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An adaptive cumulative sum method for monitoring integer-valued
time-series data

O. Arda Vanlia and Rupert Girouxb

aDepartment of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA; bState Safety
Office, Florida Department of Transportation, Tallahassee, Florida, USA

ABSTRACT
In this paper, we propose an adaptive CUSUM monitoring method for detecting step and
linear trend changes in count-data time-series. The data is represented using a seasonal
INGARCH time series model and an exponential smoother is used to estimate level or trend
changes in the data in the cumulative-sum (CUSUM) detector. In a simulation study, the
proposed approach is compared to existing CUSUM approaches that are tuned for a specific
shift size and the ability of the methods to detect step shifts and linear trends is investi-
gated. The application of the proposed method in public health surveillance is demon-
strated using a real infectious disease count data set.
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Introduction

In many industrial quality and public health surveil-
lance applications the count data collected and moni-
tored over time typically exhibit temporal correlations
and seasonality which require a time-series model to
properly represent its dynamic characteristics. For
example, infectious disease counts may be influenced
by those in the previous month or the number of
defects in a manufacturing process driven by a specific
process dynamics may be correlated over time when
the sampling interval is small. The traditional
Shewhart type statistical process control (SPC) charts
that assume the observations are independently dis-
tributed result in too frequent false alarms than the
design value when applied on observations from a
positively autocorrelated process, requiring a time ser-
ies modeling approach for the observations
(Montgomery 2009). Much attention has been given
to investigate integer-valued time series models that
take into account of the non-negativity and the dis-
creteness nature of their generator processes in moni-
toring of count data.

The cumulative sum (CUSUM) and the exponen-
tially weighted moving average (EWMA) (Hawkins
and Olwell 2012; Lucas and Saccucci 1990) are com-
monly used techniques for detecting small changes
from a specific baseline (in-control) condition in both

continuous and count data settings. A typical draw-
back of these approaches is that they are designed to
detect a particular mean shift size, and could perform
much worse for detecting shifts smaller or larger than
this specific design value. For normally distributed
continuous data, adaptive versions of the CUSUM
and EWMA charts have been studied and demon-
strated to provide an overall good detection over a
range of mean shift sizes (Capizzi and Masarotto
2003; Jiang, Shu, and Apley 2008; Sparks 2000; Shu
and Jiang 2006; Su, Shu, and Tsui 2011). Some recent
research has focused on developing adaptive schemes
for monitoring count data (Aly, Saleh, and
Mahmoud 2021).

While the majority of the existing adaptive moni-
toring approaches are based on the assumption that
the data are independently distributed, as we also
illustrate in our case study, autocorrelation and sea-
sonality are highly prevalent in count data applica-
tions and there is a need to develop adaptive
monitoring methods for these settings. In this paper,
we propose an adaptive CUSUM method for count
data time series, in which an integer-valued general-
ized autoregressive conditional heteroskedastic
(INGARCH) time series model is utilized to account
for any autocorrelation structure and seasonality in
the data. An exponentially weighted moving average
(EWMA) smoother is used to update the reference
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value of CUSUM and a likelihood ratio test statistic
that incorporates the INGARCH conditional mean
function is used to detect step or linear trend shifts
from the mean. It is shown how, simple EWMA and
double EWMA estimators can be used in the pro-
posed adaptive method for detecting step and linear
trend shifts, respectively. We study by simulation the
effect of seasonality and autocorrelation on the ability
to detect step shifts and linear trends. A case study
involving Salmonella outbreak data (H€ohle and Paul
2008) was used to illustrate the application of the pro-
posed method in public health surveillance.

The remainder of the article is organized as follows.
Section “Review of relevant literature” reviews the
relevant literature on count data time series and
change detection. Section “Proposed methodology”
presents the proposed adaptive CUSUM method.
Section “Simulation study” presents a Monte Carlo
simulation to study the efficacy of the the method.
The illustration of the proposed method on real data
is presented in the Section “Case study: German
Salmonella infection data”. Section “Conclusions”
summarizes the contributions of the proposed
research and discusses potential its future extensions.

Review of relevant literature

Prospective monitoring of time series of counts or
attributes for detecting sustained changes in the mean
function has been studied in industrial quality and
public health surveillance fields by many authors (see
e.g., the reviews by (Woodall 1997) and (Woodall
et al. 2006)). In industrial quality control, defect rates,
number of defects observed from a production line
per the measurement unit are often described by an
independent and identical distributed Poisson process.
Periodic autoregressive models are a natural way to
capture autocorrelation and seasonality in time series
and are commonly used in infectious disease epidemi-
ology (Corber�an-Vallet and Lawson 2014) and econo-
metrics (Bollerslev and Ghysels 1996). Seasonality and
autocorrelation in count data is encountered in health
care surveillance problems due to seasonal effects of
infectious diseases or to time-varying population sizes,
often modeled by using trigonometric functions of
time (H€ohle and Paul 2008), non-homogeneous
Poisson models (Richards, Woodall, and Purdy 2015),
or applying algebraic transformations of the data
(Rossi, Lampugnani, and Marchi 1999).

Lucas Lucas (1985) studied the performance of the
cumulative sum (CUSUM) introduced by Page (1954),
for Poisson distributed counts and provided a detailed

analysis of average run length. White and Keats
(1996) proposed a Markov chain method to approxi-
mate the in-control average run length (ARL) of
Poisson CUSUM. For modeling of correlated count
data sequences, integer-valued generalized autoregres-
sive conditional heteroscedasticity (INGARCH) mod-
els and integer-valued autoregressive moving average
(INARMA) models are two main classes of time series
models. INARMA models utilize a binomial thinning
operation to adapt the standard, continuous-variable,
ARMA models to discrete random variables
(McKenzie 1988). INGARCH models (Ferland,
Latour, and Oraichi 2006), by contrast, assume a lin-
ear structure for the conditional mean, that allows
easy determination of the statistical properties of high
order model structures. For monitoring of correlated
count data sequences using CUSUM schemes, Weiß
and Testik (2009) studied integer autoregressive
(INAR) models to model AR(1)-like serial depend-
ence. INAR models are effective in modeling first-
order autocorrelation with Poisson marginals and
from the properties of the thinning operator it is easy
to compute the exact average run length (ARL) of the
monitoring scheme. For applications of monitoring
overdispersed counts with autoregressive serial
dependence structures, Weiß and Testik (2012) pro-
posed to use integer autoregressive conditionally het-
eroscedastic (INARCH) models in CUSUM
monitoring. To handle seasonality and long term
memory in count data, Vanli et al. (2019) extended
the INARCH-based monitoring to monitoring with
seasonal generalized autoregressive conditional hetero-
scedasticity (INGARCH) models. More recently,
Ottenstreurer (2021) has studied Shiryaev-Roberts
(SR) charts for monitoring INARCH(1) proesses with
various marginal distributions, including Poisson,
Negative Binomial and Binomial. By contrast to the
CUSUM procedure, which, as explained below, uses
the maximum of all log likelihoods upto the current
time point as the alarm statistic, a SR procedure uses
the sum of all log likelihoods.

