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Abstract

Delta smelt is an endangered fish species in the San Francisco estuary that have
shown an overall population decline over the past 30 years. Researchers have de-
veloped a stochastic, agent-based simulator to virtualize the system, with the goal
of understanding the relative contribution of natural and anthropogenic factors that
might play a role in their decline. However, the input configuration space is high-
dimensional, running the simulator is time-consuming, and its noisy outputs change
nonlinearly in both mean and variance. Getting enough runs to effectively learn
input—output dynamics requires both a nimble modeling strategy and parallel evalu-
ation. Recent advances in heteroskedastic Gaussian process (HetGP) surrogate mod-
eling helps, but little is known about how to appropriately plan experiments for
highly distributed simulation. We propose a batch sequential design scheme, general-
izing one-at-a-time variance-based active learning for HetGP, as a means of keeping
multi-core cluster nodes fully engaged with runs. Our acquisition strategy is carefully
engineered to favor selection of replicates which boost statistical and computational
efficiency when training surrogates to isolate signal from noise. Design and modeling
are illustrated on a range of toy examples before embarking on a large-scale smelt
simulation campaign and downstream high-fidelity input sensitivity analysis.

Keywords: Gaussian process surrogate modeling, agent-based model, active learning,
input-dependent noise, replication, sensitivity analysis

1 Introduction

Delta smelt is a short-lived fish species that spends its entire life within the San Francisco
Estuary (SFE) that connects the Sacramento and San Joaquin Rivers through the Bay
into the Pacific Ocean. The SFE has undergone many changes over the past 150 years due
to human development. It is now a network of channels and sloughs surrounding islands
protected by a man-made levee system (Lund et al., 2010). Since 1960, environmental and
ecological conditions (including delta smelt populations) have been extensively monitored.
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Derived population indices for delta smelt have shown a general decline since about 1980. In
1993 they were listed as threatened under the US Endangered Species Act. The population
exhibited a large drop in 2000 and has remained at low abundance (Stompe et al., 2020).
Factors that may contribute to the decline of delta smelt include entrainment by water
diversion facilities, changes in food base and predation pressure, pollution, and changes in
habitat related to salinity and turbidity (Baxter et al., 2015; Moyle et al., 2016).

Identifying the relative importance of factors that impact the delta smelt population
is important for designing effective management actions to balance human water use and
maintenance/recovery of the species. Diverse statistical/observational analyses have been
entertained (Thomson et al., 2010; MacNally et al., 2010; Miller et al., 2012; Maunder and
Deriso, 2011; Hamilton and Murphy, 2018). Rose et al. (2013a,b) developed a spatially-
explicit, agent-based model (ABM) of delta smelt to examine such factors. The model
simulates daily growth, mortality, reproduction, and movement of hundreds of thousands
of agents (smelt) from their birth to death. By explicitly representing food (zooplankton),
temperature, salinity, and water velocities experienced by agents based on their location
within a hydrodynamics grid, the ABM attempts to scale local environmental effects up to
population-level responses. Simulations under myriad environmental and system variables
enabled the authors to identify conditions both detrimental and conducive to smelt growth
and survival, and to compare how changes in food and in entrainment from water diver-
sion facilities affect population growth rates (Kimmerer and Rose, 2018). Ultimately, the
goal of such simulation is to augment and complement statistical models, and to assist in
determining which environmental factors could affect the population of delta smelt.

Rose et al. (2013a,b)’s ABM is coded in Fortran and the version we use takes about
six hours to run. Even after pre-selecting a subset of key model parameters, the input
configuration space is large (upwards of 13-dimensions), and the outcome of the simulator
varies across random seeds. Response surface learning with this stochastic computer model
— separating signal from noise in a high dimensional space — requires a large, and costly,
distributed HPC simulation campaign and pairing with a flexible meta model. In our
initial study, described in Section 2.3, we observe that the response surface is nonlinear
and heteroskedastic, i.e., sensitivity to stochastic simulation dynamics is not uniform in
the input space. These features challenge effective meta-modeling, which are essential
for downstream tasks like input sensitivity analysis, mirroring ones which are increasingly
common the analysis of stochastic simulation experiments (Baker et al., 2020).

In similar but simpler situations (e.g., Johnson, 2008; Bisset et al., 2009; Farah et al.,
2014; Fadikar et al., 2018; Rutter et al., 2019) — being not as extreme as the delta smelt
ABM in terms of simulator cost, input dimension, and changing variance — researchers have
been getting mileage out of methods for surrogate modeling and the design and analysis of
computer experiments (Sacks et al., 1989; Santner et al., 2018; Gramacy, 2020). Default,
model-free design strategies, such as space-filling Latin hypercube samples (LHS; Mckay
et al., 1979), are a good starting point but are not reactive/easily refined to target parts of
the input space which require heavier sampling. Model-based designs based on Gaussian
process (GP) surrogates fare better, in part because they can be developed sequentially
along with learning (e.g., Jones et al., 1998; Seo et al., 2000; Gramacy and Polson, 2011).

Until recently, surrogate modeling and computer experiment design methodology has



emphasized deterministic computer evaluations, for example those arising in finite element
analysis or solving systems of differential equations. Sequential design with heteroskedastic
GP (HetGP) surrogates (Binois et al., 2018a) for stochastic simulations has recently been
proposed as a means of dynamically allocating more runs in higher uncertainty regions of
the input space (Binois et al., 2019). Such schemes are typically applied as one-at-a-time
affairs — fit model, optimize acquisition criteria, run simulation, augment data, repeat —
which would take too long for the delta smelt model. We anticipate needing thousands of
runs, with several hours per run. That process cannot be fully serial.

Batch-sequential design procedures have been applied with GP surrogates (e.g. Loeppky
et al., 2010; Ginsbourger et al., 2010; Chevalier, 2013; Duan et al., 2017; Erickson et al.,
2018). These attempt to calculate a group of runs to go at once, say on a multi-core super-
computing node, towards various design goals. Quasi-batch schemes, which asynchronously
re-order points for an unknown number of future simulations have also thrived in HPC en-
vironments (Gramacy and Lee, 2009; Taddy et al., 2009). However, none of these schemes
explicitly address input-dependent noise like we observe in the delta smelt ABM simula-
tions. Here we propose extending the one-at-a-time method of Binois et al. (2019) to a
batch-sequential setting. Our goal is to design for batches of size 24 to match the number
of cores available on nodes of a supercomputing cluster at Virginia Tech. Following Binois
et al.’s lead, we develop a novel scheme for encouraging replicates in the batches. Repli-
cation is a tried and true technique for separating signal from noise, reducing sufficient
statistics for modeling and thus enhancing computational and learning efficiency.

Our flow is as follows. Section 2 reviews simulation, surrogate modeling and design
elements for delta smelt simulations. We also describe a pilot study on a reduced in-
put space identifying challenges/appropriate modeling elements and motivating a HetGP
framework. Section 3 explains our innovative batch-sequential acquisition strategy through
an integrated mean-squared prediction error (IMSPE) criteria and closed-form derivatives
for optimization, extending the one-at-a-time process from Binois et al. (2019). Section 4
provides a novel and thrifty post-processing scheme to identify replicates in the new batch.
[lustrative examples are provided throughout, and Section 5 details a benchmarking ex-
ercise against the infeasible one-at-a-time gold standard. Finally, in Section 6 we apply
the design method to smelt simulations (in a larger space), collecting thousands of runs
utilizing tens of thousands of core hours across a several weeks-long simulation campaign.
Those runs are used to conduct a sensitivity analysis to exemplify potential downstream
tasks. We conclude with other suggestions and methodological ideas in Section 7.

2 Problem description and solution elements

Here we describe the smelt simulator and HPC implementation, review surrogate modeling
elements and report on a pilot study, motivating our methodological developments.

2.1 Agent-based model

The delta smelt population model of Rose et al. (2013a) is a stochastic, spatially-explicit,
agent-based model (ABM). It tracks reproduction, growth, mortality, and movement of
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individual fish through life stages. Agents move around within a 1d network of channels
and nodes formed by rivers and leveed islands. Daily values of environmental variables
of water temperature, salinity, and the densities of six zooplankton prey types drive the
model. These vary daily and spatially among channels over a grid. In our simulations,
these drivers are based on observed environmental variables from 1995 to 2005 to allow
exploration of potential factors influencing a population decline starting around 2000.

