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Abstract17

The transmission of vector-borne diseases is governed by complex factors including18

pathogen characteristics, vector-host interactions, and environmental conditions. Tem-19

perature is a major driver for many vector-borne diseases including Bluetongue viral20

(BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose21

etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal22

agriculture and the economy of affected countries. Using modeling tools, we seek to23

predict where the transmission can occur based on suitable temperatures for BTV. We24

fit thermal performance curves to temperature-sensitive midge life-history traits, using25

a Bayesian approach. We incorporate these curves into S(T ), a transmission suitability26

metric derived from the disease’s basic reproductive number, R0. This suitability met-27

ric encompasses all components that are known to be temperature-dependent. We use28

trait responses for two species of key midge vectors, Culicoides sonorensis and Culi-29

coides variipennis present in North America. Our results show that outbreaks of BTV30

are more likely between 15◦C and 34◦C with predicted peak transmission risk at 26◦C.31

The greatest uncertainty in S(T ) is associated with: the uncertainty in mortality and32

fecundity of midges near optimal temperature for transmission; midges’ probability33

of becoming infectious post-infection at the lower edge of the thermal range; and the34

biting rate together with vector competence at the higher edge of the thermal range.35

We compare three model formulations and show that incorporating thermal curves36

into all three leads to similar BTV risk predictions. To demonstrate the utility of this37

modeling approach, we created global suitability maps indicating the areas at high and38

long-term risk of BTV transmission, to assess risk and to anticipate potential locations39

of the establishment.40

Author Summary41

In this paper, we use data on traits of the biting midge that are sensitive to temperature42

to study bluetongue disease transmission. Bluetongue disease is a vector-borne disease that43
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threatens different types of ruminants, including sheep and cattle. This disease affects the44

livestock economy in the US and around the world. Here, we focus on two species of biting45

midges that transmit the bluetongue virus. First, we collect temperature-dependent trait46

data from previously published studies. Then, we used this data to derive the parameters47

incorporated into the mathematical and statistical models. To assess the transmission risk,48

we use a metric derived from the model to identify the temperature range suitable for blue-49

tongue disease transmission. Our findings allow us to predict the areas around the world50

that could be at risk of bluetongue transmission should the midge species be present. These51

areas require more surveillance in case a bluetongue disease outbreak begins. Potentially,52

our results can inform future control and prevention strategies for bluetongue disease.53

Keywords— Bluetongue virus, vector-borne diseases, transmission, Bayesian analysis,54

temperature, disease modeling55

1 Introduction56

With ongoing climate change, it is critical that we understand how temperature influences57

the dynamics of emerging diseases. Vector-borne diseases (VBDs) are highly sensitive to58

climate factors, particularly temperature, as demonstrated previously for VBDs of both59

humans and plants [1, 2, 3, 4, 5]. Bluetongue virus (BTV), in the Reoviridae family (genus60

Orbivirus), causes the disease Bluetongue in livestock across the world and is thus a VBD of61

considerable economic concern. The biting midges of the Culicoides family are responsible62

for transmitting BTV and many other arboviruses. More than 1,400 species of Culicoides63

have been classified, globally, but fewer than 30 have been identified as competent vectors64

for BTV transmission [6]. These midges are highly sensitive to changes in temperature [7, 8],65

and thus so is BTV transmission [9, 10].66

BTV can infect most species of domestic and wild ruminants, including sheep, goats, and67

cattle [11]. Sheep are the most susceptible to the disease and exhibit the highest morbidity68
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and mortality, post-infection [12, 13]. In the majority of infections by strains of BTV’s69

27 serotypes, animals rarely show any clinical signs [14]. The infection severity and the70

presence of clinical signs both depend on the serotype, and the severity of infection can71

range from rapid fatality to quick recovery. Common outward clinical signs include a blue72

tongue, fever, and excessive salivation [13]. Since clinical signs are rare, BTV infection often73

goes without detection. Unfortunately, undetected cases can still result in mortality, and74

while BTV vaccines exist, vaccine development is in its infancy [15]. An effective polyvalent75

vaccine to immunize against more than one strain of BTV has yet to be developed [16], and76

existing attenuated viral vaccines pose significant health risks to livestock, such as reduced77

milk production in lactating sheep, abortion, early embryonic death, and teratogenesis in78

pregnant females [17].79

Figure 1: Bluetongue virus interaction diagram: the mechanisms underlying the transmission of bluetongue
virus include, host-vector interactions, host-pathogen interactions, vector-pathogen interactions as well as
the environmental effect on all interactions.

In the absence of an effective polyvalent BTV vaccine, and with the potential risks and80

costs of the available vaccines, the impact of BTV on global agriculture is significant. For81

example, the cost of BTV in the U.S. beef industry was estimated at $95 billion in 2014 [16].82

Although BTV was first detected among merino wool sheep in South Africa in 1905, since83
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then the disease has been found on every continent but Antarctica [18]. In recent years, the84

disease has spread to areas previously believed to not be at risk, including North and Central85

Europe, parts of Asia, and Western North America [12, 19]. Mandatory testing of animals86

and losses in foreign markets form a huge economic burden. This adds to the economic87

impact of BTV on the livestock industry. There is substantial improvement needed in our88

ability to assess risks and to anticipate potential shifts in risk over time and space.89

Though the cause of the recent appearance of BTV in some of the new regions (especially90

Northern Europe) is still unknown, it is believed that climate change is a major driver. More91

specifically, the increase in temperature of certain locations makes them suitable for midges92

to survive, and therefore transmit diseases [13]. For example, some cases of BTV-8 in Europe,93

specifically in France, have exceeded expectations of receding and survived cold winters [20].94

Mathematical modeling can facilitate our understanding of the complexities of the trans-95

mission process of vector-borne diseases [10, 21, 22]. The classical Ross-MacDonald model of96

VBDs and similar models allow us to calculate the basic reproductive ratio R0 of the disease97

[23, 24]. This summary quantity is widely used to estimate how infectious a disease is and98

whether an outbreak can occur. When R0 > 1, the disease is likely to spread, leading to an99

outbreak; when R0 < 1 the disease is likely to die out. As shown in Figure 1, BTV transmis-100

sion involves host-vector interactions, host-virus interactions, vector-virus interactions, and101

the effect of the environment. Mathematical models allow us to describe these interactions,102

parameterize them with data, and quantify the knock-on effects for transmission risk.103

Here we are interested in answering the following questions: (1) How does the risk of104

transmission of BTV vary with temperature? (2) Do different model assumptions lead to105

different predicted suitability ranges? and (3) Which traits contribute the most to variation106

in estimates of transmission risk? To answer these questions, we take an approach used pre-107

viously for VBDs such as malaria [1, 2]. We begin by using Bayesian inference to fit thermal108

responses to laboratory-derived data for temperature-sensitive midge life-history traits. We109

then derive R0 for BTV as a function of these thermal responses and incorporate the fitted110
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thermal responses to obtain estimates of these across temperatures. To focus on just the111

temperature-dependent components, we define a suitability metric, S(T ), that isolates the112

temperature-sensitive components of R0. We compare forms of S(T ) where the midge den-113

sity, V , is constant vs temperature-sensitive to ascertain if this generates major differences114

in suitability predictions. Next, we conduct uncertainty analyses to assess identify which115

parameters drive uncertainty in S(T ). This can indicate that either further data collection116

is needed to refine estimates, or that certain parameters have greater impacts on BTV dis-117

ease transmission at different temperatures. Finally, we visualize predictions of the fitted118

suitability framework to explore which geographical areas might be suitable for transmission119

in the current native range of the midges, or if they become established elsewhere. Further-120

more, understanding which temperature range results in S(T ) > 0, for given levels of other121

fixed parameters in our model, may inform prevention and control strategies that target122

particular parameters (e.g., adult mortality rates via pesticide application).123

