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ABSTRACT. We study the Eisenstein ideal for modular forms of even weight
k > 2 and prime level N. We pay special attention to the phenomenon of extra
reducibility: the Eisenstein ideal is strictly larger than the ideal cutting out
reducible Galois representations. We prove a modularity theorem for these
extra reducible representations. As consequences, we relate the derivative
of a Mazur-Tate L-function to the rank of the Hecke algebra, generalizing a
theorem of Merel, and give a new proof of a special case of an equivariant
main conjecture of Kato. In the second half of the paper, we recall Kato’s
formulation of this main conjecture in the case of a family of motives given
by twists by characters of conductor N and p-power order and its relation to
other formulations of the equivariant main conjecture.

CONTENTS

(L. Introduction|

|[Part 1. The Eisenstein ideal for weight k£ forms|

D

Modular forms and their Galois representations

|3. Deformation theory|

4. Derivative Fisenstein series

l5

An “Rred — Tred” theorem|

|[Part 2. Tame Bloch-Kato conjecture]

[6.  Kato’s main conjecture for tame families

7. The case M = Q(1 — k)|

S.

Interpretation in terms of lifting, cup products, and slopes|

|[Part 3. Appendices|

|Appendix A. Algebraic preliminaries|

|Appendix B. Galois cohomology|

1. INTRODUCTION

12
15
18

25
26
27
32

34
34
37
40

1.1. Summary. Mazur initiated the study of the Eisenstein ideal in the context
of modular forms of weight 2 and prime level N as a powerful tool for studying
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the arithmetic of modular curves and L-functions [Maz77]. In this context, the
Eisenstein ideal measures congruences modulo p between the Eisenstein series and
a cusp form that occur because p divides an Euler factor in the L-function that is
the constant term of the Eisenstein series.

This paper grew out of an attempt to unify two approaches for answering a
question of Mazur on the Z,-rank of the Eisenstein ideal [Maz77, Section II.19,
pg. 140]. The first approach, starting with Merel [Mer96] and more recently Lecou-
turier [Lec21], is analytic, and relates the rank to the order of vanishing of an L-
function. The second approach, starting with Calegari-Emerton [CE05] and more
recently the author with Wang-Erickson [WWE20], relates the rank to class groups
or Galois cohomology of characters.

Although the analytic and algebraic approaches seem completely different, we
identify a theme that is central to both approaches: the idea of extra reducibility. In
[Lec21], this idea manifests itself in the existence of extra mod-p Eisenstein series of
level I'g(N) when p divides N — 1. In [WWE20), it manifests itself in the existence
of first-order deformations of the residual representation that are still reducible.

In the first part of this paper, we explore the theme of extra reducibility in the
context of modular forms of even weight £ > 2. We compute the Galois deforma-
tion ring parameterizing the reducible deformations. We show that these reducible
deformations are all accounted for by extra Eisenstein series in characteristic p. We
think of this as a ‘reducible modularity’ theorem. As a consequence, we prove that
the obstruction to deforming the mod-p Eisenstein series as a cusp form is given
by an equivariant L-function that we call the Mazur-Tate (-function &yr. We use
this to prove our main result, which relates the rank of the Eisenstein ideal to the
order of vanishing of &y, generalizing a theorem of Merel [Mer96| to higher weight.
In the case where this order of vanishing is one, we relate the value of the leading
term, an analytic invariant, to an algebraic invariant in Galois cohomology.

In the second part of the paper, we leave behind modular forms and discuss
the conjecture framework concerning relations between the analytic and algebraic
invariants of the type mentioned in the last sentence of the previous paragraph.
As will be unsurprising to experts, these relations are ultimately predicted by an
equivariant version of the Iwasawa main conjecture. However, this relation is not
totally transparent. We derive the relation from first principles using Kato’s for-
mulation of the main conjecture [Kat93b, [Kat93a) E| , specialized to the case of
‘tame families’. Using a method of “changing Selmer conditions”, we show that our
results are equivalent to a version of the equivariant main conjecture formulated
by Greither and Popescu [GP15] (which has already been proven). We end with a
discussion of several equivalent forms of the conjecture in terms of: Fitting ideals
of cohomology, obstructions to lifting residual cohomology classes, cup products,
and slopes of cohomology classes (or “L-invariants”).

Our results in the second part concern proving that various formulations of the
main conjecture are equivalent. We emphasize that our methods of the first part
only give a new proof of the main conjecture; we do not prove any new cases. Other
proofs have been given by Coates—Sinnot [CS74], using Stickelberger’s theorem, and

IKato’s main conjecture is a reformulation of the Bloch-Kato conjecture [BK90] that is suitable
for considering families of motives. A similar reformulation was found independently, around the
same time, by Fontaine and Perrin-Riou [FPR94]. We focus on Kato’s formulation because of the
attention he pays to integral aspects of the theory.
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by Greither—Popescu [GP15], using the main conjecture for totally real fields proven
by Wiles [Wil90]. However, unlike known proofs, we do not use p-adic methods,
which significantly simplifies the proofs.

Kato’s insights about the importance of p-adic Hodge theory in the study of
special values of L-functions have led to an emphasis on p-adic aspects of the
theory in most expositions. We hope that our explication of Kato’s ideas in the
tame case, where p-adic Hodge theory plays no special role, can be of expository
value. We believe that this method, using tame families, is quite versatile. It may
be possible to apply these techniques to study main conjectures for other motives,
or, in cases where the main conjecture is known, to prove finer results.

1.1.1. Extra reducibility for Xo(11). Before we discuss our results in more detail,
we illustrate the idea of extra reducibility in the simplest case: the modular curve
Xo(11) (which is an elliptic curve). As made famous by Mazur [Maz77], the Frobe-
nius traces on Xo(11) satisfy

(1.1.1) a¢(Xo(11)) =1+ 4 (mod 5)
for all primes ¢ # 11. There are two (related) explanations for this congruence:

Galois: the Galois representation Xo(11)[5] is reducible,
Modular: the cusp form fx, 1) associated to Xo(11) is congruent modulo 5 to
the Eisenstein series of weight 2 and level 11.

The congruence ([1.1.1) can be called reducibility for Xo(11). However, there is a
stronger congruence

(1.1.2) ar(Xo(11)) = x(€) + x 1 (€)¢  (mod 25)

where x : (Z/11Z)* — (Z/25Z)* is the unique character taking the primitive root
2 to 6. This congruence also has a Galois-theoretic explanation:

Galois II: the Galois representation Xo(11)[5] is reducible and semi-simple.

Using the theory of lattices (as in Ribet’s Lemma [Rib76, Proposition 2.1]), this
semi-simplicity implies that as(Xo(11)) must satisfy a congruence like for
some character y; finding which character is then a simple computation. However,
there is no obvious modular explanation for (1.1.2): the right-hand side of the
congruence is not the reduction of the ¢th Fourier coefficient of an Eisenstein series.
We call this kind of congruence extra reducibility, for the kind reducibility not
caused by congruence with an Eisenstein series.

