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Abstract

In modern science, computer models are often used to understand complex phe-
nomena and a thriving statistical community has grown around analyzing them. This
review aims to bring a spotlight to the growing prevalence of stochastic computer mod-
els — providing a catalogue of statistical methods for practitioners, an introductory view
for statisticians (whether familiar with deterministic computer models or not), and an
emphasis on open questions of relevance to practitioners and statisticians. Gaussian
process surrogate models take center stage in this review, and these, along with several
extensions needed for stochastic settings, are explained. The basic issues of designing
a stochastic computer experiment and calibrating a stochastic computer model are
prominent in the discussion. Instructive examples, with data and code, are used to
describe the implementation of, and results from, various methods.
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1 Introduction

Computer models, also known as simulators, are in use everywhere. These are programs
which describe and approximate a process of interest. The code typically takes a set of inputs
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and produces some output. Stochastic simulators, unlike deterministic ones, can produce a
different output even with the same inputs due to the presence of random elements.[] Such
computer models are in wide use. For example, agent-based models (ABMs) deal with large
populations of individuals, where specific actions taken at each time-step are to complex
for deterministic modeling. ABMs are prevalent (Johnson, 2010; |Johnson and Briggs, 2011}
Ramsey and Efford, 2010; [Smieszek et al., [2011}; |Grimm et al., [2006) and used to explore
complex phenomena in sociology, transportation, ecology, epidemiology, and other fields.

The following is a basic model of a stochastic simulator experiment. If the code is run at
a (vector) input = producing a (scalar) output y(z), this could be represented as:

y(x) = M(z) + v, v ~ N(0,0%(a)), (L1)

where M (z) is the expected value, E[y(z)], of the output and v is independent variability
representing the randomness of the simulator. Its variance, o2, can depend on z, but constant
variance is also possible. For deterministic simulators, o = 0.

Randomness in stochastic simulators invariably requires many simulations, which limits
the complexity (including the size of the input dimension) that can be effectively analysed.
The prospect of replicated runs in stochastic simulators introduces a trade-off between repli-
cation and exploration, a challenging design issue. Analysis is also harder when the noise,
v, has non-constant variance. This article examines these basic issues, identifies accessible
and effective methods, and points to unresolved questions that should be addressed.

Equation is often used to model physical experiments, where an observation y(z) is
the truth, M (x), plus measurement error (and, possibly, intrinsic variability as well), or, for
an observational study, where M (x) is fit to the observations with residual variance. Because
they are structurally the same, physical experiments can be analyzed with the same methods
used for stochastic simulators (Gao et al., [1996)). However, the contexts and goals are often
different, leading to different problem formulations and different interpretations of results.

The choice of method, with its assumptions and limitations, is crucial for any experiment.
A desire for simplicity, and availability of software, would encourage the use of a standard
statistical regression model (for example, linear regression) for M with a constant o2. This
approach can be effective under some circumstances, especially when the space, X, of possible
inputs is small, which begs the question of how reliable it can be as a general prescription.
Complex systems modeled by a simulator rarely allow for such simplification. The methods
described in this review allow the simulated data to guide the choice of model under general
conditions with little, or no simplification.

Statistics (Sacks et all 1989; [Kennedy and O’Hagan|, 2001) and Applied Mathematics
(Sullivan, 2015)) play prominent roles in the design and analysis of deterministic computer ex-
periments. Unsurprisingly, some methods developed for deterministic simulators have modi-
fications that can be used in the stochastic context. Alternatives, driven by the stochasticity,
are necessary in many contexts. These structural differences will be noted in the narrative
below.

!This terminology can have different meanings and connotations in different fields. In weather modeling,
a stochastic simulator might refer to a random weather generator (Richardson, 1981 Peleg et al. 2017]).
In this work, we use the term to refer to any code that includes (pseudo-) random elements in generating
output.
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1.1 Goals

We have three primary goals; all related to the cross-disciplinary nature of this topic.

One goal is to bring effective statistical methods to the attention of subject scientists
and enable a deeper understanding of stochastic simulators in use. The descriptions below
of statistical tools used (or cited) try to avoid being bogged down in mathematical intricacies.
Some details of individual methods are included to help in understanding the strengths and
weaknesses of the methods. Application of a number of methods is exemplified on testbed
cases (Section , and available software for methods are identified where possible.

A second goal is to familiarize statisticians with an area of major importance that is
crucial to the formation of evidence-based policy. Statisticians are sorely needed in the
study and application of agent-based models (ABMs) and stochastic simulators in general.
Researchers familiar with deterministic simulation techniques will see immediate opportu-
nities, but statistical expertise of all kinds is essential to advance the study of stochastic
simulators.

The analysis of stochastic simulators is a developing field with many unsolved problems.
Challenges are often driven by the scale of the problems and a range of issues whose resolution
requires close cooperation between statisticians, subject scientists, and computer scientists.
A third goal of this paper is to spur that process.

The review is structured as follows: Section [2| briefly outlines the simulators used as
examples throughout. Section [3| describes the models that form the basis for the analyses.
Section {4 is devoted to the fundamental question of what simulator runs to make. Section
addresses a common objective of simulation experiments: calibration. Section [0 discusses
other models and objectives that are important, but are more on the “boundaries” of this
review and are therefore less detailed. Finally, Section [7| summarizes conclusions and poses
unanswered questions. The references here do not cover the entire body of work on stochas-
tic simulators but, together with this overview, should provide adequate coverage of the
problems discussed.

2 Example Simulators

Three stochastic simulators will be discussed throughout this review to aid understanding.
Two are deliberately simplified and used to exhibit key features of the methods presented.
In some cases, simpler strategies could be equally effective because the complexity of the
models has been greatly reduced; the demonstration purpose is the one that is relevant in
the discussion and reported computations.

The third is a model which we use to anchor and motivate methods. The specific model
in question is an epidemiological model developed in response to the Ebola epidemic of
2014. For the Ebola model, a synthetic population representing the individuals in Liberia
(population ~ 4.5 million) and their activity schedules, inducing a time-varying contact
network of individuals and locations, was developed (Mortveit et al., 2015, and paired
with an agent-based model (Bisset et al., 2009). Together, this ABM models a contagion
spreading from one individual to another in Liberia. Since the parameter for contagion,
transmissibility, only controls the probability of infection for a given interaction, this model
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is stochastic. The model is updated daily, with the progress of the disease determined by
the activity schedule, contact details, and other epidemiological characteristics. This model
is complex, with high dimensional outputs, multiple unknown inputs, and non-normality all
present. The analysis performed by |[Fadikar et al.| (2018]) tackles all of these using ideas
discussed within this article (see Sections 3.4 and [] ).

2.1 Fish Capture-Recapture

The first simplified stochastic simulator we consider mimics the movements and schooling
behavior of fish in a mark-recapture application. Mark and recapture involves capturing a
sample of the population, marking and releasing them, and following up by capturing another
sample and counting how many are marked — the ‘recaptured’. The number recaptured allows
estimation of the population size (Begon et all 1979).

This process can be modeled by initializing a population of fish at random locations
in a 2-d, rectangular lake with boundary conditions. The fish begin moving and schooling
according to simple, agent-based rules. After an initial period of time, 100 fish are marked
as they pass through a “net” in the lake. After a second period of time, 100 fish are captured
using the same net and the number of “recaptured” are recorded. This agent-based model is a
modified version of the flocking model developed in NetLogo (Wilensky, |1999). The collective
behavior that emerges in the flocking model is the result of providing each individual agent
with the same set of simple rules (Reynolds, [1987). The flocking model is modified to include
the mark-recapture dynamics described above. Given an observed count of recaptured fish,
this model can be used to estimate the total size of the fish population (see Section .
The only input considered is the number of fish in the total population and the output is the
number of recaptured fish. Other inputs for this model control the individual movement rules
of the fish; for simplicity these are ignored here and set to default values. Supplementary
code, and compiled Rmarkdown documents, corresponding to our analysis of this simulator
can be found at https://github.com/jhuang672/fish. Running the simulator afresh will
require the installation of NetLogo from https://ccl.northwestern.edu/netlogo/.

2.2 QOcean Circulation

The second simplified example is a stochastic simulator that models the concentration of oxy-
gen in a thin water layer (around 2000m deep) in the South Atlantic ocean (McKeague et al.)
2005; |Herbei and Berliner, 2014)). The physical model is described via an advection-diffusion
equation (equation (4) of McKeague et al.| (2005)), i.e. a non-linear partial differential equa-
tion (PDE) describing the dynamics of oxygen concentration in terms of the water velocities
and diffusion coefficients. For a given set of inputs, the solution of the advection-diffusion
equation is not available in closed form. However, using theoretical results (Feynman, 1948}
Kac, 1949), the solution can be closely approximated through an associated random process
(Herbei and Berliner| |2014]). For a specific location within the domain, random paths of
the process are generated, producing noisy outcomes that approximate the solution to the
PDE at that location. This example is simplified by taking the oxygen concentration output
to only depend on four inputs: two unknown diffusion constants (K, and K,) and the two
location variables (latitude and longitude). All other inputs are held fixed at nominal values.
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Such stochastic approximations are numerous in physical sciences, either due to computa-
tional limitations, a lack of complete understanding of the underlying system, or because
the system under study is itself believed to be random. Supplementary code, and compiled
Rmarkdown documents, corresponding to our analysis of this simulator can be found at
https://github.com/Demiperimetre/Ocean.

