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Abstract—Monolithic 3D (M3D) integration is a promising
technology for achieving high performance and low power con-
sumption. However, the limitations of current M3D fabrication
flows lead to performance degradation of devices in the top tier
and unreliable interconnects between tiers. Fault localization at
the tier level is therefore necessary to enhance yield learning,
For example, tier-level localization can enable targeted diagnosis
and process optimization efforts. In this paper, we develop a
graph neural network-based diagnosis framework to efficiently
localize faults to a device tier. The proposed framework can be
used to provide rapid feedback to the foundry and help enhance
the quality of diagnosis reports generated by commercial tools.
Results for four M3D benchmarks, with and without response
compaction, show that the proposed solution achieves up to
39.19% improvement in diagnostic resolution with less than 1%
loss of accuracy, compared to results from commercial tools.

I. INTRODUCTION

As Moore’s law reaches physical limits, three-dimensional
(3D) integration is now being adopted for integrated circuits
(ICs). In today’s 3D technology, die/wafer bonding with
through-silicon vias (TSVs) is being used due to its minimal
impact on current fabrication flows. However, keep-out-zones
around TSVs (necessary to prevent wire damage due to
tensile stress) can create routing blockages and increase the
chip footprint and total wirelength. Monolithic 3D (M3D)
integration has emerged as a promising technology to achieve
higher performance and lower power consumption compared
to 2D and die/wafer bonded 3D ICs [1]. M3D leverages fine-
grained monolithic inter-tier vias (MIVs) to achieve high-
precision alignment and extremely thin device layers [2]. The
size of MIVs is of the same order of magnitude as conventional
back-end-of-line (BEOL) vias. As a result, a large number of
MIVs can be used in M3D designs, leading to a significant
reduction in wirelength.

Despite these advantages, M3D introduces several chal-
lenges. Fabricating upper-tier transistors in M3D designs with
typical thermal budgets causes damage to wires and cells un-
derneath [3]. While advanced processes have been developed
to fabricate transistors at a low temperature, they can cause up
to 20% performance mismatch between the devices in different
tiers [4]. The reliability of interconnects is another concern
for M3D ICs. Standard copper/low-k BEOL cannot be used
between tiers because the fabrication steps in the upper tiers
pose contamination risks, while low-k dielectrics are thermally
unstable after annealing processes [5]. Moreover, MIVs in
M3D designs are prone to defects as they penetrate through

∗This research was supported in part by the National Science Foundation
under grant CCF-1908045.

the inter-tier dielectric. Surface roughness can produce voids
in the dielectric [6], which may lead to voids in MIVs during
etching, resulting in delay defects and degradation of circuit
performance [7]. Delay-fault diagnosis is therefore important
in order to provide early feedback to the foundry and facilitate
yield learning.

In contrast to die/wafer bonding in stacked 3D integration,
tiers in M3D designs are fabricated in situ, which makes it hard
to ascertain a known-good tier before assembly. Post-assembly
methods such as [8] are not applicable to M3D due to large
area overhead for wrapper cells around MIVs. In addition,
delay-fault diagnosis catered to M3D designs is especially im-
portant as existing diagnosis methodologies cannot provide the
high level of resolution (i.e., fault localization) needed at the
tier level. To make M3D integration feasible, there is a need
for a diagnosis framework that can efficiently localize faults
to a tier. Such a diagnosis framework should provide early
feedback to the foundry before the time-consuming physical
failure analysis (PFA). An effective diagnosis method should
also be compatible with existing diagnosis flows provided by
commercial tools to improve the quality of diagnosis.

In this paper, we propose a novel machine learning-based
(ML-based) diagnosis framework for M3D ICs to locate faults
at the tier level. We focus on at-speed transition delay fault
(TDF) diagnosis because the M3D-specific defects discussed
above tend to be manifested in the form of delay faults that
impact circuit timing. Our method is able to localize faults
based on the circuit netlist and failure log files from the tester.
The key contributions of this paper are as follows:
• We develop two models, Tier-predictor and MIV-pinpointer,

based on graph neural networks (GNNs) to locate faults at
the tier level and in MIVs.