Even though Galois IT can be used to prove the congruence , this proof
is unsatisfying to us for two reasons. The first is that is lattice-independent,
in that it is true not just for Xy(11) but for any elliptic curve that is rationally-
isogenous to it. But Galois II is lattice-dependent: it is true only for Xo(11). We
would prefer to have a lattice-independent proof of a lattice-independent fact. The
second reason is that Galois IT only explains that is true for some character
X, and gives no insight into why it is true for the particular character y. A number
theorist may like to theorize about the number 6: why does x send 2 to 6 and not
11 or 167

In this paper, our goal is to:

e generalize the formula to modular forms of higher weight (see (1.2.5)
below),

e give a modular and lattice-independent explanation for this formula, and

e explain the arithmetic significance of the character x that appears.
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The character y is significant both algebraically, in that it controls a delicate invari-
ant in Galois cohomology, and analytically, in that the values is related to special
values of L-functions. Another goal is to explain that the relation between the these
algebraic and analytic invariants is predicted by a special case of a conjecture of
Kato (see [Kat93a) Iwasawa Main Conjecture (4.9)] and Section[6.2) and that extra
reducibility can be used to prove this special case.

Remarks 1.1.3 (On the history of X((11)). The history of the above results is
difficult for us to sort out because, although not much was published about this
before Mazur’s landmark paper [Maz77], it is certain that this particular case was
understood earlier. Shimura studied X(11) extensively, and had access to compu-
tations of ag(Xo(11)) by Trotter [Shi66]. It’s unclear whether he knew Galois II
or the congruence (L.1.2), but he knew how to construct two complementary sub-
representations of X (11)[5], using the cusps and using the cover X;(11) — Xo(11),
respectively. This latter construction was written about in [Shi7ll Remark 7.27,
pg. 196], but the first reference that discusses the non-trivial Galois action seems
to be by Ogg in 1973 [Ogg73| pg. 230]. Mazur [Maz77, Proposition I1.18.9, pg. 138]
gave a generalization of Galois IT to X, (V) for primes N, and named the Shimura
subgroup after Shimura’s work. Mazur attributes the first proof of to Serre
[Maz77, pg. 139].

1.2. Eisenstein ideal for weight k& forms. For the entire paper, we fix a triple
of integers (k,p, N) such that

e k > 2 is an even integer,
e p is a prime such that (1 — k) € Z(Xp),
e N is a prime with p | (IV —1).

Note that ((1 — k) € Z, if and only if (p — 1) { k by the von Staudt-Clausen
Theorem (see [Was97, Theorem 5.10, pg. 56]). If ((1—k) € Z(,), then ((1-k) € Z(Xp)
if p is a regular prime.

To simplify this introduction, we assume in addition that p? { (N — 1) and that
p1tk(k —1). For example, we may take (k,p, N) = (14,5,11). The general results

are stated and proven in Section [b| below.

1.2.1. Reducible modularity. Let T denote the completion of the Hecke algebra act-
ing on weight-k forms of level T'o(N) at the p-Eisenstein ideal. Let T° denote the
quotient acting on cusp forms, and let I° C T° be its Eisenstein ideal.

As in [WWE20], we study T by considering a Galois deformation ring Rp for
the residual pseudorepresentation D = F,(k — 1) & F, of the Eisenstein series.
We construct a surjective Zp-algebra homomorphism Rp — T that we expect is
an isomorphism. We do not attempt to prove this (although see Remark ,
but we focus instead on proving a weaker reducible modularity theorem. Let RrDed
denote the quotient of Rp parameterizing deformations that are reducible, and let
Tred =T ®Rj RYD"d. Let A = Zy[(Z/NZ)* ®z Zy) and Ay = A/Iﬁug, where Ipyg is
the augmentation ideal.

Theorem 1.2.1. The map Rp — T induces an isomorphism R%ed = Tred ) and
both R'gd and T are isomorphic to Ay as Zp-modules.

_ The isomorphism Tred — A; in the theorem comes from a modular eigenform
Ey n with coefficients in A; that we call the deformation Eisenstein series, whose
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base-change to Z, is a usual Eisenstein series Ej n of level I'g(N). The construction
of Ej, y is inspired by [Lec21]. The idea is to take linear combinations of Eisenstein
series FEi(x,1) and Ey(1,x) of level I'1 (V) and show that, if x is an infinitesimal
deformation of the trivial character, then these linear combinations can descend to
To(N).

Remark 1.2.2 (On the Shimura subgroup). Unlike in previous analytic studies of
the Eisenstein ideal [Maz77, Mer96) [Lec21], no special role is played in this paper
by the Shimura cover X;(N) — Xo(N). Indeed, the significance of this cover
seems special to weight 2 and we do not know a weight-k analog. Given this, the
use of I'1 (N)-structure in the construction of Ek ~ seems ad hoc. The important
phenomenon is that a representation that a priori has deeper level-IN structure in
fact has I'o(N)-invariants, and this phenomenon appears to be quite general. We
plan to study generalizations in the future.

1.2.2. The cuspidal-reducible locus and the Mazur-Tate (-function. Considering A
as the ring of functions on a Dirichlet character of modulus N and p-power order,
we have the function

x+— L(1 =k, x)
which we call the Mazur-Tate -function after [MT87], and denote by {vt € A.
The image &yt (1) € Zy, of Eur under the augmentation map is (1 —k)(1— N*71).
The derivative &y € F, is the image of &y — v (1) under the isomorphism

~ 1
Inug/T3ug = (Z/NZ)* @ Z, =25 .

where log, is a fixed choice of isomorphism (the ‘discrete logarithm’). Explicitly,
[N
Sur = % Z By, (i) log n (2)
i=1

where By (x) is the Bernoulli polynomial.
The constant term &5, := ao(Ex n) € Ay is closely related to %ﬁMT. It has the
same derivative, but its constant term is 2((1—k)(1—N*/2). Let TOd = TOqqTred.

We prove the following.
Theorem 1.2.3. There is an isomorphism TOred 22 Ay /¢S

When &;p # 0, there is a explicit isomorphism A /£E = 7 /p?Z. In that case,
the theorem implies that there is a cuspidal eigenform with coefficients in Z/p*Z
with reducible pseudorepresentation. If there is a unique cuspidal eigenform with
coefficients in Z, (i.e. if T? is smooth over Z,), then this gives an explicit formula
for its reduction modulo p?. In other words, it gives an explicit formula for the
extra reducibility.

1.2.3. Criteria for smoothness of T°. For k = 2, Mazur proved a criterion for T to
equal Z,, in terms of the Weil pairing on Jo(N) [Maz77, Proposition I1.19.2, pg. 140].
Merel [Mer96, Théoreme 2] built on Mazur’s result to prove the remarkable formula
N—1

that TO = Z, if and only if >°, % ilogx (i) =0 (mod p) (this quantity is now called
Merel’s number). Later, Lecouturier [Lecl8, Proposition 1.2] showed that Merel’s
number vanishes if and only if £, (for & = 2) does. Putting these things together,
we see that, for k = 2, we have T® = Z,, if and only if & = 0.
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Using the description of T**? from Theorem [1.2.3, we prove a weight-k analog
of this result. When T? = Z,, we also give an explicit description of the map
T — Z/p*Z in terms of &1, describing the extra reducibility in this case (compare

(1.2.5) to the formula (1.1.2) for X((11)).

