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ABSTRACT
Cloud services have revolutionized modern computing. The
benefits of outsourcing data and computation comes with
security and privacy concerns. This article explores the
advances in cloud security research across both industry
and academia, with a special focus on secure infrastructure,
services and storage. Besides overviewing the state of the
art, the article highlights open problems, and possible future
research directions.
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2
Introduction

Cloud services have revolutionized computing in the modern world. In an
increasingly networked ecosystem, it is commonplace for enterprises and
private parties alike to leverage cloud services for storage and compute.
The most obvious benefits include scalability, increased availability,
and the potential for reduced costs1 when compared to lower-scale on-
premise infrastructures. In addition, cloud-hosted data (and compute) is
accessible across platforms and is not limited by geographical constraints
making collaboration attractively viable.

However, these benefits come with their share of pitfalls. Over time
cloud architecture have become increasingly complex. Cloud platforms
today run tens and sometimes hundreds of millions of lines of code
to support a wide range of services and capabilities. From a security
perspective, this results in an enormously large attack surface, which
is now much more attractive to determined knowledge and resource-
intensive attackers, mainly due to its potential to expose millions of
customers’ critical data. This is further exacerbated by the fact that
multi-tenancy, inherent in the very fabric of the cloud value proposition

1But lower costs are not a given – and very often, applications not designed to
scale properly may incur comparably astronomical costs when run in the cloud.
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4 Introduction

can bring forth significant and unforeseen security issues including the
now-ubiquitous side channels – not usually of concern in single-user
systems and enterprise networks – but that now completely compromise
wast swaths of the infrastructure and customer workloads. As a result,
cloud security has become a focal point for security researchers over the
past decade.

This article discusses a number of key issues critical in this endeavour.
We focus here on challenges that the authors found are particularly
interesting. We provide an overview of some of the solutions while
highlighting noteworthy designs and discussing remaining open problems.
We also note that a holistic complete view of this vast problem
space, effectively spanning all layers of modern computing, is
out of scope and cannot be addressed in any one piece of work.

Structure of the Article Cloud security is a broad topic encompassing
concepts from a large cross section of domains. To make this article
concise and meaningful, we target several topics and challenges that are
almost entirely specific to clouds. For this reason, general computing
security topics such as intrusion detection, software protection, phishing
etc. are excluded. While these are important building blocks that need
to be considered in an end-to-end cloud-centric design, they have been
extensively addressed elsewhere.

The article is divided into three parts based on a broad clustering
into hardware, computation, and storage. Specifically the intuition is
that a typical cloud stack will need to: i) secure the platforms on top of
which clouds services e.g., on-demand VMs run, ii) secure the services
e.g., by providing by secure compute capabilities, and iii) secure data
stored at rest on the cloud-hosted storage platforms. We now briefly
overview each part.

2.1 Secure Infrastructure

Cloud infrastructure is extremely complex involving several components
such as networks, hardware etc. Nevertheless, a critical cornerstone
component of any contemporary cloud architecture is the underlying
computation virtualization technology.
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Secure Hypervisors Arguably, systems that enable virtualization e.g.,
hypervisors constitute the most security-sensitive component of a cloud
architecture since they usually run millions of lines of code at the highest
privilege level with full access to the underlying hardware and user data.
Securing this software is one of the foremost challenges to building secure
clouds. Chapter 3 discusses the state of the art in trusted hypervisor
designs, in addition to techniques that formally verify hypervisors for
secure deployments.

Hardware-Enabled Security Trusted execution environments (TEEs)
are an integral part of cloud infrastructure. They protect confidentiality
and integrity of client application data from other tenants, as well as
from an untrusted cloud provider. Widely-deployed TEEs like Intel SGX
(Intel Corporation, 2014) and AMD SEV (Kaplan et al., 2016) make
it possible to run computation isolated from all the other untrusted
software running in the same system, with strong hardware-backed
guarantees. Chapter 4 discusses these technologies highlighting their
merits and demerits.

Side-Channels Multi-tenancy in clouds supported by virtualization
also introduces other challenges, specifically in the form of side-channels.
This is because a cloud tenant may have its computation co-located with
other potentially untrusted and malicious parties. This unrestricted
sharing of resources between mutually distrustful parties creates new
attack vectors that is not typical to single-user systems or even enterprise
networks. Chapter 5 discusses the potential pitfalls of multi-tenancy
and outlines solutions that effectively defend against side-channels in
cloud environments.

2.2 Secure Computation

With Platform-as-a-service (PaaS) and Software-as-a-service (SaaS),
cloud services provide various ways for users to outsource and compute
on cloud hardware. One particularly popular instance of this is machine
learning as a service (MLaaS). Naturally, in these settings, the user
would like to ensure that the computation is performed with certain
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verifiable guarantees which includes confidentiality of input/output,
correctness of results etc.

Secure Distributed Computation Multi-party cryptographic tech-
niques are important building blocks for secure cloud computation. Infor-
mally, secure multiparty computation involves two (or more) mutually-
untrusting parties jointly computing on shared data while ensuring
that they learn nothing more than what the protocol specifies about
each others’ inputs etc. In the cloud setting, the untrusted party is the
cloud service while the users constitute the trusted parties. Chapter 6
discusses the results in distributed secure computation which enable
secure computing in the cloud.

Encrypted Search Client-side encryption is an essential first step to-
wards protecting data stored on cloud platforms. This strong protection
comes at the cost of usability and performance since the server can no
longer search and compute on the data. Encrypted search techniques
(e.g., searchable encryption) take a middleground approach and enable
keyword searches in encrypted documents. Encrypted databases further
extend this idea and support rich query functionalities like joins etc.
Chapter 7 discusses these techniques and highlights their merits and
demerits.

2.3 Secure Storage

Most cloud services provide Storage-as-a-services (STaaS). This has
become a popular option for enterprises to store data in a cost-effective
way as opposed to setting up on-premise data centers. However, the
abundance of data on online (often public) spaces raises important
security concerns that are not handled by conventional encryption. We
discuss two such challenges.

Access Pattern Privacy Chapter 8 discusses the problem of access
privacy for data stored on clouds. It is well-known that revealing access
patterns to data can reveal a wealth of information about the contents,
even when the data is encrypted. This problem is especially concerning
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in clouds where the (potentially untrusted) cloud provider has easy
access to the data access patterns through access logs etc.

Provable Data Possession Chapter 9 discusses the problem of prov-
able data possession. Cloud services rarely provide verifiable guarantees
with regards to the integrity and long-term reliability of the stored data.
If the data is lost, damaged or revealed to unauthorized sources, the
damage is irreversible. Provable data possession ensures that clients
can verify that an untrusted provider indeed ensures all the proper
guarantees for the stored data, and detect corruptions if any.



Part I

Secure Infrastructure



3
Virtualization

Virtualization technologies are the backbone of cloud architectures,
enabling users to to move their data and computation off-site to cloud-
hosted virtual machines (VMs). The most critical component of a
virtualized system is the hypervisor which provides the VM abstrac-
tion (Bugnion et al., 2017). The hypervisor controls the hardware and
typically runs at the highest privilege level. However, commodity hyper-
visors, that are often integrated with a host operating system kernel,
present a large potential attack surface with access to VM data in CPU
registers, memory, I/O data and boot images. Attackers that exploit
hypervisor vulnerabilities may gain access to all VM data (potentially
belonging to different clients) compromising privacy and integrity guar-
antees. Therefore, securing hypervisors against unauthorized access and
other potential attack vectors is of paramount importance to securing
cloud services. There is a long line of work on designing more secure
hypervisors for clouds. In the following, we highlight various approaches
for addressing this problem.

9
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3.1 Trusted Designs

Bare-Metal Hypervisors Unlike hosted hypervisors which integrate
with a host operating system kernel, bare-metal hypervisors are stan-
dalone hypervisors. They often claim a smaller TCB as an advantage
over hosted hypervisors, but in practice, the aggregate TCB of the
widely-used Xen (Barham et al., 2003) bare-metal hypervisor includes
Dom0 (Colp et al., 2011; Zhang et al., 2011a), which includes an entire
Linux kernel, and therefore is no smaller than hosted hypervisors like
KVM (Kivity et al., 2007; Dall and Nieh, 2014). Some work thus focuses
on reducing Xen’s attack surface by redesigning Dom0 (Murray et al.,
2008; Colp et al., 2011; Butt et al., 2012).

Microhypervisors Microhypervisors (Steinberg and Kauer, 2010; Heiser
and Leslie, 2010) take a microkernel approach to build clean-slate hy-
pervisors from scratch to reduce the hypervisor TCB. For example,
NOVA (Steinberg and Kauer, 2010) moves various aspects of virtu-
alization such as CPU and I/O virtualization to user space services.
The virtualization services are trusted but instantiated per VM so that
compromising them only affects the given VM. Others simplify the
hypervisor to reduce its TCB by removing (Shinagawa et al., 2009) or
disabling (Nguyen et al., 2012) virtual device I/O support in hypervisors,
or partitioning VM resources statically (Keller et al., 2010; Siemens,
2019). HyperLock (Wang et al., 2012), DeHype (Wu et al., 2013), and
Nexen (Shi et al., 2017) focus on deconstructing existing monolithic
hypervisors by segregating hypervisor functions to per VM instances.
While this can isolate an exploit of hypervisor functions to a given
VM instance, if a vulnerability is exploitable in one VM instance, it
is likely to be exploitable in another as well. Nexen builds on Nested
Kernel to retrofit Xen in this manner, though it does not protect against
vulnerabilities in its shared hypervisor services.

Retrofitting Commodity Hypervisors A different approach to build-
ing trusted hypervisors is retrofitting a commodity hypervisor to reduce
the TCB based on microkernel principles while inheriting its extensively
virtualization features. Hypsec (Li et al., 2019) partitions a mono-
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lithic hypervisor into a trusted core, called the corevisor and a large
untrusted host called the hostvisor. Hypsec leverages hardware virtual-
ization support to isolate and protect the corevisor and execute it at a
higher privilege level that the hostvisor. The corevisor has full access
to hardware resources, provides basic CPU and memory utilization and
mediates all exception and interrupts. More complex operations such as
I/O and interrupt virtualization, and resource management is delegated
to the hostvisor.

CloudVisor (Zhang et al., 2011a) uses a small, specialized host hy-
pervisor to support nested virtualization and protect user VMs against
an untrusted Xen guest hypervisor, though Xen modifications are re-
quired. CloudVisor encrypts VM I/O and memory but does not fully
protect CPU state, contrary to its claims of “providing both secrecy and
integrity to a VM’s states, including CPU states.” For example, the VM
program counter is exposed to Xen to support I/O. As with any nested
virtualization approach, performance overhead on application workloads
is a problem. Furthermore, CloudVisor does not support widely used
paravirtual I/O. CloudVisor has a smaller TCB by not supporting
public key cryptography, making key management problematic.

3.1.1 Software Protection

Various projects extend a trusted hypervisor to protect software within
VMs, including protecting applications running on an untrusted guest
OS in the VM (Chen et al., 2008; Yang and Shin, 2008; McCune
et al., 2010; Chhabra et al., 2011; Hofmann et al., 2013), ensuring
kernel integrity and protecting against rootkits and code injection
attacks or to isolate I/O channels (Wang et al., 2009; Riley et al.,
2008; Seshadri et al., 2007; Wang et al., 2015b; Zhou et al., 2014), and
dividing applications and system components in VMs then relying on
the hypervisor to safeguard interactions among secure and insecure
components (Garfinkel et al., 2003; Strackx and Piessens, 2012; Ta-Min
et al., 2006; Liu et al., 2015b). Overshadow (Chen et al., 2008) and
Inktag (Hofmann et al., 2013) use a more trusted hypervisor component
to protect against untrusted kernel software. Overshadow and Inktag
also assume applications use end-to-end encrypted network I/O, though
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they protect file I/O by replacing it with memory-mapped I/O to
encrypted memory.

Protecting User Data with Specialized Hardware To protect user
data in virtualization systems, there is work that require VM support
for specialized hardware such as Intel SGX Intel Corporation, 2014 or
ARM TrustZone. These hardware-backed designs are discussed in more
detail in Chapter 4 . Haven (Baumann et al., 2014a) and S-NFV (Shih
et al., 2016) use Intel SGX to protect application data. Others Zhu et al.,
2017; Hua et al., 2017 run a security monitor in ARM TrustZone and
rely on ARM IP features such as TrustZone Address Space Controller
to protect VMs. vTZ (Hua et al., 2017) virtualizes TrustZone and
protects the guest TEE against an untrusted hypervisor, but does not
protect the normal world VM. HA-VMSI (Zhu et al., 2017) protects
the normal world VM against a compromised hypervisor but supports
limited virtualization features.

3.2 Formally-Verified Hypervisors

Formally-verified hypervisors provide a theoretically-sound approach to
building trusted hypervisors for clouds. seL4 (Klein et al., 2009; Klein
et al., 2014) and CertiKOS (Gu et al., 2016; Gu et al., 2019) are verified
systems with hypervisor functionality. While various versions of seL4
exist, noninterference properties and functional correctness have only
been verified on a single uniprocessor version (seL4 Supported Platforms
n.d.); bugs have been discovered in other seL4 versions (Oberhauser
et al., 2021). The verified version only supports Armv7 hardware and
has no virtualization support (seL4 Supported Platforms n.d.). Another
seL4 Armv7 version verifies the functional correctness of some hyper-
visor features, but not MMU functionality (seL4 Supported Platforms
n.d.; Klein et al., 2018), which is at the core of a functional hypervisor.
seL4 does not support shared page tables (seL4 Reference Manual Ver-
sion 11.0.0 2019), and verifying multiprocessor and hypervisor support
remain future work (Frequently Asked Questions on seL4 n.d.). It lacks
most features expected of a hypervisor. Its device support via virtio is
unverified and also needs to be ported to its platform, limiting its virtio
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functionality. For example, seL4 lacks support for virtio block devices
and has no vhost optimization. Building a system using seL4 is much
harder than using Linux (Frequently Asked Questions on seL4 n.d.).

CertiKOS proves noninterference for the sequential mCertiKOS
kernel (Costanzo et al., 2016) without virtualization support and goes
beyond seL4 in verifying the functional correctness of the mC2 multi-
processor kernel with virtualization. However, mC2 provides no data
confidentiality and integrity among VMs. Like seL4, CertiKOS also
cannot verify shared page tables, so it does not provide verified support
for multiprocessor VMs. The verified kernel does not work on modern
64-bit hardware. It lacks many hypervisor features, including dynami-
cally allocated page tables for multi-level paging, huge page support,
device passthrough, and VM migration. Its virtio support does not
include vhost, is limited to only certain block devices, and requires
porting virtio to its platform, making it difficult to keep up with virtio
improvements and updates.

Other works have only partially verified their hypervisor code to
reduce proof effort. The VCC framework has been used to verify 20%
of Microsoft’s Hyper-V multiprocessor hypervisor, but global security
properties remain unproven (Cohen et al., 2009; Leinenbach and Santen,
2009). überSpark has been used to verify the üXMHF hypervisor, but
their architecture does not support concurrent hardware access, and
their verification approach foregoes functional correctness (Vasudevan
et al., 2013; Vasudevan et al., 2016).

Despite these advances, it is infeasible to fully verify commercially-
deployed hypervisors which may contain more than 2M LOC e.g.,
KVM, the widely-used Linux hypervisor. As an elegant and scalable
solution to this problem, Li et al. (Li et al., 2021a) introduce the idea
of microverification to reduce proof effort by retrofitting a commodity
system into a small core and a set of untrusted services, so that it is
possible to reason about the properties of the entire system by verifying
the core alone. Based on this idea, they introduced MicroV, a new
framework for verifying the security properties of large, multiprocessor
commodity systems to provably guarantee data confidentiality and
integrity. They used this verification framework to verify the security
properties of a commodity hypervisor for the first time, specifically
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KVM (Li et al., 2021a; Li et al., 2021b; Tao et al., 2021). The approach
does not verify that KVM is entirely functionally correct, but rather
proves that its core is functionally correct and that is sufficient to ensure
the security properties hold for the entire hypervisor despite potential
vulnerabilities in the rest of KVM.