• We ensure the compatibility of the proposed method with
conventional scan-based designs and commercial tools,
both with and without test compression.

• The proposed framework simply utilizes the circuit netlist
and failure log files from the tester for making predictions;
therefore, test cost is minimized as no additional test time
is needed to generate diagnostic data.
The rest of the paper is organized as follows. Section II

provides an overview of M3D integration, logic diagnosis, and
GNN. Section III presents the proposed diagnosis framework.
We compare the effectiveness of our framework with a com-
mercial fault-diagnosis tool in Section IV. In Section V, we
discuss the transferability of our GNN model and propose a
parameter tuning method to improve the diagnostic resolution.
Finally, Section VI concludes the paper.
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Fig. 1: Illustration of a two-tier M3D design.

II. BACKGROUND

A. Monolithic 3D Integration

M3D integration processes active device tiers sequentially
on a single wafer, as shown in Fig. 1. M3D integration
has the potential to enable a wide variety of applications.
M3D NAND flash memory has been commercially produced
in recent years due to better performance and lower cost
compared to 2D planar NAND Flash [9]. Heterogeneous M3D
architectures, i.e., multiple technology nodes for different tiers,
have been explored recently to overcome physical limitations.
In [10], heterogeneous M3D systems with different materials
in each tier were predicted to be promising solutions for next-
generation wireless communication.

While new applications of M3D integration have been
explored, limited research efforts have been devoted to M3D
testing and diagnosis. [11] developed an observation-point
insertion algorithm for tier-level fault localization. A test
pattern reshaping algorithm was proposed in [12] to re-
duce PSN-induced voltage droop during M3D delay testing.
However, fault diagnosis for M3D-specific defects has not
been addressed in prior work. This is critical because tiers
in an M3D design suffer from different fabrication-related
limitations and process variations. For example, defects arising
from the relatively immature low-temperature processes and
the bonding interface of inter-layer dielectric and upper tier’s
active layer typically influence transistors in the upper tiers,
while delay faults due to unreliable interconnects between tiers
affect the timing in the bottom tiers [4] [5]. Tier-level diagnosis
is thus important to localize faults to a tier, enabling efficient
PFA and technology bringup.

B. Logic diagnosis

Logic diagnosis is used to identify potential defect locations
when a chip fails on the tester. A diagnosis process aims
to provide an accurate guide to the subsequent PFA step.
Three important measures are used to evaluate the quality of
a diagnosis algorithm: (i) diagnostic resolution, (ii) accuracy,
and (iii) first-hit index (FHI) [13]. Diagnostic resolution is
defined as the number of fault candidates in a diagnosis report;
accuracy is determined by whether one of the candidates
pinpoints the ground-truth defect location. Ideally, the diag-
nostic resolution should be 1, but it is hard to ensure that the
only identified candidate is the ground-truth defect location.
An efficient diagnosis methodology needs to find a trade-off

between resolution and accuracy. A diagnosis report is ranked
with the most probable candidate listed at the top. FHI refers
to the index of the first candidate that is actually a ground-truth
defect location. Smaller the FHI, better the diagnosis process.

Diagnostic resolution is reduced by test compression [14].
Typically, a response compactor is placed between scan chains
and test output channels to help reduce test time and test data
volume. This design increases the complexity of diagnosis
due to the many-to-one mapping between scan chains and
an output channel in the compactor. Scan flops that capture
the erroneous responses can no longer be identified from the
tester; therefore, known diagnosis methods for designs without
compression are not usable in this scenario. Inserting bypass
signals to access scan chains and generate uncompressed pat-
terns for diagnosis can alleviate this problem [15]. However,
on-line diagnosis based directly on test results requires uncom-
pressed patterns, leading to an increased runtime. Techniques
to conduct logic diagnosis with compressed patterns have
also been proposed [16]; however, the diagnostic resolution in
this way is lower than that for designs without compression.
In the proposed framework, we aim at improving diagnostic
resolution for M3D designs, both with and without response
compaction. Our tier-level predictions are used to enhance
the quality of diagnosis reports generated by an automatic
test pattern generation (ATPG) tool. This is a key benefit of
the proposed solution−it is synergistic and compatible with
commercial tools. In addition, ML-aided MIV diagnosis can
help in the early characterization of defective MIVs.

