.794 2.092 18.4

aAverage number of fragments. bBy use of the equipartition theorem, (3/2)(N − 1)kT, we convert the kinetic energy into average and RMS
temperatures. Here, the temperature is a measure of the available energy to sample the conformational space. The initial kinetic energies were
randomly distributed along the nuclear degrees of freedom. cThe drift in the Hamiltonian (total energy) is computed as the difference between the
average for the first 100 fs and last 100 fs. In kcal/mol. dEquation 12 over the full trajectory.
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presumably between multiple graphical representations. It is
clear from the scale of the vertical axes in Figure 4 that only a
very small percentage of the trajectory steps show symptoms of
changes in graphical representation, and these capture two
different kinds of physical situations: (i) changes in the
hydrogen bond network (for example, the change between
Figure 1a,b) and (ii) changes in proton charge center (the
change between Figure 1b,c). Additionally, the formation of
“special partner” edges may statistically influence a proton hop.
Failure to properly address these events within an adaptive
graphical framework causes nonconservative dynamics. Fur-
thermore, the effect on forces due to these hops, as captured by
eq 12 in Table I, appears to be acceptable because, as seen from
Figure 4, the percentage of topology change is low during the
trajectories. Thus, the energy conservation criterion in Table I
provides a more rigorous estimate of the perturbation to the
dynamics due to graphical hops.
Given these energetic hops encountered using these adaptive

cutoffs, as seen in Figure 4, one may be inclined to utilize a
complete graph to describe the system. A complete graph is one
where given a set of nodes, all pairs of nodes are connected
through edges. As one can easily see, for a complete graph, the
number of simplexes grows exponentially with system size. (See,
for example, Table II in the next section, where we present the
number of molecular fragments created from simplexes for both
the solvated Zundel and the protonated 21-water cluster.) As a
result, in Appendix A, we discuss our approach to obtain a family

of graphs that capture the relevant molecular interactions.
However, as is also clear fromTable II in the paper, even in these
cases, the number of fragments grow dramatically for the
protonated 21-water cluster. Second, during dynamics, the
description of nodes in a graph may also change when protons
migrate (as illustrated in Figure 1b,c), which, as shown in Figure
4, produces larger energetic hops than the edge deformations. In
these cases, a complete graph is considered, which will still
require multiple graphs with different nodal definitions to
correctly represent the dynamics. The goal of the current paper
is to ask how to construct a numerically conservative scheme,
which both accounts for proton transfer events and avoids the
admittedly intractable, exponential scaling number of edges and
higher-order simplexes available in a complete graph. In the next
section, energy convergence with edge cutoff and maximum
rank, as well as the use of eq 5 for weighted-graph-based
dynamics, are considered to address these goals.

IV.II. Rapid Convergence of the Expression in
Equation 4 as a Function of , Relative to Many-Body
Expansions, and the Associated Improvement in
Conservative Properties of AIMD Trajectories. We next
expand the level of graphical approximation by increasing and
edge length for every geometry found for the trajectories in
Table I. This allows us to gauge the convergence properties of eq
4, as a function of , following which we construct trajectories
with progressively increasing values for and edge length cutoff
parameters to study the effect on energy conservation. The

Figure 5. Term-by-term convergence of eq 2 for all rank-r objects, as gauged by eq 13. Specifically, the average value ofΔΔMBE , over all structures
found in the AIMD trajectory in Table I, is shown here along with standard deviations shown using vertical lines. Also see Figure 6.

Figure 6. Term-by-term convergence of eq 3 for all rank-r objects, as gauged by eq 14. Specifically, the average value of ΔEMBE,
level,I , over all structures

found in the AIMD trajectory in Table I, is shown here along with standard deviations shown using vertical lines. Clearly, not only is the convergence
better with eq 2 (shown in Figure 5), critical many-body contributions are also captured efficiently using eq 2.
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convergence properties of eq 4 are presented in Figures 5−8.
Specifically, in Figure 5, we consider the cumulative contribution
from all rank- objects toward the expression in eq 4, given by
the quantity

ΔΔ ≡ Δ − Δ −MBE MBE MBElevel,1;level,0
1

level,1;level,0
(13)