In using a CUSUM approach, the practitioner typ-
ically assumes a value for the mean after a change,
according to the smallest mean shift considered
important enough to be detected quickly. In addition
the basic CUSUM assumes sustained or persistent
shifts, and not of a time-varying or intermittent shifts
form (Capizzi and Masarotto 2012). The mean after a
change is unknown, of course, and a possible solution
is to use multiple monitoring statistics simultaneously,
each optimized for a different size mean shift (Sparks
2000; Han et al. 2007). Another solution is to use a
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generalized likelihood ratio (GLR) formulation which
uses maximum likelihood estimation to estimate the
magnitude of the shift in addition to detecting the
change (Tsui et al. 2012; Reynolds and Lou 2010).
However, due to this additional optimization GLR
charts have significantly higher computational burden
than CUSUM or EWMA charts.

Another solution to deal with the assumption of a
specific mean after the change is to use adaptive control
charts. Adaptive CUSUM and adaptive EWMA charts
have recently been proposed, for normally distributed
data, to detect shifts with unknown magnitudes
(Capizzi and Masarotto 2003; Jiang, Shu, and Apley
2008; Sparks 2000; Shu and Jiang 2006; Su, Shu, and
Tsui 2011)). The unknown one-sided mean shift magni-
tude is first estimated based on some smoothing
approach of the available observations, such as the
absolute value of an exponentially weighted moving
average (EWMA) statistic (Shu and Jiang 2006; Shu,
Jiang, and Tsui 2008). Then to make the detection stat-
istic sensitive to possibly time-varying “patterned”
shifts, a CUSUM is defined as a weighted function of
the shift estimate by using a certain type of weighting
function (Shu, Jiang, and Tsui 2008; Yashchin 1989)
representing the alarm limit of the adaptive chart. In
order to apply likelihood ratio testing principles, a lin-
ear weighting function is typically recommended (Jiang,
Shu, and Apley 2008). Sparks (2000) presented a regres-
sion approach to determine the alarm limit for a limited
number of values. Shu and Jiang (2006) developed a
two-dimensional Markov chain model for the adaptive
CUSUM statistic and show that alarm limit can be
approximated by a closed form expression.

Proposed methodology

In this section we present the proposed adaptive cumu-
lative sum method to detect step and linear trend
changes in the mean of count-data time-series models.
We show how the count-data is represented with a
seasonal INGARCH model, an EWMA is used to esti-
mate step and linear trend shifts in the conditional
mean function and the adaptive CUSUM statistic is
forumlated as a function of the linearly weighted
shift estimate.

Seasonal INGARCH(1,1) time series model

Conditional on the past data, the count yt of an event
(e.g., disease cases) in time periods t ¼ 1, 2, ::: is assumed
to follow an integer-valued generalized autoregressive
conditional heteroskedastic, or INGARCH(1,1), process
(Ferland, Latour, and Oraichi 2006):

ytjlt � PoissonðltÞ (1)

lt ¼ dþ ayt�1 þ clt�1 (2)

with conditional mean (or incidence rate) lt, intercept
d > 0 and autoregressive parameters a � 0 and c � 0
for yt�1 and lt�1, respectively. The appropriate posi-
tivity or non-negativity requirements of the parame-
ters are imposed to ensure nonnegativity of lt.
INGARCH(1,1) process is considered to be an inte-
ger-valued analogue of the GARCH(1,1) process
(Bollerslev 1986), because the model is conditional on
the Poisson mean (which equals the conditional vari-
ance) and allow one to account for the heteroscedas-
ticity in the variance.

The constant intercept in (2) can be modified to
incorporate secular (linear) and seasonal time trends
(Kleinman 2005) by using linear and trigonometric
functions of time to obtain a seasonal INGARCH(1,1)
model:

lt ¼ dþWt þ ayt�1 þ clt�1 (3)

where Wt combines the effects of secular and seasonal
trends:

Wt ¼ qt þ
XK
j¼1

gj cos ð2pjt=TÞ þ wj sin ð2pjt=TÞ
� �

(4)

¼ qt þ
XK
j¼1

Rj sin ð2pjt=T þ XjÞ (5)

where q is the coefficient modeling the linear trend
over time, g ¼ ðg1, :::, gKÞ and w ¼ ðw1, :::,wKÞ are the
coefficients of the trigonometric functions of time
modeling the seasonal trend, K is the number of trig-
onometric functions needed, and T is the length of
the season. In Equation (5), Rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j þ w2

j

q
is the

amplitude and Xj ¼ arctanðwj=gjÞ is the phase shift of
each sinusoidal wave.

This approach is similar to (H€ohle and Paul 2008)
who used trigonometric functions to model seasonal-
ity in count data for prospective outbreak detection,
however, their model assumed count data is distrib-
uted independently over time and hence does not
account for temporal autocorrelation. Modeling sea-
sonal variation in infectious disease counts through
the inclusion of set of trigonometric functions has
been used in various studies, including (Held and
Paul 2012). Bentarzi and Bentarzi Bentarzi and
Bentarzi (2017) provided closed-form expressions for
the marginal mean and variance functions for seasonal
INGARCH(1,1) processes under the condition of peri-
odical stationarity:
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E yt½ � ¼ bt ¼
dþWt

1� ðaþ cÞ (6)

V yt½ � ¼ btð1� ðaþ cÞ2 þ a2Þ
1� ðaþ cÞ2 : (7)

Existing methods to detect specific magnitude
shifts in count-data time-series

Before introducing the proposed CUSUM method we
first review the existing INGARCH(1,1) based
CUSUM scheme for detecting fixed magnitude
changes in count-data time series, previously studied
by (Vanli et al. 2019; Weiß and Testik 2012). The
approach is based on a likelihood-ratio test that
assumes the count-data follows the INGARCH(1,1)
model with conditional mean l0, t ¼ ltðd0, g,w, a, c, qÞ
upto a time point s� 1, s being the changepoint, and
with conditional mean l1, t ¼ ltðd1, g,w, a, c, qÞ after
time point s. That is, it is assumed that only the inter-
cept d is subject to change and all other parameters
remain constant.

The intercept of the process when it is subject to a
step shift with an unknown magnitude j is repre-
sented as

d ¼ d0, for t � s

¼ d0 þ j, for t ¼ s, sþ 1, :::
(8)

Similarly, if the intercept is subject to linear trend
shifts with slope x then

d ¼ d0, for t � s

¼ d0 þ x� ðt � sþ 1Þ, for t ¼ s, sþ 1, :::
(9)

Weiß and Testik (2012) and Vanli et al. (2019)
considered detecting step shifts in the intercept of
INGARCH(1,1) processes, by testing the following
hypotheses

H0 : d ¼ d0 for all t

H1 : d ¼ d0 for t ¼ 1, 2, :::, s� 1

d ¼ d�1ðtÞ ¼ d0 þ j� for t ¼ s, sþ 1, :::

where j� is a specified step shift magnitude. For
detecting linear trends, this method can be modified
to test the following hypotheses:

H0 : d ¼ d0 for all t

H1 : d ¼ d0 for t ¼ 1, 2, :::, s� 1

d ¼ d�1ðtÞ ¼ d0 þ x�ðt � sþ 1Þ for t ¼ s, sþ 1, :::