The model assumes that factors impact the agents in specific ways. Temperature and
zooplankton affect daily growth, whereas hydrodynamic transport and salinity affect move-
ment. Daily mortality is comprised of stage-specific rates (mostly predation), starvation,
and entrainment of individuals by water diversion facilities. Daily egg production is used to
start agents as yolk-sac larvae. Upon progressing through multiple life stages and reaching
maturity, individuals spawn a year later, and the cycle repeats year-after-year. Stochastic
calculations within a run include: realization of zooplankton concentrations in channels
each day from regional means, assignment of temperature of spawning to adults, aspects of
hourly water transport of larvae and the twice-per-day movement of juveniles and adults,
timing of upstream and downstream spawning migration, and selection of channels when
individuals are moved out of nodes (reservoirs).

symbol parameter  description range default  pilot study
My zmorty yolk-sac larva MR [0.01,0.50] 0.035 0.035
my zmortl larval MR [0.01, 0.08] 0.050 0.050
my zmortp post-larval MR [0.005, 0.05]  0.030 0.030
m; zmortj juvenile MR 0.001, 0.025]  0.015  [0.005,0.030]
Ma zmorta adult MR [0.001, 0.01]  0.006 0.006
m, middlemort river entrain MR~ [0.005, 0.05]  0.020 [0, 0.05]
P preyk(3,2)  larvae EPT 2 0.10, 20.0] _ 0.200 0.200
P, preyk(4,2)  postlarvac EPT 2 [0.10, 20.0]  0.800  [0.10, 1.84]
P,s preyk(4,6)  postlarvae EPT 6  [0.10, 20.0] 1.500 P,
P;4 preyk(5,3)  juveniles EPT 3 [0.10, 20.0]  0.600 (0.1, 1.5]
Pig preyk(5,6)  juveniles EPT 6 [0.10, 20.0] 0.600 P; 3
P.s  preyk(6,3) adults EPT 3 0.01,20.0]  0.070 0.070
P4 preyk(6,4)  adults EPT 4 [0.01, 5.0] 0.070 0.070

Table 1: Smelt simulator inputs considered in this analysis. The pilot study column indi-
cates settings for Section 2.3. MR is mortality rate; EPT means eating prey type.

The Rose et al. ABM has more than fifty model parameters. We selected 13 of these
to focus on in this analysis because they are known to be important to model dynamics
and have direct relevance to the ecology and management of delta smelt. They are listed
in Table 1 with their symbols and input parameter name, descriptions, range extremes,
default/calibrated values, and spans considered in our pilot study (Section 2.3).

The first set of parameters in Table 1 involve natural mortality rates assigned to each
life stage. While there is uncertainty in these values, feasible ranges can be deduced from
prior analysis and review of values reported in the literature. The second group is a single
parameter (m,) that modifies the mortality rate of juvenile and adults based on whether
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river flows in the Delta subregion are transporting individual fish toward or away from water
diversion facilities. Flows towards facilities result in the addition of m, due to entrainment.

The third group of parameters are feeding-related and are specific to prey group and
life stage; for example, P;¢ is juveniles feeding on prey type 6 (Pseudodiaptomus forbesi).
The parameters are half-saturation coefficients in a functional response feeding relationship
and so larger values reduce feeding rates. Prey types are selected for each life stage that
were dominant in simulated diets for the time period analyzed here (Rose et al., 2013a).
Dependencies are created among feeding parameters to mimic the effects of more or less
food available to life stages that consume multiple prey types. For example, when P,
is varied its value is pegged to P, i.e., more or less food for post-larval stage. These
dependencies are noted in Table 1 for the pilot study and Table 2 for the full analysis.

A distinct feature of the Rose et al. (2013a) ABM is how model behavior is summa-
rized. Output is extensive because the model generates size (length and weight), location,
growth rate, mortality from different sources, diet, and other individual-level attributes ev-
ery day for approximately 450,000 model individuals for the ten-year simulations analyzed
here. Rose et al. (2013a) summarize these dynamics using the information on individu-
als to estimate a matrix projection model for each year, ultimately generating a popula-
tion growth rate (\;) each year. Here, we use the geometric mean of growth rates from
1995 to 2004 as a convenient scalar output summarizing results of the 10-year simulation:
A= ([12 %65 \i)/1% The value of X is an indicator of the health of the population of delta
smelt over the time period of the simulation and is directly interpretable. Values greater
than one indicate population growth over the 10 years; values less than one indicate decline.

Previous simulation campaigns did not systematically vary all the parameters simul-
taneously. For example, the importance of single factors were estimated by evaluating
population changes after structurally eliminating that factor in the simulation(s) (Kim-
merer and Rose, 2018). This is very different from a Saltelli-style/functional analysis of
variance (e.g., Saltelli et al., 2000; Oakley and O’Hagan, 2004; Marrel et al., 2009; Gra-
macy, 2020, Chapter 8.2) favored by the computer surrogate modeling literature. That
and other downstream applications require a meta-modeling design strategy in the face of
extreme computational demands and stochasticity over random seeds.

2.2 Surrogate modeling

We regard the delta smelt simulator as an unknown function f : R? — R. A meta-
model f fit to evaluations (x;,7 ~ f(x;)), for i = 1,...,N is known as a surrogate
model or emulator (Gramacy, 2020). The idea is that fast f(x) could be used in lieu of
slow/expensive f(x) for downstream applications like input sensitivity analysis. Although
there are many sensible choices, the canonical surrogate is based on Gaussian processes
(GPs). If f is deterministic (y; = f(x;)), this amounts to specifying a multivariate normal
(MVN) for Yy = (y1,...,yn) " : Yy ~ Ny(0,72Cy). Defining Cy based on distance,
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provides smooth decay in function space when moving apart in x-space and yields a pre-
dictive surface interpolates the data.! Fixing @ and 72, dropping 0 in cg(-, -), extending the
MVN to the cover (N + N')-sized (Y, V(X)) at training inputs Xy and N’ testing sites
X, and MVN conditioning leads to a Gaussian predictive distribution Y(X) | Y with

mean (X | Ya) = (X, Xn) O Y x, 1)
and variance S(X | Yy) = 72e(X, X) — (X, Xn)Crle(X, Xn) "]

Observe that uncertainty (& | Yu) is a quadratic function of distance between testing
data X and training data Xy locations. For this reason, space-filling designs such as
maximin design (Johnson et al., 1990), LHS and hybrids thereof like maximin-LHS (Morris
and Mitchell, 1995) are common in order to sufficiently cover the input space.

For stochastic f with constant noise we can add a nugget term ¢ to the diagonal
Ky = Cy + Ay for Ay = glly and take Yy ~ Ny (0, 72Ky). To model a response surface
with non-constant noise, Binois et al. (2018a) proposed freeing the diagonal elements of A y
under a smoothness penalty. They call this a heteroskedastic GP (HetGP). Specifically,
let 61,0s,...,0, denote latent nuggets, corresponding to n < N unique design locations.
Replication in a design, here with degree N — n, is essential for separating signal from
noise and also leads to computational efficiencies, working with cubic in n rather than
N flops through a Woodbury trick not reviewed here.? Place dy,0s,...,d, diagonally in
A, and assign to these a structure similar to Y but now encoding a prior on variances:
A, ~ N, (0, 7(25)(0(5) +9@A,")). Cs) is the covariance matrix of n unique design locations
defined under similar kernel/inverse distance structure; A,, is a diagonal matrix, A; = a;,
which denotes the number of replicates at unique location x; so that > " a; = N; gs) is a
“nugget of nuggets” controlling the smoothness of \;’s relative to d,’s.> Smoothed \;-values
can be calculated by plugging A,, into GP mean predictive equations (1):

A, = C(g)Kasl)An, where K((g) = C(5) + g(g)A,Zl. (2)

Parameters including @, 7% for both GPs, i.e., for mean and variance, and latent nuggets
A, may be estimated by maximizing the joint log likelihood with derivatives in time cubic
in n. Software is available for R as hetGP on CRAN (Binois et al., 2018a).

2.3 Pilot study

To assist with R-based surrogate modeling we built a custom R interface to the underlying
Fortran program automating the passing of input configuration files/parsing of outputs
through ordinary function I/O. The Rmpi package (Yu, 2002) facilitates cluster-level parallel
evaluation for distributed simulation through a message passing interface (MPI) on our
Advanced Research Computing (ARC) HPC facility at Virginia Tech.

IMatern is another choice (Stein, 2012); our contribution is kernel agnostic as long it is differentiable.