This measure informs us of the net contribution of a specific
rank many-body correction to the full-system lower level of
theory energy, as in eq 2, and allows careful analysis of the
convergence properties of eq 4. As seen in Figure 5, the
contributions from each rank progressively reduce in absolute
contribution, which converges to less than 1 kcal/mol at = 3.
In fact, even with only two-body interactions, the average error is
acceptable for the larger protonated 21-water cluster and within
5 kcal/mol for the solvated Zundel. This aspect is in sharp
contrast to the situation in Figure 6, where a similar quantity to
that in eq 13 is computed, but for eq 3, the regular many-body
result for a given level (level,1, here) of theory. That is

Δ ≡ − −E E EMBE,
level,I

MBE,
level,I

MBE, 1
level,I

(14)

where EMBE,
level,I on the right side is the expression in eq 3 at level

. In contrast to eq 13, this measure provides the additional many-
body contributions that arises from increasing-order many-body

terms. Very clearly, the many-body contributions from level,I are
much larger in magnitude, as seen by a comparison of Figures 5
and 6, resulting in slower convergence. Figure 6 is also consistent
with the studies in ref 65, where it is noted that three-body
contributions are essential in the treatment of water. While this
is true for the many-body contributions in eq 3, as evaluated by
eq 14, the ONIOM-based idea that is graph-theoretically
implemented here converges much faster since (a) many-body
contributions are already included through a base, level,0
calculation and (b) additional many-body contributions are only
needed through the difference in eq 4. This aspect is consistent
with the numerical demonstrations on a set of equilibrium
structures in ref 43 and is also consistent with discussions in refs
58 and 63. However, here, we considered a large library of
structures that are obtained from AIMD trajectories, as noted in
Table I. For example, Figures 5 and 6 include the behavior from
a total of 9000 structures for (H2O)6H

+ and 28 000 structures
for (H2O)21H

+. Thus, while Figure 5 indicates that four-body
post-Hartree−Fock contributions may be necessary to recover
accurate CCSD energies to sub-kcal/mol accuracy, these
calculations are already acceptable at =1 and 2.
The effect of larger-rank objects is also seen from Figures 7c

and 8c, where the entire distribution of energies corresponding
to eq 4 is provided for increasing levels of . The horizontal axis

Figure 7. Term-by-term convergence of eq 2 for H13O6
+ (c) is compared with that from standard many-body expansion (a, b). In (b), the =0 and 1

terms are eliminated for clarity. The graphical representation was constructed using a maximum edge length of 7 Å.

Figure 8.Term-by-term convergence of eq 2 for H43O21
+ (c) is compared with that from standardmany-body expansion (a, b). In (b), the =0 term is

eliminated for clarity. The graphical representation was constructed using a maximum edge length of 4 Å.
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for each case is shifted such that the average value obtained from
the highest rank for that system, that is, the ensemble average of
the entire distribution, is set to zero. In both Figures 7c and 8c,
the distribution converges at =3, as is consistent with Figure 5.
In Figures 7a,b and 8a,b, we present a similar analysis of the
convergence properties when the standard many-body ex-
pansion is used, as depicted in eq 3. As shown in Figures 7a,b and
8a,b, the convergence properties from eq 3 are slow as compared
to that arising from eq 4 and this is consistent with the results in
ref 43 and also in Figures 5 and 6. This observation is also
consistent with previous discussions in refs 58 and 63 of a
quicker andmore reliable convergence for “composite methods”
as compared to a standard many-body expansion.63,65,131,132

Equation 2 appears to provide a convergent trend around
= 3.
In Table II, the dynamics calculations for larger ranks include

the appropriate gradients appearing from higher-rank calcu-
lations, and it is clear that including the gradients from higher
ranks has a critical impact on the conservative properties of the
trajectories. An example of the kind of interactions captured in
these simulations is shown in Figure 9. The energy conservation

obtained from these higher-rank studies is much improved as
seen by comparison of Tables I and II. However, using eq 5, as
we see in Table III, leads to far better energy conservation as
compared to Tables I and II. Thus, the weighted-graph
expression from eq 5 provides good energy conservation with
a negligible increase in the number of fragments, as can be seen
from Tables I−III.
To further probe the effect of the time dependence of the

potential introduced in eqs 8−11, we present in Table IV the
average and standard deviation of ⟨F⟩ for the section of the
trajectory where the dynamics is determined by a single graph
(⟨F⟩non‑hops in eq 16) and the section of the trajectory that
involves a transition among multiple graphs, with weights given
in eqs 8−11 (⟨F⟩hops in eq 15). The latter is obtained using a 10-
step window surrounding each step that shows a change in
graphical representation (or a “hotspot” step), tα, according to

∫∑ ∑⟨ ⟩ =
× Δα − ×Δ

+ ×Δ

=α

α
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Figure 9. Higher-order interactions captured as part of the = 3 calculations in Table II: atomistic representation (a) and graphical representation
(b). The tetrahedral simplexes (orange and green) capture four-body interactions, whereas the colored faces capture three-body interactions. These
simplexes are determined on-the-fly during the dynamics trajectories discussed in Table II.