2 Methods124

2.1 Derivation of R0 and S(T )125

To predict the outbreak potential of BTV, several forms of the basic reproductive number126

R0 have been developed [10, 21, 22]. The classical reproductive ratio for a generic VBD127

[1, 25] is given by128

R0 =

(︃
V bc a2

d H µ
e−µ/ν

)︃1/2

from [25] (1)

where V is midge population density; bc is vector competence (the product of the probability129

that a midge can transmit the infection to an uninfected host, b, and the probability that130

a midge gets infected when biting an infected host, c); a is the per-midge biting rate; µ131

is the adult midge mortality rate; ν is the pathogen development rate (ν = 1/EIP with132

EIP the extrinsic incubation period); H is host density, and d is infected host recovery rate.133
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The model used to derive this version of R0 is a system of delay differential equations that134

assumes no exposed class and that susceptible midges move to the infected class shortly after135

contact with an infected host. A similar scenario can be described using a system of ordinary136

differential equations while expressing the delay between the contact with infected host and137

midges becoming infectious in terms of an exposed class. In this case, the reproductive138

number for the midge-borne viral disease (BTV) can be expressed as,139

R0 =

(︃
V bc a2

d H µ

ν

ν + µ

)︃1/2

from [10] (2)

This version of R0 is a reduced version from a model that uses multiple types of host and140

multiple types of midge species as in [10, 21].

Figure 2: A schematic illustration of BTV transmission. The host population is composed of three classes:
susceptible (S), infected (I), and recovered (R). The midge population is composed of a susceptible class
(Sv), three exposed classes (Ev), and an infected class (Iv). Black arrows show movement between classes
and red arrows indicate contact potentially leading to transmission.

141

Figure 2 shows a schematic representation of our BTV transmission model (Equations (1)-142

(8) in Appendix A) which considers a single host population split into susceptible individuals143

that are vulnerable to BTV disease (S), infected individuals that have acquired infection144

(I), and individuals who have recovered from the disease (R). Also, we consider a vector145
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population containing susceptible midges (Sv), three levels of exposed individuals (Ev), and146

an infected class of midges (Iv). The exposed classes in the model represent the extrinsic147

incubation period that midges undergo before becoming able to transmit infection. To148

calculate the third version of the basic reproductive number R0, we use a next-generation149

matrix method described in [26, 27], which leads to the following R0 equation:150

R0 =

(︄
V bc a2

d H µ

(︃
3 ν

3 ν + µ

)︃3
)︄1/2

. (3)

The term

(︃
3 ν

3 ν + µ

)︃3

in R0 represents the number of midges that survive the extrinsic151

incubation period, leading to a slight difference between the three R0 forms.152

We can represent all three formulas of R0 with a simple equation given by

R0 =

(︃
V gf

d H µ

)︃1/2

(4)

=

⎛⎜⎜⎝(midge density)

g⏟ ⏞⏞ ⏟
(transmission potential)

f⏟ ⏞⏞ ⏟
(prob of becoming infectious)

(host recovery rate) (host density) (vector mortality)

⎞⎟⎟⎠
1/2

(5)

where the expression for V and g are the same for all three versions and are given by

V =
F pE pL pP

µ2 (ρE + ρL + ρP )
(6)

g = a2 bc (7)

where F is eggs per female per day, pE, pL, and pP are survival probabilities for eggs, larvae,153

and pupae; ρE, ρL, and ρP are development times for eggs, larvae, and pupae, respectively;154

µ is adult midge mortality; a is midge biting rate and bc is midge competence.155

Although R0 is a useful metric, particularly since the thresholding behavior can pre-

dict whether or not an epidemic can take hold, multiple factors, including the size of the

susceptible population, whether or not parasites/hosts/vectors are physically present in an
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area, socio-economic factors (e.g., screens, household and working conditions), or control

measures, can all impact R0 at a particular location. We want to focus our analysis strictly

on the temperature components of the transmission, to be able to determine the temper-

atures that prohibit or promote transmission, and explore sensitivity to the thermal traits

independently of other factors. Thus, we define a transmission suitability metric, S(T ), as

the (standardized) thermal components of R0 (Equation 4), which is given by

S(T ) = C

(︃
V gf

µ

)︃1/2

= C

(︃
F pE pL pP a2 bc f

µ3 (ρE + ρL + ρP )

)︃1/2

(8)

where C is a constant that is chosen after the Bayesian fitting of traits (see below) that156

scales the median suitability to lie between 0 and 1. That is, we choose C to be the highest157

value of the posterior median suitability. When the median suitability is zero this indicates158

that temperatures do not permit transmission and when the median suitability is 1, this159

indicates a maximal transmission, everything else being equal.160

The difference between the three R0/S(T ) formulas lies in the latent period survival161

probabilities, f , representing the probability of midges surviving to become infectious post-162

infection. Table 1 summarizes the latent period survival probabilities for each of the three163

models considered.164

In Figure 3, we plot all three latent period survival probabilities with one parameter fixed165

as the other varies (e.g., with virus development rate, ν, fixed and midge mortality rate, µ,166

varying). We use all three forms in our analysis while comparing the constant vector density167

case V to temperature-sensitive density V (T ).168

2.2 Bayesian fitting of temperature-sensitive traits169

As ectotherms, midges are sensitive to temperature. The thermal performance for these170

temperature-dependent traits is generally hump-shaped, starting at zero at a given minimum171
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Formula Traits Used

f1 = e−µ ν [Dietz 1993] µ : adult mortality rate

f2 =
ν

ν + µ
[Gubbins et. al. 2008 ] ν : pathogen development rate

f3 =

(︃
3ν

3ν + µ

)︃3

Table 1: Formulas for the probability of an infected midge (vector) surviving to become infectious, arising
in R0 formulas from different models, and the parameters involved.
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Figure 3: (Left) Latent period survival probability f versus midge mortality rate µ with a fixed ν =
mean(ν(T )) = 0.061. (Right) Latent period survival probability f versus pathogen development rate ν
with a fixed µ = mean(µ(T )) = 0.15

temperature, then increasing to a peak value as temperature increases, then sharply dropping172

to a lower value at a maximum temperature [28, 29]. However, depending on how a trait is173

measured, the pattern may instead be concave up. For example, mortality rates exhibit this174

pattern, such that the mortality is lowest at intermediate temperatures.175

Here, we collected trait data corresponding to two midge species from the family Culi-176

coides, namely, Culicoides sonorensis and Culicoides variipennis, both found the US [30].177

The data collection method consisted of synthesizing data from published literature, via178

assembling data from tables, and digitizing data points from graphs; details on data used179

for fitting for each trait are provided in Appendix A. We focused on data from controlled180
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laboratory experiments on midge trait variation at constant temperatures, ideally with three181

or more data points. For digitization, we used the free software PlotDigitizer [31].182

We used the temperature-dependent trait fits in all three R0/S(T ) formulations for com-183

parison. Following a method first introduced in [1], we fit unimodal curves to temperature-184

sensitive traits. For the unimodal curves, we chose between a Brière (Equation (9)) for185

left-skewed data or a quadratic formula (Equation (10)) for symmetric traits.186

Brière: kT (T − TMin)
√︁
TMax − T (9)