3 Statistical Models

An experiment involving running a simulator and producing data whose output is described
by equation can have a multitude of goals. A principal objective, and the one we focus
on here, is using the simulated data to predict values of the simulator, M (z) + v, and the
uncertainties of these predictions, at untried xs in a context where getting new runs of the
simulator is expensive. When M is believed to be “simple” (for example, a polynomial
function of the coordinates of x) there are many standard “classical” techniques that can be
used to approximate M. For example, linear regression models and generalised linear models
have been used by Andrianakis et al. (2017) and Marrel et al.| (2012). Complex problems
such as those in Section [2] are less easily managed: specifying a functional form for complex
M requires sufficient prior knowledge or a huge abundance of data, both of which are often
lacking. This article focuses on methods which can flexibly represent M.

There are a range of factors that need to be taken into account before choosing a statistical
model (hereon referred to as a surrogate model, as it acts as a surrogate for the computer
model). In addition to methodological assumptions, it is important to consider the “context”,
that is, the conditions of the particular problem being studied. Some important contexts
include:

e The space of inputs is usually a hyper-rectangle: each coordinate of an input z is
constrained by upper and lower bounds. Section simplifies issues by taking a
rectangular input space even though the Atlantic Ocean is not rectangular.

e The output y in equation is scalar, but multiple output, such as time-series, is also
common.

e Some inputs may be categorical rather than numerical.

e The probability distribution of the variability, v, is often taken to be normal, which is
sometimes invalid (as with the Ebola model).

Stretching back to|Sacks et al.| (1989)) and (Currin et al. (1991)), a vast literature, mostly on
deterministic simulators, has found that Gaussian Processes (GPs) produce flexible, effective
surrogates for M. This approach, and modifications needed to address the variability v, can
be effective for stochastic simulation (Kleijnen| 2009, 2017) and will be apparent below.
A thorough, intuitive, explanation (for deterministic computer models) can be found in
O’Hagan| (2006). More technical descriptions of GPs from a statistical perspective can be
found in [Santner et al.| (2018) and |Gramacy, (2020); for a machine learning perspective, see
Rasmussen and Williams| (2006). In brief, the use of GPs allows computer model runs to
play the key role in selecting a surrogate and assessments of its uncertainty in prediction.
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Deep learning methods, such as neural networks, are also in wide use. These methods can
struggle to produce accurate uncertainties estimates (important for simulation experiments),
but there is active research directed towards this end (Neal, [1996; Graves, 2011 |Welling and
‘Teh, 2011} Papamakarios et al., [2019; (Gal and Ghahramani, 2016; Lakshminarayanan et al.|
2017).

3.1 Gaussian Process Surrogates

Suppose that the input space X is a hyper-rectangle in d-dimensions; the output y(x) is
univariate (scalar); and the variability is normally distributed. Additionally, assume:

2

A1l The variability, v, has constant variance o

A2 The mean M(x) = pu+ Z(x)
A3 p is constant

A4 Z(-)is a Gaussian Process on X with mean 0 and covariance function K, deconstructed
as a product of a variance 6% and a correlation function C.

The technical definition of a GP (Assumption A4) is: for any finite N and collection
of inputs Xy = (z1,...,2n), Zy = (Z(21),...,Z(zy))" is a multivariate normal random
variable with mean 0 and N x N covariance matrix Ky, whose entries are K(x;,z;). It
follows that the simulator output, Yy = (y(x1),...,y(zy))", is also multivariate normal but
with mean p1 and covariance matrix Ky + 02y, where Iy is the identity N x N matrix
and 1 is the N-vector of 1s.

A simpler interpretation is that these assumptions describe a prior distribution for all
possible functions for the mean M. Different choices for the GP allow for different classes
of possible M; the power of a GP is that these classes can be big enough to allow for all
reasonable possibilities. After specifying p, K, and 02, a Bayesian analysis can then be
carried out, resulting in a posterior distribution for all the functions that can still represent
M after accounting for the observed simulator runs.

Another interpretation of M and Assumptions A2 and A4 is to think of M as a random
function, with u being a regression function (as in linear regression), and the GP for Z
modeling local divergences from p. Both formulations have the same mathematical structure
but with slightly different interpretations.

The predictive distribution for any new run, y(Zew), given the observed simulator data
{Xy,Yn} is also normal, and has a known analytical form. The mean iy (Zpey) and variance
03 (Tnew) of predictions are:

P (Tnew) = 0+ ki (@new) (K + 03 In) ™ (Y — pl) (3.1)
U?V(xnew) - 0-12; + U% - (kN(fL‘new)T(KN + ngN)_lkN(xnew)a

with kn(Zpew) denoting the N-vector (K (Tew, 1), - - - s K (Znew, Tn)) T of covariances between
the desired prediction and observed data. Once the correlation function C' is specified, the
parameters (i, 0%, and ¢2) can be estimated from the data. C' is often specified to also
contain parameters, #, which can be estimated, thereby tailoring C' to observations. One
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example for C' is the squared-exponential correlation function (also known as the Gaussian

kernel):
: (xj — wj)2 (3 3)
C(r,w) =expg — — 5. .
(&, w) = exp ; 2

This correlation function is suited for approximating very smooth, infinitely differentiable,
functions. Alternative correlation functions exist and are used; one commonly used alterna-
tive is the Matérn 5/2 correlation function (Stein, [2012)), which is appropriate for approxi-
mating less-smooth functions (only 2 derivatives)ﬂ

With a choice of €' and Assumptions A1-A4, the likelihood of the observed output is
available and maximum likelihood estimates (MLEs) f, 02, o2, and 0 can be calculated.
Henceforth pin(2pew) and 0% (Znew) Will be used to denote the mean and variance of the
predictive distribution even when the parameters in equations and are estimated.
The predictive probability distribution for the computer model output y(Z ey ) is then:

y(xneW) ~ N(#N(gjnevv)a UJQV(mneW))' (3'4)

A complete assessment of uncertainty is lost by plugging in estimated parameters without
accounting for their uncertainty. Accordingly, the predictive variance, % (Zyew), Obtained
this way is called the plug-in (or nominal) predictive variance. The alternative of a full
Bayesian analysis to estimate the parameters can be computationally impractical in many
circumstances, though not impossible (intermediate schemes and approximations have proven
to be useful, e.g., [Spiller et al.| (2014]))).

For the correlation function in equation , and for others such as the Matérn 5/2, the
correlation between Z(x) and Z(w) depends only on z — w, the difference between the two
vectors of inputs. That is, Z is assumed to be a stationary GP (and, consequently, so is
y). For functions exhibiting markedly different behavior in one region of input space than
in another part, stationarity is problematic. This issue is tackled and discussed in |(Gramacy
and Lee| (2008), Ba et al. (2012), Kersaudy et al. (2015), and |Chen et al.| (2016), among
others, and Section discusses one solution.

Despite the fairly complex mathematical expressions above, Gaussian processes are easily
accessible thanks to numerous available packages (for example: DiceKriging in R (Roustant
et al., 2018)), the hetGP R package (Binois and Gramacy), 2018) mentioned later, and the
GaussianProcessRegressor function from scikit-learn in Python (Pedregosa et al. [2011)).
In general, a GP is a flexible method for estimating the mean M (zx) of the simulator output,
even with a lack of prior knowledge. This is illustrated in the top panels of Figures [1] and
[2} but we first introduce a vital modeling twist to cope with a common feature of stochastic
computer simulations.

. — . - . 2 g .
2The Matérn 5/2 can be written as [J°_, (1 + \/g\xé. wil 4 5|%392“’J| ) exp (—M) and is the prod-
fi i i

uct of d one-dimensional covariance functions. Further discussion of the features of different kernels can be
found in Chapter 4.2 of [Rasmussen and Williams| (2006)), Chapter 2.2 of [Santner et al.| (2018), or Chapter
5.3 of |Gramacy| (2020).
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3.2 Heteroscedastic GP Surrogates

The constant variance Assumption (A1) simplifies the construction of a statistical model
because only one intrinsic variance parameter o2 needs to be estimated. When o?(z) is
believed to vary over the input space more must be done. [Boukouvalas et al. (2014a) model

o2(x) as exp(h(z)) for simple functions h (e.g., polynomials), a simple extension to assuming

just one variance parameter o2 (the exponential transform ensures positivity of the variance).
Like analogous approaches to predicting the mean (briefly discussed in Section , it isn’t
clear what to use for h, and its simplicity may not meet the complexities found in many
applications.

GPs are used for o2 by several authors (Goldberg et al.; [1997; Kersting et al., 2007;
Boukouvalas and Cornford, 2009; /Ankenman et al., 2010} Binois et al., 2018a)). The difficulty
is that doing so directly depends on knowing the value of o%(z) at the inputs X,,, but these
values are not observed. If there are enough replicated simulation runs, r;, at the inputs z;,
then the sample variances at the ;s can be used to estimate the o?(x) at the inputs X,,.
Equations3.1{and (3.2 can then be used to predict 02(zey) (Working with the logarithm of the
sample variances and then exponentiating the results to avoid negative variance predictions).
But this approach, called stochastic kriging (SK, |Ankenman et al., [2010)), is limited by the
need for many replicates at each input and the possible inefficiency of treating the variance
and mean processes separately.

Those limitations can be removed by considering the intrinsic variances at the inputs,
(0%(x1),...,0%(xy,)), as unknown parameters (a.k.a., latent variables) to be estimated in
the same manner as all the other unknown parameters. (Goldberg et al.| (1997) do so in a
fully Bayesian, but computationally taxing, way. Reducing these costs forms the essence
of approaches by |[Kersting et al.| (2007) and Boukouvalas and Cornford| (2009). A recent
variant, proposed in |Binois et al.| (2018al), along with accessible software hetGP (Binois and
Gramacyl, 2018)), tackles the computational hazards and is the method described and used
in this review.

The technical details addressing the computational barriers of a heteroscedastic GP
(hetGP) have three elements. One, hetGP models the log variances as the mean output
of a GP on latent (hidden) variables. The second uses Woodbury matrix identities (Harville]
1998) to reduce computations from treating all N observations to computations involving
only the n unique inputs, a reduction of computational complexity from O(N?) to O(n?)
(especially relevant when there are many replicates). The third element uses MLE to learn
all parameters.

