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ABSTRACT

In this paper, we propose an adaptive CUSUM monitoring method for detecting step and
linear trend changes in count-data time-series. The data is represented using a seasonal
INGARCH time series model and an exponential smoother is used to estimate level or trend
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changes in the data in the cumulative-sum (CUSUM) detector. In a simulation study, the
proposed approach is compared to existing CUSUM approaches that are tuned for a specific
shift size and the ability of the methods to detect step shifts and linear trends is investi-
gated. The application of the proposed method in public health surveillance is demon-

strated using a real infectious disease count data set.

Introduction

In many industrial quality and public health surveil-
lance applications the count data collected and moni-
tored over time typically exhibit temporal correlations
and seasonality which require a time-series model to
properly represent its dynamic characteristics. For
example, infectious disease counts may be influenced
by those in the previous month or the number of
defects in a manufacturing process driven by a specific
process dynamics may be correlated over time when
the sampling interval is small. The traditional
Shewhart type statistical process control (SPC) charts
that assume the observations are independently dis-
tributed result in too frequent false alarms than the
design value when applied on observations from a
positively autocorrelated process, requiring a time ser-
ies modeling approach for the observations
(Montgomery 2009). Much attention has been given
to investigate integer-valued time series models that
take into account of the non-negativity and the dis-
creteness nature of their generator processes in moni-
toring of count data.

The cumulative sum (CUSUM) and the exponen-
tially weighted moving average (EWMA) (Hawkins
and Olwell 2012; Lucas and Saccucci 1990) are com-
monly used techniques for detecting small changes
from a specific baseline (in-control) condition in both

continuous and count data settings. A typical draw-
back of these approaches is that they are designed to
detect a particular mean shift size, and could perform
much worse for detecting shifts smaller or larger than
this specific design value. For normally distributed
continuous data, adaptive versions of the CUSUM
and EWMA charts have been studied and demon-
strated to provide an overall good detection over a
range of mean shift sizes (Capizzi and Masarotto
2003; Jiang, Shu, and Apley 2008; Sparks 2000; Shu
and Jiang 2006; Su, Shu, and Tsui 2011). Some recent
research has focused on developing adaptive schemes
for monitoring count data (Aly, Saleh, and
Mahmoud 2021).

While the majority of the existing adaptive moni-
toring approaches are based on the assumption that
the data are independently distributed, as we also
illustrate in our case study, autocorrelation and sea-
sonality are highly prevalent in count data applica-
tions and there is a need to develop adaptive
monitoring methods for these settings. In this paper,
we propose an adaptive CUSUM method for count
data time series, in which an integer-valued general-
ized autoregressive  conditional heteroskedastic
(INGARCH) time series model is utilized to account
for any autocorrelation structure and seasonality in
the data. An exponentially weighted moving average
(EWMA) smoother is used to update the reference
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value of CUSUM and a likelihood ratio test statistic
that incorporates the INGARCH conditional mean
function is used to detect step or linear trend shifts
from the mean. It is shown how, simple EWMA and
double EWMA estimators can be used in the pro-
posed adaptive method for detecting step and linear
trend shifts, respectively. We study by simulation the
effect of seasonality and autocorrelation on the ability
to detect step shifts and linear trends. A case study
involving Salmonella outbreak data (Hohle and Paul
2008) was used to illustrate the application of the pro-
posed method in public health surveillance.

The remainder of the article is organized as follows.
Section “Review of relevant literature” reviews the
relevant literature on count data time series and
change detection. Section “Proposed methodology”
presents the proposed adaptive CUSUM method.
Section “Simulation study” presents a Monte Carlo
simulation to study the efficacy of the the method.
The illustration of the proposed method on real data
is presented in the Section “Case study: German
Salmonella infection data”. Section “Conclusions”
summarizes the contributions of the proposed
research and discusses potential its future extensions.

Review of relevant literature

Prospective monitoring of time series of counts or
attributes for detecting sustained changes in the mean
function has been studied in industrial quality and
public health surveillance fields by many authors (see
e.g., the reviews by (Woodall 1997) and (Woodall
et al. 2006)). In industrial quality control, defect rates,
number of defects observed from a production line
per the measurement unit are often described by an
independent and identical distributed Poisson process.
Periodic autoregressive models are a natural way to
capture autocorrelation and seasonality in time series
and are commonly used in infectious disease epidemi-
ology (Corberan-Vallet and Lawson 2014) and econo-
metrics (Bollerslev and Ghysels 1996). Seasonality and
autocorrelation in count data is encountered in health
care surveillance problems due to seasonal effects of
infectious diseases or to time-varying population sizes,
often modeled by using trigonometric functions of
time (Hohle and Paul 2008), non-homogeneous
Poisson models (Richards, Woodall, and Purdy 2015),
or applying algebraic transformations of the data
(Rossi, Lampugnani, and Marchi 1999).

Lucas Lucas (1985) studied the performance of the
cumulative sum (CUSUM) introduced by Page (1954),
for Poisson distributed counts and provided a detailed
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analysis of average run length. White and Keats
(1996) proposed a Markov chain method to approxi-
mate the in-control average run length (ARL) of
Poisson CUSUM. For modeling of correlated count
data sequences, integer-valued generalized autoregres-
sive conditional heteroscedasticity (INGARCH) mod-
els and integer-valued autoregressive moving average
(INARMA) models are two main classes of time series
models. INARMA models utilize a binomial thinning
operation to adapt the standard, continuous-variable,
ARMA models to discrete random variables
(McKenzie 1988). INGARCH models (Ferland,
Latour, and Oraichi 2006), by contrast, assume a lin-
ear structure for the conditional mean, that allows
easy determination of the statistical properties of high
order model structures. For monitoring of correlated
count data sequences using CUSUM schemes, Weif3
and Testik (2009) studied integer autoregressive
(INAR) models to model AR(1)-like serial depend-
ence. INAR models are effective in modeling first-
order autocorrelation with Poisson marginals and
from the properties of the thinning operator it is easy
to compute the exact average run length (ARL) of the
monitoring scheme. For applications of monitoring
overdispersed counts with autoregressive serial
dependence structures, Weify and Testik (2012) pro-
posed to use integer autoregressive conditionally het-
eroscedastic  (INARCH) models in CUSUM
monitoring. To handle seasonality and long term
memory in count data, Vanli et al. (2019) extended
the INARCH-based monitoring to monitoring with
seasonal generalized autoregressive conditional hetero-
scedasticity (INGARCH) models. More recently,
Ottenstreurer (2021) has studied Shiryaev-Roberts
(SR) charts for monitoring INARCH(1) proesses with
various marginal distributions, including Poisson,
Negative Binomial and Binomial. By contrast to the
CUSUM procedure, which, as explained below, uses
the maximum of all log likelihoods upto the current
time point as the alarm statistic, a SR procedure uses
the sum of all log likelihoods.

