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Arrested soft materials such as gels and glasses exhibit a broad distribution of stress relaxation times in response to linear 
macro-rheological deformations. Although these relaxation dynamics play fundamental roles in the application of arrested 
systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of such dynamics 
remains poorly understood. Here, we elucidate the microscopic dynamics that govern the stress relaxation of such arrested 
soft materials under both quiescent and mechanically-perturbed conditions through x-ray photon correlation spectroscopy. 
By studying the dynamics of a model associative gel system which undergoes dynamical arrest in the absence of aging effects, 
we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent elastic 
fluctuations of the microscopic clusters which are governed by built-up internal stressses in the system. We also show that 
perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of elastic 
avalanches, which give rise to a broad spectrum of non-Gaussian relaxation modes which are observed in stress relaxation 
measurements. These findings suggest that, even in the linear regime, stress relaxation in arrested soft materials may be a 
non-linear phenomenon which is governed by an interplay of internal stresses and perturbation-induced intermittent 
avalanches.  
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A broad distribution of relaxation times in response to linear 
mechanical perturbations – manifested for instance via power-
law or stretched-exponential stress relaxation curves – is recog-
nized as a fundamental property in arrested soft materials, and 
occurs ubiquitously in glasses1, concentrated emulsions,2,3 
gels,4 surfactant solutions,5 granular systems,6 biological mate-
rials7-11. Despite this universality, the current understanding of 
this phenomenon is prevalently system-specific; for example, 
in glasses, non-exponential stress relaxations are approached 
from the perspective of dynamic heterogeneity,1 referring to the 
spatiotemporal heterogeneities of mobilities that manifest 
within the glass microstructure12. In associative systems such as 
gels, stretched exponential stress relaxations are interpreted as 
a convoluted exponential relaxation process originating from an 
exponential or logarithmic distribution in the size of different 
relaxing mechanical components.5,13,14 In strongly aging sys-
tems such as colloidal glasses and emulsions, relaxations are 
analyzed from the viewpoint of activated hops in an exponential 
potential energy landscape through a framework known as soft 
glassy rheology.15,16 The quest to understand non-exponential 
stress relaxation in a variety of soft materials has also motivated 
studies of non-affine deformations,17 non-linear internal pre-
stress,8 fractal structures,18 shear-transformation zones,19 aging 
induced avalanches,3 interchain locking20, and phase-separa-
tion.21 This large variety of system-specific relaxation processes 
which have been proposed makes extracting the key physics be-
hind broadly-distributed stress relaxation dynamics in arrested 
soft materials a complicated task.  
Arrested soft materials also exhibit a common set of micro-

scopic relaxation behaviors, manifested in the form of com-
pressed exponential decay in the correlation functions and su-
perdiffusive motion of the constituents.22-26 The origins of these 

dynamics are well-understood as being athermal in nature, 
wherein internal stress heterogeneities generated during arrest 
are released and cause local strain propagation at a rate exceed-
ing that from thermal rearrangements.22-25,27,28 These micro-
scopic dynamics are expected to play an important role in dic-
tating the macroscopic relaxation dynamics of arrested systems. 
Indeed, evidence for this idea lies in past studies on gels4 and 
biological networks,11 where correlations between the aging-in-
duced evolution of microscopic relaxation times and macro-
scopic relaxation times4 or elastic moduli11 have been estab-
lished. However, despite these studies, a connection between 
the microscopic relaxation dynamics and the statistical features 
of the broad distribution of relaxation times in macroscopic per-
turbations (such as the mean and the width of the distribution of 
relaxation times) has remained elusive.  

