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17 Abstract

18 The transmission of vector-borne diseases is governed by complex factors including
19 pathogen characteristics, vector-host interactions, and environmental conditions. Tem-
20 perature is a major driver for many vector-borne diseases including Bluetongue viral
21 (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose
2 etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal
23 agriculture and the economy of affected countries. Using modeling tools, we seek to
2% predict where the transmission can occur based on suitable temperatures for BTV. We
25 fit thermal performance curves to temperature-sensitive midge life-history traits, using
26 a Bayesian approach. We incorporate these curves into S(7'), a transmission suitability
27 metric derived from the disease’s basic reproductive number, Ry. This suitability met-
28 ric encompasses all components that are known to be temperature-dependent. We use
29 trait responses for two species of key midge vectors, Culicoides sonorensis and Culi-
30 coides variipennis present in North America. Our results show that outbreaks of BTV
31 are more likely between 15°C and 34°C with predicted peak transmission risk at 26°C.
32 The greatest uncertainty in S(7') is associated with: the uncertainty in mortality and
33 fecundity of midges near optimal temperature for transmission; midges’ probability
3 of becoming infectious post-infection at the lower edge of the thermal range; and the
35 biting rate together with vector competence at the higher edge of the thermal range.
36 We compare three model formulations and show that incorporating thermal curves
37 into all three leads to similar BTV risk predictions. To demonstrate the utility of this
38 modeling approach, we created global suitability maps indicating the areas at high and
30 long-term risk of BTV transmission, to assess risk and to anticipate potential locations
40 of the establishment.

« Author Summary

N

> In this paper, we use data on traits of the biting midge that are sensitive to temperature

3 to study bluetongue disease transmission. Bluetongue disease is a vector-borne disease that

N
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threatens different types of ruminants, including sheep and cattle. This disease affects the
livestock economy in the US and around the world. Here, we focus on two species of biting
midges that transmit the bluetongue virus. First, we collect temperature-dependent trait
data from previously published studies. Then, we used this data to derive the parameters
incorporated into the mathematical and statistical models. To assess the transmission risk,
we use a metric derived from the model to identify the temperature range suitable for blue-
tongue disease transmission. Our findings allow us to predict the areas around the world
that could be at risk of bluetongue transmission should the midge species be present. These
areas require more surveillance in case a bluetongue disease outbreak begins. Potentially,
our results can inform future control and prevention strategies for bluetongue disease.
Keywords— Bluetongue virus, vector-borne diseases, transmission, Bayesian analysis,

temperature, disease modeling

1 Introduction

With ongoing climate change, it is critical that we understand how temperature influences
the dynamics of emerging diseases. Vector-borne diseases (VBDs) are highly sensitive to
climate factors, particularly temperature, as demonstrated previously for VBDs of both
humans and plants [1I, 2, B, 4, 5]. Bluetongue virus (BTV), in the Reoviridae family (genus
Orbivirus), causes the disease Bluetongue in livestock across the world and is thus a VBD of
considerable economic concern. The biting midges of the Culicoides family are responsible
for transmitting BTV and many other arboviruses. More than 1,400 species of Culicoides
have been classified, globally, but fewer than 30 have been identified as competent vectors
for BTV transmission [6]. These midges are highly sensitive to changes in temperature [7, §],
and thus so is BTV transmission [9, [10].

BTV can infect most species of domestic and wild ruminants, including sheep, goats, and

cattle [I1]. Sheep are the most susceptible to the disease and exhibit the highest morbidity
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and mortality, post-infection [12, 13]. In the majority of infections by strains of BTV’s
27 serotypes, animals rarely show any clinical signs [14]. The infection severity and the
presence of clinical signs both depend on the serotype, and the severity of infection can
range from rapid fatality to quick recovery. Common outward clinical signs include a blue
tongue, fever, and excessive salivation [I3]. Since clinical signs are rare, BTV infection often
goes without detection. Unfortunately, undetected cases can still result in mortality, and
while BTV vaccines exist, vaccine development is in its infancy [15]. An effective polyvalent
vaccine to immunize against more than one strain of BTV has yet to be developed [16], and
existing attenuated viral vaccines pose significant health risks to livestock, such as reduced
milk production in lactating sheep, abortion, early embryonic death, and teratogenesis in

pregnant females [17].

Environment

>

Vector

Figure 1: Bluetongue virus interaction diagram: the mechanisms underlying the transmission of bluetongue
virus include, host-vector interactions, host-pathogen interactions, vector-pathogen interactions as well as
the environmental effect on all interactions.

In the absence of an effective polyvalent BTV vaccine, and with the potential risks and
costs of the available vaccines, the impact of BTV on global agriculture is significant. For

example, the cost of BTV in the U.S. beef industry was estimated at $95 billion in 2014 [16].

Although BTV was first detected among merino wool sheep in South Africa in 1905, since

4
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then the disease has been found on every continent but Antarctica [I§]. In recent years, the
disease has spread to areas previously believed to not be at risk, including North and Central
Europe, parts of Asia, and Western North America [12) [19]. Mandatory testing of animals
and losses in foreign markets form a huge economic burden. This adds to the economic
impact of BTV on the livestock industry. There is substantial improvement needed in our
ability to assess risks and to anticipate potential shifts in risk over time and space.

Though the cause of the recent appearance of BTV in some of the new regions (especially
Northern Europe) is still unknown, it is believed that climate change is a major driver. More
specifically, the increase in temperature of certain locations makes them suitable for midges
to survive, and therefore transmit diseases [I3]. For example, some cases of BTV-8 in Europe,
specifically in France, have exceeded expectations of receding and survived cold winters [20].

Mathematical modeling can facilitate our understanding of the complexities of the trans-
mission process of vector-borne diseases [10], 21}, 22]. The classical Ross-MacDonald model of
VBDs and similar models allow us to calculate the basic reproductive ratio Ry of the disease
[23, 24]. This summary quantity is widely used to estimate how infectious a disease is and
whether an outbreak can occur. When Ry > 1, the disease is likely to spread, leading to an
outbreak; when Ry < 1 the disease is likely to die out. As shown in Figure[l} BTV transmis-
sion involves host-vector interactions, host-virus interactions, vector-virus interactions, and
the effect of the environment. Mathematical models allow us to describe these interactions,
parameterize them with data, and quantify the knock-on effects for transmission risk.