3.3 Future Directions

Formal verification remains an important ongoing area of work in proving
the security of hypervisors. Although the security properties of KVM
have been verified, it remains to be seen whether similar approaches can
be used to verify other commercially-deployed hypervisors with different
architectures and implementations, such as Xen or VMware. Another
important consideration is whether formal verification can be used to
verify other security properties other than confidentiality and integrity.
For example, in some domains, availability may be of greater concern,
such as in the context of security-critical systems for cyber-physical
systems such as self-driving cars, in which security critical components
may be isolated in VMs but must be guaranteed to be able to run. It
remains to be seen how formal verification techniques might be used to
prove availability guarantees for a commodity hypervisor.

Another important direction of future work is hardware security for
virtualization. Hardware mechanisms have increasingly been introduced
to support various security features for applications. As hypervisors are
part of the critical software infrastructure that must be secured, it is
only a matter of time until hardware mechanisms are introduced to
support the improved security of hypervisors. For example, if hardware
were available that could guarantee the confidentiality and integrity
of applications despite potential hypervisor vulnerabilities, this would
substantially mitigate the security risk due to complex commercially-
deployed hypervisors. Such hardware might provide mechanisms that a
hypervisor could leverage to manage VMs without giving the hypervisor
access to VM data.
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Hardware-Enabled Security

In this section, we discuss Trusted Execution Environments (TEEs),
often enabled by specialized secure hardware, which is increasingly
finding its way into cloud infrastructures. Contemporary workload
isolation mechanisms in cloud computing focus on protecting the cloud
environment from accesses by untrusted tenants, i.e., they provide
security for the cloud service provider. Very often however, tenants
want to protect the confidentiality and integrity of their application
data not only from other tenants but also from the cloud itself, and
specifically higher privileged system software, such as the hypervisor.
In most of the current cloud infrastructures, clients rely on the service
provider for data and code integrity. However, this is problematic since
the cloud infrastructures may be compromised by malicious actors or
software bugs. Since formally-verified hypervisors, discussed in Chapter
3, are not yet ubiquitously deployed, cloud customers are left with no
choice other than to rely on the cloud service provider’ security measures.
Trust must be placed in the complete software stack, in particular the
hypervisor, with the inherent underlying risk whereby a compromised
component can lead to severe data leakages.

Hardware-enforced isolated execution environments, also known as

15
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TEEs, represent a paradigm shift in computer architectures, which will
impact the computing landscape fundamentally. It will revolutionize
cloud computing and enable many new applications and scenarios,
similar to hardware-based virtualization kick-started cloud computing
in general. In this section we will discuss TEEs in the context of cloud
computing in detail. First, we give an overview of some of the major
TEEs, or TEE architectures as we call them in the reminder of this
section, that are already available on today’s server platforms. Next,
we discuss in detail which problems TEE architectures currently face.
On the one side, these are security problems mainly in the area of
side-channel attacks. On the other side, TEE architectures also face
performance and functionality problems, e.g., when it comes to the
support of legacy cloud-native workloads. In the end, we point to recent
research which aims to tackle the aforementioned problems and we
identify important future research directions.

4.1 Trusted Execution Environments

TEE architectures are already actively used to protect sensitive cloud
computing workloads. The biggest players in the server market, Intel
and AMD, both designed TEE architectures, namely, Intel Software
Guard Extensions (SGX) and AMD Secure Encrypted Virtualization
(SEV) which we describe in this section. Moreover, we point to new
emerging TEE architectures not yet available which were specifically
designed to secure cloud computing.

4.1.1 Intel Software Guard Extensions

The server market is still dominated by Intel which achieved a market
share of 92% in 2020 (TrendForce, 2021). In 2015, Intel SGX (Intel,
2014) was introduced with the Skylake microarchitecture as one of the
first TEE architectures which protects sensitive applications in isolated
execute context, called enclaves. Intel SGX was first introduced in the
desktop processors but later also included in the server processors to
enable the protection of secure microservices in the cloud.
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Adversary model. The adversary model of SGX assumes a strong
adversary that can compromise all system software, even the operating
system kernel and hypervisor. Furthermore, the adversary is able to
compromise or misconfigure system peripherals in order to perform
Direct Memory Access (DMA) attacks (Markettos et al., 2019; Zhou
et al., 2012). Cache side-channel attacks are not considered in the
adversary model of SGX (Johnson, 2018). Also, importantly, while the
adversary is allowed to perform simple physical attacks on associated
components such as DRAM (e.g., cold-boot attacks (Halderman et al.,
2009)), she is assumed to not be able to perform more sophisticated
physical penetration or exfiltration attacks on the overall system and its
CPUs.

Design & features. In SGX, instances of a TEE, called enclaves,
are used to execute sensitive program code in user space, isolated
from each other and from a potentially malicious operating system
or hypervisor. Each enclave is bundled with a regular non-sensitive
application which invokes the enclave as a child process. During the
enclave setup, the integrity of the enclave code is verified (attested), i.e.,
an authenticated measurement (i.e., typically a binary hash) of the code
loaded into the enclave is reported either locally or remotely. When
an enclave is executed, it shares its virtual address space with its host
process. The untrusted operating system performs the enclave memory
management, handles the enclave exceptions and provides I/O services
to the enclaves (Intel, 2017). All enclave code or data leaving the CPU
is always encrypted before being stored in memory. This allows SGX
to protect enclaves from simple hardware attacks and malicious DMA
requests. Furthermore, it enables SGX to persistently store the enclave
states after their execution.

Hardware primitives & TCB. The enclave code and data (e.g., its
page tables) is protected from an unauthorized access by system software
through primitives in hardware. SGX is mostly implemented inside of
the CPU through microcode, e.g., a new set of instructions to control and
communicate with the enclaves was introduced. Additionally, minimal
hardware changes are made at the page table walker. When a page fault
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is triggered as a result of a TLB miss, the SGX microcode checks if the
virtual address points to enclave memory and subsequently performs
access control on it. Only if the current execution context is allowed to
access the enclave memory, the address translation is performed and
the physical address loaded into the TLB. The transparent encryption
outside of the CPU package is performed by a new hardware component
called the Memory Encryption Engine (MEE). Together with the MEE,
the CPU forms the hardware TCB of the system. The enclave attestation
scheme is implemented in a set of enclaves provided by Intel, e.g.
the Quoting Enclave which computes attestation signatures. These
privileged enclaves have access to the keys in the SGX hardware and
represent the software TCB of the system.

4.1.2 AMD Secure Encrypted Virtualization

The second biggest player in the server market, AMD, with a market
share of 8% in 2020 (TrendForce, 2021) introduced their own TEE
architecture for servers platforms, Secure Encrypted Virtualization
(SEV) (Kaplan et al., 2016), in 2017.

Adversary model. The adversary model of AMD SEV is comparable
to the one assumed in Intel SGX. AMD also assumes a strong adversary
which can even compromise the hypervisor layer and perform DMA
and simple hardware attacks. As in the adversary model of SGX, cache
side-channel attacks are not considered.

Design & features. SEV provides protection for complete Virtual Ma-
chines (VM) in cloud scenarios and is designed on top of AMD’s Secure
Memory Encryption (SME) technology. SEV isolates VMs, which repre-
sent a TEE instance, from each other and the underlying hypervisor layer
by encrypting each VM transparently with an individually-generated
encryption key. The keys are generated from random sources at the
VM launch time. Access to these keys is limited to hardware, thus, the
hypervisor or any other software component outside the VM cannot
interfere with the encryption. An identification key embedded into the
firmware can be used from the VM owner to verify the initial state of
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its VM through remote attestation. In the first version of SEV, only
the VM memory was encrypted when stored in memory outside of the
CPU package. The later introduced SEV-ES (Encrypted State) (Kaplan,
2017) extended the protected VM state to the CPU registers to pre-
vent information leakage to the hypervisor (Hetzelt and Buhren, 2017).
In contrast to SGX, SEV did not provide integrity for the encrypted
memory pages in its first version which was exploited in injection and
replay attacks (Hetzelt and Buhren, 2017). However, in 2020, AMD
introduced SEV Secure Nested Paging (SNP) (AMD, 2020) which added
the missing integrity protection capability.

Hardware primitives & TCB. SEV utilizes the hardware primitives
introduced with SME, namely, an AES crypto engine embedded into the
memory controller that performs the encryption/decryption of the data
leaving the CPU and the AMD Secure Processor (SP). The SP represents
a dedicated security subsystem (based on the ARM architecture) that
manages the cryptographic key and is integrated into the AMD SoC.
Moreover, the SP performs the attestation of the VMs. In SEV-enabled
SoCs, SME is combined with the virtualization technology from AMD
(AMD-V) such that the SP manages one key per VM. When VM data
is loaded into the CPU cache, it is protected by an access control
mechanism relying on Address Space Identifiers (ASIDs). The hardware
TCB of SEV comprises the CPU, SP and AES crypto engine. Moreover,
the SP firmware needs to be trusted.

4.1.3 Emerging Cloud TEE Architectures

The most eye-catching design difference between Intel SGX and AMD
SEV is the granularity at which both TEE architectures can protect
sensitive applications. Intel SGX isolates at the process level, whereas
SEV provides isolation at the VM level. SEV’s focus on protecting
complete VMs makes it much more suitable for the server market since
existing VM workloads can be directly deployed within SEV-protected
VMs. In Intel SGX, comparable results can only be achieved with
cumbersome workarounds, as we discuss in Section 4.1.6.
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Intel Trust Domain Extensions. In order to also provide isolation on
a VM granularity level, Intel designed a new TEE architecture called
Intel Trusted Domain Extensions (TDX) (Intel, 2021). Comparable to
AMD, Intel achieves this by combining its memory encryption technol-
ogy, called Total Memory Encryption (TME), with its virtualization
technology, called Intel VT-x. The assumed adversary model is compa-
rable to AMD SEV since TDX also aims to protect sensitive VMs even
from a compromised hypervisor component and thus, from a potentially
malicious cloud provider. To attest the isolated VMs (called Trusted
Domains), TDX leverages the attestation technology introduced with
Intel SGX.

Currently, AMD and Intel together control 99% of the global server
market, however, there is a new competitor. The ARM architecture
which is the dominating processor architecture in the embedded market,
offers characteristics which makes their usage on server platforms very
promising, namely, the energy efficiency of their processors, the high
number of rather small processor cores which allows to manage comput-
ing resources more flexible, and the fact that ARM’s licensing model
allows customers to also modify the processor designs. At Amazon’s
AWS, already 50% of the newly deployed cloud servers are ARM-based
(Anandtech, 2021) and just recently, Oracle announced that ARM server
will be offered on the Oracle Cloud (Magouryk, 2021).

ARM Confidential Compute Architecture. In 2021, together with
the new ARMv9 processor architecture, ARM announced a novel TEE
architecture for their server processors with the name ARM Confidential
Compute Architecture (CCA) . The goals of CCA are aligned with those
of AMD SEV and Intel TDX, i.e., CCA aims to protect sensitive cloud
workloads in isolated VMs, even in the presence of a malicious cloud
provider. Similarily to SGX and SEV, CCA provides a transparent
memory encryption for the isolated VMs (called Realms) by introducing
a Memory Protection Engine (MPE) in front of the memory controller.
CCA is not substituting the older TrustZone security technology avail-
able on the majority of all ARM processors. Insteads, CCA implements
its Realms in a orthogonal security state of the processor. Morever,
the newly introduced hardware modifications also enable TrustZone to
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implement a more dynamic memory management.

4.1.4 Hardware Security Modules

HSMs (Hardware Security Module (HSM) n.d.) are physical computing
devices that safeguard and manage digital keys for strong authentication
and provide crypto-processing. These modules traditionally come in the
form of a plug-in card or an external device that attaches directly to a
computer or network server. HSMs mainly address an adversary that
aims to physical tamper with the hardware with the aim of gaining
access to the data residing therein. This is why HSMs are typically
certified to recognized anti-tamper standards such as FIPS 140-2 (Secu-
rity Requirements for Cryptographic Modules n.d.). Most commercially
available HSMs are certified to FIPS 140-2 Level 3.

The Federal Information Processing Standard (FIPS) Publication
140-2 (FIPS 140-2 n.d.) and 140-3 (FIPS 140-3 n.d.) are U.S. govern-
ment computer security standards used to accredit HSMs (Cryptographic
Module Validation Program n.d.). The standard provides four increasing,
qualitative levels of security intended to cover a wide range of potential
applications and environments. The security requirements cover areas
related to the secure design and implementation of an HSM. These
areas include HSM specification; ports and interfaces; roles, services,
and authentication; finite state model; physical security; operational
environment; cryptographic key management; electromagnetic inter-
ference/compatibility (EMI/EMC); self-tests; design assurance; and
mitigation of other attacks.

Security Levels 1-3. Security Level 1 provides the lowest level of
security. Basic security requirements are specified (e.g., at least one
Approved algorithm or Approved security function shall be used). No
specific physical security mechanisms are required beyond the basic re-
quirement for production-grade components. Level 2 improves upon the
physical security mechanisms of Security Level 1 by requiring features
that show evidence of tampering, including tamper-evident coatings or
seals that must be broken to attain physical access to cryptographic
keys and critical security parameters (CSPs) within the module, or
pick-resistant locks on covers or doors to protect against unauthorized
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physical access. Level 3 attempts to prevent the intruder from gaining
access to CSPs held within the HSM. Physical security mechanisms
are meant to have a higher probability of detecting and responding to
attempts at physical access, use or modification.

Services such as AWS CloudHSM (AWS CloudHSM n.d.), Google
Cloud Key Management (Google Cloud Key Management n.d.), and
Azure Key Vault (Microsoft Azure Key Vault n.d.) provide NIST FIPS
140-2 Level 3 certified Hardware Security Modules as a service in the
cloud to manage customer secrets (keys, credentials etc).

Unfortunately traditional HSMs are designed mainly for key man-
agement, cannot run arbitrary software, and have very limited general-
purpose processing capability. This is why deploying HSMs, while useful
in protecting encryption keys, simply cannot protect running workloads.

4.1.5 Next Generation HSMs: TEEs with Anti-Tamper Protec-
tions.

Fortunately, a new generation of HSM hardware is upcoming that
combines the strong anti-tamper security of HSMs with the ability to
run arbitrary workloads within the protection boundary. One example
is the ENFORCER Anti-Tamper Server (ENFORCER Server n.d.), the
first NIST FIPS 140-2 Level 4 certified server and high-performance
next generation HSM that can run off-the-shelf x86 software. This server
provides both standard HSM cryptographic accelerator functionality
but can also execute arbitrary computation tasks with privacy, software
and data confidentiality, and provide remote hardware and software
stack integrity attestation.

FIPS Security Level 4 provides a higher level of security than that of
a the typical Level 3 HSM. At this level, physical security mechanisms
provide a complete set of reactive envelopes of protection around the
HSM, detecting and responding to all unauthorized attempts at physical
access. Penetration of the HSM enclosure results in the immediate
zeroization of all sensitive information. Security Level 4 is essential
for operation in physically unprotected environments. Security Level
4 also protects against a security compromise due to environmental
conditions or fluctuations outside of normal operating ranges for voltage
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and temperature.
A number of ongoing efforts aim at integrating such next generation

HSMs into cloud infrastructures to provide TEEs with anti-tamper
protections. If successful, they would address many of the challenges
associated with traditional TEEs, discussed in the following.