C. Graph Neural Network (GNN)

GNN is an ML method that processes data on graphs. In the
field of IC design, GNN has gained special attention because it
can carry out computations directly in non-Euclidean domains.
ML models such as recurrent neural networks and convolu-
tional neural networks are not effective for graph-structured
data because they operate on Euclidean data such as images
and text sequences. However, different graphs have different
numbers of nodes/edges and irregular node connections. A pre-
processing phase is therefore required to map graph structures
to simplified representations, while topological dependency of
each node may be lost during this phase [17].

Multiple tasks can be carried out using GNN-based struc-
tures. In node classification, the network labels nodes without
ground-truth data by analyzing their neighbors. Link predic-
tion evaluates the likelihood of an edge existing between
two arbitrary nodes. Graph classification places graphs into
different classes based on their structures and the features
of nodes/edges. These tasks have been shown to be relevant
and effective for solving various real-world problems [18].
Furthermore, the concept of ML is well suited to IC diagnosis
because a large volume of data is collected throughout the
production and product lifetime [19]. This advantage and the
effectiveness of GNN motivate us to design a GNN-based
framework for tier-level diagnosis. For our diagnosis problem,
GNN models can learn the complex, non-linear relationship
between a fault location (root-cause) and the failure response
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Fig. 2: GNN-based fault diagnosis flow.

(effect). The trained models can then be used to directly predict
the faulty tier and MIVs by providing only the failure log from
the tester as input. This is significantly faster than running fault
simulation for each candidate fault and matching the failure
response with what we got from the tester. Therefore, the
proposed solution can provide feedback to the foundry and
improve ATPG diagnosis reports without runtime overhead.

III. PROPOSED GNN-BASED DIAGNOSIS FRAMEWORK

In this section, we describe our GNN-based framework
for tier-level fault diagnosis in M3D ICs. Fig. 2 presents
a flowchart for the proposed diagnosis method. The first
step is to convert the circuit under diagnosis (CUD) into a
graph object. Next, given a failure log file from the tester,
we simultaneously generate our GNN-based predictions and
launch the ATPG diagnosis process. Finally, we utilize the
prediction results to reorder and prune candidates from the
ATPG diagnosis report to generate the final candidate list. Our
framework is implemented in PyTorch with the Deep Graph
Library (DGL) package [20].

A. Heterogeneous Graph Structure

The first step in our framework is to transfer a CUD into
a heterogeneous graph, which incorporates different types of
nodes and links in the graph structure. There are two levels
in the heterogeneous graph. At the circuit level, the CUD is
converted to a graph, where each fault site (i.e., every pin of
a gate) forms a node, while edges are composed of input-
pin-to-output-pin and net-stem-to-net-branch connections. In
addition to fault sites, we also represent each MIV as a node in
the graph. This is important because MIVs are prone to delay
defects in M3D designs (see Section I). However, conventional
TDF testing does not provide such fine-grained resolution. A
post-processing step is required in conventional TDF testing to
evaluate whether there is an MIV between a top-tier gate and
a bottom-tier gate and whether such an MIV is faulty. Given a
CUD with n gates, the time complexity of this step is O(n2).
By adding MIV nodes in the proposed graph structure, each
MIV can be pinpointed in constant time.