2Tt is also important not to introduce latent &; in multitude at identical input locations x; which
introduces numerical instabilities to the inferential scheme.

3This \; notation, from Binois et al. (2018b), should not be confused with the delta smelt simulation
output from Rose et al. (2013a), whose logarithm we take as the main response (y;) in our analysis.
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To test that interface and explore modeling and design options we ran a limited delta
smelt simulation campaign over six parameters (inputs) under a maximin-LHS of size
n = 96 (via lhs; Carnell, 2020) with five replicates for each combination. Juvenile and
river entrainment mortalities m; and m, were varied over their ranges with the rest of the
mortality rate parameters were fixed at their default values from Table 1. Post-larvae (P, 2)
and juvenile (P;3) prey parameters for zooplankton type 2 are allowed to vary over their
ranges with value of P,» also being assigned to P, and value of P;3 also being assigned
to Pjg (Pp2 = Ppe and P;3 = P;g). Other prey types were fixed to their default settings
making the effective input dimension four. Twenty 24-core VT /ARC cluster nodes were
fully occupied in parallel in order to get all N = 480 runs in about six hours.
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Figure 1: 2d heatmap and 1d lineplot slices of predictive mean and variance for selected
inputs. The numbers overlaid indicate design locations and numbers of replicates.

We fit the simulation data using hetGP with inputs Xy coded to the unit cube [0,1]*
and with Yy derived from log \;, the (log) 10-year geometric average of the population
growth rate, for ¢+ = 1,...,480 using y; = —61log 10 in the few cases where \; = 0 was
returned. As a window into visualizing the fitted response surface we plotted a selection
of 1d and 2d predictive mean error/variance slices in Figure 1, using defaults from Table 1
for the fixed variables. The first and second row correspond to subspaces (P;3 x m;) and
(Pj3 x m,), respectively. Observe in the middle column how noise intensity changes over
the 2d input subspace, indicating heteroskedasticity. Both mean and variance surfaces are
nonlinear. A similar, higher resolution view is offered by the 1d slices in the final column.



The solid curves in the top-right panel are horizontal slices of the top left panel with P, 3
fixed at five different values, and analogously on the bottom-right. Predictive intervals,
with 95% nominal coverage, are shown as dashed lines. In both views, the width of dashed
predictive band changes, sometimes drastically, as m; and m, are increased. Clearly m; in
the top-right panel shows more dramatic and nonlinear mean and variance effects.

3 Batch sequential design

The plan is to scale-up the pilot study of Section 2.3 and vary more quantities in the 13d
input space. Ideally, sampling effort would concentrate on parts of the input space that
are harder to model, or where more value can be extracted from noisy simulations. Binois
et al. (2019) proposed IMSPE-based one-at-a-time sequential design with that goal in mind.
Here we extend that to batches that can fill entire compute nodes at once.

3.1 A criterion for minimizing variance

Integrated mean-squared prediction error (IMSPE) measures how well a surrogate model
captures input—output relationships. It is widely used as data acquisition criterion; see,
e.g., Gramacy (2020, Chapters 6 and 10). Let 5% (x) denote the nugget free predictive
variance for any single x € D. IMSPE for a design X may be defined as:

Iy = IMSPE(Xy) = / o3 (%) dx = / #[e(x,x) — e(x, Xy ) Ky'e(x, Xn) '] dx.

xeD xeD

The integral above has an analytic expression for GP surrogates, in part because of the
closed form for 6% (x). Examples involving specialized GP setups in recent literature include
Ankenman et al. (2010); Leatherman et al. (2017); Chen et al. (2019). Similar expressions
do not, to our knowledge, exist for other popular surrogates like deep neural networks, say.

Binois et al. (2019) gives perhaps the most generic and prescriptive expression for GPs,
emphasizing replicates at n < N unique inputs X; for computational efficiency. Let K,
denote the unique n x n covariance structure comprised of K% = ¢(X;,X;) + 0y, T(ji). Let
W,, be an n X n matrix with entries comprising integrals of kernel products w()_c; X;) =
Jeep ¢(Xi, X)e(X5,x) dx for 1 <i,j <n, and let E = [ _,7%c(x,x) dx, which is constant
with respect to the design X,,. Closed forms are provided in Appendix B of Binois et al.
for common kernels. Then O(n?) calculations yield

Iy = E[#%c(X, X)] — E[#2c(X, Xn)K{'e(X, Xy) ] = E — 72 tr(K,*W,,). (3)

Although expressed for an entire design X,,, in practice IMSPE is most useful in sequen-
tial application where the goal is to choose new runs. Binois et al. provided a tidy expression
for solving for x,, 1 by optimizing I,,,1(X) over n + 1°* candidates x. We extend this to an
entire batch of size M > 1, augmenting X or (more compactly) the unique elements X,,.
Let X = {X1,%s,...,%Xy} " denote the coordinates of a new batch. Let IN+M(}~() denote



the new IMSPE, which is realized most directly by shoving a row-combined [Xy; 52] into
Eq. (3). That over-simplifies, and flops in O((N + M)?) could be prohibitive.

Partition inverse equations (Barnett, 1979) can be leveraged for even thriftier evaluation.
Extend the kernel K and its integral W to define new (n + M) x (n + M) matrices

K, (Xn, X)

W,  wX,X)
(X0, X)T X, X) +r(X) X

W= o b
’ M (X, X)T w(X, X)

Kn+M =

where W,, = w(X,,, X,,) and r(X) = Diag(r(x1),...,7(Xan)) comes from smoothed latent
variances following Eq. (2) via ¢(5) (X, X,,) so that

r(X) = ¢)(X, X)(Ca) + 90y AL ) A, (4)

Given K1, we may fill the inverse K:LiM in flops in O(M? + nM? + n*M) as

1 _
KnJrM

()

K.+ g(X)2(X)g(X)"T  g(X)
g(X)" (X))

where ¢(X) = —K¢(X,,, X)S(X) L, (X) = r(X) + (X, X) — (X, X) K e(X,, X).
Multiplying through components of Eq. (5) and properties of traces in Eq. (3) leads to

Ingw = B =72 tr(K, "W, + g(X)2(X)g(X) " + g(X)w(X,,, X)")
— 22 tr(g(X) Tw(X,, X) + D(X) " w(X, X)) (6)

= Iy — 7 [tr(g(X)2(X)g(X) ") + 2 tr(g(X)w(X,, X)) + tr(S(X) " 'w(X, X)) .

Finding the best X requires only the latter term above. That is, we seek

X* = argmaxg,p, tr(g(X)2(X)g(X) ") + 2 tr(g(X)w(X,, X)) + tr(Z(X) " w(X, X)).

In other words, we seek X giving the largest reduction in IMSPE. Evaluation involves flops
in the orders quoted above, however in repeated calls for numerical optimization many of
the O(n) quantities can be pre-evaluated leaving O(M? + nM? + n*M) for each X.

3.2 Batch IMSPE gradient

To facilitate library based numerical optimization of In, M(f() with respect to )’Z, in par-
ticular via Eq. (6), we furnish closed-form expressions for its gradient. Below, these are
framed via partial derivatives for X;,, the p'M coordinate of the i subsequent design point
in the new batch. Beginning with the chain rule, the gradient of Iy, over X;(, follows

a]'NJr]\/[ _ —7A'2tr (8Kn+M
OXi(p)

OW,,
W + KL *M) . (7)

Xi(p) 0%



Recursing through its component parts, we have

Koty 0 [K '+ 9X)EX)gX)T  9(X) HX) QX)

axzp afci(p) I g(X)T E(X)*1 Q(X)T V(X)
o W 0 [ W, w(X,,X) 0 S(X)

0% 0% [w(Xe, X)T w(X,X) T sX)T TX)|

Expressions for H(X), Q(X), V(X), $(X) and T(X), which are tedious, are provided in
Appendix A. With these quantities and Eq. (6), the gradient of Iy can be expressed as:

SO e (%) 22 %)) 4 2 @R)S(R)g(R)T)
OXi(p) OKi(p)
+2tr(QX)w(X,, X)) + 2t2(g(X)S(X) ") (8)
— tr(V(X)w(X, X)) + tr(2(X)'7(X))| .
$(X)

Details for ?r

- are provided in Appendix A.