Significance Statement 
The linear viscoelasticity of soft materials is governed by the 
microscopic thermal fluctuations of the underlying constituents 
of the system, which are expected to give rise to unique mono-
exponential stress relaxation times. However, many soft mate-
rials such as glasses and gels instead exhibit a broad distribution 
of stress relaxation times, for which the microscopic origin re-
mains elusive. Here, we investigate the microscopic fluctua-
tions inside an arrested gel and reveal the presence of two dis-
tinct microscopic relaxation mechanisms – “quiescent” relaxa-
tions governed by the build-up of internal stresses during arrest, 
and “perturbation-induced” avalanche relaxation events gov-
erned by mechanical deformations in the system. We demon-
strate that both relaxation mechanisms are essential components 
of non-exponential stress relaxations in arrested soft materials.  
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Here, we address this missing connection through a multi-
scale investigation of the relaxation dynamics of an arrested 
model system via rheology, ultra-small-angle x-ray scattering, 
and x-ray photon correlation spectroscopy. The model system 
is a recently-developed associative hydrogel platform consist-
ing of water-stabilized iron oxide nanoparticles (NPs),29 which 
are bridged by telechelic linkers of 4-arm poly(ethylene glycol) 
(PEG) functionalized with strongly iron-coordinating nitrocat-
echol ligands (Fig. 1A). Prior work by our group,30 as well as 
theoretical predictions on such gel systems,31 have shown that 
this polymer-particle configuration facilitates dynamic arrest in 
the absence of a phase-separation32 through limited-valency in-
teractions. This mechanism of self-assembly results in gelation 
of the NPs via dynamic arrest, which allows the resulting gels 
to reach a structural and mechanical steady-state after gelation 
during the experimental timeframe rather than undergo contin-
ued aging via an arrested phase separation (Ref30, Fig. S2), 
whilst still exhibiting hallmark behaviors of arrested soft mate-
rials such as stretched exponential stress relaxations and com-
pressed exponential correlation decays.30,33 This makes the lim-
ited-valency gel a useful model system for exploring the micro-
scopic dynamics of arrested systems, as it eliminates the contri-
bution of aging dynamics to microscopic relaxation dynam-
ics2,4,34. and thus allow us to isolate the relaxation dynamics 
arising from perturbation-free quiescent states as well as in 
states under controlled external perturbation. Using this system, 
we are able to elucidate the separate contributions of dynamics 
arising from perturbation-free quiescent states and dynamics 
arising from perturbed states under controlled mechanical de-
formations, and evaluate their roles on the macroscopic stress 
relaxation of the system.  
In response to a step strain in the linear regime, our arrested 

gel exhibits classic signatures of stretched exponential stress re-
laxations of the form: 

    (1)  

where 𝐺! is the plateau modulus, 𝜏" is the macroscopic re-
laxation time, and 𝛽 is the stretching exponent. The gel shows 
an exponent of 𝛽 = 0.3 across 25	℃ < 𝑇 ≤ 65	℃ (Fig. 1B, 
S1). Stretched exponential stress relaxation functions under-
score an asymmetric distribution in the relaxation times (with a 
mean relaxation time 〈𝜏〉 and a heavy-tail at short times)35, and 
are often seen in highly arrested systems such as gels and 
glasses.1,4,5 We note that these relaxation dynamics are distinct 
from what is commonly seen (and well-understood) in associa-
tive gels at moderate concentrations of associations, wherein a 
power-law stress relaxation of ~𝑡#$/& emerges due to a “sticky” 
Rouse relaxation of interconnected components.36,37 The arrest 
of interest here is clearly stronger, and typically appears in as-
sociative gels at high association strengths and concentrations.38 
The microscopic dynamics of our model gel are measured via 

x-ray photon correlation spectroscopy (XPCS), a technique 
which allows us to directly measure the dynamics of the NP 
cross-linkers. XPCS bypasses the drawbacks of visible-light-
based approaches in dealing with material opacity (Fig. 1B in-
set) and capitalizes on the high electron-density contrast be-
tween the NPs and the constituents (water and PEG). In XPCS, 
speckle intensity maps are measured as a function of time (Fig. 
2A). The autocorrelation of the wave-vector q-dependent inten-
sities produces a second-order correlation function 𝑔&(𝑞, 𝑡) as 
a function of delay time 𝑡, which is related to the intermediate 
scattering function 𝐹(𝑞, 𝑡) via the Siegert relation: 

   (2) 

where the front-factor 𝑏	~	0.1	is an instrument-dependent co-
herence-adjustment factor, 𝐴	is a contrast term, and 𝜏' and 𝛾 
measure the microscopic relaxation time and associated stretch-
ing (𝛾 < 1) or compressing (𝛾 > 1) exponent of the decay 
curve (Fig. 2A). 𝐹(𝑞, 𝑡) is captured by the terms in the square 
brackets in Eqn. 2. More details on the technique are provided 
in reference.39  
We perform XPCS over a q range of 0.0032 Å-1 to 0.063 Å-1, 

