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Robot Planning for Active Collision Avoidance in
Modular Construction: Pipe Skids Example
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Abstract: Robot-assisted assembly has shown great potential in modular construction for the future. However, as the complexity of
prefabricated structural modules increases, the likelihood of unexpected robotic collisions also rises, such as unexpected collisions between
robots and structural modules during the assembly process. Most robotic collision avoidance methods rely on known robot specifications,
especially the work envelope, that is, the range profiles of movement created by a robot arm moving forward, backward, up, and down. In
contrast, it is unknown what models of robots will be applied for future modular construction because of the rapid development of robot
mechanical designs. The deep uncertainties related to future robot work envelopes can challenge any effort for planned robotic collision
avoidance for robot-assisted modular construction. There is a pressing need for a simulation-based robot collision avoidance planning method
for future robot-assisted modular construction that captures the deep uncertainties of work envelopes of future robots. As a result, this paper
presents an active robotic collision avoidance method, called collision-free workspace and collision-avoidance path planning (CWCP), to
tackle the unique robotic collision challenges in modular construction. First, CWCP uses an inverse kinematics Monte Carlo IKMC) sim-
ulation in the design phase of a pipe skid module to scan a large number of possible robotic movement trajectories and the corresponding
boundaries of the robotic space. This result can be used to identify a robust structural design with enough clearance for most robotic actions.
Then, immediately before an operation, physics engine simulation is used to optimize the waypoints of the robotic arm movement to further
eliminate the collision possibility given the established structural design and robotic specifications. The proposed method was tested with a
simulated pipe skid installation task. The result showed that the proposed method helped strike a balance between a safe-tolerant design and
robotic planning on site and thus is more suited for future robot applications with no prior knowledge about the work envelope specifications.
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Introduction

Robot-assisted modular construction refers to the use of robotic sys-
tems to support the construction of components that can be automati-
cally produced (Mignacca et al. 2018). It is gaining growing interest
for a safer and more cost-effective assembly (Tan et al. 2017; Shukla
and Karki 2016). However, when applied in complex modular con-
struction tasks, problems pertaining to robotic collisions can be a big
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challenge. For early adopters of robots, various types of collision
incidents have frequently been reported, including robot—-human
collisions, robot—infrastructure collisions, and robot—robot colli-
sions (Braganca et al. 2019). In order to solve possible collision
problems, proactive collision avoidance has been proposed
(Haddadin et al. 2017). This especially indicates that through del-
icate design of the spatial configuration, the majority of collision
incidents could be prevented (Yang et al. 2010). Compared to pas-
sive collision avoidance methods that rely on real-time sensing and
reactive mechanism designs, the proactive collision avoidance
method is proven to be more robust to varying work contexts and
workplaces.

However, the current proactive collision avoidance methods still
face challenges, especially in the context of modular construction.
Construction workplaces, including offsite for modular production,
are usually dynamic, uncertain, and less controlled. The mixed
space of human workers and moving construction materials, ob-
jects, and equipment make the all-inclusive comprehensive spatial
configuration for collision-free designs nontrivial. Even for a rel-
atively controlled modular construction process, the underbuilt in-
frastructure is still evolving over the course of a project, making a
one-size-fits-all collision avoidance design process almost impos-
sible. As a result, there is a need for examining a robust proactive
collision avoidance method that can tackle the deep uncertainties
with respect to the selection of robots, the configuration of work-
places, and operational workflows for safer robot-assisted modular
construction.

This paper proposes an active robot collision avoidance method
for robotic operations in modular construction, via the digital twins
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(DT) simulation, that is, creating a digital replica of the robot and
its interactions with the workspace for optimization simulations.
We focus on a two-step DT simulation strategy called collision-free
workspace and collision-avoidance path planning (CWCP) plan-
ning for designing a collision-free workspace (CW) and collision-
avoidance path planning (CP). This two-step strategy suits well the
unique needs of modular construction operations at different phases
of a project. The collision-free workspace design aims to identify a
structural design, along with the workspace boundary design, to
create sufficient clearance for all possible robotic systems to be de-
ployed. It is conducted in the early phase of a project before the
modular structural design is determined. At this point, the team
should still have the chance to affect the workspace of the prospec-
tive construction operations to eliminate most possibilities of ro-
botic collisions via enough tolerance and clearance in the spatial
configuration. The collision-avoidance path planning will then
optimize the robotic movement for a given modular construction
workspace and robotic platform. It happens immediately before
an operation, as the final check for active collision avoidance.
The remainder of this paper will introduce the point of departure,
a simulation study of the proposed method, and the lessons learned.

Literature Review

Robots in Modular Construction

Over the last few decades, modular construction has become popular
in the construction industry because of its advantages of efficiency,
safety, superior quality, and flexibility (Ferdous et al. 2019). Accord-
ing to a previous study (Jaillon et al. 2009), modular buildings have
resulted in reductions both in construction time (70%) and labor cost
(43%). Despite having well-documented benefits, modular con-
struction only occupied a few proportions of the market compared
to traditional construction methods (Jaillon et al. 2009).

The challenges of applying modular construction in real-life
workspaces are multifaceted, including technical, financial, and
regulatory barriers (Tam et al. 2007). However, the expeditious evo-
lution of automated and robotic systems in construction alleviates
the labor needs for assembling and installation and then speeds up
the uptake rate of modular construction (Delgado et al. 2019).
Single-task construction robots (STCRs) (Bock and Linner 2016),
such as robotic arms executing a single task in a repetitive manner,
have been directly used on construction sites for fabrication,
building part assembly (Dritsas and Soh 2019), concrete laying
(Wigckowski 2017), and so on. Especially in the offshore environ-
ment, due to the difficulty in accessing subsea installations and
relatively less flexible systems, robotic equipment assembly could
be a better solution to both the need for efficiency and maximum
production in this industry (Chen et al. 2014). On the onshore field,
building of large platforms are challenges not only because of the
environmental conditions (waves, wind, and current) but also the
costs of keeping humans on these platforms, like the requirements
of food, shelter, and safety (Shukla and Karki 2016).