In using a CUSUM approach, the practitioner typ-
ically assumes a value for the mean after a change,
according to the smallest mean shift considered
important enough to be detected quickly. In addition
the basic CUSUM assumes sustained or persistent
shifts, and not of a time-varying or intermittent shifts
form (Capizzi and Masarotto 2012). The mean after a
change is unknown, of course, and a possible solution
is to use multiple monitoring statistics simultaneously,
each optimized for a different size mean shift (Sparks
2000; Han et al. 2007). Another solution is to use a
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generalized likelihood ratio (GLR) formulation which
uses maximum likelihood estimation to estimate the
magnitude of the shift in addition to detecting the
change (Tsui et al. 2012; Reynolds and Lou 2010).
However, due to this additional optimization GLR
charts have significantly higher computational burden
than CUSUM or EWMA charts.

Another solution to deal with the assumption of a
specific mean after the change is to use adaptive control
charts. Adaptive CUSUM and adaptive EWMA charts
have recently been proposed, for normally distributed
data, to detect shifts with unknown magnitudes
(Capizzi and Masarotto 2003; Jiang, Shu, and Apley
2008; Sparks 2000; Shu and Jiang 2006; Su, Shu, and
Tsui 2011)). The unknown one-sided mean shift magni-
tude is first estimated based on some smoothing
approach of the available observations, such as the
absolute value of an exponentially weighted moving
average (EWMA) statistic (Shu and Jiang 2006; Shu,
Jiang, and Tsui 2008). Then to make the detection stat-
istic sensitive to possibly time-varying “patterned”
shifts, a CUSUM is defined as a weighted function of
the shift estimate by using a certain type of weighting
function (Shu, Jiang, and Tsui 2008; Yashchin 1989)
representing the alarm limit of the adaptive chart. In
order to apply likelihood ratio testing principles, a lin-
ear weighting function is typically recommended (Jiang,
Shu, and Apley 2008). Sparks (2000) presented a regres-
sion approach to determine the alarm limit for a limited
number of values. Shu and Jiang (2006) developed a
two-dimensional Markov chain model for the adaptive
CUSUM statistic and show that alarm limit can be
approximated by a closed form expression.

Proposed methodology

In this section we present the proposed adaptive cumu-
lative sum method to detect step and linear trend
changes in the mean of count-data time-series models.
We show how the count-data is represented with a
seasonal INGARCH model, an EWMA is used to esti-
mate step and linear trend shifts in the conditional
mean function and the adaptive CUSUM statistic is
forumlated as a function of the linearly weighted
shift estimate.

Seasonal INGARCH(1,1) time series model

Conditional on the past data, the count y; of an event
(e.g., disease cases) in time periods t = 1,2, ... is assumed
to follow an integer-valued generalized autoregressive
conditional heteroskedastic, or INGARCH(1,1), process
(Ferland, Latour, and Oraichi 2006):

Yelpt, ~ Poisson(u,) (1)
W = 0+ o1 + Py (2)

with conditional mean (or incidence rate) p,, intercept
0 >0 and autoregressive parameters o« > 0 and y > 0
for y,—, and p,_,, respectively. The appropriate posi-
tivity or non-negativity requirements of the parame-
ters are imposed to ensure nonnegativity of .
INGARCH(1,1) process is considered to be an inte-
ger-valued analogue of the GARCH(1,1) process
(Bollerslev 1986), because the model is conditional on
the Poisson mean (which equals the conditional vari-
ance) and allow one to account for the heteroscedas-
ticity in the variance.

The constant intercept in (2) can be modified to
incorporate secular (linear) and seasonal time trends
(Kleinman 2005) by using linear and trigonometric
functions of time to obtain a seasonal INGARCH(1,1)
model:

U =0+ +oay1 + oy, (3)

where W; combines the effects of secular and seasonal
trends:

K
¥, =pt+ E {n;cos (2mjt/T) + ; sin (2mjt/T)}
=1

(4)

K
= pt+ Y Rjsin (2mjt/T + Q) (5)
=1
where p is the coefficient modeling the linear trend
over time, n = (1, ....Nx) and Y = (Y, ..., ¥x) are the
coefficients of the trigonometric functions of time
modeling the seasonal trend, K is the number of trig-
onometric functions needed, and T is the length of
the season. In Equation (5), R; = 1:17]42—}—%2 is the
amplitude and Q; = arctan(y};/n;) is the phase shift of
each sinusoidal wave.

This approach is similar to (Hohle and Paul 2008)
who used trigonometric functions to model seasonal-
ity in count data for prospective outbreak detection,
however, their model assumed count data is distrib-
uted independently over time and hence does not
account for temporal autocorrelation. Modeling sea-
sonal variation in infectious disease counts through
the inclusion of set of trigonometric functions has
been used in various studies, including (Held and
Paul 2012). Bentarzi and Bentarzi Bentarzi and
Bentarzi (2017) provided closed-form expressions for
the marginal mean and variance functions for seasonal
INGARCH(1,1) processes under the condition of peri-
odical stationarity:



o+ Y,
B = (49 + )

Existing methods to detect specific magnitude
shifts in count-data time-series

Before introducing the proposed CUSUM method we
first review the existing INGARCH(1,1) based
CUSUM scheme for detecting fixed magnitude
changes in count-data time series, previously studied
by (Vanli et al. 2019; Weifl and Testik 2012). The
approach is based on a likelihood-ratio test that
assumes the count-data follows the INGARCH(1,1)
model with conditional mean y, ; = pt,(d0, 1, Y %9, p)
upto a time point 7 — 1, 7 being the changepoint, and
with conditional mean pu, , = i, (61,1, ¥, 2,7, p) after
time point 7. That is, it is assumed that only the inter-
cept 0 is subject to change and all other parameters
remain constant.

The intercept of the process when it is subject to a
step shift with an unknown magnitude k is repre-
sented as

0=20p fort<rt

(8)
=0y +kK, fort=1,7+1,..

Similarly, if the intercept is subject to linear trend
shifts with slope » then
0=20p for t<rt

)
=dt+ox(t—1+1), fort=1,74+1,...