which corresponds to the intra-cluster regime in our gel system 
(Fig. 2C). This intra-cluster regime is revealed by ultra-small-
angle x-ray scattering (USAXS) measurements on the gels, 
through which contributions from three distinct length-scales 
are identified: a high-q contribution at 𝑞 ≥ 1 × 10#&	Å#$; an 
intermediate-q contribution at 1 × 10#&	Å#$ ≤ 	𝑞 ≤ 1 ×
10#&	Å#$, and a low-q contribution at 𝑞 ≤ 4 × 10#(	Å#$. The 
high-q contribution can be accurately modeled by a hard-sphere 
model (HSM) – the division of our intensity 𝐼(𝑞) by the HSM 
yields the structure factor 𝑆(𝑞), Fig. 2D – and can be attributed 
to the nanoparticles. The intermediate-q and low-q contribu-
tions can be attributed to the existence of clustering at multiple 
length-scales. These features are commonly observed in other 
network systems such as polymer gels40 and nanocomposites 
through scattering measurements over large length-scales be-
yond the characteristic cluster size.41  Here, we follow the con-
ventions of these studies, and attribute the intermediate-q 
length-scale to primary clusters (cluster diameter 𝜉 = 3760	Å 
via a unified model fit42) and the low-q length-scale to high-
level agglomerates (with a characteristic diameter greater than 
the largest probed length-scale of USAXS, 1 𝜇m, as evidenced 
by the Porod scaling of 𝐼(𝑞)~𝑞#)). The XPCS region-of-inter-
est thus falls within the primary cluster length-scale 𝜉. 
We first probe the microscopic dynamics of the gel system in 

the quiescent state via XPCS using an in situ capillary-gelled 
sample (see Fig. S3 for holder setup). Second-order correlation 
𝑔&(𝑞, 𝑡) measurements on the capillary-gelled system reveal a 
compressed exponential decay, which is paired by superdiffu-
sive dynamical behavior, as evidenced by the collapse of the 
𝑔&(𝑞, 𝑡) upon scaling the relaxation time 𝜏' by 𝑞#* (Fig. 2C). 
The scaling exponent 𝑣	~	1.07 is obtained directly through the 
fitting of the mean value of 𝜏'(𝑞) from 20 independent meas-
urements (Fig. 2D); such ensemble-averaged measurements are 
only possible due to the negligible aging of the gelled material 
(Fig. S2). Within this same q region, the mean compressing ex-
ponent is 𝛾	~	1.72 (Fig. 2D) suggesting that superdiffusive dy-
namics persists throughout the intra-cluster length-scale. At 
high q, the relaxation time 𝜏'(𝑞) deviates from this 𝑞#* scaling 
and 𝛾 decreases towards unity, in agreement with previous ex-
periments22 and simulations.25 These observations are con-
sistent with the aforementioned signatures of elastic stress fluc-
tuations,22-27 in which the relaxation of heterogeneous frozen-in 
internal stresses modifies the elastic strain field and induces su-
perdiffusive local rearrangements in the material.  
Though the heavy tail of the correlation decay is not fitted by 

the compressed exponential form of the Siegert relation in Fig. 
2C (as also observed in many other compressed exponential de-
cay measurements.23,43,44), we find a good collapse of the data 
in this tail region by 𝑞#*, indicating that this heavy tail shares 
the same superdiffusive origins as the main decay function. We 
verify this, and directly shed light on the role played by internal 
stresses on the measured relaxation times 𝜏', by performing an 
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azimuthal angle 𝜑-dependent investigation of 𝑔&(𝑞, 𝑡) in capil-
lary-gelled systems. Capillary environments facilitate aniso-
tropic residual stresses in the gels during dynamic arrest by pre-
venting internal stress relaxations in the direction of boundary 
conditions such as the capillary walls and the sealant.43 Thus, 
we would expect gel systems which relax via elastic fluctua-
tions to exhibit a 𝜑-dependence in the correlation decay, such 
that relaxation is accelerated in 𝜑 directions facing confine-
ment. We indeed observe this behavior in our gels, where relax-
ation is faster along directions which are under confinement by 
the capillary walls and the Torr seal, and slower in unconfined 
directions (Fig. S3A-C). Internal stresses thus govern the meas-
ured relaxation times 𝜏', as well as the distribution of relaxa-
tion events in the system which manifests as a heavy tail in the 
𝜑-averaged correlation data (Fig. 2C). 
We now seek to establish a connection between the internal 

stress dominated microscopic relaxation time 𝜏' and statistical 
features of the broad distribution of relaxation times observed 
in macro-rhelogical experiments, namely the mean relaxation 
time 〈𝜏〉 and the breadth of the distribution. The mean 〈𝜏〉 of the 
distribution of relaxation times underlying a stretched exponen-
tial can be obtained by calculating the first moment of the 
stretched exponential function, via the relation45: 