Previous studies have proved the success of remotely controlled
unmanned platforms that rely on the automation of offshore facili-
ties (Skourup et al. 2008). In recent years, more advanced remote-
controlled unmanned platforms have started to be equipped with
redundant manipulators (Pinosofa et al. 2010). Compared to on-
shore, offshore facilities are highly constrained by the shape and
size of floor space (Graf and Pfeiffer 2008). Manipulators in this
environment have been used in both building processes like wall
painting (Zhang et al. 2020), and welding (Lee et al. 2011), as well
as facility management like mobile inspection (Bengel et al. 2009).
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However, all these robotic applications faced challenges of colli-
sion detection. Usually, robots rely on proximity sensors to avoid
nearby walls and general obstacles. However, offshore installation
is extremely complex because this environment is filled with pipe
flanges, tanks, steel frames, ramps, and other complex-shaped
structures, which makes them more difficult to detect by proximity
sensors installed in the robot (Graf et al. 2007). Therefore, an im-
proved collision avoidance strategy is needed to improve robotic
construction performance in constrained environments such as
offshore platforms.

Robotic Collision Avoidance

Collision avoidance techniques have been extensively studied
for robots avoiding obstacles (Long et al. 2018). According to
Haddadin et al. (2017), collision avoidance occurs following seven
steps, including the precollision phase, collision detection, collision
isolation, collision identification, collision classification, collision
reaction, and postcollision phase. Although most efforts have
been made to accomplish simultaneous collision avoidance, for ex-
ample, the use of mechanical responsive design to halt the machine
immediately after a collision happens (Haddadin et al. 2008; Suita
et al. 1995; Takakura et al. 1989), the precollision phase, or active
collision avoidance, is when the collision-avoidance influence is
the maximum and the cost is the minimum; hence, this is the focus
of our method.

There are three main approaches for active collision avoidance:
collision-free workspace design, collision-avoidance path planning,
and anticipatory collision avoidance (Haddadin et al. 2017). The
collision-free workspace is a set that contains all the positions that
can be achieved by a reference point on the end-effector under the
condition that all kinematic constraints are satisfied and no colli-
sion occurs (Yang et al. 2010). The possible mechanical collisions
can be classified into two groups. One kind of collision is related to
the manipulator’s architecture and takes place between different
constituting parts of the manipulator. The other kind happens
when obstacles exist within the manipulator’s workspace that
may create barriers inside the workspace (Danaei et al. 2017).
Many approaches have been developed in order to determine a
collision-free workspace of manipulators (Bohigas et al. 2012;
FarzanehKaloorazi et al. 2014; Snyman et al. 2000; Wang et al.
2010). FarzanehKaloorazi et al. (2014) investigated the collision-
free workspace of a 3-RPR (where R represents a revolute, or
hinged, joint, and P is a prismatic, or sliding, joint) planar parallel
mechanism. The interval analysis is used for workspace determina-
tion of Gough-type (Merlet 1999) and six-degrees-of-freedom par-
allel mechanisms (Bonev and Ryu 2001). However, most of them
are case dependent or computationally complex or exclusively in-
clude one of the aforementioned cases of collision (Danaei et al.
2017; FarzanehKaloorazi et al. 2017).

The collision-avoidance path planning method identifies a
safe path that can avoid most possible collisions in a task based
on workplace configuration, independently of human actions that
would take place (Latombe 2012). Random tree exploration
(Karaman and Frazzoli 2011) and A* algorithms (Hart et al. 1968)
are often used to scan a large number of possible paths until one
or more common “secure” paths are identified. In the view of
collision-avoidance path planning, human actions are less relevant,
but the spatial configuration—the locations of the robots and sur-
rounding objects—is more important. In contrast, anticipatory col-
lision avoidance focuses on predicting the human operator’s actions
and then exerting countermeasures (e.g., a reroute) based on the
prediction (Bajcsy et al. 2019). Unlike the collision-avoidance path
planning method, the anticipatory collision avoidance method
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highlights the importance of incorporating predictions of human
actions (Mainprice and Berenson 2013; Park et al. 2013). However,
anticipatory collision-avoidance techniques are computationally
expensive to convert to online methods that can handle instantane-
ous changes, especially when human action is taken into account
(Mainprice and Berenson 2013; Sisbot and Alami 2012). To sim-
plify, in this study, we focus only on robot—infrastructure collision
and assume that human operators are very stable in operation in-
structions, with no unexpected actions. Although previous active
collision avoidance methods, that is, collision-free workspace de-
sign, collision-avoidance path planning, and anticipatory collision
avoidance, have good performance in some scenarios, these meth-
ods are usually performed in an isolated manner (Haddadin et al.
2017). In most representative studies, such as Danaei et al. (2017)
and Bajcsy et al. (2019), the three methods mentioned previously
were tested separately. The test was controlled only to manifest the
performance and benefits of each method. This study provides solid
evidence on each of the collision-avoidance approaches but does
not generate any clear insight into the integration of these methods.
Instead of renovating each of the collision-avoidance path planning
algorithms, this study aimed to explore the integration between the
two main collision planning methods, that is, collision-free work-
space design and collision-avoidance path planning, and test the
additional benefits that could be rooted in such an integration. This
unique two-step, two-phase planning design of CWCP incorporates
the uncertainties in both the design and operations phases of modu-
lar construction projects.

Collision-Free Workspace and Path Planning
Method

Overall Analytical Flow

The proposed CWCP method executes a stepwise simulation to
design (1) a collision-free workspace; and (2) a collision-avoidance
path for robots in typical robot-assisted construction operations.

Without losing its generalizability, we select industrial manipula-
tors (robotic arms) for pipe skid operation as the study case.
The focus of this paper was to present an innovative analytical flow
for integrating collision-free workspace design and collision-
avoidance path planning. For a better demonstration of the use
of the method, a simpler planning problem, that is, a fixed robotic
platform, was used in the simulation. It is our future agenda to in-
corporate scenarios of mobile robotic platforms and examine how
they affect the proposed method. Fig. 1 illustrates the workflow of
the CWCP method, consisting of two major steps: inverse kinemat-
ics Monte Carlo (IKMC) simulation and movement waypoint
optimization.