While full details are provided by Binois et al.| (2018a), some specifics of the description
above are worth noting. With A\(z) = 02(x) /0% and A,, = (\(z1), ..., A(z,,)) for the n distinct
inputs, log A, is taken to be the predictive mean of a GP on latent (hidden) variables, A, =
(01,...,0,). For ease of exposition assume the GP has 0-mean (a constant mean is actually
the default setting in hetGP) and take the covariance function for A, to be o2(Cy + gR™")
where ¢ > 0, R = diag(ry,...,r,), and C, is a correlation function with parameters 6,,.
Then logA,, = C,(C, + gR™')"*A,,. This latent A,, approach facilitates smooth estimates
of A, and provides a fixed functional form for A(z), but does not incorporate the resulting
uncertainty. Given A,,, the Woodbury identities (Harville, |1998)) reduce the likelihood of
Yy, the output at all inputs including replicates, to depend only on quantities of size n.



Stochastic Computer Models 9

Maximum likelihood estimates for the unknown parameters can then be computed at a cost
of O(n?), as can derivatives further facilitating optimization for maximizing likelihood.

As a side note, heteroscedastic measurement error is sometimes present in spatial statis-
tics models (which are often related to surrogate models); however we know of no such
models which allow for the full modeling and predictions of the intrinsic variance process in
the same way as a hetGP. For example, the model in [Nguyen et al.| (2017)) allows for non-
constant measurement error at different sites, but it does not estimate these measurement
errors jointly with the other model parameters, nor does it allow for the prediction of the
measurement errors at new unseen sites. This is mostly because there is little interest in
predicting the measurement error process in spatial statistics (the “true” underlying signal
is the objective), whereas with stochastic simulators the intrinsic variability can be of direct
modeling interest.

Fish Example. We apply both an ordinary homoscedastic GP (homGP) and a hetGP
surrogate to the fish example from Section [2.1] The simulation budget is constrained to 400
runs and focuses on the relationship between the total number, x, of fish in a population and
the number, y(x), of fish recaptured in the second round of capture. The total population
is an integer between 150 and 4000. The simulator is run 20 times at each of 20 unique x
locations in [150,4000], chosen via a maximin Latin hypercube design (see Section . The
number of fish counted cannot be less than zero, but the normality assumption would allow
negative fish counts, so we square root the simulated output before performing our analysis,
squaring the resulting predictions to return to the original scale afterwards. In addition we
estimate the “truth” by generating another data set: replicating 500 times at each of the
same 20 sites.

Applying a homGP surrogate with squared exponential correlation function produces the
results in the upper left panel of Figure [I} the upper right panel shows the results of hetGP.
The predicted intervals for the fish model are obtained in the transformed (square-root)
space, and squared to get back to the original space[)| The lower panels are plots with the
“true” 2.5%, 50%, and 97.5% quantiles superimposed.

The key conclusion is that both homGP and hetGP capture the non-linear trend (though
a bit off in the region near 800). The presence of non-constant intrinsic variability is clear
from the truth plot, with the region near 800 showing higher variability than elsewhere. The
hetGP surrogate does not fully capture the non-constant variability, but it does improve on
homGP. Full resolution is largely a matter of simulation budget though alternative designs
may further improve hetGP. Our supplementary material includes improved results using
the sequential design scheme of Section [4.3] The takeaway message here is that the trend is
readily captured by both homGP and hetGP and the presence of heteroscedastic variability
favours the use of hetGP (perhaps with added simulations or improved designs).

3If a large portion of the predictive distribution was negative in the transformed space, these un-
transformed intervals would be invalid, but this doesn’t appear to be a problem in our example. Mono-
tonic transforms exist to avoid this problem (Johnson et al., 2018]), or sampling could be performed to
obtain intervals in the un-transformed space. Predictions in the transformed space are also provided in the
supplementary material.
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Homoscedastic Heteroscedastic
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Figure 1: Fish example: 400 simulations consisting of 20 replicates at each of 20 population
sizes (a maximin latin hypercube scaled to [150,4000], rounded down to nearest integers).
The left panels use homGP — the solid red line is the median of the predictive distribution
and the dashed red-lines form the 95% uncertainty intervals. The right panels use hetGP.
The upper panels include the data used to fit the surrogates; the lower panels omit the data
but include the “true” values in black.

Ocean Example. For the ocean model (Section , we take each simulation ‘run’ to be
the average of 6 simulation runs. The true simulator is known to be non-normal and this
adjustment makes the example more Gaussian. For now, we fix the two diffusion coefficients
at K, = 700 and K, = 200, leaving the two spatial coordinates as the only varying inputs.
Using 1000 simulations (50 sites each replicated 20 times), we obtain, for surrogates homGP
and hetGP, the predictive mean surface and the predictive standard deviation surface (which
includes both the uncertainty around the predictive mean and the intrinsic variance estimates
02). These surfaces are plotted in Figure [2| with the left column for homGP and the right
column for hetGP.

The mean surfaces for both surrogates are similar. The predictive standard deviation
for homGP (bottom-left) is relatively constant across the input area (clearly affected by
the constraint that the intrinsic variance o2 is constant). The standard deviation surface
for hetGP is markedly different, which could be evidence that the intrinsic variance is non-
constant.

To compare these two predictions, we obtain the “truth” using replicate runs (up to
100,000) of the simulator at 500 sites (chosen via a LHD, Section , averaging the replicates
at each site to get the true mean and the square deviations from the mean to get the true
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Homoscedastic Heteroscedastic

lat
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Figure 2: Predictive mean and standard deviation surfaces for Ocean output using homGP
and hetGP. Data are 1000 simulator runs consisting of 20 replicates at each of 50 input
locations from a maximin Latin Hypercube Design (defined in Section [4]) of size 50 in 2
dimensions. The top row provides predictive means, py, and the bottom gives standard
deviations, oy, of the predictive distribution of oxygen concentration. The left column uses
homGP, the right uses hetGP.

variance). These are plotted in the appendix (Section and the supplementary material,
and they confirm the presence of non-constant intrinsic variance. Moreover, the standard
deviation plot for hetGP exhibits a structure similar to the truth plot, leading to the con-
clusion that hetGP is the better surrogate for this problem. However, this conclusion comes
with a caution: repeating this experiment multiple times reveals a great deal of variability in
the standard deviation plot, due to variability in the design and the simulations (discussed
further in Section .

Overall, reliable predictions of the mean are achieved, but the uncertainties are less
certain. This is similar to the the Fish example, and improving the uncertainties would
require more simulation. The results point to the superiority of hetGP to homGP, which
is confirmed via a numerical comparison in Section [£.3] where a sequential design is also
examined and compared.
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3.3 Non-Normal Variability

In many applications, assuming the variability v is normally distributed is inappropriate.
With the fish example, the number of fish cannot be less than 0. In the Ebola example,
even with the inputs x fixed, repeated simulations can lead to two distinct groups of possible
infection counts (bimodality). In other simulators, there may be a greater tendency for
extreme values (fatter tails) in the distribution of v. With these possibilities, normality can
be a strong assumption to be used with caution.

Transformation of the data is a time-honored device that sometimes induces “enough”
normality in the data to permit the use of Gaussian-based methodology (as in Section
for the fish model). For example, Henderson et al. (2009)) uses the logit transformation
(logy/(1 — y)) in analyzing the proportion of deletions in mitochondrial DNA. [Plumlee and
Tuo (2014) take a different route by focusing on the quantiles of the output distribution —-
normality is not needed. Both of these approaches have the appeal of leading to relatively
simple modifications of the methods in Sections [3.1] and [3.2]

There are also other, more complex, methods that generally lack the same ease of im-
plementation. For example, Moutoussamy et al. (2015]) attempt to model the underlying
probability density function itself, rather than the output y. Xie and Chen| (2017) devise
a Student t-process that is not much different than the GP process while at the same time
allowing heavier tails in the distribution of the datal[]

3.3.1 Quantile Kriging

Quantile Kriging (QK) is a popular tool for the emulation of stochastic computer models
(Rannou et al 2002; Plumlee and Tuo, 2014} |Zhang and Xie, 2017} |[Fadikar et al. [2018).
These approaches are a natural extension of spatial kriging formulations (Zhang et al., 2008;
Zhou et al., 2012; Opitz et al., [2018) used in environmental applications.

The QK method directly models specific quantiles of interest, such as the median and
the lower/upper 95% quantiles at each input. Minimal assumptions are required. Q,(z), the
¢ quantile of the simulator output at input z, is modeled with a GP. Given values Q,(z;)
at inputs z1,...,x,, the quantile, Q(Znew) for X,ew, can be predicted using equations
and This framework allows the distribution of the variability v to take on almost any
shape. Although a true generative process for the output y is lost, its distribution can still
be described.

To implement QK, values of the targeted quantiles at the inputs are needed. Just as in
Section [3.2], where sample variance estimates are used, sample quantiles can be used here
given enough replicates r; at each z;. The GPs used to predict new quantile values, Q(Znew),
should also include a noise term 02 to acknowledge that the sample quantiles are estimates.
Assuming the variability of the sample quantiles is normally distributed may also be invalid,
but this is a level further removed from the quantity of interest, y, and can be acceptable in
practice.

As a useful modification, the quantile g can be included as an additional input to the GP
model. The quantile Q,(z) can be reformulated as Q(z, ), increasing the dimensionality

4The hetGP package also implements a Student-t variant (Wang et al., |2017; Shah et al., [2014; Chung
et al., 2019).
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of the inputs from d to d + 1. This strategy allows for the prediction of Q(z,q) for any
desired quantile ¢, not just those that were empirically estimated, and is used by |Fadikar
et al.| (2018) for the Ebola model.