Here we are interested in answering the following questions: (1) How does the risk of
transmission of BTV vary with temperature? (2) Do different model assumptions lead to
different predicted suitability ranges? and (3) Which traits contribute the most to variation
in estimates of transmission risk? To answer these questions, we take an approach used pre-
viously for VBDs such as malaria [I], 2]. We begin by using Bayesian inference to fit thermal
responses to laboratory-derived data for temperature-sensitive midge life-history traits. We

then derive Ry for BTV as a function of these thermal responses and incorporate the fitted
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thermal responses to obtain estimates of these across temperatures. To focus on just the
temperature-dependent components, we define a suitability metric, S(T"), that isolates the
temperature-sensitive components of Ry. We compare forms of S(7T") where the midge den-
sity, V/, is constant vs temperature-sensitive to ascertain if this generates major differences
in suitability predictions. Next, we conduct uncertainty analyses to assess identify which
parameters drive uncertainty in S(7"). This can indicate that either further data collection
is needed to refine estimates, or that certain parameters have greater impacts on BTV dis-
ease transmission at different temperatures. Finally, we visualize predictions of the fitted
suitability framework to explore which geographical areas might be suitable for transmission
in the current native range of the midges, or if they become established elsewhere. Further-
more, understanding which temperature range results in S(7°) > 0, for given levels of other
fixed parameters in our model, may inform prevention and control strategies that target

particular parameters (e.g., adult mortality rates via pesticide application).

2 Methods

2.1 Derivation of Ry and S(7T)

To predict the outbreak potential of BTV, several forms of the basic reproductive number
Ry have been developed [10], 21, 22]. The classical reproductive ratio for a generic VBD

[T, 25] is given by

Vb 2 1/2
Ry = ( - ;Z e_“/”) from  [25] (1)

where V' is midge population density; be is vector competence (the product of the probability
that a midge can transmit the infection to an uninfected host, b, and the probability that
a midge gets infected when biting an infected host, ¢); a is the per-midge biting rate; u
is the adult midge mortality rate; v is the pathogen development rate (v = 1/EIP with

EIP the extrinsic incubation period); H is host density, and d is infected host recovery rate.
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The model used to derive this version of Ry is a system of delay differential equations that
assumes no exposed class and that susceptible midges move to the infected class shortly after
contact with an infected host. A similar scenario can be described using a system of ordinary
differential equations while expressing the delay between the contact with infected host and
midges becoming infectious in terms of an exposed class. In this case, the reproductive

number for the midge-borne viral disease (BTV) can be expressed as,

Vibca2 v \Y?
_ (Vbed ¢ 9
Ro= (Y ) om0 @)

This version of Ry is a reduced version from a model that uses multiple types of host and

multiple types of midge species as in [10, 21].

Host

Vector-Host
Transmission Recovery

Vector

Birth

Host-Vector
Transmission

Death Death lDeath

Figure 2: A schematic illustration of BTV transmission. The host population is composed of three classes:
susceptible (S), infected (I), and recovered (R). The midge population is composed of a susceptible class
(Sy), three exposed classes (E,), and an infected class (I,)). Black arrows show movement between classes
and red arrows indicate contact potentially leading to transmission.

Figure shows a schematic representation of our BTV transmission model (Equations —
in Appendix|Al) which considers a single host population split into susceptible individuals
that are vulnerable to BTV disease (), infected individuals that have acquired infection

(I), and individuals who have recovered from the disease (R). Also, we consider a vector

7
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population containing susceptible midges (S,), three levels of exposed individuals (E,), and
an infected class of midges (I,). The exposed classes in the model represent the extrinsic
incubation period that midges undergo before becoming able to transmit infection. To
calculate the third version of the basic reproductive number Ry, we use a next-generation

matrix method described in [26], 27], which leads to the following Ry equation:
1/2
V be a? 3v 1\’
dHp \3v+u

3
) in Ry represents the number of midges that survive the extrinsic

The term < SV
3v+pu

incubation period, leading to a slight difference between the three Ry forms.

We can represent all three formulas of Ry with a simple equation given by

- Vaf 1/2
wo=(735) o

g ¥ 1/2

(mzdge dBTLSZty) (transmission potential) (prob of becoming in fectious)

(host recovery rate) (host density) (vector mortality)

where the expression for V' and g are the same for all three versions and are given by

o F pe pr pp
) (6)
1? (pe + pr + pp)
g = a* be (7)

where F'is eggs per female per day, pg, pr, and pp are survival probabilities for eggs, larvae,
and pupae; pg, pr, and pp are development times for eggs, larvae, and pupae, respectively;
w is adult midge mortality; a is midge biting rate and bc is midge competence.

Although Ry is a useful metric, particularly since the thresholding behavior can pre-
dict whether or not an epidemic can take hold, multiple factors, including the size of the

susceptible population, whether or not parasites/hosts/vectors are physically present in an
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area, socio-economic factors (e.g., screens, household and working conditions), or control
measures, can all impact Ry at a particular location. We want to focus our analysis strictly
on the temperature components of the transmission, to be able to determine the temper-
atures that prohibit or promote transmission, and explore sensitivity to the thermal traits
independently of other factors. Thus, we define a transmission suitability metric, S(7"), as

the (standardized) thermal components of Ry (Equation [4]), which is given by

(F pE pL pp a* be f)m
1* (pe + pr + pp)

(8)

where C' is a constant that is chosen after the Bayesian fitting of traits (see below) that
scales the median suitability to lie between 0 and 1. That is, we choose C' to be the highest
value of the posterior median suitability. When the median suitability is zero this indicates
that temperatures do not permit transmission and when the median suitability is 1, this
indicates a maximal transmission, everything else being equal.

The difference between the three Ry/S(T") formulas lies in the latent period survival
probabilities, f, representing the probability of midges surviving to become infectious post-
infection. Table (1] summarizes the latent period survival probabilities for each of the three
models considered.

In Figure[3] we plot all three latent period survival probabilities with one parameter fixed
as the other varies (e.g., with virus development rate, v, fixed and midge mortality rate, pu,
varying). We use all three forms in our analysis while comparing the constant vector density

case V' to temperature-sensitive density V(7).