Next, we construct nodes and edges at the top level of
the CUD, denoted as Topnodes and Topedges, respectively,
to complete the heterogeneous graph structure. A Topnode
corresponds to an observation point (i.e., the input of a scan
flop) during scan testing. Each Topnode is connected to all
the nodes in its fan-in cone by Topedges. Fig. 3 illustrates the
construction of our graph structure from a CUD. After graph
construction, we apply ATPG patterns and conduct simulation

MIV
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D Q

D QD Q
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Fig. 3: Illustration of the proposed heterogeneous graph structure.

Input: Heterogeneous graph G, failure log file f from the tester
Output: Subgraph G′ ∈ G

1 V ′ := FaultSites(G)
2 foreach erroneous test output response r in f do
3 p ← FailedPattern(r), T ← FailedTopnode(r), N := ∅
4 foreach Topnode n in T do
5 foreach fault site s in Successors(n) do
6 if s has a transition state with p then
7 N := N ∪ s
8 end
9 end

10 end
11 V ′ := V ′ ∩N
12 end
13 G′ := CreateSubgraph(G, V ′)
14 return G′;

Fig. 4: Pseudo-code for the back-tracing algorithm.

with multiple logic values [21] to memorize transitions (i.e.,
whether a node switches from 0(1) to 1(0)). We also utilize
Dijkstra’s Algorithm [22] to find the shortest path between
both ends of a Topedge. The number of nodes and the number
of MIVs in such shortest path establish the Topedge features.

The top-level graph strengthens the relationships between
observation points and their fan-in nodes; this is important
for logic diagnosis because only the fan-in nodes can be
the candidate fault locations when observation points capture
erroneous responses. Although the generation of Topnodes and
Topedges requires additional runtime and memory, it needs
to be run only once for each benchmark and can be reused
for every failure log file; therefore, the runtime and memory
overhead are not concerns and the cost is easily amortized.

B. Back-tracing

Fig. 4 sketches the steps involved in back-tracing. Lines
2-12 iterate through every erroneous output response. Line
3 finds the pattern p with which the current response is
observed on the tester and collects a set T of Topnodes that
connect to the test output where the response is captured.
Lines 4-10 iterate through all the nodes in the input cones
of Topnodes in T . Note that only nodes whose signal values
switch during scan capture when p is applied are capable of
activating delay faults and producing an erroneous response.
Therefore, Line 7 collects the union of such nodes to form a
suspect list corresponding to the current response. In Line 11,
the intersection of suspect lists for every erroneous response
becomes the final candidate list for the input failure log file.
Finally, Line 13 extracts all nodes in the candidate list to
generate a sub-graph for the subsequent GNN models.
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TABLE I: Initial node features in a sub-graph. Length of a Topedge
is the shortest distance between its source and destination nodes.

Description Type

Number of fan-in edges in the circuit Numerical
Number of fanout edges in the circuit Numerical

Number of Topedges connected Numerical
Tier-level location Binary

Level in topological order Numerical
Whether it is a gate output Binary

Whether it connects to an MIV Binary
Number of fan-in edges in the sub-graph Numerical
Number of fanout edges in the sub-graph Numerical

Mean length of Topedges connected Numerical
Standard deviation of length of Topedges connected Numerical

Mean number of MIVs passed through
by Topedges connected

Numerical

Standard deviation of number of MIVs passed through
by Topedges connected

Numerical

The time complexity of the above back-tracing procedure
can be analyzed as follows. Given a failure log file with nr

erroneous responses, Lines 2-12 are executed nr times to find
the candidate list. Let the number of gates in the graph G be
nG. During the evaluation in Lines 4-10, each node in the fan-
in cone is analyzed at most |T | times, where |T | is a constant
referred to as the number of Topnodes connected to an output
channel; hence the time complexity is O(nG). In Line 13, the
time complexity of finding the intersection of two subsets of
G is O(nG). The other steps are completed in constant time.
Therefore, the overall time complexity is O(nrnG).