As shown in Fig. 1, the collision-free workspace needs to try out
a large number of possible robotic movement trajectories, with ran-
domly assigned specification parameters, to identify the common
boundaries of a safe work zone. The first step of CWCP was to
determine the motion trajectories of the robotic arm based on
the poses of the starting and target points. Then, cyclic coordinate
descent inverse kinematics (CCDIK) with different assigned speci-
fication parameters was executed multiple times to draw a large
number of probable robotic movement trajectories and the corre-
sponding boundary of the robotic workspace. Eventually, the area
containing a certain percentage of probable trajectories was se-
lected as the work area. This result can be used to identify a robust
structural design with enough clearance for most robotic actions.

The reason for using stochastic features and the simulation ap-
proach was mainly to address the uncertain work envelopes of fu-
ture industrial manipulators (robotic arms), that is, the unique work
clearance space profiles of each robot model due to the distinct lo-
comotion specifications. At present, industrial manipulators are not
widely available for testing in modular construction. In addition, it
is too early to assume the values or probability density functions
(PDFs) of important specifications about robot locomotion and kin-
ematic features of yet-to-come robotic models, especially the work
envelope of the robotic arm. For example, for typical industrial ma-
nipulators, the rotation degree of the end-effector joints could range
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Fig. 1. Workflow of CWCP method.
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from +120° (KUKA LBR iiwa 14 R820) to £400° (ABB IRB
120), whereas the base joint could range from +165° (ABB
IRB 120) to +170° (KUKA LBR iiwa 14 R820). Different robotic
arms will generate distinct work envelopes, causing different
workspace clearance issues. With the rapid development of new
industrial manipulators, we anticipate that there will be a deep un-
certainty pertaining to the locomotion constraints of each of the
joints of future robots. As a result, when planning for clearance
in important modular construction processes, it is less reasonable
to use a set of deterministic values for robot specifications. Because
of the same consideration, we used uniform distributions as the
PDFs. Previous literature, such as Quade and Carter (1989) and
Walker et al. (2012), recommended using uniform distributions in-
stead of any other predetermined assumptions of PDFs to address
deep uncertainty simulation. This is the best available approach to
avoid any bias in simulation parameter selection.

Before an operation, collision-avoidance path planning requires
a high-fidelity reproduction of the robot specifications and estab-
lished workspace to identify the best movement trajectory for ro-
botic control. The physics engine IK was used to simulate and test
the motion trajectory of the robot. Precollision prediction and active
collision avoidance were executed based on the trajectory simula-
tion. Then, CWCP optimized the waypoints of the trajectory to
eliminate the collision possibility given the established structural
design and robotic specifications.

Collision-Free Workspace Design Based on Inverse
Kinematics Monte Carlo Simulation

The first step of the proposed CWCP is the collision-free work-
space design (CW simulation). The collision-free workspace design
aims to identify a structural design, along with the workspace boun-
dary design, to create sufficient clearance for all possible robotic
systems to be deployed. CW is only about clearance planning with-
out any ad hoc obstacles. In this study, CW was performed before
collision-avoidance path planning to design enough clearance to
work for most scenarios, whereas once the robot is placed on site,
collision-avoidance path planning is performed to further reduce
the chance of collisions given the specific job site conditions.
CW simulation relies on an inverse kinematics—based Monte Carlo
simulation. To control a robot arm, IK, that is, the use of kinematic
equations to determine the joint parameters of a manipulator
(Aristidou et al. 2018), is used to move the end-effector to the
desired position. A variety of IK methods have been developed,
such as the analytical method (Craig 2009), numerical method
(Buss 2004), and artificial neural networks (El-Sherbiny et al.
2018). The mathematic efficiency and reliability of IK have been
well validated in robotics (Sciavicco and Siciliano 2012) and com-
puter science literature (Aristidou et al. 2018). Among existing IK
algorithms, CCDIK (Luenberger and Ye 1984; Wang and Chen
1991) is an iterative heuristic technique and is suitable for interac-
tive control of an articulated body. The viability for creating and
controlling highly articulated characters of CCDIK was examined
by Kenwright (2012). CCDIK provides a numerically stable solu-
tion, and it has linear-time complexity in the number of degrees
of freedom, which leads to low computational cost per iteration
(Welman 1993). Compared to other methods, CCDIK is flexible in
that it allows constraints to be placed at each step and is easy to
program, conceptually simple, and computationally fast (Canutescu
and Dunbrack 2003), showing better performance in DT simulation.
In this research, the robot locomotion analysis was based on
CCDIK.

We defined the starting and target positions of the end-effector
of a robotic arm as (X,, Yo, Zy) and (X,,Y,, Z,). Then, the poses
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(positions and rotations) of the joints of the robotic arm can be
recovered based on the CCDIK. In order to solve the IK problem,
the joint angles must be set so that the resulting configuration
moves the end-effectors as close as possible to the target position
(Aristidou et al. 2018). Let s, ..., sy be the positions of the end-
effectors, where k is the number of end-effectors. Let 0, ..., 0, be
the scalars that describe the complete joint configuration of the
multibody, where n is the number of joints. Each 0; value is the
joint angle, and each s; can be expressed as a function of the joint
angles. The target positions are defined as tq, ..., t,, where t; is
the target position for the ith end-effector. The desired change
in position of the ith end-effector is given by e; = t; —s;. The
vector of these parameters can be formed as s = (sq, ...,sg)7T,
t=(ty,....t,)",0=(0y,...,0,)T, e =t —s. The end-effector
positions can be expressed as functions of the joint angles

s = f(0) (1)

On the other hand, the goal of IK is to find a vector 0 such that s
is equal to a given desired configuration sq

0=r"(sq) (2)

The CCDIK method attempts to minimize the pose errors by
transforming one joint variable at a time (Aristidou et al. 2018).
The main idea of CCDIK is to align each joint position with the
end-effector and the target at each step, starting from the end-
effector and moving inward toward the manipulator base, and each
joint angle is transformed so that the last one of the chain gets closer
to the target. Assume a kinematic chain consists of n joints, where
j1 is the root joint, j, is the end-effector, and T is the target posi-
tion. First, CCDIK finds the angle 0, _; defined by T, j,_;, and j,.
Then, update the end-effector’s position by rotation j, so that 0,,_;
is set to 0. Similarly, find the angle 0,,_, defined by T, j,_,, and j,,
and update the j,_, and j, positions so that 0,_, is set to 0 (Wang
and Chen 1991). An iteration is completed when all joints are up-
dated. This procedure is repeated until the end-effector is satisfac-
torily close to the target position.