   (3) 

where 𝜏 is the relaxation time and 𝛼 is the generic exponent 
obtained from stretched exponentials, such as 𝛽 in Eqn. 1 and 
𝛾 in Eqn. 2.As the typical values obtained for exponents are 
vastly different between rheology and XPCS (stretched and 
compressed, respectively), we thus compare the mean rheolog-
ical relaxation time 〈𝜏"〉, obtained by rescaling 𝜏" with 𝛽 (Eqn. 
1), with the mean XPCS relaxation time 〈𝜏'〉, obtained by 
rescaling 𝜏' with 𝛾 (Eqn. 2). We perform this comparison in a 
temperature-dependent manner, comparing 𝜏" obtained via 
rheology at 25	℃ < 𝑇 ≤ 55	℃ with 𝜏' obtained via XPCS 
over the same temperature range. To enable this comparison, 
we study the correlation dynamics of our arrested system by 
gelling the system ex situ and gently loading it into an alumi-
num cell capable of conducting heat from the Peltier loaded in 
the XPCS chamber (Fig. S3). We underfill the cell to minimize 
perturbations to the sample. The microscopic dynamics lead to 
compressed-exponential correlation functions like those of the 
samples discussed above (see Fig. 4B), and hence we refer also 
to these samples as “quiescent”.   
Since 〈𝜏'〉 is q-dependent (Fig. 2D) and clearly smaller than 

〈𝜏"〉 over the studied q-range (Fig. 3A), we select a specific 
characteristic microscopic length-scale at which the compari-
son with macroscopic measurements should be made. For this 
purpose, we choose the primary cluster size 𝜉 as the character-
istic length-scale, as cluster dynamics have often been impli-
cated in dictating the macroscopic viscoelasticity of soft mate-
rials.13,46-48 Scattering studies and simulations of arrested sys-
tems have shown that 𝜏'(𝑞) may reach a plateau at wave-vec-
tors larger than the cluster size 𝑞+,25,48,49 as microscopic dynam-
ics become strongly constrained over such length-scales. These 
findings allow us to reliably extrapolate our superdiffusive scal-
ings of 𝜏'	~	𝑞#*	(as shown in Fig. 2D) down to the cluster-size 
wave-vector 𝑞+ = 1 𝜉⁄ = 2.7 × 10#)Å#$ to determine the char-
acteristic relaxation times of the primary clusters of the gel, 
even if the q-range of XPCS does not explicitly capture such 
large length-scales. 

The comparison between 〈𝜏"(𝑇)〉 obtained via rheology with 
the 〈𝜏'(𝑞)〉 obtained via XPCS are shown in Fig. 3A. Excellent 
agreements are observed between 〈𝜏"(𝑇)〉 and the extrapolated 
quantity 〈𝜏'(𝑞+ , 𝑇)〉, with 〈𝜏'(𝑞+)〉/〈𝜏"〉 ~ 1 for all tempera-
tures studied (Fig. 3B). Representing the two quantities in an 
Arrhenius plot, we find that both measurements can be captured 
by a single Arrhenius function of the form 〈𝜏〉 =
𝜏!exp	(−𝐸, 𝑘𝑇⁄ ), with an activation energy 𝐸,	~	21	𝑘𝑇 (Fig. 
3C). The direct correlation between the mean macroscopic 
stress relaxation time and mean microscopic relaxation times at 
the cluster size shown here is rather striking, and indicates that 
internal stress relaxation of clusters at quiescence governs the 
mean macroscopic stress relaxation of the gel. This also indi-
cates that stress relaxation in the gel is an inherently non-linear 
phenomenon, where the 𝐸, represents the thermal activation en-
ergy of relaxation which is modified by internal stresses in the 
system.50,51 
We next seek to understand the connection between 

microscopic dynamics and the breadth of stress relaxation times 
observed via linear rheology. Though we find that quiescent 
microscopic fluctuations are directly correlated to the mean 
macroscopic relaxation time of the system (Fig. 3), the 
distribution of 𝜏' is Gaussian, with a small variance which can 
be attributed to the spatial variation of the internal stresses in 
the microstructure (Fig. S5). This distribution of 𝜏' is not 
consistent with the broad distribution of relaxation times 
underlying a stretched exponential stress relaxation function 
with a stretching exponent as low as 𝛽 = 0.3 (illustrated in Fig. 
S6). Thus, we reasoned that the macroscopic relaxation process 
may entail non-quiescent or perturbation-induced relaxation 
processes. Such pertubations, whether they originate from 
microstructural aging3,52-54 or mechanical deformations55 (even 
in the linear regime below the yield strain)56 have been shown 
to induce avalanche dynamics in arrested systems, and recent 
simulation studies on emulsions have even hinted at a 
connection between avalanche dynamics and power-law 
macroscopic stress relaxation response through a 
microrheological framework.3 As our quiescent systems show 
little structural and dynamical aging (Fig. S2) – especially 
within experimental timeframes  (see two-time correlations of 
quiescent systems in Fig. S8) – we sought to induce such 
perturbations to our system through mechanical compressions. 
As an approximate approach to inducing such perturbations 
under XPCS, we again loaded a gel into the aluminum cell – the 
same approach as the one used to study temperature-dependent 
dynamics in Fig. 3 – but in this case overfilled the cell. Thus, in 
this state, the polycarbonate windows of the aluminum cell put 
the sample under a compressive strain of ___%, different from 
the quiescent samples that were underfilled in the cell (Fig. 4A). 