C. Proposed GNN Models

We leverage the graph convolutional network (GCN) [23]
to train our Tier-predictor and MIV-pinpointer. Sub-graphs
generated after the back-tracing step are fed into the GCN
models, with the initial node features listed in Table I. In order
to gather information and learn from neighbors of a node n,
GCN layers are added to aggregate its features as follows [23]:

h(l+1)
n = σ

(
b(l) +Σi∈N (n)

h
(l)
i W (l)√

|N (i)|
√
|N (n)|

)
(1)

where h
(l)
n is node features of n at the lth layer, σ is an

activation function, N (n) is the set of neighbors of node
n, |N (n)| is the number of neighbors of node n, b(l) is the
learnable bias at the lth layer, and W (l) is the learnable weight
at the lth layer.

After learning is completed, node features at the final GCN
layer are used for prediction. We formulate tier prediction
as a graph classification problem in order to consider every
candidate in the netlist. A graph pooling layer [18] is inserted
at the end of the structure of Tier-predictor to create the graph
representation. This representation is a two-dimensional vec-
tor, denoted as [ptop, pbottom], and it provides the probabilities
of defects being in the top tier and bottom tier, respectively.
For the MIV-pinpointer, local information near the candidate
MIVs is much more important than global features. Hence,
node classification is used to pinpoint the set of defective
MIVs. The learned node features {h} ∈ R

2 are directly used
to calculate the probability that an MIV has a defect.

Fig. 5: Flowchart for candidate pruning and reordering.

TABLE II: Design matrix of M3D benchmarks. Nsc (Nch): number
of scan chains (channels); Ng: gate count; FC: fault coverage.

Design Ng #MIVs
Nsc Chain

#Patterns FC
(Nch) length

AES 98K 71K 100 (5) 123 767 98.3%
Tate 187K 143K 200 (10) 171 432 98.6%

netcard 220K 173K 400 (20) 182 40438 97.3%
leon3mp 338K 250K 400 (20) 285 18737 99.1%

D. ATPG Report Reordering and Pruning

Using the results from our Tier-predictor and MIV-
pinpointer, we prune and reorder candidates in the ATPG
diagnosis report to improve the diagnostic resolution and
the FHI. Fig. 5 presents the flowchart for our pruning and
reordering method. We first collect all candidates listed in
the diagnosis report generated by ATPG. Results of the MIV-
pinpointer are then analyzed to extract candidate fault sites in
the diagnosis report that are equivalent to the MIVs predicted
to be faulty. Such fault sites are placed at the top of the
final report to prioritize MIV faults during the subsequent
failure analysis. As MIVs are prone to defects in emerging
M3D integration [7], FHI can be improved in this way. Next,
the minimum of [ptop, pbottom] is compared with a user-
defined threshold value, Tp, to determine whether to prune
or reorder candidates. If ptop (pbottom) is smaller than the
threshold, candidates in the top (bottom) tier are unlikely to
be the ground-truth fault location. Such candidates are filtered
out from the final candidate list. Otherwise, candidates are
reordered by first appending fault sites in the tier predicted to
be faulty, followed by those in the tier predicted to be fault-
free. Note that filtering out candidates may occasionally lead
to a loss of accuracy. However, when Tier-predictor points out
the incorrect tier as faulty, the accuracy loss may be recovered
by the MIV-pinpointer if the ground-truth fault happens to be
equivalent to the MIV fault localized by the MIV-pinpointer.
In the proposed solution, users can also fine-tune Tp to find
the best trade-off between diagnostic resolution and accuracy.

IV. EXPERIMENTAL RESULTS

A. Simulation Setup

We evaluated the proposed GNN-based diagnosis frame-
work on four two-tier M3D benchmarks, namely Advanced
Encryption Standard (AES) and Tate Bilinear Pairing (Tate)
from OpenCores, and netcard and leon3mp from the ISPD
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TABLE III: Effectiveness of delay fault-localization in M3D benchmarks using ATPG diagnosis and the proposed GNN + ATPG framework.