Weif§ and Testik (2012) and Vanli et al. (2019)
considered detecting step shifts in the intercept of
INGARCH(1,1) processes, by testing the following
hypotheses

Hy: 6 =09 for all ¢
H :6=0y fort=1,2,...,1—1
0=0[(t) =00+ K" for t=1,7+1,...
where k* is a specified step shift magnitude. For
detecting linear trends, this method can be modified
to test the following hypotheses:

Hy:0=20 for all ¢

H :0=0p fort=1,2,..,71—1

0=0,(t)=00+w'(t—7+1) for t =1,7+1,...

Note that for detecting linear trends an estimate of

the change-point needs to be obtained, as will be
reviewed below. The log likelihood ratio for the joint
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probability distribution f(y,...,¥;|.) of the data
observed up to a time instant ¢ under the hypotheses
H, and H, is:

FOuenyelis )

L(ptg> 3, t') = log —————
e gf(ylw--,ywluo ) (10)
_tz/l NSATC®)

f()’t|,“0t

where i, , and uj , are the conditional mean functions
under the null H, hypothesis (i.e., with intercept d)
and the alternative H; hypothesis (i.e., with the speci-
fied intercept 0)(t), based either on step or linear
trend), respectively. The second equality is obtained
because the data are independent given the conditional
mean at time period t per Equations (1) and (2), and
writing the log likelihood as the sum of the log likeli-
hood ratios of respective time instants. The alarm statis-
tic is the maximum of all log likelihoods upto time t,
that is, S; = max;<y<.L(pty,p},t'). Accordingly, the
alarm statistic based on Equation (10) can be written as
a cumulative sum (CUSUM) (Lorden 1971).

(11)

5 — max (0 S+ log fOelu; »)

® FOlts)

For a Poisson probability mass function f(y|u) =
e "yt /ul, the CUSUM statistic is simplified as:

Ot

St = max<0 Si-1 + yilog Ao (k43,4 ﬂo,r)) (12)
where the conditional means uj, and p,, are
obtained by evaluating Equation (3), with d7(¢) and
0o, respectively. For detecting step shifts with magni-
tude k*, the out-of-control mean pj, is evaluated
with 0] = dg + k*. For detecting trend shifts with
slope @* the out-of-control mean is obtained using
0,(t) =00+ w*(t —1+1). These are the existing
cusum approaches for step and trend shifts, which
will be termed, respectively, as SCUSUM and
TCUSUM, and will be studied to compare with the
proposed adaptive CUSUM method.

As the estimator of change-point using a CUSUM,
Page (1954) proposed to use the starting point of the
last Wald sequential test (starting point of the rejec-
tion test):

T = féﬂ?ﬁamsf = 0}. (13)
where t, is the alarm time, f, = min;<y<{t'|Sy > h}.
This is the approach we will use in implementing
the TCUSUM.
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Proposed adaptive CUSUM method to detect shifts
in count-data time-series

A disadvantage of the existing CUSUM approach is
that the shift magnitude, either x¥* or w*, need to be
specified, while the actual shift may have a different
magnitude from the specified value. Another draw-
back is that, the process change may follow a profile
different than a specified pattern, for example instead
of a step change a linear trend change may occur. The
proposed method is an adaptive cumulative sum
(CUSUM) monitoring statistic to detect step or linear
trend changes in seasonal INGARCH(1,1) processes
by using an exponential smoother to estimate the shift
magnitude. The proposed Adaptive CUSUM method,
unlike the existing approach, does not require a shift
size be specified and can be formulated for detecting
both step and linear trend changes.

A one-step ahead forecast of the count data y, of the
in-control process given all observations yi, s, ..., ¥1—1
upto the current time ¢ —1 is the conditional mean of
the INGARCH process model (Bollerslev and Ghysels
1996) at time ¢, written as:

H(),t — 50 + ‘{Jt + O(ytfl + y,uo)t_l for t = 1, 2, (14)

where W, is defined with parameters p,y;,n; and T
using Equation (4) and the equation is initialized
at flg,0 = do/(1 — o —7).

Suppose, as a result of a shift in the intercept, the
conditional mean changes from p,, to u, = iy, + 0
where 0 is the shift magnitude. Let 0, be the exponen-
tially weighted moving average (EWMA) estimate of
the shift. The one step ahead forecast of the process y,
accounting for the possible shift is

:at :ﬂo,t+ét~ (15)

Since all parameters of the in-control mean p, , are
known we do not use a “hat” notation for this term.
However, if the in-control model is also estimated from
data then p, , is replaced with its estimate ji, ,. In the
case study that is presented in “Case study: German
Salmonella infection data” we consider a problem
where the in-control mean is estimated.

We study both simple EWMA and double EWMA
to estimate the shifts in mean. For detecting step
shifts, a simple EWMA is used to estimate the shift:

@t =(1- /1)0;_1 + A — Mo, 1)

. (16)
=01 + Je;

where 0 <1 <1 is the smoothing constant, e =
Ye— Mot 1 — 0, = yr — i, is the prediction error
where in the second equality i, comprises both the
time-series model forecast andthe EWMA estimate,

accgrding to Equation (15). The EWMA is initialized
as 0y = 0. The EWMA equation can be written more
generally, using a monotone score function

0, =01+ o(er) (17)

which reduces to (16) when ¢(e;) = Ze;. To ensure
that the procedure (17) tracks large shifts quickly,
Capizzi and Mazorotto (2003) propose using Huber’s
score function defined as

et (1—2)¢ if e<—¢
P(e) = Ze if le| <¢ (18)
e—(1—J)¢ if e>¢

where £ >0 is a thresholding constant specified by
the user. The Markovian-type statistic (Lorden 1971)
with the Huber function includes the EWMA statistic
¢(e;) = Ae; as a special case when ¢ — oo. When
¢=0 or A=1, Huber’s function reduces to ¢(e) =e,
and the statistic (Lorden 1971) with the Huber func-
tion is essentially a Shewhart statistic.