Note that for detecting linear trends an estimate of
the change-point needs to be obtained, as will be
reviewed below. The log likelihood ratio for the joint

probability distribution f ðy1, :::, y0tj:Þ of the data
observed up to a time instant t0 under the hypotheses
H1 and H0 is:

Lðl0, l�1, t0Þ ¼ log
f ðy1, :::, yt0 jl�1, t0 Þ
f ðy1, :::, yt0 jl0, t0 Þ

¼
Xt0
t¼1

log
f ðytjl�1, tÞ
f ðytjl0, tÞ

(10)

where l0, t and l�1, t are the conditional mean functions
under the null H0 hypothesis (i.e., with intercept d0)
and the alternative H1 hypothesis (i.e., with the speci-
fied intercept d�1ðtÞ, based either on step or linear
trend), respectively. The second equality is obtained
because the data are independent given the conditional
mean at time period t per Equations (1) and (2), and
writing the log likelihood as the sum of the log likeli-
hood ratios of respective time instants. The alarm statis-
tic is the maximum of all log likelihoods upto time t,
that is, St ¼ max1�t0�tLðl0, l�1, t0Þ: Accordingly, the
alarm statistic based on Equation (10) can be written as
a cumulative sum (CUSUM) (Lorden 1971).

St ¼ max 0, St�1 þ log
f ðytjl�1, tÞ
f ðytjl0, tÞ

 !
: (11)

For a Poisson probability mass function f ðyjlÞ ¼
e�lyl=l!, the CUSUM statistic is simplified as:

St ¼ max 0, St�1 þ yt log
l�1, t
l0, t

� ðl�1, t � l0, tÞ
 !

(12)

where the conditional means l�1, t and l0, t are
obtained by evaluating Equation (3), with d�1ðtÞ and
d0, respectively. For detecting step shifts with magni-
tude j�, the out-of-control mean l�1, t is evaluated
with d�1 ¼ d0 þ j�: For detecting trend shifts with
slope x� the out-of-control mean is obtained using
d�1ðtÞ ¼ d0 þ x�ðt � ŝ þ 1Þ: These are the existing
cusum approaches for step and trend shifts, which
will be termed, respectively, as SCUSUM and
TCUSUM, and will be studied to compare with the
proposed adaptive CUSUM method.

As the estimator of change-point using a CUSUM,
Page (1954) proposed to use the starting point of the
last Wald sequential test (starting point of the rejec-
tion test):

ŝ ¼ max
1�t�ta

ftjSt ¼ 0g: (13)

where ta is the alarm time, ta ¼ min1�t0�tft0jSt0 > hg:
This is the approach we will use in implementing
the TCUSUM.
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Proposed adaptive CUSUM method to detect shifts
in count-data time-series

A disadvantage of the existing CUSUM approach is
that the shift magnitude, either j� or x�, need to be
specified, while the actual shift may have a different
magnitude from the specified value. Another draw-
back is that, the process change may follow a profile
different than a specified pattern, for example instead
of a step change a linear trend change may occur. The
proposed method is an adaptive cumulative sum
(CUSUM) monitoring statistic to detect step or linear
trend changes in seasonal INGARCH(1,1) processes
by using an exponential smoother to estimate the shift
magnitude. The proposed Adaptive CUSUM method,
unlike the existing approach, does not require a shift
size be specified and can be formulated for detecting
both step and linear trend changes.

A one-step ahead forecast of the count data yt of the
in-control process given all observations y1, y2, :::, yt�1

upto the current time t� 1 is the conditional mean of
the INGARCH process model (Bollerslev and Ghysels
1996) at time t, written as:

l0, t ¼ d0 þWt þ ayt�1 þ cl0, t�1 for t ¼ 1, 2, ::: (14)

where Wt is defined with parameters q,wj, gj and T
using Equation (4) and the equation is initialized
at l0, 0 ¼ d0=ð1� a� cÞ:

Suppose, as a result of a shift in the intercept, the
conditional mean changes from l0, t to lt ¼ l0, t þ h
where h is the shift magnitude. Let ĥt be the exponen-
tially weighted moving average (EWMA) estimate of
the shift. The one step ahead forecast of the process yt
accounting for the possible shift is

l̂t ¼ l0, t þ ĥt: (15)

Since all parameters of the in-control mean l0, t are
known we do not use a “hat” notation for this term.
However, if the in-control model is also estimated from
data then l0, t is replaced with its estimate l̂0, t: In the
case study that is presented in “Case study: German
Salmonella infection data” we consider a problem
where the in-control mean is estimated.

We study both simple EWMA and double EWMA
to estimate the shifts in mean. For detecting step
shifts, a simple EWMA is used to estimate the shift:

ĥt ¼ ð1� kÞĥt�1 þ kðyt � l0, t�1Þ
¼ ĥt�1 þ ket

(16)

where 0 � k � 1 is the smoothing constant, et ¼
yt � l0, t�1 � ĥt�1 	 yt � l̂t�1 is the prediction error
where in the second equality l̂t comprises both the
time-series model forecast andthe EWMA estimate,

according to Equation (15). The EWMA is initialized
as ĥ0 ¼ 0: The EWMA equation can be written more
generally, using a monotone score function

ĥt ¼ ĥt�1 þ /ðetÞ (17)

which reduces to (16) when /ðetÞ ¼ ket: To ensure
that the procedure (17) tracks large shifts quickly,
Capizzi and Mazorotto (2003) propose using Huber’s
score function defined as

/ðeÞ ¼
eþ ð1� kÞn if e < �n
ke if jej � n
e� ð1� kÞn if e > n

8<
: (18)

where n � 0 is a thresholding constant specified by
the user. The Markovian-type statistic (Lorden 1971)
with the Huber function includes the EWMA statistic
/ðetÞ ¼ ket as a special case when n ! 1: When
n¼ 0 or k¼ 1, Huber’s function reduces to /ðeÞ ¼ e,
and the statistic (Lorden 1971) with the Huber func-
tion is essentially a Shewhart statistic.

For estimating constant shifts in the mean of a process,
a simple EWMA typically provides adequate performance.
However, for processes that drift according to a linear
trend, the simple EWMA estimate often “lags” behind the
actual shift and a double EWMA, which uses two expo-
nential smoothers, provides a superior performance (Del
Castillo 1999). In a double EWMA, a smoother Ft is used
to estimate the level and another smoother Gt is used to
estimate the slope of the data. The double EWMA esti-
mate ĥt of the shift in the mean of the INGARCH process
is then obtained using the following equations:

ĥt ¼ Ft þ Gt (19)

Ft ¼ ð1� kÞðFt�1 þ Gt�1Þ þ kðyt � l0, t�1Þ
¼ ðFt�1 þ Gt�1Þ þ kðyt � l0, t�1 � Ft�1 � Gt�1Þ

(20)

	 ĥt�1 þ /ðetÞ (21)

et ¼ yt � l0, t�1 � ĥt�1 (22)

Gt ¼ ð1� gÞGt�1 þ gðFt � Ft�1Þ
¼ Gt�1 þ gðFt � ĥt�1Þ
	 Gt�1 þ g/ðetÞ

(23)

where /ðetÞ is the score function defined as in
Equation (18) with 0 � k � 1 as the smoothing con-
stant for the level and 0 � g � 1 as the smoothing
constant for the slope.