Table III. Energy Conservation Properties for Dynamical Simulations (Microcanonical) Performed Using Equation 5

system cutoff (Å) Nf
a Δt (fs) simulation time (ps) TAve (K)

b Δ (kcal/mol) Drift
c (kcal/mol) ⟨F⟩d (10−6 kcal/Å)

H13O6
+ 1.1 × Di 1 11.0 0.2 6.00 168.12 ± 25.3 0.036 0.041 6.7

H43O21
+ 1.1 × Di 1 47.1 0.4 7.00 272.38 ± 21.4 0.695 −2.117 14.9

aAverage number of fragments. bBy use of the equipartition theorem, (3/2)(N − 1)kT, we convert the kinetic energy into average and RMS
temperatures. Here, the temperature is a measure of the available energy to sample the conformational space. The initial kinetic energies were
randomly distributed along the nuclear degrees of freedom. cThe drift in the Hamiltonian (total energy) is computed as the difference between the
average for the first 100 fs and last 100 fs. In kcal/mol. dEquation 12 over the full trajectory.

Table IV. Deviation of the Total Force for the Dynamical Simulations

system cutoff trajectory Sourcea ⟨F⟩hops (10
−6 kcal/Å) ⟨F⟩non‑hops (10

−6 kcal/Å) ⟨F⟩ (10−6 kcal/Å)

H13O6
+ 1.1 × Di 1 Table III 6.6 ± 2.8 6.7 ± 2.8 6.7 ± 2.8

H43O21
+ 1.1 × Di 1 Table III 14.8 ± 6.4 15.0 ± 6.3 14.9 ± 6.4

H13O6
+ 1.1 × Di 1 Table II 6.6 ± 2.8 6.7 ± 2.9 6.7 ± 2.8

H13O6
+ 6.0 Å 1 Table II 13.4 ± 5.8 13.8 ± 5.9 13.8 ± 5.9

H13O6
+ 6.0 Å 2 Table II 18.1 ± 7.9 18.0 ± 7.8 18.0 ± 7.8

H13O6
+ 6.0 Å 3 Table II 9.4 ± 5.8 9.4 ± 5.6 9.4 ± 5.6

H13O6
+ 6.0 Å 4 Table II 6.9 ± 3.1 7.1 ± 3.2 7.1 ± 3.2

H43O21
+ 1.1 × Di 1 Table II 14.7 ± 6.3 14.9 ± 6.3 14.8 ± 6.3

H43O21
+ 4.0 Å 3 Table II 14.6 ± 6.2 14.5 ± 6.1 14.5 ± 6.1

H43O21
+ 4.5 Å 4 Table II 18.5 ± 8.1 18.3 ± 8.0 18.4 ± 8.0

aCorresponding table number where the trajectory is presented.
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where {tα} are assumed to be the points where a proton transfer
or hydrogen bond network change occurs. The time-dependent
weight, described in eqs 8−11, smoothens the energy and forces
from the step of topology change to five steps after. Similarly, the
force conservation is evaluated for the duration of trajectory
devoid of hops using
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whereNH is the number of hops. As is clear from Table IV, both
⟨F⟩non‑hops and ⟨F⟩hops are small in magnitude. However, it is also
clear from the equations above that these are both positive
definite and ⟨F⟩ is a weighted average of ⟨F⟩non‑hops and ⟨F⟩hops
and hence bounded by these quantities. Furthermore, for all
cases, weighted and nonweighted trajectories, where the former
contains time-dependent potentials and the latter does not,
⟨F⟩non‑hops and ⟨F⟩hops are close in value and well within the
acceptable range. We have also analyzed the time evolution of
⟨F⟩, as well as its distribution, and found that there is no adverse
numerical effect associated with this time dependence.