4.1.6 Performance & Functionality

In the context of cloud computing TEE-architectures have to fulfil not
only security requirements, which have been discussed in the previous
sections, but they also have to fulfil performance and functionality
requirements. On the one hand, the performance impact of security
measures on the protected workloads must be minimal. On the other
hand, the security mechanism must integrate into the cloud management
paradigm allowing for flexible and scalable operation of isolated cloud
workloads.

Cost of Security For years Intel SGX was the only commercially
available TEE architecture that could provide enclaves to application
developers and users on commodity platforms. It was designed to isolate
and execute small security sensitive parts of an application, like cryp-
tographic function operation on a secret key. Due to this goal setting,
SGX enclaves can only utilize a small portion of system memory, called
the enclave page cache, which is only 128 MB.1 This limits the use of
SGX enclaves for complex and resource demanding application.

Already before Intel SGX was available solutions were developed to
isolate unmodified applications in SGX enclaves (Baumann et al., 2014b).
Over the following years further solutions have been proposed aiming to
isolated existing workloads, e.g., docker software containers (Arnautov
et al., 2016), in SGX enclaves (Tsai et al., 2014). These efforts show
the demand for isolation solutions that allows the isolation of existing
server and cloud workloads. However, the design of SGX requires costly
and complex software extensions and abstractions to achieve the desired
functionalities. In combination with its memory limitations this leas

1Recently Intel has released now SGX-enabled systems that overcome this limi-
tation, however, they are not widely available.
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to performance overheads of such solutions, which prohibit their use
in most practical application (Baumann et al., 2014b; Arnautov et al.,
2016; Tsai et al., 2014).

Scalable and Flexible Security AMD SEV – as well as the upcoming
Intel TDX and Arm CCA – overcomes central limitations of Intel
SGX, providing more memory for enclaves and enabling the isolation of
typical cloud workloads, in particular virtual machines (VMs), by design.
However, other cloud workloads, such as software containers with their
advantages of swift creation and low resource usage, are not directly
supported. Furthermore, the secure management and orchestration of
secure enclaves in the cloud is an unsolved problem in practice (Vaucher
et al., 2018), limiting the scalability of isolation architectures in the
context of cloud.

Many emerging cloud applications, in particular in the context of
machine learning (ML), demand extensive computation power that can-
not be satisfied by today’s CPUs but requires accelerators like FPGAs,
GPGPUs or TPUs. Current TEE solutions are exclusively available to
application execution only on CPUs, and hence, they have severe per-
formance disadvantages when used to protect ML application (Brasser
et al., 2018). The secure integration and combination of accelerators
with CPU-enclaves is an active field of research (Kida et al., 2020), yet,
practical solutions are not available in deployed systems.

4.2 Open Challenges and Future Research Direction

Only recently TEE-architectures designed to isolate cloud workloads
have been developed, such as ADM SEV, Intel TDX or Arm CCA.
However, also those security architectures are tailored to specific use-
cases, i.e., isolation of VMs. A flexible TEE-architectures that support
various enclave types, as have been developed by research (Bahmani et
al., 2021), are missing in practice. Furthermore, the secure management
and orchestration of secure enclaves is an open challenge for enclave-
isolated workloads in the cloud.



5
Side-Channels

Multi-tenancy is a cornerstone of most sustainable cloud services. To
make their cloud business cost-effective, cloud providers typically share
computing resources among multiple cloud tenants. The rational behind
such multi-tenant cloud business model is an assumption that not all
cloud workloads would fully utilize the claimed computing resources at
all time. Therefore, the use of these resources can be maximized through
over-provisioning and the cost of maintaining the cloud data centers can
be amortized. For example, cloud providers, like Google Cloud, Amazon
Web Services (AWS) and Microsoft Azure, usually schedule multiple
virtual machines (VMs) on the same cloud physical machine, with the
total virtual CPU time and virtual memory consumption of all these
VMs larger than what is physically available.

While multi-tenancy makes the cloud business profitable, it is also
the root cause of a variety of side channels. Because of cloud multi-
tenancy, a cloud tenant may have its computation co-located with
its competitors or a malicious tenant targeting random victims. The
unrestricted sharing of computing resources among these mutually
distrustful bedfellows creates new attack vectors that do not exist in
tradition enterprise networks. Side channel is one such attack vector that
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allows information leakage from isolated security domains. Side channel
leaks confidential data through indirect inferences: While secrets of
the isolated security domain cannot be directly learned by an external
adversary, the use of such data during the execution may exhibit side
effects that are observable from the outside. Such side effects may
include power consumption, electromagnetic emission, execution time,
acoustics, etc. Studies have shown that external adversaries may make
inference on the observed side effects to guess the value of the secret
data with very high precision.

Of particular interest in the cloud context are the side channels
exploitable by software programs remotely controlled by the adversary.
As physical accesses to the cloud data centers are unlikely, remote
accesses with the highest privilege achievable by a cloud tenant be-
come a reasonable assumption in the cloud threat model. In the cloud
context, not all side effects can be exploited as side channels, such as
electromagnetic emission, which requires special equipment and physical
access to the device to carry out the attack. Therefore, side channels in
cloud computing can be considered a subset of all side channels in the
computing space.

In this chapter, we provide a literature review of research on both
side-channel attacks and side-channel defenses that are relevant in the
multi-tenant cloud settings.

5.1 Side-channel Attacks

Side-channel attacks can be categorized by the source of information
leakage, which could be either micro-architectural or architectural com-
puting resources. Micro-architectural resources are not directly visible
by the software, such as CPU caches, Translation Lookaside Buffers
(TLB), Branch Prediction Units (BPU). Architectural resources are
outside the CPU package and typically visible to the software. The
boundary between the two can be blurry, however. For example, in
some cases, resources outside the CPU package, such as DRAM row
buffers, are not directly visible to the software, either. In this section,
we enumerate a list of computing resources that have been exploited as
media of side channels.
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5.1.1 CPU Cache

Cache is one of the most commonly used CPU micro-architectural
components for constructing side channels. CPU caches hold copies of
memory data for more efficient accesses from the execution units. Intel
CPUs have multiple levels of caches. The first level that is closest to the
CPU execution units is called the L1 cache, which is further split into
the L1 data cache and L1 instruction cache. The second level cache is
called the L2 cache, which is typically unified for both instruction and
data. The third level cache is also called the Last Level Cache (LLC).
While L1 and L2 caches are private to each CPU cores, LLC on Intel
processors are shared among all cores in the same CPU package. The
size of LLC may range from several megabytes to tens of megabytes,
while that of the L1 is in the order of kilobytes. But the access latency
of L1 cache is much faster than that of L2 and LLC.

The differences of access latency between CPU cache and mem-
ory and the nuance between different levels of CPU caches have been
exploited to construct side channels. The very first cache-based side-
channel attacks could date back to mid-1990s, which were designed to
crack cryptographic systems such as RSA and DSS in smart cards (Kocher,
1996; Kelsey et al., 1998).
Categories. Generally speaking, cache side-channel attacks can be
separated into two categories (Page, 2002):

1. Time-driven: In time-driven attacks (Kocher, 1996; Acıiçmez et
al., 2007; Brumley and Boneh, 2005; Bernstein, 2005; Bonneau
and Mironov, 2006; Osvik et al., 2006), the attacker measures
the execution time of certain operations of the victim, in order
to infer the sensitive operation. As different control flows would
result in different execution times, the attacker may utilize the
timing information to track the control flows of the victim, which
may further leak information of the execution, even the secret
keys.

2. Trace-driven: In trace-driven attacks (Percival, 2005; Tromer et al.,
2010; Gullasch et al., 2011; Osvik et al., 2006; Aciçmez and Koç,
2006), the attacker infers whether certain cache lines or cache sets
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are used by the victim by measuring the execution time of the
attacker’s own operations. Different actions of the victim would
lead to a different cache state, which is observable by the attacker
through manipulating the cache. Trace-driven attacks are more
prevailing than time-driven attacks, since oftentimes it is easier
for the attacker manipulate the shared cache, rather than observe
the victim’s actions directly.

Researchers have proposed many cache side-channel attack tech-
niques; the major ones include Evict+Time (Osvik et al., 2006) (time-
driven), Prime+Probe (Osvik et al., 2006; Percival, 2005; Irazoqui et
al., 2015; Liu et al., 2015a) (trace-driven), Flush+Reload (Yarom and
Falkner, 2014) (trace-driven), and variations such as Flush+Flush (Gruss
et al., 2016; Didier and Maurice, 2021) (trace-driven). They can be used
to infer sensitive information via L1 instruction/data cache (Percival,
2005; Tromer et al., 2010) or the LLC (Irazoqui et al., 2015; Liu et al.,
2015a; Yarom and Falkner, 2014).
Same-core attacks. Due to the Simultaneous Multi-Threading (SMT)
of the modern CPU processors, the execution of different processes
running on the same CPU core may be interleaved. Since these processes
share the same L1 instruction and data cache, the attacker process may
be able to learn sensitive information of the victim running on the same
CPU core. There are many existing works (Tsunoo et al., 2003; Brumley
and Boneh, 2005; Aciiçmez et al., 2005; Percival, 2005; Acıiçmez et al.,
2007; Osvik et al., 2006; Aciiçmez, 2007) that make use of L1 cache
information to steal the victim’s secret. Tsunoo et al. (Tsunoo et al.,
2003) has demonstrated that a same-core attacker can make use of the L1
data cache to break DES. Percival (Percival, 2005), Bernstein (Bernstein,
2005) and Aciiçmez (Acıiçmez et al., 2007) showed that it is also possible
to break AES using L1 data cache. Brumley and Boneh (Brumley and
Boneh, 2005) introduced a remote L1 cache side-channel attack that can
break RSA of an OpenSSL web server. Aciiçmez (Aciiçmez, 2007) showed
that L1 instruction cache can also be used to break RSA implemented
in OpenSSL. The Prime+Probe attack (Osvik et al., 2006) was also
designed for the same-core scenario. In the Prime+Probe attack (Osvik
et al., 2006), the attacker first occupies specific cache sets (Prime), wait
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for the victim to run, then access the same cache sets and measure the
time (Probe). The timing difference can be used to infer whether the
victim has accessed the cache sets.

Cross-core attacks. In modern CPU architecture, different CPU cores
of the same CPU package often share the last-level cache (LLC) to
reduce the communication overheads. Due to this reason, when the
attacker and the victim run on different cores of the same package,
the attacker can still learn information of the victim by introducing
LLC cache contentions with the knowledge of cache inclusiveness, cache
replacement policy or cache mapping. The Prime+Probe attack (Osvik
et al., 2006) has been extended to the LLC by Liu et al. (Liu et al.,
2015a) and Irazoqui et al. (Irazoqui et al., 2015). Flush+Reload (Yarom
and Falkner, 2014) was designed to work on the LLC; the attacker first
flushes the targeted cache line out of the LLC (Flush), wait for a certain
period of time, then measure the time of reloading it (Reload) to see if
the victim has accessed the cache line.

Cross-VM attacks. In cloud side-channel attacks, the attacker runs
the attacker VM, and tries to infer sensitive information of the victim
VM. The most important prerequisite of launching cache side-channel
attacks is to make sure that the attacker VM and the victim VM are
co-located on the same physical machine, i.e., to achieve co-residency.
Ristenpart et al. (Ristenpart et al., 2009) proposed the first work to
mount the attacker VM to be co-resident with the victim VM on Amazon
EC2. They designed a way to detect whether co-residency is achieved
between the attacker VM and the victim VM, so that further cache
side-channel attacks can be launched. After this work, many defenses
have been proposed (Zhang and Reiter, 2013; Zhang et al., 2011b),
and leading companies have taken actions to mitigate the threats (e.g.,
remove the ability to perform co-residency check), but new ways to
facilitate co-residency detection continues to be found (Varadarajan
et al., 2015; Xu et al., 2015; Bates et al., 2012; Inci et al., 2016).

With the co-residency detection, cross-VM side-channel attacks
can be further conducted on the cloud. Zhang et al. (Zhang et al.,
2012) demonstrated a cross-VM cache side-channel attack on Xen
platform, which used the Prime+Probe technique on the L1 instruction
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cache. They showed that after co-residency detection, they can perform
cross-VM attack and steal the victim’s cryptographic keys. Irazoqui et
al. (Irazoqui et al., 2015) proposed a cross-VM Prime+Probe attack on
the OpenSSL implementation of AES, which utilized the huge pages
of LLC. Similarly, Inci et al. (Inci et al., 2016) used Prime+Probe and
huge pages to launch side-channel attacks on LLC to extract RSA keys
on Amazon EC2. Flush+Reload can also be used to perform cross-VM
attacks on VMware to steal AES keys (Irazoqui et al., 2014). Zhang et
al. (Zhang et al., 2014) showed that the Flush+Reload technique can
be used to perform cross-tenant side-channel attacks on PaaS clouds
to infer sensitive information of the victim and hijack the victim’s user
account.

5.1.2 Translation Lookaside Buffer

Translation lookaside buffer (TLB) is yet another caching structure
internal to the CPU that stores recent translation from physical to
virtual addresses. Like caches, TLBs may have multiple levels. L1 TLBs
are smaller but faster, which may be split into instruction and data
TLBs, and L2 TLBs are larger but slower. Both L1 and L2 TLBs are
private to a CPU core. On processors without address space identifiers,
every time a context switch takes place, the TLBs on this CPU core
needs to be flushed completely. Moreover, logical cores on the same
physical core enabled by SMT typically share only a fraction of TLBs.

Timing differences between accessing TLBs and the page table walks
have been exploited in a variety of studies (Gras et al., 2018; Koschel
et al., 2020). Gras et al. (Gras et al., 2018) introduced TLBleed, which is
a side-channel attack mechanism that makes use of shared TLBs to infer
sensitive information of the victim, even with existing cache side-channel
defenses enabled (Liu et al., 2016; Zhou et al., 2016; Gruss et al., 2017;
Sprabery et al., 2017; Chen et al., 2018). They first reverse-engineered
the TLB architecture of modern Intel processors, then constructed
TLBleed to attack crypto libraries, which can break a 256-bit EdDSA
secret key and a 1024-bit RSA key, in the presence of existing defenses.
Koschel (Koschel et al., 2020) further showed that TLBs can be used to
break the Kernel ASLR.
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5.1.3 Execution Units

Aldaya et al. (Aldaya et al., 2019) proposed PortSmash, a side-channel
attack technique that make use of the timing information resulted from
port contention of modern CPU execution units to infer sensitive infor-
mation. They showed that it is possible to use such information to steal
an ECDSA key, as well as retrieve information from Intel SGX enclaves.
Another concurrent work by Bhattacharyya et al. (Bhattacharyya et al.,
2019) introduced SMoTherSpectre, which combined the Spectre attack
and the port contention to leak information. They further showed an
attack on the OpenSSH server which can steal bits of the host’s RSA
key.

5.1.4 Memory Buses

Cache and memory are connected by a set of memory buses. Use Intel
processors as examples, a ring bus is used to connect internal components
of a processor package. The LLC is connected to the Integrated Memory
Controllers (IMC) by the memory controller bus and the IMCs are
connected to the DRAM banks by the DRAM bus.

Memory bus contention has been exploited as side channels. For
example, Wu et al. (Wu et al., 2012) constructed a covert channel
using bus contention caused by atomic instructions. Specifically, to
implement atomic instructions, x86 processors use bus lock signals to
temporarily provide exclusive use of the memory bus to the requesting
CPU. Although recent processors make use of cache coherence protocols
to reduce the need of bus locking, atomic memory accesses to unaligned
addresses may still lead to bus locks, resulting in contention in the
memory bus. Wu et al. showed that by issuing such atomic memory
accesses to unaligned memory regions, a covert channel with a raw
bandwidth of 38 Kbps (747 bps with error correction) can be established
between two VMs.