The proposed one-sided adaptive CUSUM for
detecting increases based on the EWMA estimator ĥt
of the shift is defined as
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St ¼ max 0, St�1 þ uðĥtÞ yt log
l̂t

l0, t
� ðl̂t � l0, tÞ

� �� �
(24)

where l0, t is the one-step-ahead forecast of the in-
control process mean found by Equation (14) and
uðĥtÞ is a weight function of the estimated shift mag-
nitude that defines the control limit of the CUSUM
statistic. The shift estimate ĥt and the forecasted con-
ditional mean l̂t are found using either a simple
EWMA (Lorden 1971) or a double EWMA (Lucas
and Saccucci 1990). The adaptive CUSUM is initial-
ized at S0 ¼ 0: The single EWMA is initialized at
ĥ0 ¼ 0 and the double EWMA smoothers are initial-
ized at F0 ¼ d0=ð1� a� cÞ and G0 ¼ 0:

In this study, two new INGARCH-based adaptive
CUSUMs are proposed. The first method, referred to
as the single exponential smoother CUSUM, or
SESCUSUM, is based on a simple EWMA and used
to detect step shifts in the mean. The second method,
referred to as the double exponential smoother
CUSUM, or DESCUSUM, is based on a double
EWMA and used to detect linear trend shifts in the
mean. Without loss of generality, we focus in this
paper on one-sided CUSUMs to detect increases in
the mean, however, the proposed approach is applic-
able for constructing two-sided CUSUMs as well.

In this study, we consider the linear weight func-
tion uðĥtÞ ¼ ĥt , which was shown to provide superior
performance in adaptive CUSUM charts in continuous
data in previous studies (Jiang, Shu, and Apley 2008).
Weighted CUSUM is a generalization of the basic

cumulative sum control scheme and has been studied
to make the method more sensitive to time-varying
and dynamic patterned shifts (Shu, Jiang, and Tsui
2008; Yashchin 1989).

The performance of the monitoring scheme will be
measured by how quickly an alarm is signaled by the
monitoring scheme when the process moves out-of
statistical control. The speed of signaling an alarm is
measured by the average run length (ARL), the
expected number of samples required by the method
to signal. It is desirable to have a small out-of-control
ARL, denoted ARL1, the ARL when there is a signifi-
cant change in the process, so that the change is
detected quickly or with minimum detection delay. By
contrast, it is desirable to have a large in-control ARL,
denoted ARL0, the ARL when the process is in a state
of statistical control, so that the rate of false alarms is
low. The monitoring scheme signals an alarm if the
CUSUM exceeds an alarm threshold h, that is, when
Sk > h: The alarm threshold h is determined by
Monte Carlo simulation of the process under the null
hypothesis so that the in-control ARL of the chart is
close to a pre-specified value.

Simulation study

In this section we study by simulation the perform-
ance of the proposed adaptive CUSUM method in
detecting step and trend shifts in the mean of count-
data time-series. The in-control process is represented
with a seasonal INGARCH(1,1) with K¼ 1 harmonic

Figure 1. Single realization of an INGARCH(1,1) process with seasonalities R ¼ 0, 0:2 and 0.4 under step shift. The shift estimate
and the forecast are obtained with a simple EWMA utilizing k ¼ 0:2 and n ¼ 1:
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component for monthly observations with an annual
season (T¼ 12):

ytjl0, t � Poissonðl0, tÞ (25)

l0, t ¼ d0 þ ayt�1 þ cl0, t�1 þ w cos ð2pt=12Þ
þ g sin ð2pt=12Þ: (26)

Processes with equal harmonic coefficients (i.e.,
with g ¼ wÞ and various seasonality values, repre-
sented by R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ g2

p
, are considered.

The adaptive CUSUM methods are compared to
the existing CUSUM procedures. All methods assume
the correct INGARCH(1,1) representation of the pro-
cess as the baseline model l0, t: The alarm thresholds
for the methods are determined to achieve ARL0 ¼
400 from Monte Carlo simulations of the baseline
process replicated 10,000 times for any configuration.
Similarly, ARL1 is calculated from 10,000 Monte Carlo
simulations for each out of control configuration. The
relative mean index (RMI), studied by Han and Tsung
(2006), is used to summarize the performance of a
chart over a range of shifts. RMI for a chart is calcu-
lated using

RMI ¼ 1
L

XL
i¼1

ARLðiÞ1 � ARL�ðiÞ1

ARL�ðiÞ1

 !
(27)

where L is the total number of shift sizes considered,
ARLðiÞ1 is the out of control ARL of the chart at the i-
th shift size and ARL�ðiÞ1 is the minimum of the ARLs
attained by all charts at the i-th shift size
(i ¼ 1, 2:::, L). A monitoring scheme with a smaller
RMI is considered to have a better overall perform-
ance than a competing method.

Detecting step shifts

The process with d0 ¼ 1:2, a ¼ 0:6, c ¼ 0:28 and
T¼ 12, but varying w ¼ g values are considered to
investigate different seasonalities. Figure 1 shows a
single realization of the process where a step shift
with magnitude j¼ 2 is introduced in the intercept at
time s¼ 20 based on Equation (8). The cases of R¼ 0
(non seasonal) and R¼ 0.2 and 0.4 are shown. The
forecasted mean l̂t (red line) and estimated shift ĥt
(orange line) are found with the seasonal
INGARCH(1,1) model. A simple EWMA with

Table 1. ARL of SESCUSUM and SCUSUM under step shifts.
SESCUSUM (n,k) SCUSUM (j

�
)

1.5 4 1
R j 0.4 0.8 0.95 0.4 0.8 0.95 0.4 0.8 0.95 0.25 0.6 1.8 2.5 6 12

0 0 398.95 402.69 399.85 399.59 401.15 399.83 400.89 400.46 399.42 400.41 400.14 401.54 401.01 402.75 416.41
0.25 149.73 147.62 148.10 151.80 146.55 148.05 141.83 145.64 147.39 148.56 151.36 192.67 209.47 242.58 239.25
0.5 86.33 84.42 84.59 86.89 83.77 84.37 78.47 82.18 84.13 86.26 81.14 103.72 118.86 163.26 158.48
1 42.95 42.20 42.38 42.74 41.70 42.28 39.11 40.96 41.89 51.23 42.01 42.91 48.84 77.97 79.89
1.5 27.33 26.99 27.15 27.32 26.71 27.09 25.70 26.47 26.95 39.16 30.01 24.52 26.26 42.46 47.48
2 19.74 19.48 19.59 19.70 19.27 19.53 19.14 19.18 19.45 32.74 23.88 16.98 16.96 25.96 30.67
2.5 15.32 15.14 15.19 15.27 14.98 15.19 15.29 15.00 15.14 28.59 20.25 13.04 12.29 16.72 21.29
3.5 10.36 10.23 10.26 10.36 10.14 10.25 10.87 10.29 10.24 23.30 15.69 9.00 7.97 8.47 11.39
6 5.55 5.54 5.55 5.52 5.51 5.55 6.30 5.68 5.57 16.62 10.31 5.23 4.38 3.36 3.68
9 3.50 3.53 3.56 3.41 3.50 3.55 4.19 3.68 3.58 12.58 7.39 3.59 2.99 2.11 1.87
12 2.55 2.61 2.63 2.46 2.57 2.63 3.13 2.74 2.65 10.09 5.74 2.79 2.35 1.62 1.35