IV.III. Comparison of Dynamical Properties from all
AIMD Simulations. In this section, we inspect dynamical
properties obtained from the simulations summarized in Tables
I, II, and III to ascertain the accuracy of results obtained from
these simulations. These AIMD trajectories were calculated
using the Born−Oppenheimer molecular dynamics1 (BOMD)
with gradients in Appendix B. Our baseline for comparison will
be the larger-rank AIMD simulations provided in Table II.
Results from all other simulations will be compared with these to
check accuracy. Two principal dynamical properties are
examined: (a) structural features arising from dynamics, such
as the oxygen−oxygen radial distribution functions (RDFs),
which convey the overall solvation structure sampled during
dynamics; and (b) the vibrational density of states obtained
from the Fourier transform of the velocity autocorrelation (FT-
VAC) function, which is the Fourier space analogue of a
trajectory and captures the extent to which anharmonic effects
have a role on the vibrational properties of the system.12,18−22

Considering the significance of these systems, as discussed on
top of Section IV, we also undertake a detailed analysis of the
associated vibrational properties. As noted in the previous
section, and in Tables I and II, the lower-rank trajectories offered
less conservative dynamics due to energetic hops, which,
although rare, appear to provide significant perturbations to
the overall trajectories, as seen in Figure 4. However, as we will
find in the discussions below, these lower-rank trajectories still
result in dynamical properties that are in sufficient agreement
with the higher-rank trajectories. Additionally, based on Table
III, and the discussion in the previous section, it is clear that the
weighted-graph scheme from eq 5 provides conservative
dynamics, and in the following discussion, it is found that this
scheme produces dynamical properties consistent with the
higher-rank AIMD simulations. Thus, in summary, the

Figure 10. Radial distribution functions for oxygen−oxygen distances computed from the (H2O)6H
+ (a) and (H2O)21H

+ (b) trajectories. See the text
for details.
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weighted-graph approach may be considered as the method of
choice for future AIMD trajectories.
IV.III.I. Structural Distribution. The oxygen−oxygen radial

distribution functions (RDFs) for the trajectories in Tables I, II,
and III are presented in Figure 10. The distribution functions
and associated standard deviations were computed as follows.
First, a slice of length 2 ps (0−2 ps) from each trajectory was
used to obtain an O−O RDF. Then, the time slice was
incremented by 25 fs to create an O−O RDF for the trajectory
slice 0.025−2.025 ps. Following this, all such moving time-
windowed RDFs were averaged to compute the overall RDF;
standard deviations from such time-windowed RDFs were also
computed, and the results are shown in Figure 10. Such a
statistical treatment allows for reduction in variance in the O−O
RDF. This procedure has even greater utility in the next
subsection, where we compute the Fourier transform of the
velocity autocorrelation function where such a time-windowing
procedure is known23 to reduce the variance and reduce
“leakage” in frequency space, as will be discussed later.
In Figure 10, the peaks at approximately 2.5 Å are indicative of

strongly hydrogen-bonded Zundel-like substructures, while the
peak at around 2.7 Å indicates the classical Eigen-like cationic
formation in trajectories. While the solvated Zundel shows the
propensity to display both Zundel and Eigen substructure

characteristics, for all trajectories, the protonated 21-water
cluster shows a broad distribution in the range of 2.4−3.2 Å,
which is indicative of significant contributions from the Zundel-
like and Eigen-like counterparts. The second solvation shell
surrounding the oxygenic center of excess positive charge can be
seen at roughly 4.5 Å for both clusters. The spread of this second
solvation shell in both cases is roughly 1 Å that encodes within it
the process of Grotthuss proton shuttle133 in these clusters. This
second solvation shell captures one to three interactions
between the most-protonated oxygen center, its nearest
“Zundel-like-partner” involved in the Grotthuss shuttle, and a
third water molecule that is hydrogen-bonded to the “Zundel-
like-partner”. The broad distribution (with width 1 Å) is
indicative of the one to three interactions as these adapt to the
proton delocalization between the most-protonated oxygen
center and the nearest “Zundel-like-partner”. It is also clear that
while such secondary participation in proton transfer must
necessarily be truncated at the second solvation shell for the
solvated Zundel, as can also be seen from the drop in RDF at 5 Å,
this is not the case for the larger cluster. For the protonated 21-
water cluster, we see what essentially looks like a solvation
continuum following the 5.5 Å shoulder, or dip, that appears to
separate the second solvation shell from the remaining solvation
data, but this separation is certainly not as abrupt as that for the