Recent studies (Paccagnella et al., 2021; Wan et al., 2021) have
shown that the ring interconnect or the ring bus, which is used for
communications between the different CPU units (cores, LLC, sys-
tem agent) on modern Intel processors, can also be used to launch
side-channel attacks. Paccagnella et al. (Paccagnella et al., 2021) first
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reverse-engineered the complex communication protocols on the ring
interconnect, then showed that they can construct a cross-core covert
channel with over 4Mbps bandwidth. They further showed that the
ring interconnect side-channel attack can be used to 1) extract keys
from vulnerable RSA and EdDSA implementations, 2) learn keystroke
timings. Wan et al. (Wan et al., 2021) showed a similar side-channel
attack that made use of the mesh interconnect of the CPUs.

5.1.5 Memory Deduplication

Operating systems (OS) and hypervisors commonly implement memory
deduplication mechanisms, which merge physical memory pages with
identical contents to save memory spaces. Write accesses to a merged
page will trigger a page fault that is handled by the operating system
or the hypervisor, which duplicates the page to allow modification. A
simple timing analysis of write accesses to a memory page can be used
to determine if the page has been merged by the memory deduplication
mechanism—write accesses to deduplicated pages take longer to finish.

Memory deduplication has been exploited as a side channel in the
cloud settings. A malicious software program running on the machine
may exploit this side channel to learn secret information of other security
domains. For example, by crafting the content a memory page and wait
until the occurrence of a periodic memory deduplication mechanism,
a malicious software can use the side channel to learn if there exists
another instance of the page with the same content on the same physical
machine.

Suzaki et al. (Suzaki et al., 2011) first demonstrated a side-channel
attack that exploits Linux KVM virtual machine’s kernel samepage
merging to detect the existence of certain applications on other VMs.
Owens et al. (Owens and Wang, 2011) exploits memory deduplication
to perform OS fingerprinting of other VMs sharing the same physical
machine. Lindemann et al. (Lindemann and Fischer, 2018) also uses
this side channel in the cross-VM setting for determining the version
of a particular software on another VM. Xiao et al. (Xiao et al., 2013)
exploited memory deduplication to construct cross-VM covert channels
at a transmission rate of 90 bps.
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5.1.6 DRAM Row Buffer

Modern DRAM is organized in banks. Each DRAM module contains
multiple banks. A bank is composed of memory arrays that are organized
in rows and cells. One row contains multiple memory cells that store
the bit values. Request to the bank activates an entire row, loading the
values of the memory cells into the row buffer of the bank. Therefore,
memory accesses to cells in the current active row are served directly
from the row buffer; accesses to a different row will first close the current
row, activate the corresponding row, and fetch this row into the row
buffer. Therefore, accesses to DRAM cells in the current active row or
a different row may exhibit measurable timing differences.

Such timing differences have been exploited by Pessl et al. (Pessl
et al., 2016) to construct cross-VM covert channels and side channels.
Specifically, in a covert-channel attack, a sender and a receiver have
accesses to physical addresses that map to two different rows of the
same bank. While the receiver repeatedly access a physical address in
its own row and measure average access time, the sender may access a
different row to transmit a bit 1, which increases the receiver’s measured
access time. A transmission rate of up to 2 Mbps could be achieved.
In a side-channel attack, it is required that the attacker has access
to the same DRAM row as the one that is used by the victim, which
corresponds to interested memory activities that the attacker hopes
to learn. Then by “priming” the DRAM bank with a different row
accessible to the attacker, the attacker can later “probe” the targeted
row and measure the access time. A longer access time indicates that
the victim has accessed the shared row during this short interval.
Row-hammer attacks. Since modern dynamic random-access memory
(DRAM) has high-density and high-capacity, accessing one cell often
cause electrical interferences with neighboring cells; as a result, bit flips
may occur in neighboring cells. By cleverly accessing DRAMs with
certain patterns, an attacker without any privilege may trigger bit flips
in privileged memory regions and cause severe consequences. This attack
is called the “row-hammer” attack (Kim et al., 2014). Shortly after this
work, Flip Feng Shui (FFS) was introduced by Razavi et al. (Razavi
et al., 2016). They demonstrated that FFS can introduce bit flips in
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arbitrary memory in a fully-controlled way. They showed that using
FFS, an attacker VM can gain control over a co-located victim VM
running OpenSSH. A concurrent work by Xiao et al. (Xiao et al., 2016)
also utilized row-hammer attacks to perform cross-VM attacks on Xen.

5.2 Side-channel Defenses

Defenses against side-channel attacks can be categorized into software-
based defenses and hardware-based defenses, according to where the
defense mechanism is implemented.

5.2.1 Software-based Defenses

Attack Detection. The first category of software defenses is to de-
ploy defense systems to detect side-channel attacks and take proper
countermeasures. Since the most important pre-requisite of side-channel
attacks is to achieve co-residency, there are works focusing on taking
actions after detecting co-residency in order to mitigate the side-channel
threats. For example, Zhang et al. (Zhang et al., 2011b) showed that a
tenant can use side channels to confirm physical isolation of their VMs.

The performance counters (PMCs) widely exist in modern CPUs.
They are designed for monitoring specific micro-architectual events for
performance, such as cache hit/miss and clock cycles. Since launching
the side-channel attacks would trigger these events, PMCs can be used
to detect side-channel attacks. Chiappetta et al. (Chiappetta et al.,
2016) proposed mechanisms to detect the Flush+Reload attack based
on the readings of PMCs. Zhang et al. (Zhang et al., 2016) introduced
CloudRadar, which was a monitoring system that can detect cache-
based side-channel attacks on the cloud. It used the PMCs to perform
anomaly detection to identify cross-VM side-channel attacks.
Isolation. Another major category of defenses is to enforce isolation
between the attacker VM and the victim VM. This includes isolating
the entire VM using schedulers and migrations, or isolating the shared
resources such as caches.

The first approach to achieve isolation is to isolate the VMs. This can
be achieved by scheduling the VMs to reduce the risk of sharing. Liu et
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al. (Liu et al., 2014b) introduced a covert-channel aware scheduler, which
strictly limited the interleaving executions of different VMs to reduce
the possibility of side-channel attacks. Varadarajan et al. (Varadarajan
et al., 2014) proposed a way to achieve soft isolation between VMs
through hypervisor schedulers. They showed that by enforcing a a
minimum run time (MRT) guarantee for the virtual CPUs of VM
to limit the frequency of preemptions, Prime+Probe attacks can be
mitigated. Moon et al. (Moon et al., 2015) proposed Nomad, which was
a system providing migration-as-a-service on the cloud provider side.
It can coordinate VM placement and migration, so that information
leakage of co-residency are limited.

Another approach to achieve isolation is to isolation the shared
resources such as caches. Cache partitioning and page coloring have
been proposed by researchers to mitigate cache side-channel attacks.
The ideas are similar: reserve specific cache lines or pages, so that
only trusted processes (e.g., processes of the same VM) can access
them. The first work of applying cache partitioning to mitigate side-
channel attacks was due to Page (Page, 2005), which dynamically split
the cache memory into protected regions to achieve isolation. Kim et
al. (Kim et al., 2012) introduced StealthMem to lock stealth pages in
the cache to store sensitive data. Shi et al. (Shi et al., 2011b) used
dynamic page coloring to protect security-critical operations to make
sure that no other process shares the same color. Similarly, Godfrey and
Zulkernine (Godfrey and Zulkernine, 2014) showed that coloring-based
cache partition in Xen was effective in defeating side channels.

There are other techniques to achieve isolation on shared resources.
Zhou et el (Zhou et al., 2016) introduced CacheBar, a copy-on-access
mechanism to manage physical pages shared across mutually distrusting
parties. When different parties access the same physical page, each
of them will have a local copy, i.e., there is no sharing, thus LLC
side-channel attacks are defeated. Zhang et al. (Zhang and Reiter,
2013) proposed a cache cleansing mechanism to remove the signals
contained in the cache, in order to achieve isolation. Similarly, Godfrey
and Zulkernine (Godfrey and Zulkernine, 2014) demonstrated that flush
caches of all levels during context switches in a hypervisor can effectively
defeat cache side-channel attacks.
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Noise Injection. Noise injection is also an effective defense mechanism
against side-channel attacks. By injecting random noise, the side-channel
signals are weakened so that it is harder to launch the attack. The
most common approach is to add noise to the timer readings. In Intel
processors, rdtsc is widely used as the timer; therefore, many works
proposed methods to add noise to mitigate side-channel attacks. Osvik
et al. (Osvik et al., 2006) suggested to add random delays to the rdtsc
to obfuscate the real readings. Martin et el. (Martin et al., 2012) first
evaluated several methods to reduce the precision of rdtsc, such as
making the least significant bits. After showing that these approaches
were ineffective, they demonstrated that adding delays to rdtsc calls
can defeat side-channel attacks.

5.2.2 Hardware-based Defenses

Researchers have utilized new hardware features or proposed new hard-
ware designs to detect or mitigate the side-channel attacks.
Specialized hardware features. Hardware transactional memory
(HTM) allows threads to execute transactions in parallel; each thread
works on a private snapshot to execute one transaction. Whenever there
are conflicting memory accesses, the transaction will be aborted and
the changes will be rolled back. Otherwise, the changes are committed
atomically. The most widely used HTMs are cache-based HTMs; one
of the recent commercial implementations is the Intel Transactional
Synchronization eXtension (TSX). The transactions will abort when the
accessed memory regions are not in the cache, which makes it a good
tool for detecting cache-based side-channel attacks. Gruss et al. (Gruss
et al., 2017) and Chen et al. (Chen et al., 2018) have shown that Intel
TSX can be used to effectively detect cache side-channel attacks.

Intel Cache Allocation Technology (CAT) was introduced in 2016
to provide software control of where data is allocated into the last-level
cache (LLC). It allows the OS or hypervisor to group applications into
classes of service (CLOS), and specifies the amount of LLC available to
each CLOS. Liu et al. (Liu et al., 2016) utilized the CAT to partition
the LLC into secure and non-secure partitions to build a pseudo-locking
mechanism. They built a prototype system using Xen running linux
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VMs on a cloud server and showed that it can mitigate LLC cache
side-channel attacks.

New cache design. Researchers also proposed new cache designs to
lock cache lines or perform randomization in order to mitigate side-
channel attacks. Wang and Lee (Wang and Lee, 2007) proposed the
PartitionLocked cache (PLcache), which added the owner information
to cache lines to restrict cross-owner eviction. In the same work, they
also proposed the Random Permutation Cache (RPCache) to randomize
cache mappings. Wang and Lee (Wang and Lee, 2008) further intro-
duced NewCache, another novel cache architecture that adopted direct-
mapping and security-aware cache replacement algorithm to achieve
better security and performance. Recently Werner et al. (Werner et al.,
2019) presented ScatterCache, which enforced cache set randomization
and made eviction-based cache attacks impractical.

5.3 Future Directions

Side channel is one of the most prominent attack vectors in multi-tenant
cloud computing. Researchers have shown that many shared computing
resources can be exploited to perform side-channel attacks. Various
defense mechanisms have been proposed to mitigate side-channel threats.
Arguably, the arms race between side channel attacks and defenses will
continue to exist. The importance of this line of research will be even
better understood when public cloud is trusted to outsource more
sensitive data and computation.

We foresee two research future directions in the space that will
be of continued interest to the researchers. First, new threat models
in different cloud settings. As the cloud computing paradigm shifts
from heavyweight virtualization towards lightweight containerization,
from full-fledged cloud servers towards serverless computations, from
compute-centric models to data-centric models, new threat models will
emerge. Moreover, confidential cloud computing enabled by hardware-
assisted trusted execution environment (TEE) has also introduced new
attack vectors for side channels (Wang et al., 2017; Chen et al., 2017;
Chen et al., 2019a). As such, we would expect research studies continue
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exploring new side-channel attack vectors in the the ever-changing cloud
settings.

Second, the design and implementation of side-channel-aware hard-
ware and software systems. For instance, once clouds become the domi-
nating IT infrastructures, cryptographic libraries would consider side
channels in the cloud settings a primary threat. Similarly, other soft-
ware products will be designed with the side-channel attack vectors in
consideration. System software, such as operating systems and hypervi-
sors, as well as new computer micro-architectures will be designed and
implemented to provide stronger isolation for cloud tenants. We have
already witnessed such trend in the confidential cloud computing cases,
where changes in the Linux kernels to enable AMD SEV have been
merged into the main stream Linux kernels and microcode updates have
been released to address ciphertext side-channel attacks (AMD, 2021).



Part II

Secure Computation



6
Secure Distributed Computation

In a typical data/computation outsourcing scenario where the cloud
server is untrusted, it would be useful to have access to a “trusted
entity” who performs computations on behalf of different parties (servers,
administrators, users, etc.). For example:

• Consider a user who wants to privately query a database D held
by a server. That is, the user wants to learn the result of their
query q while not revealing q to the server; the server may be
willing to answer a single query for the user, but does not want
to user to learn anything else about D. This could be solved by
having the two parties send q and D, respectively, to a trusted
entity, who evaluates the query and returns the result to the user.

• Imagine there are multiple cloud providers who wish to generate
statistics about how many times they have been hacked, or to
determine how many of them have been impacted by a certain
vulnerability. However, none of them is willing to reveal sensitive
information about exploits they have experienced to anyone else.
Here, again, a trusted entity could be used to solve this problem:
each provider would simply send their sensitive data to the trusted
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entity, who could then compute the desired statistics and send
the results back to everyone.

• A collection of distributed servers may wish to maintain a tamper-
proof log of ordered transactions (i.e., a blockchain) on which they
all agree. In this setting, a trusted entity could accept transactions
from the servers and locally maintain an ordered log; it can share
the current log (or any portion thereof) with any server upon
request.

• A trusted entity can even be useful in cases involving a single
party. Consider a user who is concerned about potential exposure
of her secret cryptographic key sk in case her machine is hacked.
She could mitigate this threat by splitting sk across multiple
machines, giving each of them a share of sk. (Formally, this would
be done using a cryptographic mechanism called secret sharing,
but the details are unimportant for this high-level discussion.)
Cryptographic operations could then be carried out by having
each machine send its share to a trusted entity, who combines the
shares to recover sk and then applies the desired operation. This
is known as threshold cryptography.

Of course, in the real world it may be difficult or impossible to rely
on a trusted entity: doing so may not satisfy the policies of all parties
involved (i.e., it may not be feasible to identify someone whom everyone
is willing to trust), introduces a single point of failure, and may be
expensive. Perhaps surprisingly, secure multiparty computation (MPC)
provides a way for a group of parties to realize a trusted entity via a
distributed protocol run by the parties themselves. Indeed, powerful
feasibility results from the field of cryptography show that, under
certain conditions, it is possible to design a secure-computation protocol
matching the behavior of any trusted entity. The details are more
complex (and we only touch on some of them below), but a high-level
consequence is that very often a problem involving multiple distrusting
parties can be solved—at least in principle—by imagining how the
problem would be solved if a trusted entity were available, and then
instantiating the trusted entity using a secure-computation protocol.
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Overview of this survey. The goal of this article is to describe
what secure computation is, not to describe in any detail how secure
computation works. (In particular, we do not assume the reader has
any detailed knowledge of cryptography.) The survey can conceptually
be divided as follows:

1. We first describe an ideal world in which there is a trusted entity
that performs certain actions on behalf of other parties. We discuss
several different ways this ideal world can be defined in Section 6.1,
and also show how the examples introduced previously can be
solved in such an ideal world.

2. In Section 6.2, we then turn our attention to the real-world envi-
ronment in which some protocol is executed. Here, we consider
things like the assumed communication model available to the
parties, and various assumptions one might place on an adversary
trying to disrupt execution of the protocol.

3. In the next section (Section 6.3), we informally define what it
means for a protocol to be secure. This also gives us the opportu-
nity to discuss some limitations of secure protocols.

4. Finally, in Section 6.4, we summarize known feasibility results re-
garding the existence of secure protocols. We also provide pointers
to cryptographic libraries implementing some of the most-efficient
known protocols in various settings.