0.2 0 391.15 399.31 399.03 400.14 399.85 399.20 400.59 400.33 400.11 403.06 400.66 399.35 399.76 393.26 397.11
0.25 163.68 158.24 156.44 164.51 158.63 157.39 155.93 159.46 156.46 136.34 145.21 183.59 200.00 229.01 232.54
0.5 96.09 93.06 91.36 96.26 92.00 91.82 87.61 91.71 91.86 81.88 78.21 99.40 113.72 147.93 153.71
1 48.08 46.63 46.07 47.21 46.24 46.30 43.77 45.68 46.11 50.99 41.45 41.67 47.14 72.78 76.74
1.5 30.24 29.56 29.15 29.63 29.16 29.27 28.34 28.91 29.09 39.82 30.29 23.82 25.40 40.27 45.74
2 21.56 21.06 20.86 21.24 20.84 20.95 21.00 20.86 20.88 33.84 24.58 16.86 16.67 24.51 29.71
2.5 16.55 16.19 16.04 16.36 16.08 16.14 16.69 16.19 16.11 29.99 21.05 13.18 12.33 16.02 20.62
3.5 11.08 10.89 10.81 11.00 10.82 10.85 11.75 11.03 10.89 25.04 16.89 9.41 8.32 8.49 11.09
6 6.13 6.06 6.03 6.01 6.03 6.06 6.95 6.28 6.09 18.84 11.60 5.98 5.01 3.68 3.76
9 3.95 3.97 3.96 3.80 3.93 3.97 4.77 4.16 4.01 14.82 8.79 4.24 3.46 2.31 1.95
12 2.89 2.94 2.94 2.75 2.90 2.94 3.59 3.10 2.97 12.21 7.11 3.30 2.68 1.74 1.38

0.4 0 400.57 399.66 399.86 399.58 399.26 400.05 400.72 400.91 400.10 392.98 399.16 400.96 394.30 388.89 396.78
0.25 163.68 155.45 154.60 162.83 154.13 152.32 144.66 149.51 154.50 102.08 110.33 154.40 169.28 223.22 253.16
0.5 94.16 88.92 87.88 92.32 87.60 87.58 79.58 84.41 87.68 61.49 58.53 77.80 89.00 135.68 165.90
1 46.20 43.83 43.53 44.88 42.97 43.08 39.25 41.62 43.51 40.96 33.20 33.01 37.51 63.80 84.45
1.5 28.60 27.59 27.44 28.04 27.21 27.29 25.68 26.47 27.41 34.39 25.54 20.12 21.19 35.80 49.07
2 20.50 19.65 19.57 20.15 19.41 19.43 19.05 18.99 19.59 30.88 21.93 14.66 14.42 21.72 31.45
2.5 15.64 15.17 15.08 15.54 14.99 14.99 15.18 14.78 15.14 28.36 19.48 11.88 11.16 14.65 21.65
3.5 10.57 10.26 10.22 10.44 10.15 10.16 10.75 10.16 10.29 24.79 16.36 9.07 8.06 8.19 11.54
6 6.07 6.00 6.00 5.94 5.94 5.97 6.64 6.08 6.05 19.75 11.90 6.35 5.32 3.89 4.08
9 4.06 4.05 4.06 3.90 3.99 4.04 4.71 4.17 4.11 16.29 9.37 4.68 3.79 2.48 2.15
12 3.00 3.01 3.02 2.85 2.96 3.01 3.58 3.13 3.06 13.74 7.91 3.68 2.93 1.86 1.50
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smoothing parameter k ¼ 0:2 and threshold n ¼ 1 is
used to estimate the shift. The dashed lines show the
true mean and the shift before and after the change.
Based on Equation (6), the initial marginal mean is 10
and a shift of j¼ 2 units in the conditional mean
causes it to increase by j=ð1� a� cÞ ¼ 2=ð1� 0:6�

0:28Þ ¼ 16:67 units to 26.67. The EWMA estimate ĥt
of the shift converges to the true value, however, the
convergence is slower with seasonal processes than
the non-seasonal process.

The proposed adaptive SESCUSUM statistic (Page
1954) and the existing SCUSUM statistic (Hawkins

Figure 2. ARLs of SESCUSUM and SCUSUM under step shifts and increasing seasonality (R ¼ 0, 0:2, 0:4). SESCUSUM uses thresholds
c ¼ 1:5, 4,1 and smoothers k ¼ 0:2, 0:4, 0:8, 0:95: SCUSUM uses j� ¼ 0:6 and 1.8.
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and Olwell 2012) are implemented to detect step shifts
d ¼ d0 þ j with j varying between 0 and 12. The
SESCUSUM statistic is implemented with smoother
constants k ¼ 0:4, 0:8, 0:95 and thresholds n ¼
1:5, 4,1: The SCUSUM statistic is implemented with
j� ¼ 0:6 and 1.8. The detection performance of the
methods is studied by computing the ARL for the
processes shown in Figure 1, however, a step shift
with magnitude j is introduced in the intercept at
time s¼ 1, that is, the zero-state ARL is computed.

Table 1 and Figure 2 show the ARLs of the meth-
ods. The ARLs under all shift sizes are larger with
larger seasonalities indicating that change detection is
more difficult under larger seasonalities for both
methods. The SCUSUM with j� ¼ 0:6 generally gives
smaller ARLs for shifts smaller than about 2.5 and
that with j� ¼ 1:8 gives smaller ARLs for shifts larger
than about 2.5 and less than about 9. The
SESCUSUM, by contrast, which is not tuned for a
specific shift, provides a more uniformly good ARL
performance throughout the shift sizes considered
regardless of k and n, and for shift sizes larger than 9
the SESCUSUMs outperform the SCUSUMs.

Table 2 gives the RMI values of the methods com-
puted based on the ARLs reported in Table 1. The
proposed SESCUSUM under thresholds, n¼ 4 and 1
and smoothers k ¼ 0:8 and 0.95 and the SCUSUM
with j� ¼ 2:5 provides the best performance under all
seasonalities. Further, the performance of SCUSUM
varies significantly with the choice of j�, while the
performance of SESCUSUM is less variable across the
choices of n and k. For non-seasonal data, the
SESCUSUM with k larger than 0.4 (any n) outper-
forms the SCUSUM with j� ¼ 1:8 for the entire range
of shifts (smaller RMI). By contrast, when the data is
seasonal, the SESCUSUM with a larger threshold n ¼
1 and a larger smoother k ¼ 0:8 or 0.95, which puts
more weight to the current data (less smoothing) is
needed for better performance.

The columns labeled “Avg” in Table 2 give the
average RMI under each seasonality from all model
parameters (i.e., all j� values for the SCUSUM, all n
and k values for the SESCUSUM). Based on the
smaller average RMI values attained, it can be seen
that the SESCUSUM provides better overall

performance than the SCUSUM under all seasonal-
ities. In summary, the existing SCUSUM performance
depends very strongly on the choice of j� (reflected
by a higher average RMI value) and the choice of this
parameter may not be obvious for a practitioner to set
in applications. By contrast, the proposed adaptive
SESCUSUM has a more uniform RMI performance
regardless of the choice of its parameters n and k
(reflected by a lower average RMI value) and hence is
easier to use by practitioners.