Without losing its generality, we consider it the most popular
industrial manipulator with seven degrees of freedom. There exist
several ways to improve the performance and increase the realism
of the animation; one of these is to incorporate constraints
(Aristidou and Lasenby 2009). The simplest way of incorporating
constraints can be achieved by weighting the moves of the individ-
ual joints (Meredith and Maddock 2005). In CW simulation, we
focused on the most influential factor in IK, that is, the weight
of the joints. It shows the relative level of flexibility of the motion
freedom of a particular joint in comparison with other joints. It was
also used to fine-tune the recovered joint locations or rotations for a
given application (Meredith and Maddock 2005). In CCDIK, the
weight refers to the priority in the locomotion controls of the in-
dustrial manipulator. When weighting the moves of the individual
joints in CCDIK, it indicates the percentage of the angles 0 each

joint can move. Let ® = (0y, ...,0,)T be the angle change for
each joint every iteration; W = (wy, ..., wy ) be the weight of each
joint; and WO = (w0, ..., w0, be the update angle change for

each iteration. For example, if Joint 2 has a weight of 0.5, Joint 2
can move 0.5 x 0, for each iteration. In this way, a weight of 1
means that the movement of the joint has not been adjusted, and
a weight of 0 means that the joint cannot move.

Fig. 2 shows an example of different received joint postures with
different priority values for the same target point. In other words, it
shows snapshots of the continuous motion of IK-driven robotic arm
motions. The group weights W = (wy, ..., wy ) for each robot are
(1,0,1,1,1,1,1,1) for Fig. 2(b), (1,1,1,1,1,1,1,1) for Fig. 2(c), and
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() (d)

Fig. 2. Different joint postures for the same target point based on three
different weights.

(1,1,1,0,1,1,1,1) for Fig. 2(d). The robot’s original pose and order
of each joint are illustrated in Fig. 2(a). As illustrated in Fig. 2(b),
the weight of Joint 2 is 0, so Joint 2 cannot be moved in CCDIK,
and it remains in the same pose as the original one. The same is true
for Fig. 2(d). Joint 4 cannot be moved and stays in the original pose.
If all the weights are 1.0, the priority of each joint is the same, and
every joint can be fully moved, as shown in Fig. 2(c).

The scope of this study is to propose a method to capture the
uncertainties and unknown specifications of future modular con-
struction robots instead of selecting from any known robot. With
that said, the goal is to design a facility that is tolerant of any pos-
sible robot specifications. As such, the key is to perform an uncer-
tainty analysis, such as a Monte Carlo simulation, to estimate the
chance of collision given a possible range of robotic locomotion
features. Given the changing priority, we define a Monte Carlo
simulation as follows:

In order to find a collision-free workspace, the maximum area
that the robot can reach needs to be determined first, and then part
of the area is selected as the working area according to the mini-
mum allowable requirements of locomotion errors of the robotic
systems. This is because no matter how well the robotic locomotion
controls are designed, there must be uncontrolled errors in such
controls. According to the most popular robotic manufacturers,
the pose accuracy and repeatability of the robotic arm are £0.5 mm
based on ISO 9283 (ISO 1998) and ANSI/RIA R15.06 (Institute
2012). Therefore, this was incorporated into our simulation. The
job of the robot in our research was to move from the starting point
to the designated valve and turn the valve. All the areas that the
robot joints can reach during the movement are the maximum
boundaries. To find the possible robotic movement trajectories and
boundaries, we randomly selected the weight for each joint and
executed it multiple times. Different weights for each joint meant
that the joint’s position was different in an IK calculation. It also
meant that different weights produced different trajectories. The
continuous uniform distribution was used for the weight selec-
tion of each joint. The weights and trajectories of all joints
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were recorded to establish boundaries based on the Monte Carlo
simulation.

The reason for using uniform distribution is that the study aimed
to address future robot-assisted modular construction works, where
most of the parameters of the future robot are subject to changes or
not yet known. For the so-called “deep uncertainty” problems, the
literature has suggested the use of uniform distribution to avoid any
biased assumptions on the PDFs. As Quade and Carter (1989)
wrote: “Stochastic uncertainties are therefore among the least of
our worries; their effects are swamped by uncertainties about
the state of the world and human factors for which we know ab-
solutely nothing about probability distributions and little more
about the possible outcomes.” These kinds of uncertainties are now
referred to as deep uncertainty (Lempert 2003) or severe uncer-
tainty (Ben-Haim 2006; Walker et al. 2012). For example, Quade
and Carter (1989) suggested that when there was an absence of data
about the prior probability distributions for the critical parameters,
a uniform distribution should be assumed.

Finally, the boundary of a safe, collision-free workspace R can
be defined as

R’'eR (3)

In other words, the structural design should allow the minimal
clearance that covers the simulated boundaries of all seven joints
and connections of the robotic system from the CW Monte Carlo
simulation.

Collision-Avoidance Path Planning Based on Physics
Engine Simulation

The second step of the CWCP method is to plan out a collision-
avoidance robotic movement path via the physics engine simula-
tion. We consider the work sequences in actual construction
operations, where out-of-sequence work often occurs, which can
hardly be predicted or planned. As a result, our goal is to capture
the vast variability and variation of work sequence orders in real
operations. Thus, the most robust decision should be built upon
all possible sequence orders. In our case, we consider it the situa-
tion in which all possible obstacles in the middle of the planned
path are present. Collision-avoidance path planning aims to opti-
mize the robotic movement for a given workspace and a given
robotic platform. In this study, we demonstrate how physics engine
simulation can be used to identify one or more paths for robot—
infrastructure collision avoidance. We define the starting and target
points as (Xo, Yo, Zg, ¢o, 09, o) and (X,, Y, Z,, ¢;,0,,1,). Then
the path of the robotic arm and all seven joints are based on the
given parameters of IK as follows.