Theorem 1.2.4. The inclusion Z, — T° is an isomorphism if and only if both of
the following conditions hold:

(1) &r 70
(2) I° is principal.

Moreover, if Z, — TO is an isomorphism, then the unique homomorphism TO —

Z/p*Z is given biff]

(1-N%)logy(0)
p ISV

(1.25) Ty 1401 4p <<(1 —k)(1 - ) (mod p?)

for primes £ # N.

In weight 2, the Eisenstein ideal is always principal, as was proven by Mazur
[Maz77, Proposition I1.16.1, pg. 125]. It is not always principal in weight k > 2,
but it seems that it is principal if and only if

p—1
[Ja-¢)" " #0inFieF,
i=1
where ¢, € F}; is a primitive p-th root of unity. The ‘if’ part follows from [WWE21]

for k = 2 (mod p — 1), and it seems that the same method works in general (see
Remark [3.2.1). See [Deo21] for some results in this direction.

1.3. Applications to Iwasawa theory. By combining Theorem and Theo-
rem we can see that, if I° is principal and &, # 0, then there is a cuspidal
eigenform f with coefficients in Z, whose Galois representation, when reduced mod-
ulo p?, is reducible. Using Ribet’s technique [Rib76], we can use this f to construct
non-trivial mod-p? global Galois cohomology classes that are trivial locally at p.

To state this result precisely, we require more notation. Let kcye : Go — Z)
and w : Gg — F; be the p-adic and mod-p cyclotomic characters, respectively. Let
log, : (Z/p*Z)* — Fp be x — %.

Let ¢ € HY(Z[1/Np],F,(1—k)) be a non-zero class whose restriction to H*(Q,, F,(1—
k)) is zero (this class is unique up to scaling). Since the vector space H*(Qu,F,(1—

k)) is two-dimensional with canonical basis, we can speak of the slope of an element
in H'(Qn,F,(1 — k)) (see Section [8.3| for more details).

Theorem 1.3.1. Assume that &, # 0 and that I° is principal. Then:
(1) There is a class ¢ € H*(Z[1/Np), (Z/p2Z)(X;2né;Ck)) that lifts ¢ and whose
restriction to H'(Qyp, (Z/p*Z) (x5 k&) is zero.
(2) The cup product c Ulog, (x5 k") vanishes.

cyc

2The quantity in large parentheses should be considered in Z/pZ. Note that &1 # 0 by (1),
and that, although &}, depends on the choice of logy, the ratio lo?M € Z/pZ is independent
MT

of choices.
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(3) The restriction c|ny € H' (Qn,F,(1 —k)) of ¢ has slope
B C—k)
(1-k) &ur
Here xo : Gg — (Z/p*Z)* is o + 1+ palogy(c), where a = %
L|pL, and (Z/p*ZL) (x5 Kk ) denotes Z/p*Z with G acting by x5 %Ky

cyc

S

In fact, we show in Section[8|that (1) implies (2) and (3) without any assumption.
Using the assumptions that & # 0 and that 19 is principal, the class ¢ in (1) is
constructed using the cuspidal eigenform f (see Corollary .

As we explain in Section [§] (see Remark , the slope of ¢|y is a tame analog
of the algebraic L-invariant that appears in the Gross-Stark conjecture [Gro81]
DDP11]. Hence one can think of (3) as a kind of tame analog of the Gross-Stark
conjecture.

1.3.1. Kato’s main conjecture for tame families. Theorem [1.3.1] provides a link
between the Mazur-Tate (-function and Galois cohomology. This is reminiscent
of the Iwasawa main conjecture, but, whereas the Iwasawa main conjecture deals
with p-adic families (i.e. twists by powers of the p-adic cyclotomic character), this
result has to do with tame families (i.e. twists by characters of p-power-order and
conductor N).

Kato has formulated a version of the main conjecture that encompasses very
general families [Kat93b, [Kat93a]. We survey this formulation in the special case of
tame families in the second part of this paper. A consequence of Kato’s conjecture is
that &y controls the size of the Galois cohomology H?(Z[1/Np], A(k)) (where Gg
acts on A via the mod-N cyclotomic character Gg — (Z/NZ)*). Using Theorem
[1.3.1] and a method of “changing Selmer conditions”, we give a new proof of the
following, which is a consequence of Kato’s conjecture.

Corollary 1.3.2. Assume that &y # 0 and that 19 is principal. Then
(1.3.3) Annp H*(Z[1/Np], A(k)) = EmrA.

We first prove a result about Galois cohomology with different Selmer conditions
(Theorem [5.4.1), and show that this result is equivalent (Theorem [7.3.1]).

The equality (without any assumption) is a special case of a known result:
the Coates—Sinnott conjecture as formulated by Greither—Popescu [GP15]. The
original results of Coates and Sinnott [CST74] show that &t is in the annihilator,
and this suffices to prove the equality in this case by a simple argument. Greither—
Popescu [GP15] give a different proof, showing that the result follows from the
Iwasawa main conjecture for totally real fields [Wil90] and the vanishing of u-
invariants [FW79]. The novelty of our proof is that we construct the required
cohomology classes using tame families of modular forms. See the introductory
paragraph to Part 2 for further discussion.

Remark 1.3.4 (Comparison with irregular weight 1 forms). An analogous situation
to the one considered in this paper has been studied, to great effect, by Dasgupta
and his coauthors — first with Darmon and Pollack [DDP11] and more recently
with Kakde and Ventullo [DKV18]. (For a deformation-theoretic perspective on
[DDP11], see [BDP21].) These authors consider p-adic families of cuspforms passing
through an irregular weight 1 Eisenstein point. There, the analog of T%red ig
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computed using linear combinations of Eisenstein series, and the derivative of a
p-adic L-function appears as a coefficient in this linear combination.

One key difference between that situation and ours is that, in our case, the
reducibility quotient T"d is not the quotient of T acting faithfully on Eisenstein
series (and this is the meaning of “extra” in “extra reducibility” — there is more
reducibility than is explained just by Eisenstein series). Indeed, in our case, the
Eisenstein quotient is Z,. The extra “deformation Eisenstein series” only appears
when we consider torsion coefficients.

1.4. Acknowledgments. This work began while I was a Member at the Institute
for Advanced Study working with Akshay Venkatesh. All the ideas for the paper
were developed during discussions with Venkatesh and I thank him for generously
sharing his ideas and encouragement. I also thank the Institute for providing a
wonderful working environment, and especially the crane who took up residence
in the Institute pond for reminding me to think about Iwasawa theory [Kat93b,
Section I11.1.2.8].

This work grew out of the joint works [WWE20, WWE19, WWE21] with Carl
Wang-FErickson, and it is a pleasure to thank him for his many ideas shared during
those collaborations. I also thank Emmanuel Lecouturier for discussions regarding
his works [Lec18, [Lec21], and Tony Feng for discussions about Euler systems. I
thank Frank Calegari, Barry Mazur, Andrew Ogg, and Ken Ribet for enlightening
conversations and correspondence regarding the history of Xo(11). I thank Samit
Dasgupta, Barry Mazur, Andreas Nickel, and Carl Wang-FErickson for comments
and corrections to an earlier version of this manuscript. I thank the anonymous
referees for their careful reading and thoughtful suggestions which have led to im-
provements to the exposition.