For estimating constant shifts in the mean of a process,
a simple EWMA typically provides adequate performance.
However, for processes that drift according to a linear
trend, the simple EWMA estimate often “lags” behind the
actual shift and a double EWMA, which uses two expo-
nential smoothers, provides a superior performance (Del
Castillo 1999). In a double EWMA, a smoother F, is used
to estimate the level and another smoother G; is used to
estimate the slope of the data. The double EWMA esti-
mate 0, of the shift in the mean of the INGARCH process
is then obtained using the following equations:

ét :Ft+Gt (19)

Fr= (1= 2)(F—1 + Gi—1) + 2yt — Ho,e-1)
= (Fo1 4+ Gio1) + A(ye — to,s-1 — Fior — Gio1)

(20)
=0, + ¢(er) (21)
€ =Yt — Ho,p—1 — étfl (22)

G = (1 - n)Gt—l + W(Ft - Ft—l)
=Gy + W(Ft - étfl) (23)
= Gy +n¢(er)

where ¢(e;) is the score function defined as in
Equation (18) with 0 < A <1 as the smoothing con-
stant for the level and 0 <5 <1 as the smoothing
constant for the slope.

The proposed one-sided adaptive CUSUM for
detecting increases based on the EWMA estimator 0,
of the shift is defined as
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Figure 1. Single realization of an INGARCH(1,1) process with seasonalities R = 0,0.2 and 0.4 under step shift. The shift estimate
and the forecast are obtained with a simple EWMA utilizing 1 = 0.2 and & = oo.

S = max(O, Si-1+ <P(ét) [yt log :_t — (ft, — ﬂo,t)})
0.t

(24)

where p,; is the one-step-ahead forecast of the in-
control process mean found by Equation (14) and
@(0,) is a weight function of the estimated shift mag-
nitude that defines the control limit of the CUSUM
statistic. The shift estimate ét and the forecasted con-
ditional mean i, are found using either a simple
EWMA (Lorden 1971) or a double EWMA (Lucas
and Saccucci 1990). The adaptive CUSUM is initial-
ized at Sy =0. The single EWMA is initialized at
(90 = 0 and the double EWMA smoothers are initial-
ized at Fy = d9/(1 — o — 7) and Gy = 0.

In this study, two new INGARCH-based adaptive
CUSUMs are proposed. The first method, referred to
as the single exponential smoother CUSUM, or
SESCUSUM, is based on a simple EWMA and used
to detect step shifts in the mean. The second method,
referred to as the double exponential smoother
CUSUM, or DESCUSUM, is based on a double
EWMA and used to detect linear trend shifts in the
mean. Without loss of generality, we focus in this
paper on one-sided CUSUMs to detect increases in
the mean, however, the proposed approach is applic-
able for constructing two-sided CUSUM:s as well.

In this study, we consider the linear weight func-
tion ¢(0;) = 0, which was shown to provide superior
performance in adaptive CUSUM charts in continuous
data in previous studies (Jiang, Shu, and Apley 2008).
Weighted CUSUM is a generalization of the basic

cumulative sum control scheme and has been studied
to make the method more sensitive to time-varying
and dynamic patterned shifts (Shu, Jiang, and Tsui
2008; Yashchin 1989).

The performance of the monitoring scheme will be
measured by how quickly an alarm is signaled by the
monitoring scheme when the process moves out-of
statistical control. The speed of signaling an alarm is
measured by the average run length (ARL), the
expected number of samples required by the method
to signal. It is desirable to have a small out-of-control
ARL, denoted ARL;, the ARL when there is a signifi-
cant change in the process, so that the change is
detected quickly or with minimum detection delay. By
contrast, it is desirable to have a large in-control ARL,
denoted ARL,, the ARL when the process is in a state
of statistical control, so that the rate of false alarms is
low. The monitoring scheme signals an alarm if the
CUSUM exceeds an alarm threshold h, that is, when
Sk > h. The alarm threshold h is determined by
Monte Carlo simulation of the process under the null
hypothesis so that the in-control ARL of the chart is
close to a pre-specified value.

Simulation study

In this section we study by simulation the perform-
ance of the proposed adaptive CUSUM method in
detecting step and trend shifts in the mean of count-
data time-series. The in-control process is represented
with a seasonal INGARCH(1,1) with K=1 harmonic
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Table 1. ARL of SESCUSUM and SCUSUM under step shifts.

SESCUSUM (¢&,2)

SCUSUM (k")

15 4 00
Rk 04 08 095 04 08 095 04 08 095 025 06 1.8 2.5 6 12
0 0 39895 40269 399.85 399.59 401.15 399.83 400.89 40046 399.42 40041 400.14 40154 40101 40275 41641
025 14973 147.62 14810 151.80 14655 14805 141.83 14564 14739 14856 15136 19267 20947 24258 239.25
05 8633 8442 8459 8689 8377 8437 7847 8218 8413 8626 8114 10372 11886 16326 15848
1 4295 4220 4238 4274 4170 4228 3911 4096  41.89 5123 4201 4291 4884 7797  79.89
15 2733 2699 2715 2732 2671 2709 2570 2647 2695 3916 3001 2452 2626 4246  47.48
21974 1948 1959 1970 1927 1953 1914 1918 1945 3274 2388 1698 1696 2596  30.67
25 1532 1514 1519 1527 1498 1519 1529 1500 1514 2859 2025 1304 1229 1672 2129
35 1036 1023 1026 1036 1014 1025 1087 1029 1024 2330 1569 900 797 847 1139
6 555 554 555 552 551 555 630 568 557 1662 1031 523 438 336 368
9 350 353 35 341 350 355 419 368 358 1258 739 359 299 211 187
12 255 261 263 246 257 263 313 274 265 1009 574 279 235 162 135
02 0 39115 39931 399.03 400.14 399.85 399.20 40059 40033 400.11 403.06 40066 39935 39976 39326 397.11
025 16368 15824 15644 16451 15863 15739 15593 15946 15646 13634 14521 18359 20000 22901 23254
05 9609 9306 9136 9626 9200 9182 8761 9171 91.86 81.88 7821 9940 11372 147.93 15371
1 4808 4663 4607 4721 4624 4630 4377 4568 4611 5099 4145 4167 47.14 7278 7674
15 3024 2956 29.15 2963 2916 2927 2834 2891 2909 3982 3029 2382 2540 4027 4574
2 2156 2106 2086 2124 2084 2095 2100 2086 2088 3384 2458 1686 1667 2451 2971
25 1655 1619 1604 1636 1608 1614 1669 1619 1611 2999 2105 1318 1233 1602 2062
35 1108 1089 1081 1100 1082 1085 1175 1103 1089 2504 1689 941 832 849  11.09
6 613 606 603 601 603 606 695 628 609 1884 1160 598 501 368 376
9 395 397 396 380 393 397 477 416 401 1482 879 424 346 231 195
12 289 294 294 275 290 294 359 310 297 1221 711 330 268 174 138
04 0 40057 39966 399.86 399.58 399.26 40005 40072 40091 400.10 39298 399.16 40096 39430 388.89 39678
025 16368 15545 15460 16283 15413 15232 14466 14951 15450 10208 11033 15440 16928 22322 253.16
0.5 9416 8892 8788 9232 8760 87.58 7958 8441 8768 6149 5853 77.80 89.00 13568 16590
1 4620 4383 4353 4488 4297 4308 3925 4162 4351 4096 3320 3301 3751 6380 8445
15 2860 2759 2744 2804 2721 2729 2568 2647 2741 3439 2554 2012 2119 3580  49.07
22050 1965 1957 2015 1941 1943 1905 1899 1959 3088 2193 1466 1442 2172 3145
25 1564 1517 1508 1554 1499 1499 1518 1478 1514 2836 1948 1188 1116 1465 2165
35 1057 1026 1022 1044 1015 1016 1075 1016 1029 2479 1636 907 806 819 1154
6 607 600 600 594 594 597 664 608 605 1975 1190 635 532 389 408
9 406 405 406 390 399 404 471 417 411 1629 937 468 379 248 215
12300 301 302 28 296 301 358 313 306 1374 791 368 293 18 150
component for monthly observations with an annual 1< ARL?) _ ARLT(i)
season (T=12): RMI = ZZ —0 (27)