. OW 1 . . .
Finally, for Eq. (7) we need Ry Our earlier expression for w(x;,x;) was generic,

however derivatives are required across each of d input dimensions for the gradlent so here
we acknowledge a separable kernel structure for completeness. Component w i M follows

w(xi, %) = /c(xz,x e(x;,x)dx =[] / ,z)e(x dx—Hwk (Xi(k)s Xj(k))-

x€D kzlze[o 1]

Appendlx A provides wy(+,-) for a Gaussmn kernel. When differentiating with respect to

X;(p), only the (n + )" row/column of IWaiM is non-zero. When j < n, those entries are
O%i(p)

OW Ut id) _Owp(Xi(p), X; d
o ntM pé~ (p) J) H wk(iz(k)a Xj(k))‘
Xi(p) Xi(p) k=1,k#p

When j > n, swap x; for X;_,. A expression for dw, is provided in the appendix.

3.3 Implementation details and illustration

Closed-form IMSPE and gradient in hand, selecting M-sized batches of new runs becomes
an optimization problem in Md dimensions that can be off-loaded to a library. When
each dimension is constrained to [0, 1], i.e., assuming coded inputs, we find that the L-
BFGS-B algorithm (Byrd et al., 2003) is appropriate, and generally works well even in this
high dimensional setting. We use the built-in optim function in R, taking care to avoid
redundant work in evaluating objective and gradient, which share structure.

Figure 2 provides an illustrative view of this new capability by previewing the 2d toy

10



o Xinit * Xstart + Xopt

1.0

0.8

0.6

X2

0.4

0.2

0.0

0.0 0.z 0.4 0.6 0.8 1.0

X1

Figure 2: Batch IMSPE optimization iterations from initial (blue dots) to final (green
crosses) locations. Three optimization epochs are provided by arrows. An overlayed
heatmap shows the estimated standard deviation surface /r(x).

example of Section 5. We started with a space-filling design X,, in [0, 1]?, where 150 data
points are evenly allocated on 50 unique design locations, shown as open circles. The true
noise surface, r(z), was derived from a standard bivariate Gaussian density with location
= (0.7,0.7) and scale 3 = 0.02 - I,. The heatmap depicts a HetGP-estimated standard
deviation surface based on runs gathered at X,,. Higher noise regions are more yellow. We
then set out to calculate coordinates of a new M = 20 sized batch X via IMSPE. Search
is initialized with a LHS, shown in the figure as blue dots. Arrows originating from those
dots show progress of the derivative-based search broken into three epochs for dramatic
effect. Iterating to convergence requires hundreds of objective/gradient evaluations in the
Md = 40-dimensional search space, but these each take a fraction of a second because there
are no large cubic operations. At the terminus of those arrows are green crosses, indicating
the final locations of the new batch X*. Observe how some of these spread out relative
to one another and to the open circles (mostly in the red, low-noise region), while others
(especially near the yellow, high-noise region) are attracted to each other. At least one new
replicate was found. Thus the IMSPE criterion strikes a balance between filling the space
and creating replicates, which are good for separating signal from noise.

L-BFGS-B only guarantees a local minimum since the IMSPE objective is not a convex
function. Actually, IMSPE surfaces become highly multi-modal as more points are added,
with numbers of minima growing linearly in n, the number of unique existing design ele-
ments, even in the M = 1 case. Larger batch sizes M > 1 exacerbate this still further.
There is also a “label-switching problem”. (Swap two elements of the batch and the IMSPE
is the same.) To avoid seriously inferior local minima in our solutions for X* we deploy a
limited multi-start scheme, starting multiple L-BFGS-B routines simultaneously from novel
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sets of space-filling initial )~((0), choosing the best at the end.

4 Hunting for replicates

Replication, meaning repeated simulations Y (x) at fixed x, keeps cubic costs down [Egs. (3)
and (7), reducing from N to n| and plays an integral role in separating signal from noise
(Ankenman et al., 2010; Binois et al., 2018b), a win-win for statistical and computational ef-
ficiency. Intuitively, replicates become desirable in otherwise poorly sampled high-variance
regions (Binois et al., 2019). Unfortunately, a numerical scheme for optimizing IMSPE
will never precisely yield replicates because tolerances on iterative convergence cannot be
driven identically to zero. Consider again Figure 2, focusing now on the two new design
points in the yellow region which went to similar final locations along their optimization
paths. These look like potential replicates, but their coordinates don’t match.

One possible solution resolving near-replicates into actual ones is to introduce a sec-
ondary set of tolerances in the input space, whereby closeness implying “effective replica-
tion” can be deduced after the numerical solver finishes. This worked well for Binois et al.
(2019), in part because of an additional replication-biased lookahead device (Ginsbourger
and Le Riche, 2010) Binois et al. used discrete search to check the degree to which future
replicates could reduce IMSPE. But for us such tactics are unsatisfying on several fronts:
lookahead isn’t manageable for M > 1 sized batches; additional input tolerances are tan-
tamount to imposing a grid; such a scheme doesn’t directly utilize IMSPE information; and
finally whereas one-at-a-time acquisition presents more opportunities to make adjustments
in real-time, our batch setting puts more eggs in one basket. We therefore propose the
following post-processing scheme on each batch which we call “backtracking”.

4.1 Backtracking via merge

For a new batch of size M, the possible number of new replicates ranges from zero to M.
L-BFGS-B optimization yields M unique coordinate tuples, but some may be very close
to one another or the n existing unique sites. Below we verbalize a simple greedy scheme
for ordering and valuing those M locations as potential “effective replicates”. Choosing
among those alternatives happens in a second phase, described momentarily in Section 4.2.

Begin by recording the IMSPE of the solution Xj; = X* provided by the optimizer:
Iy (Xpy). This corresponds to the no-backtrack /no-replicate option. Set iterator s = 0
so that )N(ms refers to this potential batch with my = M unique design elements and let
ds = 0. Move to the first iteration, s = 1. Among the m,_; unique sites in ims_l, find the
one which has the smallest minimum distance ds to other unique elements in )”imH and
existing sites X,,, with ties broken arbitrarily. Entertain a new batch f(ms by merging sights
involved in that minimum d-distance pair. If both are a member of the new batch kal?
then choose a midway value for their new setting(s) in )N(ms. Otherwise, take the location
from the existing (immovable) unique design element from X,,. Both imply ms = M — s.

Calculate I,,1,,,(X,,,). Increment s «— s + 1 and repeat unless s = M.
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Figure 3: Left: backtracking with merge; gray arrows connect optimal }Nims with numbers
indicating s = 1, ..., M; Right: IMSPE changes over numbers of replicates. Merging steps
that are finally taken are shown in blue. Fitted segmented regression lines are overlaid.

Figure 3 provides an illustration; settings of f(x) and r(x) mirror Figure 2. The existing
design X,, has n = 100 unique elements, shown as open circles in the left panel. Each run
is replicated three times so that N = 300. A new batch of size M = 24 is sought. Red
crosses represent optimized X,,, = X); from L-BFGS-B. Numbered arrows mark each
backtracking step. Observe that the first two of these (almost on top of one another near
the right-hand boundary) involve novel batch elements, whereas all others involve one of
the n existing sites. Aesthetically, the first five or so look reasonable, being nearby the
high variance (top-right) region. Replication is essential in high-variance settings.

4.2 Selecting among backtracked batches

To quantify and ultimately automate that eyeball judgment, we investigated I, 1, (fim)
versus s, the number of replicates in the new batch. The right panel of Figure 3 shows
the pattern corresponding to the backtracking steps on the left. Here, the sequence of
Iyim, (X;n,) values is mostly flat for s = 0,...,3, then increasing thereafter. We wish to
minimize IMSPE, except perhaps preferring exact replicates when IMSPEs may technically
differ but are very similar. Aesthetically, that “change point” happens at s = 7 where
IMSPE jumps into a new and higher regime.

To operationalize that observation we experimented with a number of change point
detection schemes. For example, we tried the tgp (Gramacy, 2007; Gramacy and Taddy,
2010) family of Bayesian treed constant, linear, and GP models. This worked great, but
was overkill computationally. We also considered placing dg, the minimizing backtracked
pairwise distances, on the z-axis rather than s-values. Although the behavior with this
choice was distinct, it yielded more-or-less equivalent selection on broad terms.
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We ultimately settled on the following custom scheme recognizing that the left-hand
regime was usually constant (i.e., almost flat), and the right-hand regime was generally
increasing.* To find the point of shift between those two regimes, we fit M + 1 two-segment
polynomial regression models, with break points s = 0,..., M respectively, with the first
regime (left) being of order zero (constant) and the second (right) being of order four. We
then chose as the location § the one whose two fits provide lowest in-sample MSE. The
optimal pair of polynomial fit pairs are overlaid on the right panel of Figure 3, with groups
color-coded to match arrows in the left panel.
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Figure 4: Three selected scatter plots of IMSPE versus number of replicates with best
change-point fitted regression lines overlaid. Colors match arrows in Figure 3.