Figure 11.Vibrational density of states calculated from dynamical trajectories using eq 20. The results from the dynamics trajectory computed using eq
5 are shown in red. Critical vibrational frequencies corresponding to experimental features79,93,94,117,127,134,135 are indicated with vertical lines and the
frequencies listed on top of the figure. In (a), blue features are from ref 134 and green features are from ref 135 in (b), the green features are from refs 79
and 127.
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solvated Zundel case. Hence, additional solvation shell
participation in the Grotthuss shuttle process is certainly
captured in all calculations in Figure 10b. However, at this
stage, the finite size of the cluster limits the analysis in terms of
probing the broader participation of water molecules in the
proton shuttle process beyond the second solvation shell.
The overall structural characteristics demonstrated by these

RDFs remain consistent, independent of the choice of graphical
parameters within the standard deviations found for the O−O
distances. This is despite the fact that the energy conservation
properties are significantly dependent upon the rank and edge
length cutoff and are perhaps related to the fact that the
population of hops is extremely small, as already noted in Figure
4. Meanwhile, the use of eq 5 to compute smoothened,
weighted-graph-theoretically obtained dynamics trajectories
provided RDF populations similar to those found from the
trajectories, which use a higher-rank, single adaptive graphical
representation. The use of weighted graphs affords costs
equivalent to the lowest-rank trajectories, but with the energy
conservation and structural characteristics equivalent to the
largest rank treatments. In other applications, it may, of course,
be necessary for the weighted-graph representation itself to
include some higher-rank terms, and the theory presented here
certainly allows for such computations to be adaptively
performed.
IV.III.II. Time-Correlation Functions. Dynamics trajectories

are compared using the vibrational density of states (VDOS) to
determine the influence of the choice of graphical treatments
upon the quality of the sampled potential energy surface. The
dynamically averaged vibrational density of states were
computed using the Fourier transform of the nuclear velocity
autocorrelation function (FT-VAC). The details on how these
computations are performed are given in Appendix C. The
resultant spectra provide a broad metric for the effectiveness of
the adaptive graphical representation of the potential energy
surface sampled to construct the AIMD trajectories. The VDOS
spectra for AIMD with increasing maximum rank, , are
presented for the solvated Zundel and the protonated 21-water
cluster in Figure 11. A few critical experimental features are
indicated by colored lines in Figure 11, with the frequencies
labeled above the figure. Before we undertake a detailed
comparison with the experimental results, it is critical to note
that the data in Figure 11 represents the velocity distribution in
frequency space. Hence, it does not capture the dipole
intensities that are needed to carry out a comparison with the
experimental vibrational spectral results. However, Figure 11
does allow us to probe the agreement across all trajectories
computed here and also evaluate the Fourier space activity, as
detected by nuclear motion, in a certain spectral range.
The peaksmarked on top of Figure 11 were selected from a set

of gas-tagged spectroscopy experimental results.79,94,127,134 The
solvated Zundel peaks were selected from ref 134, which used a
laser photodissociation in a time-of-flight mass photofragmen-
tation spectrometer, and ref 135 offered more refined spectral
peaks for the higher-frequency peaks using photodissociation
spectroscopy of clusters produced by pulse-discharge supersonic
expansion with mass selection. The protonated 21-water cluster
features chosen from ref 127, which offers an expanded IR
window as compared to previous studies,79,117 and assignment
were further clarified by ref 94. For the solvated Zundel, four
critical peaks are highlighted: the peak at 1600 cm−1 is the
intramolecular HOH bend modes, the peak at 3180 cm−1

captures the OH stretch of the Zundel waters with the first

solvation shell, and the symmetric bending and asymmetric
stretching modes are measured to be at 3650 and 3740 cm−1,
respectively.134−136 Likewise, three features are labeled in Figure
11 for the protonated 21-water cluster: 1620 cm−1, which is the
HOH intramolecular bends of dangling water molecules, 3700
cm−1 peak capturing the free OH stretch, and a peak at 3580
cm−1, which is the maximum of the standard acceptor−
acceptor−donor and donor−donor−acceptor stretch region
for the internal neutral water species.79,117,127