yiltto,; ~ Poisson (g ;) (25)
Po,r = 0o + o1 + Vg, + W cos (2mt/12)
+ nsin (27t /12). (26)

Processes with equal harmonic coefficients (i.e.,
with # =) and various seasonality values, repre-
sented by R = \/y* + »%, are considered.

The adaptive CUSUM methods are compared to
the existing CUSUM procedures. All methods assume
the correct INGARCH(1,1) representation of the pro-
cess as the baseline model i, ,. The alarm thresholds
for the methods are determined to achieve ARL, =
400 from Monte Carlo simulations of the baseline
process replicated 10,000 times for any configuration.
Similarly, ARL, is calculated from 10,000 Monte Carlo
simulations for each out of control configuration. The
relative mean index (RMI), studied by Han and Tsung
(2006), is used to summarize the performance of a
chart over a range of shifts. RMI for a chart is calcu-
lated using

ARL;Y)

i=1

where L is the total number of shift sizes considered,
ARLgi) is the out of control ARL of the chart at the i-
th shift size and ARLT(") is the minimum of the ARLs
attained by all charts at the i-th shift size
(i=1,2..,L). A monitoring scheme with a smaller
RMI is considered to have a better overall perform-
ance than a competing method.

Detecting step shifts

The process with 6o =1.2,0=0.6,y=0.28 and
T=12, but varying =5 values are considered to
investigate different seasonalities. Figure 1 shows a
single realization of the process where a step shift
with magnitude x =2 is introduced in the intercept at
time 7 =20 based on Equation (8). The cases of R=0
(non seasonal) and R=0.2 and 0.4 are shown. The
forecasted mean Ji, (red line) and estimated shift @t
(orange line) are found with the seasonal

INGARCH(1,1) model. A simple EWMA with
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Figure 2. ARLs of SESCUSUM and SCUSUM under step shifts and increasing seasonality (R = 0,0.2,0.4). SESCUSUM uses thresholds
y = 1.5,4, 00 and smoothers A = 0.2,0.4,0.8,0.95. SCUSUM uses x* = 0.6 and 1.8.

smoothing parameter 4 = 0.2 and threshold ¢ = oo is
used to estimate the shift. The dashed lines show the
true mean and the shift before and after the change.
Based on Equation (6), the initial marginal mean is 10
and a shift of k=2 units in the conditional mean
causes it to increase by x/(1 —a—17y)=2/(1—0.6 —

0.28) = 16.67 units to 26.67. The EWMA estimate 0,
of the shift converges to the true value, however, the
convergence is slower with seasonal processes than
the non-seasonal process.

The proposed adaptive SESCUSUM statistic (Page
1954) and the existing SCUSUM statistic (Hawkins
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Table 2. RMI of SESCUSUM and SCUSUM under step shifts.

SCUSUM (k")

SESCUSUM (¢, 4)

4 Inf
0.8 0.95 04 0.8 0.95 0.4 0.8 0.95 Avg

15
R 0.25 0.6 18 25 6 12 Avg 0.4
0 2.14 1.07 0.35 0.30 0.48 0.58 0.82 0.35

0.2 2.40 1.24 0.40 0.32 0.42 0.53 0.88 0.46
0.4 2.46 1.23 0.43 0.35 0.54 0.89 0.98 0.56

0.34 0.35 0.34 0.33 0.35 0.42 0.35 0.35 0.40
0.44 0.43 0.43 0.43 0.44 0.55 0.46 0.44 0.59
0.52 0.51 0.53 0.50 0.50 0.55 0.50 0.52 0.65

and Olwell 2012) are implemented to detect step shifts
0 =09 + x with x varying between 0 and 12. The
SESCUSUM statistic is implemented with smoother
constants A =0.4,0.8,0.95 and thresholds ¢& =
1.5,4,00. The SCUSUM statistic is implemented with
k* = 0.6 and 1.8. The detection performance of the
methods is studied by computing the ARL for the
processes shown in Figure 1, however, a step shift
with magnitude x is introduced in the intercept at
time t =1, that is, the zero-state ARL is computed.

Table 1 and Figure 2 show the ARLs of the meth-
ods. The ARLs under all shift sizes are larger with
larger seasonalities indicating that change detection is
more difficult under larger seasonalities for both
methods. The SCUSUM with x* = 0.6 generally gives
smaller ARLs for shifts smaller than about 2.5 and
that with x* = 1.8 gives smaller ARLs for shifts larger
than about 2.5 and less than about 9. The
SESCUSUM, by contrast, which is not tuned for a
specific shift, provides a more uniformly good ARL
performance throughout the shift sizes considered
regardless of A and ¢, and for shift sizes larger than 9
the SESCUSUMSs outperform the SCUSUMs.