Figure 4 shows four other examples under the same broad settings but different random
initial n-sized designs. The situation in the left panel matches that of Figure 3 and is by
far the most common. The 2°¢ panel depicts a setting where zero replicates is best but
the two-regression scheme nevertheless identifies a midway change-point suggesting a bias
toward finding at least some replicates. The 3'¢ panel shows the case where no replicates
are included. The right panel indicates an uncommon, opposite extreme. Note the small
range of the IMSPE axis (y-axis). When the right-hand regime has uniformly lower IMSPE
than the left-hand one, as may happen if merging identifies another local optima, we take
5 as the choice minimizing IMSPE in the right-hand regime.

5 Benchmarking examples

Here we illustrate and evaluate our method on an array of test problems. We have four
examples total. Two are relegated to Appendix B: one mirroring the 1d example from Binois
et al. (2019); another involves a 4d ocean simulator from McKeague et al. (2005). The other
two, showcased here, include a 2d toy problem and an 8d “real simulator” from inventory
management. Metrics include out-of-sample root mean-squared prediction error (RMSPE),
i.e., matching our IMSPE acquisition heuristic, and a proper scoring rule (Gneiting and
Raftery, 2007, Eq. (27)) combining mean and uncertainty quantification accuracy, which
for GPs reduces to predictive log likelihood. We also consider computing time and number
of unique design elements, n, over total acquisitions N. Our gold standard benchmark is
the “pure sequential” (M = 1) adaptive lookahead scheme of Binois et al., however when

4BFGS is a local solver and backtracking is greedy, both contributing to potential for non-monotonicity.
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relevant we also showcase other special cases. Our goal is not to beat that benchmark.
Rather we aim to be competitive while entertaining M = 24-sized batches, representing
the number of cores on a single supercomputing node.

5.1 2d toy example

Elements of this example have been in play in previous illustrations, including Figures 2-3.
The true mean function f(x) is defined as:

ap i as
exp(af +a3)  exp(a3 + a3)

f(x) = f(z1,22) =20 ;
where a; = 6x1 — 4.1, ay = 629 — 4.1, a3 = 6z; — 1.7, and a4y = 6x5, — 1.7. The true
noise surface, r(x), is a bivariate Gaussian density with location p = (0.7,0.7) and scale
Y. = 0.02 - I,. Figure 5 provides a visual using color for f(x) and contours for r(x). We
deliberately made the mean surface have the same signal structure at the bottom left and
top right regions. However, the top right region is exposed to high noise intensity while
the bottom left region is almost noise-free, creating distinct signal-to-noise regimes.
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Figure 5: The heatmap shows the mean surface f(x). Lighter colors correspond to higher
values. Contours of r(x) are overlaid.

Design aspects of our experiment(s) were set up as follows. We begin with an ny = 20-
sized maximin-LHS with five replicates upon each for Ny = 100 total simulations. This is
followed by ten batches of IMSPE-acquisition with backtracking for 240 new runs (N = 340
total). Figure 6 shows how the first six batches distributed in the input space, with one
panel for each. Color is used to track batches over accumulated runs; numbers indicate
degrees of replication. For example, the first batch had two replicates (one at a unique
input, one at an existing open circle), whereas the third batch had many more. Observe
that as batches progress, more replicates and more unique locations cluster near the noisy
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Figure 6: IMSPE design in batches: gray dots are initial design points; gray contours show
signal and noise contrast; numbers indicate replicate multiplicity. The last two panels
summarize all new points from 6 batches and all design points respectively.

top-right region of the input space. The final two panels summarize all (new) points
involved in those first six batches, including the initial design.

Figure 7 offers a comparison to Binois et al. (2019)’s pure sequential (M = 1) strategy
in a fifty-repetition MC exercise. Randomization is over the initial maximin—-LLHS, noise
deviates in simulating the response, and novel LHS testing designs of size N = 500. We also
include a “no backtracking” comparator, omitting the search for replicates step(s) described
in Section 4. For the pure sequential benchmark, we calculate RMSPE and score after every
24 subsequent steps to make it comparable to our batches. In terms of RMSPE, all three
methods perform about the same. Under the other three metrics, batch-with-backtracking
is consistently better than the non-backtracking version: more replicates, faster Het GP fits
due to smaller n, and higher score after batch three. The degree of replication yielded by
backtracking is even greater than the pure sequential scheme after batch four. Also from
batch four, batch IMSPE outperforms pure sequential design on score.

5.2 Assemble-to-order

The assemble-to-order (ATO) problem (Hong and Nelson, 2006) involves a queuing simula-
tion targeting inventory management scenarios. It was designed to help determine optimal
inventory levels for eight different items to maximize profit. Here we simply treat it as
blackbox response surface. Although the signal-to-noise ratio is relatively high, ATO sim-
ulations are known to be heteroskedastic (Binois et al., 2018b). We utilized the MATLAB
implementation described by Xie et al. (2012) through R.matlab (Bengtsson, 2018) in R.
Our setup duplicates the MC of Binois et al. (2019) in thirty replicates, in particular by
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Figure 7: Results of RMSPE, score, time per iteration in fitting hetGP model, and the
aggregate number of unique design locations from 50 MC repetitions.

initializing with a ny = 100-sized random design in the 8d input space, paired with ran-
dom degrees of replication a; ~ Unif{1,...,10} so that the initial design comprised about
Ny ~ 500 runs. Binois et al. then performed about 1500 acquisitions to end at N = 2000
total runs. We performed sixty-three M = 24-sized batches to obtain about 2012 runs.

Since the 8d inventory input vector must be comprised of integers {0, ..., 20}, we slightly
modified our method in a manner similar to Binois et al.: inputs are coded to [0, 1] so
that IMSPE optimization transpires in an M x [0, 1]® space. When backtracking, merged
IMSPEs are calculated via rounded fig;t on the natural scale.

Figure 8 shows progress in terms of average RMSPE and score mimicking the format of
the presentation of Binois et al., whose comparators are duplicated in gray in our updated
version. There are eight gray variations, representing multiple lookahead horizons (k) and
two automated horizon alternatives, with “Adapt” being the gold standard. In terms of
RMSPE, our batch method makes progress more slowly at first, but ultimately ends in the
middle of the pack of these pure sequential alternatives. In terms of score, we start out
the best, but end in the third position. Apparently, our batch scheme is less aggressive on
reducing out-of-sample mean-squared error, but better at accurately assessing uncertainty.
In the 30 MC instances our average number of new replicates per unique site was 1.64
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Figure 8: RMSPE and score over design size N from 30 MC repetitions.

(min 0, max 5), leading to a mean of n = 1610 (min 1606, max 1612). This is a little
higher (lower replication) than n = 1086 (min 465, max 1211) reported by Binois et al. for
“Adapt”. Again, we conclude that our batch method is competitive despite being faced
with many fewer opportunities to re-tune the strategy over acquisition iterations.

6 Delta smelt

Encouraged by these results, and by simulations in Section 5, we return now our motivating
delta smelt ABM application. Time and allocation limits meant only one crack at this, so
we did one last “sanity check”, extending the pilot study with batch acquisitions, before
embarking on a big batch-sequential simulation campaign. This analysis, which was also
encouraging, is described in detail in Appendix C.