Detecting linear trend shifts

We considered a non-seasonal process with d0 ¼
1:2, a ¼ 0:6, c ¼ 0:28 and w ¼ g ¼ 0 in which a linear
trend shift in the intercept with slope x is introduced
based on Equation (9). Figure 3 shows a single realiza-
tion of the case with x ¼ 0:5 and s¼ 20. A simple
and a double exponential smoother is used to com-
pute the estimated shift ĥt according to Equations
(17) and (19), respectively (orange line). The fore-
casted mean l̂t (red line) is obtained with Equation
(15) and the dashed lines show the true mean and the
shift magnitude. The simple exponential smoother
with k ¼ 0:2 lags behind the change, however double
exponential smoother with k ¼ 0:2 and g ¼ 0:2 more
adequately tracks the shift. Note that a double expo-
nential smoother with k ¼ 0:2 and g ! 0 is equivalent
to a simple exponential smoother with k ¼ 0:2:

The ARL performance of the proposed adaptive
DESCUSUM statistic (Page 1954), based on a double
EWMA, and the existing TCUSUM statistic (Hawkins
and Olwell 2012), that assumes a fixed slope for a lin-
ear trend change, are compared for their efficacy in
detecting linear trend shifts with slope x varying
between 0 and 12.8. A linear trend shift in the inter-
cept is introduced at time s¼ 1 based on Equation (9)
(i.e., zero-state ARL is computed). The double EWMA
is implemented with parameters k ¼ 0:2, 0:4, 0:8, g ¼
0:01, 0:05, 0:2 and n ¼ 1:5, 4,1: Note that a
DESCUSUM with g ! 0 is equivalent to a
SESCUSUM. A smaller value for the slope smoother
than the level smoother (i.e., g < kÞ was found to
achieve more stable forecasts. The TCUSUM statistic
is implemented with trend slopes x� ¼ 1:7 and 6.7.

Table 2. RMI of SESCUSUM and SCUSUM under step shifts.
SCUSUM (j

�
) SESCUSUM (n, k)

1.5 4 Inf
R 0.25 0.6 1.8 2.5 6 12 Avg 0.4 0.8 0.95 0.4 0.8 0.95 0.4 0.8 0.95 Avg

0 2.14 1.07 0.35 0.30 0.48 0.58 0.82 0.35 0.34 0.35 0.34 0.33 0.35 0.42 0.35 0.35 0.40
0.2 2.40 1.24 0.40 0.32 0.42 0.53 0.88 0.46 0.44 0.43 0.43 0.43 0.44 0.55 0.46 0.44 0.59
0.4 2.46 1.23 0.43 0.35 0.54 0.89 0.98 0.56 0.52 0.51 0.53 0.50 0.50 0.55 0.50 0.52 0.65
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Table 3 and Figure 4 show the ARLs of the meth-
ods. Similar to the step shift results, the performance
of the TCUSUM is highly variable and sensitive on

the choice of the slope parameter x�: By contrast the
performance of DESCUSUM is more stable regardless
of the choices of its parameters g, k and n. The

Figure 3. Single realization of an INGARCH(1,1) process under trend shift. Shift estimates and forecasts are obtained with a simple
EWMA with k ¼ 0:2 and n ¼ 1 and a double EMWA with k ¼ 0:2, g ¼ 0:05, and n ¼ 1:

Table 3. ARLs of DESCUSUM and TCUSUM under linear trend shifts.
DESCUSUM ðn, k, gÞ TCUSUM ðx�Þ

0.2 0.4 0.8

x n 0.01 0.05 0.2 0.01 0.05 0.2 0.01 0.05 0.2 0.8 1.7 3.3 6.7 10 15

0 1.5 399.45 400.39 399.28 399.73 400.16 401.47 401.74 399.52 400.00 400.30 399.53 400.49 399.28 400.92 401.71
0.2 20.63 20.64 21.12 20.29 20.34 20.75 20.12 20.23 20.93 18.36 16.78 16.24 16.77 17.33 17.99
0.6 10.93 10.93 11.13 10.80 10.82 10.99 10.76 10.81 11.10 12.32 10.45 9.11 8.54 8.49 8.64
1 7.99 8.00 8.13 7.92 7.93 8.04 7.90 7.93 8.12 10.53 8.69 7.32 6.50 6.25 6.23
1.8 5.52 5.52 5.58 5.47 5.47 5.53 5.45 5.47 5.59 8.93 7.17 5.83 4.97 4.60 4.37
2.6 4.38 4.38 4.43 4.34 4.34 4.39 4.33 4.34 4.43 8.10 6.40 5.13 4.27 3.89 3.62
3.4 3.68 3.68 3.72 3.65 3.65 3.69 3.65 3.65 3.72 7.56 5.91 4.69 3.85 3.47 3.19
4.2 3.22 3.22 3.24 3.20 3.20 3.22 3.19 3.20 3.24 7.19 5.54 4.34 3.55 3.19 2.91
5.8 2.63 2.64 2.65 2.61 2.62 2.63 2.61 2.62 2.65 6.66 5.08 3.96 3.13 2.86 2.52
7.4 2.27 2.27 2.28 2.26 2.26 2.27 2.26 2.26 2.28 6.23 4.80 3.68 2.95 2.59 2.25
9.8 1.91 1.91 1.92 1.91 1.91 1.91 1.91 1.91 1.91 5.95 4.35 3.25 2.72 2.23 2.04
12.8 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 5.66 4.04 3.02 2.35 2.03 1.99
0 4 401.10 400.87 401.73 401.37 399.59 400.62 400.14 400.33 401.89 400.30 399.53 400.49 399.28 400.92 401.71
0.2 21.60 22.23 25.64 20.41 20.63 21.60 20.08 20.05 20.42 18.36 16.78 16.24 16.77 17.33 17.99
0.6 11.21 11.52 13.11 10.77 10.85 11.27 10.72 10.70 10.87 12.32 10.45 9.11 8.54 8.49 8.64
1 8.17 8.37 9.41 7.85 7.93 8.20 7.85 7.83 7.96 10.53 8.69 7.32 6.50 6.25 6.23
1.8 5.59 5.72 6.35 5.42 5.46 5.62 5.43 5.41 5.48 8.93 7.17 5.83 4.97 4.60 4.37
2.6 4.44 4.52 4.98 4.31 4.34 4.45 4.31 4.31 4.35 8.10 6.40 5.13 4.27 3.89 3.62
3.4 3.72 3.80 4.17 3.61 3.64 3.74 3.63 3.62 3.66 7.56 5.91 4.69 3.85 3.47 3.19
4.2 3.25 3.31 3.63 3.17 3.19 3.26 3.18 3.17 3.20 7.19 5.54 4.34 3.55 3.19 2.91
5.8 2.66 2.70 2.93 2.59 2.60 2.66 2.60 2.60 2.61 6.66 5.08 3.96 3.13 2.86 2.52
7.4 2.29 2.32 2.51 2.21 2.23 2.29 2.23 2.22 2.26 6.23 4.80 3.68 2.95 2.59 2.25
9.8 1.92 1.93 2.10 1.85 1.86 1.92 1.86 1.86 1.91 5.95 4.35 3.25 2.72 2.23 2.04
12.8 1.66 1.66 1.80 1.58 1.58 1.66 1.58 1.58 1.66 5.66 4.04 3.02 2.35 2.03 1.99
0 1 400.59 400.12 399.67 400.30 399.20 400.68 400.33 399.75 399.83 400.30 399.53 400.49 399.28 400.92 401.71
0.2 18.92 18.93 21.86 19.60 19.75 20.91 20.00 20.06 20.30 18.36 16.78 16.24 16.77 17.33 17.99
0.6 10.21 10.20 11.26 10.36 10.39 10.75 10.66 10.68 10.77 12.32 10.45 9.11 8.54 8.49 8.64
1 7.65 7.66 8.37 7.66 7.68 7.88 7.81 7.82 7.87 10.53 8.69 7.32 6.50 6.25 6.23
1.8 5.50 5.52 6.00 5.37 5.38 5.49 5.41 5.41 5.42 8.93 7.17 5.83 4.97 4.60 4.37
2.6 4.49 4.51 4.89 4.33 4.34 4.42 4.30 4.31 4.31 8.10 6.40 5.13 4.27 3.89 3.62
3.4 3.86 3.88 4.21 3.68 3.70 3.76 3.63 3.63 3.63 7.56 5.91 4.69 3.85 3.47 3.19
4.2 3.43 3.45 3.75 3.25 3.27 3.31 3.19 3.19 3.19 7.19 5.54 4.34 3.55 3.19 2.91
5.8 2.87 2.89 3.12 2.70 2.73 2.77 2.61 2.61 2.61 6.66 5.08 3.96 3.13 2.86 2.52
7.4 2.50 2.53 2.76 2.35 2.37 2.41 2.26 2.26 2.26 6.23 4.80 3.68 2.95 2.59 2.25
9.8 2.11 2.15 2.32 2.00 2.02 2.06 1.91 1.91 1.91 5.95 4.35 3.25 2.72 2.23 2.04
12.8 1.89 1.93 2.02 1.79 1.79 1.84 1.66 1.66 1.66 5.66 4.04 3.02 2.35 2.03 1.99
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DESCUSUM with level smoothing constant k ¼ 0:8,
slope smoothing constant g ¼ 0:01 and 0.05 and the
thresholds n¼ 4 and 1 gives smaller ARLs. From
Figure 4, an adaptive scheme outperforms the fixed
slope CUSUMs when the actual slope x is outside the
range of specified x� values 1.7 and 6.7. Within the