Finally, it is my great pleasure to thank Kazuya Kato, who introduced me to
Iwasawa theory. His works [BK90, [Kat93b, [Kat93a] are a constant source of inspi-
ration.

This work was supported by the National Science Foundation under the grants
DMS-1638352 and DMS-1901867.

1.5. Notation. The general setup throughout the paper is as follows:

e k> 2 is an even integer, and k > 2 in Part
e p is a prime such that (1 —k) € Z(Xp),

e N is a prime with p | (N — 1),

e v > ( is the p-adic valuation of N — 1.

As we remarked at the beginning of Section the assumption that ((1—k) € Z(Xp)

implies that (p — 1) t k& (so, in particular, p # 2, 3).
Remark 1.5.1. In weight k, there are Eisenstein congruences whenever at least one
of the following occur

(1) p divides N¥ — 1

(2) p divides the numerator of ¢(1 — k).
However, extra reducibility will only occur when p divides N — 1. In order to focus
on this phenomenon, we limit our scope to this situation.

3Everything in Part 1 should work for k = 2 as well, but requires extra delicacy regarding
convergence (the Eisenstein series of weight 2 and level 1 is non-holomorphic). We consider the
case k = 2 in greater detail in work-in-progress with Lecouturier and Wang-Erickson.
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Also note that, with our assumptions on N and p, Fisenstein congruences will
only occur in the —1-eigenspace for the Atkin-Lehner involution wy, so we focus
our attention on this eigenspace. See [WWE21] for some cases where congruences
occur in +1-eigenspaces.

Throughout the paper, we continue to use the notation xy. and w for the p-adic
and mod-p cyclotomic characters, respectively, and we let log,, : (Z/p*Z)* — F, be

1 N
o (z)z—1

- .

Let v,(—) denote the p-adic valuation on Q. Let Gg, np denote the Galois group
of the maximal extension of Q that is unramified outside Np, and let Gq,,Gq, C
Gq,np be a choice of decomposition group at N and p. Let Iy C G, and I, C
Gq, denote the inertia groups. Choose an element vy € Iy that topologically

generates the pro-p quotient. Let (:](\1,7) € Q(¢n) be an element such that Q( ](\1,’))/@
is the maximal pro-p subextension of Q({nx)/Q. Then yx maps to a generator of

Gal(Q( ](\1,)))/@) & (Z/NZ)* @z Z,. This determines an isomorphism
logy : (Z/NZ)* ®z Z, = Z/p"Z.

We abuse notation and also denote by vy the element logy' (1) € (Z/NZ)* ®z Z,,
and denote by log, the composite character

Ganp = Gal(Q(¢(P)/Q) = (Z/NZ)* ®z Zyy = Z/p" L.

If K is a f-adic local field and x € A* for some ring A, let A(x) : Gg — A*
denote the unramified character sending the arithmetic Frobenius to z.

If C is a cochain complex, we let Z*(C) denote the i-cocycles and B*(C) de-
note the i-coboundaries. For a complex like RI'(G, M) we denote Z*(RI'(G, M)),
BY(RI'(G,M)), and H (R['(G, M)) by Z*(G, M), B (G, M) and H*(G, M), respec-
tively, and similarly for the related complexes introduced in Appendix [B. See Ap-
pendix [B for more notation regarding Galois cohomology.

Part 1. The Eisenstein ideal for weight k& forms

In this part, we prove most of our main results, including Theorem (see
The Theorem (see Theorem [5.1.2)), and Theorem (see Theo-
rem and Corollary [5.2.9)).

In Section 2] we review the necessary background material on modular forms and
Hecke algebras. In Section [3] we review deformation theory of Galois pseudorepre-
sentations as developed in [WWE20, WWE19, WWE21]; this section includes the
definition of Rp and the calculation of R%Bd. In Section , we carry out our main
construction of “derivative Eisenstein series”, as inspired by [Lec21]. In Section
we prove our main results.

2. MODULAR FORMS AND THEIR (GALOIS REPRESENTATIONS

In this section, we recall some basic facts about modular forms and their Galois
representations. All the results from this section are well-known — some references
are [Kat73| [DI43, [Gro90l [Gou88| Maz77]., We review them here just to fix our
notation.

2.1. Modular forms and Hecke algebras. We recall some basics about algebraic
modular forms.
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2.1.1. Modular forms. Let T’ be a subgroup of SLy(Z) with T'(N) C T (we will only
consider I' = T'o(N) or I'1(N)). For a Z[1/N]-module K, let My(T", K) denote the
module of algebraic modular forms of weight k and level I with coefficients in K,
as defined by Katz [Kat73], and let S;(T', K') denote the submodule of cusp forms.
If K is a flat Z[1/N]-algebra (such as Z,), these can be defined in terms of classical
modular forms with integral g-expansion [Oht14l Section 1.3]. For f € My (T, K)
we write its g-expansion (at the co-cusp) as f(q) = > oo o an(f)q"™ € K®QZ[1/N][q].

2.1.2. Hecke algebra. Let T" denote the sub Z,-algebra of Endz, My(I'o(N),Z,)
generated by the T, Hecke operators for primes ¢ # N together with the Atkin-
Lehner involution wy; it is a reduced commutative ring. Let T'° denote the image
of T" in Endyz, Sk(To(N),Zy). For a T'-module M let M* denote the largest direct
summand of M on which wy acts by +1.

2.1.3. Residue exact sequence. There is an exact sequence of T’-modules
(2.1.1) 0 — Sk(To(N),Zy)* — My(To(N), Z,)* 2% 7, — 0

where ag is the map sending f to its constant Fourier coefficient ag(f). The ex-
actness in the middle comes from the fact that wy switches the two cusps, so a
wy-eigenform whose constant term at one cusp is zero automatically has constant
term zero at the other cusp.

The surjectivity of ag follows from the vanishing of H! of the sheaf of cusp forms
of weight k, as in the proof of the base-change property [Kat73] Theorem 1.7.1].
The surjectivity can also be proven directly from the base-change property, as we
now sketch. Suppose, for the sake of contradiction, that the image of ag is p'Z, for
some i > 0, and let f € My (To(N),Z,)* be such that ao(f) = p’. Then f := f
(mod p) is in Sg(To(N),F,)* because ag(f) = 0. By the base-change property,
there is an f € Si(To(N),Z,)* with f = f (mod p). Then, since f — f = 0
f—f

P

But ap(g) = angf) = p~1, contradicting our assumption about the image of ay.

(mod p), we see that g := is in My, (To(N),Z,)* by the g-expansion principle.

2.1.4. Duality. There are perfect pairings of free Z,-modules
T'= x My(To(N), Zp)E = Z,, T x Si(To(N), Z,)* = Z,

given by (¢, f) — ai(tf). This can be proven just as in [Oht14l Corollary 2.4.7],
using integral Atkin-Lehner theory [Oht14] Proposition 2.1.2].