6.1 Setup and acquisitions

For our “full” simulation campaign and analysis of the delta smelt ABM where we explored a
ten-dimensional input space on a 7d manifold. See Table 2, augmenting Table 1 with a new
column. This analysis expanded the effective input domain by three, and involved slightly
adjusted ranges and relationships between the original inputs. Specifically, we extended
m, and began to vary P2, F,3, and F,4 with dependencies P, = FP,2 x 1.75 + 0.05,
Pj3 = Pjg, and P, 3 = P, 4. Inputs m;, m,, and m, remain fixed at their default values.
To explore the 7d input space, we begin with maximin-LHS of size ny = 192, each
with five replicates for a total of Ny = 960 initial runs. We aim to more than double this
simulation effort, collecting a total of N = 2016 runs, by adding 44 subsequent batches of
size M = 24. This took a total of 50 days, requiring slightly more than one day per batch,
including HetGP updates, IMSPE evaluation and backtracking, and any time spent waiting
in the queue on the ARC HPC facility at Virginia Tech. Inevitably, some hiccups prevented
a fully autonomous scheme. In at least one case, what seemed to be a conservative request
of 10 hours of job time per batch (of runs that usually take 4-6 hours) was insufficient. We
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symbol range default pilot study full study

m, [0.01,050]  0.035 0.035 [0.02, 0.05]
m 0.01, 0.08]  0.050 0.050 0.050
my 0.005, 0.05]  0.030 0.030 0.030

m; 0.001, 0.025]  0.015  [0.005,0.030]  [0.005, 0.030]
My 0.001, 0.01]  0.006 0.006 0.006

m, [0.005, 0.05] 0.020 [0, 0.05] [0, 0.1]
Pis [0.10, 20.0]  0.200 0.200 0.1, 0.5]
P, 0.10,20.0]  0.800  [0.10, 1.84]  [0.10, 1.84]
Py 0.10, 20.0]  1.500 P, 1.75P,5 + 0.05
P;s 0.10,20.0]  0.600  [0.1, 1.5] 0.1, 1.5]
P 0.10, 20.0]  0.600 Py P;s

Pas 0.01, 20.0]  0.070 0.070 [0.05, 0.15]
Poa 0.01,5.0]  0.070 0.070 Pas

Table 2: Augmenting Table 1 to show the parameter settings of the “full” experiment.

had to manually re-run those failed simulations, and subsequently upped requests to 14
hours. This bigger demand led to longer queuing times even though the average execute
time was at par with previous campaigns.

When training the Het GP surrogate we used responses y; = log \; for nonzero simulation
outputs. Any zeros are replaced with y; = log % ming;, >0} A; where {7 : A\; > 0} represents
the subset of {1,..., N} indexing positive outputs. This lead to slightly different y-axis
scales for visuals compared to Section 2.3. An adaptive scheme for handling zeros was
necessitated by the dynamic nature of the arrival of A\-values furnished over the batches of
sequential acquisition — in particular of ones smaller than those obtained in the pilot study.

To illustrate, see Figure 9 which augments mean and standard deviation slice views
first provided in Figure 1. Here, to reduce clutter, numbers overlaid indicate the degrees of
replication on only the batch/IMSPE selections. As before, these are projections over the
other five dimensions, so the connection between variance and design multiplicity is weak
(obfuscating how uncertainty relates to the other five inputs). Nevertheless, multiplicity in
unique runs is generally higher (more 4s—6s) in the yellow regions. The first row of Figure
9 coincides with Figure 1, showing input pair m; x P;3. Observe that, after conditioning
on more data despite the larger space, predictive bands over m; are narrower, especially at
the boundaries. The sudden widening of the dark blue predictive intervals correspond to
the yellow spot in the middle panel. The second row shows a newly selected pair m, x m;;,
replacing the flat view from Figure 1 which is still uninteresting in the “full” setting. A
nonlinear variance is evident, being highest near m; = 0.020.

6.2 Downstream analysis

Slices are certainly not the best way to visualize a high dimensional response surface.
Moreover, there are many possible ways to utilize the information in a fitted surrogate. Our
intent here is not to explore that vast space in any systematic way, but rather to illustrate
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Figure 9: Slices for the “full” experiment, updating Figure 1. The horizontal gray line in
the right column indicates y = log % ming;.», o0y A, the value assigned to extinction outputs.

potential. Here we showcase input sensitivity analysis as one possible task downstream of
fitting and design. That is, we seek to determine which input variables have the greatest
influence on outputs, i.e., the growth rate of the fish in this example, and which variables (if
any) interact to affect changes in the response. We perform this analysis based exclusively
on the N = 2016 runs obtained from the batch sequential design experiment. We could
have combined with the pilot runs, which may have reduced variability in some parts of
the input space, but could potentially introduce complications interpretively.

Sensitivity analysis for GP surrogates (Oakley and O’Hagan, 2004; Marrel et al., 2009)
attempts to measure the effect of a subset of inputs on outputs by controlling and averaging
over the compliment of inputs (Saltelli et al., 2000). In this way, one can furnish a mean-
ingful low-dimensional summary of inherently high-dimensional relationships. Gramacy
(2020), Chapter 8.2, provides a thorough summary alongside a portable implementation.
We briefly summarize salient details here for completeness.

Let U(x) = [ [~ uk(xx) denote a distribution on inputs, indicating relative importance
in the range of settings or nearby nominal values. We take U as uniform over the study
region in Table 2. So-called main effects, sometimes referred to as a zeroth-order index,
are calculated by varying one input variable while integrating out others under U:

ME(z;) = Ev_{y | z;} = // yP(y | X)u_j(@1, 21, Tjs1, Tm) dx_jdy. (9)
X—j
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Above, P(y | x) = P(Y(x) = y) is the predictive distribution from a surrogate, f say via
HetGP. One may approximate this double-integral via MC with LHSs over U. We used
LHSs of size 10000 paired with a common grid over each variable j involved in ME(z;).

The top-left of Figure 10 reveals that all inputs show a negative relationship with the
response A, with greater values leading to declining populations. Apparently, m; and P; 3
induce higher mean variation in the response than the others. These results indicate that
juvenile mortality (m;) and the feeding parameter for juvenile food type 3 (P;3) have the
greatest impact on the mean value of the response (Figure 10, top row). Further, m; ex-
hibits a thresholding effect — above a value of about 0.025 the simulated population almost
always goes extinct within the time frame of the simulation (Figure 9, right panels). How-
ever, when m; takes on values between 0.018 and 0.022, or so, uncertainty in the estimate
of mean behavior increases substantially. This due to the individuals comprising the pop-
ulation becoming low in abundance and smaller in size to the point that egg production
cannot offset lifetime mortality.

As we mentioned in Section 2.2, HetGP puts a second GP prior on the latent nuggets
A,. Once A, and all hyperparameters are estimated, the predictive mean of the noise
process, i.e., the smoothed nuggets A, can be calculated over any testing data set in the
domain of interest. This provides a way to assess the influence of each input variable on the
heteroskedastic variance. Applying the same procedures as above, main effects for the noise
process are produced in the bottom-left of Figure 10. Observe that when m; is between
0.4 and 0.6 variance effects are highest, particularly for m; and P;3. As far as we know,
such main effects (and higher-order sensitivities) on variances are novel in the literature.

To further quantify the variation that each input factor contributes, we calculated first-
order (S5) and total (T") indices. These assume a functional ANOVA decomposition,

flanmm) = fo+ ) file)+ D ful@ma) +-+ fim(@,. . am),

j—l 1<i<j<m
so that Vary(y | x1,...,z Z Vi+ Z Vij+- -+ Vi m,
1<i<j<m

where V; = Vary, (Ey_{y | z;}), Vij = Vary,,(Ey_, {y | zs,2;}) — Vi — Vj. In a direct
application, f above is the simulator. Since that is expensive in our delta smelt case, we
use the surrogate f instead. The second equation decomposes, and quantifies, variability
in Ey,{y | x;} with respect to changes in x; according to U;(x;). It holds for our HetGP
f since all input factors can be varied independently in the input hypercube. First-order
sensitivity S; for x; measures the proportion of variation that x; contributes to the total:

 Var, (B, {y | 7,})
J Vary (y) ’

jg=1...,m.

Total sensitivity 7j is the mirror image:

o BVarly [x )} | Var(E{y [x;})
! Var(y) Var(y) :
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Figure 10: Sensitivity analysis for mean (top) and variance process (bottom): main effects
(left); first order (middle) and total sensitivity (right) from 100 bootstrap re-samples.

It considers the proportion of variability that is not explained without x;. The difference
between first-order and total sensitivities, i.e., T; — S;, may be taken as a measure of
variability in y due to the interaction between input j and the other inputs.

With HetGP surrogate f for y | x, calculation of S and T indices may also be undertaken
by MC via LHS. The details are omitted here for brevity. We repeated MC calculations of
both on 100 bootstrap samples of the original data set. A summary via boxplots is provided
in the right panels of Figure 10. These views match the main effects: m; and P, 3 stand
out in both plots. First-order sensitivity (.5) for the variance (bottom-middle), fails to flag
an obvious difference between variables. Via total sensitivity (7', bottom-right), indices for
m; and P;3 are again apparently higher than other variables, suggesting that a substantial
aspect of the effect of these variables on variability is through interactions.