As noted, we omit from this overview formal security definitions,
technical details of secure-computation protocols, or proofs of security;
instead, we refer the reader to other surveys (Lindell and Pinkas, 2008;
Lindell, 2021) and textbooks (Goldreich, 2004; Hazay and Lindell, 2010;
Evans et al., 2018) for such material.

6.1 The Ideal World

In the ideal world we envision a trusted entity, often called an ideal
functionality and denoted by F , to which a set of other parties P1, . . . , Pn

have access. Some of these parties may be honest, while others are
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corrupted and assumed to be controlled by a single adversary A. An
execution in the ideal world proceeds as follows:

1. Each party Pi begins holding some local input xi.

2. Each party Pi sends some value x′i to F . If Pi is honest then
x′i = xi, but if Pi is corrupted then A may choose x′i arbitrarily
(perhaps based on all the inputs of the corrupted parties).

3. F evaluates some program (specified as part of the description
of F) on the inputs it has received, resulting in outputs y1 . . . , yn.

4. Output yi is delivered to Pi. If Pi is honest it outputs yi. The
adversary A gets to see the outputs delivered to all the corrupted
parties, and may then output anything it likes.

In some cases, the parties may interact with F only once; in other cases,
the parties may obtain several inputs over time and access F multiple
times, with F maintaining state between its different invocations.

There are some subtleties missing from the description above (some
of which we discuss further below), but it should be clear that a crucial
aspect of the ideal world is the program executed by F . We give some
examples that correspond to the scenarios described in the introduction.

• One possible ideal world corresponding to private queries on a
database would consist of two parties—a server and a user—along
with an ideal functionality F that executes the following code:
on input a database D from the server and a query q from the
user, evaluate q on D and return the result to the user. (In this
example, the server gets no output.)
In case the user is allowed to make repeated queries, one could
consider two possible formulations of the ideal functionality. In
the first, each time the user makes a query the server sends a
database; in the second, the server sends the database at the
beginning of the execution and then that database is used to
answer all subsequent queries of the user. Note that the first
formulation allows a malicious server to change the database
for every query (even if an honest server is supposed to use the
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same database each time). This demonstrates how different ideal
functionalities can lead to different security guarantees even within
the “ideal world” we are considering.

• Similarly, one can imagine multiple parties P1, . . . , Pn representing
cloud providers, each of whom has as input their own sensitive
information about how they have been impacted by certain vul-
nerabilities. F in this case would take input xi from each of the
parties, compute some statistical result y based on the received
inputs, and then send y to each party. Alternately, one could
modify the ideal functionality so that only one designated party
(say, P1) learns the output while the other parties learn nothing.

• An ideal world capturing the security requirements of a blockchain
might be defined as follows: parties P1, . . . , Pn continually receive
transactions as input and send them to an ideal functionality F
as they receive them. F maintains an array Blocks initialized as
empty and a counter i initialized to 0; upon receiving the same
transaction tx from at least t parties (where 1 ≤ t ≤ n is some
threshold), it sets Blocks[i] := tx and increments i. Moreover, F
accepts queries of the form (request, j) from any party, to which
it responds by sending Blocks[j] to the party making that request.
The interesting thing to note here is that F is not doing any
significant computation, per se; rather, it is being used simply to
ensure agreement among the parties regarding the contents of a
globally accessible array.

• An ideal functionality for threshold cryptography is straightfor-
ward to define. We only remark here that for meaningful security
to hold (even in the ideal world!) we must ensure that the shares
of the secret key known to the corrupted parties (and hence to
the adversary A) do not by themselves reveal anything about the
secret key sk.

When we discuss feasibility results in Section 6.4 we focus on the
simplest case where the parties interact with F only once, and where
F evaluates a known (possibly randomized) function f on the inputs
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it receives from the parties; f returns a vector of outputs y1, . . . , yn,
one for each party. (This is sometimes referred to as secure function
evaluation.) Even in this case, there is an important distinction between
so-called fully secure functionalities F that guarantee output delivery
(meaning that no matter what the adversary does, F sends every party
Pi its corresponding output yi) and functionalities that are secure with
abort (meaning that the adversary is given the ability to send a special
input to F that prevents it from sending output to some of the honest
parties). Note that in the latter case the adversary may violate fairness,
in the sense that it learns the output of all the corrupted parties but
can prevent all honest parties from learning their outputs.1

6.2 The Real World

In the real world there is no trusted entity who can serve as an ideal
functionality; all we have are the parties P1, . . . , Pn themselves. As in the
ideal world, each party Pi begins holding some local input xi; now, how-
ever, the parties must run some distributed protocol Π amongst them-
selves to accomplish a desired task (such as computing f(x1, . . . , xn)).

Although seemingly straightforward, there are in fact many different
ways the real-world protocol execution can be defined. We highlight as
few different options:

• The available communication network needs to be specified. It
is typical—though not universal—to assume that every pair of
parties is connected by a secure (i.e., private and authenticated)
channel. But one could also additionally assume that the parties
have access to a broadcast channel allowing any party to broadcast
a message to all other parties. (Even if a physical broadcast
channel is not available, a logical broadcast channel one can itself
sometimes realized by a distributed protocol run by the parties.)
There is also the question of whether communication is assumed to
be synchronous, so any message sent is guaranteed to be received

1One might wonder what the advantage is of working with a functionality that
is “only” secure with abort. The reason for doing so is because in some settings it is
impossible for any protocol to realize the fully secure version of the functionality.
See Section 6.4.
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within some known time interval, or whether communication is
asynchronous, with no guarantees about message delivery.

• It may be reasonable to assume certain setup is available to the
parties; for example, the parties may share a public-key infras-
tructure (PKI) in advance of any protocol they execute.

• It is also crucial to be clear what is assumed about the adversary.
(Such assumptions are also part of the ideal world, but we did
not present them there since the assumptions used in the real
and ideal worlds must match and are usually driven by real-world
considerations.) The most prominent issues to consider here are:

– The threshold of parties the adversary is assumed able to
corrupt.

– If the adversary is assumed to follow the protocol honestly
(but may then try to learn disallowed information from the
protocol execution), we refer to the adversary as semi-honest
or honest-but-curious. In the more general, malicious case
no such assumptions are made and the attacker may deviate
from the protocol in any way it likes.
Of course, any protocol secure against malicious adversaries
will also be secure against semi-honest adversaries, but pro-
tocols in the latter case may be more efficient.

6.3 Defining Security

Fix some ideal world including an ideal functionality F ; fix also the real
world including some protocol Π to be executed by the parties. What
does it mean for (the real-world execution of) Π to securely realize (the
ideal-world execution of) F? Intuitively, we expect that if Π securely
realizes F then there should be no attacks on Π except those that can
be carried out against F (and—if we have defined F appropriately—any
such attacks are considered inconsequential). This is precisely what the
formal definition of secure multiparty computation guarantees. In a bit
more detail (though still informally), a protocol Π securely realizes an
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ideal functionality F if the following holds:2

For any real-world adversary A attacking an execution of Π
in the real world, there is a corresponding adversary A′
(corrupting the same parties that A does) that achieves the
same result by attacking F in the ideal world.

Again, the upshot of this is that any security property that is achieved
in the ideal world must also be achieved in the real world. This implies
several expected guarantees such as privacy (the adversary learns noth-
ing about the inputs of the honest parties beyond the output of the
corrupted parties) and correctness (the output of the honest parties
must correspond to the computation of F on some inputs); perhaps
more interestingly, it also implies somewhat unexpected guarantees
such as input independence (the inputs chosen by the corrupted parties
cannot depend on the inputs of the honest parties). The last point
demonstrates a major advantage of the “simulation-based” security
definition that we have been using: namely, it ensures security just like
the ideal world, without having to write out a list of all desired security
guarantees.

An important point to keep in mind, however, is that the security
guarantees provided by a protocol Π securely realizing an ideal func-
tionality F are (in general) no more than those provided by the ideal
world itself. Two specific concerns that often arise, and may need to be
dealt with, are:

• In the ideal world (and hence in the real world, too), nothing
prevents the adversary from changing the inputs of corrupted
parties. In some applications, this may ruin the integrity of the
underlying computation: for example, consider what happens
when computing the average temperature recorded by a collection
of sensors in a building if a corrupted sensor reports a temperature
of 127 ◦C.

2We note that for simplicity our discussion here ignores the computational
complexity of the adversaries A and A′, as well as the fact that security of Π may
rely on the (assumed) hardness of certain cryptographic problems.
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This can be addressed (at least, to some extent) by suitably
defining the functionality F : for example, F could ignore temper-
ature readings outside a predetermined range when computing
the average.

• The attacker may be able to learn information about honest parties’
inputs based on its own inputs and the output(s) it learns. As
a trivial example, consider the two-party functionality F that
computes the average of both parties’ inputs—given the average
(and its own input), the attacker can exactly compute the input
of the other party. Characterizing the information an attacker
can learn in this way is, in general, an unsolved problem, though
techniques from differential privacy (Dwork and Roth, 2014) can
be used in conjunction with secure computation to mitigate the
problem.

6.4 Feasibility Results and Secure Protocols

We have so far spent a lot of time defining secure computation, but
have not yet discussed when secure-computation protocols exist! In
fact, seminal results from the ’80s and ’90s showed broad feasibility
results for secure computation. In what follows we focus on secure
function evaluation, and assume that the real-world protocol is executed
by n parties—up to t of whom may be corrupted—in a synchronous
network with a secure channel between every pair of parties as well
as a broadcast channel.3 In this setting we have the following known
results (Yao, 1986; Goldreich et al., 1987; Ben-Or et al., 1988; Chaum et
al., 1988; Rabin and Ben-Or, 1989; Beaver, 1989; Beaver and Goldwasser,
1989; Goldwasser and Levin, 1990):

Theorem 6.1. When t < n/2, for any functionality F there is a fully
secure protocol computing F in the presence of t malicious corruptions.

Theorem 6.2. Under standard cryptographic assumptions, when t < n

then for any functionality F there is a fully secure protocol computing
3If a physical broadcast channel is not available, one can be emulated by a

distributed protocol with no additional assumptions when t < n/3, or assuming a
PKI and the existence of secure signature schemes when t < n.
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F in the presence of t semi-honest corruptions, and a secure-with-abort
protocol computing F in the presence of t malicious corruptions.

Note that Theorem 6.2 encompasses the special case of two-party
computation, when one of the two parties may be corrupted.

The initial work on secure computation was concerned primarily
with establishing feasibility rather than concrete efficiency. But over
the past 20 years there has been a tremendous effort directed toward
designing highly efficient protocols and providing implementations of
such protocols in various libraries. We highlight in particular Share-
mind (Bogdanov et al., 2008), the EMP toolkit (Wang et al., 2016),
and SCALE-MAMBA4. Hastings et al. (Hastings et al., 2019) provides
a survey of other libraries and provides a detailed comparison among
them.

6.5 Open Questions

The main questions regarding feasibility of secure computation have
largely been settled. However, an active area of research is to investigate
the best possible efficiency of secure-computation protocols in different
settings. One can approach this question from both a concrete or an
asymptotic point of view; one can explore the question for generic
protocols computing arbitrary functions or for protocols computing
some specific function of interest. Focusing on asymptotic results for
generic protocols, outstanding open questions include determining the
optimal round complexity for unconditionally secure protocols tolerating
t < n/2 corrupted parties (see Ishai and Kushilevitz, 2004 for some
discussion of the difficulty of resolving this question) as well as the
minimal communication complexity in the same setting (see Goyal et al.,
2021 for some recent progress).

One possible approach for obtaining improved efficiency is to consider
relaxed (but still meaningful) notions of security. See Aumann and
Lindell, 2010; Huang et al., 2012 for some work in that direction.

4See https://homes.esat.kuleuven.be/˜nsmart/SCALE.
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Encrypted Search

For almost all outsourced data scenarious, client-side encryption is
the first line of defense against curious/malicious storage providers, as
well as other potentially un-sanitized software running on the cloud.
However, the server can no longer search/compute on the encrypted data
hindering many useful functionalities e.g., keyword searches. General
multi-party computation, as described in Chapter 6, can enable this but
often times this comes at high computation (and communication) costs.
To overcome this challenge, tailor-made tools for encrypted search and
compute have been proposed.

7.1 Searchable Encryption

Searchable encryption allows clients to search directly in remote en-
crypted data. In these efforts, clients either linearly process the data
using symmetric key encryption mechanisms, or, more often, outsource
additional secure meta-data mostly of size linear in the order of the
original data set. This meta-data aids the server in searching through
the encrypted data set while revealing as little as possible. The primary
focus of most of the existing work on searchable encryption has been re-
ducing search complexity – the cost of searching for a particular keyword
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(or a combination of keywords) in the database. In addition, search-
able encryption schemes have also been optimized for other parameters
including locality of access and range queries

Song et al. (Song et al., 2000) proposed a scheme for search on
encrypted data in a scenario where a mobile, bandwidth restricted
user, wishes to store data (e-mail) on an untrusted server. The scheme
requires the user to split the data into fix-sized words, encrypt each
word separately using a symmetric key protocol and xor the result with
a structure containing a pseudo-random bit string and a mapping of the
string under a secret key, using a pseudo-random function. The secret
key is made dependent on the encrypted word. The resulting data is
stored on the server. The structure enables the detection of keyword
matches, without revealing the server the keyword or the contents of
the stored data. The paper also discusses the use of an encrypted index,
allowing the whole data to be encrypted as a block.

Eu-Jin Goh (Goh, 2003) proposed to associate indexes with the
documents stored by the server. More precisely, the index of a document
is a Bloom filter containing a codeword for each each unique word in
the document. The codeword of a word is derived by twice applying a
pseudo-random function to the word. The size of document indexes, as
documented in the paper, is proportional to the document size. Chang
and Mitzenmacher (Chang and Mitzenmacher, 2005) proposed a similar
approach, where the index associated with documents consists of a string
of bits of length equal to the total number of words used (dictionary
size). Two solutions are given, one where the dictionary of words can
be stored at the client and one where it has to be stored encrypted at
the server.

The schemes described so far have linear search complexity since all
document indices must be searched to determine if a keyword appears in
a document. Curtmola et al. (Curtmola et al., 2006) proposed the first
sublinear searchable encryption scheme. The idea is to store an inverted
index that associates keywords with the documents identifiers in which
they appear. The index consists of an array made up of per-keyword
linked lists – each node is encrypted using a key that is stored in the
previous node. The nodes are randomly permuted and the location of
the starting node of the linked list associated with a particular keyword
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is stored in an index table, at a random location determined by a
pseudo-random permutation, taking as input the keyword.

Kamara et al. (Kamara et al., 2012) proposed the first dynamic
searchable encryption scheme based on the construction by Curtmola
et al. that allows updates to the database securely without rebuilding
the entire inverted index. This is achieved by tracking the locations (in
the index) which need to be updated in a deletion array, and leveraging
homomorphic encryption to update pointers without decryption.

Golle et al. (Golle et al., 2004) extend searchable encryption to
conjunctive keyword searches on encrypted data. They propose two
solutions. The first solution requires the server to store capabilities for
conjunctive queries, with sizes linear in the total number of documents.
The paper claims that a majority of the capabilities can be transferred
offline to the server, but this only assumes that the client knows before-
hand its future conjunctive queries. The second solution requires much
less communication between the client and the server, proportional with
the number of keywords in the conjunctive search, but doubles the size
of the data stored by the server. A severe limitation of these schemes
is the requirement of specifying the exact positions where the search
matches have to occur.

Cash et al. (Cash et al., 2013a) designed the first conjunctive keyword
search with sub-linear search complexity. The scheme leverages the
inverted index construction by Curtmola et al. (described above). The
idea is to query the least frequent keyword in the conjunctive search
first and then filter documents for the other keywords.

