

¹ Predicting temperature-dependent transmission
² suitability of bluetongue virus in livestock

³ Fadoua El Moustaid^{1,4}, Zorian Thronton^{2,3}, Hani Slamani^{2,3}, Sadie
⁴ J. Ryan^{5, 6, 7}, and Leah R. Johnson^{1,2,3,4, *}

⁵ ¹Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061,
⁶ USA

⁷ ²Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA

⁸ ³Computational Modeling and Data Analytics, Virginia Tech, Blacksburg,
⁹ VA 24061, USA

¹⁰ ⁴Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA

¹¹ ⁵Quantitative Disease Ecology and Conservation (QDEC) Lab, Department
¹² of Geography, University of Florida, Gainesville, FL 32601

¹³ ⁶Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610

¹⁴ ⁷School of Life Sciences, University of KwaZulu, Natal, South Africa

¹⁵ *Corresponding author: lrjohn@vt.edu

¹⁶ August 15, 2022

Abstract

The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector-host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into $S(T)$, a transmission suitability metric derived from the disease's basic reproductive number, R_0 . This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, *Culicoides sonorensis* and *Culicoides variipennis* present in North America. Our results show that outbreaks of BTV are more likely between 15°C and 34°C with predicted peak transmission risk at 26°C. The greatest uncertainty in $S(T)$ is associated with: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges' probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of the establishment.

41 Author Summary

⁴² In this paper, we use data on traits of the biting midge that are sensitive to temperature
⁴³ to study bluetongue disease transmission. Bluetongue disease is a vector-borne disease that

44 threatens different types of ruminants, including sheep and cattle. This disease affects the
45 livestock economy in the US and around the world. Here, we focus on two species of biting
46 midges that transmit the bluetongue virus. First, we collect temperature-dependent trait
47 data from previously published studies. Then, we used this data to derive the parameters
48 incorporated into the mathematical and statistical models. To assess the transmission risk,
49 we use a metric derived from the model to identify the temperature range suitable for blue-
50 tongue disease transmission. Our findings allow us to predict the areas around the world
51 that could be at risk of bluetongue transmission should the midge species be present. These
52 areas require more surveillance in case a bluetongue disease outbreak begins. Potentially,
53 our results can inform future control and prevention strategies for bluetongue disease.

54 Keywords— Bluetongue virus, vector-borne diseases, transmission, Bayesian analysis,
55 temperature, disease modeling

56 1 Introduction

57 With ongoing climate change, it is critical that we understand how temperature influences
58 the dynamics of emerging diseases. Vector-borne diseases (VBDs) are highly sensitive to
59 climate factors, particularly temperature, as demonstrated previously for VBDs of both
60 humans and plants [1, 2, 3, 4, 5]. Bluetongue virus (BTV), in the *Reoviridae* family (genus
61 *Orbivirus*), causes the disease Bluetongue in livestock across the world and is thus a VBD of
62 considerable economic concern. The biting midges of the *Culicoides* family are responsible
63 for transmitting BTV and many other arboviruses. More than 1,400 species of *Culicoides*
64 have been classified, globally, but fewer than 30 have been identified as competent vectors
65 for BTV transmission [6]. These midges are highly sensitive to changes in temperature [7, 8],
66 and thus so is BTV transmission [9, 10].

67 BTV can infect most species of domestic and wild ruminants, including sheep, goats, and
68 cattle [11]. Sheep are the most susceptible to the disease and exhibit the highest morbidity

69 and mortality, post-infection [12, 13]. In the majority of infections by strains of BTV's
70 27 serotypes, animals rarely show any clinical signs [14]. The infection severity and the
71 presence of clinical signs both depend on the serotype, and the severity of infection can
72 range from rapid fatality to quick recovery. Common outward clinical signs include a blue
73 tongue, fever, and excessive salivation [13]. Since clinical signs are rare, BTV infection often
74 goes without detection. Unfortunately, undetected cases can still result in mortality, and
75 while BTV vaccines exist, vaccine development is in its infancy [15]. An effective polyvalent
76 vaccine to immunize against more than one strain of BTV has yet to be developed [16], and
77 existing attenuated viral vaccines pose significant health risks to livestock, such as reduced
78 milk production in lactating sheep, abortion, early embryonic death, and teratogenesis in
79 pregnant females [17].

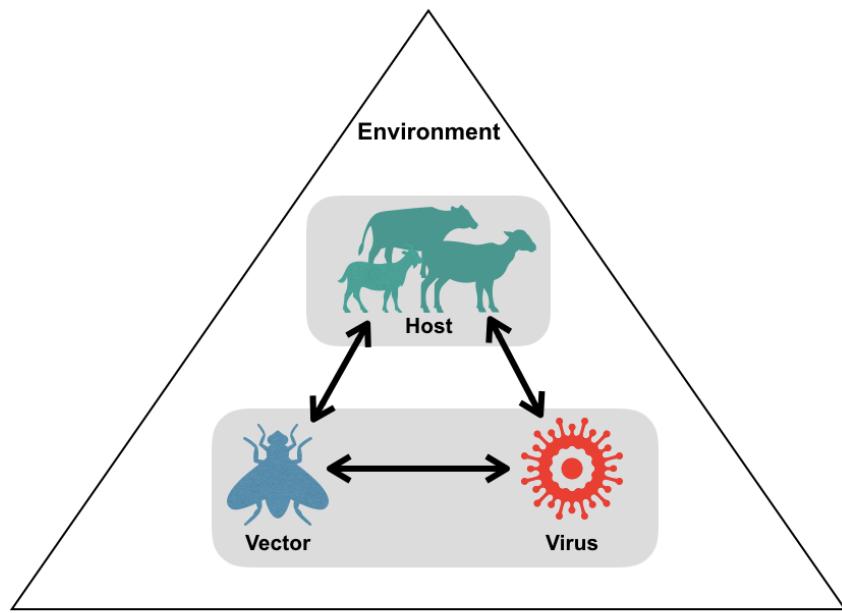


Figure 1: Bluetongue virus interaction diagram: the mechanisms underlying the transmission of bluetongue virus include, host-vector interactions, host-pathogen interactions, vector-pathogen interactions as well as the environmental effect on all interactions.

80 In the absence of an effective polyvalent BTV vaccine, and with the potential risks and
81 costs of the available vaccines, the impact of BTV on global agriculture is significant. For
82 example, the cost of BTV in the U.S. beef industry was estimated at \$95 billion in 2014 [16].
83 Although BTV was first detected among merino wool sheep in South Africa in 1905, since

84 then the disease has been found on every continent but Antarctica [18]. In recent years, the
85 disease has spread to areas previously believed to not be at risk, including North and Central
86 Europe, parts of Asia, and Western North America [12, 19]. Mandatory testing of animals
87 and losses in foreign markets form a huge economic burden. This adds to the economic
88 impact of BTV on the livestock industry. There is substantial improvement needed in our
89 ability to assess risks and to anticipate potential shifts in risk over time and space.

90 Though the cause of the recent appearance of BTV in some of the new regions (especially
91 Northern Europe) is still unknown, it is believed that climate change is a major driver. More
92 specifically, the increase in temperature of certain locations makes them suitable for midges
93 to survive, and therefore transmit diseases [13]. For example, some cases of BTV-8 in Europe,
94 specifically in France, have exceeded expectations of receding and survived cold winters [20].

95 Mathematical modeling can facilitate our understanding of the complexities of the trans-
96 mission process of vector-borne diseases [10, 21, 22]. The classical Ross-MacDonald model of
97 VBDs and similar models allow us to calculate the basic reproductive ratio R_0 of the disease
98 [23, 24]. This summary quantity is widely used to estimate how infectious a disease is and
99 whether an outbreak can occur. When $R_0 > 1$, the disease is likely to spread, leading to an
100 outbreak; when $R_0 < 1$ the disease is likely to die out. As shown in Figure 1, BTV transmis-
101 sion involves host-vector interactions, host-virus interactions, vector-virus interactions, and
102 the effect of the environment. Mathematical models allow us to describe these interactions,
103 parameterize them with data, and quantify the knock-on effects for transmission risk.

104 Here we are interested in answering the following questions: (1) How does the risk of
105 transmission of BTV vary with temperature? (2) Do different model assumptions lead to
106 different predicted suitability ranges? and (3) Which traits contribute the most to variation
107 in estimates of transmission risk? To answer these questions, we take an approach used pre-
108 viously for VBDs such as malaria [1, 2]. We begin by using Bayesian inference to fit thermal
109 responses to laboratory-derived data for temperature-sensitive midge life-history traits. We
110 then derive R_0 for BTV as a function of these thermal responses and incorporate the fitted

111 thermal responses to obtain estimates of these across temperatures. To focus on just the
 112 temperature-dependent components, we define a suitability metric, $S(T)$, that isolates the
 113 temperature-sensitive components of R_0 . We compare forms of $S(T)$ where the midge den-
 114 sity, V , is constant vs temperature-sensitive to ascertain if this generates major differences
 115 in suitability predictions. Next, we conduct uncertainty analyses to assess identify which
 116 parameters drive uncertainty in $S(T)$. This can indicate that either further data collection
 117 is needed to refine estimates, or that certain parameters have greater impacts on BTV dis-
 118 ease transmission at different temperatures. Finally, we visualize predictions of the fitted
 119 suitability framework to explore which geographical areas might be suitable for transmission
 120 in the current native range of the midges, or if they become established elsewhere. Further-
 121 more, understanding which temperature range results in $S(T) > 0$, for given levels of other
 122 fixed parameters in our model, may inform prevention and control strategies that target
 123 particular parameters (e.g., adult mortality rates via pesticide application).

124 **2 Methods**

125 **2.1 Derivation of R_0 and $S(T)$**

126 To predict the outbreak potential of BTV, several forms of the basic reproductive number
 127 R_0 have been developed [10, 21, 22]. The classical reproductive ratio for a generic VBD
 128 [1, 25] is given by

$$129 R_0 = \left(\frac{V bc a^2}{d H \mu} e^{-\mu/\nu} \right)^{1/2} \text{ from [25]} \quad (1)$$

130 where V is midge population density; bc is vector competence (the product of the probability
 131 that a midge can transmit the infection to an uninfected host, b , and the probability that
 132 a midge gets infected when biting an infected host, c); a is the per-midge biting rate; μ
 133 is the adult midge mortality rate; ν is the pathogen development rate ($\nu = 1/EIP$ with
 134 EIP the extrinsic incubation period); H is host density, and d is infected host recovery rate.

134 The model used to derive this version of R_0 is a system of delay differential equations that
 135 assumes no exposed class and that susceptible midges move to the infected class shortly after
 136 contact with an infected host. A similar scenario can be described using a system of ordinary
 137 differential equations while expressing the delay between the contact with infected host and
 138 midges becoming infectious in terms of an exposed class. In this case, the reproductive
 139 number for the midge-borne viral disease (BTV) can be expressed as,

$$R_0 = \left(\frac{V bc a^2}{d H \mu} \frac{\nu}{\nu + \mu} \right)^{1/2} \text{ from [10]} \quad (2)$$

140 This version of R_0 is a reduced version from a model that uses multiple types of host and
 multiple types of midge species as in [10, 21].

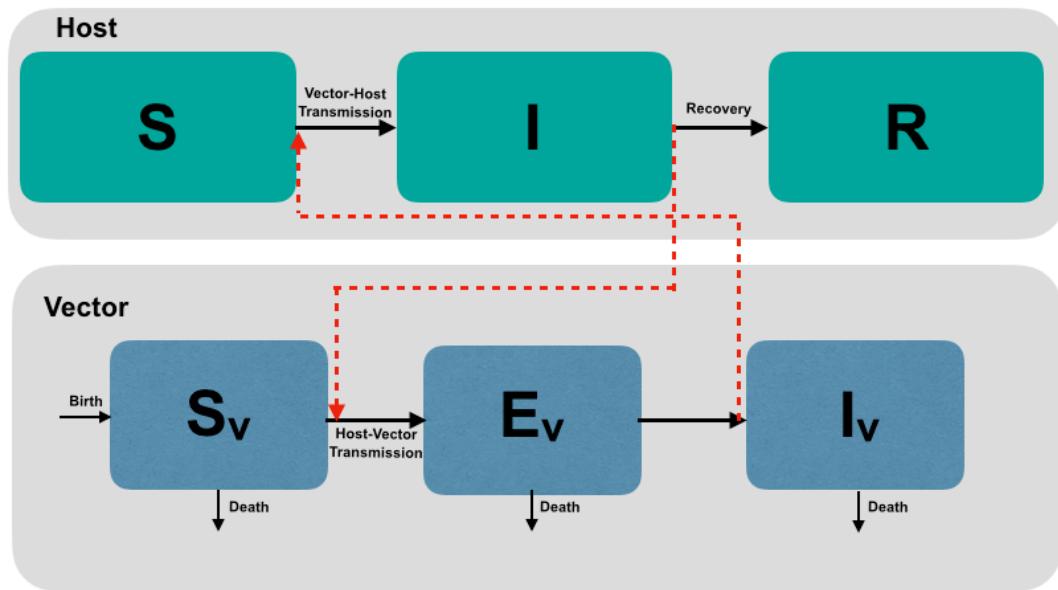


Figure 2: A schematic illustration of BTV transmission. The host population is composed of three classes: susceptible (S), infected (I), and recovered (R). The midge population is composed of a susceptible class (S_v), three exposed classes (E_v), and an infected class (I_v). Black arrows show movement between classes and red arrows indicate contact potentially leading to transmission.

141

142 Figure 2 shows a schematic representation of our BTV transmission model (Equations (1)-
 143 (8) in Appendix A) which considers a single host population split into susceptible individuals
 144 that are vulnerable to BTV disease (S), infected individuals that have acquired infection
 145 (I), and individuals who have recovered from the disease (R). Also, we consider a vector

¹⁴⁶ population containing susceptible midges (S_v), three levels of exposed individuals (E_v), and
¹⁴⁷ an infected class of midges (I_v). The exposed classes in the model represent the extrinsic
¹⁴⁸ incubation period that midges undergo before becoming able to transmit infection. To
¹⁴⁹ calculate the third version of the basic reproductive number R_0 , we use a next-generation
¹⁵⁰ matrix method described in [26, 27], which leads to the following R_0 equation:

$$R_0 = \left(\frac{V bc a^2}{d H \mu} \left(\frac{3 \nu}{3 \nu + \mu} \right)^3 \right)^{1/2}. \quad (3)$$

¹⁵¹ The term $\left(\frac{3 \nu}{3 \nu + \mu} \right)^3$ in R_0 represents the number of midges that survive the extrinsic
¹⁵² incubation period, leading to a slight difference between the three R_0 forms.

We can represent all three formulas of R_0 with a simple equation given by

$$R_0 = \left(\frac{V g f}{d H \mu} \right)^{1/2} \quad (4)$$

$$= \left(\frac{(midge density) \overbrace{(transmission potential)}^g \overbrace{(prob of becoming infectious)}^f}{(host recovery rate) (host density) (vector mortality)} \right)^{1/2} \quad (5)$$

where the expression for V and g are the same for all three versions and are given by

$$V = \frac{F p_E p_L p_P}{\mu^2 (\rho_E + \rho_L + \rho_P)} \quad (6)$$

$$g = a^2 bc \quad (7)$$

¹⁵³ where F is eggs per female per day, p_E , p_L , and p_P are survival probabilities for eggs, larvae,
¹⁵⁴ and pupae; ρ_E , ρ_L , and ρ_P are development times for eggs, larvae, and pupae, respectively;
¹⁵⁵ μ is adult midge mortality; a is midge biting rate and bc is midge competence.

Although R_0 is a useful metric, particularly since the thresholding behavior can predict whether or not an epidemic can take hold, multiple factors, including the size of the susceptible population, whether or not parasites/hosts/vectors are physically present in an

area, socio-economic factors (e.g., screens, household and working conditions), or control measures, can all impact R_0 at a particular location. We want to focus our analysis strictly on the temperature components of the transmission, to be able to determine the temperatures that prohibit or promote transmission, and explore sensitivity to the thermal traits independently of other factors. Thus, we define a transmission suitability metric, $S(T)$, as the (standardized) thermal components of R_0 (Equation 4), which is given by

$$\begin{aligned} S(T) &= C \left(\frac{Vgf}{\mu} \right)^{1/2} \\ &= C \left(\frac{F p_E p_L p_P a^2 bc f}{\mu^3 (\rho_E + \rho_L + \rho_P)} \right)^{1/2} \end{aligned} \quad (8)$$

156 where C is a constant that is chosen after the Bayesian fitting of traits (see below) that
 157 scales the median suitability to lie between 0 and 1. That is, we choose C to be the highest
 158 value of the posterior median suitability. When the median suitability is zero this indicates
 159 that temperatures do not permit transmission and when the median suitability is 1, this
 160 indicates a maximal transmission, everything else being equal.

161 The difference between the three $R_0/S(T)$ formulas lies in the latent period survival
 162 probabilities, f , representing the probability of midges surviving to become infectious post-
 163 infection. Table 1 summarizes the latent period survival probabilities for each of the three
 164 models considered.

165 In Figure 3, we plot all three latent period survival probabilities with one parameter fixed
 166 as the other varies (e.g., with virus development rate, ν , fixed and midge mortality rate, μ ,
 167 varying). We use all three forms in our analysis while comparing the constant vector density
 168 case V to temperature-sensitive density $V(T)$.

169 2.2 Bayesian fitting of temperature-sensitive traits

170 As ectotherms, midges are sensitive to temperature. The thermal performance for these
 171 temperature-dependent traits is generally hump-shaped, starting at zero at a given minimum

Formula	Traits Used
$f_1 = e^{-\mu \nu}$ [Dietz 1993]	μ : adult mortality rate
$f_2 = \frac{\nu}{\nu + \mu}$ [Gubbins et. al. 2008]	ν : pathogen development rate
$f_3 = \left(\frac{3\nu}{3\nu + \mu} \right)^3$	

Table 1: Formulas for the probability of an infected midge (vector) surviving to become infectious, arising in R_0 formulas from different models, and the parameters involved.