Table 2 gives the RMI values of the methods com-
puted based on the ARLs reported in Table 1. The
proposed SESCUSUM under thresholds, £=4 and oo
and smoothers A =0.8 and 0.95 and the SCUSUM
with k* = 2.5 provides the best performance under all
seasonalities. Further, the performance of SCUSUM
varies significantly with the choice of x*, while the
performance of SESCUSUM is less variable across the
choices of ¢ and A. For non-seasonal data, the
SESCUSUM with A larger than 0.4 (any &) outper-
forms the SCUSUM with x* = 1.8 for the entire range
of shifts (smaller RMI). By contrast, when the data is
seasonal, the SESCUSUM with a larger threshold & =
oo and a larger smoother 4 = 0.8 or 0.95, which puts
more weight to the current data (less smoothing) is
needed for better performance.

The columns labeled “Avg” in Table 2 give the
average RMI under each seasonality from all model
parameters (i.e., all k* values for the SCUSUM, all ¢
and A values for the SESCUSUM). Based on the
smaller average RMI values attained, it can be seen
that the SESCUSUM provides better overall

performance than the SCUSUM under all seasonal-
ities. In summary, the existing SCUSUM performance
depends very strongly on the choice of k* (reflected
by a higher average RMI value) and the choice of this
parameter may not be obvious for a practitioner to set
in applications. By contrast, the proposed adaptive
SESCUSUM has a more uniform RMI performance
regardless of the choice of its parameters ¢ and A4
(reflected by a lower average RMI value) and hence is
easier to use by practitioners.

Detecting linear trend shifts

We considered a non-seasonal process with dy =
1.2,00 =0.6,7 = 0.28 and Yy = 5 = 0 in which a linear
trend shift in the intercept with slope w is introduced
based on Equation (9). Figure 3 shows a single realiza-
tion of the case with v = 0.5 and t=20. A simple
and a double exponential smoother is used to com-
pute the estimated shift 0, according to Equations
(17) and (19), respectively (orange line). The fore-
casted mean i, (red line) is obtained with Equation
(15) and the dashed lines show the true mean and the
shift magnitude. The simple exponential smoother
with 4 = 0.2 lags behind the change, however double
exponential smoother with 2 = 0.2 and # = 0.2 more
adequately tracks the shift. Note that a double expo-
nential smoother with 4 = 0.2 and # — 0 is equivalent
to a simple exponential smoother with 4 = 0.2.

The ARL performance of the proposed adaptive
DESCUSUM statistic (Page 1954), based on a double
EWMA, and the existing TCUSUM statistic (Hawkins
and Olwell 2012), that assumes a fixed slope for a lin-
ear trend change, are compared for their efficacy in
detecting linear trend shifts with slope o varying
between 0 and 12.8. A linear trend shift in the inter-
cept is introduced at time 7 =1 based on Equation (9)
(i.e., zero-state ARL is computed). The double EWMA
is implemented with parameters 4 =0.2,0.4,0.8, 5 =
0.01,0.05,0.2 and ¢ =1.5,4,00. Note that a
DESCUSUM with 5 — 0 is equivalent to a
SESCUSUM. A smaller value for the slope smoother
than the level smoother (ie., n < 1) was found to
achieve more stable forecasts. The TCUSUM statistic
is implemented with trend slopes w* = 1.7 and 6.7.
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Figure 3. Single realization of an INGARCH(1,1) process under trend shift. Shift estimates and forecasts are obtained with a simple
EWMA with 2 = 0.2 and ¢ = oo and a double EMWA with 4 = 0.2,y = 0.05, and & = oc.

Table 3. ARLs of DESCUSUM and TCUSUM under linear trend shifts.

DESCUSUM (&, 4,1) TCUSUM (")
0.2 0.4 08

w & 001 005 02 001 005 02 001 005 02 08 17 33 6.7 10 15
0 15 39945 40039 39928 39973 400.16 40147 40174 39952 40000 40030 399.53 40049 399.28 40092 401.71
0.2 2063 2064 2112 2029 2034 2075 2012 2023 2093 1836 1678 1624 1677 1733  17.99
0.6 1093 1093 1113 1080 1082 1099 1076 1081 1110 1232 1045 911 854 849 864
1 799 800 813 792 793 804 790 793 812 1053 869 732 650 625 623
18 552 552 558 547 547 553 545 547 559 893 717 58 497 460 437
26 438 438 443 434 434 439 433 434 443 810 640 513 427 389 362
34 368 368 372 365 365 369 365 365 372 756 591 469 385 347 3.9
42 322 322 324 320 320 322 319 320 324 719 554 434 355 319 2091
58 263 264 265 261 262 263 261 262 265 666 508 396 313 28 252
74 227 227 228 226 226 227 226 226 228 623 480 368 295 259 225
98 191 191 192 191 191 191 191 191 191 595 435 325 272 223 204
128 166 166 166 166 166 166 166 166 166 566 404 302 235 203 199
0 4 40110 40087 40173 40137 39959 40062 400.14 40033 401.89 40030 39953 40049 39928 40092 40171
0.2 2160 2223 2564 2041 2063 2160 2008 2005 2042 1836 1678 1624 1677 1733  17.99
06 1121 1152 1311 1077 1085 1127 1072 1070 1087 1232 1045 911 854 849 864
1 817 837 941 78 793 820 785 78 796 1053 869 732 650 625 623
18 559 572 635 542 546 562 543 541 548 893 717 58 497 460 437
26 444 452 498 431 434 445 431 431 435 810 640 513 427 389 362
34 372 38 417 361 364 374 363 362 366 756 591 469 385 347 3.9
42 325 331 363 317 319 326 318 317 320 719 554 434 355 319 209
58 266 270 293 259 260 266 260 260 261 666 508 396 313 28 252
7.4 229 232 251 221 223 229 223 222 226 623 480 368 295 259 225
98 192 193 210 185 18 192 18 186 191 595 435 325 272 223 204
128 166 166 1.8 158 158 166 158 158 166 566 404 302 235 203 199
0 oo 40059 40012 39967 40030 39920 400.68 40033 39975 399.83 40030 399.53 40049 399.28 40092 401.71
0.2 1892 1893 2186 1960 1975 2091 2000 2006 2030 1836 1678 1624 1677 1733  17.99
06 1021 1020 1126 1036 1039 1075 1066 1068 1077 1232 1045 911 854 849 864
1 765 766 837 766 768 7.8 781 78 787 1053 869 732 650 625 623
18 550 552 600 537 538 549 541 541 542 893 717 583 497 460 437
26 449 451 489 433 434 442 430 431 431 810 640 513 427 389 362
34 386 38 421 368 370 376 363 363 363 756 591 469 385 347 3.9
42 343 345 375 325 327 331 319 319 319 719 554 434 355 319 2091
58 287 289 312 270 273 277 261 261 261 666 508 396 313 28 252
74 250 253 276 235 237 241 226 226 226 623 480 368 295 259 225
98 211 215 232 200 202 206 191 191 191 595 435 325 272 223 204
128 189 193 202 179 179 184 166 166 166 566 404 302 235 203 199