2.2 Bayesian fitting of temperature-sensitive traits

As ectotherms, midges are sensitive to temperature. The thermal performance for these

temperature-dependent traits is generally hump-shaped, starting at zero at a given minimum
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fi = e #7 [Dietz 1993] o : adult mortality rate
Ja = j_ [Gubbins et. al. 2008 | | v : pathogen development rate
v+ p

3v 3
fs = (31/ + u)

Table 1: Formulas for the probability of an infected midge (vector) surviving to become infectious, arising
in Ry formulas from different models, and the parameters involved.
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Figure 3: (Left) Latent period survival probability f versus midge mortality rate p with a fixed v =
mean(v(T)) = 0.061. (Right) Latent period survival probability f versus pathogen development rate v
with a fixed p = mean(u(7")) = 0.15

temperature, then increasing to a peak value as temperature increases, then sharply dropping
to a lower value at a maximum temperature [28, 29]. However, depending on how a trait is
measured, the pattern may instead be concave up. For example, mortality rates exhibit this
pattern, such that the mortality is lowest at intermediate temperatures.

Here, we collected trait data corresponding to two midge species from the family Culi-
coides, namely, Culicoides sonorensis and Culicoides variipennis, both found the US [30].
The data collection method consisted of synthesizing data from published literature, via
assembling data from tables, and digitizing data points from graphs; details on data used

for fitting for each trait are provided in Appendix [A] We focused on data from controlled

10



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

197

198

199

200

201

202

203

laboratory experiments on midge trait variation at constant temperatures, ideally with three
or more data points. For digitization, we used the free software PlotDigitizer [31].

We used the temperature-dependent trait fits in all three Ry/S(T") formulations for com-
parison. Following a method first introduced in [I], we fit unimodal curves to temperature-
sensitive traits. For the unimodal curves, we chose between a Briere (Equation (9))) for

left-skewed data or a quadratic formula (Equation ((10))) for symmetric traits.

Briere: kT(T — Thasin)\/ Trtax — T (9)

Quadratic: inter — n.slope T + qd T? (10)

where the constants k, Thin, Thares, tnter, n.slope, and qd estimated from trait data.For
more information on the values, see Appendix [A]

Similarly to [2], we used a Bayesian approach for our fitting method. For each continuous
positive trait, we choose a truncated normal distribution as our likelihood. When fitting
probabilities/proportions, we instead either used a binomial likelihood (when raw count data
was available) or used a normal likelihood truncated at zero and one if only summarized data
were available. We chose priors for thermal performance curve (TPC) parameters to assure
parameters have biologically reasonable sign and range.

We used Markov Chain Monte Carlo (MCMC) sampling in JAGS/rjags to fit our models
[32]. For each trait, we ran five MCMC chains with 5000 step burn-in followed by 25000
samples. Of these we kept every fifth sample, to obtain 5000 thinned samples for subsequent
analyses. We used these 5000 samples of each parameter to calculate the associated trait
thermal curves, resulting in 5000 thermal fits of the trait data. After generating the 5000
posterior mean curves for each trait, we used the 5000 posterior curves to generate posterior
curves for Ry/S(T'). For all posteriors (i.e., of traits and S(7")), we summarized posterior
distributions using the temperature-dependent medians and the corresponding 95% highest

posterior density (HPD) interval which is the smallest credible interval in which 95% of the

11
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distribution lies [33]. All analyses were implemented in R [34]. More details on likelihoods

and priors used can be found in Appendix [A]

2.3 Uncertainty in S(7)

The S(T') formula (Equation [§) depends on multiple temperature-sensitive traits, and so
does its posterior density. Hence, there are many sources of uncertainty in the mean pos-
terior density that can be identified through uncertainty analysis. We sought to isolate the
contributions of each component of the model to the overall uncertainty through a variation
on a traditional sensitivity analysis.

We calculated the uncertainty associated with f, g, and V' by varying one while keeping
the rest fixed at their posterior means. We calculated the width of the 95% credible interval
around the mean posterior curve, i.e. the difference between the upper and lower quantiles
when only one of the components is allowed to vary. We then divide this by the width of
the interval when all are allowed to vary. We repeat this process for each component, f,
g, and V then plot all the curves together against temperature. This allows us to identify
which model component is responsible for the largest proportions of uncertainty in S(7") by

identifying the curve with the highest value at a given temperature.

2.4 Mapping suitability

The concern about climate-mediated increases and shifts in BTV risk is best visualized
using mapping approaches, to understand where suitability is permitted and for how long,
and how much livestock are thus at risk. Existing mapping approaches to this question
largely focus on the European landscape, due to recent upticks in BTV outbreaks. However,
existing models purport to capture a general Culicoides spp. model but must rely on data
from the U.K. vector Culicoides obsoletus mixed with other species that may not be the
dominant vector, or even currently present. In this study, we focus on the two US vectors for

which there are data and project a global risk. We do this under the assumption that given
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the capacity for Culicoides to spread and establish — as demonstrated by the Afro-tropical
C. imicola invasion across Southern Europe in recent decades — there may well be similar
invasions and establishment by the two well-studied U.S. vectors, and thus specific models
will provide useful planning tools.

To visualize and apply our understanding of the thermal suitability of BTV, we mapped
both suitability and risk, at global scales. First, we define suitable regions as those where the
posterior median of the suitability metric S(7") >0. This is equivalent to finding the values
where the posterior probability that S(7) > 0 is 0.5. We note that here we use a scaled
form of S(T) as we described above. We present the geography of suitability across the
globe by mapping the number of months of suitable temperatures for transmission based on
the monthly average temperatures from the WorldClim dataset [35]. We use these average
monthly temperatures as a means to describe seasonality, at a global scale, with climate
products that are comparable between baseline (current temperatures) and future scenarios,
to lay the groundwork for future investigations. The WorldClim data provide a trade-off
between a spatial and temporal resolution that facilitates conducting calculations of risk
across the globe.