Alternative QK-based approaches are also under development. For example; a promising
variant of QK called Asymmetric Kriging (AK,|Zhang and Xie, |2017) does not require sample
quantiles by leveraging quantile regression techniques (Koenker and Bassett Jr| [1978)).

Fish Example. For the fish simulator, QK is implemented with the same simulated dataset
as before (possible because many replicates were obtained). The sample 5%, 27.5%, 50%,
72.5% and 95% quantiles at each of the 20 population sizes form the observed data, and the
modification using the quantile ¢ as an added input dimension is adopted. Figure [l| presents
the predicted Q(z,q) mean for 5 different quantiles along with the data (the left plot) and
compares the “true” values with predictions at the 5%, 50%, and 95% quantiles (the right
plot).

oo 95% ---- 95%

o _| B —
® e 5% — 50%
— 50% ;

Number of Marked in Recapture

T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Population Population

Figure 3: Same setup as Figure|l|but with a QK surrogate. Mean predictions of 5 quantiles
(5%, 25%, 50%, 75% and 95%) are provided on the left along with data, and mean predictions
of 3 quantiles (5%, 50%, and 95%) are provided on the right along with the “true” values.

The center purple curve in Figure |3| is the predicted median. The outer red lines are
the predicted 5% and 95% quantiles; the inner blue curves are the predicted 25% and 75%
quantiles. The non-monotone “wavy” lines for the 5% and 95% quantiles reflect the natural
variability of extreme quantiles based on only 20 observations. Without an abundance of
replicates, accurately capturing extreme quantiles is difficult, a drawback of QK. The other
quantiles presented display more regularity.

The results from QK do not differ much from those in Figure [If where the square-root
transformation was sufficient. With more complex problems, such as the Ebola model, the
method is suitable while other approaches may be less so. In any case, QK can be a good
robust choice, given adequate data for estimating quantiles.

3.4  Multiple Outputs

The discussion so far has assumed that the simulator outputs a single scalar quantity of
interest. For multivariate output a more comprehensive model would be ideally used.
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In the geostatistical literature — typically focused on 2-d spatial applications — multi-
variate methods incorporating cross-correlation between outputs are often called co-kriging
(Cressie|, [1993). Adapting these to multivariate simulators must consider higher dimensional
inputs, computational tractability and output smoothness. Specific features of the simula-
tor (e.g., hierarchies, dynamics, no missing outputs) have allowed some such adaptations
(Kennedy and O’Haganl, [2000; Conti and O’Hagan, 2010; Fricker et al., 2013; Paulo et al.,
2012).

Bespoke, problem-specific formulations for time-series and other outputs have also been
entertained (Farah et al., [2014; Sun et al.| 2019).

Though less than ideal, more general methods can also be employed with good effect.
If there are a small number of outputs, treating each independently, with its own surrogate
model, often suffices. This method can be effective, despite ignoring any correlation between
the different outputs (and thus wasting information). For example, Spiller et al. (2014)
deploy independent surrogates at each of a multitude of sites in a region to good effect.

Alternatively, by treating the index, ¢, of the T outputs as an additional input dimension
(changing the dimension of the input space from d to d + 1) a GP surrogate on d + 1 input
dimensions can be formed (Bayarri et al., 2009). This method allows correlation structures
between the different outputs to be modeled. This is similar to the QK modification where
quantile levels are treated as an added input (Section . A drawback of this technique
is that, if T is very large, computational issues will arise because the GP must be trained on
NT data points rather than just N. Intrinsic variability prevents simplifications of the sort
used in Bernardo et al.| (1992)) for deterministic simulators in this setting.

A different approach reduces the the size of T' to a smaller Ky by representing the mul-
tivariate output through the use of basis functions, 1 (t):

y(e,t) = 3 wnl)ult) + 6(z ) (35)
k=1

Coefficients wg(z;) k =1, ..., Ky are determined by the data, and 6(z, t) is the residual error
between the basis function representation and the data y. If Ky =T then § = 0. Typically,
Ky is taken to be much less than T, but large enough so that the error, 9, is sufficiently
small. Each wy(x) can then be independently modeled with a surrogate and predictions for
y(x,t) are obtained from equation [3.5] ignoring 4.

Different choices for the bases can be appropriate in different settings. For example,
Bayarri et al.| (2007a) use wavelets for the ;s in a deterministic setting where ¢ is time. A
common choice of basis functions are principal components: the ;s are the eigenvectors of
the matrix Yy Yy, the first K, corresponding to the first Kj eigenvalues in decreasing order.
Often, the first few (five or less) principal components are enough to capture sufficient infor-
mation about the full (T') data set. Coefficients wy,(z;) are then equal to 3, y(xi, t)ir(t).
More information about principal components can be found in |Jolliffe (2011)) and software
for obtaining v, and wy is prevalent.

Further discussion about using principal components to model high-dimensional simulator
output can be found in [Higdon et al.| (2008). Principal components are also utilized in
Fadikar et al| (2018) to model the time-series output of the stochastic Ebola simulator.
While principal components are a common default, there is concern that key features of the
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data set may be left within the discarded d(x,t) preventing reliable prediction. Salter et al.
(2019) document these concerns with regards to calibration and suggest an alternative.

For problems with functional outputs, with potentially missing data and/or irregularly
spaced data (such as irregularly spaced timesteps or spatial locations), a functional decom-
position can also be useful. For example,|Ma et al.|(2019) use functional principal component
analysis to model satellite observation simulations.

Overall, multiple output analysis lies on the frontier of research, especially for stochastic
simulations (for example, capturing dependence in the variability between different outputs
is one future research direction). The techniques discussed are a start.

4 Experimental Design

For an experiment, the design (the choice of x values) and analysis (the assessment of the
output y(z)) are, in principle, closely connected. Other considerations can also enter. For
physical experiments, controlling for external influences or nuisance factors by blocking and
randomization is often a vital part of the design. External influences are absent in computer
experiments and so controlling for nuisance factors is usually irrelevant. However, many
minor parameters are often fixed which could instead be randomized over, with a consequent
addition to intrinsic error.

Extensive study of deterministic computer experiments has lead to the recommendation
of readily computed “space-filling” designs where no large region of the input space is missed.
Multiple methods exist for obtaining space-filling designs, the most popular being Latin hy-
percube designs (LHDs; McKay et al.| 1979)E] LHDs have proved adequate, especially when
joined with an additional criterion, such as the maximin criterion, where one also maximizes
the minimum distance between points in the designﬁ Sobol sequence designs (Sobol, |1967)
provide an alternative where the xs are generated sequentially making it easy to retain the
space-filling character when additional simulations are made at a later stage.[] Pronzato
and Miiller| (2011)) have a lengthy discussion of these and other space-filling methods, some
pertinent to non-rectangular input spaces.

For stochastic simulators the picture is less clear. The presence of intrinsic variability
raises the complication of replication, which is not present in deterministic experiments.
With the same inputs, a stochastic simulator can be run multiple times (replicated), provid-
ing different output values each time due to the intrinsic randomness. Replicates obviously
have an effect on the estimation of the intrinsic variance, 0%, and therefore on prediction (see
Section , and so the number and location of replicates are important. A simple approach
is to use a space-filling design to establish the sites X,, = (zy,...,z,) of the experiment and
then add replicates at each site. Determining the number, r;, of replicates at each site x;
and how to budget between replicates and sites, is not well understood. In fact, there is

5A Latin hypercube design is one where: in each dimension the input space is divided into intervals and
each interval is constrained to contain exactly one data point.

6Such maximin LHDs are produced for example, by the maximinSLHD function of the R package SLHD
(Ba, [2019), or the lhs function from the Python package pyDOE (Lee, [2015).

"In R, the sobol function in the R package randtoolbox (Yohan Chalabi and Wuertz, [2019) can be used
to generate Sobol sequences.
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limited theoretical evidence of the need for replicates altogether (unless the surrogate ex-
plicitly needs them), although there is numerical evidence and wide belief that replicates
can be advantageous (at least in appropriate contexts). For example, Wang and Haaland
(2019) produce designs by minimizing bounds on the integrated mean squared prediction
error (IMSPE)f| Their numerical results show no need for replicates unless o2(z) is large
compared to 0% (the uncertainty around the mean, M).

The presence of intrinsic variability suggests there is value in multi-stage designs where
stage 1 is used to get information about ¢2(z) and later stages exploit this information to
allocate replicates and select new inputs. Questions arise as to how inputs should be selected
for stage 1, and also how to properly leverage the results from stage 1 to select new inputs
and replicates. These two factors, replication and multiple stages, are central to developing
effective design strategies.

4.1 Single-Stage Design

A common approach in single-stage studies is to use space-filling designs for inputs, say n
in number, and r replicates at each input, sometimes with no repeats i.e., »r = 1. Predic-
tions follow as described in Section [3| depending on the particular prediction model selected.
Choices have to be made about the total number of runs and the number of replicates at
each input site (N = nr). Often, N is a question of budget, but there is little insight into
how r should be chosen except when meeting a specific surrogate model requirement, as in
SK (Section [3.2).

For their single-stage study, Marrel et al.| (2012) use a standard LHD with no repeats
to compare the performance of different statistical models. On the other hand, Plumlee
and Tuo| (2014) use a LHD with varying numbers of replicates r; at each x;. In their case,
the number of replicates must be large, because the QK method (Section depends on
computing quantiles of the output y(z;) at each input site of the design.