The Jacobian method is used to calculate the IK solution for CP.
Differentiation of Eq. (1) gives the forward dynamics equa-
tion (Aristidou et al. 2018; Buss 2004)

$=J(0)0 (4)

The Jacobian matrix J can be described as a function of the
0 values and is given by

3(0), = (;%) 5)

where i =1, ...,k; and j =1, ...,n (where k is the number of
end-effectors, and »n is the number of joints). Thus, J would be
a k x n matrix with vector entries. In practice, this would be con-
verted to a 3k x n matrix of scalar entries. Then, we calculate the
entries of J using quantities v;, which are the unit vectors pointing
along the rotation axis of the jth joint
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E)Si o
20, =V X (s; — pj) (6)

where p; = position of the joint.

Suppose the target position for end-effector i is t;; then, attempt
to find the values 0, which minimize the errors e; between the
actual end-effector and target positions

e =t; —s;(0) (7)

A small change A@ is made in the joint angles, and the conse-
quent change in end-effector positions is approximated as

As ~ JAO (8)

J can be calculated from the current values of s and 0. Because
we are looking for a value of As that is as close as possible to the
error e (the error term e should be clamped to avoid instabilities in
convergence), we can estimate the change in 0 to be A® ~ J'e.

After calculating the total change A of each joint, we also
divide A into certain segments A6y, ..., A@,, where n is the
number of divisions. The pose of each joint is calculated for each
A0y, and the trajectory is built based on the position of each joint.

CW-CP Weighting

We also recognize that the constraints for CW and CP simulations
may change in practice. For CW, although CW simulation gives a
clearance space of R, it may be beyond the allowable space from a
structural design or economic perspective. For example, the span-
ning of a pipe rack structure usually has an upper limit for structural
integrity purposes. In this case, the identified collision-free work-
space may not be 100% achievable. Similarly, the CP optimization
of the path may fail to identify a path that is completely collision
free. As a result, the results of both CW and CP should be adjusted
according to how much flexibility can be granted to the design
changes and operational changes. We define an allowance factor
« to give an adjusted CW result as

Ry = R, 9)

In other words, a realistic workspace design may not be per-
fectly aligned with the CW simulation results, still causing a certain
chance of collision in rare cases. It is the cost of satisfying other
factors such as structural design requirements. Similarly, there may
be cases where CP cannot find a solution for a collision-avoidance
path. As a result, we adopt a midwaypoint approach by adding one
or more transition waypoints (X/, Y/, Z/) that add deviations to the
original target point

(X,’,Y;,Z;) = (XnYt’Zt):t(Avay’AZ) (10)

The determination of deviation levels (Ax, Ay, Az) can be
found with reinforced learning, such as A* search (Hart et al. 1968)
and random tree exploration (Karaman and Frazzoli 2011). A*
starts from a specific starting node and aims to find a path to
the given goal node with the smallest cost. At each iteration of
its main loop, A* needs to determine which of its paths to extend.
It does so based on the cost of the path and an estimate of the cost
required to extend the path all the way to the goal (Hart et al. 1968)

f(n) = g(n) + h(n) (11)

where n is the next node on the path; g(n) is the cost of the
path from the start node to n; and h(n) is a heuristic function
that estimates the cost of the cheapest path from n to the goal.
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A* terminates when the path it chooses to extend is a path from
the start to goal or if there are no paths eligible to be extended.

It is natural that the selection of o will affect the levels of
(Ax, Ay, Az). Specifically, given a greater value of «, the deviation
of (Ax, Ay, Az) should be greater. Therefore, we assume a linear
relationship f(-) between the two

(Ai) = f(a)...Eq(x) (12)

Eq(x) will then be used as an important input for the reinforced
learning algorithm.

Test Case Study

Overview

‘We used an industrial robot-assisted pipe skid modular construction
as the test case for the proposed CWCP method. The model in-
cluded a pipe skid system and a Franka Panda robot in the virtual
reality (VR) system. The robot was required to install the valves
and pipelines for the pipe skid. The interactive VR system was de-
veloped based on our previous systems (Du et al. 2016, 2017,
2018a, b; Shi et al. 2018; Zhou et al. 2020; Zhu et al. 2021). Fig. 3
shows the pipe skid system and the Franka Panda robot in the vir-
tual environment. The system collected data on robot joints’ trajec-
tories at a frequency of 90 Hz. After each VR experiment, the
developed VR system automatically recorded the raw data and
saved it into a CSV file.

The main purpose of the VR system in this research was to
collect data to test the proposed CWCP models. The VR environ-
ment was built in a way to trigger similar robotic responses as seen
in real work settings due to the same IK algorithms used and was
thus reasonable for the model development. We also recognize and
agree that the model, once tested, will require real-world data col-
lection techniques to be implemented in real-world settings.

The modular structure was relatively deterministic in our test
case, but the interaction between the robot and the structure was
something that needed to be optimized. We relied on two factors
to drive the simulation-based optimization: the simulated robot
work envelope (as discussed earlier) and the clearance spacing
of the modular structure that had direct contact with the robot.
In our test case, the robot arm was used to install a valve during
assembly. To reach the valve, the robot arm needed to go through a
confined space between Points A and B, as shown in Fig. 4. The
goal was to minimize the spacing between Points A and B for
cost and performance considerations while still allowing a safe
(i.e., collision-free) work interface between the robot arm and struc-
ture. To provide more details about the structure and robot used
in the optimization simulation, we show dimension information
in Table 1 and Fig. 5. Fig. 5(a) shows the kinematic chain and
parameters of the simulated robot. Figs. 5(b and c) illustrate the
side and top views of the robot’s work envelope. This will help
other scholars reproduce the findings of this study. In addition,
we have shared the VR models of both the structure and the robot
in a GitHub project (Link: https://osf.io/jcz2y/). Interested scholars
are welcome to rebuild the scene with the shared models.

Fig. 3 shows the relative spatial arrangement between the robot
and the facility.

CW Simulation for Collision-Free Workspace Design

We selected the path between the starting point and target valve as
the design factor. IK-based Monte Carlo simulation was used to
find the collision-free workspace. A total of nine joint positions
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Fig. 3. The pipe skid system and Franka Panda robot in the virtual environment.

Fig. 4. The task path of the robot in the pipeline system.

were recorded, where Joint O was the base, Joints 1-7 were seven
joints of the robot, and Joint 8 was the grabber mounted on the Joint
7 (end-effector). Because the robot base was not moveable, we did
not need to set the weight for Joint 0, and the position for this joint
(JointPos0) only needed to be recorded once.