In particular, there is a unique element T, € T'* such that ai(Tof) = ao(f)
for all f € My(To(N),Z,)*, which we call the universal constant term operator,
following Emerton [Eme99| Section 2]. Taking the dual of the sequence , we
see that Ty generates the ideal ker(T'* — ’]I"Oi) and that this ideal is free of rank
1 as a Zy-module.

2.1.5. FEisenstein series of level To(IN). Let Fx(z) denote the normalized Eisenstein

w and is an eigenform with

series of weight k and level 1. It has constant term
Ty-eigenvalue 1 + £F~1 for any prime £.

Define Eisenstein series E,:ct y of level T'o(N) by

Eif (2) = Ei(2) £ N*2 By (N=z).
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They are eigenforms with Ty-eigenvalue 1 4 ¢*~! for any prime £ # N and with
wnEif y = £E;F . The have constant terms ag(Ej ) = 01— k)(1 £ NF/2).

2.1.6. Eisenstein series of level T'1(NN). For each non-trivial even character x :
(Z/NZ)* — Q*, there are two normalized Eisenstein series Ey(1,x) and Ex(x, 1)
of level I'1 (N), given by the g-expansions

Bt = Y S (S|

n>1 \ dln
and

B 1) =Y [ Do xn/d)d | ¢

n>1 \ dln

They are eigenforms for all the Ty. An elementary computation shows that

(2.1.2) wyEg(x,1) = N(k/)2 Ex(1,x7),

where g(x) = > ,e@z/nz)x x(a)e®®* is the Gauss sum (see [Wei77, Proposition

1]). Note that, since wy is an involution, this implies that wyEy(1,x7!) =
Nk/2

2.2. Eisenstein ideal. From now on, we only consider —1-eigenspaces for wy. We
define By, v := E,_y, and let I’ = Anny (E}), n) and let m” denote the maximal ideal

of T” generated by I’ and p. We define T and T° to be the completion at m’ of T’
and T'°, respectively. Note that, since p > 2, the local ring T cannot contain any
non-trivial involution, so wy = —1 in T.

For a T’-module M, we let Mg denote M @1 T, and we note that Mg, =
(M7 )gis- In particular, we have the exact sequences

0 — Sk(To(N),Zp)gis — Mip(To(N), Zp)gis > Z,, — 0
and
(2.2.1) 0— TyZ, — T — T — 0,
that are dual to each other under the perfect pairings
T x My(To(N),Zp)gis = Zp, TO x Sp(To(N),Zp)gis — Zp-

The normalization of T is the product ] f Oy where f ranges over normalized
eigenforms in My,(To(N), Qp)gis, and where Oy is the valuation ring in the finite
extension of @, obtained by adjoining the Fourier coefficients a,(f) for £ # N. The
normalization map T — Hf Oy is injective, as T is reduced.

2.3. Representations associated to cusp forms. Let f be a cuspidal eigenform
of level T'o(N) and weight k. Let p; : Go np — GL2(Q,) denote the associated p-
adic Galois reprebentation It is the unique irreducible representation satisfying
det(py) = kb and tr(pg)(Fre) = ay(f) for all primes £ not dividing Np. The
following lemma recalls the local properties of this representation in the cases of
interest.

Lemma 2.3.1. Assume that a,(f) is a p-adic unit and that wy(f) = —f. Then
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(1) The representation py|G,, is ordinary. That is, we have

Keye Map(f)™h) *

~ cyc P

priae, ~ ("5 May(h)

(2) If f is old at N, then py|c,  is unramified.

(3) If f is new at N, then pf|G@N s Steinberg. This is, we have

k_ Kove ¥
PilGay ~ ANZ 1)< 0 1)

3. DEFORMATION THEORY

Let D = w* 1@®1: Gg np — Fp, the residual pseudorepresentation of the Eisen-
stein series of weight k. In this section, we define a ring Rp which represents the
functor for pseudorepresentations D that deform D and satisfy certain conditions
so they “look like” pseudorepresentations associated to modular forms of weight k
and level T'o(V).

A method for imposing these conditions has developed extensively in the au-
thor’s previous papers with Carl Wang-Erickson [WWE20, WWEI9, WWE21],
specifically in the case of weight k& = 2. In this paper, we simply sketch how the
methods of those papers can be adapted to weight k. We freely use the language of
pseudorepresentations and Cayley-Hamilton representations. We refer the reader
to [WWE21, Section 3| for more detail.

3.1. Deformation ring. Let Ry denote the pseudodeformation ring parameter-
izing deformations D : Gg np — A of D, where A is an Artin local Z,-algebra with
residue field F,, subject to the following conditions:

e det(D) = n’j;cl,

e D is ordinary at p,
e Dis unramiﬁed-or—Steinber at N.

These latter two conditions need definitions. By definition, they are true if and
only if there is a Cayley-Hamilton representation p : Gg np — £ inducing D with
the same property. We now define these properties for Cayley-Hamilton represen-
tations.

A Cayley-Hamilton representation p : Gg np — E* is ordinary at p if

(p(0) = Kgye! (0)) (p(7) = 1) = 0

for all o, 7 € I,,, the inertia group of Gg,,.

A Cayley-Hamilton representation p : Ggo np — E* is unramified-or-Steinberg
at N if i i

(p(0) = Feye(@)AN 2T (0))(p(T) = AN Z71)(7)) = 0

for all (o,7) € In X Ggy UGq, X Iy. Note that an unramified representation will
satisfy this property: if o € Iy, then the first factor is zero, and if 7 € I, then
the second factor is zero.

Given these definitions, the existence of the deformation ring Rp parameterizing
deformations with these conditions is proven exactly as in [WWE21, Section 3]. The

4This condition would be called “unramified-or-(—1)-Steinberg” in [WWE21|, where the sign
refers to a choice of unramified quadratic twist related to the wy-eigenvalue. In this paper, we
only consider a single twist (because we only consider the wy = —1-eigenspace), so we drop the
sign from the notation.
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idea of the construction is to start with the universal Cayley-Hamilton algebra and
impose these conditions by taking a quotient in the category of Cayley-Hamilton
algebras; the ring Rp is obtained as the scalar ring of this quotient.

We let D" : Gg,np — Rp denote the universal pseudorepresentation. The pseu-
dorepresentation /s}(fy’cl ® 1 over Zj, which we refer to as the minimal deformation,
defines a map Rp — Z, which gives Rp the structure of an augmented Z,-algebra;
we call the kernel J™" C Rp, and refer to it as the minimality ideal.

3.2. Map Rp — T. There is a unique surjective Zy-algebra homomorphism
RD - T

such that trace(D")(Fry) — T, for all £+ Np. Using the fact that Rp is generated
by the elements trace(D")(Fr,) as a Z,, algebra, this map can be constructed and
proven to be surjective just as in the proof of [WWE21, Proposition 4.1.1], following
three steps:

Step 1: The pseudorepresentation associated to an eigenform f defines a map
Rp — Oy sending trace(D™)(Frp) to ae(f) for all £+ Np. (The fact that this
pseudorepresentation satisfies the required conditions follows from Lemma
2.3.1])

Step 2: The resulting map Rp — [[; O sends trace(D")(Fr,) to the image of T}
under the normalization T — [, Oy. Hence the map Rp — []; Oy factors
through a map Rp — T whose image is the subalgebra generated by the
T, for £1 Np.