specified range, the fixed slope CUSUM with a larger
x� tends to give smaller ARLs.

Table 4 gives the RMI values of the methods using
the ARLs reported in Table 3 and Figure 4. The
DESCUSUM with threshold n ¼ 1, level smoother
k ¼ 0:8 and slope smoothers g ¼ 0:01 and 0.05

Figure 4. ARL of DESCUSUM and TCUSUM under linear trend shifts. DESCUSUM uses smoothing parameters g ¼ 0:01, 0:05 and
0.2, thresholds n ¼ 1:5, 4,1 and level smoothing parameters k ¼ 0:2, 0:4, 0:8 used. TCUSUM uses x� ¼ 1:7 and 6.7.
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provides better performance (reflected by smaller RMI
values). By contrast, the TCUSUM method performs
better with large slope values, such as x� ¼ 15: To
assess the robustness of the methods on the choice of
the parameter, the average of all RMI values for the
two methods are calculated. The DESCUSUM has an
average RMI of 0.209 and the TCUSUM has an aver-
age RMI of 0.389, showing that the DESCUSUM has
a more robust performance over the choice of its
parameters g, k and n than TCUSUM over the choice
of its parameter x�: Overall, a DESCUSUM method
with a medium to large threshold value (4 or larger),
a small slope smoother (between 0.01 and 0.05) and a
relatively large level smoother (0.8 or larger) can be
recommended for detecting linear trend shifts.

Choice of the parameters

In this section, we provide general guidance for select-
ing the parameters n and k of SESCUSUM and n, g
and k of DESCUSUM. Capizzi and Masarotto (2003)
presented an optimization approach and Jiang, Shu,
and Apley (2008) presented a graphical approach to
determine the best smoothing and threshold parame-
ters for Adaptive EWMA monitoring of normal data.
However, no studies for Poisson data or count-data
time series were presented. In our study, we will fol-
low a strategy similar to (Jiang, Shu, and Apley 2008),
since as those authors also discussed, Capizzi and
Masarotto (2003) optimization approach would be too
complicated, especially given the additional time series
structure and discreteness of data have to be consid-
ered for our problem.

In order to gain an understanding of the relation-
ship between the ARL1 values for detecting different
sizes of shifts and the design parameters of the moni-
toring schemes, we fit and visualize polynomial
response surfaces to the observed values. Second order
polyomial response surfaces were fitted to the ARL1
results of SESCUSUM shown in Table 1 and those of
DESCUSUM shown in Table 3. For step shifts, the
shift sizes j ¼ 0:5 and j ¼ 2:5 were considered as
small and large shifts; for trend shifts, the shift sizes
x ¼ 0:6 and x ¼ 5:8 were considered as small and
large shifts.

Figure 5 shows the contour plots of the surfaces for
SESCUSUM and step shifts. The results suggest that
the smoothing parameter k and threshold n of
SESCUSUM should be chosen based on the shift sizes
targeted. For detecting shifts with small sizes (Figure
5a and c), a larger smoothing parameter k, between
0.8 to 0.9, is required to minimize ARL, while for
large shift sizes (Figure 5b and d), a somewhat smaller
smoothing parameter k, between 0.6 to 0.7, is needed.
The choice of n depends on whether or not the data
is seasonal. For small shifts and non-seasonal data
(Figure 5a), a small thresold n, of about 1 to 2, is
needed, however, for large shifts (Figure 5b and d) or
with seasonal data (Figure 5c), a very large thresold,
such as 1, is called for. Note that for large shifts and
non-seasonal data (Figure 5b), the threshold param-
eter do not appear to have any impact (see the sta-
tionary ridge) however, to be consistent with seasonal
case we recommend setting n to a very large value.

Figure 6 shows the contour plots of the response sur-
faces for DESCUSUM and trend shifts. The threshold
n ¼ 1 (Figure 6e and f) results in larger regions for k
and g in which ARL is minimized and therefore is pre-
ferred. For detecting shifts with small slopes (x ¼ 0:6),
Figure 6e suggests that the region of k < 0:6 and g <

0:1 minimizes the ARL. For shifts with larger slopes
(x ¼ 5:8), Figure 6f suggests the region of 0:6 < k <

0:8 and g < 0:2 minimizes the ARL. Therefore, for
detecting trend shifts with DESCUSUM, we recom-
mend to set n ¼ 1; for shifts with small slopes, we rec-
ommend to set k between 0.5 and 0.6 and g to about
0.1, and for shifts with large slopes, we recommend to
set k between 0.7 and 0.8 and g to about 0.2.