Considering that the dimension, weight, and payload of the
end-effector may also affect the collision-free workspace, an addi-
tional boundary is added to the target position of the end-effector.
The payload and end-effector dimension boundary were deter-
mined to cover the maximum range of the majority of the possible
robotic arms. We relied on the specifications of the popular small-
scale industrial manipulators, such as the Franka Panda robot, for
estimating the boundary. The payload was defined as 3 kg, and
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Table 1. Specifications of robot used in the optimization simulation

Joint a (m) d (m) « (rad) Oin (rad) Omax (rad)
Joint1 0 0.333 0 ~2.8973 2.8973
Joint2 0 0 —g ~1.7628 1.7628
Joint3 0 0316 g ~2.8973 2.8973
Joint4 00825 0 g 30718 —0.0698
Joint5 —0.0825  0.384 —g ~2.8973 2.8973
Joint6 0 0 g ~0.0175 3.7525
Joint 7 0.088 0 g ~2.8973 2.8973
Flange 0 0.107 0 0 0

the dimension of the end-effector was set to 200 x 50 x 75 mm
(L x W x H). The specification of the valves was set to 100 x
10 mm (Radius x Height) based on the possible specifications of
valves. The weight of the Franka Panda hand was 0.73 kg. The
payload of the valve was set to 2 kg to avoid unexpected movement
of the robot. These values were large enough to cover the uncer-
tainties of the majority of the robotic systems used. In order to
consider the space required by the robot in the process of turning
the valve, we added a boundary to the robot’s end-effector based on
the size of the robot’s hand, valve, and pipes. The boundary we set
was £200 mm for the x-direction according to the length %—I— R,
4125 mm for the z-direction according to the width V—2V + R, and
+85 mm for the y-direction according to the height Hiy,yg +
Hva1ve- Then, each joint’s randomly selected weight from a continu-
ous uniform distribution x € [0, 1], and 1,000 sets of different
weights corresponding to each group of joints (Joints 1-8) were
selected to calculate the robot motion boundary. The weight of each
joint (W1, W2, W3, W4, W5, W6, W7, W8) and the position of
each joint (JointPos1, JointPos2, JointPos3, JointPos4, JointPos5,
JointPos6, JointPos7, JointPos8) were collected. The raw data can
be found at: https://ost.io/jcz2y/.

The trajectory of each joint was then calculated based on
CCDIK. Because CCDIK only calculated the position of each joint
and did not include path planning, we manually created the path in
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Fig. 5. Robot specifications: (a) Panda’s kinematic chain; (b) arm workspace side view; and (c) arm workspace top view.

the starting point and target valve. We set the path between the two
points to be a straight line and divided this straight line evenly into
100 points. CCDIK was used to calculate the position of all joints
corresponding to each point on the trajectory to calculate an
approximate path. The weight of each group (W1-W8) was con-
stant when calculating a trajectory and changed to another group of
random numbers when one trial was completed. The data collection
video can be found at: https://osf.io/jcz2y/.

Fig. 6 shows 1, 10, 100, and 1,000 trials of all the robot joint
trajectories. As illustrated in Fig. 6(a), the robot arm model and one
of the robot motion trials are shown in three-dimensional (3D)
space. The trajectories of each joint of the robot are shown in a
different color. At the same time, the joint corresponding to each
trajectory is also marked. Figs. 6(b—d) show the results of 10, 100,
and 1,000 trials, respectively. The bottom three points in these three
pictures are the trajectories of Joints 0, 1, and 2. The trajectories of
these three joints converge to a point because the IK calculation
suggests that the movements of these three joints are neglectable.
Because the positions of Joints 0, 1, and 2 were almost unchanged,
we only recorded their positions but did not apply them to the data
analysis of the Monte Carlo simulation. The rest of the joints (Joints
3-8) were used to calculate the boundary in the Monte Carlo sim-
ulation, as shown in Fig. 7(a). We defined a cuboid area as the robot
motion boundary. The positions (X, Y, Z) of the eight vertices of
the cuboid were determined by the maximum and minimum X, Y,
and Z positions of the trajectories. Fig. 7(b) shows the cuboid area
of the maximum robot motion workspace. However, the allowable
space may be beyond the robot motion space from a structural
design or economic perspective. In this case, we identified the
collision-free workspace, which includes 90% of the trajectories
as an example. As illustrated in Fig. 8, the translucent cuboid area
shows a collision-free workspace; the trajectories outside the work-
space are considered collisions, and those inside the workspace are
collision-free. After identifying the collision-free workspace, the
pipe skid system was designed based on the workspace. Fig. 9
shows the collision-free workspace in the pipe skid system; the cu-
boid area is between two pipes and two railings. Figs. 9(a—c) show
the collision-free workspace without a robot arm. The lines are the
moving trajectories of the robot’s joints. The cuboid area is the
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workspace, the trajectories inside the workspace are collision-free,
and the trajectories outside the workspace are considered collisions.
We also added a robot arm with an example pose to make the image
clearer. As illustrated in Fig. 9(d—f), Joints 3-8 of the robot arm
were working in the collision-free workspace.

Fig. 6 shows the example results from the IK Monte Carlo sim-
ulation. The curves represent the motion trajectories of all joints.
The density of curves shows the cumulative results from the Monte
Carlo simulation.

Fig. 7 shows the example analysis between the allowable space
and work zone envelope of the robotic arm. The curves represent
the trajectories of the joints of the robotic arm, whereas the cube
indicates the allowable space defined by the facility design. As
such, all curves beyond the boundary of the cube are considered
collisions.

Fig. 8 shows the example analysis between the allowable space
and the work zone envelope of the robotic arm. The curves re-
present the trajectories of the joints of the robotic arm, whereas
the cube indicates the allowable space defined by the facility de-
sign. As such, all curves beyond the boundary of the cube are con-
sidered collisions.

Fig. 9 illustrates how the collision analysis looks in the context
of the facility. All curves beyond the boundary of the cube are con-
sidered collisions.