A markedly different 𝑔&(𝑡) response is observed in these 
perturbed systems compared to the quiescent systems (Fig. 4B). 
Whereas the quiescent systems exhibit a prototypical 𝑔&(𝑞, 𝑡) 
which can almost be completely described by a single ballistic 
(~	exp	(−(𝑡 𝜏⁄ )&) decay curve, the perturbed ones exhibit a 
much broader 𝑔&(𝑡) which cannot be described by a single 
ballistic relaxation mode. To quantify these differences, we 
estimate the discrete spectra of ballistic relaxation modes 
governing the second-order correlation 𝑔&(𝑞, 𝑡) of the quiescent 
and perturbed systems through an inverse Laplace transform of 
the relation: 

   (4) 
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where 𝐻'(𝜏) is the spectrum of ballistic microscopic 
relaxation modes in the 𝑔&(𝑡) functions. To perform this inverse 
Laplace transform, we use a non-linear regularization 
estimation57 used commonly in macrorheology to determine 
𝐻'(𝜏); we find the discrete relaxation modes by identifying the 
dominant spectral peaks obtained by minimizing the curvature 
penalty in the regularization protocol (see Methods). Fig. 4C 
illustrates the results of this operation performed on the 
ensemble of dynamical data obtained on our arrested gels in 
quiescent and perturbed states. There is a marked difference in 
the breadth of the relaxation spectra of our system, shown by 
the emergence of short-time relaxation modes in the perturbed 
state which are absent in the quiescent state, but would be 
expected from a distribution of relaxation times underlying a 
stretched exponential with 𝛽 = 0.3 (Fig. S6).  
To understand the physics governing these emergent short-

time dynamics in the perturbed system, we study the two-time 
correlations in the system, 𝐶-(𝑡$, 𝑡&)39,44 (Fig. 5A, B; see Fig. S8 
for larger ensemble of 𝐶-(𝑡$, 𝑡&)). The two-time correlation is a 
matrix representation of the instantaneous correlation of the 
system at measurement times 𝑡$ and 𝑡&, where the delay time 
𝑡 = 𝑡& − 𝑡$(the correlation decay 𝑔&(𝑞, 𝑡) is thus an ensemble 
average of the instantaneous correlations obtained by averaging 
over all pairs of measurement times of an experiment). For the 
quiescent configurations in the capillary and in the aluminum 
cell, we observe that the 𝐶-(𝑡$, 𝑡&) bands are homogeneous 
across the measurement time (Fig. 5A). These observations in-
dicate that the microscopic relaxation dynamics are temporally 
homogeneous over experimental timescales, and furthermore 
show the absence of dynamical processes at short times in the 
quiescent samples. However, with the introduction of mechan-
ical perturbations, we observe highly intermittent correlation 
patterns with an abundance of narrowing in the bands, reminis-
cent of those seen in other disordered solids near the yielding 
transition (Fig. 5B).58 These correlation patterns show that per-
turbation-induced intermittent dynamics give rise to the broad-
ening in the relaxation spectrum through the emergence of 
short-time relaxation modes (Fig. 4C).  
To quantify the statistical nature of these intermittent pat-

terns, we compute the ensemble-averaged probability distribu-
tion function 𝑝	of the two-time correlation 𝐶-(𝑡$, 𝑡&) at different 
delay times. The instantaneous correlations in the quiescent 
state can be well-described by Gaussian distributions, con-
sistent with the temporally homogeneous nature of the two-time 
correlation matrices (Fig. 5C). By contrast, the distribution of 
the instantaneous correlations in  the perturbed state are highly 
non-Gaussian, and can be captured by a distribution which is 
commonly used for scale-free processes, namely the general-
ized Gumbel distribution:59,60 