Table 3 and Figure 4 show the ARLs of the meth-  the choice of the slope parameter w*. By contrast the
ods. Similar to the step shift results, the performance  performance of DESCUSUM is more stable regardless
of the TCUSUM is highly variable and sensitive on  of the choices of its parameters #,A and . The
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Figure 4. ARL of DESCUSUM and TCUSUM under linear trend shifts. DESCUSUM uses smoothing parameters # = 0.01,0.05 and
0.2, thresholds ¢ = 1.5,4, co and level smoothing parameters 4 = 0.2,0.4,0.8 used. TCUSUM uses w* = 1.7 and 6.7.

DESCUSUM with level smoothing constant A = 0.8,
slope smoothing constant # = 0.01 and 0.05 and the
thresholds £=4 and oo gives smaller ARLs. From
Figure 4, an adaptive scheme outperforms the fixed
slope CUSUMs when the actual slope w is outside the
range of specified ®* values 1.7 and 6.7. Within the

specified range, the fixed slope CUSUM with a larger
o* tends to give smaller ARLs.

Table 4 gives the RMI values of the methods using
the ARLs reported in Table 3 and Figure 4. The
DESCUSUM with threshold & = oo, level smoother
A=0.8 and slope smoothers n =0.01 and 0.05
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Table 4. RMI of DESCUSUM and TCUSUM under linear trend shifts.

DESCUSUM (4, )

TCUSUM (™)

¢ 0.2 0.4 0.8 0.8 1.7 33 6.7 10 15
0.01 0.05 0.2 0.01 0.05 0.2 0.01 0.05 0.2

15 0.154 0.155 0.167 0.146 0.146 0.157 0.143 0.146 0.165 1372 0.833 0.458 0.239 0.124 0.072

4 0.175 0.195 0.327 0.129 0.136 0.177 0.127 0.125 0.149 1.372 0.833 0.458 0.239 0.124 0.072

00 0.185 0.195 0.307 0.155 0.160 0.194 0.138 0.139 0.143 1372 0.833 0.458 0.239 0.124 0.072

provides better performance (reflected by smaller RMI
values). By contrast, the TCUSUM method performs
better with large slope values, such as ®* =15. To
assess the robustness of the methods on the choice of
the parameter, the average of all RMI values for the
two methods are calculated. The DESCUSUM has an
average RMI of 0.209 and the TCUSUM has an aver-
age RMI of 0.389, showing that the DESCUSUM has
a more robust performance over the choice of its
parameters #, 2 and ¢ than TCUSUM over the choice
of its parameter w*. Overall, a DESCUSUM method
with a medium to large threshold value (4 or larger),
a small slope smoother (between 0.01 and 0.05) and a
relatively large level smoother (0.8 or larger) can be
recommended for detecting linear trend shifts.

Choice of the parameters

In this section, we provide general guidance for select-
ing the parameters ¢ and A of SESCUSUM and &, 7
and 4 of DESCUSUM. Capizzi and Masarotto (2003)
presented an optimization approach and Jiang, Shu,
and Apley (2008) presented a graphical approach to
determine the best smoothing and threshold parame-
ters for Adaptive EWMA monitoring of normal data.
However, no studies for Poisson data or count-data
time series were presented. In our study, we will fol-
low a strategy similar to (Jiang, Shu, and Apley 2008),
since as those authors also discussed, Capizzi and
Masarotto (2003) optimization approach would be too
complicated, especially given the additional time series
structure and discreteness of data have to be consid-
ered for our problem.

In order to gain an understanding of the relation-
ship between the ARL; values for detecting different
sizes of shifts and the design parameters of the moni-
toring schemes, we fit and visualize polynomial
response surfaces to the observed values. Second order
polyomial response surfaces were fitted to the ARL;
results of SESCUSUM shown in Table 1 and those of
DESCUSUM shown in Table 3. For step shifts, the
shift sizes k¥ =0.5 and x = 2.5 were considered as
small and large shifts; for trend shifts, the shift sizes
®=0.6 and w = 5.8 were considered as small and
large shifts.

Figure 5 shows the contour plots of the surfaces for
SESCUSUM and step shifts. The results suggest that
the smoothing parameter A and threshold ¢ of
SESCUSUM should be chosen based on the shift sizes
targeted. For detecting shifts with small sizes (Figure
5a and c), a larger smoothing parameter A, between
0.8 to 0.9, is required to minimize ARL, while for
large shift sizes (Figure 5b and d), a somewhat smaller
smoothing parameter 4, between 0.6 to 0.7, is needed.
The choice of ¢ depends on whether or not the data
is seasonal. For small shifts and non-seasonal data
(Figure 5a), a small thresold &, of about 1 to 2, is
needed, however, for large shifts (Figure 5b and d) or
with seasonal data (Figure 5c), a very large thresold,
such as oo, is called for. Note that for large shifts and
non-seasonal data (Figure 5b), the threshold param-
eter do not appear to have any impact (see the sta-
tionary ridge) however, to be consistent with seasonal
case we recommend setting ¢ to a very large value.

Figure 6 shows the contour plots of the response sur-
faces for DESCUSUM and trend shifts. The threshold
¢ = oo (Figure 6e and f) results in larger regions for 4
and 7 in which ARL is minimized and therefore is pre-
ferred. For detecting shifts with small slopes (& = 0.6),
Figure 6e suggests that the region of /4 < 0.6 and 5 <
0.1 minimizes the ARL. For shifts with larger slopes
(o = 5.8), Figure 6f suggests the region of 0.6 < A <
0.8 and 5 < 0.2 minimizes the ARL. Therefore, for
detecting trend shifts with DESCUSUM, we recom-
mend to set £ = oo; for shifts with small slopes, we rec-
ommend to set 4 between 0.5 and 0.6 and 7 to about
0.1, and for shifts with large slopes, we recommend to
set A between 0.7 and 0.8 and 7 to about 0.2.