As observed for the RDFs in the previous section, Figure 11a
demonstrates that the lower-rank trajectories produced vibra-
tional density of states consistent with the large-rank trajectories.
As noted by the structural properties, the smoothened dynamics
afforded by the weighted-graph trajectory reproduced the
vibrational features in good agreement with the higher-rank
trajectories. In Figure 11b, we observe trajectories of three
different graphical representations of protonated 21-water
cluster, as shown in Table II, along with the weighted-graph
trajectories using the adaptive cutoff from Tables I and III,
respectively. These trajectories produced spectra with similar
features, although the intensities vary due to a difference in
simulation time; this variance in intensities is especially true for
the OH stretches in the 3500−3900 cm−1 region, which are
significantly impacted by the conformational sampling by the
given trajectories.12,17,93,137 Consistent with the previous
findings in Figure 10b, although the energy conservation
significantly improves with increasing rank terms, the spectral
results for these protonated 21-water clusters exhibit the same
features independent of graphical representation due to the low
probability of such hops, as seen in Figure 4. The weighted-
graph trajectory, as before, offered both lower cost and energy-
conserving approach while matching the vibrational density of
states of the higher-rank trajectory.

V. CONCLUSIONS
We introduce a weighted-graph-theoretic formalism to obtain
smooth, post-Hartree−Fock AIMD trajectories for fluxional
systems at DFT cost. The approach is based on ONIOM, and
here, a full system is divided into individual units that are treated
as nodes in a graph. These nodes are then connected to form
edges, faces, and higher-order simplexes as a result of the graph-
theoretic decomposition of the molecular system. The energy
and gradients obtained from the molecular fragments associated
with these simplexes are then computed at two levels of theory,
as in ONIOM, and combined with the full-system energy (and
gradients) obtained at a lower level of theory (DFT here) to
obtain a graph-theoretic expression that has close connections to
several molecular fragmentations as well as many-body
approximations.
However, for fluxional systems, such as protonated water

clusters treated here, the graph-theoretic decomposition
changes during dynamics due to proton hops, formation, and
cleavage of hydrogen bonds and due to the change in hydrogen-
bonding environments that accompany such a dynamical
evolution. To address this, we have introduced here a
weighted-graph-theoretic method where the graph-theoretic
depiction of molecular structure smoothly interpolates inside a
subspace of graph representations that are each encountered
inside a time window during AIMD. The resultant weighted
graphs smoothly interpolate and produce a conservative
dynamics method that is used to compute AIMD trajectories
for protonated water clusters. The approach is tested by
comparing with trajectories that are computed by using high-
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rank simplexes that come close to including all possible many-
body interactions in the smaller water cluster in a full-rank
AIMD simulation. (This is impossible to do for the larger water
cluster treated here.) The resultant structural and time-
correlation functions are in extremely good agreement between
the weighted-graph approach and the full-rank AIMD
trajectories. We further demonstrate the rapid convergence of
our graph-theoretic formalism with increasing many-body rank.
We numerically demonstrate that, due to many-body approx-
imations already being present in the full-system calculation, and
additional contributions being included based on the difference
in energy for any given rank, as allowed by the ONIOM
description, the energy converges rapidly for a wide range of
thousands of stable and unstable nuclear configurations found as
part of AIMD trajectories.

■ APPENDIX A: GRAPHICAL REPRESENTATION OF
MOLECULAR SYSTEMS YIELDS MANY-BODY
CONTRIBUTION UP TO ARBITRARY RANKS IN
EQUATION 2

To apply eq 2 to the protonated water clusters, these water
clusters are partitioned into a field of vertices or nodes. Once
these nodal partitions are defined, then as mentioned in the
paper, there are two specific control parameters in eq 3 that
define the construction and evaluation of the graph, which
represents the many-body interactions inherent to the system.
These graphical elements, or simplexes, yield the necessary set of
electronic structural calculations used to evaluate the extrapo-
lated energy. First, the local family of edges, which represents
two-body interactions, are assembled based upon an edge length
cutoff. Next, the maximum order of many-body interactions
considered is truncated by the selection of “ ” in eq 3.
The protonated water clusters are partitioned by designating