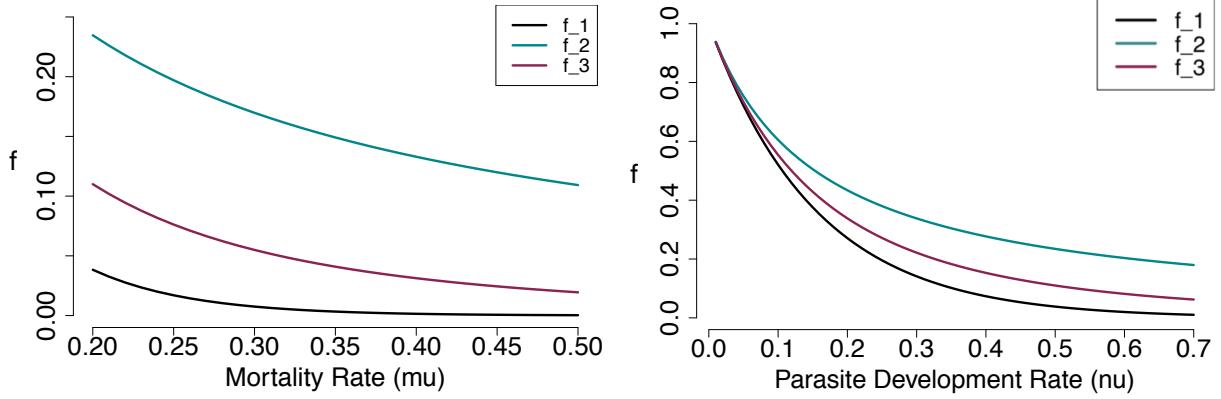


Figure 3: (Left) Latent period survival probability f versus midge mortality rate μ with a fixed $\nu = \text{mean}(\nu(T)) = 0.061$. (Right) Latent period survival probability f versus pathogen development rate ν with a fixed $\mu = \text{mean}(\mu(T)) = 0.15$

172 temperature, then increasing to a peak value as temperature increases, then sharply dropping
 173 to a lower value at a maximum temperature [28, 29]. However, depending on how a trait is
 174 measured, the pattern may instead be concave up. For example, mortality rates exhibit this
 175 pattern, such that the mortality is lowest at intermediate temperatures.

176 Here, we collected trait data corresponding to two midge species from the family *Culi-*
 177 *coides*, namely, *Culicoides sonorensis* and *Culicoides variipennis*, both found the US [30].
 178 The data collection method consisted of synthesizing data from published literature, via
 179 assembling data from tables, and digitizing data points from graphs; details on data used
 180 for fitting for each trait are provided in Appendix A. We focused on data from controlled

181 laboratory experiments on midge trait variation at constant temperatures, ideally with three
182 or more data points. For digitization, we used the free software PlotDigitizer [31].

183 We used the temperature-dependent trait fits in all three $R_0/S(T)$ formulations for com-
184 parison. Following a method first introduced in [1], we fit unimodal curves to temperature-
185 sensitive traits. For the unimodal curves, we chose between a Brière (Equation (9)) for
186 left-skewed data or a quadratic formula (Equation (10)) for symmetric traits.

$$\text{Brière: } kT(T - T_{Min})\sqrt{T_{Max} - T} \quad (9)$$

$$\text{Quadratic: } \text{inter} - n.\text{slope } T + qd T^2 \quad (10)$$

187 where the constants k , T_{Min} , T_{Max} , inter , $n.\text{slope}$, and qd estimated from trait data. For
188 more information on the values, see Appendix A.

189 Similarly to [2], we used a Bayesian approach for our fitting method. For each continuous
190 positive trait, we choose a truncated normal distribution as our likelihood. When fitting
191 probabilities/proportions, we instead either used a binomial likelihood (when raw count data
192 was available) or used a normal likelihood truncated at zero and one if only summarized data
193 were available. We chose priors for thermal performance curve (TPC) parameters to assure
194 parameters have biologically reasonable sign and range.

195 We used Markov Chain Monte Carlo (MCMC) sampling in **JAGS/rjags** to fit our models
196 [32]. For each trait, we ran five MCMC chains with 5000 step burn-in followed by 25000
197 samples. Of these we kept every fifth sample, to obtain 5000 thinned samples for subsequent
198 analyses. We used these 5000 samples of each parameter to calculate the associated trait
199 thermal curves, resulting in 5000 thermal fits of the trait data. After generating the 5000
200 posterior mean curves for each trait, we used the 5000 posterior curves to generate posterior
201 curves for $R_0/S(T)$. For all posteriors (i.e., of traits and $S(T)$), we summarized posterior
202 distributions using the temperature-dependent medians and the corresponding 95% highest
203 posterior density (HPD) interval which is the smallest credible interval in which 95% of the

204 distribution lies [33]. All analyses were implemented in R [34]. More details on likelihoods
205 and priors used can be found in Appendix A.

206 **2.3 Uncertainty in $S(T)$**

207 The $S(T)$ formula (Equation 8) depends on multiple temperature-sensitive traits, and so
208 does its posterior density. Hence, there are many sources of uncertainty in the mean pos-
209 terior density that can be identified through uncertainty analysis. We sought to isolate the
210 contributions of each component of the model to the overall uncertainty through a variation
211 on a traditional sensitivity analysis.

212 We calculated the uncertainty associated with f , g , and V by varying one while keeping
213 the rest fixed at their posterior means. We calculated the width of the 95% credible interval
214 around the mean posterior curve, i.e. the difference between the upper and lower quantiles
215 when only one of the components is allowed to vary. We then divide this by the width of
216 the interval when all are allowed to vary. We repeat this process for each component, f ,
217 g , and V then plot all the curves together against temperature. This allows us to identify
218 which model component is responsible for the largest proportions of uncertainty in $S(T)$ by
219 identifying the curve with the highest value at a given temperature.

220 **2.4 Mapping suitability**

221 The concern about climate-mediated increases and shifts in BTV risk is best visualized
222 using mapping approaches, to understand where suitability is permitted and for how long,
223 and how much livestock are thus at risk. Existing mapping approaches to this question
224 largely focus on the European landscape, due to recent upticks in BTV outbreaks. However,
225 existing models purport to capture a general *Culicoides spp.* model but must rely on data
226 from the U.K. vector *Culicoides obsoletus* mixed with other species that may not be the
227 dominant vector, or even currently present. In this study, we focus on the two US vectors for
228 which there are data and project a global risk. We do this under the assumption that given

229 the capacity for *Culicoides* to spread and establish – as demonstrated by the Afro-tropical
230 *C. imicola* invasion across Southern Europe in recent decades – there may well be similar
231 invasions and establishment by the two well-studied U.S. vectors, and thus specific models
232 will provide useful planning tools.

233 To visualize and apply our understanding of the thermal suitability of BTV, we mapped
234 both suitability and risk, at global scales. First, we define suitable regions as those where the
235 posterior median of the suitability metric $S(T) > 0$. This is equivalent to finding the values
236 where the posterior probability that $S(T) > 0$ is 0.5. We note that here we use a scaled
237 form of $S(T)$ as we described above. We present the geography of suitability across the
238 globe by mapping the number of months of suitable temperatures for transmission based on
239 the monthly average temperatures from the WorldClim dataset [35]. We use these average
240 monthly temperatures as a means to describe seasonality, at a global scale, with climate
241 products that are comparable between baseline (current temperatures) and future scenarios,
242 to lay the groundwork for future investigations. The WorldClim data provide a trade-off
243 between a spatial and temporal resolution that facilitates conducting calculations of risk
244 across the globe.

245 Second, we map livestock at risk of transmission, using the latest FAO Gridded Livestock
246 of the World (GLW3) data for 2010, which details global distributions of sheep, goats, cows,
247 and others, at a 5-minute scale [36]. To create a visually accessible risk map, suitability was
248 scaled 0-1, and this was multiplied by $\log_{10}(1 + \text{livestock})$. Thus we create a scaled risk
249 map, balancing the season length and livestock density, to emphasize areas of coincidence,
250 rather than simple suitability. In this case, we used the GLW3 sheep distribution [37], as the
251 primary host at risk. This gridded product has values ranging from 0 - >340,000 sheep per
252 pixel. All map calculations and manipulations were run in R using packages **raster** [38, 39],
253 **maptools** [40] and **Rgdal** [41], following methods described in [42, 43].

254 **3 Results**

255 **3.1 Temperature-dependence model components**

256 Here we summarize the model components that depend on temperature and explain their
257 role in the model.

258 **Midge thermal traits**

259 In Figure 4 we show data and fitted curves for development times and survival probability for
260 eggs, larvae, and pupae. Development times Figure 4 (left) are fitted assuming a quadratic
261 function, under the assumption that juvenile midges at a given stage will need more time to
262 develop at very low ($<20^{\circ}\text{C}$) and very high ($>35^{\circ}\text{C}$) temperatures. For eggs, the development
263 time ranges from 60 to 70 days; for larvae, from 15 to 35 days; and for pupae between 40 and
264 80 days. We fit the survival probabilities using a Brière curve (Figure 4 right). The survival
265 probability is relatively high for eggs ($0.2 < p_E < 0.8$), very low for larvae ($p_L < 0.2$), but
266 almost always 100% for the pupae stage ($p_P \sim 1$).

267 In Figure 5 A, we show data on fecundity F (the number of eggs laid per female per
268 day) together with the fitted Brière curve. The fecundity reaches a maximum at $\sim 30^{\circ}\text{C}$
269 and we do not have data for temperatures beyond that. The mortality rate, μ , is fit using
270 a quadratic curve where we assume that the mortality is highest for temperature less than
271 10°C and higher than 30°C (Figure 5 B).

272 Figure 6 we show the biting rate a and the transmission probability b both fit with a Brière
273 curve. The biting rate minimal values lie around 10°C and increase to reach a maximum at
274 30°C . While the transmission probability b is minimal around 15°C and reaches a maximum
275 at 30°C . We do not have data for the infection probability c so we assume that it is equal to
276 0.5. Lastly, Figure 7 shows the virus development rate fit using a Brière curve, with minimal
277 values around 15°C and maximal values around 32°C . Overall, these thermal traits all lack
278 data values at extreme temperatures.

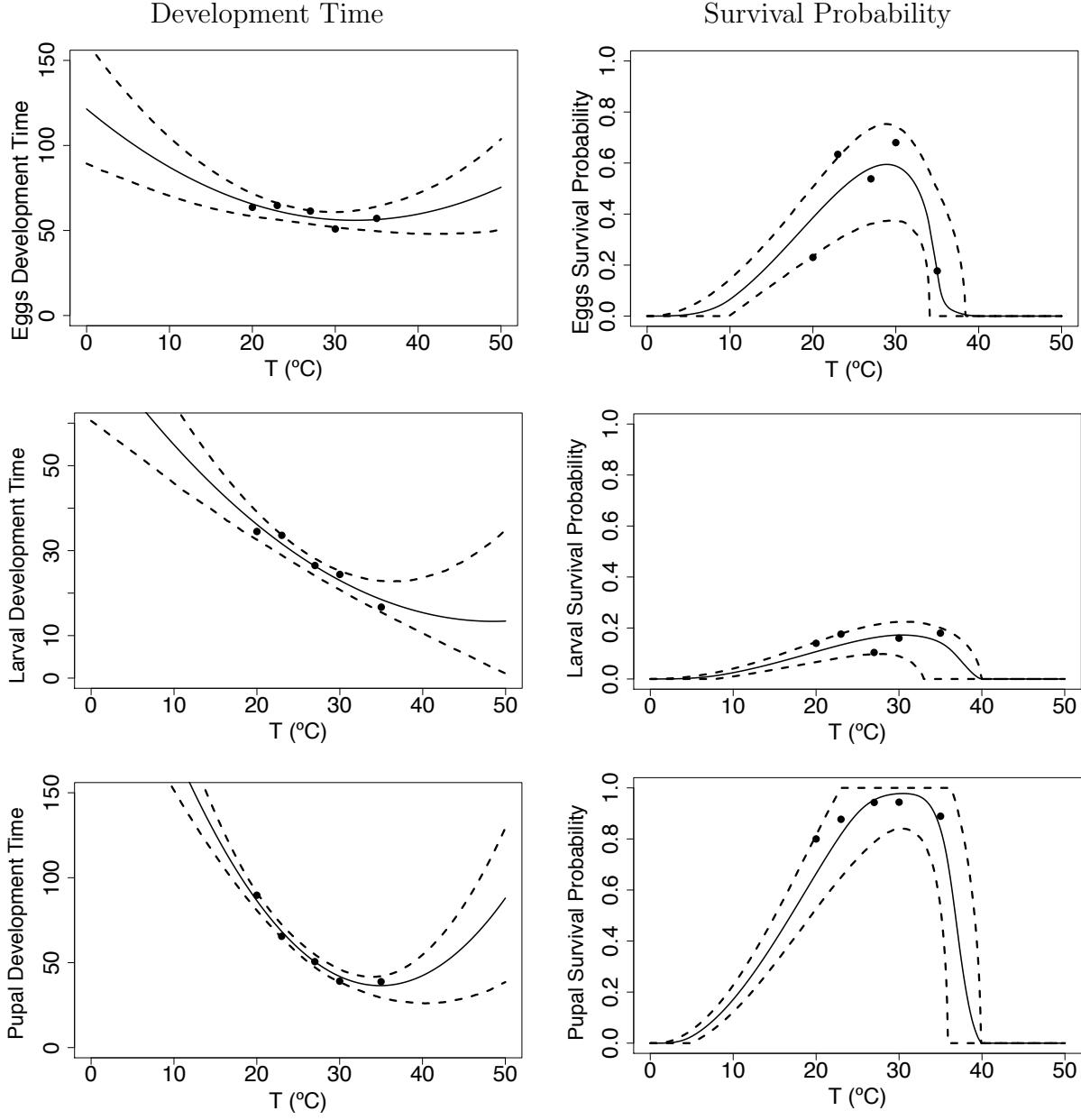


Figure 4: Figures in the LEFT panels show development time in days for midge juvenile stages, eggs ρ_E , larvae ρ_L , and pupae ρ_P . Figures in the RIGHT panels show survival probabilities for midge juvenile stages, eggs p_E , larvae p_L , and pupae p_P . The solid line is the mean of the posterior distributions of the thermal response curves while the dashed lines represent the HPD intervals

279 **Midge density V**

280 Recall the midge density formula given by

$$V(T) = \frac{F(T) p_E(T) p_L(T) p_P(T)}{\mu(T)^2 (\rho_E(T) + \rho_L(T) + \rho_P(T))} \quad (11)$$

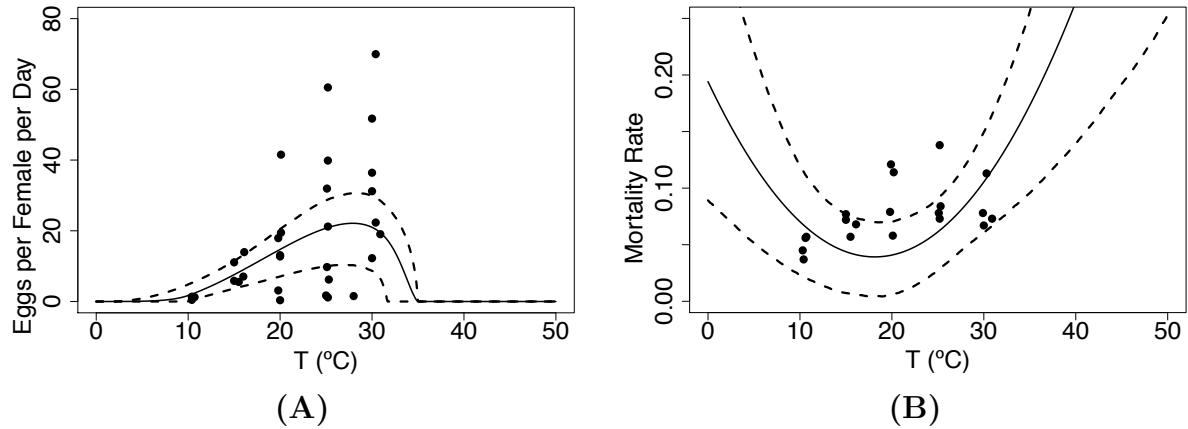


Figure 5: (A) Fecundity, F (Eggs per female per day) and (B) adult mortality rate μ traits as they vary with temperature. The solid line is the mean of the posterior distributions of the thermal response curves while the dashed lines represent the HPD intervals

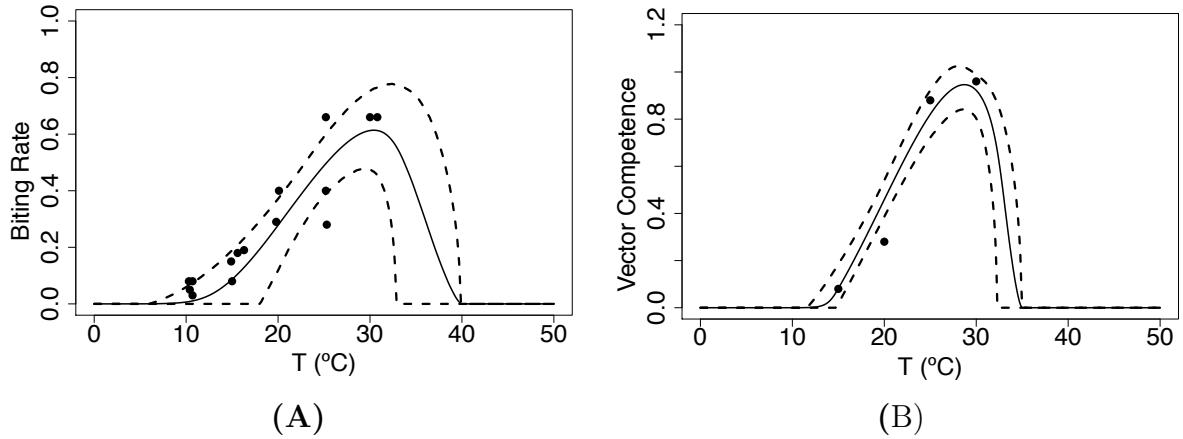


Figure 6: (A) Biting rate a and (B) probability that midges transmit infection when biting an uninfected host b . The solid line is the mean of the posterior distributions of the thermal response curves while the dashed lines represent the HPD intervals

281 To estimate midge density V , we use the posterior samples of the survival probabilities
 282 p_E , p_L , p_P , for egg, larvae, and pupae; the development times ρ_E , ρ_L , ρ_P corresponding to
 283 the egg, larvae, and pupae life stages; the fecundity measure represented by the number of
 284 eggs per female per day F ; and the adult mortality rate μ . In Figure 8 we show that the
 285 posterior estimate of temperature-dependent midge density V is highest between 20 °C and
 286 28 °C; it increases at temperatures higher than 10 °C and decreases when the temperature
 287 exceeds 28 °C.