Quadratic: inter − n.slope T + qd T 2 (10)

where the constants k, TMin, TMax, inter, n.slope, and qd estimated from trait data.For187

more information on the values, see Appendix A.188

Similarly to [2], we used a Bayesian approach for our fitting method. For each continuous189

positive trait, we choose a truncated normal distribution as our likelihood. When fitting190

probabilities/proportions, we instead either used a binomial likelihood (when raw count data191

was available) or used a normal likelihood truncated at zero and one if only summarized data192

were available. We chose priors for thermal performance curve (TPC) parameters to assure193

parameters have biologically reasonable sign and range.194

We used Markov Chain Monte Carlo (MCMC) sampling in JAGS/rjags to fit our models195

[32]. For each trait, we ran five MCMC chains with 5000 step burn-in followed by 25000196

samples. Of these we kept every fifth sample, to obtain 5000 thinned samples for subsequent197

analyses. We used these 5000 samples of each parameter to calculate the associated trait198

thermal curves, resulting in 5000 thermal fits of the trait data. After generating the 5000199

posterior mean curves for each trait, we used the 5000 posterior curves to generate posterior200

curves for R0/S(T ). For all posteriors (i.e., of traits and S(T )), we summarized posterior201

distributions using the temperature-dependent medians and the corresponding 95% highest202

posterior density (HPD) interval which is the smallest credible interval in which 95% of the203
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distribution lies [33]. All analyses were implemented in R [34]. More details on likelihoods204

and priors used can be found in Appendix A.205

2.3 Uncertainty in S(T )206

The S(T ) formula (Equation 8) depends on multiple temperature-sensitive traits, and so207

does its posterior density. Hence, there are many sources of uncertainty in the mean pos-208

terior density that can be identified through uncertainty analysis. We sought to isolate the209

contributions of each component of the model to the overall uncertainty through a variation210

on a traditional sensitivity analysis.211

We calculated the uncertainty associated with f , g, and V by varying one while keeping212

the rest fixed at their posterior means. We calculated the width of the 95% credible interval213

around the mean posterior curve, i.e. the difference between the upper and lower quantiles214

when only one of the components is allowed to vary. We then divide this by the width of215

the interval when all are allowed to vary. We repeat this process for each component, f ,216

g, and V then plot all the curves together against temperature. This allows us to identify217

which model component is responsible for the largest proportions of uncertainty in S(T ) by218

identifying the curve with the highest value at a given temperature.219

2.4 Mapping suitability220

The concern about climate-mediated increases and shifts in BTV risk is best visualized221

using mapping approaches, to understand where suitability is permitted and for how long,222

and how much livestock are thus at risk. Existing mapping approaches to this question223

largely focus on the European landscape, due to recent upticks in BTV outbreaks. However,224

existing models purport to capture a general Culicoides spp. model but must rely on data225

from the U.K. vector Culicoides obsoletus mixed with other species that may not be the226

dominant vector, or even currently present. In this study, we focus on the two US vectors for227

which there are data and project a global risk. We do this under the assumption that given228
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the capacity for Culicoides to spread and establish – as demonstrated by the Afro-tropical229

C. imicola invasion across Southern Europe in recent decades – there may well be similar230

invasions and establishment by the two well-studied U.S. vectors, and thus specific models231

will provide useful planning tools.232

To visualize and apply our understanding of the thermal suitability of BTV, we mapped233

both suitability and risk, at global scales. First, we define suitable regions as those where the234

posterior median of the suitability metric S(T ) >0. This is equivalent to finding the values235

where the posterior probability that S(T ) > 0 is 0.5. We note that here we use a scaled236

form of S(T ) as we described above. We present the geography of suitability across the237

globe by mapping the number of months of suitable temperatures for transmission based on238

the monthly average temperatures from the WorldClim dataset [35]. We use these average239

monthly temperatures as a means to describe seasonality, at a global scale, with climate240

products that are comparable between baseline (current temperatures) and future scenarios,241

to lay the groundwork for future investigations. The WorldClim data provide a trade-off242

between a spatial and temporal resolution that facilitates conducting calculations of risk243

across the globe.244

Second, we map livestock at risk of transmission, using the latest FAO Gridded Livestock245

of the World (GLW3) data for 2010, which details global distributions of sheep, goats, cows,246

and others, at a 5-minute scale [36]. To create a visually accessible risk map, suitability was247

scaled 0-1, and this was multiplied by log10(1 + livestock). Thus we create a scaled risk248

map, balancing the season length and livestock density, to emphasize areas of coincidence,249

rather than simple suitability. In this case, we used the GLW3 sheep distribution [37], as the250

primary host at risk. This gridded product has values ranging from 0 - >340,000 sheep per251

pixel. All map calculations and manipulations were run in R using packages raster [38, 39],252

maptools [40] and Rgdal [41], following methods described in [42, 43].253
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3 Results254

3.1 Temperature-dependence model components255

Here we summarize the model components that depend on temperature and explain their256

role in the model.257

Midge thermal traits258

In Figure 4 we show data and fitted curves for development times and survival probability for259

eggs, larvae, and pupae. Development times Figure 4 (left) are fitted assuming a quadratic260

function, under the assumption that juvenile midges at a given stage will need more time to261

develop at very low (<20◦C) and very high (>35◦C) temperatures. For eggs, the development262

time ranges from 60 to 70 days; for larvae, from 15 to 35 days; and for pupae between 40 and263

80 days. We fit the survival probabilities using a Brière curve (Figure 4 right). The survival264

probability is relatively high for eggs (0.2 < pE < 0.8), very low for larvae (pL < 0.2), but265

almost always 100% for the pupae stage (pP ∼ 1).266

In Figure 5 A, we show data on fecundity F (the number of eggs laid per female per267

day) together with the fitted Brière curve. The fecundity reaches a maximum at ∼ 30◦C268

and we do not have data for temperatures beyond that. The mortality rate, µ, is fit using269

a quadratic curve where we assume that the mortality is highest for temperature less than270

10◦C and higher than 30◦C (Figure 5 B).271

Figure 6 we show the biting rate a and the transmission probability b both fit with a Brière272

curve. The biting rate minimal values lie around 10◦C and increase to reach a maximum at273

30◦C. While the transmission probability b is minimal around 15◦C and reaches a maximum274

at 30◦C. We do not have data for the infection probability c so we assume that it is equal to275

0.5. Lastly, Figure 7 shows the virus development rate fit using a Brière curve, with minimal276

values around 15◦C and maximal values around 32◦C. Overall, these thermal traits all lack277

data values at extreme temperatures.278
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Figure 4: Figures in the LEFT panels show development time in days for midge juvenile stages, eggs ρE ,
larvae ρL, and pupae ρP . Figures in in the RIGHT panels show survival probabilities for midge juvenile
stages, eggs pE , larvae pL, and pupae pP . The solid line is the mean of the posterior distributions of the
thermal response curves while the dashed lines represent the HPD intervals

Midge density V279

Recall the midge density formula given by280

V (T ) =
F (T ) pE(T ) pL(T ) pP (T )

µ(T )2 (ρE(T ) + ρL(T ) + ρP (T ))
(11)
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Figure 5: (A) Fecundity, F (Eggs per female per day) and (B) adult mortality rate µ traits as they vary
with temperature. The solid line is the mean of the posterior distributions of the thermal response curves
while the dashed lines represent the HPD intervals
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Figure 6: (A) Biting rate a and (B) probability that midges transmit infection when biting an uninfected
host b. The solid line is the mean of the posterior distributions of the thermal response curves while the
dashed lines represent the HPD intervals

To estimate midge density V , we use the posterior samples of the survival probabilities281

pE, pL, pP , for egg, larvae, and pupae; the development times ρE, ρL, ρP corresponding to282

the egg, larvae, and pupae life stages; the fecundity measure represented by the number of283

eggs per female per day F ; and the adult mortality rate µ. In Figure 8 we show that the284

posterior estimate of temperature-dependent midge density V is highest between 20 ◦C and285

28 ◦C; it increases at temperatures higher than 10 ◦C and decreases when the temperature286

exceeds 28 ◦C.287
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Figure 7: Virus development rate (ν) is the inverse of extrinsic incubation period (ν = 1/EIP ). The solid
line is the mean of the posterior distributions of the thermal response curves while the dashed lines represent
the HPD intervals
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Figure 8: Modeled midge density as it varies with temperature. To obtain the temperature-dependent midge
density, V(T), we evaluate Equation 11 at all temperature-dependent traits using the fitted curves. The
solid black line shows the estimated density and the dashed lines show the corresponding HPD interval. A
constant value V = 2 is shown for comparison for subsequent modeling where the density is constant.