   (5) 

where 𝑏. = V𝑑&	lnΓ(𝑎) 𝑑𝑎&⁄ /𝜎/, 𝑠. = 𝜇/ + {ln	𝑎 −
(𝑑	lnΓ(𝑎) 𝑑𝑎⁄ )}/𝑏.. Here Γ(𝑎) is the Gamma function of 𝑎, 𝜇/ 
and 𝜎/ are the mean and standard deviations of 𝑥, and the ∓ and 
± in Eqn 5. refers to the direction of the skew (such that – and 
+ produce a heavy tail to the right, and vice versa). The shape 
parameter 𝑎 in Eqn. 5 is given by the skewness or third moment 
of the distribution 𝜇(d = 〈[(𝑥 − 𝜇/) 𝜎/⁄ ](〉 ≈ −1/√𝑎. This pa-
rameter 𝑎 provides a measure of the distance to criticality in a 
given system,61,62 where 𝑎 → ∞ for a Gaussian distribution, and 

𝑎 → 1 in systems exhibiting scale-free dynamics and ava-
lanches such as 1/𝑓 noise systems,63 non-equilibrium colloidal 
gels52,53, and glasses64. The distribution in the instantaneous cor-
relation function of the perturbed system shows a pronounced 
Gumbel-like behavior at short times (Fig. 5D). This is quanti-
fied by the dependence of the shape parameter 𝑎 as a function 
of the delay time 𝑡. At times shorter than the mean relaxation 
time of the system (i.e. 𝑡 < 〈𝜏'〉), we see that 𝛼 → 1 at all times 
(barring the sudden increase in the skewness at 𝑡 = 300 s which 
naturally arises due to a skew direction change about the me-
dian time-scale of the avalanches).53 At long times as the mean 
relaxation time of the system is approached (i.e. 𝑡	~	〈𝜏'〉),  𝛼 
increases again and the system reverts to Gaussian statistics at 
long times (Fig. 5E). These results indicate that small mechan-
ical perturbations generate avalanche-like fluctuations in the gel 
which persist at short times, before Gaussian fluctuations 
emerge at long times. 
Thus, though microscopic internal stress relaxations in qui-

escent states exhibit strong correlations with the mean timescale 
of stress relaxation in arrested soft materials, we find that such 
quiescent dynamics do not explain the breadth of stress 
relaxation times observed in arrested systems via linear 
rheology. Instead, we find that these broadly distributed 
relaxation events – especially the broadening of the 
distributions towards shorter times, Fig. 4C, Fig. S6 – are 
observed at the microscopic scales in arrested systems which 
are perturbed, in our case through mechanical perturbations. 
Though these intermittent dynamics arise from a compressive 
strain that is ostensibly above the yield strain of the system (Fig. 
1C), we postulate that the amount of strain in the system is not 
an important factor in triggering avalanche dynamics in the 
system. This is supported by the fact that the stress relaxation 
responses of the system are highly non-exponential across a 
wide range of magnitudes of step strain (Fig. 1C), regardless of 
the linearity of the strain – a dynamical response which only the 
non-Gaussian relaxation modes arising from perturbation-
induced intermittent avalanches can account for. While 
avalanche dynamics have been understood to occur in arrested 
systems strained near or beyond the yield strain,65,66 several 
recent works on dense amorphous materials such as metallic 
and colloidal glasess have shown that even small strains – well 
within the linear viscoelastic regime of the material – are 
sufficient for generating intermittent avalanches in the 
system.55,56,67 Our findings thus provide insight into the 
important role played by such intermittent avalanches in the 
non-exponential macroscopic stress relaxations of arrested soft 
materials. These insights may have important ramifications for 
understanding the origins of non-exponential viscoelastic 
relaxations in a larger variety of soft materials, for instance 
biological hydrogels such as cells,10 tissues,9 and mucus68.  
Our work provides a connection between the microscopic re-

laxation dynamics of arrested systems, and the statistical fea-
tures of the broad distribution of relaxation times in macro-
scopic mechanical measurements. We find that the quiescent 
superdiffusive microscopic dynamics of the gel at the cluster 
scale are governed by internal stress relaxations and show a di-
rect correlation to the mean relaxation time measured via 
macro-rheology. We also find that perturbation-induced inter-
mittent avalanche dynamics are necessary for attaining a broad 
non-Gaussian distribution of microscopic relaxation times in 
the system, thus rationalizing broad distribution of relaxation 
times observed in macro-rheological experiments. These prom-
ising findings warrant a quantitative investigation comparing 
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the microscopic relaxation modes arising from various rheolog-
ically-relevant perturbations with relaxation modes arising 
from microrheological measurements, a feat which may be pos-
sible via simulations as well as emerging experimental tech-
niques such as Rheo-XPCS in conjunction with improved tem-
poral resolution in coherent scattering from the planned ad-
vancements in synchrotron technology.69,70 Results from such 
studies may provide insight into the quantitative physics under-
lying the extent of marginality and the manifestation of linear 
viscoelasticity in arrested materials.   
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Figures 