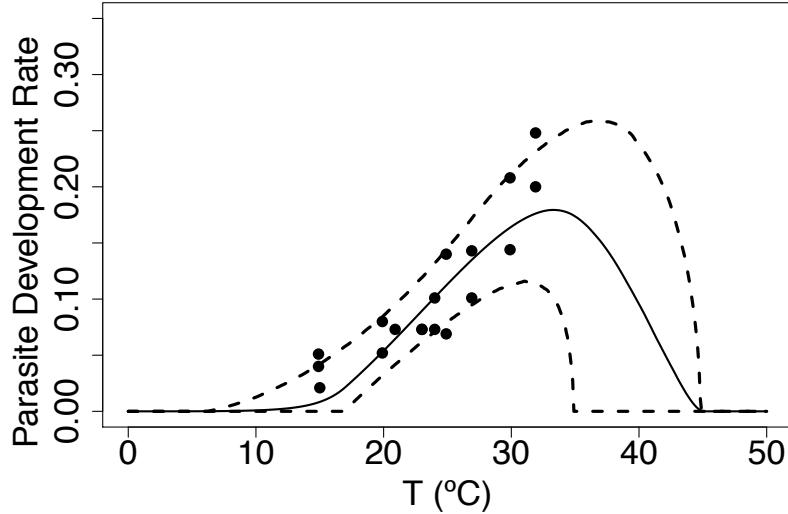


Figure 7: Virus development rate (ν) is the inverse of extrinsic incubation period ($\nu = 1/EIP$). The solid line is the mean of the posterior distributions of the thermal response curves while the dashed lines represent the HPD intervals

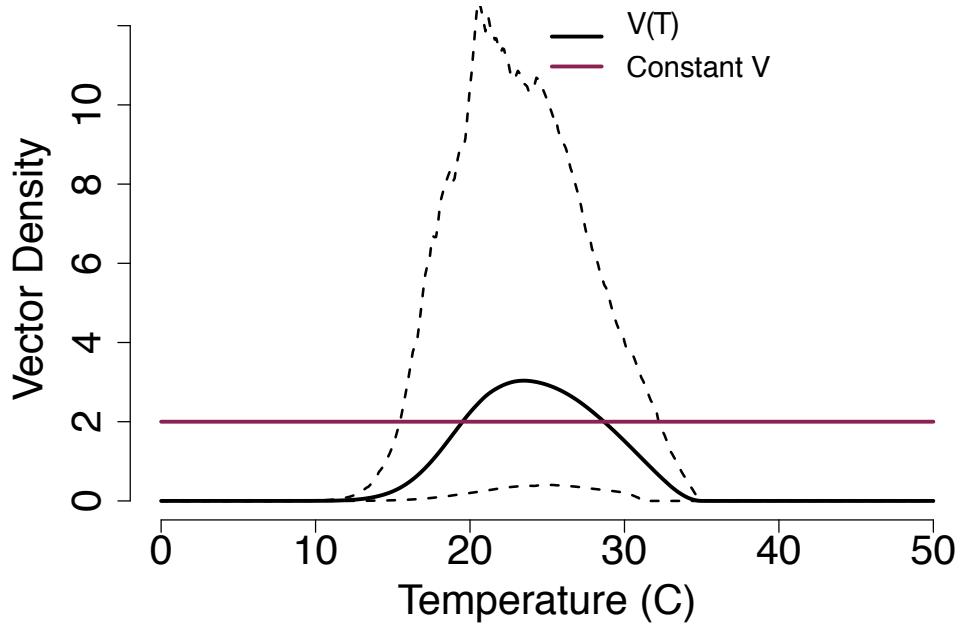


Figure 8: Modeled midge density as it varies with temperature. To obtain the temperature-dependent midge density, $V(T)$, we evaluate Equation 11 at all temperature-dependent traits using the fitted curves. The solid black line shows the estimated density and the dashed lines show the corresponding HPD interval. A constant value $V = 2$ is shown for comparison for subsequent modeling where the density is constant.

288 Transmission potential

289 The component g , that we call the transmission potential, is estimated by calculating the
290 product of midge biting rate a and vector competence bc :

$$17 \\ g(T) = b(T)c a^2(T); \quad (12)$$

291 Temperature-dependent data the transmission probability c was unavailable. Thus we as-
 292 sumed that there will be a 50% chance for midges to become infected after biting an infected
 293 host ($c = 0.5$) regardless of temperature. Figure 9 shows the posterior distribution of the
 294 predicted transmission potential thermal curve.

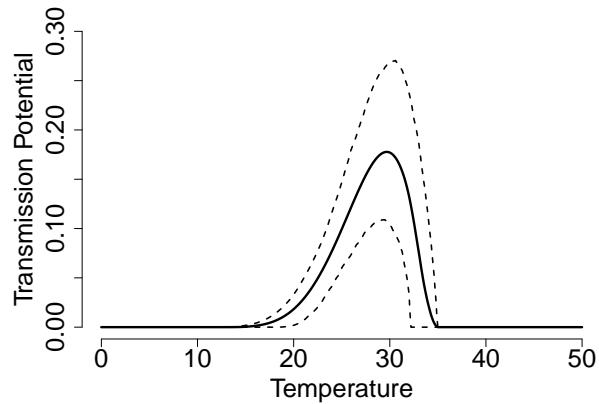


Figure 9: The transmission potential g as the biting rate a and transmission probability b vary with temperature while the infection probability is constant $c = 0.5$. The solid line shows the estimated curve and dashed lines are the HPD interval.

295 Functional form

296 We explored three functional forms of the formula used to represent the probability of midges
 297 surviving to become infectious (Table 1). In all three cases, we calculate the thermal depen-
 298 dence of the functional form using the posterior distributions of mortality rate μ (Figure 5
 299 (B)), and virus development rate ν (Figure 7). Figure 10 shows the variation of the functional
 300 form with temperature based on the two temperature-dependent traits μ and ν . Although
 301 there are differences between the magnitude of these curves, we can see that their peak
 302 occurs at the same temperature (25°C), which is due to the traits' thermal dependencies.
 303 In addition, all of their HPD intervals overlap which means that there are no significant
 304 differences between them.

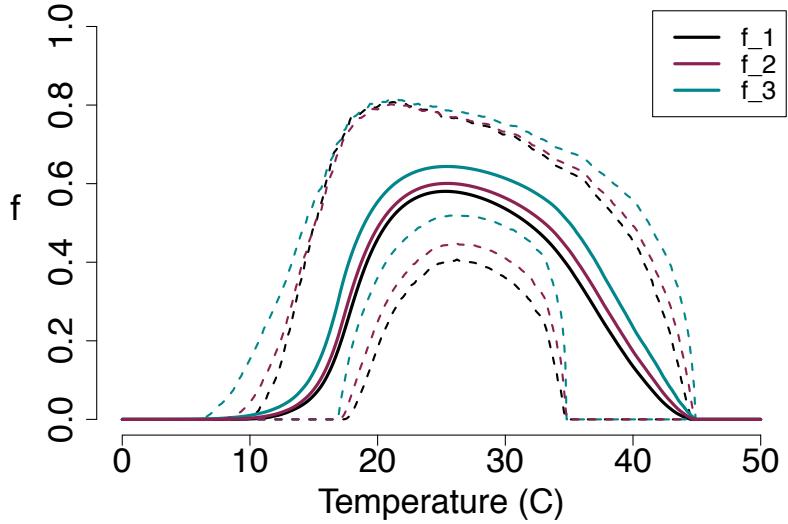


Figure 10: Latent period survival probability f used in R_0 versus temperature. The black line shows our model with the newly derived R_0 , the purple line shows the model presented in [10], and the blue line shows the model presented in [25]. Each solid line represents a different model and the dashed lines show the corresponding HPD intervals. We note that there is an overlap between all HPD intervals meaning that there are no statistically significant differences between these models.

305 3.2 Thermal Suitability $S(T)$

306 We use thermal traits to evaluate $S(T)$ given by Equation 8 with constant midge density
 307 V (Figure 11 Top) and with temperature-dependent midge density $V(T)$ (Figure 11 Bot-
 308 tom). The three models are slightly different when constant midge density is used but are
 309 in agreement when temperature-dependent midge density is used. This is due to all the
 310 temperature-sensitive traits used to calculate $V(T)$; however, this also leads to a higher un-
 311 certainty shown in the range of HPD interval in Figure 11 (Bottom). The lower thermal
 312 bound of the three posterior means are different by a magnitude of 1°C . However, the peak
 313 temperature and upper thermal limits are in agreement for all three models. With these
 314 results, we predict that $S(T) > 0$ occurs at a temperature greater than 15°C and less than
 315 34°C , meaning that BTV is likely to cause an outbreak within this temperature range. We
 316 note that this prediction is based on assuming $c = 0.5$ which may not be always true in
 317 reality.

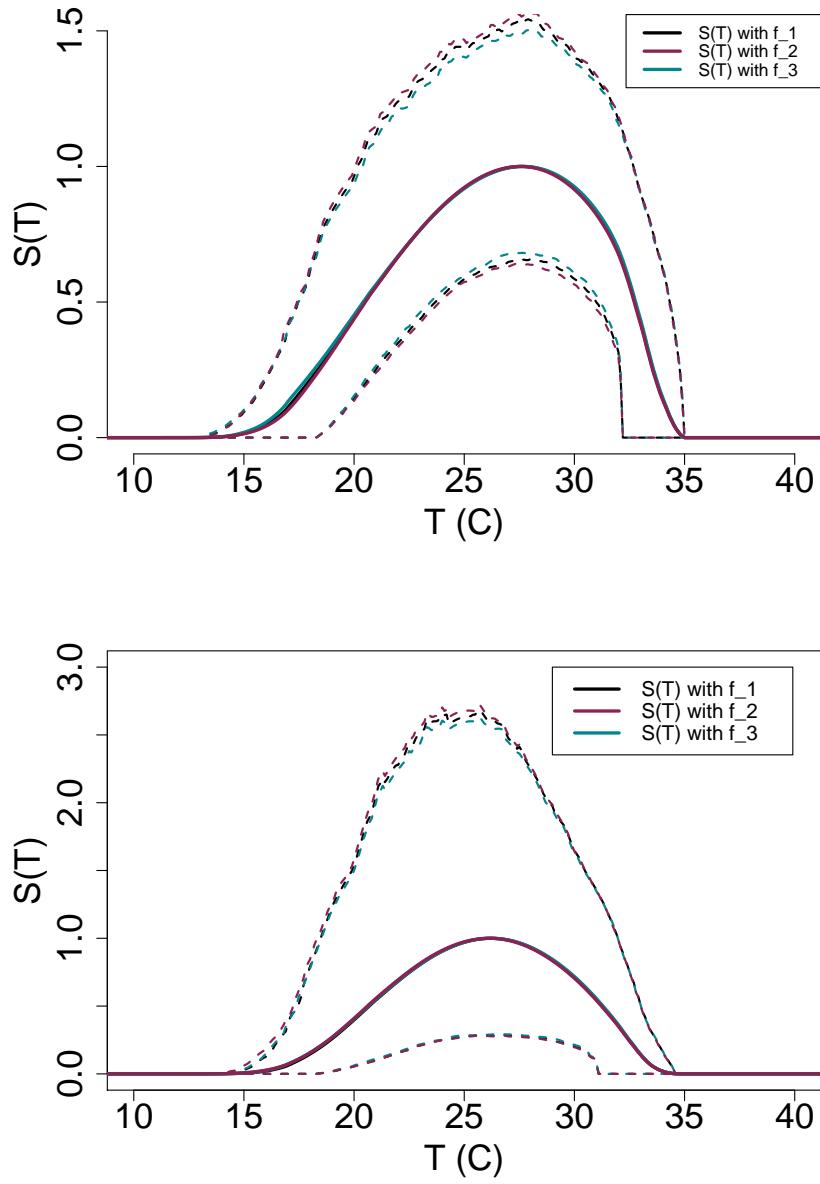


Figure 11: (Top) $S(T)$ with constant midge density V and (Bottom) $S(T)$ with temperature-dependent midge density $V(T)$. The plots shows the magnitude of $S(T)$ changing as temperature increases. Each solid line represent the mean of the posterior distributions of R_0 while the dashed lines are the HPD intervals.

318 3.3 Source of uncertainty in $S(T)$

319 In Figure 11 (Bottom), a high variation around $S(T)$ posterior density is shown in the large
 320 HPD interval. To determine the source of this uncertainty, we plot the calculated relative
 321 widths for each $S(T)$ component, see Figure 12. The results show that at a low-temperature

range ($14^{\circ}\text{C} < T < 18^{\circ}\text{C}$) uncertainty in $S(T)$ is mainly due to the uncertainty in the functional form f . At intermediate temperatures ($18^{\circ}\text{C} < T < 33^{\circ}\text{C}$), the uncertainty is caused by the midge density $V(T)$. At very high temperatures ($33^{\circ}\text{C} < T < 35^{\circ}\text{C}$), the transmission potential g is the component producing the most variability in $S(T)$.

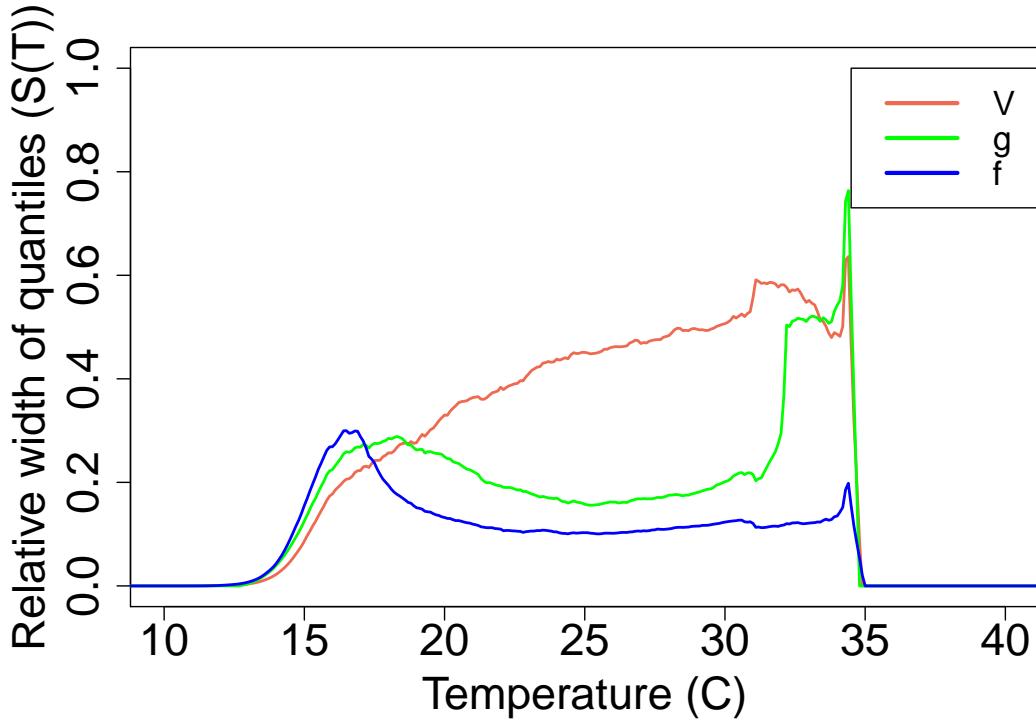


Figure 12: The source of uncertainty in $S(T)$ is measured by calculating the relative width of the 95% HPD quantiles with each component varying with temperature while the remaining components are kept constants, and divided by the width when all are allowed to vary.

326 3.4 BTV risk maps

Figure 13 illustrates the number of months each area is at risk of BTV transmission with the assumption that *Culicoides sonorensis* and *Culicoides variipennis* are the main vectors. The results show that, under baseline long-term average current temperature conditions, much of central Africa, South Asia, central and the northern part of South America, and northern Australia are suitable for year-round bluetongue transmission. These areas are also

332 the warmest parts of the world, and as we move away from them, the temperature is lower
333 and the number of months of suitability is reduced.

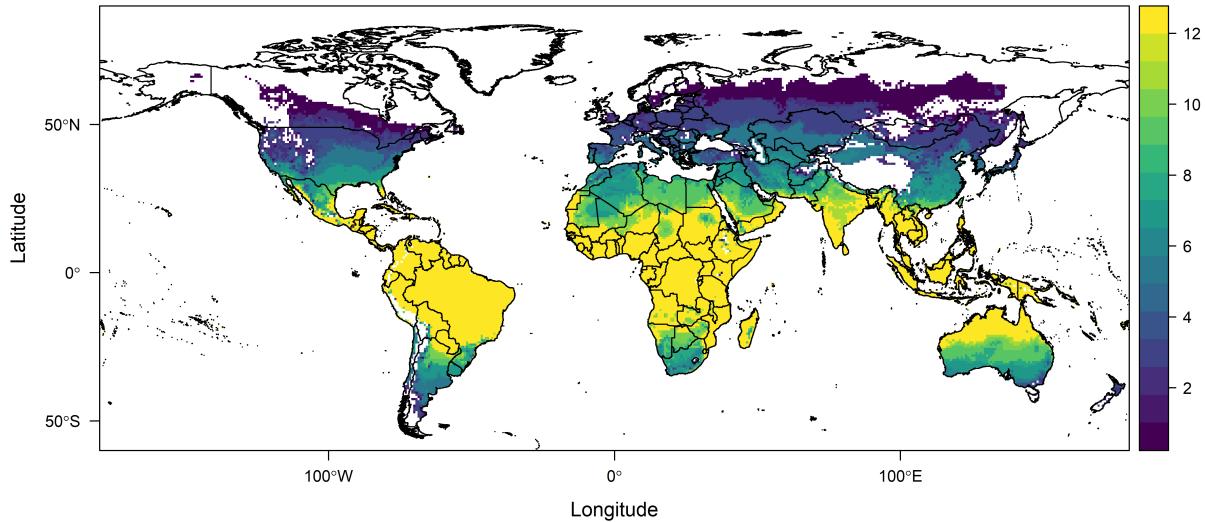


Figure 13: Map of the number of months (1-12) areas are at risk of bluetongue virus transmission according to our temperature-dependent R_0 . This map based on the current mean monthly temperatures and is restricted to bluetongue disease caused by the two midge species *Culicoides sonorensis* and *Culicoides variipennis*.

334 Next, we used the global distribution of sheep to determine areas where sheep are at
335 risk of acquiring BTV. The choice of sheep was mainly due to ready data availability, and
336 also because sheep are the BTV host with the highest mortality and morbidity rates, and
337 therefore of great interest and relevance. The map shows that areas, where sheep are at
338 the highest risk (scale > 3), are located around the equator. The next highest risk regions
339 ($1 < \text{scale} < 3$) are areas with of high livestock industry, such as central and south America
340 and Europe.

341 4 Discussion

342 In this study, we are interested in the potential for the temperature to shape where BTV may
343 spread. We use a Ross-Macdonald type modeling approach to describe the dynamics of BTV
344 transmission [23, 24]. This mechanistic approach allowed us to derive the basic reproduction

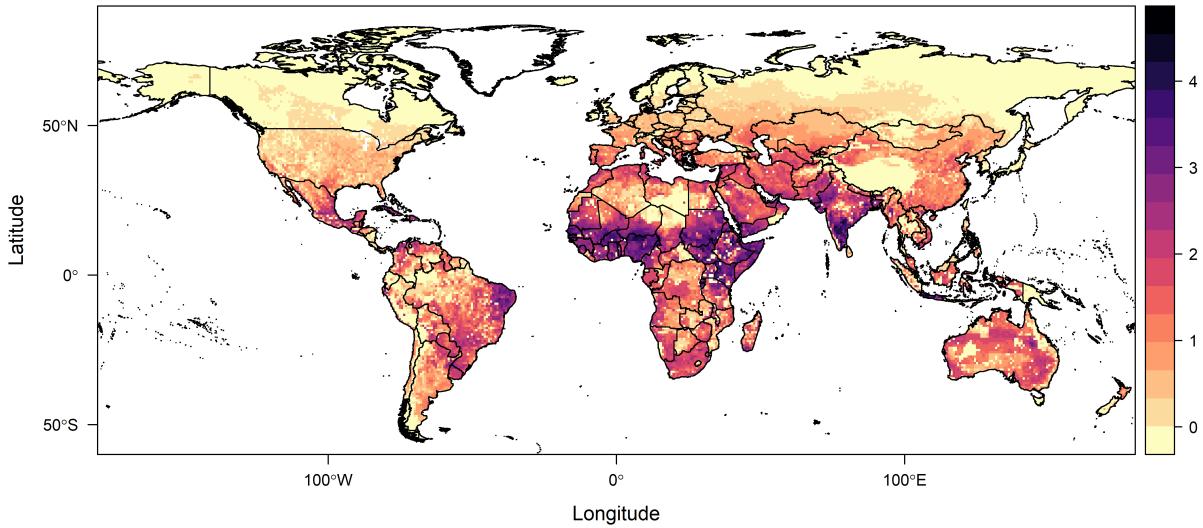


Figure 14: Scaled transmission risk suitability of bluetongue virus for sheep, as the primary host at risk, worldwide. the scale ranges from a low risk, 0, to a high risk, 5.