4.2 Two-Stage Design

The case for a two-stage design is largely to enable estimation of o2 at stage 1 and use it

for the second stage. |Ankenman et al.| (2010) provide one solution in the context of SK.
A first-stage design chooses the z;s via an LHD of size n; with a common number, r, of
replicates at each of the inputs, resulting in a total number of Ny = nyr runs at stage 1. The
first-stage analysis uses the r replicates at each input to estimate o2(z;) using the sample
variances. As outlined in Section 3.2 a GP (working with log s?(;)) is then used to produce
“plug-in” estimates of o%(x) for all z. A different GP uses these variance estimates to build
a predictor for the mean output M.

For stage 2, ny additional unique input locations are chosen so that the combined set
of design locations, X,, = (x1,...,z,), remains space-filling. The IMSPE is then calculated
using the GP model constructed in stage 1. Minimizing the IMSPE with respect to the
number of replicates R, = (r1,...,7,) provides the optimal number of replicates for the
chosen X,,. Details are in |Ankenman et al. (2010). One difficulty is that the optimal R,

8With the predictive variance,0%;(z), the IMSPE, of a design D is equal to fxeX o3 (z) dx.
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might produce an r; for a first-stage site that is smaller than the r already obtain in stage
1. Some modification to the design is then necessary.

In this setting, a Sobol sequence could also be used to obtain a design that is space
filling at both stage 1 and stage 2. This is not what is done in Ankenman et al.| (2010)),
but a Sobol sequence is easier to implement and likely to yield similar results. Choosing the
unique inputs X,, for stage 2 by optimizing the IMSPE could also be done, but this adds
to the computational burden. Suitable recommendations for the values of ny,ny, N and the
replicates at each distinct input are lacking (in|Ankenman et al.| (2010) the recommendations
are ad hoc) and, as for one-stage experiments, open for study. A third-stage design (or indeed,
any multi-stage design) can be constructed by repeating stage 2 in this process.

4.3 Sequential Design

In some cases it can be feasible to carry out a sequential process where, after the first stage,
simulation runs are chosen one-at-a-time. After each run the relevant quantities can be
updated before determining the next run. This can address the issue of learning about o?
and choosing new runs, without pre-specifying the proportion of replicates. An advantage
of a sequential design is the possibility of stopping when a criterion is met before a budget
constraint is reached. An additional advantage is the increased likelihood of perfoming useful
simulator runs, replicates or otherwise. For some objectives, such as optimization (Section
, a sequential design is usually essential. For global prediction, Binois et al.| (2018b))
present one sequential design, implemented in the previously mentioned hetGP package.

The strategy in Binois et al. (2018b) begins at stage 1 with a space-filling design D,
of ny inputs and an allocation of runs (r(xy),...,7(x,,)). Using a GP for M and a latent
GP prior on ¢? (as in Section , estimating the parameters by MLE leads to a calculable
estimate of IMSPE(D;). A new point z is considered, either as a new unique input z,, 1 or
as a replicate of an existing input in D;. Selection z is added to the design D, if z minimises
IMSPE(D; + z), yielding a new design Ds. This myopic rule can be iterated, and each time
a new point is added, the surrogate is updated. The process stops when a criterion is met
or the computational budget exhausted.

Computational viability is strained by the updating required after each run. On the other
hand, the computational burden is less than it could be — by being “greedy” it only seeks
the optimal data point for the very next simulator run, ignoring runs that may be better in
the long run.

This is not the only sequential design scheme available for global prediction problems.
For example, the tree-generating processes used in TGP and BART (see Section can
lead to specialized sequential design strategies. Details are available in (Gramacy and Lee
(2009) and |Chipman et al.| (2010)).

Blurring the lines between multi-stage and sequential designs, it can sometimes be prac-
tical to run additional simulations in batches (e.g., as in making efficient use of a multi-core
supercomputer). In such circumstances a “batch design” would be desirable. These have
been developed for deterministic experiments (Loeppky et al., 2009a; Duan et al., 2017}
Erickson et al. 2018)), but not yet explicitly extended to stochastic cases.

When fully sequential methods are feasible the seqhetGP strategy sketched above is
valuable. There are several aspects worth considering with sequential designs:
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e The extensive use of a surrogate in the construction of the design may require scrutiny
by diagnostics that assess the quality of the surrogate.

e The first stage of a sequential strategy should avoid a poor (e.g., too small) initial
design lest a poor starting surrogate leads to poor choices thereafter.

e The utility of a sequential design depends on the relative cost of implementation com-
pared to a simulator run. For challenging problems, simulator runs are likely to be
costly enough to make sequential design attractive.

e There may be modifications to a sequential design that reduce computational load
without paying a significant cost in accuracy. For example, by re-estimating parameters
periodically rather than after each step.

Ocean Example. For the ocean model, we implement the sequential design scheme from
Binois et al, (2018b) using an initial design of 50 sites (chosen by a maximin LHD in 2-d),
giving each site 5 runs. The remaining 750 data points are then assigned via the sequential
scheme. The resulting mean and standard deviation surfaces are in Figure ] For the
standard deviation surface the design sites are superimposed along with the number of
runs taken at each site. The mean surface in the left panel is slightly different than for
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Figure 4: Ocean Prediction with seqhetGP. Left plot is the mean, uy, of the predictive
distribution; right plot the standard deviation, oy. Design sites with their replicates are
superimposed on the right-hand plot.

the non-sequential analyses (Figure , top row). The standard deviation surfaces look very
different. For the design itself, new inputs are heavily replicated in regions where the standard
deviation is larger, and less so in regions where it is smaller. Additionally, the sequential
design includes more unique sites than the fixed design, and more points on the boundaries
of the input space.

Using the “truth” established in Section [3.2|we can compare the performances of the three
methods. As discussed previously, the visual presence of heteroscedasticity is a reason to
avoid homGP. Visually distinguishing between the performances of the hetGP and seqhetGP
surrogates is more difficult: the means appear similar, and whilst some patterns in the
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true standard deviation appear to be captured by hetGP, imperfections are visible and the
magnitude is not always correct. With the seqhetGP standard deviation, a lot of nuance
seems lost. To properly compare the different methods, a numerical comparison can be more
valuable.

Two useful numerical measures are root mean squared error, RMSE (the square-root of
the average squared difference between the surrogate’s prediction of the mean and the “true”
mean) and Score (the proper scoring rule from equation 27 in Gneiting and Raftery| (2007)).
RMSE measures the accuracy of the mean predictions and Score is an overall measure testing
the accuracy of the combined mean and variance predictions. With a test set of inputs
x1,...,x, and simulator outputs yi,...,y,, surrogate predictive means py (1), ..., pn(xp)
and variances o3 (x1), ..., 0% (x,), Score is

S N ECO )

Smaller RMSE is better while for Score, larger is better.

For the three methods, the RMSE for homGP, hetGP and seqhetGP are respectively
2.056, 1.985, and 1.567; and the Scores are respectively -3.999, -3.880, and -3.834. The
RMSE results reveals that seqhetGP is best at predicting the mean, which was not obvious
from the plots. The Scores for hetGP and seqhetGP are close but both noticeably better
than homGP, affirming the presence of heteroscedasticity.

The randomness in stochastic simulators, as well as variability in design (there are many
possible maximin LHDs), can induce a large degree of variability in specific results (such
as those just cited). It is therefore difficult to rely on a single result for making general
comparisons. As such, the above experiment is repeated 100 times and the resulting 100
RMSEs and Scores are summarized in boxplots in Figure [5

The boxplots confirm what was found with the single data set: heteroscedasticity is
present and seqhetGP is preferred. Visual inspection of many of the standard deviation
plots for the repeated experiments (as discussed in Section and found in the supplement)
reveals considerable variation and departure from the true standard deviation. We find the
variance (the intrinsic variance and the GP uncertainty for the mean) can be hard to get
right without an abundance of data, and the difficulty is compounded by the use of plug-in
estimates whose uncertainty is not accounted for.

4.4 Designing for Statistical Model Parameter Estimation

Sections [4.2 and [4.3] construct designs that rely on a surrogate model based on stage 1 data in
order to choose subsequent data points. The quality of the designs depends on the accuracy
of the surrogate which, in turn, depends on the accuracy of its parameters. An alternate
approach to those used in Sections [4.2] and [4.3] is to build a design with the express purpose
of better estimating these parameters.

Boukouvalas et al.| (2014a)) address this idea, using a simple parametric function for the
variance (02(x) = exp(h(z)), where h is a simple function (e.g., a polynomial). They propose
designs that maximize a criterion previously used for deterministic simulators by /Abt and
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Figure 5: Performance results of the three ocean model surrogate model fits, repeated 100
times: the boxplots are for RMSE and Score computed, for each repetition, at the 500 test
locations.

Welch| (1998): the logarithm of the determinant of the Fisher information matrix, log |I|.
Numerical results suggest this method gives improvements in estimating the parameters, but
overall global prediction is no better, and sometimes worse, than using a space-filling design.
When prediction is of prime importance, the question arises about how to make use of such
designs for stage 1 in a multi-stage or sequential setting, where its impact on obtaining better
parameter estimates might be felt. For example, see |Zhang et al.| (2019).

5 Calibration

Calibration is needed when there are inputs to the simulator that are neither known nor
measurable, which is a common condition in practice. Transmissibility in the Ebola simulator
and the diffusion coefficients in the ocean model are examples of such inputs. In order to
infer (indirectly) values for these inputs and produce predictions, added information in the
form of field data (experimental or otherwise) are necessary. Inclusion of field data and
calibration parameters, labelled u¢, leads to the observation model:

yr(x) = ys(z,uc) + omp(x) + €, (5.1)

where yp(x) are real-world field observations at controllable (or measurable) inputs x, yg is
the simulator with additional unknown, non-measurable, inputs u¢, € is measurement error
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for the observations yr () (with variance ¢2), and dyp () is an important term that accounts
for the simulator not being a perfect representation of reality. yz “observes” reality with
error €; reality = ys + oup.