Transmission potential288

The component g, that we call the transmission potential, is estimated by calculating the289

product of midge biting rate a and vector competence bc:290

g(T ) = b(T )c a2(T ); (12)
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Temperature-dependent data the transmission probability c was unavailable. Thus we as-291

sumed that there will be a 50% chance for midges to become infected after biting an infected292

host (c = 0.5) regardless of temperature. Figure 9 shows the posterior distribution of the293

predicted transmission potential thermal curve.294
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Figure 9: The transmission potential g as the biting rate a and transmission probability b vary with tem-
perature while the infection probability is constant c = 0.5. The solid line shows the estimated curve and
dashed lines are the HPD interval.

Functional form295

We explored three functional forms of the formula used to represent the probability of midges296

surviving to become infectious (Table 1). In all three cases, we calculate the thermal depen-297

dence of the functional form using the posterior distributions of mortality rate µ (Figure 5298

(B)), and virus development rate ν (Figure 7). Figure 10 shows the variation of the functional299

form with temperature based on the two temperature-dependent traits µ and ν. Although300

there are differences between the magnitude of these curves, we can see that their peak301

occurs at the same temperature (25 ◦C), which is due to the traits’ thermal dependencies.302

In addition, all of their HPD intervals overlap which means that there are no significant303

differences between them.304
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Figure 10: Latent period survival probability f used in R0 versus temperature. The black line shows our
model with the newly derived R0, the purple line shows the model presented in [10], and the blue line shows
the model presented in [25]. Each solid line represents a different model and the dashed lines show the
corresponding HPD intervals. We note that there is an overlap between all HPD intervals meaning that
there are no statistically significant differences between these models.

3.2 Thermal Suitability S(T )305

We use thermal traits to evaluate S(T ) given by Equation 8 with constant midge density306

V (Figure 11 Top) and with temperature-dependent midge density V (T ) (Figure 11 Bot-307

tom). The three models are slightly different when constant midge density is used but are308

in agreement when temperature-dependent midge density is used. This is due to all the309

temperature-sensitive traits used to calculate V (T ); however, this also leads to a higher un-310

certainty shown in the range of HPD interval in Figure 11 (Bottom). The lower thermal311

bound of the three posterior means are different by a magnitude of 1◦C. However, the peak312

temperature and upper thermal limits are in agreement for all three models. With these313

results, we predict that S(T ) > 0 occurs at a temperature greater than 15◦C and less than314

34◦C, meaning that BTV is likely to cause an outbreak within this temperature range. We315

note that this prediction is based on assuming c = 0.5 which may not be always true in316

reality.317
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Figure 11: (Top) S(T ) with constant midge density V and (Bottom) S(T ) with temperature-dependent
midge density V (T ). The plots shows the magnitude of S(T ) changing as temperature increases. Each solid
line represent the mean of the posterior distributions of R0 while the dashed lines are the HPD intervals.

3.3 Source of uncertainty in S(T )318

In Figure 11 (Bottom), a high variation around S(T ) posterior density is shown in the large319

HPD interval. To determine the source of this uncertainty, we plot the calculated relative320

widths for each S(T ) component, see Figure 12. The results show that at a low-temperature321
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range (14◦C < T < 18◦C) uncertainty in S(T ) is mainly due to the uncertainty in the322

functional formf. At intermediate temperatures (18◦C < T < 33◦C), the uncertainty is323

caused by the midge density V (T ). At very high temperatures (33◦C < T < 35◦C), the324

transmission potential g is the component producing the most variability in S(T ).325
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Figure 12: The source of uncertainty in S(T ) is measured by calculating the relative width of the 95%
HPD quantiles with each component varying with temperature while the remaining components are kept
constants, and divided by the width when all are allowed to vary.

3.4 BTV risk maps326

Figure 13 illustrates the number of months each area is at risk of BTV transmission with327

the assumption that Culicoides sonorensis and Culicoides variipennis are the main vectors.328

The results show that, under baseline long-term average current temperature conditions,329

much of central Africa, South Asia, central and the northern part of South America, and330

northern Australia are suitable for year-round bluetongue transmission. These areas are also331
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the warmest parts of the world, and as we move away from them, the temperature is lower332

and the number of months of suitability is reduced.333

Figure 13: Map of the number of months (1-12) areas are at risk of bluetongue virus transmission according to
our temperature-dependent R0. This map based on the current mean monthly temperatures and is restricted
to bluetongue disease caused by the two midge species Culicoides sonorensis and Culicoides variipennis.

Next, we used the global distribution of sheep to determine areas where sheep are at334

risk of acquiring BTV. The choice of sheep was mainly due to ready data availability, and335

also because sheep are the BTV host with the highest mortality and morbidity rates, and336

therefore of great interest and relevance. The map shows that areas, where sheep are at337

the highest risk (scale > 3), are located around the equator. The next highest risk regions338

(1 < scale < 3) are areas with of high livestock industry, such as central and south America339

and Europe.340

4 Discussion341

In this study, we are interested in the potential for the temperature to shape where BTV may342

spread. We use a Ross-Macdonald type modeling approach to describe the dynamics of BTV343

transmission [23, 24]. This mechanistic approach allowed us to derive the basic reproduction344
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Figure 14: Scaled transmission risk suitability of bluetongue virus for sheep, as the primary host at risk,
worldwide. the scale ranges from a low risk, 0, to a high risk, 5.

ratio’s posterior distribution as a function of temperature. We were able to both determine345

the suitable temperature for possible BTV outbreaks when S(T ) > 0 and the temperatures346

at which BTV outbreaks are likely to die out when S(T ) = 0. We note that the absolute347

magnitude of the thermal response of S(T ) here is dependent on our model assumptions, for348

example setting the infection probability to be c = 0.5. We also adopt two previously used349

BTV models, [25] and [10], to compare the three forms of R0.350

Based on the available trait data we used in our model, we predict that temperatures351

from 15◦C and 34◦C, are “suitable” for BTV outbreaks by the examined midge species,352

with peak suitability occurring at about 26◦C. This result was obtained regardless of which353

S(T ) formula used, i.e., all three different models of the latent period survival probability,354

f lead to the same predictions. Similarly, the predicted peak and upper thermal limit of355

S(T ) were the same for three forms, and only a small difference between lower thermal356

limits (∼1 ◦C) was observed. This indicates that the uncertainty of temperature effects on357

traits outweigh the effects of differences in modeling assumptions in the form of the latent358

period survival probability for these models. Because our suitability metric captures all of359

the temperature-depend portions of R0, this result should also hold for R0 more broadly.360
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Uncertainty in temperature-dependent traits of the vector-virus system results in uncer-361

tainty in the suitability metric S(T ). Our uncertainty analysis allowed us to determine the362

traits responsible for causing uncertainty in S(T ) (and therefore in the temperature-depend363

components of R0) across the temperature range. At lower temperatures (14◦C < T < 18◦C)364

more data are needed for the parasite development rate, ν, and mortality rate, µ, to reduce365

this uncertainty in the latent period survival probability, f . At moderate temperatures366