345 ratio's posterior distribution as a function of temperature. We were able to both determine
 346 the suitable temperature for possible BTV outbreaks when $S(T) > 0$ and the temperatures
 347 at which BTV outbreaks are likely to die out when $S(T) = 0$. We note that the absolute
 348 magnitude of the thermal response of $S(T)$ here is dependent on our model assumptions, for
 349 example setting the infection probability to be $c = 0.5$. We also adopt two previously used
 350 BTV models, [25] and [10], to compare the three forms of R_0 .

351 Based on the available trait data we used in our model, we predict that temperatures
 352 from 15°C and 34°C , are “suitable” for BTV outbreaks by the examined midge species,
 353 with peak suitability occurring at about 26°C . This result was obtained regardless of which
 354 $S(T)$ formula used, i.e., all three different models of the latent period survival probability,
 355 f lead to the same predictions. Similarly, the predicted peak and upper thermal limit of
 356 $S(T)$ were the same for three forms, and only a small difference between lower thermal
 357 limits ($\sim 1^{\circ}\text{C}$) was observed. This indicates that the uncertainty of temperature effects on
 358 traits outweigh the effects of differences in modeling assumptions in the form of the latent
 359 period survival probability for these models. Because our suitability metric captures all of
 360 the temperature-depend portions of R_0 , this result should also hold for R_0 more broadly.

361 Uncertainty in temperature-dependent traits of the vector-virus system results in uncer-
362 tainty in the suitability metric $S(T)$. Our uncertainty analysis allowed us to determine the
363 traits responsible for causing uncertainty in $S(T)$ (and therefore in the temperature-depend-
364 components of R_0) across the temperature range. At lower temperatures ($14^\circ C < T < 18^\circ C$)
365 more data are needed for the parasite development rate, ν , and mortality rate, μ , to reduce
366 this uncertainty in the latent period survival probability, f . At moderate temperatures
367 ($18^\circ C < T < 34^\circ C$) the uncertainty in $S(T)$ is caused by V , meaning that more data are
368 needed in traits contributing to estimating the midge density. At very high temperatures
369 ($34^\circ C < T < 35^\circ C$) we need more data on vector competence bc and biting rate a . Reducing
370 the uncertainty in these components of $S(T)$ will allow refinement of predictions, control,
371 and prevention suggestions.

372 We were interested in using our derived suitability metric to determine areas at risk of
373 BTV based primarily on temperature suitability. A risk map can be a useful planning tool,
374 both to understand the scale of current risk, and to anticipate suitable regions where the
375 establishment of BTV could be successful were it to be introduced, with competent vectors.
376 We created global risk maps showing the number of months per year each location worldwide
377 is suitable for BTV disease transmission given the presence of two midge species, namely,
378 *Culicoides sonorensis* and *Culicoides variipennis*. The results show that warmer areas are at
379 risk year-round, while cooler areas are at risk for fewer months. Based on currently available
380 data, few locations are predicted to have temperatures hot enough to exclude BTV for many
381 months of the year. Further trait data to decrease the uncertainty near the thermal limits
382 would enable more precise and accurate predictions. However, the particular predictions
383 are also based on long-term, baseline current temperatures. With climate change, and the
384 continuous rising of global temperatures, the area at risk of BTV may expand and shift to
385 include places with previously lower risk, or some year-round locations may become too hot
386 for year-round transmission [44, 45].

387 In building our maps, we chose to use monthly mean temperatures, as this captures the

388 mean response of the suitability determined mechanistically. Other approaches might be to
389 use climate products with different temporal resolutions and express suitability in the number
390 of days between thresholds, but these products tend to be available at much coarser spatial
391 resolutions, making them less suitable for combining with livestock layers. Instinctively, one
392 may want to use minimum or maximum temperatures to impose thresholds, but this faces
393 a very biological conundrum of model mechanics - a minimum or maximum temperature
394 may exist for a very small time period within a given month, and thus not represent a
395 longer period experienced by the vector in question. The behavioral avoidance mechanisms
396 vectors can use in short periods of extremes would be missed by this approach, leading to
397 underestimates of the potential extent of suitability.

398 Previous studies have investigated temperatures suitable for other vector-borne diseases.
399 For example, a study on three mosquito-borne diseases, Zika, dengue, and chikungunya
400 transmitted by *Aedes aegypti* and *Aedes albopictus* showed that the transmission is likely to
401 occur between 18-34°C with peak transmission between 26-29°C [43, 46, 47]. Moreover, the
402 temperatures suitable for the transmission of the plant-borne disease, citrus greening, are
403 between 16°C and 33°C with peak transmission at 25°C [48]. Together with our findings,
404 this shows that there are similarities between ectotherm vectors in the way they respond to
405 temperature. For example, their traits follow humped-shaped thermal performance curves.
406 But there are differences in the temperature ranges they tolerate, and the temperatures at
407 which their performance is maximal. This points to the importance of building system-
408 specific models for predicting the effect of extrinsic factors on the spread of VBDs.

409 As highlighted in a 2018 systematic review [49], BTV has been studied using many
410 different modeling approaches. The systematic review summarized BTV models used post-
411 1998 [49], most of which relied more on strong modeling assumptions than data. The model
412 results were used to inform animal health decision-making by identifying at-risk areas and
413 the risk of spread in case of introduction [50], and climate change [45]. While several studies
414 have examined R_0 for BTV [10, 22], our model differs in that it incorporates temperature

415 across a wide range, leading to estimating an R_0 that is also temperature-dependent. A
416 more recent study used a mathematical quantity called vectorial capacity to estimate BTV
417 transmission instead of R_0 [51]. R_0 and vectorial capacity are very similar, with the latter
418 assuming perfect competence and ignoring host recovery rates (making our suitability metric
419 somewhere in between). The study identifies the optimal transmission suitability range for
420 *C. sonorensis* to be between 27 and 30 °C which overlaps with our transmission peak range of
421 26 and 29 °C. The difference is likely due to our study including trait data for two *Culicoides*
422 *spp.* as well as including temperature-dependent infection parameters. Overall, both models
423 are in agreement regarding the gross patterns of temperature effects BTV transmission.

424 In addition, while data on *Culicoides spp.* temperature dependent traits are scarce, we
425 had the luxury of obtaining sufficient data to create a model for two North American vectors,
426 and not mix traits across species from different continents. This is of particular interest in
427 assessing the potential for invasion and establishment (and hence spread) of disease vec-
428 tors, which has been found to be almost a hallmark of *Culicoides spp.* across the European
429 landscape in recent decades, leading to novel outbreaks of BTV. Linking R_0 or $S(T)$ to
430 temperature can help identify BTV outbreak risk based on the temperature at particular
431 locations, which in turn can inform management policies and control strategies, within cur-
432 rent and changing climate conditions. By establishing a model specific to current vectors in
433 the U.S., we can assess the potential for invasion and spread to other parts of the globe.

434 **Declarations**

435 **Ethics approval and consent to participate**

436 Not applicable.

437 **Consent for publication**

438 Not applicable.

⁴³⁹ **Availability of data and materials**

⁴⁴⁰ All data generated or analyzed during this study are included in this published article and
⁴⁴¹ its supplementary information files.

⁴⁴² **Competing interests**

⁴⁴³ The authors declare that they have no competing interests.

⁴⁴⁴ **Funding**

⁴⁴⁵ L.R.J. and F.E.M were partially supported by the National Science Foundation Career grant
⁴⁴⁶ (NSF DMSDEB #1750113) and by National Institutes of Health, NIH-USDA, Ecology of
⁴⁴⁷ Infectious Diseases (Award Number 1518681).

⁴⁴⁸ **Authors' Contributions**

⁴⁴⁹ F.E.M. and L.R.J. designed the study. F.E.M., H.S., and Z.T. collected the data from the
⁴⁵⁰ literature and performed the Bayesian analyses. F.E.M and L.R.J. performed the mathe-
⁴⁵¹ matical analyses and S.J.R. performed the spatial mapping. F.E.M. wrote the paper. All
⁴⁵² authors contributed to revising and editing the paper and gave approval for publication.

⁴⁵³ **Acknowledgements**

⁴⁵⁴ Not applicable.

⁴⁵⁵ **References**

⁴⁵⁶ [1] E. A. Mordecai, K. P. Paaijmans, L. R. Johnson, C. Balzer, T. Ben-Horin, E. de Moor,
⁴⁵⁷ A. McNally, S. Pawar, S. J. Ryan, T. C. Smith, and K. D. Lafferty, “Optimal tempera-

ture for malaria transmission is dramatically lower than previously predicted,” *Ecology letters*, vol. 16, no. 1, pp. 22–30, 2013.

[2] L. R. Johnson, T. Ben-Horin, K. D. Lafferty, A. McNally, E. Mordecai, K. P. Paaijmans, S. Pawar, and S. J. Ryan, “Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach,” *Ecology*, vol. 96, no. 1, pp. 203–213, 2015.

[3] R. A. Taylor, E. A. Mordecai, C. A. Gilligan, J. R. Rohr, and L. R. Johnson, “Mathematical models are a powerful method to understand and control the spread of Huanglongbing,” *PeerJ*, vol. 4, p. e2642, 2016.

[4] M. S. Shocket, S. J. Ryan, and E. A. Mordecai, “Temperature explains broad patterns of Ross River virus transmission,” *Elife*, vol. 7, p. e37762, 2018.

[5] E. A. Mordecai, J. M. Caldwell, M. K. Grossman, C. A. Lippi, L. R. Johnson, M. Neira, J. R. Rohr, S. J. Ryan, V. Savage, M. S. Shocket, *et al.*, “Thermal biology of mosquito-borne disease,” *Ecology Letters*, vol. 22, no. 10, pp. 1690–1708, 2019.

[6] W. J. Tabachnick, C. T. Smartt, and C. R. Connelly, “Bluetongue,” *UF IFSAS Extension*, 2008.

[7] C. Calisher and P. Mertens, “Taxonomy of African horse sickness viruses,” in *African Horse Sickness*, pp. 3–11, Springer, 1998.

[8] P. Mellor, J. Boorman, and M. Baylis, “Culicoides biting midges: their role as arbovirus vectors,” *Annual review of entomology*, vol. 45, no. 1, pp. 307–340, 2000.

[9] E. Wittmann, P. Mellor, and M. Baylis, “Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis,” *Medical and veterinary entomology*, vol. 16, no. 2, pp. 147–156, 2002.

[10] S. Gubbins, S. Carpenter, M. Baylis, J. L. Wood, and P. S. Mellor, “Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-

482 dependent model for the basic reproduction number," *Journal of the Royal Society*
483 *Interface*, vol. 5, no. 20, pp. 363–371, 2007.

484 [11] K. A. Alexander, N. J. MacLachlan, P. W. Kat, C. House, S. J. O'Brien, N. W. Lerche,
485 M. Sawyer, L. G. Frank, K. Holekamp, L. Smale, J. W. McNutt, M. K. Laurenson,
486 M. G. L. Mills, and B. I. Osburn, "Evidence of natural bluetongue virus infection among
487 african carnivores," *The American journal of tropical medicine and hygiene*, 1994.

488 [12] W. O. for Animal Health, "Bluetongue," *World Organisation for Animal Health (OIE)*,
489 2013.

490 [13] N. Preparedness, A. Incident Coordination Center, Veterinary Services, and P. H. I.
491 Service, *Bluetongue standard operating procedure: an overview of etiology and ecology*,
492 2016.

493 [14] M. Jenckel, E. Bréard, C. Schulz, C. Sailleau, C. Viarouge, B. Hoffmann, D. Höper,
494 M. Beer, and S. Zientara, "Complete Coding Genome Sequence of Putative Novel Blue-
495 tongue Virus Serotype 27," *Microbiology Resource Announcements*, vol. 3, no. 2, 2015.

496 [15] USDA, *Veterinary Biological Products*. United States Department of Agriculture, 2019.

497 [16] USDA, "U.S. Cattle & Beef Industry Statistics and Information," *Economic Research
498 Service*, 2015.

499 [17] USDA, "Orbiviruses Gap Analysis: Bluetongue and Epizootic Hemorrhagic Disease,"
500 *Agricultural Research Service*, 2013.

501 [18] A. S. Lear and R. J. Callan, *Overview of Bluetongue*, 2014.

502 [19] N. J. MacLachlan and A. J. Guthrie, "Re-emergence of bluetongue, African horse sick-
503 ness, and other Orbivirus diseases," *Veterinary Research*, 2010.

504 [20] EC, "Bluetongue seasonally vector free periods," *European Comission*, 2016.

505 [21] J. Turner, R. G. Bowers, and M. Baylis, “Two-host, two-vector basic reproduction ratio
506 (R₀) for bluetongue,” *PLoS one*, vol. 8, no. 1, p. e53128, 2013.

507 [22] S. P. Brand, K. S. Rock, and M. J. Keeling, “The interaction between vector life history
508 and short vector life in vector-borne disease transmission and control,” *PLoS computational biology*, vol. 12, no. 4, p. e1004837, 2016.

510 [23] R. Ross, *The prevention of malaria*. John Murray; London, 1911.

511 [24] G. Macdonald *et al.*, “The epidemiology and control of malaria.,” *The Epidemiology
512 and Control of Malaria.*, 1957.

513 [25] K. Dietz, “The estimation of the basic reproduction number for infectious diseases,”
514 *Statistical methods in medical research*, vol. 2, no. 1, pp. 23–41, 1993.

515 [26] O. Diekmann and J. A. P. Heesterbeek, *Mathematical epidemiology of infectious dis-
516 eases: model building, analysis and interpretation*, vol. 5. John Wiley & Sons, 2000.

517 [27] O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-
518 generation matrices for compartmental epidemic models,” *Journal of the Royal Society
519 Interface*, p. rsif20090386, 2009.

520 [28] A. I. Dell, S. Pawar, and V. M. Savage, “Systematic variation in the temperature de-
521 pendence of physiological and ecological traits,” *Proceedings of the National Academy
522 of Sciences*, vol. 108, no. 26, pp. 10591–10596, 2011.

523 [29] M. J. Angilletta Jr and M. J. Angilletta, *Thermal adaptation: a theoretical and empirical
524 synthesis*. Oxford University Press, 2009.

525 [30] W. J. Tabachnick, “*Culicoides variipennis* and bluetongue-virus epidemiology in the
526 United States,” *Annual Review of Entomology*, vol. 41, no. 1, pp. 23–43, 1996.

527 [31] J. A. Huwaldt and S. Steinhorst, “Plot digitizer,” *URL* <http://plotdigitizer.sourceforge.net>, 2013.

529 [32] M. Plummer, *rjags: Bayesian Graphical Models using MCMC*, 2019. R package version
530 4-10.

531 [33] L. Joseph, D. B. Wolfson, and R. D. Berger, “Sample size calculations for binomial
532 proportions via highest posterior density intervals,” *Journal of the Royal Statistical
533 Society: Series D (The Statistician)*, vol. 44, no. 2, pp. 143–154, 1995.

534 [34] R Development Core Team, *R: A Language and Environment for Statistical Computing*.
535 R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

536 [35] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, “Very high
537 resolution interpolated climate surfaces for global land areas,” *International Journal of
538 Climatology: A Journal of the Royal Meteorological Society*, vol. 25, no. 15, pp. 1965–
539 1978, 2005.

540 [36] M. Gilbert, G. Nicolas, G. Cinardi, T. P. Van Boeckel, S. Vanwambeke, W. G. R.
541 Wint, and T. P. Robinson, “Global sheep distribution in 2010 (5 minutes of arc),” 2018.
542 <https://doi.org/10.7910/DVN/BLWPZN>.

543 [37] M. Gilbert, G. Nicolas, G. Cinardi, T. P. Van Boeckel, S. O. Vanwambeke, G. W. Wint,
544 and T. P. Robinson, “Global distribution data for cattle, buffaloes, horses, sheep, goats,
545 pigs, chickens and ducks in 2010,” *Scientific data*, vol. 5, p. 180227, 2018.

546 [38] R. J. Hijmans, *raster: Geographic Data Analysis and Modeling*, 2019.

547 [39] R. J. Hijmans and J. van Etten, *raster: Geographic analysis and modeling with raster
548 data. R package version 2.0-12*, 2012.

549 [40] R. Bivand and N. Lewin-Koh, *maptools: Tools for Handling Spatial Objects*, 2020. R
550 package version 1.0-2.

551 [41] R. Bivand, T. Keitt, and B. Rowlingson, *rgdal: Bindings for the 'Geospatial' Data
552 Abstraction Library*, 2021. R package version 1.5-23.

553 [42] S. J. Ryan, A. McNally, L. R. Johnson, E. A. Mordecai, T. Ben-Horin, K. Paaijmans,
554 and K. D. Lafferty, “Mapping physiological suitability limits for malaria in Africa under
555 climate change,” *Vector-Borne and Zoonotic Diseases*, vol. 15, no. 12, pp. 718–725,
556 2015.

557 [43] S. J. Ryan, C. J. Carlson, E. A. Mordecai, and L. R. Johnson, “Global expansion
558 and redistribution of Aedes-borne virus transmission risk with climate change,” *PLoS*
559 *Neglected Tropical Diseases*, vol. 13, no. 3, p. e0007213, 2019.

560 [44] A. M. Samy and A. T. Peterson, “Climate change influences on the global potential
561 distribution of bluetongue virus,” *PloS One*, vol. 11, no. 3, p. e0150489, 2016.

562 [45] A. E. Jones, J. Turner, C. Caminade, A. E. Heath, M. Wardeh, G. Kluiters, P. J. Diggle,
563 A. P. Morse, and M. Baylis, “Bluetongue risk under future climates,” *Nature Climate
564 Change*, vol. 9, no. 2, p. 153, 2019.

565 [46] E. A. Mordecai, J. M. Cohen, M. V. Evans, P. Gudapati, L. R. Johnson, C. A. Lippi,
566 K. Miazgowicz, C. C. Murdock, J. R. Rohr, S. J. Ryan, *et al.*, “Detecting the impact
567 of temperature on transmission of Zika, dengue, and chikungunya using mechanistic
568 models,” *PLoS neglected tropical diseases*, vol. 11, no. 4, p. e0005568, 2017.

569 [47] S. J. Ryan, C. J. Carlson, B. Tesla, M. H. Bonds, C. N. Ngonghala, E. A. Mordecai,
570 L. R. Johnson, and C. C. Murdock, “Warming temperatures could expose more than
571 1.3 billion new people to Zika virus risk by 2050,” *Global Change Biology*, 2020.