 
 
Figure 1. Arrested associative gels exhibit broad non-exponential stress relaxations in response to linear perturbations. A) 
Schematic illustration of the model polymer-particle system, consisting of 4-arm PEGs (10 kDa) with nitrocatechol groups, and Fe3O4 
NPs (7 nm diameter) stabilized by 1-arm PEGs (2 kDa) with catechol groups. Upon mixing, the stronger-binding nitrocatechol ligand 
replaces the catechol ligand on the NP surface, and gelation thus occurs via a dynamic ligand exchange from equilibrium. Details on 
the synthesis and compositions are available in the Methods, and additional characterizations of the quiescent viscoelasticity of the 
gels are available in the reference.25 B) Representative 𝐺(𝑡) of the arrested gel in response to a linear step strain (𝛾0 = 0.5%) at 
25℃ ≤ 𝑇 ≤ 65℃. Solid lines indicate fits to the stretched exponential function (Eqn. 1) with a constant value of 𝛽 = 0.3. The 
stretching exponent is consistent at all temperatures, as evidenced by the stretched exponential fit to the time-temperature-superposed 
data (Figure S1). Inset: Representative picture of the model gel material, scale bar: 1 cm. C) Step strain measurements of the relaxation 
modulus 𝐺(𝑡) of the the gelled system measured at varying strain amplitudes 𝛾0 (𝑇 = 250𝐶). All 𝐺(𝑡) values are normalized by the 
initial storage modulus 𝐺12 of the gel measured immediately after gelation (Fig. S2A). Linear behavior is demonstrated up to a strain 
of 𝛾0 = 1.0%; this result is also in agreement with amplitude sweep characterizations on the system (Fig. S2B).  
 



 

 
 
 
Figure 2. Microscopic dynamics of the arrested gel probed at quiescence via XPCS. A) Illustration of the XPCS experimental 
setup. A partially-coherent synchrotron x-ray beam strikes the sample, and scattered speckle intensity maps (with coordinates defined 
by the wave-vector q and azimuth angle 𝜙) are measured as a function of time. Correlations of the measured speckle intensity 𝐼(𝑞, 𝑡) 
are taken to obtain the second-order correlation function 𝑔&(𝑞, 𝑡) as a function of delay time t. B) Ultra-small-angle x-ray scattering 
(USAXS) intensities of the arrested gel. The scattering is captured by a hard-sphere model (HSM) at high q, a unified model (UM) 
at intermediate q, and a Porod scattering response at low q. The region-of-interest probed by XPCS is shown by the shaded region, 
which is bound by q = 0.0032 Å-1 and 0.063 Å-1 and a noise floor at low 𝐼(𝑞). The UM captures the cluster size 𝜉 of the associative 
gel, and shows that the XPCS region-of-interest is within the primary cluster size. C) The second-order correlation function 𝑔&(𝑞, 𝑡) 
as a function of delay time 𝑡 for the arrested system in situ gelled in a capillary (see Fig. S3). The correlation decay is fitted to the 
Siegert relation in Eqn. 2. The 𝑥-axis is normalized by 𝑞* with 𝑣 = 1.07; data collapse at indicates that the superdiffusive dynamics 
drives both the fitted decay and the long-time tail. D) q-dependent structure factor 𝑆(𝑞), microscopic relaxation time 𝜏'(𝑞), and 
compressing exponent 𝛾(𝑞). The 𝜏'(𝑞) and 𝛾(𝑞) values shown are averages taken from 20 independent experiments conducted in 
the SC1 geometry (see statistics in Fig. S5). The structure factor 𝑆(𝑞) is obtained by dividing 𝐼(𝑞) by the hard-sphere model results 
(Fig. 2B); dashed line in the 𝑆(𝑞) plot indicates the noise threshold dictated by low 𝐼(𝑞); measurements made at 𝑞 corresponding to 
𝑆(𝑞) < 𝑆(𝑞)30145 exhibit larger error bars as shown. The data points in this noise floor are indicated by smaller symbols, shaded in 
grey. The relaxation times above this noise floor, 𝜏'(𝑞) at 𝑞 ≤ 0.012	Å#$, are fitted to the relation 𝜏'(𝑞) = 𝐶𝑞#*. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 
 