Proportion ‘ my, m; m, BPao P, Pjs P,
Main process | 0.54 1 0.66 0.68 0.53 1 0.55
Noise process | 0.74 0.99 0.92 0.80 0.75 0.97 0.80

Table 3: Proportion of positive I =T — S indices.

Using those S and T' values, we computed [ =T —S. As Saltelli et al. (2000) describes,
this quantity I is positive if variability in the response can be attributed to interactions
between inputs. The proportion of our bootstrapped I measurements which are positive is
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provided in Table 3. Again, m; and P, 3 flag has highly probable for impacting the response
through an interaction with other variables. Input P2 may also have substantial impact
on A through interactions. Input m, has the third highest measurement. In fact, all of the
variables suggest statistically noteworthy affect through interaction by comparison to the
so-called median probability model (Barbieri et al., 2004) implied by a p = 0.5 threshold.
Since not many variables contribute via zeroth (main effect) and first-order summaries, it
is perhaps not surprising that action is exposed through interaction.

The results of this analysis reveal that although juvenile mortality is important for
the overall mean, it by itself does not determine whether a population will increase or
decrease (i.e., A > 0 or < 0). For example, although it will typically be important for
the average value of m; to be below 0.015 or so, the average value of A will depend,
sometimes sensitively, on the values of other parameters (Figure 9, top right panel), or
through their interactions (Table 3). The complex nature of these sensitivities implies that
environmental variation and management actions that affect these key parameters will likely
generate non-linear responses in population growth rate that depend on the interactive
effects among parameters. In addition, several parameters (e.g., m,) have important effects
on the variance of population growth rate, further complicating any assessment of the value
of an individual parameter. Predicted population responses to actions directed at affecting
change in specific biological processes (e.g., mortality rate of juveniles, m;) should be viewed
in the context of the state of the system and population. Simple changes to key parameters
will likely not lead to simple responses (i.e., change in magnitude and variance of growth
rate) but rather to ones that depend on the values of other parameters.

More importantly than the specific predictions, however, the analysis allows us to char-
acterize the emergent behavior of this complex simulation model. The goal of ABMs is
to incorporate possible mechanisms that are believed to impact dynamics of complex sys-
tems. However model builders cannot typically predict, a priori, the full dynamics of the
model across all possible parameter settings. An appropriately designed surrogate allows
us to quickly probe the model more deeply without needing to re-run the full simulation at
every parameter combination of interest, potentially at enormous computational expense.
For example, by independently varying input factors, we are able to compare their relative
contribution and investigate higher-order interactions without new runs of the simulator.
Further, once dominant variables are identified, fixing them can unravel the sensitivities
of the remaining variables. As one further example, we fixed m; and P;3 and made an
analogue of Figure 10 over the other five factors. See Appendix D for details.

7 Discussion

Motivated by a computationally intensive stochastic agent-based model simulating the
ecosystem and life cycles of delta smelt, an endangered fish, we developed a batch sequen-
tial design scheme for loading supercomputing nodes with runs in batches. We used a
heteroskedastic Gaussian process (HetGP) surrogate to acknowledge nonlinear dynamics
in mean and variance, revealed in a limited pilot study, and extended a variance-based
(IMSPE) scheme for sequential design under such models to allow the selection of multiple
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new runs at once. To facilitate numerical optimization of batch IMSPE we furnished closed
form derivatives and developed a backtracking scheme to determine if any near replicates
provided by the solver were better as actual replicates. Only actual replicates efficiently
separate signal from noise and pay computational dividends at the same time.

Our methods were illustrated and contrasted against previous (pure sequential/one-
at-a-time) active learning strategies on several synthetic and real-simulation benchmarks.
These allowed us to conclude that our scheme was no worse than previous approaches, while
designing batches of runs that could fill out a supercomputing node. Since those one-at-a-
time schemes already outperformed single-batch designs, we conclude by proxy that ours do
as well, and verified as much in additional experimentation (not provided). We then turned
to our motivating delta smelt scenario to undertake a simulation campaign with thousands
of runs in an expanded domain. Those simulations required 12000 core hours, which would
have spanned more than 500 days if run back-to-back (and not counting any queue delays).
Instead the batch campaign, took us about 55 days to run (including substantial queuing).

This order of magnitude reduction in “scientist time”, without noticeable drawbacks
in modeling efficiency, could have a substantial impact on the modus operandi of con-
ducting stochastic simulation experiments in practice. Widespread university and research
lab access to supercomputing facilities is democratizing the application of mathematical
modeling of complex physical and biological phenomena. However, strategies for planning
those experiments in this unique architectural environment are sorely needed. We think
the advances reported on here take an important first step. Simulations in hand, there are
many interesting analyses which can be performed downstream. We provided some visuals
based on slices and performed an input sensitivity analysis in order to determine which
factors have the largest effect on smelt mortality in this particular system. Our choice of
IMSPE suits this analysis well because it reduces variance globally and our Saltelli-style
indices emphasize decomposition of variance. Extending Binois et al.’s IMSPE calculation
to other downstream tasks has become a cottage industry of late. Examples include se-
quential learning of active subspaces (Wycoff et al., 2019), level-set finding and Bayesian
optimization (Lyu et al., 2018). Cole et al. (2020) adapt a similar calculation for large-scale
local GP approximation via inducing points. We see no barriers to extending these schemes
similarly, to batch analogs of one-at-a-time acquisitions. Kennedy and O’Hagan (2001)-
style calibration of stochastic simulators remains on the frontier of design for surrogate
modeling. Baker et al. (2020) identify this as an important area for further research.

One might wonder if a Binois-like one-at-a-time scheme could be adapted for batch
acquisition by inserting “synthetic data”, obtained from the predictive distribution, for
earlier (waiting to run) selections while entertaining the selection of latter batch elements.
Although there are many ways to operationalize such an idea, we think this is flawed for
several reasons. One is that the high and changing noise scenario would demand enter-
taining large numbers of replicates for those synthetic data, eliminating any computational
advantage. We found this too prohibitive to entertain as a comparator. Another is that
such a scheme would be unnecessarily making a greedy approximation to a joint optimiza-
tion. Although joint derivatives are much more work to derive, they are simple to code
now that we have provided them. No greedy approximation is necessary.

There is certainly potential for improving our scheme. We took a geometric mean to
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get scalar output for smelt simulations. Analyzing higher-dimensional outputs could reveal
additional nuance, however HetGP surrogate modeling for such settings remains on the
frontier. The performance of our scheme relies heavily on local numerical optimization
via libraries. Finding global optima for non-convex criteria in high-dimensional spaces is
always a challenge. Although we get good results with L-BFGS-B, we also tried particle
swarm optimization (PSO; Kennedy and Eberhart, 1995) in several capacities: replacing
BFGS wholesale and for finding good BFGS staring points. Improvements were consistent
but minor in the grand scheme of multiple batches of sequential design. We believe that
other gradient-free/coordinate exchange methods would perform similarly. Hybrid genetic
and gradient-based optimization (Mebane and Sekhon, 2011) could be promising, as could
a weighted least-squares approach to identifying candidate numbers of replicates (Li and
Deng, 2018). Trade-offs between queue time and batch size might be worth exploring,
however that could be a fractal undertaking: a meta computer experiment would be needed
to map out the response surface of run/wait times based on run configuration and other
(computing) environment variables. We kept it simple with M = 24 to match the number
of cores on the compute nodes, as advised by the VI ARC office. Another option is
unknown batch sizes or on-demand acquisition: whenever a batch of cores is available
the model/design scheme must be ready to furnish runs. This could be accomplished by
maintaining a larger M-sized queue of prioritized inputs, say following Gramacy and Lee
(2009), which would need to be updated for the HetGP framework.