572 [48] R. A. Taylor, S. J. Ryan, C. A. Lippi, D. G. Hall, H. A. Narouei-Khandan, J. R.
573 Rohr, and L. R. Johnson, “Predicting the fundamental thermal niche of crop pests
574 and diseases in a changing world: a case study on citrus greening,” *Journal of Applied
575 Ecology*, vol. 56, no. 8, pp. 2057–2068, 2019.

576 [49] N. Courtejoie, G. Zanella, and B. Durand, “Bluetongue transmission and control in

577 Europe: A systematic review of compartmental mathematical models,” *Preventive veterinary medicine*, 2018.

579 [50] N. Hartemink, B. Purse, R. Meiswinkel, H. E. Brown, A. De Koeijer, A. Elbers, G.-J.
580 Boender, D. Rogers, and J. Heesterbeek, “Mapping the basic reproduction number (R_0)
581 for vector-borne diseases: a case study on bluetongue virus,” *Epidemics*, vol. 1, no. 3,
582 pp. 153–161, 2009.

583 [51] C. Mayo, E. McDermott, J. Kopanke, M. Stenglein, J. Lee, C. Mathiason, M. Carpenter,
584 K. Reed, and T. A. Perkins, “Ecological dynamics impacting bluetongue virus
585 transmission in north america,” *Frontiers in Veterinary Science*, vol. 7, 2020.

586 [52] A. L. Lloyd, “Realistic distributions of infectious periods in epidemic models: changing
587 patterns of persistence and dynamics,” *Theoretical Population Biology*, vol. 60, no. 1,
588 pp. 59–71, 2001.

589 [53] P. E. Parham and E. Michael, “Modeling the effects of weather and climate change on
590 malaria transmission,” *Environmental Health Perspectives*, vol. 118, no. 5, p. 620, 2010.

591 [54] T. J. Lysyk and T. Danyk, “Effect of temperature on life history parameters of adult
592 Culicoides sonorensis (Diptera: Ceratopogonidae) in relation to geographic origin and
593 vectorial capacity for bluetongue virus,” *Journal of Medical Entomology*, vol. 44, no. 5,
594 pp. 741–751, 2007.

595 [55] B. Mullens, A. Gerry, T. Lysyk, and E. Schmidtmann, “Environmental effects on vector
596 competence and virogenesis of bluetongue virus in Culicoides: interpreting laboratory
597 data in a field context,” *Vet Ital*, vol. 40, no. 3, pp. 160–166, 2004.

598 [56] S. Carpenter, A. Wilson, J. Barber, E. Veronesi, P. Mellor, G. Venter, and S. Gubbins,
599 “Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides
600 biting midges,” *PLoS one*, vol. 6, no. 11, p. e27987, 2011.

601 [57] J. Vaughan and E. Turner Jr, “Development of immature *Culicoides variipennis*
602 (Diptera: Ceratopogonidae) from Saltville, Virginia, at constant laboratory temper-
603 atures,” *Journal of medical entomology*, vol. 24, no. 3, pp. 390–395, 1987.

604 [58] C. D. Harvell, C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld, and
605 M. D. Samuel, “Climate warming and disease risks for terrestrial and marine biota,”
606 *Science*, vol. 296, no. 5576, pp. 2158–2162, 2002.

607 **A Appendix**

608 **A.1 Transmission model for BTV**

We use an SIR-SEI type of compartmental model to describe vector-host interactions in transmitting BTV (see Figure 2). The host population (H) is divided into susceptible (S), infected (I), and recovered (or immune) (R) classes, while the vector population (V) is divided into susceptible (S_V) and infected (I_V) classes as well as three Exposed (E_V) classes. Here we use three exposed classes in the vector population to incorporate a more realistic length of the extrinsic incubation period. Using three compartments with the exit rate from each compartment being 3ν , lead to a Gamma distribution for overall midge progression to the infectious class with a mean rate of ν . Increasing the number of compartments used from 3 to a larger number leads to a Gamma distribution with lower variance around the mean [52]. This approach is an alternative to using fixed time delays, which are not suitable when using temperature-dependent parameters. Both host (H) and vector (V) populations

are assumed (and are by definition of the model) constant.

$$\frac{dS}{dt} = -\frac{ab}{H} I_V S \quad (1)$$

$$\frac{dI}{dt} = \frac{ab}{H} I_V (t - \tau) S(t - \tau) - dI \quad (2)$$

$$\frac{dR}{dt} = dI \quad (3)$$

$$\frac{dS_V}{dt} = rV - \frac{ac}{H} I S_V - \mu S_V \quad (4)$$

$$\frac{dE_{V1}}{dt} = \frac{ac}{H} I S_V - 3\nu E_{V1} - \mu E_{V1} \quad (5)$$

$$\frac{dE_{V2}}{dt} = 3\nu E_{V1} - 3\nu E_{V2} - \mu E_{V2} \quad (6)$$

$$\frac{dE_{V3}}{dt} = 3\nu E_{V2} - 3\nu E_{V3} - \mu E_{V3} \quad (7)$$

$$\frac{dI_V}{dt} = 3\nu E_{V3} - \mu I_V. \quad (8)$$

where

$$H = S + I + R \quad (9)$$

$$V = S_V + E_{V1} + E_{V2} + E_{V3} + I_V \quad (10)$$

The model's parameters are presented in the Table 1 below. Note that the parameters

Parameter	Definition	Units
d	Recovery rate of infected hosts	1/day
τ	Host's exposure period	day
r	Vector population's birth rate	1/day
a	Vector biting rate	bites / day
b	Probability that a midge is infected	dimensionless
c	Probability that a midge is infectious	dimensionless
μ	Mortality rate of adult vectors	1/day
ν	Parasite's development rate	1/day

Table 1: Parameters used in the mathematical model, their description, and units.

609

610 τ is the time that a susceptible (S) takes to become infected after receiving a bite from
611 infected vector (I_V). The parameter ν is the inverse of the Extrinsic Incubation Period of

612 the pathogen (EIP), i.e., $\nu = \frac{1}{EIP}$. We define the vector population size to be $V = \frac{\lambda}{\mu}$,
 613 where λ is the total birth rate of adult midges in the whole population (adults/day), and
 614 μ is per-capita adult mortality rate (1/day). This is based on Parham & Michael [53], who
 615 derive the expression phenomenologically by treating V as a random variable. Thus, λ is
 616 equivalent to rV in the model above, given that $r = \mu$ at disease free equilibrium, and is
 617 given by

$$\lambda = \frac{F p_E p_L p_P}{(\rho_E + \rho_L + \rho_P) \mu} \quad (11)$$

618 where F is the number of eggs produced by all females in the population per day, $p_{E,L,P}$
 619 are the survival probabilities in the Eggs, Larvae, and Pupae stages, and ρ_E, ρ_L, ρ_P are the
 620 development time in each stage. Then, the abundance of the vector becomes,

$$V = \frac{\lambda}{\mu} = \frac{F p_E p_L p_P}{(\rho_E + \rho_L + \rho_P) \mu^2} \quad (12)$$

621 A.2 Host recovery rate d sensitivity analysis

622 Although all ruminants are susceptible to BTV disease, each responds to the infection differ-
 623 ently, with sheep being the most susceptible and showing extreme morbidity and mortality.
 624 In addition, BTV host recovery depends on the intensity of the infection as well as the time
 625 of disease detection, which results in recovery rate variability among hosts. To account for
 626 this, we perform a sensitivity analysis on the host recovery rate d by looking at the derivative
 627 of R_0 with respect to d as follows:

$$\frac{\partial R_0}{\partial d} = \frac{1}{2} \left(-\frac{V g f}{d^2 H \mu} \right) \left(\frac{V g f}{d H \mu} \right)^{-1/2} = -\frac{1}{2d} (R_0^2) (R_0)^{-1} = -\frac{R_0}{2d}. \quad (13)$$

628 Since $\frac{\partial R_0}{\partial d} < 0$ always, the basic reproductive ratio R_0 increases as the recovery rate d
 629 decreases. Figure 1 shows different R_0 densities corresponding to different host recovery rate
 630 values. Higher lengths of infection $1/d$, i.e. lower recovery rates d , are associated with higher

631 R_0 densities, meaning that hosts with low recovery rate such as sheep are more challenging
 to manage as the chance of outbreak for them is more likely.

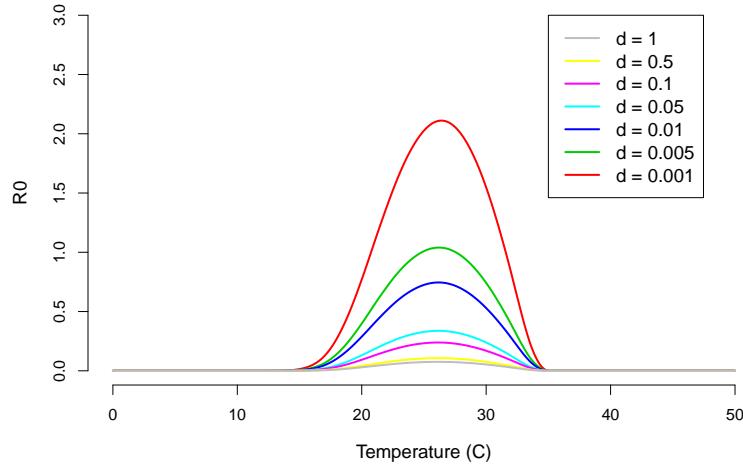


Figure 1: Host recovery rate d values correspond to different R_0 posterior densities. As d decreases, R_0 density increases meaning that a lower recovery rate correspond to a higher outbreak risk.

632

633 A.3 Uncertainty analysis

634 We investigate the uncertainty caused in each of R_0 components, the midge density V , the
 635 functional form f , and the transmission potential g by examining the source of uncertainty
 636 within each component. For the midge density, the uncertainty is mainly caused by the
 637 adult midge mortality rate μ within a wide temperature range, from 10°C to 32°C. At
 638 higher temperatures ($>32^\circ\text{C}$) the uncertainty is caused by the fecundity F .

639 In the functional form case, the uncertainty is caused by the adult mortality rate μ for
 640 temperatures between 18°C and 32°C, this range overlaps with that of the midge density.
 641 At lower (10-18°C) and higher (32-45°C) temperature ranges, the uncertainty is caused by
 642 the pathogen development rate ν . In the transmission potential the overall uncertainty is
 643 caused by the biting rate a .

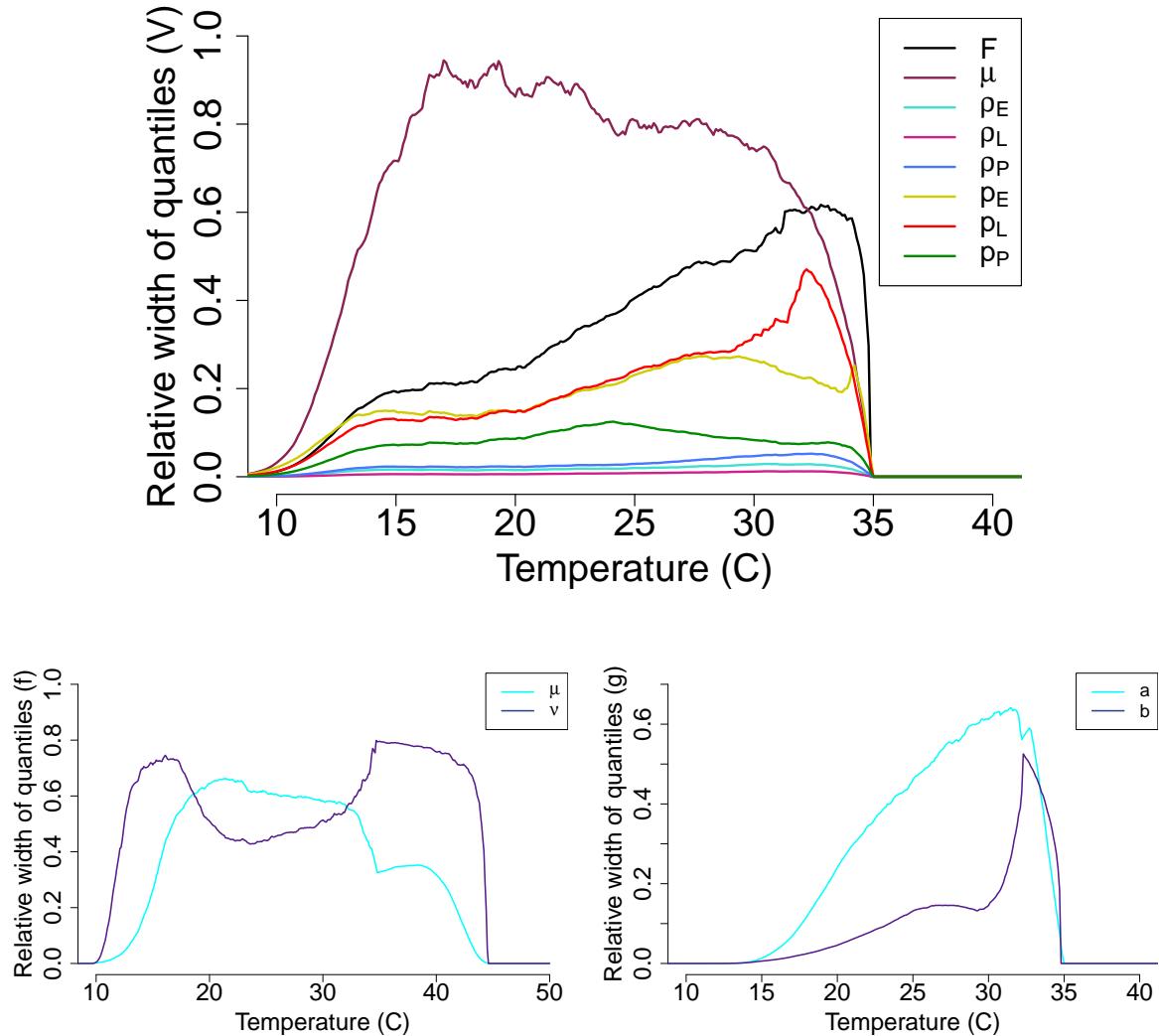


Figure 2: The source of uncertainty in the midge density V (Top), the functional form f (Bottom-left), and the transmission potential g (Bottom-right) is measured by calculating the relative width of quantiles with each parameter varying with temperature while the remaining parameters are kept constants.

644 A.4 Bayesian fitting of traits thermal curves

645 To fit each trait, we chose a unimodal functional form as the mean function. We use normal
 646 distributions for most of the data while binomial distributions are used when fitting proba-
 647 bility distributions. We used uninformative priors appropriate for the biological description
 648 of the data, taking into account the positivity of their values as well as their range. The
 649 values in the priors are decided as we go until the appropriate fitting curve is obtained.

650 **Midges biting rate a**

651 The biting rate of adult midges is one of many factors that influence Bluetongue transmission
652 [54]. In order to calculate the biting rate, the time required for female *Culicoides sonorensis*
653 to lay eggs after a blood meal, also known as a gonotrophic period, is required. Biting rate
654 (a) can be approximated by taking the inverse of the gonotrophic cycle duration. Similar
655 to other traits, the biting rate is sensitive to environmental factors, especially, temperature
656 [54] (see Figure 3 for thermal fit).

657 **Vector competence bc**

658 Vector competence for adult midges is a measure of their ability to transmit the disease. It is
659 genetically determined and heavily influenced by environmental factors such as temperature
660 and humidity [55]. Vector competence (bc) is the product of the probability of a vector
661 getting infected after a blood meal containing a pathogen (c) and the probability of a vector
662 transmitting infection (b). While we were able to find data for b concerning *Culicoides*
663 *sonorensis* [56], we were unable to find data for c . We assume $c = 0.5$ for all calculations
664 used in this analysis. We did fit a Bayesian model to the parameter b (Figure 4).

665 **Juvenile survival probability p_E , p_L , p_P**

666 Vaughan et. al. studied the sub-adult life cycle of *Culicoides variipennis* at temperatures
667 of 20 °C, 25 °C, and 28 °C [57]. We define the probability of an egg hatching by using the
668 mean percentage of laid eggs that hatched at each given temperature. We now define the
669 probability of successful larval pupation by collecting the percentage of larva that ended up
670 pupating at each given temperature. We finally define the probability of pupae emerging to
671 become adults, p_P , as the mean percentage of pupae that survive to the adult stage at each
672 given temperature (Figures 5, 6, 7).

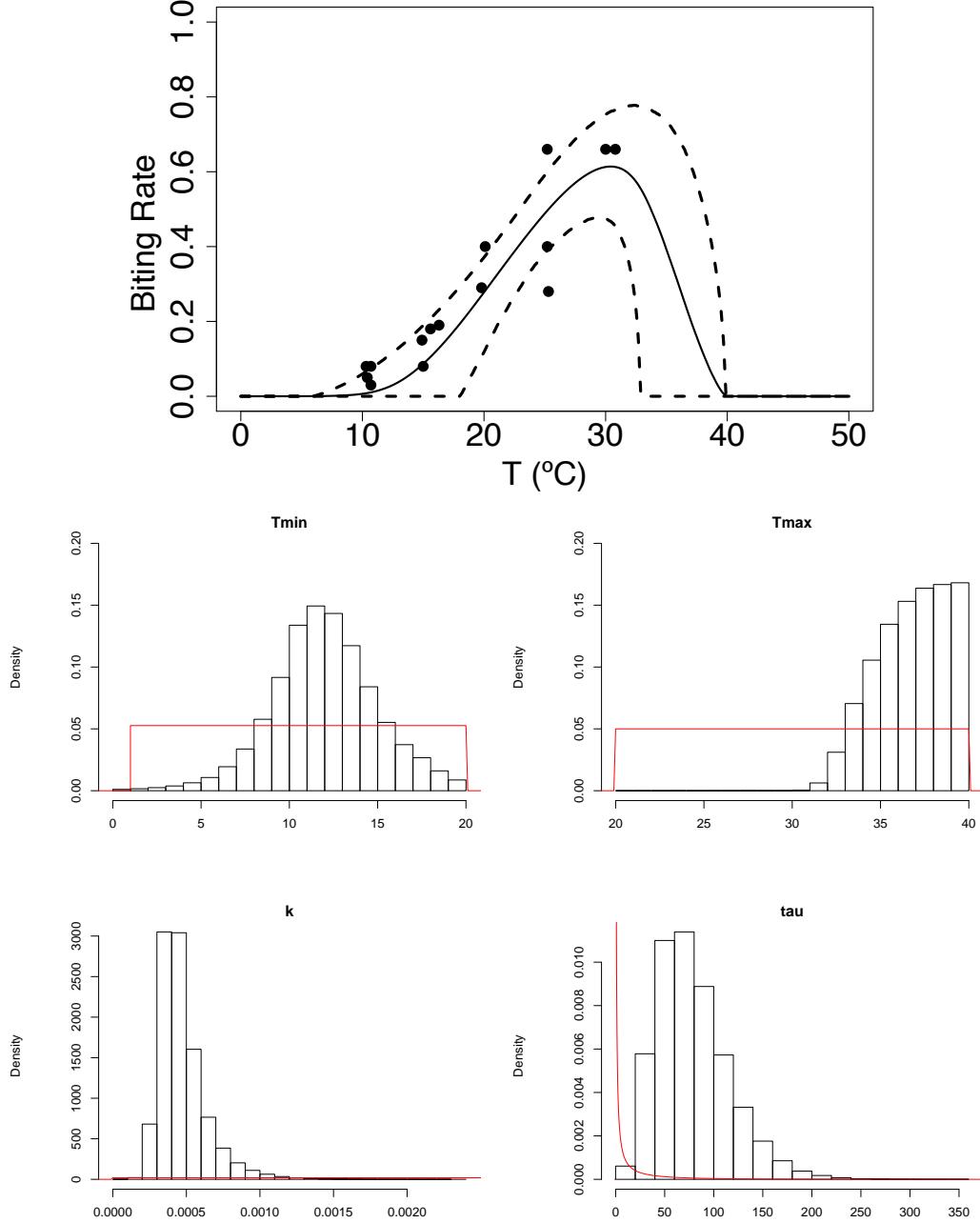


Figure 3: (Top) The mean trajectory in solid line and HPD interval in dashed black for the biting rate a . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the biting rate a . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a normal distribution with precision τ .