Case study: German Salmonella infection data

In this section we present the application of the pro-
posed adaptive CUSUM method on the German
Salmonella case data set that was previously studied in
many public health surveillance studies, including
(Hohle and Paul 2008) and the R package surveillance
(Meyer, Held, and Hohle 2017). The calculations are
implemented in R programming language (R
Development Core Team 2021) and the R codes
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Figure 5. Contours of the response surfaces for ARLs of SESCUSUM.

developed for this study can be obtained at https://
github.com/avanli/Adaptive-CUSUM-Salmonella.

The data set, plotted in Figure 7, contains the
weekly counts of Salmonella Hadar disease cases
observed in Germany, from 2001 to 2006, for a total
of 295weeks. The data exhibits an annual seasonal
trend (with T=52) superimposed on a decreasing

linear secular trend. It is evident that the disease
counts gradually decrease up to around week 280,
which is followed by a continuous increase starting
around this time. The exact time point at which this
outbreak started is not clear. In order to detect the
outbreak time, we consider the data observed in the
time period between week 1 and week 240 (well in


https://github.com/avanli/Adaptive-CUSUM-Salmonella
https://github.com/avanli/Adaptive-CUSUM-Salmonella
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Figure 6. Contours of the response surfaces for ARLs of DESCUSUM.

advance of a potential outbreak time period) to esti-
mate a baseline INGARCH model, using the method
presented in (Vanli et al. 2019), and use this estimated
model to monitor the cases observed in weeks 241
onwards. We compare the proposed adaptive
SESCUSUM and DESCUSUM methods (utilizing sim-
ple and double exponential smoothers) with the

existing SCUSUM method (considering a fixed step
size) for detecting outbreaks using this data.

Let 1,...,N weeks denote the period of data used to
estimate the baseline model, and we consider N=200
and 240 as two possible data set sizes to investigate the
impact of estimation on monitoring performance. With
N =240, the estimated seasonal INGARCH model is:
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o flo,; = 4.0392 — 0.0105¢ + 0.2129y, | — 0.0544 L, ,_,
o — 1.2113 cos (2nt/52) — 0.4745 sin (27t /52),
(28)
§ and with N=200, the estimated model is:
© | flo.: = 5.3589 — 0.0184¢ + 0.2209y, | — 0.2288, ,_,
0 i M Y .
& W '\\ /»""M‘ N/Mv — 1.4060 cos (2mt/52) — 0.8116 sin (27t /52).
i oot ‘\M AN
o (29)
0 50 100 150 200 250 300

week Figure 7 shows the one-step ahead forecasts fi,,
Figure 7. Salmonella case count data and the forecasts of  for weeks t = 2,3,...,200 with both estimated models.

INGARCH models fitted with N=200 (orange line) and The smaller data set results in more variable forecasts,

N =240 (brown line) observations. as expected.
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Table 5. Alarm times of the
Salmonella data.

methods applied on the

N
Method Parameter 200 240
DESCUSUM (4) 0.4 292 292
0.8 292 292
0.95 292 292
SESCUSUM (/) 0.4 286 286
0.8 286 283
0.95 283 283
SCUSUM (x*) 0.5 286 283
1 282 281
4 280 280

All monitoring methods are tuned to achieve
ARLj, = 400. The DESCUSUM and SESCUSUM are
tuned with the smoothing constants 4 = 0.4,0.8,0.95
and the threshold ¢ = oo and only # = 0.05 is used
for DESCUSUM. The SCUSUM is tuned for an
increase in the intercept from S0 to o+ K* of K* =
0.5 cases, 1 case, 4 cases.

The results of monitoring using the model estimated
with N =240 data is shown in Figure 8 (between weeks
150 and 295). The figure shows the shift estimate ét
and the forecast fi, using a simple EWMA (Panel a) and
a double EWMA (Panel c), the corresponding adaptive
SESCUSUM statistic (Panel b) and DESCUSUM statis-
tic (Panel d) and the SCUSUM statistic (Panel e). In
order to show multiple monitoring statistics in the
same graph, the scaled statistics, defined S; = S, /h, are
plotted and the alarm limit for the scaled statistic is 1
(i.e., the method signals an alarm when S; > 1).

Table 5 summarizes alarm times of the methods using
INGARCH models estimated with different data set sizes
N. The DESCUSUM consistently signals at week 292
regardless of the smoothing parameter or the data set
size. The SESCUSUM alarm time varies between 283
and 286, and the SCUSUM alarm times vary between
280 and 286. While a smaller data set size N causes larger
variability in alarm times of SCUSUM, the alarm times
of SESCUSUM are less variable. Assuming that the alarm
times of the SESCUSUM and SCUSUM are more reliable
than the alarm time of DESCUSUM, since they are
sooner, the likely outbreak form can be decided as that
of a step shift rather than that of a linear trend and is
happening around between weeks 283 and 286. The
likely time of the outbreak is determined by relying more
heavily on the alarm times of SESCUSUM since this
method’s alarm times are less sensitive to the choice of
its parameters and the data set size.

Conclusions

This paper presented an adaptive cumulative sum
(CUSUM) method for detecting step shift and linear
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trends changes in count-data time-series represented as
seasonal integer-valued generalized autoregressive con-
ditional heteroskedastic INGARCH) time series mod-
els. While the applications of detecting change
considered were in the context of public health and dis-
ease outbreaks, the method is equally applicable in
other contexts including industrial quality. The simula-
tion study showed that the proposed adaptive CUSUM
approach has a better overall performance in detecting
changes than existing fixed magnitude CUSUM meth-
ods under various seasonality, step and linear trend set-
tings. In particular it is shown that guidelines on the
selection of the smoothing parameter of the adaptive
scheme is easier to develop than the specification of the
shift magnitude used in the fixed magnitude CUSUM
methods, with less variation in the resulting detection
performance depending on the choice. In addition, a
case study utilizing real data set from a public health
monitoring problem illustrated the effectiveness of the
proposed adaptive method with estimated models.

This research has not considered effect of estimation
error on detection performance. As a future work of
interest, optimal choice of smoothing parameters based
on phase I sample size can be considered. Optimal choice
of smoothing parameters has been studied for adaptive
CUSUM with known model parameters (Capizzi and
Masarotto 2003) however the effect of estimation error
has not been considered. As we have illustrated in the
case study the models estimated with different data set
sizes and the resulting smoother performance heavily
depends on the sample size. Other potential areas of
extensions would include considering spatial dimension
in addition to temporal dimension in surveillance (in
particular for healthcare problems) or to include expo-
nential or more complex trend forms in addition to lin-
ear trends in the detection methodology.
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