(18◦C < T < 34◦C) the uncertainty in S(T ) is caused by V , meaning that more data are367

needed in traits contributing to estimating the midge density. At very high temperatures368

(34◦C < T < 35◦C) we need more data on vector competence bc and biting rate a. Reducing369

the uncertainty in these components of S(T ) will allow refinement of predictions, control,370

and prevention suggestions.371

We were interested in using our derived suitability metric to determine areas at risk of372

BTV based primarily on temperature suitability. A risk map can be a useful planning tool,373

both to understand the scale of current risk, and to anticipate suitable regions where the374

establishment of BTV could be successful were it to be introduced, with competent vectors.375

We created global risk maps showing the number of months per year each location worldwide376

is suitable for BTV disease transmission given the presence of two midge species, namely,377

Culicoides sonorensis and Culicoides variipennis. The results show that warmer areas are at378

risk year-round, while cooler areas are at risk for fewer months. Based on currently available379

data, few locations are predicted to have temperatures hot enough to exclude BTV for many380

months of the year. Further trait data to decrease the uncertainty near the thermal limits381

would enable more precise and accurate predictions. However, the particular predictions382

are also based on long-term, baseline current temperatures. With climate change, and the383

continuous rising of global temperatures, the area at risk of BTV may expand and shift to384

include places with previously lower risk, or some year-round locations may become too hot385

for year-round transmission [44, 45].386

In building our maps, we chose to use monthly mean temperatures, as this captures the387
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mean response of the suitability determined mechanistically. Other approaches might be to388

use climate products with different temporal resolutions and express suitability in the number389

of days between thresholds, but these products tend to be available at much coarser spatial390

resolutions, making them less suitable for combining with livestock layers. Instinctively, one391

may want to use minimum or maximum temperatures to impose thresholds, but this faces392

a very biological conundrum of model mechanics - a minimum or maximum temperature393

may exist for a very small time period within a given month, and thus not represent a394

longer period experienced by the vector in question. The behavioral avoidance mechanisms395

vectors can use in short periods of extremes would be missed by this approach, leading to396

underestimates of the potential extent of suitability.397

Previous studies have investigated temperatures suitable for other vector-borne diseases.398

For example, a study on three mosquito-borne diseases, Zika, dengue, and chikungunya399

transmitted by Aedes aegypti and Aedes albopictus showed that the transmission is likely to400

occur between 18-34◦C with peak transmission between 26-29◦C [43, 46, 47]. Moreover, the401

temperatures suitable for the transmission of the plant-borne disease, citrus greening, are402

between 16◦C and 33◦C with peak transmission at 25◦C [48]. Together with our findings,403

this shows that there are similarities between ectotherm vectors in the way they respond to404

temperature. For example, their traits follow humped-shaped thermal performance curves.405

But there are differences in the temperature ranges they tolerate, and the temperatures at406

which their performance is maximal. This points to the importance of building system-407

specific models for predicting the effect of extrinsic factors on the spread of VBDs.408

As highlighted in a 2018 systematic review [49], BTV has been studied using many409

different modeling approaches. The systematic review summarized BTV models used post-410

1998 [49], most of which relied more on strong modeling assumptions than data. The model411

results were used to inform animal health decision-making by identifying at-risk areas and412

the risk of spread in case of introduction [50], and climate change [45]. While several studies413

have examined R0 for BTV [10, 22], our model differs in that it incorporates temperature414
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across a wide range, leading to estimating an R0 that is also temperature-dependent. A415

more recent study used a mathematical quantity called vectorial capacity to estimate BTV416

transmission instead of R0 [51]. R0 and vectorial capacity are very similar, with the latter417

assuming perfect competence and ignoring host recovery rates (making our suitability metric418

somewhere in between). The study identifies the optimal transmission suitability range for419

C. sonorensis to be between 27 and 30 ◦C which overlaps with our transmission peak range of420

26 and 29 ◦C. The difference is likely due to our study including trait data for two Culicoides421

spp. as well as including temperature-dependent infection parameters. Overall, both models422

are in agreement regarding the gross patterns of temperature effects BTV transmission.423

In addition, while data on Culicoides spp. temperature dependent traits are scarce, we424

had the luxury of obtaining sufficient data to create a model for two North American vectors,425

and not mix traits across species from different continents. This is of particular interest in426

assessing the potential for invasion and establishment (and hence spread) of disease vec-427

tors, which has been found to be almost a hallmark of Culicoides spp. across the European428

landscape in recent decades, leading to novel outbreaks of BTV. Linking R0 or S(T ) to429

temperature can help identify BTV outbreak risk based on the temperature at particular430

locations, which in turn can inform management policies and control strategies, within cur-431

rent and changing climate conditions. By establishing a model specific to current vectors in432

the U.S., we can assess the potential for invasion and spread to other parts of the globe.433
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M. Beer, and S. Zientara, “Complete Coding Genome Sequence of Putative Novel Blue-494

tongue Virus Serotype 27,” Microbiology Resource Announcements, vol. 3, no. 2, 2015.495

[15] USDA, Veterinary Biological Products. United States Department of Agriculture, 2019.496

[16] USDA, “U.S. Cattle & Beef Industry Statistics and Information,” Economic Research497

Service, 2015.498

[17] USDA, “Orbiviruses Gap Analysis: Bluetongue and Epizootic Hemorrhagic Disease,”499

Agricultural Research Service, 2013.500

[18] A. S. Lear and R. J. Callan, Overview of Bluetongue, 2014.501

[19] N. J. MacLachlan and A. J. Guthrie, “Re-emergence of bluetongue, African horse sick-502

ness, and other Orbivirus diseases,” Veterinary Research, 2010.503

[20] EC, “Bluetongue seasonally vector free periods,” European Comission, 2016.504

29



[21] J. Turner, R. G. Bowers, and M. Baylis, “Two-host, two-vector basic reproduction ratio505

(R0) for bluetongue,” PloS one, vol. 8, no. 1, p. e53128, 2013.506

[22] S. P. Brand, K. S. Rock, and M. J. Keeling, “The interaction between vector life history507

and short vector life in vector-borne disease transmission and control,” PLoS computa-508

tional biology, vol. 12, no. 4, p. e1004837, 2016.509

[23] R. Ross, The prevention of malaria. John Murray; London, 1911.510

[24] G. Macdonald et al., “The epidemiology and control of malaria.,” The Epidemiology511

and Control of Malaria., 1957.512

[25] K. Dietz, “The estimation of the basic reproduction number for infectious diseases,”513

Statistical methods in medical research, vol. 2, no. 1, pp. 23–41, 1993.514

[26] O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious dis-515

eases: model building, analysis and interpretation, vol. 5. John Wiley & Sons, 2000.516

[27] O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-517

generation matrices for compartmental epidemic models,” Journal of the Royal Society518

Interface, p. rsif20090386, 2009.519

[28] A. I. Dell, S. Pawar, and V. M. Savage, “Systematic variation in the temperature de-520

pendence of physiological and ecological traits,” Proceedings of the National Academy521

of Sciences, vol. 108, no. 26, pp. 10591–10596, 2011.522

[29] M. J. Angilletta Jr and M. J. Angilletta, Thermal adaptation: a theoretical and empirical523

synthesis. Oxford University Press, 2009.524

[30] W. J. Tabachnick, “Culicoides variipennis and bluetongue-virus epidemiology in the525