673 **Juvenile development time** ρ_E , ρ_L , ρ_P

674 Egg Development Time is defined as the time in days required for eggs to hatch in a given
 675 temperature. *Culicoides variennis* were studied in a laboratory setting [57]. Larva Devel-

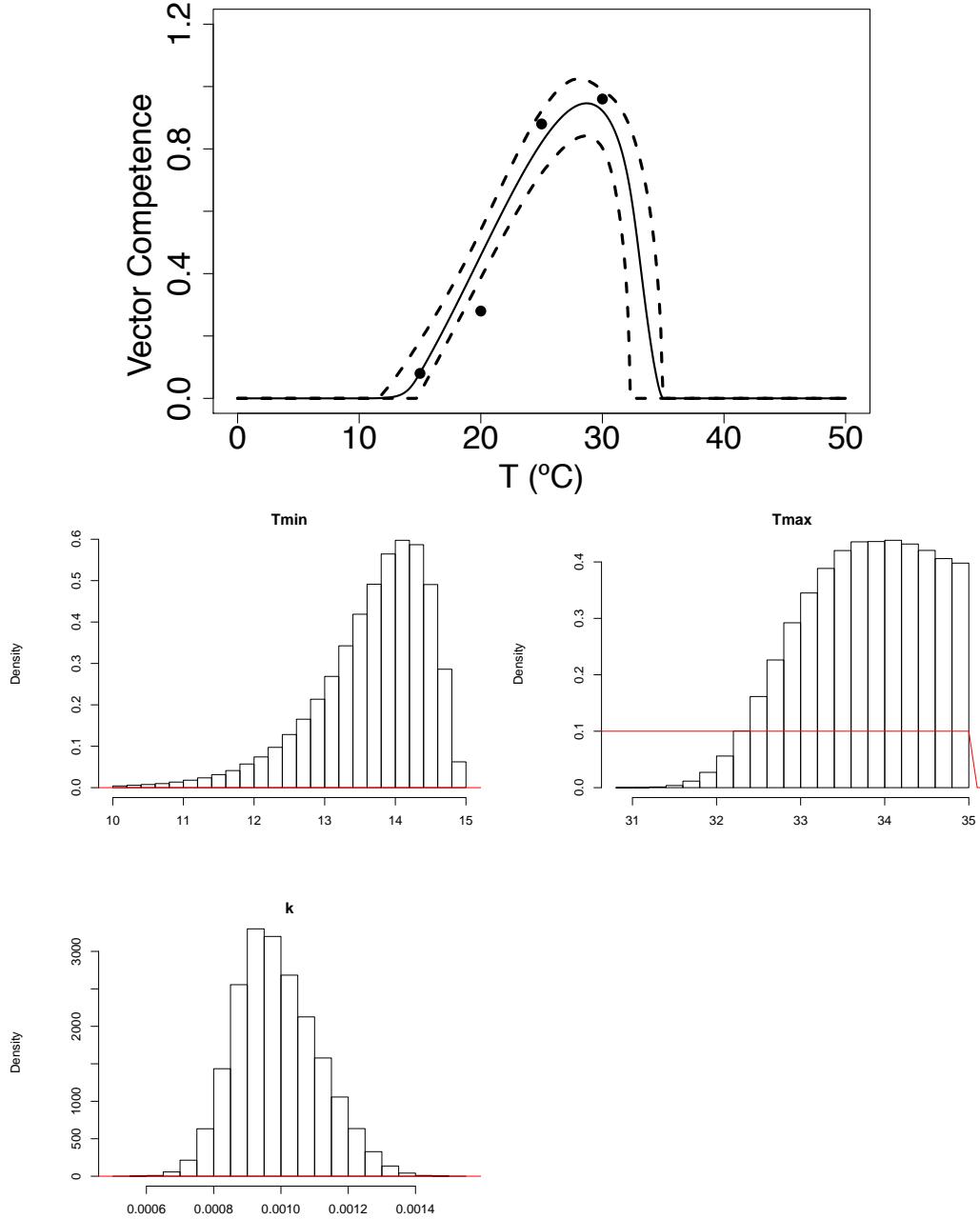


Figure 4: (Top) The mean trajectory in solid line and HPD interval in dashed black for the probability of a vector transmitting the virus when biting b . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the probability b . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a binomial distribution.

676 opment Time is defined as the time in days required for the larva to mature into a pupa in
 677 a given temperature. Pupa Development Time is defined as the time in days required for a

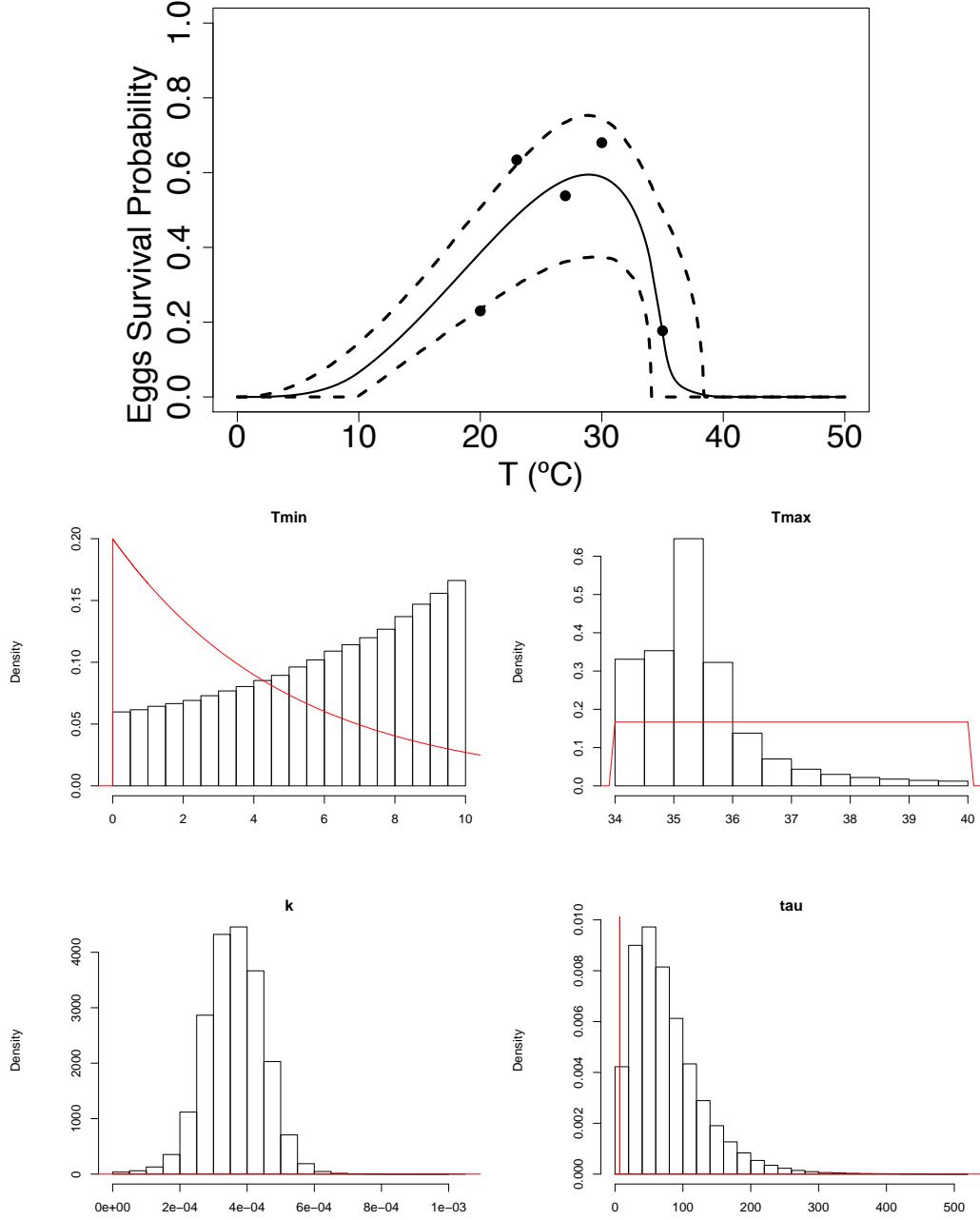


Figure 5: (Top) The mean trajectory in solid line and HPD interval in dashed black for the egg survival probability p_E . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the probability p_E . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a normal distribution with precision τ .

678 pupa to mature into adult midges in a given temperature (Figures 8, 9, 10).

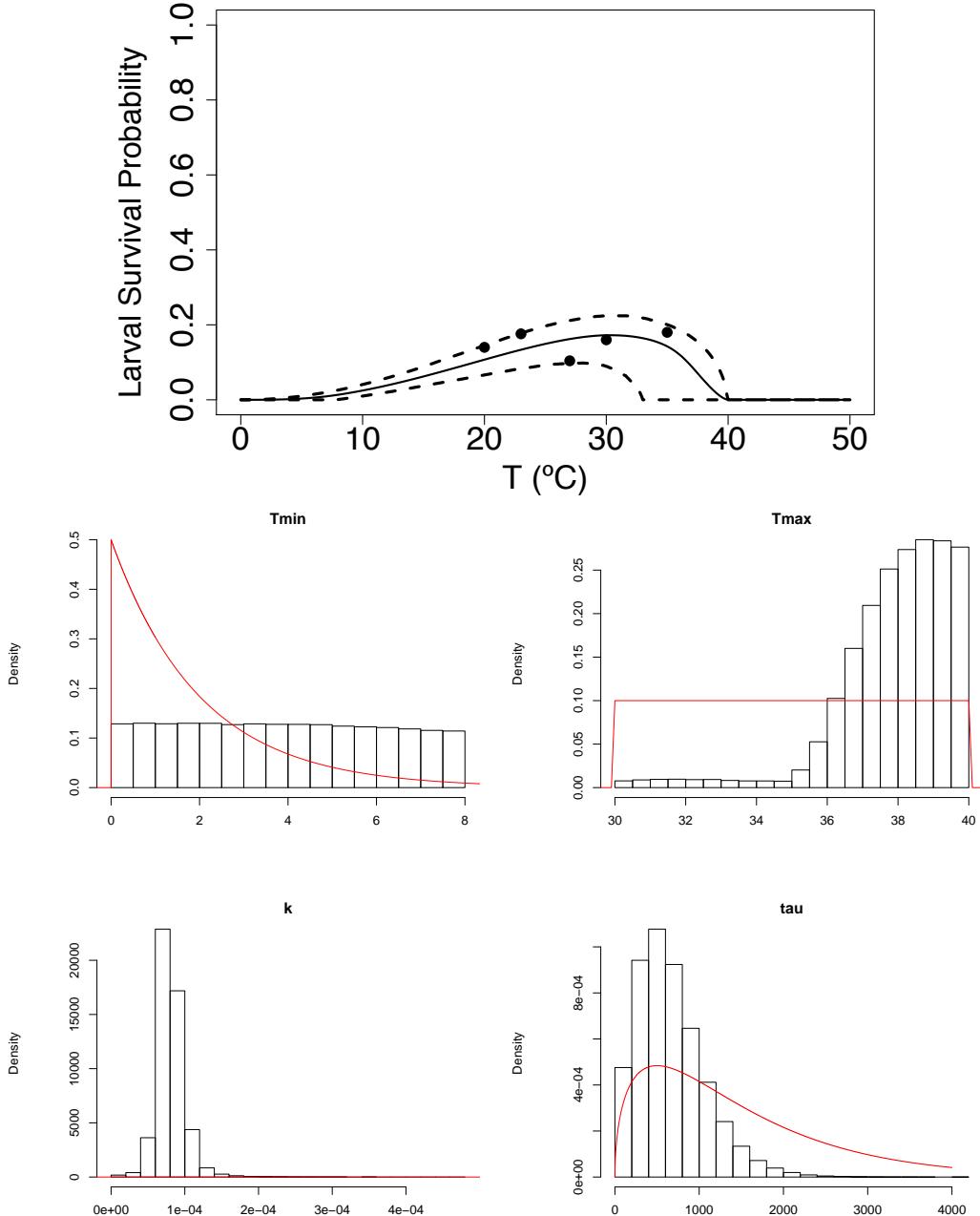


Figure 6: (Top) The mean trajectory in solid line and HPD interval in dashed black for the larval survival probability p_L . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the probability p_L . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a normal distribution with precision τ .

679 **Fecundity F**

680 The rate at which female midges lay eggs is closely related to the spread of Bluetongue. This
 681 rate is typically measured as eggs per female per day. For this study we also utilized fecundity

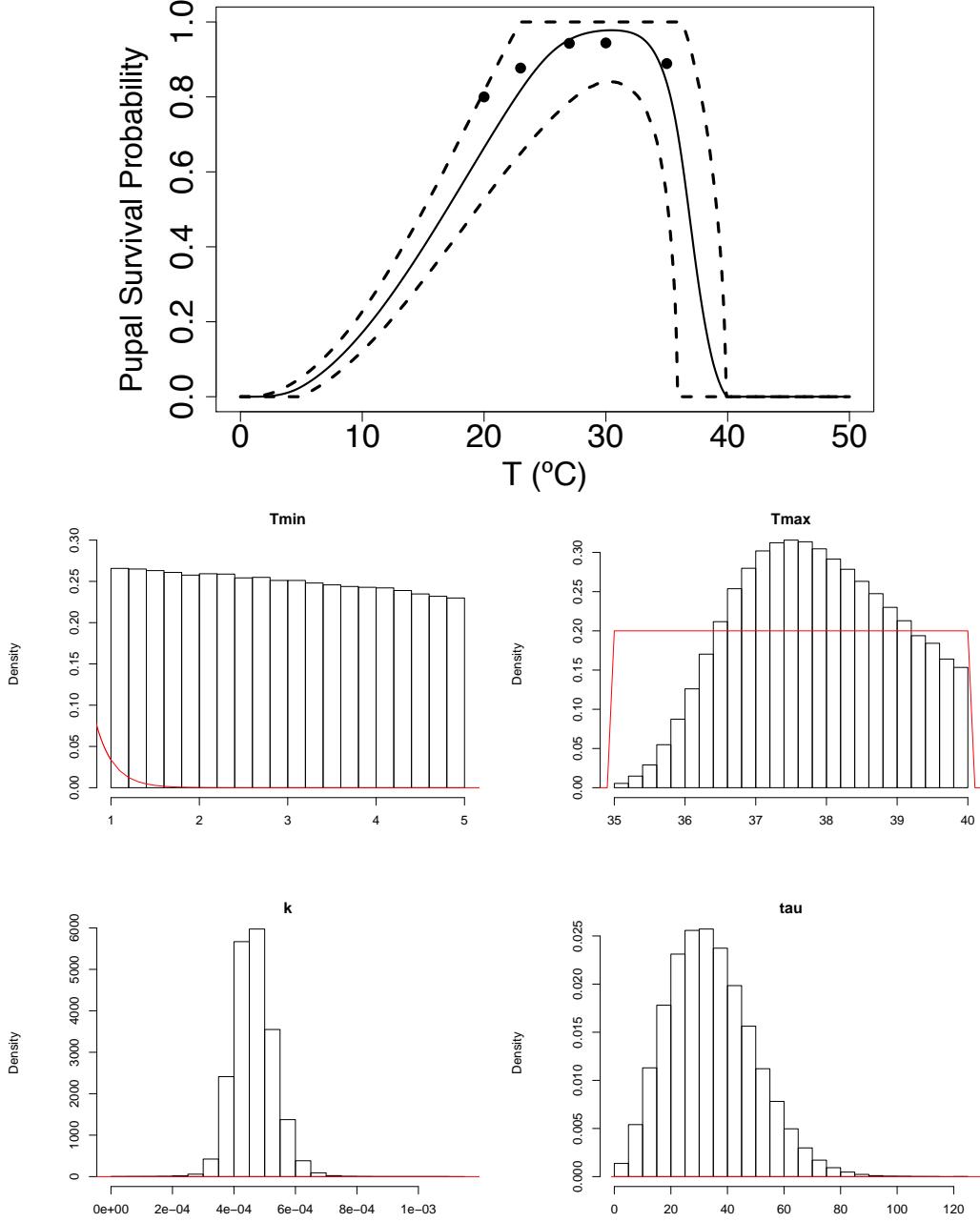


Figure 7: (Top) The mean trajectory in solid line and HPD interval in dashed black for the pupal survival probability p_P . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the probability p_P . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a normal distribution with precision τ .

682 data that was taken over two oviposition cycles and transformed the data (originally eggs
 683 per female) by dividing by the median oviposition time [54].