Step 3: The image of R — T also contains T}, (using the interpretation of a,(f)
in terms of Galois representations). This completes the proof the Rp — T
is surjective.

Remark 3.2.1. We expect that the map Rp — T is an isomorphism. This kind of
result was proven in [WWE20] in the weight 2 case. However, since the there is no
“finite flat” condition in weight k > 2, this situation is more closely analogous to
the case k = 2 and level I'g(NNp), which was treated in [WWE2I]. It seems that the
same method can prove that if the restriction map

(3.2.2) HY(Z[1/p),Fy(k = 1)) — H'(Qn, Fp(k — 1))

is non-zero, then J™" is principal and Rp — T is an isomorphism. Using our
assumption that ((1 — k) € Z(Xp), it is easy to see that H'(Z[1/p],F,(k — 1)) is
generated by image of the Deligne-Soulé cyclotomic element [Del79, [Sou87] (see
also [Kur92, Section 5]), so is zero if and only if

p—1

(3.2.3) Zik_2 log (1 — g‘;) =0 (mod p)

i=1
where ¢, € Fy is any primitive pth root of unity. In the case k = 2 (mod p—1), this
is equivalent to logy(p) = 0 (mod p), which is the condition that was considered
in [WWE21]. See [Deo21] for some recent results regarding this.

The map Rp — T — T/I =+ Z,, coincides with the minimal deformation Rp —
Zy, so the map Rp — T is a map of augmented Z,-algebras.
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3.3. The group ring A and its quotient A;. In order to describe the reducible
quotient of Rp, we set up some notation regarding group rings that will also be

used later.
We let A = Z,[Gal(Q( ](\Z,’))/Q)], which we think of as the universal unramified-
outside-V deformation ring of the trivial character Go v — F,'. The localization

A ® Q is a product of totally ramified finite extensions Q,(x) of Q, labeled by
characters x : Gal(Q( I(\I,’))/Q) - Qx:

AeQ=]]Q ).

We write Iayg = ker(A — Z,) for the augmentation ideal, and let A; = A/Iiug,
which we think of as parameterizing first-order deformations.

The choices made in Section [L.5| define isomorphisms

Zy[X]

(X +1)P —1)
such that the composition is [a] — (14 X)°8~ (@) for a group-like element [a]. These
isomorphisms define an isomorphism
~ Lyl X]
(3:3:2) b (X pX)

via [a] = 1+ logy(a)X. Throughout the paper, we will forget about , but
we will use (3.3.2) as an identification. In particular, the letter X will always refer
to an element of A; that is a generator of Iy, /Iiug inducing the isomorphism
Tnug/IR g = Z/p"Z of Section

We let A; = Ay /p”A;. Via the identification , A1 is identified with the ring
of dual numbers over Z/p”Z. The quotient map A; — A; induces an isomorphism

(3.3.3) XA, = XA = X -Z/p"Z,

(3.3.1) A5 Z[Z/p" 7] =

which we also use as an identification.
We let (—) : Gg,np — A7 denote the character (o) =1+ logy(0)X.

3.4. Reducible deformation ring. Let Ry — Rﬁ\‘}d denote the quotient param-
eterizing deformations D : Gg,np — A that are still reducible (that is D = x1 & x2
for some characters x1, x2 : Go,np = A%).

Lemma 3.4.1. The pseudorepresentation
Dmd : GQ,Np — A1

determined by D¢ = nffyfcl<7>_1 @ (=) is a deformation of D and determines an
isomorphism
R S5 AL

Proof. It can be checked easily that D™ defines a reducible deformation of D that
is ordinary at p and unramified-or-Steinberg at IV, so it defines a map R%Ed — Ay
We must construct the inverse map. The proof is just as in [WWE20, Proposition
5.1.2] or [WWE21, Lemma 4.2.3], so we will simply sketch the argument.

Let D®red = X1DPx2 : Go,np — R%’d denote the universal reducible deformation.
Since det(D"d) = kE ! we can write x1 = k¥ x5 Now x2 is a deformation
of the trivial character. The ordinary condition forces x2 to be unramified at p.
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Hence there is a surjection A — Rrgd. The unramified-or-Steinberg at N condition
forces this surjection to factor through

Z,[Cal(Q(CR)/Q)

(vl + [l =2)
Under the isomorphism , this quotient is identified with A; and the universal
character is identified with (—). This gives a surjection Ay — R%”d that is inverse
to R%d — A5 O

4. DERIVATIVE EISENSTEIN SERIES

4.1. Mazur-Tate (-function. We first consider the constant terms L(1 — k, x)
of the Eisenstein series Fj(1,x) and note that they interpolate into an element

&ur € A that we call the Mazur-Tate (-function (after [MT87j)E|
We consider the function x — L(1 — k, x) for a character x : Gal(Q( ](\f))/(@) —
> where L(s,x) is the Dirichlet L-function and we think of x as a Dirichlet
character of modulus N. A priori, this function is an element &yt of the group ring
@p[Gal(Q(C](\f))/Q)]. Explicitly, we have the formula (see e.g. [Was97, Thm. 4.2,

pg. 32]),

B Nk 1 N
L —kx)=——% = Z Bi(a/N)x

for any Dirichlet character of modulus N, where Bk,x is the Bernoulli number
and By(z) is the Bernoulli polynomial, so &yt = —% Zi\[:—ll Byi(a/N)[a], and
we see Emt € Qp[Gal(Q (CJ(\I,’))/Q)]. It is known that &y is the integral subring

A C Qp[Gal(Q( (p))/(Q))] (see [CS74l Theorem 1.2], and note that their £+ 1 is our
k, and that the integer wg(Q) appearing in the statement is prime-to-p because of
our assumption (p — 1) 1 k).

In the next lemma, we use the identifications of Section

Lemma 4.1.1. The image of &gt in Ay is given by
CL—k) (1= N*1) + eyrX
where &yr € Z/p¥Z is the element
Nk—1 N1
k

Bn(a/N)logy(a) € Z/p"Z
a=1
In particular, the image of &yt in A1 annihilates X .
Proof. The image of &yr under the augmentation is L(1 — &, 1), where 1 denotes
the trivial character modulo N. This is easily seen to be equal to ¢(1—k)(1—N*1).
This shows that

Z By (a/N)([a] — 1).

Emr — C(1 — k)1 — N*1)

51t could be called the “tame L-function”, to highlight the analogy with p-adic L-functions, or
a Stickelberger element.
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The isomorphism Iaug/I3X,, = Z/p"Z sends [a] — 1 to logy(a) and sends X to 1,
so we have

Z w(a/N)logy(a )) X.

fur — C(1—k)(1 = N*71) (
The last statement follows from the fact that the annihilator of X in A; is the ideal
generated by N — 1 and X. ([

4.2. Group-ring valued Eisenstein series. Consider the Eisenstein series

Bl ) = g6 + 3 [ Yl | " € 2,l2/N2) {2l

n>1 \ d|n

and

Ey([-L 1) =Y | D[n/dld*" | ¢ € Z,[(Z/NZ)* /{£}]]a]-
n>1 \ dln
The ring Q,[(Z/NZ)* /{£}] is a product of Q, labeled by even characters y; the
map associated to a given x sends Ex(1,[—]) to Ex(1,x) and Ex([-],1) to Ex(x, 1).
This implies that these g-series are g-expansions of modular forms elements of
M;(T1(N),Q,[(Z/NZ)* /{£}]). By the g-expansion principle [Kat73, Corollary
1.6.2], they are actually elements of My (I'1(N),Z,[(Z/NZ)* /{£}]).