United States,” Annual Review of Entomology, vol. 41, no. 1, pp. 23–43, 1996.526

[31] J. A. Huwaldt and S. Steinhorst, “Plot digitizer,” URL http://plotdigitizer. sourceforge.527

net, 2013.528

30



[32] M. Plummer, rjags: Bayesian Graphical Models using MCMC, 2019. R package version529

4-10.530

[33] L. Joseph, D. B. Wolfson, and R. D. Berger, “Sample size calculations for binomial531

proportions via highest posterior density intervals,” Journal of the Royal Statistical532

Society: Series D (The Statistician), vol. 44, no. 2, pp. 143–154, 1995.533

[34] R Development Core Team, R: A Language and Environment for Statistical Computing.534

R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.535

[35] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, “Very high536

resolution interpolated climate surfaces for global land areas,” International Journal of537

Climatology: A Journal of the Royal Meteorological Society, vol. 25, no. 15, pp. 1965–538

1978, 2005.539

[36] M. Gilbert, G. Nicolas, G. Cinardi, T. P. Van Boeckel, S. Vanwambeke, W. G. R.540

Wint, and T. P. Robinson, “Global sheep distribution in 2010 (5 minutes of arc),” 2018.541

https://doi.org/10.7910/DVN/BLWPZN.542

[37] M. Gilbert, G. Nicolas, G. Cinardi, T. P. Van Boeckel, S. O. Vanwambeke, G. W. Wint,543

and T. P. Robinson, “Global distribution data for cattle, buffaloes, horses, sheep, goats,544

pigs, chickens and ducks in 2010,” Scientific data, vol. 5, p. 180227, 2018.545

[38] R. J. Hijmans, raster: Geographic Data Analysis and Modeling, 2019.546

[39] R. J. Hijmans and J. van Etten, raster: Geographic analysis and modeling with raster547

data. R package version 2.0–12, 2012.548

[40] R. Bivand and N. Lewin-Koh, maptools: Tools for Handling Spatial Objects, 2020. R549

package version 1.0-2.550

[41] R. Bivand, T. Keitt, and B. Rowlingson, rgdal: Bindings for the ’Geospatial’ Data551

Abstraction Library, 2021. R package version 1.5-23.552

31



[42] S. J. Ryan, A. McNally, L. R. Johnson, E. A. Mordecai, T. Ben-Horin, K. Paaijmans,553

and K. D. Lafferty, “Mapping physiological suitability limits for malaria in Africa under554

climate change,” Vector-Borne and Zoonotic Diseases, vol. 15, no. 12, pp. 718–725,555

2015.556

[43] S. J. Ryan, C. J. Carlson, E. A. Mordecai, and L. R. Johnson, “Global expansion557

and redistribution of Aedes-borne virus transmission risk with climate change,” PLoS558

Neglected Tropical Diseases, vol. 13, no. 3, p. e0007213, 2019.559

[44] A. M. Samy and A. T. Peterson, “Climate change influences on the global potential560

distribution of bluetongue virus,” PloS One, vol. 11, no. 3, p. e0150489, 2016.561

[45] A. E. Jones, J. Turner, C. Caminade, A. E. Heath, M. Wardeh, G. Kluiters, P. J. Diggle,562

A. P. Morse, and M. Baylis, “Bluetongue risk under future climates,” Nature Climate563

Change, vol. 9, no. 2, p. 153, 2019.564

[46] E. A. Mordecai, J. M. Cohen, M. V. Evans, P. Gudapati, L. R. Johnson, C. A. Lippi,565

K. Miazgowicz, C. C. Murdock, J. R. Rohr, S. J. Ryan, et al., “Detecting the impact566

of temperature on transmission of Zika, dengue, and chikungunya using mechanistic567

models,” PLoS neglected tropical diseases, vol. 11, no. 4, p. e0005568, 2017.568

[47] S. J. Ryan, C. J. Carlson, B. Tesla, M. H. Bonds, C. N. Ngonghala, E. A. Mordecai,569

L. R. Johnson, and C. C. Murdock, “Warming temperatures could expose more than570

1.3 billion new people to Zika virus risk by 2050,” Global Change Biology, 2020.571

[48] R. A. Taylor, S. J. Ryan, C. A. Lippi, D. G. Hall, H. A. Narouei-Khandan, J. R.572

Rohr, and L. R. Johnson, “Predicting the fundamental thermal niche of crop pests573

and diseases in a changing world: a case study on citrus greening,” Journal of Applied574

Ecology, vol. 56, no. 8, pp. 2057–2068, 2019.575

[49] N. Courtejoie, G. Zanella, and B. Durand, “Bluetongue transmission and control in576

32



Europe: A systematic review of compartmental mathematical models,” Preventive vet-577

erinary medicine, 2018.578

[50] N. Hartemink, B. Purse, R. Meiswinkel, H. E. Brown, A. De Koeijer, A. Elbers, G.-J.579

Boender, D. Rogers, and J. Heesterbeek, “Mapping the basic reproduction number (R0)580

for vector-borne diseases: a case study on bluetongue virus,” Epidemics, vol. 1, no. 3,581

pp. 153–161, 2009.582

[51] C. Mayo, E. McDermott, J. Kopanke, M. Stenglein, J. Lee, C. Mathiason, M. Car-583

penter, K. Reed, and T. A. Perkins, “Ecological dynamics impacting bluetongue virus584

transmission in north america,” Frontiers in Veterinary Science, vol. 7, 2020.585

[52] A. L. Lloyd, “Realistic distributions of infectious periods in epidemic models: changing586

patterns of persistence and dynamics,” Theoretical Population Biology, vol. 60, no. 1,587

pp. 59–71, 2001.588

[53] P. E. Parham and E. Michael, “Modeling the effects of weather and climate change on589

malaria transmission,” Environmental Health Perspectives, vol. 118, no. 5, p. 620, 2010.590

[54] T. J. Lysyk and T. Danyk, “Effect of temperature on life history parameters of adult591

Culicoides sonorensis (Diptera: Ceratopogonidae) in relation to geographic origin and592

vectorial capacity for bluetongue virus,” Journal of Medical Entomology, vol. 44, no. 5,593

pp. 741–751, 2007.594

[55] B. Mullens, A. Gerry, T. Lysyk, and E. Schmidtmann, “Environmental effects on vector595

competence and virogenesis of bluetongue virus in Culicoides: interpreting laboratory596

data in a field context,” Vet Ital, vol. 40, no. 3, pp. 160–166, 2004.597

[56] S. Carpenter, A. Wilson, J. Barber, E. Veronesi, P. Mellor, G. Venter, and S. Gubbins,598

“Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides599

biting midges,” PloS one, vol. 6, no. 11, p. e27987, 2011.600

33



[57] J. Vaughan and E. Turner Jr, “Development of immature Culicoides variipennis601

(Diptera: Ceratopogonidae) from Saltville, Virginia, at constant laboratory temper-602

atures,” Journal of medical entomology, vol. 24, no. 3, pp. 390–395, 1987.603

[58] C. D. Harvell, C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld, and604

M. D. Samuel, “Climate warming and disease risks for terrestrial and marine biota,”605

Science, vol. 296, no. 5576, pp. 2158–2162, 2002.606

A Appendix607

A.1 Transmission model for BTV608

We use an SIR-SEI type of compartmental model to describe vector-host interactions in

transmitting BTV (see Figure 2). The host population (H) is divided into susceptible (S),

infected (I), and recovered (or immune) (R) classes, while the vector population (V ) is

divided into susceptible (SV ) and infected (IV ) classes as well as three Exposed (EV ) classes.