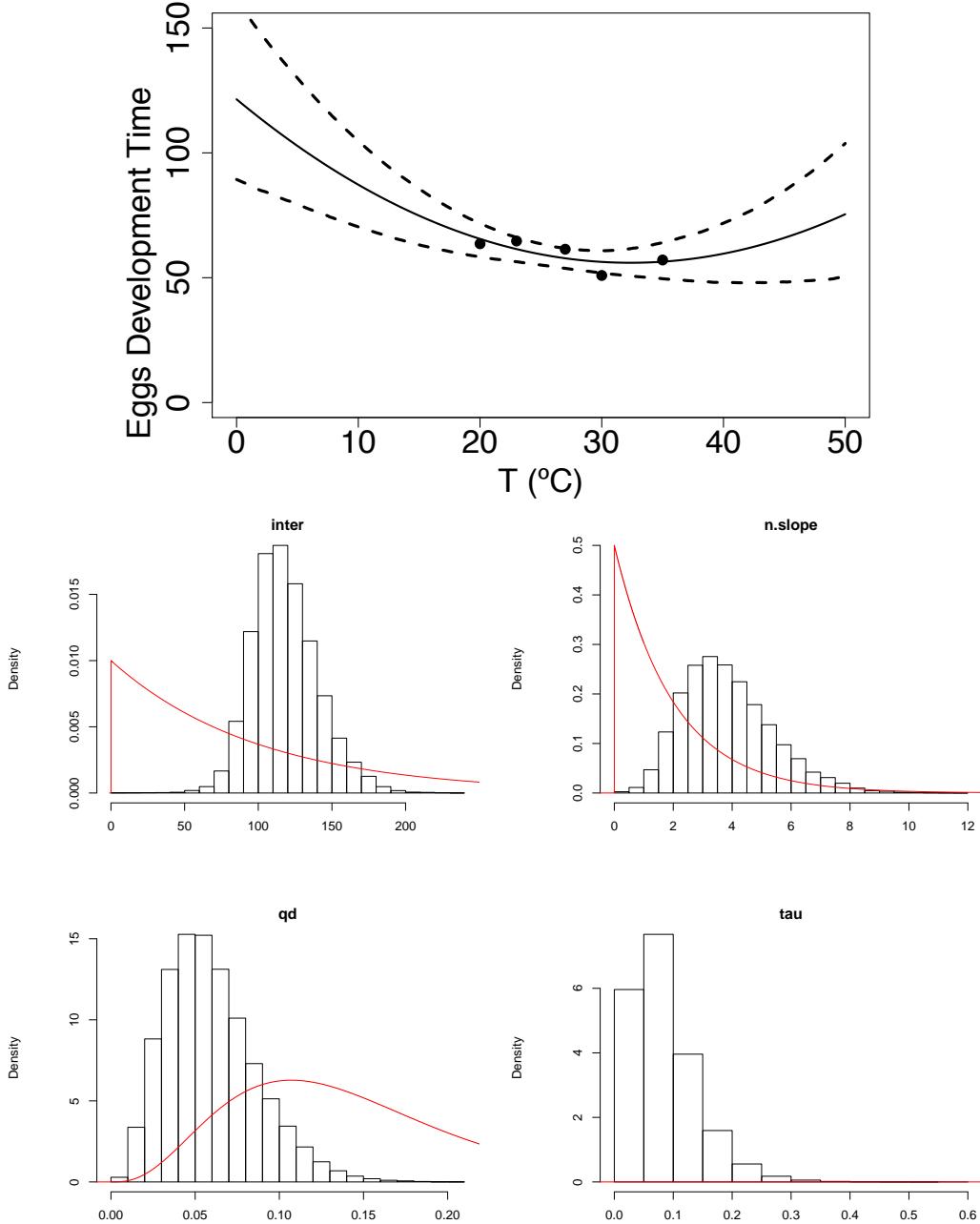


Figure 8: (Top) The mean trajectory in solid line and HPD interval in dashed black for egg development time ρ_E . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for egg development time ρ_E . The prior distribution for each parameter is plotted in red. The quadratic fit is determined by the equation $inter - n.slope T + qd T^2$ using a normal distribution with precision τ .

684 Pathogen development rate ν

685 Parasite development has been shown to increase with temperature in studies that support
 686 the hypothesis that global warming has been cause for latitudinal shifts which in turn increase

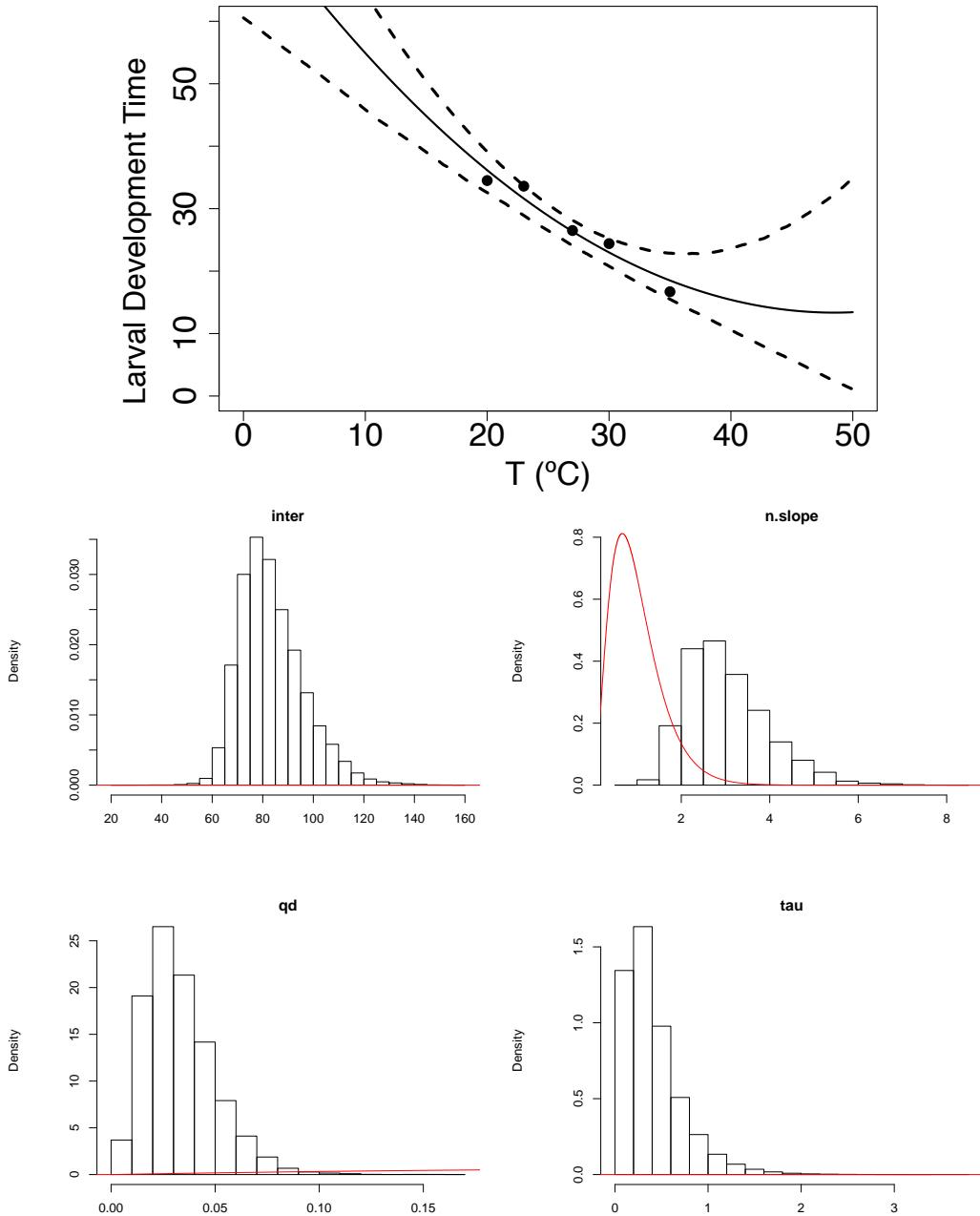


Figure 9: (Top) The mean trajectory in solid line and HPD interval in dashed black for larval development time ρ_L . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for larval development time ρ_L . The prior distribution for each parameter is plotted in red. The quadratic fit is determined by the equation $inter - n.slope T + qd T^2$ using a normal distribution with precision τ .

687 the reach of vectors that transmit diseases like bluetongue [58]. In order to investigate this
 688 trait's relationship with temperature, we made use of data on Extrinsic Incubation Period
 689 (EIP) to create a new parameter: Parasite Development Rate (ν) ($\nu = 1/EIP$). EIP is the

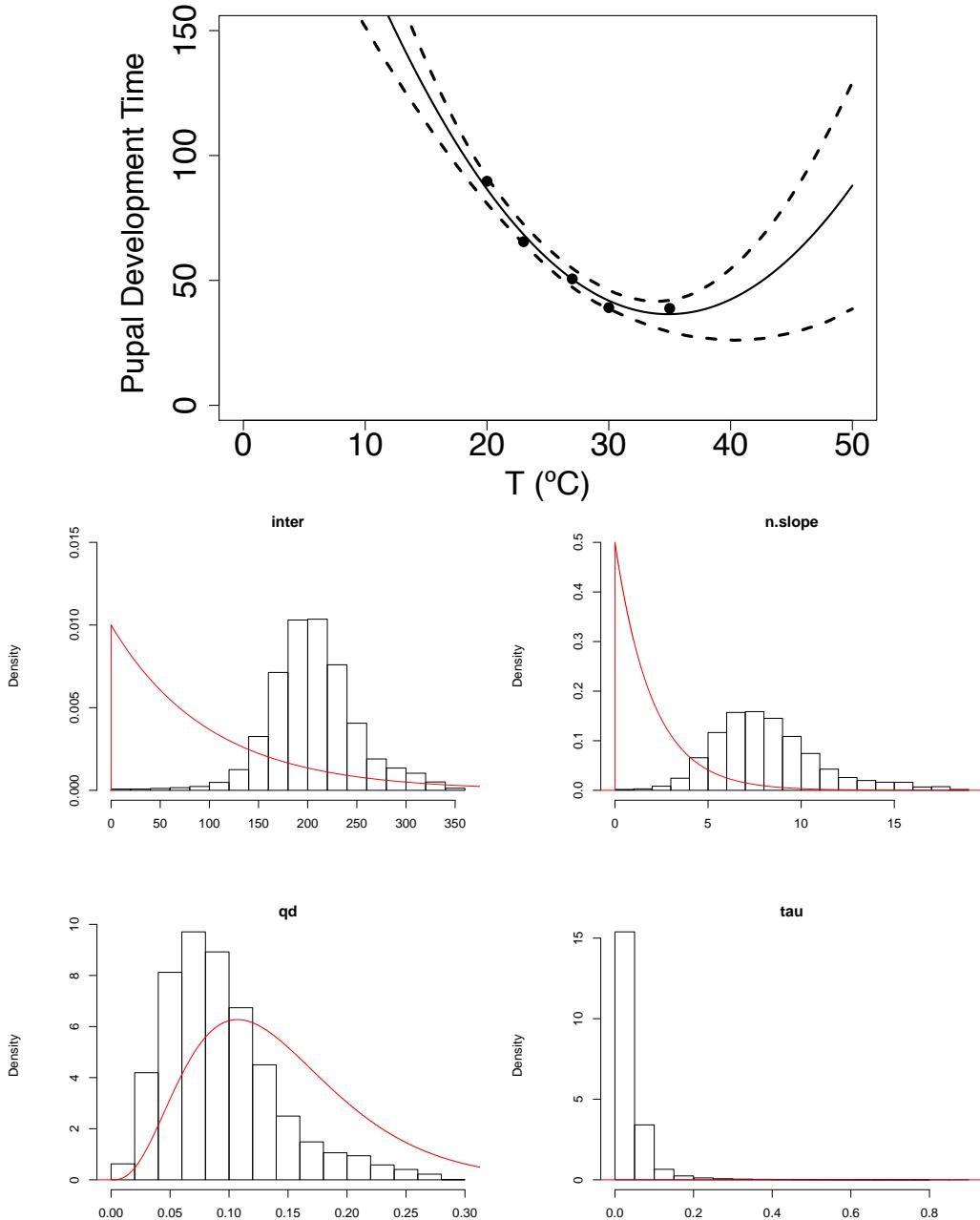


Figure 10: (Top) The mean trajectory in solid line and HPD interval in dashed black for pupal development time ρ_P . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for pupal development time ρ_P . The prior distribution for each parameter is plotted in red. The quadratic fit is determined by the equation $inter - n.slope T + qd T^2$ using a normal distribution with precision τ .

690 time between a vector getting infected with a pathogen to the time that the vector itself is
 691 able to transmit the pathogen.

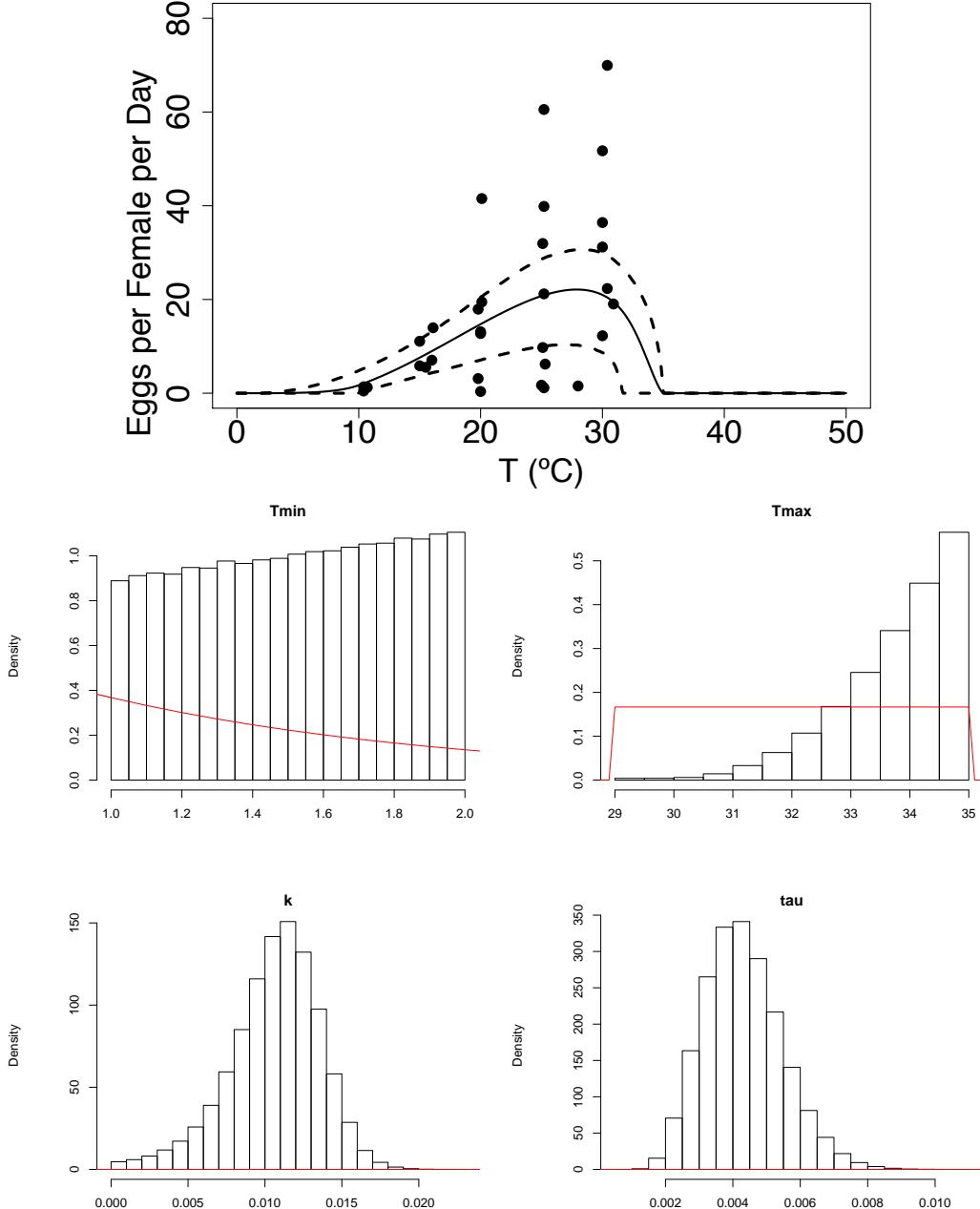


Figure 11: (Top) The mean trajectory in solid line and HPD interval in dashed black for fecundity F . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for fecundity F . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a normal distribution with precision τ .

692 **Adult mortality rate μ**

693 The rate at which midges die over a span of time is known as the mortality rate μ . We
 694 define the mortality rate of midges as $\frac{1}{lf}$, where lf represents the lifespan of midges in days,

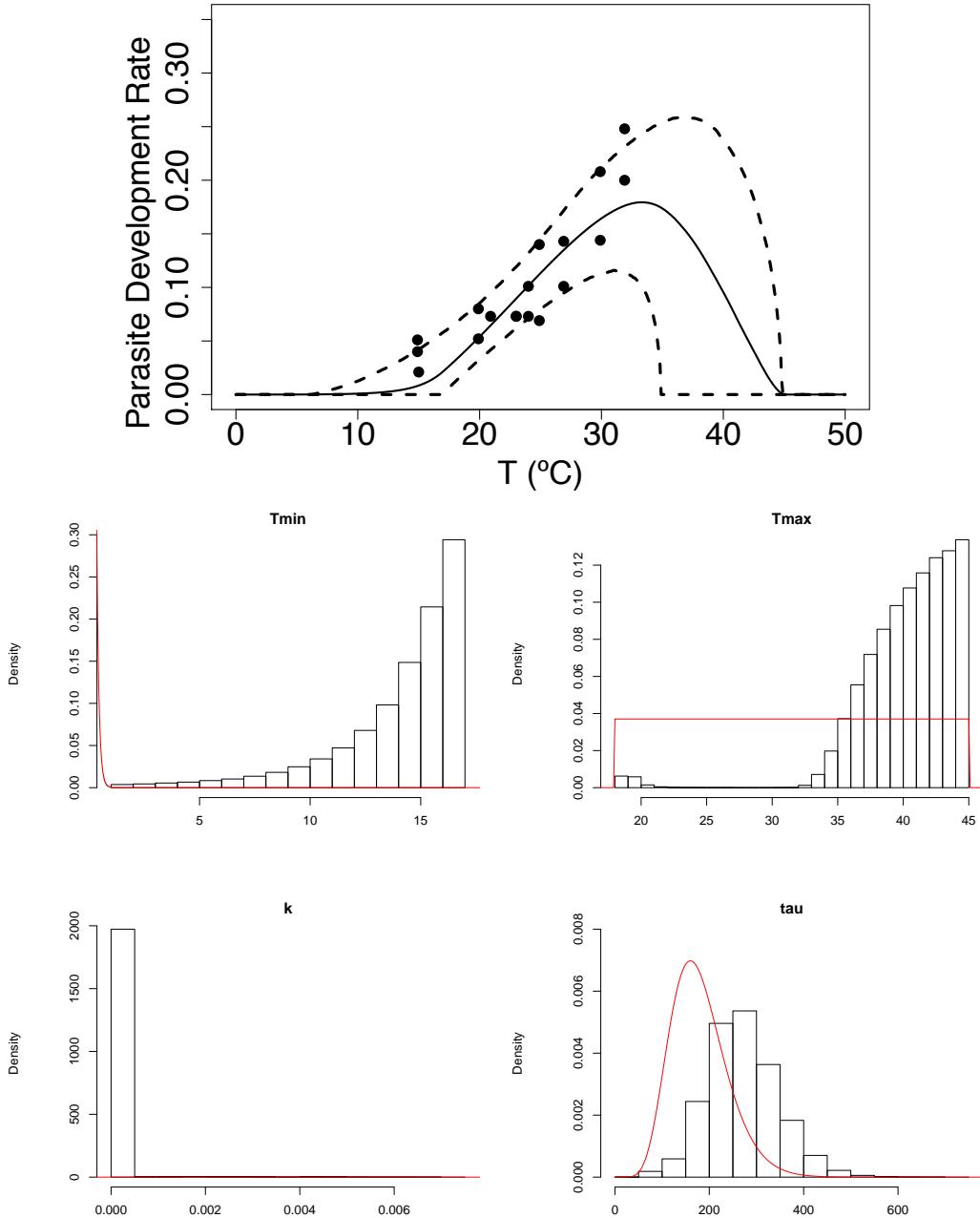


Figure 12: (Top) The mean trajectory in solid line and HPD interval in dashed black for the parasite development rate ν . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the parasite development rate ν . The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation $kT(T - T_{Min})\sqrt{T_{Max} - T}$ using a normal distribution with precision τ .