Second, we map livestock at risk of transmission, using the latest FAO Gridded Livestock
of the World (GLW3) data for 2010, which details global distributions of sheep, goats, cows,
and others, at a 5-minute scale [36]. To create a visually accessible risk map, suitability was
scaled 0-1, and this was multiplied by logio(1 + livestock). Thus we create a scaled risk
map, balancing the season length and livestock density, to emphasize areas of coincidence,
rather than simple suitability. In this case, we used the GLW3 sheep distribution [37], as the
primary host at risk. This gridded product has values ranging from 0 - >340,000 sheep per
pixel. All map calculations and manipulations were run in R using packages raster [38] [39],

maptools [40] and Rgdal [41], following methods described in [42] 43].
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3 Results

3.1 Temperature-dependence model components

Here we summarize the model components that depend on temperature and explain their

role in the model.

Midge thermal traits

In Figure 4 we show data and fitted curves for development times and survival probability for
eggs, larvae, and pupae. Development times Figure {4 (left) are fitted assuming a quadratic
function, under the assumption that juvenile midges at a given stage will need more time to
develop at very low (<20°C) and very high (>35°C) temperatures. For eggs, the development
time ranges from 60 to 70 days; for larvae, from 15 to 35 days; and for pupae between 40 and
80 days. We fit the survival probabilities using a Briere curve (Figure {4 right). The survival
probability is relatively high for eggs (0.2 < pg < 0.8), very low for larvae (p;, < 0.2), but
almost always 100% for the pupae stage (pp ~ 1).

In Figure p| A, we show data on fecundity F' (the number of eggs laid per female per
day) together with the fitted Briere curve. The fecundity reaches a maximum at ~ 30°C
and we do not have data for temperatures beyond that. The mortality rate, u, is fit using
a quadratic curve where we assume that the mortality is highest for temperature less than
10°C and higher than 30°C (Figure [5] B).

Figure[6|we show the biting rate a and the transmission probability b both fit with a Briere
curve. The biting rate minimal values lie around 10°C and increase to reach a maximum at
30°C. While the transmission probability b is minimal around 15°C and reaches a maximum
at 30°C. We do not have data for the infection probability ¢ so we assume that it is equal to
0.5. Lastly, Figure[7|shows the virus development rate fit using a Briere curve, with minimal
values around 15°C and maximal values around 32°C. Overall, these thermal traits all lack

data values at extreme temperatures.
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Figure 4: Figures in the LEFT panels show development time in days for midge juvenile stages, eggs pg,
larvae pr, and pupae pp. Figures in in the RIGHT panels show survival probabilities for midge juvenile
stages, eggs pg, larvae pr, and pupae pp. The solid line is the mean of the posterior distributions of the
thermal response curves while the dashed lines represent the HPD intervals

20 Midge density V'

20 Recall the midge density formula given by

F(T) pE(T) pr(T) pp(T)

V) = % (@) + pu(T) + pe(T))

(11)
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Figure 6: (A) Biting rate a and (B) probability that midges transmit infection when biting an uninfected
host b. The solid line is the mean of the posterior distributions of the thermal response curves while the
dashed lines represent the HPD intervals

To estimate midge density V', we use the posterior samples of the survival probabilities
PE, PL, Pp, for egg, larvae, and pupae; the development times pg, pr, pp corresponding to
the egg, larvae, and pupae life stages; the fecundity measure represented by the number of
eggs per female per day F'; and the adult mortality rate p. In Figure |8| we show that the
posterior estimate of temperature-dependent midge density V' is highest between 20 °C and

28 °C; it increases at temperatures higher than 10 °C and decreases when the temperature

exceeds 28 °C.
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s 'Transmission potential

20 'The component ¢, that we call the transmission potential, is estimated by calculating the

200 product of midge biting rate a and vector competence bc:

9(T) = b(T)c a*(T); (12)
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Temperature-dependent data the transmission probability ¢ was unavailable. Thus we as-
sumed that there will be a 50% chance for midges to become infected after biting an infected
host (¢ = 0.5) regardless of temperature. Figure |§| shows the posterior distribution of the

predicted transmission potential thermal curve.
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Il
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Figure 9: The transmission potential g as the biting rate a and transmission probability b vary with tem-
perature while the infection probability is constant ¢ = 0.5. The solid line shows the estimated curve and
dashed lines are the HPD interval.

Functional form

We explored three functional forms of the formula used to represent the probability of midges
surviving to become infectious (Table . In all three cases, we calculate the thermal depen-
dence of the functional form using the posterior distributions of mortality rate p (Figure
(B)), and virus development rate v (Figure[7). Figure[L0]shows the variation of the functional
form with temperature based on the two temperature-dependent traits pu and v. Although
there are differences between the magnitude of these curves, we can see that their peak
occurs at the same temperature (25 °C), which is due to the traits’ thermal dependencies.
In addition, all of their HPD intervals overlap which means that there are no significant

differences between them.
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Figure 10: Latent period survival probability f used in Ry versus temperature. The black line shows our
model with the newly derived Ry, the purple line shows the model presented in [I0], and the blue line shows
the model presented in [25]. Each solid line represents a different model and the dashed lines show the
corresponding HPD intervals. We note that there is an overlap between all HPD intervals meaning that
there are no statistically significant differences between these models.

3.2 Thermal Suitability S(7)

We use thermal traits to evaluate S(T") given by Equation (8 with constant midge density
V' (Figure (11| Top) and with temperature-dependent midge density V(T') (Figure [11] Bot-
tom). The three models are slightly different when constant midge density is used but are
in agreement when temperature-dependent midge density is used. This is due to all the
temperature-sensitive traits used to calculate V(T'); however, this also leads to a higher un-
certainty shown in the range of HPD interval in Figure (Bottom). The lower thermal
bound of the three posterior means are different by a magnitude of 1°C. However, the peak
temperature and upper thermal limits are in agreement for all three models. With these
results, we predict that S(T") > 0 occurs at a temperature greater than 15°C and less than
34°C, meaning that BTV is likely to cause an outbreak within this temperature range. We
note that this prediction is based on assuming ¢ = 0.5 which may not be always true in

reality.
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Figure 11: (Top) S(T) with constant midge density V and (Bottom) S(T') with temperature-dependent
midge density V(T'). The plots shows the magnitude of S(T') changing as temperature increases. Each solid
line represent the mean of the posterior distributions of Ry while the dashed lines are the HPD intervals.