Figure 3. Correlations between quiescent microscopic cluster relaxation times and macroscopic stress relaxation times in the 
arrested gel. A) Mean microscopic relaxation times 〈𝜏'(𝑞, 𝑇)〉 (see Eqn. 3) over a temperature range of 250𝐶 ≤ 𝑇 ≤	550𝐶 meas-
ured in an aluminum cell. All data are normalized to the mean macroscopic stress relaxation time at the corresponding temperatures 
〈𝜏"(𝑇)〉, fitted to the function 〈𝜏'(𝑞), 𝑇〉/〈𝜏"(𝑇)〉 = 𝐶𝑞#*, and extrapolated to the wave-vector corresponding to the cluster size 
𝑞+ = 1 𝜉⁄ = 2.7 × 10#)	Å#$. B) 〈𝜏'(𝑞+ , 𝑇)〉/〈𝜏"(𝑇)〉 obtained via extrapolation to the cluster size. C) Arrhenius plot of the mean 
relaxation times obtained from rheology, 〈𝜏"〉, and from XPCS, 〈𝜏'(𝑞+)〉. Lines indicate fits of 〈𝜏"〉	to the Arrhenius relation 〈𝜏〉 =
𝜏! exp(−𝐸, 𝑘𝑇⁄ ), which reliably captures 〈𝜏'(𝑞+)〉 as well. Fitting parameters in Tables S2 and S3.  
 
 
 
 
 



 

 
 

Figure 4. Perturbation-induced broadening of the distribution of microscopic relaxation times in the arrested gel. A) Config-
urational descriptions of the gel system which are in quiescent states and mechanically perturbed states. The quiescent states are 
probed either through in situ gelation of the system in a capillary (denoted C), or through underloading an aluminum cell (denoted 
A) with an ex situ gelled material. Detailed illustration of the C and A configurations are in Fig. S3. We induce mechanical perturba-
tions to our gels by overloading the aluminum cell with the ex situ gelled material, resulting in compressive stress. B) Representative 
second-order correlations 𝑔& at 𝑞'16 = 0.0032	Å#$ for the quiescent system (in capillary) and perturbed system. Here, higher 𝑞 data 
are horizontally shifted (in similar vein to Fig. 2C) to access longer time-scales of 𝑡	~	4000 s. The quiescent system in the aluminum 
cell shows a similar response to that in the capillary (data not shown). The quiescent data shows good agreement with Eqn. 2 with a 
ballistic decay exponent of 𝛾 = 2. C) Discrete spectra of ballistic microscopic relaxation times 𝐻'(𝜏) in the quiescent and perturbed 
systems at 𝑞'16 = 0.0032	Å#$ and 𝑇 = 250𝐶, obtained via Eqn. 4. The analysis is done on 15 experiments in the capillary configu-
ration, 6 experiments in the aluminum configuration at quiescence, and 11 experiments in the aluminum configuration under pertur-
bations. The vertical shading at 𝑡 > 4000	𝑠 denotes the time-scale limitations of the experiments (see Fig. 4B). The quiescent data 
(capillary and aluminum cell data combined) and perturbed data are fitted to a Gaussian function of the form 𝐻'(𝜏) =
𝑘 exp n− (/#8)!

&:!
o (red and green lines, respectively). Note the fits are for visual guidance only to highlight the emergence of short-

time dynamics in the perturbed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 5. Avalanche statistics of the emergent short time dynamics in the mechanically perturbed gel. Representative two-time 
intensity correlation functions 𝐶- of the arrested gel in the A) quiescent state (top: capillary, bottom: aluminum cell) and B) mechan-
ically perturbed state (aluminum cell) at 𝑞 = 0.0032 Å-1 (see Figure S4 for a larger ensemble of data). Probability distribution function 
𝑝 of the two-time correlation 𝐶- at the indicated delay times at 𝑞 = 0.0032 Å-1 for the arrested gel at C) quiescent states (capillary) 
across 20 experiments, and D) perturbed states across 15 experiments. The instantaneous correlation fluctuations are Gaussian for the 
quiescent samples at all delay times probed, whereas the perturbed samples exhibit highly non-Gaussian fluctuations at short times 
which are captured by a generalized Gumbel distribution (Eqn. 5) before reverting to Gaussian statistics near the microscopic relax-
ation time 𝜏'. The generalized Gumbel distributions shown (dashed lines) are calculated numerically by calculating the skewness 
parameter 𝑎 directly from the data (via the third moment 𝜇(d,	where	 1 √𝑎⁄ = −𝜇(d), rather than fitted. E) Third moment 𝜇(d of the 
correlation fluctuations and the corresponding skewness parameter 𝑎	as a function of 𝑡 for the perturbed system. Colored triangles 
indicate delay times 𝑡 corresponding to those shown in D); black triangles indicate the quiescent relaxation time 𝜏' at 𝑞 = 0.0032 
Å-1 (Fig. 2D).  

 

 

 

 

 

 

 