Compaction mode Design
ATPG diagnosis only (Commercial tool) Proposed framework (GNN + ATPG)
Diagnostic resolution Accuracy Diagnostic resolution Accuracy FHI Tp

Without compaction

AES 4.95 100% 4.20 (+15.15%) 99.07% (-0.93%) 1.85 0.08
Tate 3.95 100% 3.34 (+15.64%) 99.07% (-0.93%) 1.37 0.08

netcard 21.42 99.73% 13.03 (+39.19%) 99.20% (-0.53%) 8.44 0.08
leon3mp 10.93 98.93% 8.10 (+25.81%) 98.40% (-0.53%) 3.66 0.01

With compaction

AES 9.36 97.47% 8.62 (+7.90%) 96.66% (-0.80%) 2.67 0.10
Tate 5.31 99.87% 4.84 (+8.86%) 98.93% (-0.93%) 2.26 0.10

netcard 23.17 98.93% 19.45 (+16.05%) 98.13% (-0.80%) 9.92 0.08
leon3mp 12.91 98.13% 10.83 (+16.15%) 97.60% (-0.53%) 4.36 0.02

2012 benchmark suite. Each benchmark is synthesized with
the open-source Nangate 45 nm standard cell library using
Synopsys Design Compiler. Details about these M3D bench-
marks are presented in [12]. Next, test-compression hard-
ware is inserted using the embedded deterministic test (EDT)
methodology (Siemens EDA Tessent), followed by the TDF
pattern generation. Without loss of generality, the compaction
ratio is set to 20× in all benchmarks, that is, at most 20
scan chains are connected to one test output channel using
the response compactor. We also inserted bypass signals that
enable the designs to scan out uncompressed responses without
passing through response compactors. The design matrix of
our M3D benchmarks is shown in Table II. To generate dataset
for experiments, we randomly injected one TDF at a time in
a circuit and carried out logic simulations with the generated
patterns to obtain erroneous output responses. These responses
were collected into a failure log file, which became a sample in
the dataset. We generated 5000 samples for each benchmark,
with and without response compaction, respectively.

B. Diagnosis with and without Response Compaction

We first examine the quality of our diagnosis framework
using 750 samples (15% of the generated dataset) for each
benchmark. We compare the average diagnostic resolution and
accuracy of ATPG diagnosis reports among these samples with
reports obtained after the reordering and pruning step. Table III
shows the results for each benchmark, both with and without
response compaction. For the results without compaction,
the diagnostic resolution is improved by at least 15% with
less than 1% loss of accuracy. This is significant because
diagnosis reports are used to guide time-consuming physical
silicon inspection. High diagnostic resolution minimizes the
time spent on inspecting the fault-free parts of the chip.

To compensate for the loss of accuracy, we generate a
backup dictionary, which records the candidates being pruned
corresponding to each failure chip. Diagnosis engineers can
therefore search in the backup dictionary for further analysis
whenever the root cause of a failure is not found based
on the pruned report. With this compensation method, our
framework is guaranteed to achieve the same accuracy as
ATPG. Although the backup dictionary requires additional
memory, its size depends on the number of candidates be-
ing pruned in each sample, which can be estimated by the
difference in diagnostic resolution between ATPG diagnosis
reports and reports generated by the proposed framework.
As shown in Table III, the largest difference among four

benchmarks is 8.39 for netcard without compaction; the size
of the corresponding backup dictionary is only 246 kilobytes.
Therefore, the memory overhead of the proposed method is
within acceptable limits.

Note that the candidate fault sites in diagnosis reports gen-
erated by commercial ATPG tools are arranged alphabetically.
As candidates cannot be prioritized for analysis, FHI is not
applicable in such cases. In contrast, our framework prioritizes
faults located in the predicted tier, as well as MIVs that are
predicted to be faulty, in the final reports. The FHI is thus a
good indicator to highlight the effectiveness of our algorithm.
In three benchmarks, FHI is lower than half of the diagnostic
resolution with the proposed framework, i.e., the ground-truth
defect is in the first half of the candidate list in the final report.