Multiple competing methodologies and even philosophies exist for calibration. Several
solutions to the calibration problem are outlined below. Despite the centrality of calibration
in computer experiments, comprehensive comparisons are lacking.

5.1 Kennedy-O’Hagan Calibration (KOH)

The formulation in equationwas made by Kennedy and O’Hagan (2001)) for deterministic
simulators and is the basis for much of the calibration and related prediction work since.
The strategy pursued by Kennedy and O’Hagan| (2001), as implemented in [Bayarri et al.
(2007Db)), obtains a surrogate for yg and models dyp(z) with a GP (although other choices
are possible). After replacing ys with the surrogate, posterior distributions for all unknowns
can be obtained via a Bayesian analysis. In practice, the surrogate model is fit only using
the simulator data, ignoring possible influences from the field data. Details and discussion
of this modular approach can be found in Bayarri et al.| (2007b) and |Liu et al.| (2009).

The KOH approach emphasizes the need to address calibration and model discrepancy
together. Confounding between uc and dyp(z) inevitably occurs because there are multiple
combinations of uc and dyp(x) that result in the same observed field data. As such, uc¢ is
non-identifiable and its estimation is compromised, as is the discrepancy. Nonetheless, the
resulting predictions for y and E(y) are sound, even if the individual estimates for uc and
dup(z) aren’t. For details and further discussion see Higdon et al. (2004), Bayarri et al.
(2007b), Brynjarsdottir and O’Hagan (2014)), and Tuo and Wu/ (2016).

Multiple attempts to circumvent confounding have surfaced. Tuo et al.| (2015) alleviates
the ambiguity in uc by formally defining it as a least-squares quantity; |Gu and Wang (2018))
propose novel priors for the discrepancy that compromise between the [Tuo et al.| (2015))
strategy and KOH; and |[Plumlee| (2017)) introduces priors on the discrepancy that are or-
thogonal to the prior mean. In the stochastic simulator literature, (Oakley and Youngman
(2017) removes dyp but compensates by inflating the variability in the prior distribution for
uc. Ignoring dyp altogether can sometimes be justified by strong evidence of the simulator
being accurate, but such evidence is rare.

For stochastic problems, where reality is stochastic, the discrepancy term dyp(z) cannot
be assumed deterministic. Discrepancy in stochastic settings is an open research question,
with little attention so far. The model for the discrepancy may need to be similar to the
model for the simulator; for example, if modeling yg calls for a hetGP with a Matérn 5/2
correlation function then it is possible that a hetGP is needed for the discrepancy as well
(perhaps with a smoother squared exponential correlation). A full Bayesian analysis in such
circumstances may be prohibitively expensive and the above procedure might need to be
modified. |Sung et al| (2019) use a hetGP for the discrepancy (but with a deterministic
simulator), estimating parameters via maximum likelihood and following Tuo et al.| (2015)
to avoid confounding.

Revisiting Ebola. The Ebola study (Fadikar et al., 2018)) calibrates an ABM using the
KOH framework. The simulator ys has 5 unknown, unmeasured inputs uc, and the output



Stochastic Computer Models 22

is the log of the cumulative number of infected individuals up to week 1 and every week
thereafter up to 57 weeks. The field data yr is a set of reported cumulative counts. For
the statistical model, a QK strategy (Section is followed by replicating each distinct
simulation 100 times and then calculating the 5% 27.5%, 50%, 72.5% and 95% quantiles at
each time step. These quantile output trajectories are then reduced to a more manageable 5
dimensions using the principal component decomposition outlined in Section [3.4], which are
then used to fit the QK model.

Underlying the approach is an assumption that the epidemic trajectories (actual and
simulated) can be approximated by quantile trajectories (i.e., a realized epidemic that re-
sembles the ¢ quantile at time 1 will also resemble the ¢'* quantile at a later time). As
such, the quantile ¢ is included as an input parameter (see Section to allow KOH
calibration to learn about the (unknown) value of ¢, as well as the 5 calibration parameters,
for the observed epidemic. The simulator and reality quantile trajectories are deterministic
and unknown, so the discrepancy is also deterministic. Posterior distributions for unknown
uc, OMp, and ¢ are then obtained and used to make predictions of the cumulative counts
and other quantities.

In the main analysis, which restricts the field data to only the first 20 weeks, the estimate
of model discrepancy is found to be almost zero. A subsequent analysis done using field data
up to week 42 exposes some inaccuracy of the simulator (non-zero dyp(x)). This reveals
that, for this example, the simulator is flawed because it continues to predict infections even
after the epidemic dies in reality (and so a discrepancy term is important). Extrapolation
to later weeks using only the first 20 weeks of field data would be misguided because the
simulator flaw would not be identified. This is a general issue for simulators: extrapolation
can be tricky and a degree of faith is needed in the simulator.

Ocean Example. The previous ocean analyses fixed the two diffusion coefficients. In
reality, they are unknown and calibration is necessary. “Field” data are artificially created
by averaging over 200 simulations at 150 different longitude-latitude coordinates, using the
previously fixed values of the diffusion coefficients (K, = 700 and K, = 200). “True” values
are obtained by adding a fake discrepancy, taken as a single realization from a GP with a
squared-exponential correlation function, a variance of 1.64, and 6 values of (1, 2) (equation
. To these, normally distributed pretend “observation errors” with a variance of 4 are
added, two such observations at each site. In real problems, the field data would be observed
and not generated like this. Note that field data for this problem corresponds with the mean
of the simulator, not individual draws from the simulator; a result of this simulator being a
stochastic approximation.

With the diffusion coefficients now uncertain, the simulator has four inputs. A computer
experiment is designed with runs at the 150 sites used for the field data and 500 unique
selections of the calibration parameters K, and K,. This is done by combining copies of
the 150 longitude and latitude sites with a size-500 maximin LHD for (K, K,), and then
improving the combined design by maximizing the minimum distance between design points
in the 4-dimensional space. We call this set of points D,.. The simulator experiment is
carried out by taking 10 replicates at each point in D,.. Two distinct surrogates (a homGP
and a hetGP) are fit with this fixed design. In addition, a seqhetGP surrogate is constructed,
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with an initial design of only 4 replicates of D,. and the remainder of the budget assigned
following the strategy of Binois et al| (2018D)), described in Section [4.3]

For a KOH analysis done in modular fashion the surrogates are fit only using the simulated
data. Because reality here is represented by the expectation of the simulator (rather than the
simulator output itself), yg in equation is replaced with E(ys). Similarly, because reality
is deterministic, dyp is modeled as a standard GP. Of course, the simulated data are outputs
from yg, not from E(yg) — the surrogate is used to approximate the deterministic F(yg)
(M). MCMC is then used to obtain posterior distributions for the remaining unknowns:
the diffusion coefficients, K, and K; the variance and correlation parameters of the model
discrepancy GP, o3, and fyp; and the observational error, 0?). The obtained posterior
distributions for the key parameters are in Figure @; their true values are K, = 700, K, =
200, 0% = 1.64 and o2 = 4.

homGP
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100 500 1000 100 500 1000 0 2 24 6 0 1 , 2 3
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Figure 6: Calibration results for the ocean model. The top row shows the posterior densities
for the four parameters using homGP with the fixed design, the middle row uses hetGP with
the fixed design, and the bottom row uses the hetGP surrogate with the sequential design.
The budget for all three is 5000 runs. True values are superimposed as red vertical lines.

For all three surrogate models the posterior distributions for K, are fairly diffuse. The K,
posteriors are highly concentrated, but not quite around the true value. The three posteriors
for observational error are quite similar but all point to estimates closer to 5 rather than the
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true 4. The posteriors for the discrepancy variance are also diffuse. These plots underline the
dilemma of calibration: obtaining accurate values of calibration (and other) parameters in
the presence of model discrepancy is difficult. Additionally, with noisy data, it is difficult to
obtain precise estimates. However, KOH does yield useful posterior predictive distributions.

Table (1| compares predictions by KOH calibration with 3 other calibration approaches.
The first one estimates K, and K, by ordinary least squares (OLS): (K, K) is chosen such
that the sum of the squared residual difference between the mean surrogate prediction and the
observed data is minimized. New observations are then predicted by running the surrogate
with the parameters (K, K,) replaced by the OLS estimates (_f(x, f(y) The second approach
follows a frequently adopted practice by guessing, or “judiciously selecting”, specific values
for K, and K. Here, the choices K, = 600 and K, = 400 are made, and then predictions are
made using the surrogate. Call this method SINGLE. The third method, NOCAL, generates
predictions as if there were no field data and the distribution for (K, K,)) is taken as their
prior distribution, independent uniform priors on [100, 1000]. In these alternative methods,
the observational error variance is fixed at the true value, and 0-discrepancy is assumed (the
former is overly generous and the latter is all too common in practice). For NOCAL, a
distribution for the oxygen concentration is obtained by sampling values of K, and K, from
their prior distribution and plugging them into the surrogate, while for KOH, by sampling
from the posterior distributions of all unknowns.

(K, Ky) OLS SINGLE NOCAL KOH

homGP | (824.9, 295.4) 9.16 9.16 9.22 9.14

RMSE | hetGP | (754.9, 295.8) 9.16 9.16 9.20 9.15
seqhetGP | (496.3 276.0) 9.15 9.15 9.22 9.16

homGP -2.50  -2.66 -2.59  -2.32

Score hetGP -2.55 271 -2.62  -2.32
seqhetGP -2.55 -2.69 -2.61 -2.30

Table 1: Performance results of the three ocean model surrogates under KOH calibration.
RMSE at the 500 test locations with the “true” values used for Figure [5} similarly for Score.
(Kx, f(y) are least squares estimates for (K, K,), OLS presents the predictive results from
least squares calibration, SINGLE the results from arbitrarily choosing (600,400) for the
diffusion coefficients, NOCAL the results from sampling the prior for (K, K,), and KOH
the results from performing KOH calibration.