Here we use three exposed classes in the vector population to incorporate a more realistic

length of the extrinsic incubation period. Using three compartments with the exit rate from

each compartment being 3 ν, lead to a Gamma distribution for overall midge progression

to the infectious class with a mean rate of ν. Increasing the number of compartments used

from 3 to a larger number leads to a Gamma distribution with lower variance around the

mean [52]. This approach is an alternative to using fixed time delays, which are not suitable

when using temperature-dependent parameters. Both host (H) and vector (V ) populations
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are assumed (and are by definition of the model) constant.

dS

dt
= −ab

H
IV S (1)

dI

dt
=

ab

H
IV (t− τ)S(t− τ)− dI (2)

dR

dt
= dI (3)

dSV

dt
= rV − ac

H
ISV − µSV (4)

dEV 1

dt
=

ac

H
ISV − 3νEV 1 − µEV 1 (5)

dEV 2

dt
= 3νEV 1 − 3νEV 2 − µEV 2 (6)

dEV 3

dt
= 3νEV 2 − 3νEV 3 − µEV 3 (7)

dIV
dt

= 3νEV 3 − µIV . (8)

where

H = S + I +R (9)

V = SV + EV 1 + EV 2 + EV 3 + IV (10)

The model’s parameters are presented in the Table 1 below. Note that the parameters

Parameter Definition Units
d Recovery rate of infected hosts 1/day
τ Host’s exposure period day
r Vector population’s birth rate 1/day
a Vector biting rate bites / day
b Probability that a midge is infected dimensionless
c Probability that a midge is infectious dimensionless
µ Mortality rate of adult vectors 1/day
ν Parasite’s development rate 1/day

Table 1: Parameters used in the mathematical model, their description, and units.

609

τ is the time that a susceptible (S) takes to become infected after receiving a bite from610

infected vector (IV ). The parameter ν is the inverse of the Extrinsic Incubation Period of611
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the pathogen (EIP), i.e., ν =
1

EIP
. We define the vector population size to be V =

λ

µ
,612

where λ is the total birth rate of adult midges in the whole population (adults/day), and613

µ is per-capita adult mortality rate (1/day). This is based on Parham & Michael [53], who614

derive the expression phenomenologically by treating V as a random variable. Thus, λ is615

equivalent to rV in the model above, given that r = µ at disease free equilibrium, and is616

given by617

λ =
F pE pL pP

(ρE + ρL + ρP ) µ
(11)

where F is the number of eggs produced by all females in the population per day, pE,L,P618

are the survival probabilities in the Eggs, Larvae, and Pupae stages, and ρE, ρL, ρP are the619

development time in each stage. Then, the abundance of the vector becomes,620

V =
λ

µ
=

F pE pL pP
(ρE + ρL + ρP ) µ2

(12)

A.2 Host recovery rate d sensitivity analysis621

Although all ruminants are susceptible to BTV disease, each responds to the infection differ-622

ently, with sheep being the most susceptible and showing extreme morbidity and mortality.623

In addition, BTV host recovery depends on the intensity of the infection as well as the time624

of disease detection, which results in recovery rate variability among hosts. To account for625

this, we perform a sensitivity analysis on the host recovery rate d by looking at the derivative626

of R0 with respect to d as follows:627

∂R0

∂d
=

1

2

(︃
− V g f

d2 H µ

)︃(︃
V g f

d H µ

)︃−1/2

= − 1

2d

(︁
R2

0

)︁
(R0)

−1 = −R0

2d
. (13)

Since
∂R0

∂d
< 0 always, the basic reproductive ratio R0 increases as the recovery rate d628

decreases. Figure 1 shows different R0 densities corresponding to different host recovery rate629

values. Higher lengths of infection 1/d, i.e. lower recovery rates d, are associated with higher630
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R0 densities, meaning that hosts with low recovery rate such as sheep are more challenging631

to manage as the chance of outbreak for them is more likely.
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Figure 1: Host recovery rate d values correspond to different R0 posterior densities. As d decreases, R0

density increases meaning that a lower recovery rate correspond to a higher outbreak risk.

632

A.3 Uncertainty analysis633

We investigate the uncertainty caused in each of R0 components, the midge density V , the634

functional form f , and the transmission potential g by examining the source of uncertainty635

within each component. For the midge density, the uncertainty is mainly caused by the636

adult midge mortality rate µ within a wide temperature range, from 10◦C to 32◦C. At637

higher temperatures (¿32◦C) the uncertainty is caused by the fecundity F .638

In the functional form case, the uncertainty is caused by the adult mortality rate µ for639

temperatures between 18◦C and 32◦C, this range overlaps with that of the midge density.640

At lower (10-18◦C) and higher (32-45◦C) temperature ranges, the uncertainty is caused by641

the pathogen development rate ν. In the transmission potential the overall uncertainty is642

caused by the biting rate a.643
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Figure 2: The source of uncertainty in the midge density V (Top), the functional form f (Bottom-left), and
the transmission potential g (Bottom-right) is measured by calculating the relative width of quantiles with
each parameter varying with temperature while the remaining parameters are kept constants.

A.4 Bayesian fitting of traits thermal curves644

To fit each trait, we chose a unimodal functional form as the mean function. We use normal645

distributions for most of the data while binomial distributions are used when fitting proba-646

bility distributions. We used uninformative priors appropriate for the biological description647

of the data, taking into account the positivity of their values as well as their range. The648

values in the priors are decided as we go until the appropriate fitting curve is obtained.649
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Midges biting rate a650

The biting rate of adult midges is one of many factors that influence Bluetongue transmission651

[54]. In order to calculate the biting rate, the time required for female Culicoides sonorensis652

to lay eggs after a blood meal, also known as a gonotrophic period, is required. Biting rate653

(a) can be approximated by taking the inverse of the gonotrophic cycle duration. Similar654

to other traits, the biting rate is sensitive to environmental factors, especially, temperature655

[54] (see Figure 3 for thermal fit).656

Vector competence bc657

Vector competence for adult midges is a measure of their ability to transmit the disease. It is658

genetically determined and heavily influenced by environmental factors such as temperature659

and humidity [55]. Vector competence (bc) is the product of the probability of a vector660

getting infected after a blood meal containing a pathogen (c) and the probability of a vector661

transmiting infection (b). While we were able to find data for b concerning Culicoides662

sonorensis [56], we were unable to find data for c. We assume c = 0.5 for all calculations663

used in this analysis. We did fit a Bayesian model to the parameter b (Figure 4).664

Juvenile survival probability pE, pL, pP665

Vaughan et. al. studied the sub-adult life cycle of Culicoides variipennis at temperatures666

of 20 ◦C, 25 ◦C, and 28 ◦C [57]. We define the probability of an egg hatching by using the667

mean percentage of laid eggs that hatched at each given temperature. We now define the668

probability of successful larval pupation by collecting the percentage of larva that ended up669

pupating at each given temperature. We finally define the probability of pupae emerging to670

become adults, pP , as the mean percentage of pupae that survive to the adult stage at each671

given temperature (Figures 5, 6, 7).672
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Figure 3: (Top) The mean trajectory in solid line and HPD interval in dashed black for the biting rate a.
(Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the biting rate a.
The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation
kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

Juvenile development time ρE, ρL, ρP673

Egg Development Time is defined as the time in days required for eggs to hatch in a given674

temperature. Culicoides variiennis were studied in a laboratory setting [57]. Larva Devel-675
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Figure 4: (Top) The mean trajectory in solid line and HPD interval in dashed black for the probability of
a vector transmitting the virus when biting b. (Bottom) Histograms of the posterior distribution for each
parameter of the Brière fit for the probability b. The prior distribution for each parameter is plotted in red.
The Brière fit is determined by the equation kT (T − TMin)