2 3.3  Source of uncertainty in S(7))

s0  In Figure|11] (Bottom), a high variation around S(7") posterior density is shown in the large
20 HPD interval. To determine the source of this uncertainty, we plot the calculated relative

2 widths for each S(T') component, see Figure[12] The results show that at a low-temperature
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range (14°C' < T < 18°C) uncertainty in S(7') is mainly due to the uncertainty in the
functional formf. At intermediate temperatures (18°C' < T < 33°C'), the uncertainty is
caused by the midge density V(T'). At very high temperatures (33°C' < T' < 35°C'), the

transmission potential g is the component producing the most variability in S(7T').
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Figure 12: The source of uncertainty in S(7') is measured by calculating the relative width of the 95%
HPD quantiles with each component varying with temperature while the remaining components are kept
constants, and divided by the width when all are allowed to vary.

3.4 BTV risk maps

Figure [13] illustrates the number of months each area is at risk of BTV transmission with
the assumption that Culicoides sonorensis and Culicoides variipennis are the main vectors.
The results show that, under baseline long-term average current temperature conditions,
much of central Africa, South Asia, central and the northern part of South America, and

northern Australia are suitable for year-round bluetongue transmission. These areas are also
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Figure 13: Map of the number of months (1-12) areas are at risk of bluetongue virus transmission according to
our temperature-dependent Ry. This map based on the current mean monthly temperatures and is restricted
to bluetongue disease caused by the two midge species Culicoides sonorensis and Culicoides variipennis.

Next, we used the global distribution of sheep to determine areas where sheep are at
risk of acquiring BTV. The choice of sheep was mainly due to ready data availability, and
also because sheep are the BTV host with the highest mortality and morbidity rates, and
therefore of great interest and relevance. The map shows that areas, where sheep are at
the highest risk (scale > 3), are located around the equator. The next highest risk regions
(1 < scale < 3) are areas with of high livestock industry, such as central and south America

and Europe.

4 Discussion

In this study, we are interested in the potential for the temperature to shape where BTV may
spread. We use a Ross-Macdonald type modeling approach to describe the dynamics of BTV

transmission [23, 24]. This mechanistic approach allowed us to derive the basic reproduction
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Figure 14: Scaled transmission risk suitability of bluetongue virus for sheep, as the primary host at risk,
worldwide. the scale ranges from a low risk, 0, to a high risk, 5.

ratio’s posterior distribution as a function of temperature. We were able to both determine
the suitable temperature for possible BTV outbreaks when S(7') > 0 and the temperatures
at which BTV outbreaks are likely to die out when S(7) = 0. We note that the absolute
magnitude of the thermal response of S(T") here is dependent on our model assumptions, for
example setting the infection probability to be ¢ = 0.5. We also adopt two previously used
BTV models, [25] and [I0], to compare the three forms of Rj.

Based on the available trait data we used in our model, we predict that temperatures
from 15°C and 34°C, are “suitable” for BTV outbreaks by the examined midge species,
with peak suitability occurring at about 26°C. This result was obtained regardless of which
S(T) formula used, i.e., all three different models of the latent period survival probability,
f lead to the same predictions. Similarly, the predicted peak and upper thermal limit of
S(T') were the same for three forms, and only a small difference between lower thermal
limits (~1 °C) was observed. This indicates that the uncertainty of temperature effects on
traits outweigh the effects of differences in modeling assumptions in the form of the latent
period survival probability for these models. Because our suitability metric captures all of

the temperature-depend portions of Ry, this result should also hold for Ry more broadly.
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Uncertainty in temperature-dependent traits of the vector-virus system results in uncer-
tainty in the suitability metric S(7"). Our uncertainty analysis allowed us to determine the
traits responsible for causing uncertainty in S(7") (and therefore in the temperature-depend
components of Ry) across the temperature range. At lower temperatures (14°C' < T' < 18°C)
more data are needed for the parasite development rate, v, and mortality rate, u, to reduce
this uncertainty in the latent period survival probability, f. At moderate temperatures
(18°C' < T < 34°C) the uncertainty in S(T) is caused by V, meaning that more data are
needed in traits contributing to estimating the midge density. At very high temperatures
(34°C' < T < 35°C') we need more data on vector competence be and biting rate a. Reducing
the uncertainty in these components of S(7") will allow refinement of predictions, control,
and prevention suggestions.

We were interested in using our derived suitability metric to determine areas at risk of
BTV based primarily on temperature suitability. A risk map can be a useful planning tool,
both to understand the scale of current risk, and to anticipate suitable regions where the
establishment of BTV could be successful were it to be introduced, with competent vectors.
We created global risk maps showing the number of months per year each location worldwide
is suitable for BTV disease transmission given the presence of two midge species, namely,
Culicoides sonorensis and Culicoides variipennis. The results show that warmer areas are at
risk year-round, while cooler areas are at risk for fewer months. Based on currently available
data, few locations are predicted to have temperatures hot enough to exclude BTV for many
months of the year. Further trait data to decrease the uncertainty near the thermal limits
would enable more precise and accurate predictions. However, the particular predictions
are also based on long-term, baseline current temperatures. With climate change, and the
continuous rising of global temperatures, the area at risk of BTV may expand and shift to
include places with previously lower risk, or some year-round locations may become too hot
for year-round transmission [44], [45].

In building our maps, we chose to use monthly mean temperatures, as this captures the
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mean response of the suitability determined mechanistically. Other approaches might be to
use climate products with different temporal resolutions and express suitability in the number
of days between thresholds, but these products tend to be available at much coarser spatial
resolutions, making them less suitable for combining with livestock layers. Instinctively, one
may want to use minimum or maximum temperatures to impose thresholds, but this faces
a very biological conundrum of model mechanics - a minimum or maximum temperature
may exist for a very small time period within a given month, and thus not represent a
longer period experienced by the vector in question. The behavioral avoidance mechanisms
vectors can use in short periods of extremes would be missed by this approach, leading to
underestimates of the potential extent of suitability.