A public-key version of searchable encryption was proposed by Boneh
et al. (Boneh et al., 2004), where e-mails encrypted by senders with the
public key of the intended receiver are stored on untrusted mail servers.
The paper presents protocols allowing receivers to search. In the first
protocol, a non-interactive searchable encryption scheme, is based on a
variant of the Diffie-Hellman problem and uses bilinear maps on elliptic
curves. The second protocol, using only trapdoor permutations, needs
a large number of public/private key pairs. Both protocols require the
individual encryption of each word.
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7.2 Encrypted Databases

Encrypted databases enable clients to execute rich queries without the
need to decrypt the data. Various cryptographic techniques have been
employed to build encrypted databases. This includes homomorphic
encryption, order-preserving encryption (OPE), searchable encryption
etc. (Fuller et al., 2017).

A particularly interesting lightweight encrypted database solution is
CryptDB (Popa et al., 2011), a system that allows executing SQL queries
over encrypted data. Instead of a one-fit-all mechanism e.g., homomor-
phic encryption, CryptDB employs several different SQL-aware encryp-
tion strategies including order-preserving encryption (OPE), searchable
encryption and homomorphic encryption .

Pappas et al. (Pappas et al., 2014) designed a DBMS that ensures
query privacy against a compromised server. Unlike CryptDB, the goal
here is to ensure privacy of both the data and the queries. This is
achieved by using a combination of secure computation, additively
homomorphic encryption and a new bloom filter based search index.

The aforementioned databases are vulnerable to reconstruction
attacks. Recent work by Grubbs et al. (Grubbs et al., 2017) demonstrate
several attack vectors for encrypted database construction through
information leaked from database caches, logs etc. In addition, several
attack vectors rely on information leakage through query access patterns,
volume etc (Kellaris et al., 2016; Grubbs et al., 2018). Chapter 8 details
approaches that address this problem.
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Data Access Privacy

Encryption alone is not sufficient to protect confidentiality of data
stored in the cloud since it does not hide metadata e.g., access patterns,
timing information etc. Leaking access patterns in particular is a serious
threat in client-server scenarios where the storage provider can easily
observe and log user access patterns.

To see why this is a problem, first consider the following toy example:
a user (client) stores an alphabetically-sorted encrypted dictionary of
items on an untrusted storage platform. The storage provider observers
all client accesses by logging API calls e.g., GET, PUT requests. If
an encrypted keyword is inserted/deleted, the sequence of requests for
accessing the particular item as well as for other bookkeeping operations
e.g., truncating the dictionary etc. can leak information about the key-
word(s) such as the constituent letters etc. In fact, the observer can make
knowledgeable guesses about the exact keywords with varying degrees
of accuracy based on information obtained apriori about the dictionary
contents. Permuting the keywords in the storage does not solve this
problem since this still allows attacks through frequency analysis – the
“popularity” of a particular keyword leaks how often it is likely to appear
in a typical text application.

55
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The following two scenarios demonstrate the real world implications
of leaking access patterns to an untrusted storage server.

• Consider a cloud-hosted database containing sensitive information
e.g., hospital patient records. Regulatory compliance necessitates
storing the database encrypted. However, even with encrypted
records, database reconstruction attacks such as (Grubbs et al.,
2017; Falzon et al., 2020) are able to infer records by observing
query results – common attributes such as names, age, geographi-
cal location etc. are frequently queried and the attribute values
follow known distributions e.g., an attacker might know that a
certain disease is common in people of a certain age group. These
attacks mainly leverage query access patterns as well the volume
of query results.

• Cloud-hosted services often allow users to perform expensive com-
putation on remote processors. While leveraging trusted execution
environments e.g., Intel SGX can ensure that the computation
runs in a tamper-proof environment and the results generated are
correct, the memory access patterns (even within the enclave’s
cryptographically-protected memory region) can leak information
about the computation (Nayak et al., 2017), and the input data
(Yu et al., 2019).

• Access and search pattern leak significant amounts of information
for searchable encryption systems (Liu et al., 2014a; Oya and
Kerschbaum, 2021).

Intuitively, these attacks succeed because many applications have
data-dependent access patterns i.e., the order in which items are ac-
cessed by the application, the frequency of access etc. depends on the
input. For instance, the memory access patterns of several sorting al-
gorithms (e.g., bubble sort) reveal information about the input to the
algorithm. This problem also manifests in more complex algorithms
such as graph algorithms (Goodrich and Simons, 2014) and machine
learning (Ohrimenko et al., 2016).
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8.1 Access Privacy

One way to solve the access privacy problem for encrypted databases
is to always access it in its entirety. That is, on every access, each and
every item is retrieved from the database, re-encrypted/modified and
re-uploaded back. In this way, the server does not learn any information
about the item of interest. Obviously, this approach does not scale to
large databases usually outsourced to cloud server. In light of this, several
more efficient approaches have been considered. Private information
retrieval (PIR) (Chor et al., 1998) allows a client to access items from a
database without revealing the item of interest. However, PIR is mainly
a tool for static databases, or databases that are not updated often.
Updating a database with PIR capabilities often entails re-uploading the
entire database. Alternatively, the database can be encrypted using a
fully (or partially) homomorphic encryption scheme. Then, the database
can be accessed and updated server-side by computing on ciphertexts.
However, the main drawback here is that in order to hide access patterns,
the computation must involve all items in the database, lest it leaks the
item(s) of interest. Despite recent advances in making homomorphic
encryption schemes efficient, the total computation required is generally
considered far too expensive for real-world deployments.

Oblivious RAM (ORAM) Oblivious RAM protocols provide a more
practical alternative to solve the access privacy problem by leveraging
only basic cryptographic primitives e.g., symmetric key crypto-systems.
An Oblivious RAM (ORAM) protocol allows a client to store and ma-
nipulate an array of N blocks on an untrusted server without revealing
the data or access patterns. Specifically, the logical array of N blocks
is indirectly stored into a specialized back-end data structure on the
server, and an ORAM scheme specifies an access protocol that imple-
ments each logical access with a sequence of physical accesses to that
back-end structure. An ORAM scheme is secure if for any two sequences
of logical accesses of the same length, the physical accesses produced by
the protocol are computationally indistinguishable. We refer the reader
to the seminal work on oblivious RAM by Goldreich and Ostrovsky for
more precise definitions (Goldreich and Ostrovsky, 1996).



58 Data Access Privacy

Evaluation Metrics Intuitively, based on the informal definition, an
ORAM protocol will fetch more items per access than what is actually
required. This is to "obfuscate" the actual item that was requested by
the client. Furthermore, once an item has been fetched, it needs to
be randomly replaced to new a location server-side. This is to prevent
the server from linking a future access with previous accesses for the
same item. One way to do this securely is to randomly reshuffle the
database after every access (or a batch of accesses). As the server
is untrusted, either the client reshuffles the database, or tasks the
server to reshuffle without decrypting the data by leveraging expensive
cryptographic primitives e.g., homomorphic encryption. The former
introduces communication overheads as a subset of the database has to
be downloaded and re-uploaded, while the latter introduces server-side
computation overheads. Additionally, the reshuffle mechanism may be
interactive and require multiple rounds of communication. With these
factors in mind, ORAMs are evaluated on the following metrics

• Communication Complexity (Bandwidth) is defined as the
total amount of data that a client needs to read and re-upload to
the server in order to complete a request. Usually, communication
is measured in terms of the number of physical data blocks that
need to be transferred from storage to access one logical data
block. Blocks are usually the same size as memory pages on the
client system.

• Round Complexity measures the number of round trips re-
quired between the client and server in order to complete one
logical request. Additional round trips add significant communi-
cation delays. Obviously, an efficient ORAM protocol will only
require one round of communication per logical request.

• Server-Side Computation for ORAMs that employ expensive
cryptographic primitives. Expensive computation affects overall
performance from the standpoint of latency and the associated
dollar costs.

Existing work on ORAMs have largely focused on optimizing one or
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more of these metrics. In the following, we will highlight the noteworthy
constructions and refer the reader to the original works for more details.

8.2 Communication-Efficient ORAMs

The seminal work on ORAMs by Goldreich and Ostrovsky (Goldreich
and Ostrovsky, 1996) identified communication-efficiency as the primary
optimization criteria. The desired goal is to ensure that communication
costs scale sublinearly in the database size. Theoretically, it is possible to
design ORAM schemes where communication scales poly-logarithmically
with the database size (Goldreich and Ostrovsky, 1996).

The construction by Goldreich and Ostrovsky (popularly known as
the "hierarchical ORAM") has O

(
log3 n

)
communication overhead and

is based on a simple design called the square-root ORAM. The idea is to
randomly arrange n blocks (server-side) with a permutation known only
to the client. In addition, there is a cache (or originally called shelter)
of size

√
n (may be a user-defined parameter), which may be stored

either client-side or on the server. As required, the client accesses blocks
from the server and adds the accessed blocks to the cache. Crucially,
for each access, the client also scans the entire cache even if the block is
already found in the main storage.

The security of this scheme is immediately obvious: i) the server
does not know the secret permutation and hence cannot correlate blocks
that are accessed from the main storage, and ii) the cache holds blocks
that have been accessed once and is scanned entirely every access. Once
the cache fills up, the combined blocks remaining in the main storage
and the cache are reshuffled and rearranged again using a new random
permutation. This is the most expensive step of the protocol as it requires
rebuilding the entire storage. In fact, for security, the rebuilding has to
be done obliviously i.e., the intermediate steps should not reveal the
final locations of the blocks. This step is usually performed using an
oblivious sorting algorithm. The sorting in the original construction is
performed using a sorting network which has a communication overhead
of O

(
n log3 n

)
. Overall, since the reshuffling needs to be performed

only when the cache fills up after
√

n accesses, the communication cost
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of the protocol is O
(√

n log3 n
)
. We note that although more efficient

oblivious sorting mechanisms exists (Shi, 2020) with communication
cost O (n log n), replacing the expensive sorting network still does not
remove the cost dependence on

√
n in the original construction.

To overcome this dependence, Goldreich and Ostrovsky proposed
a construction that essentially amortizes the level reconstruction cost.
The ORAM organizes data on the server-side in a hierarchy of levels.
The i-th level holds 4i blocks and the (i + 1)-th level (which can hold
4i+1 blocks) is the cache for the i-th level. Conceptually, the top level
is an append log. On every read/write, the block that is accessed is re-
encrypted and placed in the top level. Obviously, the top level overflows
after a fixed number of accesses. At this stage, its constituent blocks
are flushed and uniformly randomly placed in the second level. This
process is generalized across all the levels and the ORAM has O (log n)
levels. The hierarchical construction has a communication complexity
of O

(
log3 n

)
amortized over all accesses.

Improvements Several subsequent works have addressed the high
communication complexity of the original hierarchical construction,
while retaining the overall structure. Williams and Sion presented
a construction with amortized communication complexity O

(
log2 n

)
under the assumption that the client has at least O (

√
n) dedicated

storage to perform the reshuffles using an oblivious version of the merge
sort algorithm (Williams and Sion, 2008). Subsequently, Williams et
al. presented an ORAM with more efficient search by storing per-level
encrypted bloom filters (Williams et al., 2008).

Under assumptions of constant client storage, Pinkas and Rienman
used cuckoo hashing and randomized shell sort over the original Goldre-
ich and Ostrovsky solution and achieve an amortized communication
complexity of O

(
log2 n

)
(Pinkas and Reinman, 2010) uses . However,

Goodrich et al. highlights a leak in the construction and provides an
alternate construction with amortized communication complexity of
O (log n) with the assumption of O

(
n1/r

)
client storage with r > 1

(Goodrich and Mitzenmacher, 2011).
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Deamortization One major drawback of the hierarchical ORAM con-
structions is that client queries need to wait for the duration of a
reshuffle, and this is especially impractical for the larger levels. De-
amortized constructions allow queries and reshuffles to proceed together
and thus eliminate clients waiting for reshuffles after a level overflow.
Goodrich et al. showed how to de-amortize the original square root
solution and hierarchical solution and achieve a worst-case complex-
ity of O (log n) in the presence of O

(
n1/r

)
client side storage where

r > 1 (Goodrich et al., 2011). Kushilevitz et al. used cuckoo hashing
and rotating buffers to provide a de-amortized construction with a
worst-case communication complexity of O

(
log2 n

log log n

)
(Kushilevitz et al.,

2012). PD-ORAM (Williams et al., 2012) is a de-amortized hierarchical
ORAM where level reconstructions are performed in the background
while allowing queries to proceed simultaneously. This is achieved by
keeping two copies of the data: a read-only copy for the queries and a
writable copy where new levels are constructed. Level reconstruction
starts as soon as a level is created. To ensure that a new level is avail-
able on demand when required for the next round of queries, the level
construction is synchronized with the queries by tracking the progress
of the reshuffle.

8.2.1 Tree-Based ORAMs

The high worst case costs of hierarchical ORAMs makes them impracti-
cal and while deamortized construction fare better in this regard, they
often introduce additional overheads e.g., increased storage costs. Tree-
based ORAMs provide a more viable alternative to hierarchical ORAMs
since they are naturally un-amortized i.e., the worst-case query cost is
equal to the average cost. Tree-based ORAMs organize the database
blocks in the form of a binary (or ternary) tree. Each node of the tree
(denoted as a bucket) contains a fixed number of blocks (which can
be real or dummy). Blocks are stored along unique randomly selected
paths. To track the location of blocks in tree (the corresponding path),
a position map associates blocks identifiers. e.g., logical addresses to
path identifiers e.g., leaf labels. Once a block is stored along some path,
the ORAM maintains the following invariant: A block mapped to a path
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resides either in any one of the buckets on the path from the root to
the corresponding leaf, or in a secure storage. Due to the the random
association of blocks to paths, writes may fail when all the buckets
along the path are occupied up to capacity. In this case the block needs
to be stored temporarily in a secure storage, called the stash, which is
probabilistically bounded in size, and is usually stored client-side.

Shi et al. presented the first tree-based ORAM with worst-case
communication cost of O

(
log3 n

)
(Shi et al., 2011a). Subsequently,

Gentry et al. improved the communication costs of the construction
by a constant factor (Gentry et al., 2013). The major breakthrough
in tree-based ORAM designs is due to Stefanov et al. , in the form
of a construction called Path ORAM (Stefanov et al., 2013). Path
ORAM achieves O (log n) communication costs when the client can
spare O (n) local storage, and O

(
log2 n

)
otherwise. In fact, under

certain assumptions (e.g., non-uniform server-side block sizes), Path
ORAM can still achieve O (log n) communication costs. This matches
the known lower bound on communication costs. Subsequently, Ren et
al. and Wang et al. have improved on the practical overheads of Path
ORAM (Ren et al., 2015; Wang et al., 2015a).

8.3 Round-Trip Efficient ORAMs

Optimizing round-trips for ORAM protocols is as critical for perfor-
mance as the the overall communication since multiple round-trips to
fetch data leads to high latency of access. Unfortunately, none of the
aforementioned communication-efficient constructions optimize round-
trips. There are two notable constructions that address this problem.
SR-ORAM (Williams and Sion, 2012) is a constant round ORAM
requiring two round trips with overall communication complexity of
O

(
log2 n log log n

)
. Since, SR-ORAM follows a hierarchical construc-

tion, the worst case complexity is Ω(n). TWORAM (Garg et al., 2016)
overcomes this problem; it features a worst-case communication com-
plexity of O

(
log3 n

)
and performs accesses in two rounds. Another

notable construction is Bucket ORAM (Fletcher et al., 2015) which
features single round-trip accesses and communication complexity of
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O (log n) under certain block size assumptions.

8.4 Compute-Efficient ORAMs

A straightforward way to make ORAM protocols more communication
efficient, is by leveraging server-side computation. If the server could
compute on the data without learning the contents, then the communi-
cation burden can be reduced as the server only returns the data block
required. A line of work explores this trade-off in communication and
computation assuming different server-side compute capabilities.