Although the differences in RMSE are negligible, the Scores indicate that KOH performs
the best. It is also possible that the accuracy of OLS, SINGLE, and NOCAL is overstated,
because the observational error variance is taken as known while in KOH it is estimated. That
the least squares estimates ([A(x, ky) are not always close to the true values is unsurprising
given the presence of discrepancy, along with possible imperfections and high variability in
the surrogate. For similar reasons, scant differences appear among the three surrogates.

The similarity of RMSEs is a consequence of large variability in the surrogate, the pres-
ence of discrepancy, the dominance of the longitude and latitude inputs, and a weak effect
from the calibration inputs. The first explains the magnitude of the RMSEs and the last
explains why fairly inaccurate calibration inputs (in OLS and SINGLE) don’t matter. Be-
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cause KOH addresses discrepancy, its Score exceeds the others’, showing that accounting for
the discrepancy is necessary and can’t be wished away.

5.2 History Matching (HM)

History Matching (HM) is a common alternative to KOH calibration (Craig et al., 1997}
Vernon et al., 2010; Boukouvalas et al., |2014b; |Andrianakis et al., 2017). HM searches
for inputs where the simulator outputs closely match observed data, while recognizing the
presence of the various uncertainties, including model discrepancy. The HM approach rules-
out “implausible” inputs in a straightforward way, rather than attempting to find probable
inputs. With an observation yg, and initially assuming uc makes up all the unspecified
simulator inputs, uc is deemed implausible if:

|yF - #N(Uc)|
Vok(uc) +ofp +02)

where 0%, 0%, and o2 are the variances of the surrogate, the model discrepancy, and the
observational error respectively. In other words, an input is implausible if the difference
between the observation and the simulator output (using that input) is sufficiently large
relative to those uncertainties. The number 3 comes from |Pukelsheim| (1994) who shows
that at least 95% of any unimodal distribution is contained within three standard deviations.
When there are multiple outputs or additional, controllable, inputs there are modifications
to equation (Vernon et al., 2010).

The process can be repeated in so-called “waves”, using non-implausible us found at one
wave to generate simulation runs for the next wave, sequentially reducing the space where
uc could lie. With these waves HM, aims to avoid regions of inputs where ue is unlikely
to be and, in that regard, HM is a also calibration design scheme. At any given wave, it is
possible for all values of uc to be deemed implausible — the so-called terminal case (Salter
et al. [2019) — usually implying that o3y is set too low or that the simulator is not fit for
purpose. Andrianakis et al. (2015)) contains a thorough description of HM whilst applying
it to a complex epidemiology model of HIV.

(5.2)

HM and KOH. With KOH the estimation of u¢ is confounded with discrepancy, but
predictions and their uncertainties are available. However, implementing KOH in complex
problems may be burdensome if not intractable. Speculatively, a hybrid strategy may be to
use HM to reduce the input space, confirm the absence of the terminal case, and then apply
KOH in the narrowed space to get predictions and uncertainties. Complex models, unlike
the fish and ocean examples in this review, would be ones for which this approach would be
most appealing. Such hybrid strategies are a topic for further exploration.

5.3 Approximate Bayesian Computation (ABC)

ABC methods offer alternatives which have been useful in moderately complex contexts
(Rutter et al., [2019); but less so in more ambitious settings (McKinley et al., 2018]).

ABC is a general method for producing samples from 7 (uc|Yr), the posterior distribution
of unknowns u¢, given data Yr. ABC does this by generating samples for the unknowns
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ug) and the output 2 from 7(Yr|uc)m(uc), that is, from the likelihood of the data given

the unknowns, multiplied by the prior probability of the unknowns. For computer models,
generating samples from the likelihood is equivalent to running the simulator. Such samples
are only accepted if 2*) = Y. For continuous settings, where exact equality cannot occur,
acceptance is instead made if B(z),Yr) < 7, where B is a measure of distance and 7 a
level of tolerance. An approximated posterior distribution is then given by the collection of
accepted ug)s. When there are multiple outputs (or there are other controllable inputs z,

and so for any given ug) there are effectively multiple outputs), Yz and z(*) can be replaced
with informative summary statistics. Finding a single statistic sufficient for all outputs is
challenging, and a poorly chosen one can invalidate results.

The choice of the tolerance 7 is also important. If 7 is small then it may take a very
long time to generate a single sample which satisfies the inequality. If 7 is not small then
the approximation to the posterior is less reliable. For calibration, 7 can be interpreted as
a bound on the observational error and model discrepancy, leading to a “correct” posterior
rather than an approximation (Wilkinson), 2013)). This is then similar to HM with the
subjective choice of bounds.

ABC can be done without the use of a surrogate, but this will require many runs of the
simulator itself. Otherwise, very few accepted ue will be obtained, or an overly high value
of 7 will be required. In either case accuracy is compromised. Such computational barriers
are alleviated by the use of a surrogate.

Fish Example. Here we apply ABC to the fish simulator in order to estimate how many
fish are in the total population. Suppose that 25 fish are recaptured in the second round.
A straightforward method to determine the total population size is to simulate many times
from the NetLogo fish model for many different values of the total fish population, and
“accept” every simulation that leads to 25 fish being recaptured. This is exactly ABC, and
is a fairly common practice with ABMs. Simulating 10,000 times, using a uniform prior
on the integers between 200 and 4000 (so each such population size has prior probability
1/3801), yields the results in the left panel of Figure [ This direct use of the simulator
produces only 52 accepted samples, which is a very small number, and this is from 10,000
simulator runs. In comparison, the hetGP surrogate fit from only 400 simulator runs (from
which 1,000,000 samples can be quickly drawn) yields 3811 accepted samples. This result,
illustrated in the right panel of Figure [7] gives a less noisy histogram with the same overall
shape — If the simulator is even marginally costly then a surrogate is unquestionably valuable
for ABC computations.

5.4 Related Calibration Techniques

The three calibration techniques above are the more popular techniques in the literature,
but others also exist.

Bound-to-Bound (Frenklach et al., 2016) is akin to HM, where an error bound that
sweeps up all uncertainties is similarly defined and quadratic programming is then used to
find feasible bounds for u¢. Bayesian Melding (Poole and Raftery, 2000; Raftery et al., [1995)
is a technique related to Bayesian calibration, used to reconcile differences between elicited
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ABC posterior using hetGP surrogate
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Figure 7: ABC fish calibration: directly (left) and via hetGP surrogate (right). The
prior for the true population size is uniform on {200, ...,4000}, and 25 recaptured fish were
observed. The left plot shows 10,000 simulations, highlights the 52 in agreement with the
observation, and the histogram of accepted simulations. The histogram in the right panel is
for the 3811 accepted draws out of 1,000,000 from hetGP.

prior distributions on inputs and outputs of a simulator. It has been applied in ecology,
epidemiology, urban modeling, and pollution monitoring (Sev¢ikova et al., 2007; |Alkema
et al., 2007; Radtke et al., 2002; Fuentes and Raftery, [2005)).

6 Other Methods and Objectives

Here we briefly outline some other surrogate modeling and downstream tasks.

6.1 Regression Trees

In some situations the simulator mean M may have discontinuities or “regime changes”,
where a very different relationship between y and z exists in one part of input space compared
to another part (i.e., non-stationarity). Regression Trees (Breiman et al., 1984) form a class
of methods that can be useful in these situations. They are also useful in contexts where
some inputs are categorical rather than numerical. The problems are treated by dividing
the input space into mutually exclusive regions within which independent surrogates (GPs
or other regression methods) are fit.

Two approaches: the treed GP (TGP |Gramacy and Lee, 2008|) and Bayesian Additive
Regression Trees (BART |Chipman et al., |2010) have found wide application. Both use the
data to automatically partition the input space, rely on Bayesian computation, and have
publicly available software: TGP in tgp on CRAN (Gramacy and Taddy, 2016, Gramacy,
2007)); BART in several R packages, including BayesTree (Chipman and McCulloch, 2016)
and BART (McCulloch et al., [2019).

Other approaches by [Rulliere et al.| (2018)), and via Voronoi tessellations instead of trees
(e.g., [Kim et al.; 2005; [Rushdi et al., 2017; [Park and Apley|, 2018), have received less atten-
tion. [Pratola et al|(2020)) extends BART to heteroscedastic o> (HBART) by modeling M

as a sum of Bayesian regression trees (as in BART) and the intrinsic variance o2(z) as a
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product of Bayesian regression trees, in a joint approach similar to that in Section [3.2]

Calibration methods capitalizing on the KOH approach and using TGP are explored in
Konomi et al. (2017). In each terminal node of the partition a GP with an independent
constant intrinsic variance term is assumed for the computer model output. An independent
GP is also deployed for the discrepancy term. Though ¢? is constant at each terminal
node the constants can vary across the terminal nodes so heteroscedasticity is automatically
incorporated.

6.2 Qualitative Inputs

Categorical (qualitative) variables are often present in stochastic simulators, especially those
that incorporate characteristics of human behavior. While regression trees are capable of
dealing with categorical inputs (Broderick and Gramacy, 2011; Gramacy and Taddy, 2010)),
GPs may be more effective as surrogates for smooth simulator output.