Previous studies have investigated temperatures suitable for other vector-borne diseases.
For example, a study on three mosquito-borne diseases, Zika, dengue, and chikungunya
transmitted by Aedes aegypti and Aedes albopictus showed that the transmission is likely to
occur between 18-34°C with peak transmission between 26-29°C [43], 46, 47]. Moreover, the
temperatures suitable for the transmission of the plant-borne disease, citrus greening, are
between 16°C and 33°C with peak transmission at 25°C [48]. Together with our findings,
this shows that there are similarities between ectotherm vectors in the way they respond to
temperature. For example, their traits follow humped-shaped thermal performance curves.
But there are differences in the temperature ranges they tolerate, and the temperatures at
which their performance is maximal. This points to the importance of building system-
specific models for predicting the effect of extrinsic factors on the spread of VBDs.

As highlighted in a 2018 systematic review [49], BTV has been studied using many
different modeling approaches. The systematic review summarized BTV models used post-
1998 [49], most of which relied more on strong modeling assumptions than data. The model
results were used to inform animal health decision-making by identifying at-risk areas and
the risk of spread in case of introduction [50], and climate change [45]. While several studies

have examined Ry for BTV [I0} 22], our model differs in that it incorporates temperature
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across a wide range, leading to estimating an R, that is also temperature-dependent. A
more recent study used a mathematical quantity called vectorial capacity to estimate BTV
transmission instead of Ry [51]. Ry and vectorial capacity are very similar, with the latter
assuming perfect competence and ignoring host recovery rates (making our suitability metric
somewhere in between). The study identifies the optimal transmission suitability range for
C. sonorensis to be between 27 and 30 °C which overlaps with our transmission peak range of
26 and 29 °C. The difference is likely due to our study including trait data for two Culicoides
spp. as well as including temperature-dependent infection parameters. Overall, both models
are in agreement regarding the gross patterns of temperature effects BTV transmission.

In addition, while data on Culicoides spp. temperature dependent traits are scarce, we
had the luxury of obtaining sufficient data to create a model for two North American vectors,
and not mix traits across species from different continents. This is of particular interest in
assessing the potential for invasion and establishment (and hence spread) of disease vec-
tors, which has been found to be almost a hallmark of Culicoides spp. across the European
landscape in recent decades, leading to novel outbreaks of BTV. Linking Ry or S(T') to
temperature can help identify BTV outbreak risk based on the temperature at particular
locations, which in turn can inform management policies and control strategies, within cur-
rent and changing climate conditions. By establishing a model specific to current vectors in

the U.S., we can assess the potential for invasion and spread to other parts of the globe.
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A Appendix

A.1 Transmission model for BTV

We use an SIR-SEI type of compartmental model to describe vector-host interactions in
transmitting BTV (see Figure [2). The host population (H) is divided into susceptible (.S),
infected (I), and recovered (or immune) (R) classes, while the vector population (V') is
divided into susceptible (Sy) and infected (Iy) classes as well as three Exposed (Ey ) classes.
Here we use three exposed classes in the vector population to incorporate a more realistic
length of the extrinsic incubation period. Using three compartments with the exit rate from
each compartment being 3 v, lead to a Gamma distribution for overall midge progression
to the infectious class with a mean rate of v. Increasing the number of compartments used
from 3 to a larger number leads to a Gamma distribution with lower variance around the
mean [52]. This approach is an alternative to using fixed time delays, which are not suitable

when using temperature-dependent parameters. Both host (H) and vector (V') populations
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are assumed (and are by definition of the model) constant.

dS ab
D | 1
= 7S (1)
dl  ab
i & _ — ) —=dI 2
= (=TSt 1) —d )
dR
— =dI 3
o (3)
dS ac
d_tV:TV_ﬁISV_MSV (4)
dE ac
dz/l = EISV - 3VE\/1 - ,uEvl (5)
dE
d;” = 3vEy, — 3UEyve — uEys (6)
dE
d:g = 3I/E\/2 - 31/Evg - /LEvg (7)
dI
d—tV = 3vEys — uly. (8)
where
H=S+I1I+R (9)
V =Sy + Eyi+ Eys + Eys + Iy (10)

The model’s parameters are presented in the Table [1| below. Note that the parameters

Parameter Definition Units
d Recovery rate of infected hosts 1/day
T Host’s exposure period day
r Vector population’s birth rate 1/day
a Vector biting rate bites / day
b Probability that a midge is infected | dimensionless
c Probability that a midge is infectious | dimensionless
1 Mortality rate of adult vectors 1/day
v Parasite’s development rate 1/day

Table 1: Parameters used in the mathematical model, their description, and units.

609

0 7 is the time that a susceptible (S) takes to become infected after receiving a bite from

su infected vector (I/). The parameter v is the inverse of the Extrinsic Incubation Period of
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the pathogen (EIP), ie., v = ﬁ We define the vector population size to be V = %,
where A\ is the total birth rate of adult midges in the whole population (adults/day), and
 is per-capita adult mortality rate (1/day). This is based on Parham & Michael [53], who
derive the expression phenomenologically by treating V' as a random variable. Thus, A is

equivalent to rV in the model above, given that r = u at disease free equilibrium, and is

given by
F
\ — PE PL PP (11)
(pe +pL+pp) 1t

where F'is the number of eggs produced by all females in the population per day, pg . p
are the survival probabilities in the Eggs, Larvae, and Pupae stages, and pg, pr, pp are the

development time in each stage. Then, the abundance of the vector becomes,

A F
V=2 PE PL PP (12>

f (pe+pr+pp) B2

A.2 Host recovery rate d sensitivity analysis

Although all ruminants are susceptible to BTV disease, each responds to the infection differ-
ently, with sheep being the most susceptible and showing extreme morbidity and mortality.
In addition, BTV host recovery depends on the intensity of the infection as well as the time
of disease detection, which results in recovery rate variability among hosts. To account for
this, we perform a sensitivity analysis on the host recovery rate d by looking at the derivative

of Ry with respect to d as follows:

ORy 1( Vgf\N(Vgf\™"* 1 ., . 1 R
W—a( d2ﬂu> (dHu) =~ (o) (Ro) ™ = =55 (13)

OR
Since 0_d0 < 0 always, the basic reproductive ratio Ry increases as the recovery rate d

decreases. Figure|l|shows different R, densities corresponding to different host recovery rate

values. Higher lengths of infection 1/d, i.e. lower recovery rates d, are associated with higher
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Ry densities, meaning that hosts with low recovery rate such as sheep are more challenging

to manage as the chance of outbreak for them is more likely.
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Figure 1: Host recovery rate d values correspond to different Ry posterior densities. As d decreases, Rg
density increases meaning that a lower recovery rate correspond to a higher outbreak risk.