√
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opment Time is defined as the time in days required for the larva to mature into a pupa in676

a given temperature. Pupa Development Time is defined as the time in days required for a677
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Figure 5: (Top) The mean trajectory in solid line and HPD interval in dashed black for the egg survival
probability pE . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for
the probability pE . The prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

pupa to mature into adult midges in a given temperature (Figures 8, 9, 10).678
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Figure 6: (Top) The mean trajectory in solid line and HPD interval in dashed black for the larval survival
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√
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Fecundity F679

The rate at which female midges lay eggs is closely related to the spread of Bluetongue. This680

rate is typically measured as eggs per female per day. For this study we also utilized fecundity681
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Figure 7: (Top) The mean trajectory in solid line and HPD interval in dashed black for the pupal survival
probability pP . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for
the probability pP . The prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

data that was taken over two oviposition cycles and transformed the data (originally eggs682

per female) by dividing by the median oviposition time [54].683
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Figure 8: (Top) The mean trajectory in solid line and HPD interval in dashed black for egg development
time ρE . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for egg
development time ρE . The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

Pathogen development rate ν684

Parasite development has been shown to increase with temperature in studies that support685

the hypothesis that global warming has been cause for latitudinal shifts which in turn increase686
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Figure 9: (Top) The mean trajectory in solid line and HPD interval in dashed black for larval development
time ρL. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for larval
development time ρL. The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

the reach of vectors that transmit diseases like bluetongue [58]. In order to investigate this687

trait’s relationship with temperature, we made use of data on Extrinsic Incubation Period688

(EIP) to create a new parameter: Parasite Development Rate (ν) (ν = 1/EIP). EIP is the689
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Figure 10: (Top) The mean trajectory in solid line and HPD interval in dashed black for pupal development
time ρP . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for pupal
development time ρP . The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

time between a vector getting infected with a pathogen to the time that the vector itself is690

able to transmit the pathogen.691
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Figure 11: (Top) The mean trajectory in solid line and HPD interval in dashed black for fecundity F .
(Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for fecundity F .
The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation
kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

Adult mortality rate µ692

The rate at which midges die over a span of time is known as the mortality rate µ. We693

define the mortality rate of midges as 1
lf
, where lf represents the lifespan of midges in days,694
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Figure 12: (Top) The mean trajectory in solid line and HPD interval in dashed black for the parasite
development rate ν. (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit
for the parasite development rate ν. The prior distribution for each parameter is plotted in red. The Brière
fit is determined by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

or the probability of survival for the midges. We define mortality rate in the case where lf695

is the lifespan of midges in days. Mortality rate is also sensitive to environmental factors,696

especially temperature [54].697
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Figure 13: (Top) The mean trajectory in solid line and HPD interval in dashed black for the mortality rate
µ. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for the mortality
rate µ. The prior distribution for each parameter is plotted in red. The quadratic fit is determined by the
equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

Thermal traits prior distributions698

Table 2 summarizes all the priors used to fit the thermal curves.699
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A.5 Posterior distributions for all S(T ) forms700

For all three R0 posterior distributions we provide posterior distributions for the lower tem-701

perature limit, peak temperature, and upper temperature limit.702
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Figure 14: Minimum, peak and, maximum temperatures posterior densities for Dietz 1993 [25] R0
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Figure 15: Minimum, peak and, maximum temperatures posterior densities for Gubbins 2008 [10] R0

A.6 Digitized data703

Table 3 shows the digitized trait values and their corresponding references.704

Parameter Trait Value Units Transformed Ref.

a Vector biting rate 0.05 bites/day Y 48

0.03

0.08

0.18

0.29

0.4

0.4
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0.28

0.28

0.66

0.66

0.08

0.08

0.15

0.19

0.66

b Probability of 0.08 dimensionless Y 50

transmission 0.28

0.28

0.88

0.96

efd Fecundity 5.528 # eggs per female Y 48

3.122 per day

13.11

9.745

6.206

31.191

19.034

1.361

1.242

11.08

13.961

17.93

41.531
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60.535

39.856

51.724

69.951

12.731

1.154

36.417

0.465

5.844

7.048

19.469

31.938

21.195

12.255

22.332

0.365

1.703

1.536

edt Egg’s development time 63.6 Days N 51

64.7

61.4

50.9

57.1

ldt Larva’s development time 34.5 Days N 51

33.6

26.5

24.4
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16.7

PuDt Pupa’s development time 89.7 Days N 51

65.5

50.6

39.1

38.8

µ Adult’s mortality 0.037
1

Days
Y 48

rate 0.057

0.072

0.057

0.121

0.058

0.078

0.084

0.067

0.073

0.045

0.056

0.077

0.068

0.079

0.114

0.138

0.073

0.078

0.113

pdr Extrinsic incubation 0.051
1

Days
Y 52
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period (EIP) 0.04

0.021

0.052

0.08

0.073

0.073

0.073

0.073

0.069

0.101

0.101

0.14

0.143

0.144

0.208

0.2

0.248

pE Egg’s survival 0.23 dimensionless N 51

probability 0.634

0.538

0.68

0.177

pL Larva’s survival 0.14 dimensionless N 51

probability 0.176

0.104

0.16

0.18
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pP Pupa’s survival 0.8 dimensionless N 51

Probability 0.877

0.943

0.944

0.889

Table 3: Traait values digitized and fit using MCMC.
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Figure 16: Minimum, peak and, maximum temperatures posterior densities for the R0 presented here.
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Model Parameter Mean Function Parameters Prior

Biting Rate TMin dunif(0, 20)
a Brière TMax dunif(20,40)

k dgamma(1,20)
τ dgamma(0.01, 0.01)

Transmission probability TMin dunif(10,24)
b Brière TMax dunif(25,35)

k dgamma(1,10)

Egg Survival Probability TMin dunif(10,20)
pE Brière TMax dunif(35,40)

k dgamma(1,20)
τ dgamma(7, 5−10 )

Larval Survival Probability TMin dunif(0,8)
pL Brière TMax dunif(30,40)

k dgamma(1,20)
τ dgamma(1.5, 0.001)

Pupal Survival Probability TMin dunif(1,5)
pP Brière TMax dunif(35,40)

k dgamma(1,5)
τ dgamma(10, 0.002)

Egg Development Time inter dgamma(1, 0.01)
ρE Quadratic n.slope dgamma(1, 0.5)

qd dgamma(4,28)
τ dnorm(3, 1/800)

Larval Development Time inter dgamma(1, 0.01)
ρL Quadratic n.slope dgamma(1, 0.5)

qd dgamma(4,28)
τ dnorm(3, 1/1000)

Pupal Development Time inter dgamma(1, 0.01)
ρP Quadratic n.slope dgamma(1, 0.5)

qd dgamma(4,28)
τ dnorm(3, 1/200)

Eggs per Female per Day TMin dunif(1, 10)
F Brière TMax dunif(29,35)

k dgamma(1,1)
τ dgamma(9, 0.0005)

Parasite Development Rate TMin dunif(1, 17)
ν Brière TMax dunif(18,45)

k dgamma(1,10)
τ dgamma(9, 0.05)

Adult Mortality Rate inter dgamma(2,2)
µ Quadratic n.slope dgamma(3,3)

qd dgamma(2,2)
τ dnorm(1000, 1/500)

Table 2: Prior distributions for each of the parameters for the fitting of the responses for each of the thermal
traits considered.
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