each water molecule as a node within the graphical
representation. As ourmethod is applied to dynamic, protonated
systems, each “water” node is defined as an oxygen with all
hydrogens within 1.4 Å included within the node. This definition
allows for the graphical representation to capture and adapt to
proton migration events, and in effect, some of these “water”
nodes are hydronium species, where the center for excess
positive charge changes throughout the trajectory (as may be
clear from Figure 1b,c). For each geometry, the atomic
coordinate of the oxygen defines the coordinates of the node,
which represents the water/hydronium. Two different flavors of
edge cutoffs are considered for the generation of edges for the
graphical representation. Principally, we consider an adaptive
envelope scheme,37,43 where a cutoff based on the minimum
node−node distance (Di) for a chosen node (index i) is used; in
this scheme, edges are generated within a cutoff of 1.1 × Di of
node-i. This choice of an adaptive envelope was previously
performed well for water and protonated water systems with
treatment involving up to two-body interactions.37,43 In
addition, we also consider a fixed distance cutoff, which
connects nodes by edges when the mutual distance is within
the designated Cartesian distance. Similar distance-based
approaches can be found in a variety of fragmentation-based
methods.57,59,65,87,138−143

The networks generated by either edge cutoff scheme allow
the selection of local many-body terms: one-body (r = 0, nodal
contributions), two-body (r = 1, edge contributions), three-
body (r = 2, triangular contributions), and higher-order
contributions toward eq 3. This methodology is general enough

that it can be applied to both bonded and nonbonded
interactions within target molecular systems and has been
shown for AIMD simulations in refs 37−41. Due to the
requirement to only consider objects defined based upon the
closed convex-hull simplex condition (eq A1), the adaptive
envelop scheme generally allows only the inclusion of one-body
and two-body terms, while a high enough fixed distance cutoff
may include three-body or higher-order contributions.
We impose the requirement that all higher-order interactions

treated by our method must arise from a simplex found within
the graphical representation. Since simplexes are affine convex
hulls,95−97 this leads to the treatment of only “closed” objects in
the power set defined in eq 1. This condition requires the
restriction that for an r-rank simplex to be included in the set Vr,
all of the constituent (r − 1)-rank simplexes would already be
included in Vr−1 of the power set shown in eq 1. Thus, the
following condition must be satisfied for an r-rank object (νr) to
be included in the above power set

ν

α ν α

∀ ∈

∈ ⇒ { } ⊂− − −

V

Vr r

r r

r r 11 1 (A1)

What this implies is that, for all νr in Vr, all of the constituent
lower-rank simplexes ({Vr−1,..., V0} ≡ {{αr−1},..., {α0}}) are also
included in the power set shown in eq 1. For example, each face
(triangle, two-simplex) is only included in V2 when its three
nodes are all mutually connected by edges. This condition
enforces the requirement that the higher-order terms are
simplexes and gives a systematic approach for describing local
n-body terms.43,44 Note because of the condition imposed by eq
A1, the effective local rank is determined by connectivity
provided by the edge length cutoff; the parameter , in eq 4,
only functions as a further cap to the extent of the many-body
interactions considered.
Due to both the condition imposed by eq A1 and the

automatic creation/destruction of edges dictated by distance
cutoffs, the effective local ranks of the many-body interaction
evolve with the system configuration. In our case, arising from
the use of graphs, such optimal local ranks capture local many-
body interactions and, within our scheme, may be adaptively
determined through the local simplexes97 surrounding any given
node. In regions with significant nodal interactions the graphical
representation includes higher-rank simplexes and hence higher-
rank many-body interactions, whereas sparser, less interacting
regions would naturally be well served by lower-rank simplexes.
Of course, we could artificially limit the ranks surrounding
certain nodes.

■ APPENDIX B: GRADIENTS FROM EQ 5 FOR AB
INITIO MOLECULAR DYNAMICS

The expression for nuclear gradients of the energy from eq 4 can
be found in ref 44. These gradients are modified in light of eq 5
and may be written as
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This expression allows for a gradual transition between gradients
of the time-dependent graphical representations, { }β

̅ tx( ) . If

bonds were broken by the partitioning of the system into nodes,
link atoms144,145 may have been included within the nodal
definitions but would not be part of the system coordinate
variable, as treated by ONIOM.46 This would imply that the
nuclear coordinates for a subsystem α, x  α,r, may not be entirely a

subset of the system coordinate variable, x  (t). A Jacobian,
Ä
Ç
ÅÅÅÅÅÅÅ
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Ö
ÑÑÑÑÑÑÑ
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αx

x
r, ,

can be employed to transform the r-rank many-body gradients
back to the full-system gradients.37,44,146 These gradients allow
the direct use of the Born−Oppenheimer molecular dynamics1

with smooth gradient transitions between the graphical
representation when using eq 5. Such molecular dynamics
trajectories, using fixed graphical representations using eq 4,
have been previously demonstrated in refs 37−41.