695 or the probability of survival for the midges. We define mortality rate in the case where lf
 696 is the lifespan of midges in days. Mortality rate is also sensitive to environmental factors,
 697 especially temperature [54].

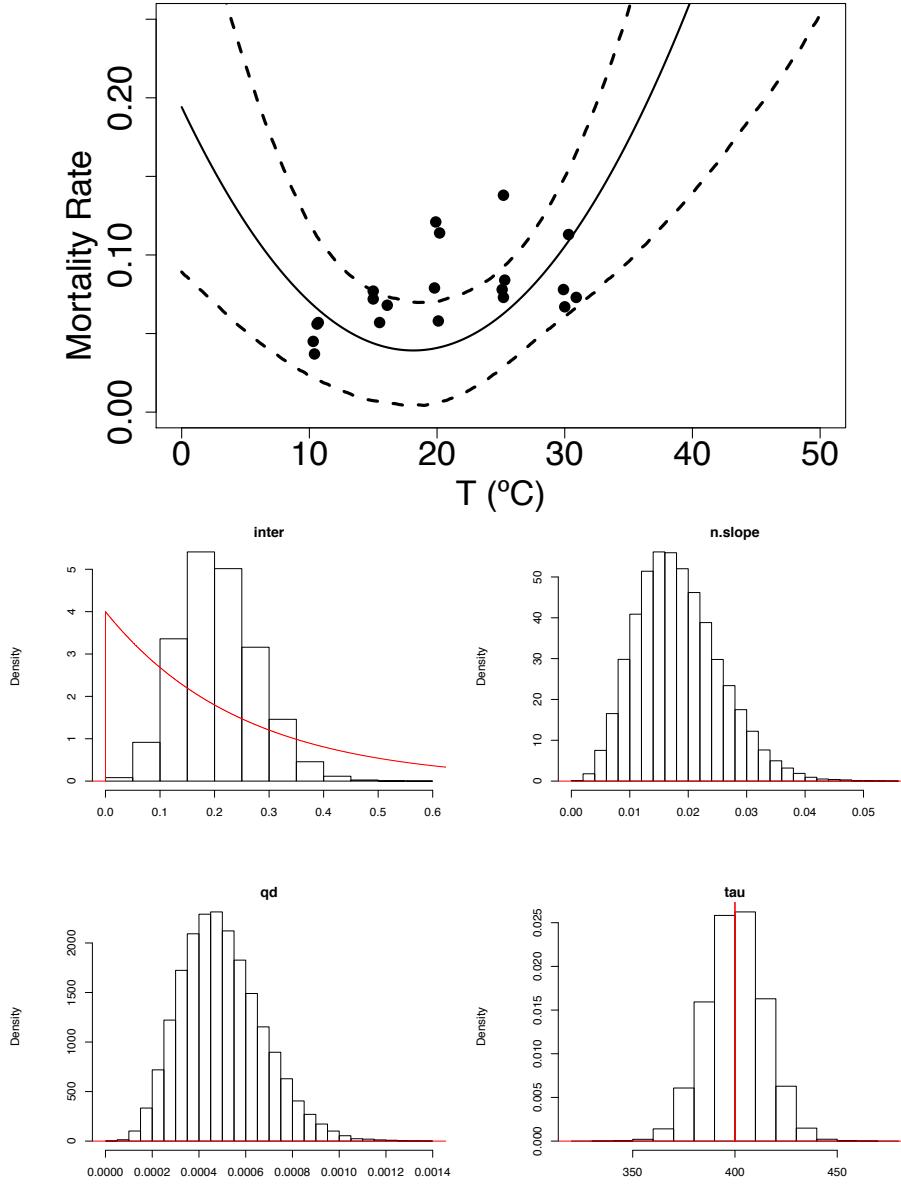


Figure 13: (Top) The mean trajectory in solid line and HPD interval in dashed black for the mortality rate μ . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for the mortality rate μ . The prior distribution for each parameter is plotted in red. The quadratic fit is determined by the equation $inter - n.slope T + qd T^2$ using a normal distribution with precision τ .

698 Thermal traits prior distributions

699 Table 2 summarizes all the priors used to fit the thermal curves.

700 **A.5 Posterior distributions for all $S(T)$ forms**

701 For all three R_0 posterior distributions we provide posterior distributions for the lower tem-
 702 perature limit, peak temperature, and upper temperature limit.

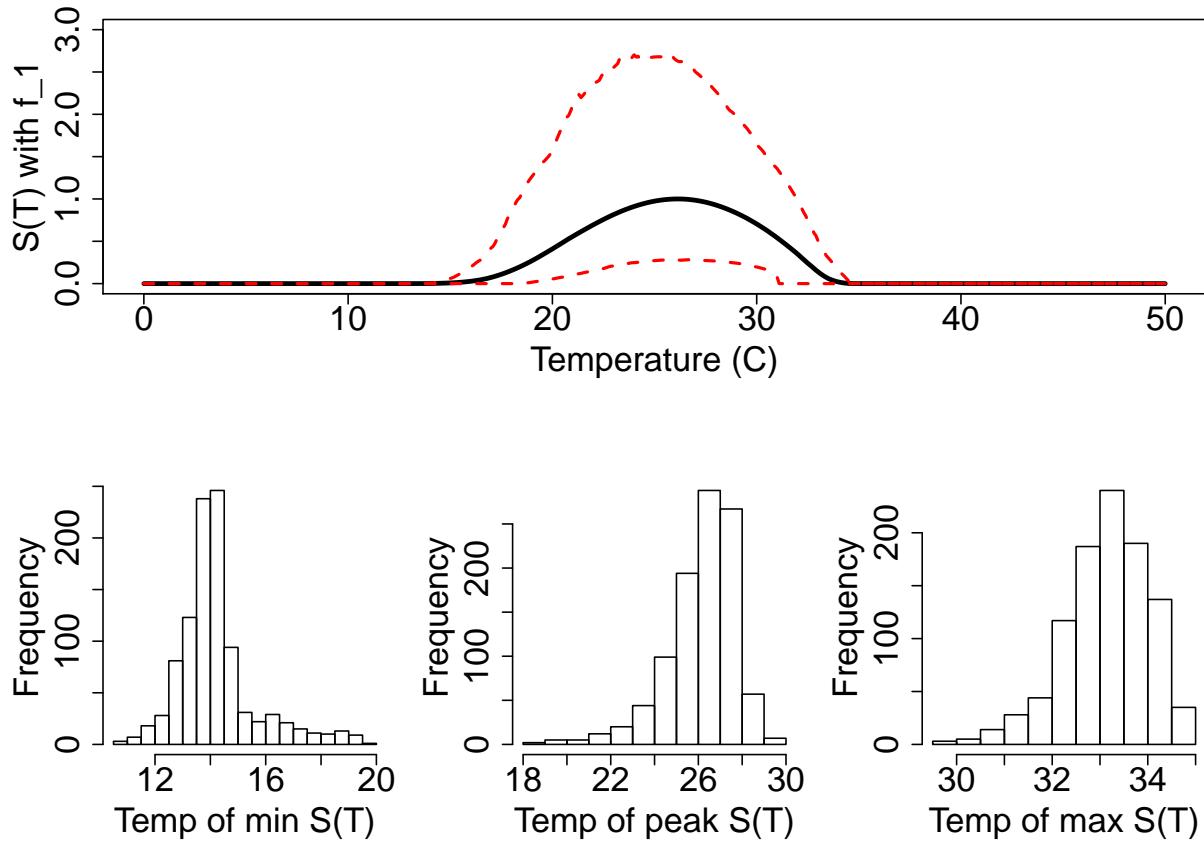


Figure 14: Minimum, peak and, maximum temperatures posterior densities for Dietz 1993 [25] R_0

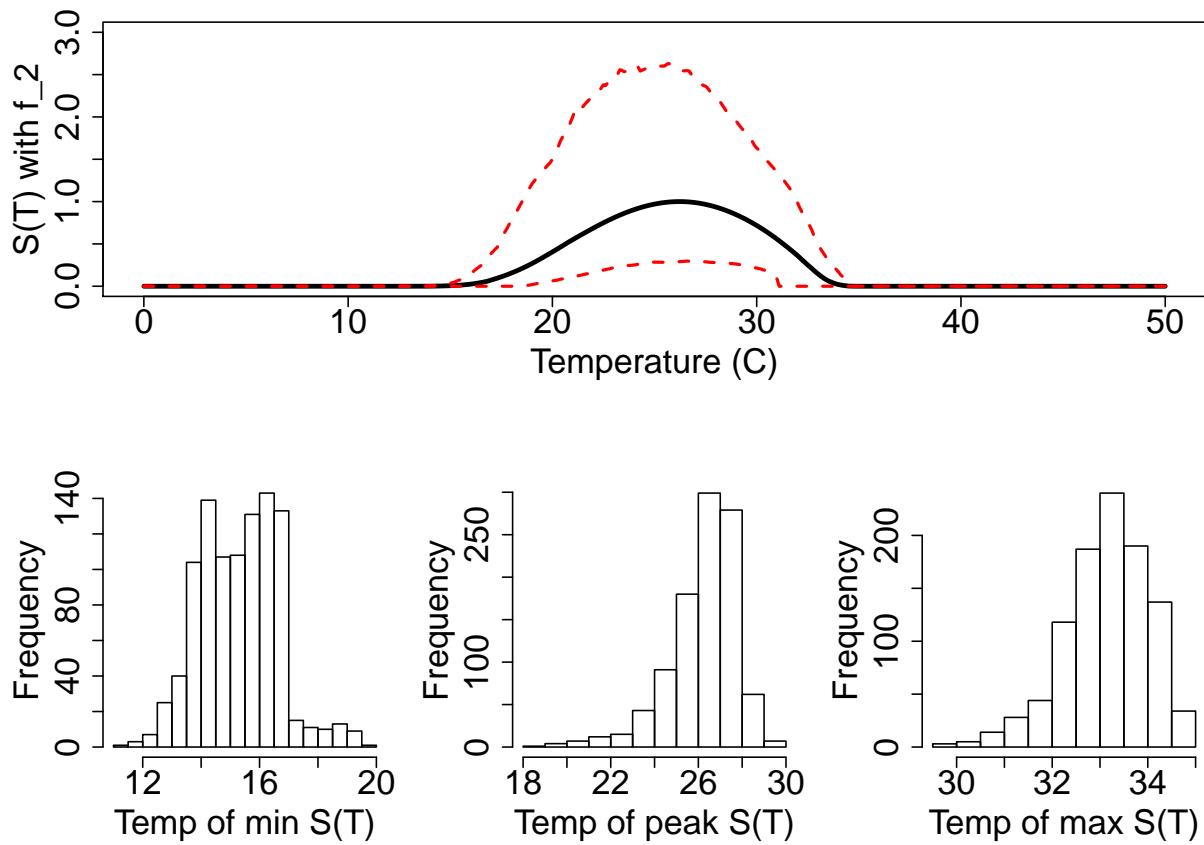


Figure 15: Minimum, peak and, maximum temperatures posterior densities for Gubbins 2008 [10] R_0

703 **A.6 Digitized data**

704 Table 3 shows the digitized trait values and their corresponding references.

Parameter	Trait	Value	Units	Transformed	Ref.
a	Vector biting rate	0.05 0.03 0.08 0.18 0.29 0.4 0.4	bites/day	Y	48

		0.28			
		0.28			
		0.66			
		0.66			
		0.08			
		0.08			
		0.15			
		0.19			
		0.66			
b	Probability of transmission	0.08	dimensionless	Y	50
		0.28			
		0.28			
		0.88			
		0.96			
efd	Fecundity	5.528	# eggs per female per day	Y	48
		3.122			
		13.11			
		9.745			
		6.206			
		31.191			
		19.034			
		1.361			
		1.242			
		11.08			
		13.961			
		17.93			
		41.531			

		60.535			
		39.856			
		51.724			
		69.951			
		12.731			
		1.154			
		36.417			
		0.465			
		5.844			
		7.048			
		19.469			
		31.938			
		21.195			
		12.255			
		22.332			
		0.365			
		1.703			
		1.536			
<i>edt</i>	Egg's development time	63.6	Days	N	51
		64.7			
		61.4			
		50.9			
		57.1			
<i>ldt</i>	Larva's development time	34.5	Days	N	51
		33.6			
		26.5			
		24.4			

		16.7			
<i>PuDt</i>	Pupa's development time	89.7 65.5 50.6 39.1 38.8	Days	N	51
μ	Adult's mortality rate	0.037 0.057 0.072 0.057 0.121 0.058 0.078 0.084 0.067 0.073 0.045 0.056 0.077 0.068 0.079 0.114 0.138 0.073 0.078 0.113	$\frac{1}{\text{Days}}$	Y	48
<i>pdr</i>	Extrinsic incubation	0.051	$\frac{1}{\text{Days}}$	Y	52

	period (EIP)	0.04 0.021 0.052 0.08 0.073 0.073 0.073 0.073 0.069 0.101 0.101 0.14 0.143 0.144 0.208 0.2 0.248			
pE	Egg's survival probability	0.23 0.634 0.538 0.68 0.177	dimensionless	N	51
pL	Larva's survival probability	0.14 0.176 0.104 0.16 0.18	dimensionless	N	51

pP	Pupa's survival Probability	0.8 0.877 0.943 0.944 0.889	dimensionless	N	51
------	--------------------------------	---	---------------	---	----

Table 3: Traait values digitized and fit using MCMC.

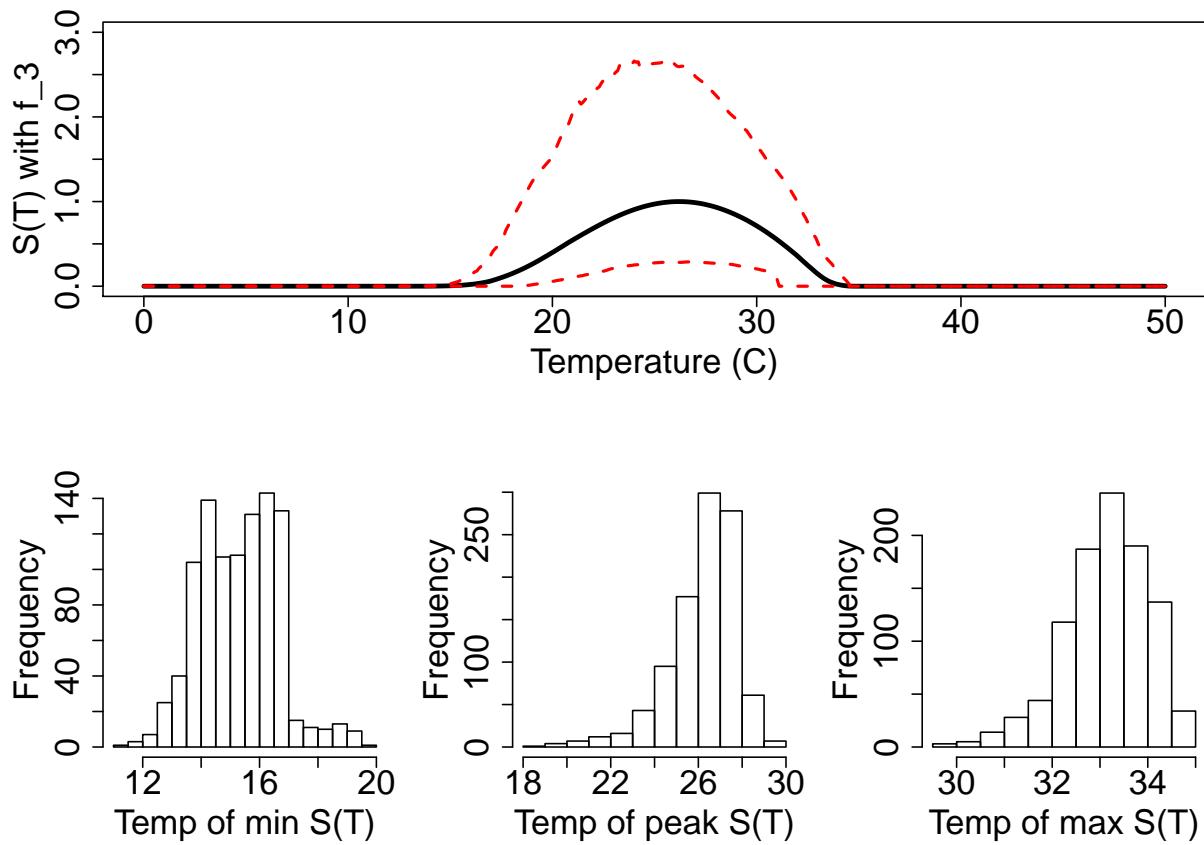


Figure 16: Minimum, peak and, maximum temperatures posterior densities for the R_0 presented here.

Model Parameter	Mean Function	Parameters	Prior
Biting Rate a	Brière	T_{Min} T_{Max} k τ	dunif(0, 20) dunif(20,40) dgamma(1,20) dgamma(0.01, 0.01)
Transmission probability b	Brière	T_{Min} T_{Max} k	dunif(10,24) dunif(25,35) dgamma(1,10)
Egg Survival Probability p_E	Brière	T_{Min} T_{Max} k τ	dunif(10,20) dunif(35,40) dgamma(1,20) dgamma(7, 5^{-10})
Larval Survival Probability p_L	Brière	T_{Min} T_{Max} k τ	dunif(0,8) dunif(30,40) dgamma(1,20) dgamma(1.5, 0.001)
Pupal Survival Probability p_P	Brière	T_{Min} T_{Max} k τ	dunif(1,5) dunif(35,40) dgamma(1,5) dgamma(10, 0.002)
Egg Development Time ρ_E	Quadratic	inter n.slope qd τ	dgamma(1, 0.01) dgamma(1, 0.5) dgamma(4,28) dnorm(3, 1/800)
Larval Development Time ρ_L	Quadratic	inter n.slope qd τ	dgamma(1, 0.01) dgamma(1, 0.5) dgamma(4,28) dnorm(3, 1/1000)
Pupal Development Time ρ_P	Quadratic	inter n.slope qd τ	dgamma(1, 0.01) dgamma(1, 0.5) dgamma(4,28) dnorm(3, 1/200)
Eggs per Female per Day F	Brière	T_{Min} T_{Max} k τ	dunif(1, 10) dunif(29,35) dgamma(1,1) dgamma(9, 0.0005)
Parasite Development Rate ν	Brière	T_{Min} T_{Max} k τ	dunif(1, 17) dunif(18,45) dgamma(1,10) dgamma(9, 0.05)
Adult Mortality Rate μ	Quadratic	inter n.slope qd τ	dgamma(2,2) dgamma(3,3) dgamma(2,2) dnorm(1000, 1/500)

Table 2: Prior distributions for each of the parameters for the fitting of the responses for each of the thermal traits considered.