A version of Ring ORAM (Ren et al., 2015) achieves O (1) commu-
nication cost for fetching a block from the server under the assumption
that the server can execute XORs over the data blocks before returning
them to the client. The overall complexity of the construction is how-
ever O

(
log2 n

)
due to other necessary bookkeeping operations. Onion

ORAM (Devadas et al., 2016) has a communication complexity of O (B)
where B is the block size of the ORAM. The construction may use either
additively homomorphic encryption (AHE) or somewhat homomorphic
encryption scheme (SWHE) with different trade-off; see (Devadas et al.,
2016) for more details. Recently, Chen et al. proposed Onion Ring
ORAM which makes practical improvements to the construction (Chen
et al., 2019b). An alternate line of work assumes multiple servers to aid
the computation. One notable example of this line of work is S3ORAM
(Hoang et al., 2017) utilizing secret sharing as the underlying primitive.

8.5 Other Practical Considerations

8.5.1 Parallel Access

All aforementioned ORAMs are designed for single-client deployments,
that is at any point in time, there is a single-client performing accesses
to the ORAM. This naturally ensures consistency and privacy. However,
in this setting, clients experience unreasonably long wait times making
the schemes impractical.

Boyle et al. first introduced an oblivious parallel RAM (OPRAM)
construction assuming inter-client communication for synchronization
(Boyle et al., 2016). Clients coordinate with each other through an
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oblivious aggregation operation and prevent simultaneous queries for the
same block. For colliding client accesses, only one representative client
queries for the required item while all other clients query for dummy
items. The representative client then communicates the read item to
all other colliding clients through an oblivious multi-cast operation.
Subsequent works (Chan et al., 2017a; Nayak and Katz, 2016; Chen
et al., 2016; Chan et al., 2017b; Hubert Chan and Shi, 2017) have
optimized Parallel RAMs matching the overhead of a sequential ORAM
construction.

TaoStore (Sahin et al., 2016) takes a different approach towards
building a parallel ORAM. The construction introduces a trusted proxy
such that all client queries are redirected to the trusted proxy which
then queries for the corresponding paths from the PathORAM data tree.
Further, the proxy runs a secure scheduler to ensure that the multiple
path reads do not overlap and leak correlations in the underlying queries.
TaoStore achieves a significant increase in throughput but can support
only a limited number of parallel clients before the throughput plateaus
due to the proxy’s bandwidth constraints.

ConcurORAM (Chakraborti and Sion, 2019) is a parallel ORAM
construction which overcomes the bandwidth limitations of TaoStore,
and reduces the assumption footprint by removing the need for a trusted
proxy and inter-client communication. The construction is aided by
several auxilliary data structures that allow queries to proceed in the
background with full privacy guarantees without blocking other queries.

8.5.2 Write-Only Privacy

Full ORAM privacy is often unnecessary for practical settings. In several
data outsourcing scenarios, it is enough to protect the privacy of write
operations. A notable example of this is secure data backup on cloud
services like DropBox (Aviv et al., 2017). This privacy definition is
satisfied by a class of ORAMs called write-only ORAMs. Li and Datta
proposed the first write-only ORAM scheme with an amortized write
complexity of O (B × log n) where B is the block size of the ORAM
and n is the total number of blocks (Li and Datta, 2017). However,
the construction suffers from poor (linear in the database size) read
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complexity. Hive (Blass et al., 2014) is a write-only ORAM scheme with
constant read complexity. It maps data from a logical address space
uniformly randomly to the physical blocks on the underlying device.
The construction requires a O (log n)-sized stash. DetWoORAM (Roche
et al., 2017) overcomes the requirement of a stash and achieves O (log n)
read complexity and O (1) write complexity.

8.5.3 Range ORAMs

A new ORAM variant, namely Range ORAM, was recently proposed
by Asharov et al. (Asharov et al., 2019). Unlike traditional ORAMs
optimized for single-block accesses, Range ORAMs are optimized for ef-
ficiently accessing ranges of blocks. This notion is especially useful when
considering the fact that typical filesystems deployed on top of ORAMs
usually access contiguous blocks at once e.g., when reading/writing
a file. The efficiency goal for Range ORAMs is to ensure that range
accesses can be performed with minimal number of disk seeks across
the storage device. This is in contrast to traditional ORAMs which
randomly place blocks (belonging to the same file) all across the device
making file accesses inefficient on high latency drives like HDDs. As a
security trade-off range ORAM reveal the sizes of the ranges accessed;
see (Asharov et al., 2019) for more details.

Asharov et al. presented a construction with O
(
r · log3 n

)
commu-

nication complexity (amortized) to access r contiguous blocks (Asharov
et al., 2019). The number of seeks required is O

(
log3 n · (log log n)2

)
(notice that the number of seeks is independent of r). Chakraborti
et al. improved this result by providing an unamortized construction
with O

(
r · log2 n

)
communication complexity and requiring O

(
log2 n

)
seeks(Chakraborti et al., 2019).

8.5.4 Hardware-Assisted ORAMs

Oblivious RAM protocols have been used in conjunction with trusted
execution environments (TEEs) to design systems with access privacy.
ZeroTrace (Sasy et al., 2018) combines ORAMs and Intel SGX, and
builds a block-level memory controller that provides oblivious execu-
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tion against software adversaries. Other noteworthy examples include
databases with oblivious query capabilities (Eskandarian and Zaharia,
2019; Hoang et al., 2018) and oblivious file systems (Ahmad et al.,
2018). Typically in these systems, the ORAM logic runs securely in a
SGX enclave and the data is hosted on an untrusted storage backend.
In this way, the expensive bookkeeping operations are performed by
the enclave-hosted trusted logic without any client intervention thereby
reducing overall communication. The controller also receives and serves
requests from the client; a secure communication channel between the
client and the enclave ensures that the block requests remain hidden to
the server.

8.5.5 Future Research Directions

Although there is a large volume of work dedicated to optimizing
ORAMs for clouds, the state of the art is still impractical for real-
world deployments. Firstly, the communication costs are still too high.
Patel et al. and Asharov et al. have made significant strides in this
direction by achieving the known communication lower bound (Patel et
al., 2018; Asharov et al., 2020). However, these constructions are mainly
of theoretical interest as the constants are impractically high. Making
these constructions practical, while keeping in mind the aforementioned
performance metrics (e.g., round trips, parallelism), encourage more
research in this direction.

Secondly, ORAMs are not cost-effective. The high dollar costs of em-
ploying ORAMs often outweigh the cost advantages of outsourcing data
to a public cloud (Bindschaedler et al., 2015). This is a largely overlooked
drawback of existing protocols which needs to be further investigated.
The costs are due to communication and storage overheads. Interest-
ingly, cloud services often price communication asymmetrically: uploads
are costlier than downloads. Therefore, building ORAMs that exploit
this asymmetry (e.g., lower upload costs for higher download costs)
is an interesting research direction. ORAM constructions also come
with significant storage overheads: all aforementioned constructions
require at least 2× the storage, as that required for the raw database.
Exploring storage-efficient protocols is an important consideration for



8.5. Other Practical Considerations 67

future research.
Finally, for real-world deployments it is important to consider ac-

tively malicious adversaries i.e., cloud servers who may modify data or re-
play old data to the clients. This not only introduces integrity/consistency
issues but also impacts privacy. While in a single client scenario, this
problem may be solved by integrity-preserving mechanisms (Ren et al.,
2013), the problem is significantly amplified in multi-client scenarios.
When considering a setting where even the clients can be malicious,
Maffei et al. showed that to ensure security the server-side computation
required is Ω(n), that is the server must touch all the items in the
database for every access (Maffei et al., 2017). In this setting, a scheme
is presented with communication complexity of O (

√
n). The lower

bound on the server-side compute costs only holds in a single-server
setting. Hoang et al. recently presented a construction in a multi-server
setting with O (1) client-server communication complexity and O (log n)
server-server communication complexity (Hoang et al., 2020). The con-
struction builds on S3ORAM (Hoang et al., 2017) and adapts it for a
malicious server(s) setting. Future work in this direction may explore
new constructions in both the single-server and multi-server settings
with lower communication complexities.
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Provable Data Possession

The increasing popularity of third-party cloud storage services in recent
years has brought with it numerous advantages, such as reduced cost,
the ability to access the data from anywhere, and the ability to easily
share data. These benefits however, did not come without challenges,
especially from a security and privacy point of view. Due to trust
concerns in the third-party cloud storage provider, security and privacy
have been identified among the main challenges that hamper data
migration to/from a cloud environment.

Unfortunately, none of the cloud storage services offered verifiable
guarantees with regard to the integrity and long-term reliability of
the stored data. Basically, in the cloud storage commercial landscape,
if data is lost, the best a data owner can hope for is compensation
proportional with the size of the data (if any), which may be orders of
magnitude away from the actual value of the data.

Circa 2007, Ateniese et al. introduced a new framework for remote
data integrity checking using provable data possession (PDP) (Ateniese
et al., 2007; Ateniese et al., 2011). In this model, the storage server
is not trusted to store the data and may try to convince the client
(data owner) that it possesses (i.e., stores) the data even if the data

68
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is totally or partially corrupted. Protection against corruption of a
large portion of the data is necessary in order to handle servers that
discard a significant fraction of the data. This applies to servers that
are financially motivated to sell the same storage resource to multiple
clients. Protection against corruption of a small portion of the data is
necessary in order to handle servers that try to hide data loss incidents.
This applies to servers that wish to preserve their reputation. Data
loss incidents may be accidental (e.g., management errors or hardware
failures) or malicious (e.g., insider attacks).

Remote data integrity checking (RDIC) allows an auditor to challenge
a remote server to provide a proof of data possession in order to validate
that the server possesses the data that were originally stored by a client.
An RDIC scheme seeks to provide a data possession guarantee.

Requirements. Conforming to an outsourced storage relationship, the
client (i.e., data owner) should only be required to store a small, ideally
constant, piece of metadata.

Oftentimes, cloud storage presents unique performance demands.
Given that file data are large and are stored at remote sites, accessing
an entire file is expensive in I/O costs to the storage server and in
transmitting the file across a network. Reading an entire archive, even
periodically, greatly limits the scalability of network stores. Furthermore,
I/O incurred to establish data possession interferes with on-demand
bandwidth to store and retrieve data. As such, clients need to be able
to verify that a server has retained file data without retrieving the data
from the server and without having the server access the entire file.

A scheme for auditing remote data should be both lightweight and
robust. Lightweight means that it does not unduly burden the cloud
storage provider (CSP); this includes both overhead (i.e., computation
and I/O) at the CSP and communication between the CSP and the
auditor. This goal can be achieved by relying on spot checking, in which
the auditor randomly samples small portions of the data and checks
their integrity, thus minimizing the I/O at the CSP. Spot checking
allows the client to detect if a fraction of the data stored at the server
has been corrupted, but it cannot detect corruption of small parts of the
data (e.g., 1 byte). Robust means that the auditing scheme incorporates
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mechanisms for mitigating arbitrary amounts of data corruption. Pro-
tecting against large corruptions ensures the CSP has committed the
contracted storage resources: Little space can be reclaimed undetectably,
making it unattractive to delete data to save on storage costs or sell
the same storage multiple times. Protecting against small corruptions
protects the data itself, not just the storage resource. Many data have
value well beyond their storage costs, making attacks that corrupt small
amounts of data practical. For example, modifying a single bit may
destroy an encrypted file or invalidate authentication information.

9.1 Prior approaches

Before the PDP model, several other mechanisms had been proposed
that do not meet the above requirements for remote data integrity
checking. Some schemes (Golle et al., 2002) provide a weaker guarantee
by enforcing storage complexity: The server has to store an amount
of data at least as large as the client’s data, but not necessarily the
same exact data. Moreover, most previous techniques require the server
to access the entire file, which is not feasible when dealing with large
amounts of data, or require storage on the client linear with the size
of the data, which does not conform with the notion of storage out-
sourcing (Deswarte et al., 2003; Sebe et al., 2004; Filho and Baretto,
2006; Shah et al., 2007). A notable exception is the work of Schwarz
and Miller (Schwarz and Miller, 2006), which meets most of the require-
ments for proving data possession, but provides a less formal security
analysis. This scheme relies on a special construct, called an “algebraic
signature”: A function that fingerprints a block and has the property
that the signature of the parity block equals the parity of the signatures
of the data blocks.

9.2 Provable Data Possession

A Provable Data Possession (PDP) protocol checks that an outsourced
storage site retains a file, which consists of n blocks. The client C (data
owner) pre-processes the file, generating a small piece of metadata that
is stored locally, transmits the file to the server S, and may delete its
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local copy. The server stores the file and responds to challenges issued
by the client. Storage at the server is Ω(n) and storage at the client is
O(1), conforming to an outsourced storage relationship.

As part of pre-processing, the client may alter the file to be stored
at the server. The client may encrypt, encode or expand the file, or may
include additional metadata to be stored at the server.

At a later time, an auditor issues a challenge to the server to establish
that the server has retained the file. The auditor requests that the server
compute a function of the stored file, which it sends back to the client.
Using its local metadata, the auditor verifies the response.

For ease of exposition, the client (data owner) is assumed to be the
same entity as the auditor. However, the model can be easily extended
to a setting where these two may be separate entities (e.g., if business
requirements require separation, or if data privacy is a concern and the
auditor should not have access to the plain data (Shah et al., 2008).

Ateniese et al. (Ateniese et al., 2007; Ateniese et al., 2011) proposed
two PDP schemes which rely on homomorphic verifiable tags. The client
pre-computes tags for each block of a file and then stores the file and
its tags with a server. At a later time, the client can verify that the
server possesses the file by generating a random challenge against a
randomly selected set of file blocks. The server retrieves the queried
blocks and their corresponding tags, using them to generate a proof
of possession. The client is thus convinced of data possession, without
actually having to retrieve file blocks. Because of the homomorphic
property, tags computed for multiple file blocks can be combined into a
single value, and so a challenge uses O(1) network bandwidth.

These PDP schemes sample the server’s storage, accessing a random
subset of blocks. Sampling proves data possession with high probability
based on accessing few blocks in the file, which radically alters the
performance of proving data possession.

Achieving robustness. An RDIC scheme can be enhanced to provide
robustness by using forward error-correcting codes (FECs). Attacks that
corrupt small amounts of data do no damage, because the corrupted
data may be recovered by the FEC. Attacks that do unrecoverable
amounts of damage are easily detected, because they must corrupt
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many blocks of data to overcome the redundancy.
Ateniese et al. propose a generic transformation that encodes a file

using FECs in order to add robustness to any RDIC scheme that relies
on spot checking (Curtmola et al., 2008a; Ateniese et al., 2011). A robust
RDIC scheme provides protection against arbitrary small amounts of
data corruption.

Additional features. The PDP schemes introduced by Ateniese et
al. (Ateniese et al., 2007; Ateniese et al., 2011) provide several additional
useful features. First, they provide data format independence, meaning
they put no restriction on the format of the data. In particular, files
stored at the server do not have to be encrypted. This feature is relevant
since PDP schemes may have a significant impact when used with
large public repositories (e.g., digital libraries, astronomy/medical/legal
repositories, archives etc.). Second, they put no restriction on the number
of times the client can challenge the server to prove data possession.
Third, they pioneer the notion of public verifiability, which allows anyone,
not just the data owner, to challenge the server for data possession. For
example, an independent third-party auditor can verify possession of
the data. The advantages of having public verifiability are akin to those
of public-key over symmetric-key cryptography.