Focusing on the delta smelt ABM in particular, the current version of the simulator
makes several fundamental assumptions that influence the population dynamics and can
affect measured input sensitivities. Future analysis could accommodate additional parame-
ters, such as those related to juvenile and adult movement behaviors that affect their growth
and mortality. One could also address structural uncertainty in the delta smelt ABM. For
example, movement rates are held constant for all individuals within each life stage and
maturity is a fixed threshold function of length. Rose et al. (2013b) examined alternative
setups to assess how different assumptions would affect model results. They formulated
mortality to continuously decrease with length, to be density-dependent (rather than con-
stant), and substituted a smoothed function of maturity-by-length for the threshold, and
repeated the ten year simulations. A future simulation campaign (perhaps using the same
parameters selected for the analysis reported here or under a novel batch-sequential design)
repeated under these alternative assumptions would provide valuable additional informa-
tion on model sensitivities and uncertainties.
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A IMSPE gradient

Omitted expressions for the IMSPE gradient in Section 3.2 are provided below.
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Recall that E(i) = r(f() - c(}NC, )NQ — c()_(n,f()TK;lc(Xn, )’Z) Again recursing with
the chain rule, first diagonal matrix r(X) via Eq. (2), gives
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It is worth observing here how relative noise levels, smoothed through A, and distance to
X, impact the potential value of new design elements X. High variance x; have low impact
unless a; is also large, in which case there is an attractlve force encouraging replication

(elements of X nearby X,,). The last component of % )) relies on %g—z)x), a quadratic:
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The structure of this component’s derivative reveals how new design elements X repel one
another and push away from existing points X,,. In other words, the forces described in
Egs. (10-11) trade-off in a sense, encouraging both spread to space-fill and compression
toward replication depending on the noise level r(-).
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The other terms that are included in 222 are as follows:
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To ensure positive variances, i.e., rather than being faithful to Eq. (4), we instead model

log T(X) = (&) (X, Xn)(C(g) + g((s)AT_Ll)_l log A,,.

Here, log A,, is optimized jointly. Thus g;(f? can be derived as:
i(p

or(X) B aK(a)(i,Xn)
OXi(p) OXi(p)
x exp(K(5)(X, X;,)(Cs) + g((s)A_l)_l log A,)

(Co) +9@A™ ") g A,

oW,
Then we focus on the expressions related to S ntM
Xi(p)
W,y 0 [ W,  wX,X) 0 SX)
Y S . e o ~"|, where
M) M) |(w(Xy, X)) w(X, X) S(X)T T(X)
B ~ _ ~ _ 610(5{1',)_( )
N 5 w(Xy,X1) ... w(Xy,Xp) asci(p)l
S(X) = B : : = | Onx(i-1) : ~ Onx-)
P w(fcl,)_(n) W(SCM,}_(n) M
- axi(p)
B 810(5(1',5(1) T
0% (p)
~r - . . o 810(5(2,5(1) ow il,il ow 5(1',5(1\4
T(X) N 8)~Ci(p) - : - N : B o O%i(p) B 9%i(p) N i(p)
(w(X1, X)) - w(Xar, Xar) :
L 0% ;(p) i
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For Gaussian kernel, w(-, -) is calculated with erf the error function erf(z) = %

for 1 < 14,5 < n and with derivative

2 (o () e ()|

B More examples

e~ dt as

3
C—n

Here we describe the two example omitted from Section 5.

B.1 1d toy example

This 1d synthetic example was introduced by Binois et al. (2019) to show how IMSPE
acquisitions distribute over the input space in heteroskedastic settings. Here we borrow
that setup to illustrate our batch scheme. The underlying true mean function is f(z) =
(62 —2)?sin(12z —4), and the true noise function is r(z) = (1.1+sin(27x))?. Observations
are generated as y ~ f(z) + ¢, where ¢ ~ N(0,0? = r(x)). The experiment starts with a
maximin-LHS of ny = 12 locations under a random number of replicates uniform in {1, 2,
3}, so that the starting size is about Ny = 24. A total of twenty M = 24-sized batches are
used to augment the design for a total budget of N = 504 runs.

Panels in Figure 11 serve to illustrate this process in six epochs. Open circles indicate
observations, with more being added in batches over the epochs. The dashed sine curve
indicates the relative noise level r(z) over the input space; vertical segments at the bottom
highlight the degree of replication at each unique input. Observe how more runs are added
to high noise regions, and the degree of replication is higher there too. This is strikingly
similar to the behavior reported by Binois et al..

B.2 Ocean oxygen

The ocean-oxygen simulator models oxygen concentration in a thin water layer deep in
the ocean, see McKeague et al. (2005). For details on how we generate simulations here,
see Herbei and Berliner (2014) and (Gramacy, 2020, Section 10.3.4).> The simulator is
stochastic and is highly heteroskedastic. Visuals are provided by our references above.
There are four real-valued inputs: two spatial coordinates (longitude and latitude) and two

*Implementation is provided https://github.com/herbei/FK_Simulator.
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Figure 11: The top-left panel shows the initial design observations. Remaining panels
display the sequential design process after adding 1, 5, 10, 15 and 20 batches.

diffusion coefficients. We consider a MC experiment initialized a ny = 40-sized maximin—
LHS, with five replicates upon each (Ny = 200). We consider adding ten M = 24-sized
batches so that NV = 440 runs are collected by the end. We can’t easily visualize the results
in a 4d space, but the analog of our 2d toy results (Figure 6) is provided in Figure 12.

In terms of out-of-sample RMSPE and score, all methods exhibit similar performance.
The purely sequential design method consistently yields more replicates. Thus, it also
takes the lowest time per iteration for updating via hetGP. Our backtracking scheme yields
a moderate proportion of replicates with the same performance as measured by RMSPE
and score, compared to the version without backtracking. Notice that these metreics do
not necessarily improve monotonically over batches. This could be attributed to unknown
“true” mean and noise functions in this real-world simulator setting. Calculation of RMSPE
and score are out-of-sample, on novel random testing sets, interjecting an extra degree of
stochasticity in these assessments.

C Sanity check on batch acquisition

We returned to the 6d (4d manifold) pilot study of Section 2.3, involving N = 480 runs, and
inspected the properties of two new M = 24-sized batches. To understand how these 48
inputs, selected via IMSPE and backtracking based on HetGP, compare to the original n =
96-sized space-filling design, we plotted empirical densities of pairwise Euclidean distances
within and between the two sets. See the solid-color-lined densities in the left panel of Figure
13. Dashed analogues offer a benchmark via sequential maximin design in two similarly
sized batches. These represent an alternative, space-filling default, ignoring HetGP model
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Figure 12: Ocean simulator results in 30 MC repetitions: RMSPE, score, time per batch
and the aggregate number of unique design locations n.

fit/IMSPE acquisition criteria.’

Consider first comparing the solid and dashed green lines, capturing the spread of
distances between new and old runs. Observe that the solid-green density is shifted to the
left relative to the dashed ones. This view reveals that IMSPE-selected runs are closer to
the existing ones than they would be under a space-filing design. The solid-green density is
similarly shifted left compared to distances from the old space-filling design (solid-black).
The situation is a little different for distances within the new batches shown in red. Here we
have a tighter density for IMSPE compared to space-filling, meaning we have fewer short
and long distances — more medium ones. We take this as evidence that the HetGP/IMSPE
batch scheme is working: spreading points out to a degree, but also focusing on some
regions of the input space more than others.

The right panel of Figure 13 shows an analog of the comparison of pairwise distances for
the larger smelt simulation campaign described in Section 6. In those 1056 new acquisitions,
204 involved replicates. With many more distance pairs, these kernel densities are more
stable than in the 4d case on the left. Nonetheless, we observe a similar pattern here in 7d.
IMSPE selections tend to be closer to themselves and to existing locations than ordinary

6Sequential maximin, being model-free, doesn’t require new evaluations of the simulator.
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Figure 13: Empirical density of pairwise distances from IMSPE batch and maximin se-
quential design for the pilot (left) and full (right) studies.

space-filling ones would. We take this as an indication that the scheme was acting in a
non-trivial way to reduce predictive uncertainty captured by HetGP model fits.

D Sensitivity indices for m,

As we introduced in Section 2.1, m, is a parameter that describes the influence of water
diversion facilities on A. Here, we fix the two most influential factors, m; and P;3, at
their respective default values of 0.015 and 0.6, to investigate sensitivity indices (based on
our full analysis from Section 6) for other input factors. Observe in the top left panel of
Figure 14 that, besides m; and P;3, P o also results in a relatively high variability of the
mean response. Since the green curves are nonlinear, our analysis shows that m, plays a
complicated role in the simulated population dynamics. Bottom panels of the figure show
that m, settings drive variation in noise more than the remaining five input factors.
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main effects, mj=0.015, Pj3=0.6

1st order sensitivity: mj=0.015, Pj3=0.6

total sensitivity: mj=0.015, Pj3=0.6
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Figure 14: Sensitivity analysis for mean (top) and variance process (bottom) with m; and
P; 5 fixed: main effects (left); first order (middle) and total sensitivity (right) from 100
bootstrap re-samples.
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