CP Optimization for Collision-Avoidance Path Planning

We then controlled the robotic arm to move from another test point
to the target valve. The Jacobian method was used to control the
robotic arm for CP. We divided A@ into 100 even segments (A6 )
and recorded the position of all joints when the robot rotated each
segment angle AOy. The trajectories of each joint were calculated
based on the position recorded.

The test point, valve target, and trajectories were in the collision-
free workspace determined in CW. However, the CP optimization
failed to identify a path that was completely collision free due to the
spatial limitation. In other words, the realistic workspace design
was not aligned with the CW simulation results, still causing a
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Fig. 6. The schematic diagram of the number of trajectories of robot joints: (a) 1; (b) 10; (¢) 100; and (d) 1,000.

collision. As illustrated in Fig. 10, we set a movement from a point
in the collision-free workspace to the target valve. During the
movement, the collision happened between robot Joint 6 and the
left pipe. As a result, the midwaypoint approach was achieved
by adding one transition waypoint (X/,Y/,Z/). We used the A*
search algorithm to scan a large number of possible paths until
one or more collision-avoidance paths were identified. The work-
space of the robot was defined as a cuboid with L: [0.25,1.08], W:
[-0.21,0.17], and H: [0.00, 0.80]. We set a point for every 0.01
scale in this cuboid area, and a total of 83 x 38 x 80 = 252,320
points were set. The A* search algorithm was used to find the paths
based on these points. The average computation time for path plan-
ning was about 4.5 s. The path with the shortest length and the
fewest midwaypoints was selected as the final path.

As illustrated in Fig. 11, a midwaypoint was found based
on the A* search. The robot moved from the starting point to the
midwaypoint and then moved to the target valve. The lines
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represent the trajectory of each joint. Fig. 11(a) shows which joint
each trajectory corresponds to. The midwaypoint is the turning
point in the trajectory of Joint 8. Because the positions of Joints
0, 1, and 2 were almost unchanged, we did not draw the trajectories
of them. Fig. 11(b) shows the pose of the robot passing the mid-
waypoint. Each joint is passing its corresponding trajectory. The
trajectories of the robot joints confirm that the midwaypoint
avoided the collisions. The pose of each joint at the end of the tra-
jectory is shown in Fig. 12. The joint avoided collision with the
pipe. The midwaypoint video can be found at: https://osf.io/jcz2y/.

Fig. 11 shows the robotic arm trajectories in one specific
motion.

Discussion and Conclusions

Robots are being deployed in a variety of industrial applica-
tions to promote safety and productivity in dynamic workplaces.
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Fig. 7. The trajectories of (a) Joints 3-8; and (b) the maximum working space of the robot.
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Fig. 8. The collision-free workspace with chosen and deleted
trajectories.

For modular construction, robots show unique benefits because
they allow construction workers to engage in tasks that are tradi-
tionally unsafe, inaccessible, or difficult. Successful applications
of robots in the construction industry include the use of remote
industrial manipulators in precision operations, such as those
seen in facility installation and maintenance. Despite the apparent
benefits of robots, concerns still persist. In particular, robotic col-
lisions with human workers, with infrastructure or equipment, and
with other robots on construction sites are highly possible because
construction workplaces are usually dynamic and constrained.
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Moving workers and construction objects complicate any effort
that aims to reduce collisions with proactive or reactive strategies.
In particular, passive collision avoidance methods that focus on
taking reactive actions when a collision occurs are not as effective
in construction operations as in well-controlled workplaces be-
cause there are many influential factors on a construction job site
(e.g., unexpected motions of a nearby worker) that could impair
reactive actions. An active robotic collision avoidance method is
needed to facilitate the design of a collision-free construction
workspace with robots for the most likely cases of robotic oper-
ations and/or to plan robotic operational procedures when the site
conditions are known.

This paper proposed an active robot collision avoidance method
for collaborative robotic operations based on the collision-free
workspace and collision-avoidance path planning. It is important
to validate a new technology with a real-world case when it is avail-
able. However, the scope of this work aimed to address yet-to-come
new technology: robot-assisted modular construction scenarios. At
this point, it is not yet developed and deployed in real-world ap-
plications. Not only is the structure to be built unknown, but the
robots that will become available are also less clear. In addition,
the knowledge gap we wanted to fill concerns deep uncertainty
about the future use of robots. In other words, we do not yet have
a clear understanding and data about the specifications of the future
robot for modular construction. However, it is important for us to
understand the methods and analytical workflow to address such
uncertainty when robots become available in the future. With that
said, the main contribution of this work is to present a simulation-
based method for analyzing, calculating, and controlling the uncer-
tainties of a vast selection of robots that will be used for future
modular construction. If we select one kind of robot to run a
real-world validation, it will invalidate the point of testing and
stimulating uncertainties from a much bigger number of possible
robots. A validation case with a real robot, of course, will become
available when the industry agrees upon the specific type of robot
to be used for a specific modular construction operation. As a re-
sult, our analysis focused on providing a fuzzy but robust work-
space and path to avoid possible collisions in most cases with a
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(d)

Fig. 9. The collision-free workspace in the pipe skid system.

given confidence level. Therefore, the only measure in this case was
the achieved confidence level of the planned workspace and path in
avoiding future collisions, given the probability distribution of the
robotic parameters. In our case study, we selected a 90% safety
range as the performance measure, which means that by using
the recommended clearance and path spatial design, 90% of future
collisions can be avoided.

A real-world application can be inspired based on the CWCP
method. First of all, the future design of modular structural com-
ponents should incorporate the possibility of the application of
robotic systems. Thus, the locomotion and spatial requirements
of the robotic system should be considered in the design phase.
The digital twin simulation informed by this study can be an effec-
tive design decision tool for future structural engineers to consider
the parameters of a more complex modular structure and its corre-
sponding spatial coordinates with the presence of robotic systems.
Another real-world application that can be inspired by this study is
a virtual reality-robot operating system (VR-ROS) platform that
drives a real robot for validation in a testbed. There may be special
situations in the operation of real robots. The lessons learned from
VR-ROS simulations can help us develop better methods to im-
prove the effectiveness of future robotic controls. The challenge
is the PDFs used for the Monte Carlo simulation because the
parameters of future robots can be difficult to capture or predict
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given the rapid development of the tech trend. As a result, we used
the uniform distribution to avoid any possible bias in our simula-
tion, but this should definitely be improved. In addition, we used a
fixed robotic platform in the simulation. Incorporating scenarios of
mobile robotic platforms in the future may increase the perfor-
mance of the digital twin simulation.