A.3 Uncertainty analysis

We investigate the uncertainty caused in each of Ry components, the midge density V', the
functional form f, and the transmission potential g by examining the source of uncertainty
within each component. For the midge density, the uncertainty is mainly caused by the
adult midge mortality rate g within a wide temperature range, from 10°C to 32°C. At
higher temperatures (¢32°C) the uncertainty is caused by the fecundity F.

In the functional form case, the uncertainty is caused by the adult mortality rate p for
temperatures between 18°C and 32°C, this range overlaps with that of the midge density.
At lower (10-18°C) and higher (32-45°C) temperature ranges, the uncertainty is caused by
the pathogen development rate v. In the transmission potential the overall uncertainty is

caused by the biting rate a.
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Figure 2: The source of uncertainty in the midge density V' (Top), the functional form f (Bottom-left), and
the transmission potential g (Bottom-right) is measured by calculating the relative width of quantiles with
each parameter varying with temperature while the remaining parameters are kept constants.

A.4 Bayesian fitting of traits thermal curves

To fit each trait, we chose a unimodal functional form as the mean function. We use normal
distributions for most of the data while binomial distributions are used when fitting proba-
bility distributions. We used uninformative priors appropriate for the biological description
of the data, taking into account the positivity of their values as well as their range. The

values in the priors are decided as we go until the appropriate fitting curve is obtained.
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Midges biting rate a

The biting rate of adult midges is one of many factors that influence Bluetongue transmission
[54]. In order to calculate the biting rate, the time required for female Culicoides sonorensis
to lay eggs after a blood meal, also known as a gonotrophic period, is required. Biting rate
(a) can be approximated by taking the inverse of the gonotrophic cycle duration. Similar
to other traits, the biting rate is sensitive to environmental factors, especially, temperature

[54] (see Figure [3| for thermal fit).

Vector competence bc

Vector competence for adult midges is a measure of their ability to transmit the disease. It is
genetically determined and heavily influenced by environmental factors such as temperature
and humidity [55]. Vector competence (bc) is the product of the probability of a vector
getting infected after a blood meal containing a pathogen (c¢) and the probability of a vector
transmiting infection (b). While we were able to find data for b concerning Culicoides
sonorensis [56], we were unable to find data for ¢. We assume ¢ = 0.5 for all calculations

used in this analysis. We did fit a Bayesian model to the parameter b (Figure [4).

Juvenile survival probability pg, pr, pp

Vaughan et. al. studied the sub-adult life cycle of Culicoides variipennis at temperatures
of 20 °C, 25 °C, and 28 °C [57]. We define the probability of an egg hatching by using the
mean percentage of laid eggs that hatched at each given temperature. We now define the
probability of successful larval pupation by collecting the percentage of larva that ended up
pupating at each given temperature. We finally define the probability of pupae emerging to
become adults, pp, as the mean percentage of pupae that survive to the adult stage at each

given temperature (Figures [f] [6] [7)).
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Figure 3: (Top) The mean trajectory in solid line and HPD interval in dashed black for the biting rate a.
(Bottom) Histograms of the posterior distribution for each parameter of the Briere fit for the biting rate a.
The prior distribution for each parameter is plotted in red. The Briere fit is determined by the equation
KT(T — Tarin)VTaae — T using a normal distribution with precision 7.

o3 Juvenile development time pg, pr, pp

sa  Egg Development Time is defined as the time in days required for eggs to hatch in a given

s temperature. Culicoides variiennis were studied in a laboratory setting [57]. Larva Devel-
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Figure 4: (Top) The mean trajectory in solid line and HPD interval in dashed black for the probability of
a vector transmitting the virus when biting b. (Bottom) Histograms of the posterior distribution for each
parameter of the Briere fit for the probability b. The prior distribution for each parameter is plotted in red.
The Briere fit is determined by the equation kT (T — Thiin)vVTraz — T using a binomial distribution.

srs  opment Time is defined as the time in days required for the larva to mature into a pupa in

ez a given temperature. Pupa Development Time is defined as the time in days required for a
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Figure 5: (Top) The mean trajectory in solid line and HPD interval in dashed black for the egg survival
probability pg. (Bottom) Histograms of the posterior distribution for each parameter of the Briere fit for
the probability pg. The prior distribution for each parameter is plotted in red. The Briere fit is determined
by the equation kT(T — Tarin)vVThaz — T using a normal distribution with precision 7.

es  pupa to mature into adult midges in a given temperature (Figures , |§|, .
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so  Fecundity F

0 The rate at which female midges lay eggs is closely related to the spread of Bluetongue. This

1 rate is typically measured as eggs per female per day. For this study we also utilized fecundity
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Figure 7: (Top) The mean trajectory in solid line and HPD interval in dashed black for the pupal survival
probability pp. (Bottom) Histograms of the posterior distribution for each parameter of the Briere fit for
the probability pp. The prior distribution for each parameter is plotted in red. The Briere fit is determined
by the equation ¥T(T — Tarin)vVThaz — T using a normal distribution with precision 7.