4.3. Derivative Eisenstein series. Throughout the rest of this section, we fre-
quently use the notation for the group ring A, its quotients A; and A, and the
element X € A7 introduced in Section

Let Ey(1, (=), Ex({=),1) € Mi(T'1(N), A1) be the base-change of Ei(1,[—]) and
Ei([-],1) via the quotient Z,[(Z/NZ)* /{£}] — A1. Let Ex(1,{-)), Ex((-),1) €
My(T'1(N), A1) be further the base change via A; — A;.

By base-changing along the inclusion Z, C A;, we can consider Ej y as an
element in My (T'1(N), A1). Then we have

X - Epn € Mp(T1(N), XA1) = Mp(T1(N), XA1),
where we have used the identification . We also have
X Ep(1,(=)), X+ Ep((=),1) € Mp(T1(N), XAq).
Lemma 4.3.1. We have
X Epn =X Eg(1,(=)) = X - Ex((=),1)
as elements of My('1(N), XAy).

Proof. In this proof, we frequently use the fact that N = 1 in A;. By the ¢-
expansion principle, we need only check that these forms have the same g-expansion.
We first check the constant terms. We have ag(Ey,n) = $¢(1—k)(1—N*/2), which is
zero in Ay, 50 ag(X - Ex n) = 0. We also see trivially that ag(E)((—),1)) = 0, so we
have to check that ag(X - Ej (1, (=))) = 0. But we have ao(X-Ey(1,(-))) = 3 X&ur,
which is zero in Ay by Lemmam
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Next we consider an coefficients. We have
an(X - Epny)=X(1+ N1 - NF?2) = X
an (X - Ex(1, (=) =X
an(X - Ex({(-),1)) = N¥1X = X.
Finally, we check easily that, for any prime £ # N, all three have ag-coefficient
X(1+ 1. O
Let B}, y € My(T1(N),Aq) be the element

Ep N = Er(1,(=)) — Ex((-),1),
which we call the derivative Eisenstein series.

Lemma 4.3.2. The g-expansion of derivative Fisenstein series E,’%N takes values
in XAy. Moreover,
(1) the diamond operators act trivially on Ej y,
(2) aO(El,c,N) = %f{\/{TX;
(3) Ep Nl(1p—er—1-1) = logy (€)(F~1 —1)X - Ey n for any prime £ # N, and
(4) EI/C,N|1UN = _Ellc,N‘
In particular, E,’C,N € Mi(To(N), XA1)gis-

Proof. Tt follows from Lemma that X - E;’C n = 0. This implies that the g-
expansion of Ej, 5 takes values in the annihilator of X in A4, which is XA;. This
proves the first statement. We proceed with the numbered statements.

(1) Since ~yy is a generator of (Z/NZ)* ® Z,, it’s enough to show that (yy) —1
acts by zero. But (yn) — 1 acts as multiplication by X, which annihilates £} y
since it has coefficients in X A;.

(2) Since ag(E((—),1)) = 0, we have ao(Ey, n) = ao( Ek(1, (—))), which is the
image of %«EMT in A;. This is equal to %ff\/{TX by Lemma

(3) Using the fact that Ey(1, (—)) and Ex((—), 1) are eigenforms for T, we easily
compute that

Ey(1, (=)(r,—er—1-1y = " logn ()X - E(1,(-))
Ee((=), Dl (zy—er—1-1) = logn (0)X - Ex((=),1).

The result now follows from Lemma [£.3.1]

(4) By (12), we have

Nk/Z _ -)) - _
Bl = o B0 ™1 = Sl B, (07,
where g(—) denotes the Gauss sum. Now we compute that
N-1
a((=) = D (1 +logy(a)X)¢fy = —1 + gllogy) X.
a=1

It follows that g((—)"") = g((—)) . Using the fact that N = 1 in A;, we have
E'uy = 8((=)(Ee((=) 1 1) = Bi(1,(=) 7).
Claim. We have Ey((=)"",1) — Ex(1,(=)"") = Ej 5.
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Proof. The automorphism ¢ : [g] — [g~!] of Ay (thought of as quotient of the group
ring) acts by —1 on X - A;. This implies that «(E’) equals —E’ on one hand, and
equals Ex(1, (=)"") = E,((=)"",1) on the other hand. O

Hence we have
B nlwy = a((=)(Er((=) 71 1) = Ex(1,(=)"1)) = g((=)) B}, -

Since g((—)) = —1 (mod X), and since Ej y has coefficients in XAy, we have
9((—=))E} y = —Ej,_x- This completes the proof of (4).

To see the final statement, note that, for any Z[1/N]-module A, the module
My, (To(N), A) is the invariants of My (I'1(NN), A) under the diamond operators (see
[Oht14] Lemma 1.2.6] or a similar argument in [Edi92, Section 2.1]). So by (1),
we have Ej v € M(To(N),XAy). Parts (3) and (4) show that I?Ej y = 0, so
El/c,N S Mk(FQ(N),X/_\l)EiS. U

4.4. Deformation Eisenstein series. Consider the modular form
EyxN = Exn +Ep y,

where the sum is taking place in My (Io(N), A1)gis. We have
~ 1
(4.4.1) ao(Brw) = 5 (61 = k)1 = N*/2) + g X) .

We define &35 := ao(Ex y) € Ay. Although &35 # &yr, we use this notation
to invoke the idea of fﬁi% as an altered version of &yr: the incarnation of &yt as
the constant term of an Eisenstein series. Note that X¢5s = 0, just as in Lemma

411l
Proposition 4.4.2. There is a surjective morphism of augmented Z,-algebras
T - A1

defined by Ty — ag(Ep n) = 1+ 051+ (1 — 5"V logy (€)X for all £+ N. This map
sends Ty to €55,

Proof. By duality (Section , we have to show that E’k ~ is annihilated by the
following Hecke operators:

(1) Ty — (14 5= +log () (£F~1 — 1) X)

(2) wy + 1.
This follows from Lemma [E.3.2] (]

5. AN “Rred — Tred” pHROREM

5.1. Reducible modularity. Let J*¢ = ker(Rp — R%Ed) and let I'* C T be
the image of J™d under Rp — T. Let T**d = T/I"d. Recall the surjective
homomorphism Rjp — T of augmented Z,-algebras defined in Section