Case study: German Salmonella infection data

In this section we present the application of the pro-
posed adaptive CUSUM method on the German
Salmonella case data set that was previously studied in
many public health surveillance studies, including
(H€ohle and Paul 2008) and the R package surveillance
(Meyer, Held, and H€ohle 2017). The calculations are
implemented in R programming language (R
Development Core Team 2021) and the R codes

Table 4. RMI of DESCUSUM and TCUSUM under linear trend shifts.
DESCUSUM (k, g) TCUSUM (x�)

n 0.2 0.4 0.8 0.8 1.7 3.3 6.7 10 15

0.01 0.05 0.2 0.01 0.05 0.2 0.01 0.05 0.2
1.5 0.154 0.155 0.167 0.146 0.146 0.157 0.143 0.146 0.165 1.372 0.833 0.458 0.239 0.124 0.072
4 0.175 0.195 0.327 0.129 0.136 0.177 0.127 0.125 0.149 1.372 0.833 0.458 0.239 0.124 0.072
1 0.185 0.195 0.307 0.155 0.160 0.194 0.138 0.139 0.143 1.372 0.833 0.458 0.239 0.124 0.072
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developed for this study can be obtained at https://
github.com/avanli/Adaptive-CUSUM-Salmonella.

The data set, plotted in Figure 7, contains the
weekly counts of Salmonella Hadar disease cases
observed in Germany, from 2001 to 2006, for a total
of 295weeks. The data exhibits an annual seasonal
trend (with T¼ 52) superimposed on a decreasing

linear secular trend. It is evident that the disease
counts gradually decrease up to around week 280,
which is followed by a continuous increase starting
around this time. The exact time point at which this
outbreak started is not clear. In order to detect the
outbreak time, we consider the data observed in the
time period between week 1 and week 240 (well in

Figure 5. Contours of the response surfaces for ARLs of SESCUSUM.
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advance of a potential outbreak time period) to esti-
mate a baseline INGARCH model, using the method
presented in (Vanli et al. 2019), and use this estimated
model to monitor the cases observed in weeks 241
onwards. We compare the proposed adaptive
SESCUSUM and DESCUSUM methods (utilizing sim-
ple and double exponential smoothers) with the

existing SCUSUM method (considering a fixed step
size) for detecting outbreaks using this data.

Let 1, :::,N weeks denote the period of data used to
estimate the baseline model, and we consider N¼ 200
and 240 as two possible data set sizes to investigate the
impact of estimation on monitoring performance. With
N¼ 240, the estimated seasonal INGARCH model is:

Figure 6. Contours of the response surfaces for ARLs of DESCUSUM.
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l̂0, t ¼ 4:0392� 0:0105t þ 0:2129yt�1 � 0:0544l̂0, t�1

� 1:2113 cos ð2pt=52Þ � 0:4745 sin ð2pt=52Þ,
(28)

and with N¼ 200, the estimated model is:

l̂0, t ¼ 5:3589� 0:0184t þ 0:2209yt�1 � 0:2288l̂0, t�1

� 1:4060 cos ð2pt=52Þ � 0:8116 sin ð2pt=52Þ:
(29)

Figure 7 shows the one-step ahead forecasts l̂0, t

for weeks t ¼ 2, 3, :::, 200 with both estimated models.
The smaller data set results in more variable forecasts,
as expected.

Figure 7. Salmonella case count data and the forecasts of
INGARCH models fitted with N¼ 200 (orange line) and
N¼ 240 (brown line) observations.

Figure 8. Outbreak detection results using DESCUSUM, SESCUSUM and SCUSUM using k ¼ 0:8, n ¼ 1, g ¼ 0:05 and models esti-
mated with N¼ 240. Blue triangle: moment monitoring began, green triangle: alarm time. (In the EWMA plots) Orange line: shift
estimate, blue line: one step ahead forecast.
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All monitoring methods are tuned to achieve
ARL0 ¼ 400: The DESCUSUM and SESCUSUM are
tuned with the smoothing constants k ¼ 0:4, 0:8, 0:95
and the threshold n ¼ 1 and only g ¼ 0:05 is used
for DESCUSUM. The SCUSUM is tuned for an
increase in the intercept from d̂0 to d̂0 þ j� of j� ¼
0:5 cases, 1 case, 4 cases.

The results of monitoring using the model estimated
with N¼ 240 data is shown in Figure 8 (between weeks
150 and 295). The figure shows the shift estimate ĥt
and the forecast l̂t using a simple EWMA (Panel a) and
a double EWMA (Panel c), the corresponding adaptive
SESCUSUM statistic (Panel b) and DESCUSUM statis-
tic (Panel d) and the SCUSUM statistic (Panel e). In
order to show multiple monitoring statistics in the
same graph, the scaled statistics, defined ~St ¼ St=h, are
plotted and the alarm limit for the scaled statistic is 1
(i.e., the method signals an alarm when ~St > 1).

Table 5 summarizes alarm times of the methods using
INGARCH models estimated with different data set sizes
N. The DESCUSUM consistently signals at week 292
regardless of the smoothing parameter or the data set
size. The SESCUSUM alarm time varies between 283
and 286, and the SCUSUM alarm times vary between
280 and 286. While a smaller data set size N causes larger
variability in alarm times of SCUSUM, the alarm times
of SESCUSUM are less variable. Assuming that the alarm
times of the SESCUSUM and SCUSUM are more reliable
than the alarm time of DESCUSUM, since they are
sooner, the likely outbreak form can be decided as that
of a step shift rather than that of a linear trend and is
happening around between weeks 283 and 286. The
likely time of the outbreak is determined by relying more
heavily on the alarm times of SESCUSUM since this
method’s alarm times are less sensitive to the choice of
its parameters and the data set size.

Conclusions

This paper presented an adaptive cumulative sum
(CUSUM) method for detecting step shift and linear

trends changes in count-data time-series represented as
seasonal integer-valued generalized autoregressive con-
ditional heteroskedastic (INGARCH) time series mod-
els. While the applications of detecting change
considered were in the context of public health and dis-
ease outbreaks, the method is equally applicable in
other contexts including industrial quality. The simula-
tion study showed that the proposed adaptive CUSUM
approach has a better overall performance in detecting
changes than existing fixed magnitude CUSUM meth-
ods under various seasonality, step and linear trend set-
tings. In particular it is shown that guidelines on the
selection of the smoothing parameter of the adaptive
scheme is easier to develop than the specification of the
shift magnitude used in the fixed magnitude CUSUM
methods, with less variation in the resulting detection
performance depending on the choice. In addition, a
case study utilizing real data set from a public health
monitoring problem illustrated the effectiveness of the
proposed adaptive method with estimated models.

This research has not considered effect of estimation
error on detection performance. As a future work of
interest, optimal choice of smoothing parameters based
on phase I sample size can be considered. Optimal choice
of smoothing parameters has been studied for adaptive
CUSUM with known model parameters (Capizzi and
Masarotto 2003) however the effect of estimation error
has not been considered. As we have illustrated in the
case study the models estimated with different data set
sizes and the resulting smoother performance heavily
depends on the sample size. Other potential areas of
extensions would include considering spatial dimension
in addition to temporal dimension in surveillance (in
particular for healthcare problems) or to include expo-
nential or more complex trend forms in addition to lin-
ear trends in the detection methodology.
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