2 data that was taken over two oviposition cycles and transformed the data (originally eggs

3 per female) by dividing by the median oviposition time [54].
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determined by the equation inter — n.slope T + qd T? using a normal distribution with precision .

s« Pathogen development rate v

s Parasite development has been shown to increase with temperature in studies that support
sss the hypothesis that global warming has been cause for latitudinal shifts which in turn increase
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Figure 9: (Top) The mean trajectory in solid line and HPD interval in dashed black for larval development
time pr. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for larval
development time py. The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter — n.slope T + qd T? using a normal distribution with precision .

se7 the reach of vectors that transmit diseases like bluetongue [58]. In order to investigate this

s trait’s relationship with temperature, we made use of data on Extrinsic Incubation Period

0 (EIP) to create a new parameter: Parasite Development Rate (v) (v = 1/EIP). EIP is the
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Figure 10: (Top) The mean trajectory in solid line and HPD interval in dashed black for pupal development
time pp. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for pupal
development time pp. The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter — n.slope T + qd T? using a normal distribution with precision .

time between a vector getting infected with a pathogen to the time that the vector itself is

able to transmit the pathogen.
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Figure 11: (Top) The mean trajectory in solid line and HPD interval in dashed black for fecundity F'.
(Bottom) Histograms of the posterior distribution for each parameter of the Briere fit for fecundity F'.
The prior distribution for each parameter is plotted in red. The Briere fit is determined by the equation
kT(T — Tarin) VT ez — T using a normal distribution with precision 7.

s2 Adult mortality rate p

03 The rate at which midges die over a span of time is known as the mortality rate u. We

1

07> where [ f represents the lifespan of midges in days,

s« define the mortality rate of midges as
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Figure 12: (Top) The mean trajectory in solid line and HPD interval in dashed black for the parasite
development rate v. (Bottom) Histograms of the posterior distribution for each parameter of the Briere fit
for the parasite development rate v. The prior distribution for each parameter is plotted in red. The Briere
fit is determined by the equation kT(T — Thrin)vVTaraz — T using a normal distribution with precision 7.
sss or the probability of survival for the midges. We define mortality rate in the case where [ f

s 1S the lifespan of midges in days. Mortality rate is also sensitive to environmental factors,

eo7 especially temperature [54].
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Figure 13: (Top) The mean trajectory in solid line and HPD interval in dashed black for the mortality rate
u. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for the mortality
rate u. The prior distribution for each parameter is plotted in red. The quadratic fit is determined by the
equation inter — n.slope T + gd T? using a normal distribution with precision 7.

ss Thermal traits prior distributions

s0o Table 2| summarizes all the priors used to fit the thermal curves.
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o A.5 Posterior distributions for all S(7") forms

71 For all three Ry posterior distributions we provide posterior distributions for the lower tem-

702 perature limit, peak temperature, and upper temperature limit.
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Figure 14: Minimum, peak and, maximum temperatures posterior densities for Dietz 1993 [25] Ry
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Figure 15: Minimum, peak and, maximum temperatures posterior densities for Gubbins 2008 [10] R,

w A.6 Digitized data

74 Table |3 shows the digitized trait values and their corresponding references.

Parameter

Trait

Value

Units

Transformed

Ref.

a

Vector biting rate

0.05
0.03
0.08
0.18
0.29
0.4

0.4

52

bites/day

Y

48




0.28
0.28
0.66
0.66
0.08
0.08
0.15
0.19
0.66

Probability of

transmission

0.08
0.28
0.28
0.88
0.96

dimensionless

20

efd

Fecundity

5.528
3.122
13.11
9.745
6.206
31.191
19.034
1.361
1.242
11.08
13.961
17.93
41.531

53

# eggs per female

per day

48




60.535
39.856
51.724
69.951
12.731
1.154
36.417
0.465
0.844
7.048
19.469
31.938
21.195
12.255
22.332
0.365
1.703
1.536

edt

Egg’s development time

63.6
64.7
61.4
50.9
o7.1

Days

51

ldt

Larva’s development time

34.5
33.6
26.5
24.4

o4

Days

o1




16.7

PuDt

Pupa’s development time

89.7
65.5
50.6
39.1
38.8

Days

o1

Adult’s mortality

rate

0.037

0.057
0.072
0.057
0.121
0.058
0.078
0.084
0.067
0.073
0.045
0.056
0.077
0.068
0.079
0.114
0.138
0.073
0.078
0.113

Days

48

pdr

Extrinsic incubation

0.051

55

Days

o2




period (EIP)

0.04
0.021
0.052

0.08
0.073
0.073
0.073
0.073
0.069
0.101
0.101

0.14
0.143
0.144
0.208

0.2
0.248

pE

Egg’s survival

probability

0.23
0.634
0.538

0.68
0.177

dimensionless

o1

Larva’s survival

probability

0.14
0.176
0.104

0.16

0.18

dimensionless

51
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pP

Pupa’s survival

Probability

0.8
0.877
0.943
0.944
0.889

dimensionless

51

Table 3: Traait values digitized and fit using MCMC.
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Figure 16: Minimum, peak and, maximum temperatures posterior densities for the Ry presented here.
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Model Parameter Mean Function | Parameters Prior
Biting Rate Thiin dunif(0, 20)
a Briere Thiax dunif(20,40)
k dgamma(1,20)
T dgamma(0.01, 0.01)
Transmission probability Tatin dunif(10,24)
b Briere Triaz dunif(25,35)
k dgamma(1,10)
Egg Survival Probability Tatin dunif(10,20)
PE Briere Triax dunif(35,40)
k dgamma(1,20)
T dgamma(7, 5710 )
Larval Survival Probability Thrin dunif(0,8)
L Briere Trrax dunif(30,40)
k dgamma(1,20)
T dgamma(1.5, 0.001)
Pupal Survival Probability Thrin dunif(1,5)
pp Briere Triax dunif(35,40)
k dgamma(1,5)
T dgamma(10, 0.002)
Egg Development Time inter dgamma(1, 0.01)
PE Quadratic n.slope dgamma(1, 0.5)
qd dgamma(4,28)
T dnorm(3, 1/800)
Larval Development Time inter dgamma(1, 0.01)
oL Quadratic n.slope dgamma(1, 0.5)
qd dgamma(4,28)
T dnorm(3, 1/1000)
Pupal Development Time inter dgamma(1, 0.01)
pp Quadratic n.slope dgamma(1, 0.5)
qd dgamma(4,28)
T dnorm(3, 1/200)
Eggs per Female per Day Thrin dunif(1, 10)
F Briere Triax dunif(29,35)
k dgamma(1,1)
T dgamma(9, 0.0005)
Parasite Development Rate Thriin dunif(1, 17)
v Briere Tiax dunif(18,45)
k dgamma(1,10)
T dgamma(9, 0.05)
Adult Mortality Rate inter dgamma(2,2)
1 Quadratic n.slope dgamma(3,3)
qd dgamma(2,2)
T dnorm(1000, 1/500)

Table 2: Prior distributions for each of the parameters for the fitting of the responses for each of the thermal

traits considered.
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