Results for benchmark designs with response compaction
are also shown in Table III. Note that both the diagnostic
resolution and accuracy of designs are worse than the results
without compaction. This is expected because the scan cells
that capture erroneous responses cannot be pinpointed without
bypass signals. The search space is therefore increased, leading
to a reduction in diagnostic resolution and accuracy. However,
the proposed framework is shown to be effective with com-
pressed patterns. Reports generated by this framework achieve
up to 16% improvement in diagnostic resolution with a very
low accuracy loss. Furthermore, our approach does not require
additional hardware or test data and is compatible with any
combinational (e.g., XOR-based) response compactor.

V. DISCUSSION

A. Transferability of Proposed GNN Framework

The transferability of ML enables pre-trained models to be
applicable to new data without retraining. However, transfer-
ability is not feasible for our IC diagnosis problem because
circuit and topological features (e.g., logic depth of circuit and
the number of scan flops) are significantly different for differ-
ent designs. We substantiate our claim by leveraging principle
component analysis (PCA) [24] to visualize the distribution
of the feature vectors listed in Table I. The visualization
result for the Tate and leon3mp benchmarks (without response
compaction) is shown in Fig. 6. Each sample represents a
feature vector corresponding to a fault and the associated
failure log. Clearly, features from the two benchmarks form
separate clusters. As a result, a GNN framework trained on
the dataset of one of these benchmarks cannot be directly
transferred to perform diagnosis on the other benchmark.
Moreover, training a single framework by using training data
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Fig. 6: Feature visualization of Tate and leon3mp benchmarks.

from both benchmarks may not converge due to the high intra-
dataset variance that results from the gap in the two feature
distributions. Therefore, it is recommended that the GNN-
based Tier-predictor and MIV-pinpointer models are trained
from scratch for different M3D designs.

B. Threshold value for candidate pruning and reordering

The threshold value, Tp, for candidate pruning and reorder-
ing is used to find the trade-off between diagnostic resolution
and accuracy. In order to fine-tune Tp, we consider 15% of
the samples for each benchmark as the validation dataset. We
first make the predictions for samples in the validation dataset
using the proposed Tier-predictor and MIV-pinpointer. Next,
we carry out the candidate pruning and reordering process with
different values of Tp to obtain the corresponding accuracy
and diagnostic resolution. The distribution of accuracy and
the improvement in diagnostic resolution for the netcard
benchmark with and without response compaction is shown
in Fig. 7. With this distribution, Tp can be fine-tuned to
satisfy various objectives. For example, PFA requires a small
value of diagnostic resolution to avoid high cost and runtime,
which can be accomplished by choosing a large Tp. Our
experiments aim at improving resolution with less than 1%
loss of accuracy; therefore, we find the maximum Tp with
which the loss of accuracy remains below 1%. Such values
of Tp are used for the evaluations in Section IV. Results in
Table III demonstrate that this fine-tuning method can achieve
our goal of improving diagnostic resolution without violating
the accuracy requirement.

VI. CONCLUSION

We have proposed a GNN-based framework to conduct
tier-level fault diagnosis simply based on the CUD netlist
and failure log files from the tester. Two GNN models,
namely Tier-predictor and MIV-pinpointer, have been trained
to predict which tier and MIVs have defects. The prediction
results provide quick feedback to the foundry or diagnosis
team prior to time-consuming failure analyses. We have also
provided a candidate reordering and pruning algorithm based
on our predictions to improve the quality of ATPG diagnosis
reports. We have shown that with less than 1% loss of ac-
curacy, diagnostic resolution is significantly improved for the
OpenCore and ISPD benchmarks. We have demonstrated that
our framework is effective for designs with test compression
without additional resource requirements, and it is compatible
with commercial tools.

Fig. 7: Distribution of accuracy and the improvement in resolution
among different threshold values for the netcard benchmark.
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