The proposed CWCP method contributes to safer modular con-
struction robot applications in two ways. First, it presents a colli-
sion avoidance mechanism tailored for modular construction. Most
existing robotic collision avoidance methods are designed for well-
controlled works and workplaces, such as manufacturing. Because
the operations and environments are more predictable, anticipatory
collision reactions are possible based on the prediction of the sys-
tem status and human behaviors. In contrast, construction workpla-
ces (even for modular construction) are less controlled, posing
uncertainties to any efforts in prediction-based countermeasures.
As aresult, CWCP adopts robust design principles at the beginning
of the project. Through a simulation of various design solutions,
it is possible to identify a structural and workplace design that
meets the need of both work safety and structural considerations.
Although work zone design methods can also be seen in several
studies, modular construction projects can also present deviations
from master plans, such as out-of-sequence activities. As a result,
CWCP uses onsite path planning simulation as the secondary
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Fig. 10. A collision between the joint and pipe in the collision-free
workspace.

and last safeguard to ensure minimized collision likelihood. This
unique two-step, two-phase planning design of CWCP is the result
of the uncertainties in construction projects. Second, CWCP
demonstrates the potential of digital twins simulation in robot plan-
ning for future modular construction operations. Both CW and
CP steps rely on the precise reproduction of the workspace and
work procedures of the prospective modular construction tasks.
Robotic movement simulation also builds on real mechanical algo-
rithms (i.e., IK and physics engine) to mimic robotic motions and
interactions with the surrounding environment. Our case study
shows that both DT simulations in CW and CP steps can be

Joint 7

Joint 6 \\,

«—— Joint 8

Joint 3

(@)

accomplished with reasonable resources (such as the Unified
Robotics Description Format [URDF] file for the robot, building
information modeling (BIM) model for the building, and computer-
aided design (CAD) model for the pipe skid system) and within
manageable durations (20 mins for the CW step and 20 mins for
the CP step). This shows that DT simulation can serve as a man-
agement support tool for future construction robotic logistics
planning.

In practice, these two steps do not have clear boundaries and
should be adjusted according to how much flexibility can be
granted to the design or operational changes. These two steps have
distinct requirements on DT simulation. For the construction envi-
ronment, general work site planning is completed first. However,
further adjustments are needed for structural design based on a
collision-free workspace. A collision-free workspace design is to
identify a clearance and workspace that work for the most popular
robotic systems. It also requires that the spatial parameters not
affect the structural integrity of the structure. As a result, such
a collision-free workspace design should happen after the general
work site planning is done but before the structural design
(e.g., structural analysis) is performed. This is to ensure that the
collision-free workspace design meets the minimum structural
integrity requirement. The collision-free workspace design needs
to try out a large number of possible robotic movement trajectories,
with randomly assigned specification parameters, to identify the
common boundaries of a safe work zone. The efficiency of the DT
simulation for a high number of simulation iterations is the top
priority. In contrast, collision-avoidance path planning requires
high-fidelity reproduction of the robot specifications and the estab-
lished workspace to identify the best movement trajectory for ro-
botic control. The precise simulation of the physical interaction and
robot locomotion is more important. Although the literature has
given examples of robotic simulations based on inverse kinematics
or physics engines, little effort has been made to explain how these
different robotic simulation approaches fit the unique needs for
identifying collision-free workspaces and collision-avoidance oper-
ations. As a result, the main contribution of this paper is to provide
evidence of how the two main robotic simulation approaches can
meet the needs of the proposed two-step active collision avoidance

Fig. 11. The joint trajectories of the midwaypoint approach.
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Fig. 12. The pose of each joint at the end of the trajectory.

planning in the early and late phases of a modular construction
project.

Limitations and Future Research

This study suffers from several limitations that require further in-
vestigations. First, further evidence is needed about how the pro-
posed simulation tool can be used to optimize the selection, robot,
and design of modular structures in the future in a more realistic
setting with multiobjective requirements. In our current study, we
analyzed the determination process of a single clearance spacing
based on the distribution of the work envelope of an adjacent robot.
In reality, such a determination can be more complicated with more
clearance workspace considerations. For example, multiple clear-
ance parameters may need to be determined instead of just one.
In addition, there may be a more sophisticated consideration of
the structural design and robot specifications in place that should
be incorporated in the simulation, such as a maximum rack width
due to spatial constraints. A more comprehensive multiobjective
simulation will be performed in the future. Second, the robot plat-
form base used in this simulation was fixed. However, there are
certain scenarios that require a mobile platform to support a more
flexible installation process. This means that a robot arm could be
mounted on a moving platform, such as a unmanned ground robot
(UGV) for more flexible locomotion in the work area. With a mo-
bile platform, it is more complicated to identify the optimal param-
eters of the robot—structure work interface for reduced collision
possibilities. As a result, it is our future agenda to incorporate
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scenarios of mobile robotic platforms and examine how they affect
the proposed method. The last limitation concerns the robot-
assisted automated workflow. In this study, to focus on the research
scope, human workers were excluded from the workplace simula-
tion. In addition, we did not consider dynamic obstacles such as
reciprocal velocity obstacles. The incorporation of dynamic ob-
stacles in our path planning would definitely make a great addition
to our current work. As for this current paper, because we focus on
facility maintenance in a fixed platform, the chance of encountering
dynamic obstacles in the line of work is minimized. In addition, we
found that the consideration of dynamic path planning would be
another line of research that requires the velocity obstacle concept
(Fiorini and Shiller 1998; Van den Berg et al. 2008). As a result, we
will make it a future agenda item.

In future research, the simulation could be tested in more dy-
namic scenarios such as human workers and robots presenting
in the same space or multiple robots collaborating with each other
or with other dynamic moving objects in the range of the work-
space. These dynamic influence factors would be included in the
simulation to bring this method to real-world operation by working
on extra prep work and remaining research. In future research, we
will further test the use of reinforced learning in optimizing the
weighting factors between CW and CP steps.
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