Qian et al. (2008), Zhou et al. (2011), and |Chen et al. (2013)) describe ways to extend
the kernels used for numerical inputs to incorporate qualitative variables. Painting with a
broad brush, their approaches take the correlation between two outputs y(x;) and y(z;) as
the product of two correlation functions: C.(w;,w;) dealing with the continuous inputs, w,
and Cy(z;, z;) for the qualitative variables, z. A simple way of building C, takes

K
CQ(wiﬂ wj) - H Tk,wik wjk (61)
k=1

where K is the number of qualitative variables and 7 4,, ., represents the correlation be-

tween wy, and wj;,. One example of Ty, w;, 1S:

Wik

Tjwgase = eXP{— (i + @) L [war, 7 wjp] } (6.2)

where [ is the indicator function (= 1 if its argument is true, = 0 if false), and ¢ > 0.
The cited references provide other ways of modeling T wik,wjk- Alternatives also exist; for
example, |Zhang et al.| (2020) make use of latent variables for qualitative models.

6.3 Optimization

A common experimental objective is to maximize an output of the simulator, i.e., to find
an input ., that maximizes the output y(z). For minimization instead, replace y(z) with
—y(z). Optimisation is usually a sequential process where successive zs are chosen to get
closer and closer to the optimal x,,, which is a sequential design problem (see Section .
With stochastic simulators, y(z) is random, and optima are less concretely defined because
the output is different every time the simulator is run at the same z. As a consequence,
interest usually lies in maximizing a non-random quantity of interest, such as the mean, M,
or a quantity such as the ¢"* quantile.

For deterministic simulators Bayesian optimization (Mockus et al., |1978; |Jones et al.,
1998) is a popular technique. An initial set of runs is used to build a GP surrogate and
new runs are chosen by maximizing an “acquisition function” a(x). Iteratively choosing
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Tnew = argmax, a(x)) provides a progressively improved estimate for the maximum. A
widely used choice for a(z) is the expected improvement (EI):

agi(z) = Elmax (y(x) — Ymax, 0)]. (6.3)

Maximizing EI chooses the input x,e, that maximizes the expected increase in the maximum
value, Ymax, Of already observed runs. With y modeled by a GP:

() = (s = i) (P2t ) (i (Ut ) (o

on(z) on(z)

where py () is the predictive mean of the GP, oy (z) its standard deviation, ¢ is the standard
normal density, and ® the standard normal distribution function.

Alternative acquisition functions have generated extensive work on Bayesian optimization
in recent years, mostly in the machine learning literature. The probability of improvement
(Kushner} [1964)) is an early example, and the GP upper confidence bound (GP-UCB, [Srini-
vas et al.| (2009))) considers homoscedastic simulator error. A recent summary of Bayesian
optimisation can be found in [Frazier (2018)).

For stochastic simulators, the EI procedure can be extended by replacing 9y.x with the
maximum estimated mean of currently run inputs, pima = maxeq,. vy pn(z;) (Vazquez
et al., 2008)). Alternatively, one can seek improvement over the maximum estimated mean
of any possible input, max, uy(z) (Gramacy and Lee, 2011). In these cases, the oy(x)
term must exclude the o?(z) term. Implementation of this method is provided in the hetGP
package.

Alternative criteria for stochastic problems with constant intrinsic noise are discussed
and compared in Picheny et al.|(2013); with the above method is referred to as the “plugin”
method. An R package for implementing several of these choices is available in DiceOptim
(Picheny et al. (2016); |Picheny and Ginsbourger| (2014)). Jalali et al.| (2017) also do a similar
comparison for heteroscedastic noise.

The related goal of level set estimation to find regions where the output exceeds a thresh-
old T can also be targeted with sequential criteria similar to EI. A simple criterion is maxi-
mum contour uncertainty (MCU), wherein new points are chosen by weighting the sum of a
point’s proximity to 7" with its uncertainty. The method is implemented in hetGP, and Lyu
et al.| (2018) provides some discussion.

Optimization using Gaussian processes, specifically in the presence of intrinsic variability
that is potentially heteroscedastic (and potentially non-normal) is an interesting research
question and possibly deserving of its own review. Nonetheless, the references provided here
should provide a good introduction.

6.4 Sensitivity Analysis

Determining and measuring the effect of inputs on the output is usually part of any simulator
experiment. Doing so assists scientific understanding of the system and enables screening
out potentially superfluous variables. This goal has many related names: sensitivity analysis,
screening, variable selection, etc., but the overall objective is generally the same — summarize
and measure the influence of each input.
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For deterministic simulators, Sobol indices (Sobol, |1993)) are widely used. Probabilistic
distributions are assumed on the inputs of the simulator in order to represent their range of
possible values. Then, a functional Analysis of Variance (ANOVA) decomposition splits the
variation of the simulator output into multiple components, each representing the individual
contribution of an input variable z; or combination of input variables. A Sobol index is
then computed as the percentage of the total simulator output variation explained by a
component. Key Sobol indices include main effects (the percentage of variation explained by
the individual z;s alone) and the variation explained by interactive additive effects with other
inputs. Computing the components takes large numbers of runs but the use of surrogates
make the calculations feasible (Schonlau and Welch, 2006; |Marrel et al., 2009)). An enveloping
discussion of sensitivity analysis is provided by Oakley and O’Hagan| (2004)).

Two extensions of Sobol indices by Marrel et al.| (2012) and Hart et al.| (2017)) for stochas-
tic simulators yield the following expression for the stochastic simulator:

y(i’) - y(x, 6seed) (65)

where z is the set of controllable inputs. The input €4q is responsible for output stochas-
ticity, standing in for intrinsic variability, and is sometimes called a seed variable. As with
a deterministic simulator, a probabilistic distribution (typically uniform) is assumed to rep-
resent the range of variation in controllable inputs.

In Marrel et al.| (2012), the total variation in the mean of the stochastic simulator is anal-
ysed through a functional ANOVA decomposition and Sobol indices are computed based on
the percentage of the total simulator variation each component explains. The variation
explained by the seed variable €,.q can also be computed, representing the total variation
explained by the intrinsic variance. Additionally, a sensitivity analysis of the intrinsic vari-
ance 0% () can be conducted separately to gather information on which input variables most
impact the heteroscedasticity.

Hart et al. (2017) assume the simulator can be run at different inputs « with the same
seed €geq. Rather than building a joint surrogate for the mean and variance, as described
in Section [3.2] they build a separate surrogate for a number of seeds. For each seed, they
obtain a realization of each Sobol index, and by aggregating the realizations, they obtain
distributions for the indices.

The extensive literature on model selection may have counterparts that can be effective
for stochastic simulators, but a fully satisfactory approach even for deterministic simulators
remains somewhat elusive.

7 Concluding Remarks

There are several key messages to be drawn from this review, each pointing to open or new
research questions:

Gaussian Process Surrogates. GPs are discussed extensively because they provide
a flexible way of allowing the data to inform about the shape of the underlying process.
Moreover, they can be effective predictors and quantifiers of uncertainty. Diagnosing short-
comings in a GP for stochastic simulators (available in deterministic settings (Bastos and
O’Haganl, 2009)) is not yet well-established.
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As noted in Section 3| neural network (deep learning) methods are in active use and under
study, some of which may, in combination with GPs, offer promising research directions
(Schultz and Sokolov, 2018)).

Additionally, it can be difficult to effectively capture non-normal variability. Doing so
with as few simulations as possible, whilst also properly quantifying the various uncertainties,
is likely to be an important research direction for stochastic simulator analysis. The wider
quantile regression literature is likely a good starting point.

Design. Stochastic simulators differ from deterministic ones because they require much
larger sample sizes and permit the use of replicates, whose treatment is generally ad hoc. This
leads to the questions raised in Section [, forming a direction of important research. Design
size rules of thumb, useful even if imperfect, exist for deterministic simulators (Loeppky
et al., 2009b)), but are lacking for stochastic simulators.

Calibration. Accounting for model discrepancy in calibration is critical but there is no
obvious “one-size-fits-all” method. A broad empirical comparison is needed with guidance
about which strategies are effective under which conditions. Assessing the effectiveness of
different methods can be challenging (see McKinley et al., |2018, for one comparison between
ABC and HM), but sorely needed.

Simulator Complexity For complex stochastic simulators it may not be feasible to
obtain enough runs. In some instances, the simulator can be replaced with a less complex
one (e.g. Molina et al., |2005) that captures key features and permits adequate numbers of
simulations. Another path, coupling stochastic simulators with deterministic simulators has
been explored as a way to deal with low simulation budgets (Baker et al., 2020)). Multi-fidelity
modeling, where multiple simulators of varying complexity are coupled together (Kennedy
and O’Hagan| 2000; Kennedy et al., 2020) is a promising solution where possible.

In a similar vein, certain outputs may be less noisy than others, and the modeling of the
less-noisy outputs can improve the modeling of the noisier ones. For example Wang and Ng
(2020) use the expectation of a simulator to improve the estimation of noisier quantiles. This
is related to the wider variance reduction literature, which has a long history (Barton et al.,
2017)). Variance reduction has been applied in a number of examples but its use in ABMs
is not apparent, perhaps due to the profusion of stochastic elements in an ABM. Fixing the
initial seed in a stochastic simulator has played a role in sensitivity analysis (see Section ,
but leveraging information about the nature of the intrinsic randomness for wider purposes
is an open problem.

This review strives to raise awareness of existing tools and strategies for treating stochas-
tic simulators and provide a starting point for practitioners interested in utilizing up-to-date
statistical approaches. Despite the problems being pervasive and challenging there is a
shortage of statistical research in this field. The problems pose computational and technical
questions, as well as theoretical and philosophical ones. Current solutions are often capable,
but there is a lack of comprehensive comparison between different solutions, and a lack of
testing regarding their generalizability to complex situations (such as very large data sets).
The hope is that the review provokes statistical researchers to engage the open questions
discussed, and for practitioners to make use of the tools which are available.
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A Appendix - Ocean Truth

Throughout, reference to plots of the “truth” of the Ocean model is made. These plots are
presented here, as well as in the supplementary material, for convenience.
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Figure 8: The “true” mean and standard deviation for the Ocean model, for 500 different
sites.
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