9.3 Dynamic Provable Data Possession

The original PDP model was introduced in the context of static data,
i.e., data that is not modified after being stored initially. This matches a
variety of application scenarios that fall under the umbrella of archival
storage. The model was shown to also securely support the append
operation (i.e., data blocks are appended at the end of the file), which
covers application scenarios such as version control systems (Chen and
Curtmola, 2014). The model was subsequently extended by Erway et
al. to support the full range of dynamic updates to the stored data –
i.e., the client can insert, modify, or delete stored data blocks – while
maintaining data possession guarantees (Erway et al., 2009; Erway
et al., 2015). Dynamic PDP (DPDP) can thus cover a wider range of
cloud computing scenarios, including file storage, database services, and
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peer-to-peer storage. The proposed DPDP schemes are based on a new
variant of authenticated dictionaries which permit efficient membership
queries (i.e., a rank-based authenticated dictionary built over a skip
list). Different from a static PDP scheme, for a dynamic PDP scheme
to be efficient, it must not include order information in the tags, since
otherwise an update may cause all tags to be updated. From a perfor-
mance perspective, the most important cost introduced by a dynamic
PDP scheme compared to a static PDP scheme is that the size of a data
possession proof grows from O(1) to O(log n), where n is the number
of file blocks.

Subsequently, Etemad and Kupcu (Etemad and Küpçü, 2020) show
a general framework for constructing DPDP schemes that encompasses
existing DPDP-like schemes as different instantiations.

9.4 Proofs of Retrievability

Simultaneously with PDP, Juels and Kaliski have introduced a similar
notion, that of proof of retrievability (PoR) (Juels and Kaliski, 2007),
which allows a client to be convinced that it can retrieve a file previously
stored at the server. This PoR scheme uses disguised blocks (called
sentinels) hidden among regular file blocks in order to detect data
corruption by the server. Although comparable in scope with PDP, this
PoR scheme can only be applied to encrypted files and can handle a
limited number of queries, which has to be fixed a priori. At a high level,
a PoR scheme provides similar guarantees as an RDIC scheme (i.e., a
PDP scheme that incorporates robustness to provide protection against
small amounts of data corruption). Shacham and Waters (Shacham and
Waters, 2008; Shacham and Waters, 2013) improve the PoR state of
the art by introducing the most-widely-accepted definitions for PoR-
type schemes and giving two PoR protocols based on homomorphic
authenticators. The first is based on bilinear maps and achieves public
verifiability, whereas the second is based on pseudo-random functions,
more efficient, but is only privately verifiable. Erway et al. (Erway
et al., 2015, Section 7.3) provide a detailed comparison of PDP and
PoR schemes.

Although initially proposed for a static setting, PoR schemes were
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subsequently extended to a dynamic setting (i.e., the stored data can be
updated in time). Initial dynamic PoR schemes were mostly of theoreti-
cal interest: (Stefanov et al., 2012) (due to imposing a large of amount
of client storage and a large audit cost) and (Cash et al., 2013b) (due to
imposing large audit overhead). Shi et al. (Shi et al., 2013) proposed the
first practical dynamic PoR scheme that achieves comparable communi-
cation overhead and client-side computation with a standard Merkle
hash tree. Like prior PoR and RDIC schemes, this scheme uses FEC
codes (erasure codes more precisely) to achieve protection against small
data corruptions, but ensures that data updates can be done efficiently
by maintaining on the server side an erasure-coded hierarchical log
structure that contains recently written blocks. This structure needs a
special erasure coding scheme that can be incrementally built over time.
Due to the use of this additional metadata, the actual erasure-encoded
data only needs to be rebuilt every n write operations, where n is the
number of file blocks.

9.5 Towards Auditing Distributed Storage Systems

In many practical cloud storage systems, data should be replicated in
order to deal with data loss accidents. Preferably, the replicas should
be stored in different geographical locations, in order to ensure failure
independence. Replication is a useful mechanism in the context of
proving data possession by a cloud storage provider. Whereas techniques
such as PDP and PoR are useful to verify remotely the integrity of a
single replica, they provide limited value when that single replica is
irreparably damaged.

When data is replicated at multiple storage servers, an auditor can
execute independently data possession protocols with each of the storage
servers. In case any of the replicas is found to be damaged, the data
owner can use the healthy replicas to restore the desired level of data
replication.

Establishing a guarantee that t replicas of a file are in fact stored by
a set of storage servers becomes more challenging when we assume that
the storage servers can behave fully malicious (i.e., can collude with
each other). The servers that appear to be storing multiple replicas may
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be in fact storing only a single copy of the data. In general, this can be
done by redirecting and forwarding challenges from the multiple sites
to the single site that stores the data. In this way, clients (data owners)
remain unaware of the reduction in the availability and durability of
data that results from the loss of replicas. Even if the client initially
stores replicas on servers in different geographic locations, the servers
can then move all the replicas to one location and access them from
that location on demand. Such a system is not more reliable than a
single-replica system, even though it leads the client to believe so.

Replication systems that rely on untrusted servers have another
generic limitation. To prove data availability, the servers can produce
replicas on demand upon a client’s challenge; however, this does not
prove that the actual replicas are stored at all times. For example,
malicious servers may chose to introduce dependencies among replicas,
by encrypting the replicas before storing them. Replicas can then be
decrypted and served on demand whenever they are requested by clients.
By storing the encryption key in a single location, the malicious servers
can effectively negate any reliability improvements achieved by storing
the replicas at different locations. Loss of the encryption key means loss
of all the replicas.

Given these generic limitations of replication systems that rely
on fully dishonest servers, Curtmola et al. (Curtmola et al., 2008b)
consider a model in which storage servers are rational and economically
motivated. In this context, cheating is meaningful only if it cannot be
detected and if it achieves some economic benefit (e.g., using less storage
than required by the contract). Such an adversarial model is reasonable
and captures many practical settings in which malicious servers will not
cheat and risk their reputation, unless they can achieve a clear financial
gain. Curtmola et al. extend PDP (Ateniese et al., 2007; Ateniese et
al., 2011) to apply to multiple replicas so that a client that initially
stores t replicas can later receive a guarantee that the storage system
can produce t replicas, each of which can be used to reconstruct the
original file data. A replica comprises the original file data masked with
randomness generated by a pseudo-random function (PRF). As each
replica uses a different PRF, replicas cannot be compared or compressed
with respect to each other. The homomorphic verification tags of PDP
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are modified so that a single set of tags can be used to verify any number
of replicas. These tags need to be generated a single time against the
original file data. Thus, replica creation is efficient and incremental;
it consists of unmasking an existing replica and re-masking it with
new randomness. In fact, the proposed multiple-replica PDP scheme
is almost as efficient as a single-replica PDP scheme in all the relevant
parameters.

In the context of distributed storage, other solutions have subse-
quently been proposed, to cover various points in the two-dimensional
feature-cost space. For example, Bowers et al. (Bowers et al., 2009)
introduced HAIL, a system that stores a file across multiple servers
using redundancy. They consider a mobile adversary, which is capable
to corrupt all storage servers, although at different moments in time
(i.e., the adversary can corrupt any servers, as long as at most a fixed
number of servers are corrupted at any one time). To deal with such a
strong adversary, HAIL employs a careful interleaving of different types
of error-correcting, which exploits both within-server redundancy and
cross-server redundancy. At a high level, HAIL can be thought of as
extending the RAID concept into the cloud, by spreading redundancy
across multiple cloud servers.

Etemad and Kupcu (Etemad and Küpçü, 2013) explore a Dynamic
PDP (DPDP) model in the context of a distributed, replicated storage
system. Chen et al. (Chen et al., 2010) propose remote data integrity
mechanisms optimized for a setting when data is distributed across
multiple storage servers using network coding (Dimakis et al., 2007;
Dimakis et al., 2010). Li and Lazos (Li and Lazos, 2020) introduce a
mechanism for verifying that a file is redundantly stored across multiple
physical storage nodes according to a pre-agreed layout and can, there-
fore, survive node failures. Leontiadis and Curtmola (Leontiadis and
Curtmola, 2018) seek to deduplicate replicated storage and design a se-
cure storage system that provides users with strong integrity, reliability,
and transparency guarantees about data that is outsourced at cloud
storage providers. Users store multiple replicas of their data at different
storage servers, and the data at each storage server is deduplicated
across users.

Bowers et al. (Bowers et al., 2011) proposed RAFT, a mechanism
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that allows a data owner to check that a storage server has stored a
file F across multiple disk drives, so it can support a desired level of
fault tolerance (e.g., data can be recovered if any set of t drives has
failed). RAFT is designed specifically for data stored on rotational
drives, and exploits the performance limitations of such drives as a
bounding parameter.

Damgard et al. (Damgård et al., 2019) proposed proofs of replicated
storage. Such a proof guarantees that a set of servers have reserved
the space necessary to store n copies of a file. Previous attempts to
achieve a similar guarantee rely on timing assumptions (Protocol Labs,
2017a; Protocol Labs, 2017b): A replica is encoded using a process that
is slow, so that an auditor can distinguish between the time an honest
server computes a proof and the time a dishonest server would need to
re-encode the file at the time of the challenge. In contrast, Damgard et
al. propose a construction for proofs of replicated storage that does not
rely on timing assumptions. As opposed to time-bounded approaches
which rely on a public deterministic encoding function, their approach
is to use probabilistic encoding, which makes the re-encoding unfeasible.
In addition, they focus on achieving public verifiability, which allows
anyone (not just the data owner) to play the role of the verifier in an
audit protocol. In practical terms, this means that decoding a replica
can be done by anyone.

9.6 Remote Data Integrity Checking With Server-side Repair

When a distributed storage system is used in tandem with remote
data integrity checking (RDIC), several phases can be distinguished
throughout the lifetime of the storage system: Setup, Challenge, and
Repair. To outsource a file F , the data owner creates multiple replicas
of the file during Setup and stores them at multiple storage servers (one
replica per server). During the Challenge phase, the data owner can ask
periodically each server to provide a proof that the server’s replica has
remained intact. If a replica is found corrupt during the Challenge phase,
the data owner can take actions to Repair the corrupted replica using
data from the healthy replicas, thus restoring the desired redundancy
level in the system. The Challenge and Repair phases will alternate over
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the lifetime of the system.
In cloud storage outsourcing, a data owner stores data in a dis-

tributed storage system that consists of multiple cloud storage servers.
The storage servers may belong to the same CSP (e.g., Amazon has
multiple data centers in different locations), or to different CSPs. The
ultimate goal of the data owner is that the data will be retrievable at
any point of time in the future. Conforming to this notion of storage
outsourcing, the data owner would like to outsource both the storage
and the management of the data. In other words, after the Setup phase,
the data owner should only have to store a small, constant, amount of
data and should be involved as little as possible in the maintenance of
the data. Minimal involvement in the Challenge phase can be achieved
when using an RDIC scheme that has public verifiability. However,
traditionally, the Repair phase imposes a significant burden on the data
owner, who needs to expend a significant amount of computation and
communication. For example, to repair data at a failed server, the data
owner needs to first download an amount of data equal to the file size,
re-generate the data to be stored at a new server, and then upload this
data at a new healthy server (Curtmola et al., 2008b; Bowers et al.,
2009). Archival storage deals with large amounts of data (Terabytes
or Petabytes) and thus maintaining the health of the data imposes a
heavy burden on the data owner.

Chen and Curtmola (Chen and Curtmola, 2013; Chen and Curtmola,
2017) explore a model which minimizes the data owner’s involvement in
the Repair phase, thus fully realizing the vision of outsourcing both the
storage and management of data. During Repair, the data owner simply
acts as a repair coordinator, which allows the data owner to manage
data using a lightweight device. This is in contrast with previous work,
which imposes a heavy burden on the data owner during Repair.

The main challenge is how to ensure that the untrusted servers
manage the data properly over time (i.e., take necessary actions to
maintain the desired level of redundancy when some of the replicas
have failed). They consider a new storage system architecture in which
each storage server exposes an interface for data manipulation so that
the data owner can coordinate the actions of the storage servers in
the Repair phase. To repair a faulty server during Repair, the data
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owner identifies healthy servers and instructs them to collaborate. In
this process, most of the communication occurs between the storage
servers, and the communication between data owner and storage servers
is minimized.

Their approach is based on two insights. First, the replicas stored
by the storage servers must be different. Second, to enable server-side
repair, the data owner gives the servers both access to the original file
and the means to generate new replicas. This will allow the servers
to generate a new replica by collaborating between themselves during
Repair. However, this approach opens the door to a new attack, in
which the servers falsely claim they generate a new replica whenever
an existing replica has failed, but in reality they collaborate to only
generate a replica on the fly during the Challenge phase (this attack is
referred to as the replicate on the fly (ROTF) attack). To overcome the
ROTF attack, the proposed approach is to make replica creation to be
time consuming. In this way, malicious servers cannot generate replicas
on the fly during Challenge without being detected. Two schemes are
proposed to generate distinct replicas: The first uses a controllable
amount of masking to deal with weaker adversaries, and the second uses
a variant of butterfly encoding (Dijk et al., 2012) to create dependencies
between each of the replica blocks and multiple original file blocks in
order to deal with stronger adversaries.

Towards a similar goal to allow servers to generate new replicas,
Armknecht et al. (Armknecht et al., 2016) propose Mirror, a PoR-based
solution that leverages tunable cryptographic RSA-based puzzles to
impose significant resource constraints on the storage servers. As a result,
a rational cloud storage provider will be incentivized to correctly store
and replicate the client’s data or risk detection with high probability
otherwise.

9.7 Future Research Directions

Ensuring the integrity and long-term reliability of cloud stored data has
been an active research area over the past few years and, considering
the security and privacy-sensitive nature of the cloud storage paradigm,
will likely continue to attract interest for the foreseeable future.
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Despite significant progress and despite of the plethora of security
guarantees put forth by the academic community, adoption by major
cloud storage providers remains an elusive target. Short of native de-
ployment of auditing and data maintenance capabilities by the cloud
providers themselves, one can imagine a business model where such ser-
vices could be offered by a third party auditor running in the same data
center where the data is located. This introduces additional concerns,
especially when auditing private data, as data owners would need to
allow access to their data for the auditor.

The lack of adoption in a commercial setting is a multifaceted prob-
lem. Certainly, performance is a significant concern: Providing such
strong guarantees as the ones aforementioned in this work could de-
grade performance. Related to this issue may be the lack of efficient and
production level implementations. There are also economic, regulatory
and policy reasons. Lack of adoption may seem surprising, because pro-
viding such strong guarantees could be seen as a business differentiator.
Yet, cloud providers do not seem to have clear economic incentives to
provide such strong guarantees, and have focused on more basic security
guarantees such as ensuring the privacy and secure sharing of the data.

There are still open problems, especially when trying to achieve
simultaneously multiple different guarantees. For example, designing
RDIC schemes that are both robust and fully meet data format in-
dependence has been challenging. This is because robustness usually
imposes encrypting (parts of) the data. As another example, remotely
verifying the geographical location of cloud data remains an elusive
target, despite some early attempts (Benson et al., 2011; Peterson et al.,
2011; Watson et al., 2012; Gondree and Peterson, 2013; Dang et al.,
2017) based on time assumptions and distance-bounding protocols.

We conclude by briefly surveying some recent work that may be
indicative of the current and future directions in this area. He et al. (He
et al., 2020) propose to relax some of the trust assumptions through
the use of Intel SGX. Shen et al. (Shen et al., 2020) propose a protocol
that optimizes the communication overhead when data that needs to be
audited changes ownership. Leontiadis and Curtmola (Leontiadis and
Curtmola, 2019) study RDIC protocols when applied to compressed
data. A user delegates the compression to the cloud in a provably
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secure way: The user can verify correctness of compression without
having to download the entire uncompressed file and check it against
the compressed version. Armknecht et al. (Armknecht et al., 2021)
consider a setting in which third party auditors may be dishonest
and data owners can efficiently keep the auditors in check. Chen et
al. (Chen et al., 2021) introduce a decentralized system for proofs of data
retrievability and replication which is incentive-compatible and realizes
automated auditing atop off-the-shelf blockchain platforms. Ateniese et
al. (Ateniese et al., 2020) study proofs of storage-time, which enable a
verifier to audit that the outsourced data is continuously available to
the server during the entire storage period, not only at the time a valid
proof is processed.
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