■ APPENDIX C: VIBRATIONAL DENSITY OF STATES
IN FIGURE 11: WINDOWED FOURIER
TRANSFORMS AND FREQUENCY SCALING TO
OVERCOME THE NEGLECT OF CRITICAL
QUANTUM NUCLEAR EFFECTS

The dynamically averaged vibrational density of states were
computed by using the Fourier transform of the nuclear velocity
autocorrelation function (FT-VAC), defined as
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where the term, ⟨V(0)·V(t)⟩, in the first equation, indicates the
ensemble average and is equal to the t′-integral in the second
equation under the ergodicity condition. To reduce the Fourier
transform of the velocity autocorrelation function to the
summation of the power spectral densities of the individual
nuclear velocities in the third equation, we have used the
Wiener−Khinchin theorem.23 The Wiener−Khinchin theo-
rem23 is a special case of the correlation theorem applied to
autocorrelation functions. Equation C1 has been used on each

trajectory, and we have presented the respective IV(ω) for each
trajectory in Figure 11.
In computing the spectra in Figure 11, we have used the

following steps. As in the case of the RDF plots in the previous
section, vibrational density of states in Figure 11 (eq C1) are
computed for 2 ps moving time window slices, with 25 fs
increments. The vibrational density of states for these windows
are averaged and shown in bold in Figure 11. The standard
deviations are computed from these moving time windows and
are presented as gray traces. The idea of introducing a 2 ps
moving window is related to two aspects in the theory of
computing accurate Fourier transforms that (i) reduce
“leakage”23 and (ii) reduce variance in the Fourier transform.
Specifically, whenever a finite sample of frequencies is
constructed, there is always a leakage (or smudging phenom-
enon) where information from one frequency leaks to the
neighboring frequency regions of the spectrum. Such leakage
between frequencies is due to the projection of the velocity
autocorrelation function onto an incomplete trigonometric basis
spanning the finite length of the trajectory.23,147 The extent of
the leakage domain is generally quite substantial and falls off as
1/ω2. Data windowing reduces the leakage of information in the
frequency domain, and the recommended form of data
windowing is one that includes overlapping segments. The
second reason for computing the Fourier transforms of these
segments and subsequent averaging of these is to reduce
variance in the Fourier transform, as explained in ref 23. Finally,
the resulting frequencies are scaled to match the highest
frequency peak to the respective experimental peak within the
considered range.
There is a significant blue shift in the frequencies of the

vibrational peaks of both the solvated Zundel and the
protonated 21-water cluster, calculated by eq C1, as compared
to the annotated experimental peaks.79,94,135,136 Thus, to
properly gauge the nature of the vibrational density of states,
the frequencies are scaled for the solvated Zundel to match the
3740 cm−1 peak, and for the protonated 21-water cluster, it is
scaled tomatch the free OH stretch (3700 cm−1), which resulted
in a spectral fingerprint closer to the experimental peaks. This
scaling is due to the underlying quantum nuclear effects, which
are especially significant in hydrogen-bonded systems such as
water.148−154 While classical AIMD allows the exploration of the
fully anharmonic potential energy surface available to all of the
nuclear degrees of freedom, it remains restricted to the classical
nuclear description and does not implicitly include zero point
effects and the discrete nature of nuclear eigenstates. Hence, the
frequencies obtained from classical AIMD still neglect critical
quantum nuclear effects, which can lead, in many cases, to
significant shifts in the frequencies obtained from the trajectory
velocities. Thus, to match the experimental spectral features, a
frequency scaling factor of 0.941 was applied to solvated Zundel
spectra and a scaling factor of 0.939 was applied to the
protonated 21-water cluster. The peaks for theOH stretch of the
Zundel waters (3180 cm−1) are significantly blue-shifted,
although this shift is likely due to the neglect of the non-
negligible quantum nuclear effect for the mode.148,149,151,153
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