Theorem 5.1.1. The map Rp — T induces an isomorphism R%‘jd — T4, The
inverse map is composite of map T™! — Ay induced by Pmposition and the
isomorphism Ay — Rrgd of Lemma .
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Proof. The isomorphism R4 = A; of Lemma sends trace(D")(Fr,) for £ #
N to
Keye(Fre) ™ (Fre) ™ 4 (Frg) = €57 (1 + logy () X) + 1 — logn () X
=1+ 4 (1= Ylogy ()X,
which is the image of T; under the map T — A; of Proposition Since Rp
is generated by the elements trace(D™)(Fry), this implies that the two composite
maps
Rp— REY S Ay, Rp » T — Ay
coincide. Hence the latter map sends J™9 to zero, and the induced composite map
RE— T — Ay

is the isomorphism of Lemma This implies that R%’d —» T4 ig injective, and
hence an isomorphism. O

Let 1974 € TO be the image of I**? under T — T, and let TOred .= T0/[0:red,

Theorem 5.1.2. The isomorphism T =5 Ay of Theorem |5.1.1 induces an iso-
morphism
TO,red o Al/ﬁﬁl%

Proof. Note that the map T — A; sends Tp to &85, By the sequence , this
map induces a map T° — Ay /&5, Call the kernel of this map I’. The content of
the theorem is that I’ = 10red,

We have a commutative diagram with exact rows and columns

0 0

~

Ly — 51]?41%A1

0 Jred T Ay 0
14
0 I o Ay /€8s ——=0
0 0

where the vertical map Z, — T is 1 — T,. We will show that the map Z, — &5is Ay
is an isomorphism, which, by the snake lemma, will imply that the map I — I’
is an isomorphism. In other words, this will show I’ = 194 completing to proof
of the theorem.

It remains to show that the map Z, — ¢EIS Ay is an isomorphism. To see this,
first note that 55 A is the free Z,-submodule of A; generated by ¢£5. Indeed,
XS =0, so &A1 = 52, and, since &35 (mod XAp) is a non-zero element
of Zy, the module ££5.7,, is Z,-torsion-free. Since the map Z, — &5i5 A1 sends 1 to
a1(ToEk,N) = ao(EkyN) = ¢Bls | we see that this map is an isomorphism. O



20 PRESTON WAKE

Remark 5.1.3. Note that this theorem implies the equality

(5.1.4) T°/1° = Z,/a0(Ey.N)Zp = Z./p" T * W7,

which is reminiscent of Mazur’s result [Maz77, Proposition I1.9.6, pg. 96] on the in-
dex of the Eisenstein ideal. The theorem itself is reminiscent of results of Wiles and
Mazur-Wiles (for example [Wil90, Theorem 4.1]) relating the intersection between
Eisenstein and cuspidal Hida families to the Kubota-Leopoldt p-adic L-function.
The idea to prove this kind of result using the universal constant term operator
originated with Emerton [Eme99].

Corollary 5.1.5. The ring TO" is annihilated by p**+v»*)  Hence it is the quo-
tient of
@/ O]
(r X, X?)
by the image of 5. In particular, T%™Y has finite cardinality.
Proof. By Theorem [5.1.2] we have &5 = 0 in T%**d. This implies that we have
CL=k)(A=N?) +&rX =0

as elements on T%*d.  Since v,(¢(1 — k)(1 — N*/?)) = v + v,(k), we see that
p?tor(R) ig in the ideal X - T4, Since p*X = 0 in Ay, we see that p2*Tvr(k) =
in TO-red, d

5.2. Consequences for modular forms when ;1 is a unit. Since §};r is the
coefficient of X in fﬁi%, if &r is a unit, then X is equivalent to the image of an
element of Z,, in A1 /¢55. We introduce a constant to keep track of this element of
L.

Definition 5.2.1. Suppose that &, € Z/p”Z is a unit. Define the extra reducibil-
ity constant o € Z/p*Z by

(1— N*/2)

— g1 _
(5.2.2) o =&ur¢( =B =

Define the extra reducibility character xo : Go,nNp — (Z/p*+vr(F)Z)* by the for-
mula

(5.2.3) Xa(0) =1+ p" TP alogy (0).
The purpose of this definition comes from the following lemma.

Lemma 5.2.4. Suppose that &r € Z/p"Z is a unit. Then there are isomorphisms
(Z/p* W) [X]

(P X, X2, &yr - (pHrHa — X))

where the first map is Ty~ 14+ €8~ + (1 — (k=) logy (£) X and the second map is

X — p*TrF o and where o is the extra reducibility constant .

TO,rcd ~ AN Z/p2u+vp(k)Z

Proof. By the definition of a;, we have
. 1
Mt = géur s (07— X)) (mod p e ®), prx, X2),
Hence the lemma follows from Theorem and Corollary [

We can interpret this in terms of modular forms.
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Corollary 5.2.5. Suppose that &1 € Z/p"Z is a unit. Then there is a normalized
eigenform f € Sp(To(N),Z/p* Tvr ) Z)gis with

ar(f) =14+ +ptr® (1 — ) logy (O)a
for all £ # N, where « is the extra reducibility constant .
Proof. Tt is equivalent to show that there is a surjective Z,-algebra homomorphism
(5.2.6) 0 — Z/p?Tor Rz,

sending T to 14£F=1 4 pr+r(E) (1 —¢*=1) log (/). This is immediate from Lemma
2.4 O

By the base-change property for algebraic modular forms, there is a cuspform
f e Si(Do(N ), Zp)wis lifting the eigenform f of the corollary, but there may not
be an eigenform f lifting f in general. However, if S(To(N),Z,)mis happens to
be rank one as a Zp,-module, then any normalized form is an eigenform, and this
guarantees that there is an eigenform f lifting f. The next theorem gives a criterion

for the rank to be one.

Theorem 5.2.7. The inclusion Z, — T° is an isomorphism if and only if both of
the following conditions hold:

(1) &y is a unit in Z/p"Z, and

(2) I° is principal.

Proof. We first prove the direct implication. If T° = Z,,, then any ideal is principal,
so (2) is immediate. On the other hand, if & ;7 is not a unit, then (55 = 0 (mod p).
Then, using Theorem we have
0,red 0,red ~ FP[X]
T ¢ /pT = 7( X7
Since this is not a quotient of Z,, we have TO £ Z,. This shows that if TO = L,
then (1) is true.

Now assume (1) and (2). Then I° is principal and we know that T°/I° =
z/ prtor ()7 by . To illustrate the rest of the proof, we first consider the case
v =1 and v,(k) = 0. In that case, we see that T? is a DVR with residue field F,,.
But by , we see that T° has Z/p?Z as a quotient; this cannot occur if T is
a ramified DVR, so we must have T® = ZLy.

In the general case, T? need not be a DVR, but we there is a presentation of

TO of the form (i”([;]) = T°, where ¢t maps to a generator of I° and F(t) is the
characteristic polynomial of ¢ acting on T°. By , we have F(0) = up?Tor (k)
with u € Z;, and, since TO is local, F'(t) is a distinguished polynomial. Assume,
for a contradiction, that deg(F) > 1. In that case F(t) = at +up’T»*) (mod ¢?)
with a1 € pZ,.

Composing our presentation with with the map from Corollary we
obtain a map ¢ : % — Z/p**+v» (W7, By (5.1.4), we must have ¢(t) = vp”*or(k)

for some v € Z5; in particular, #(t?) = 0. Then ¢ factors through a map

Z,1]
(art + uprTr ) 2)

s Z/pQVJrvp(k)Z, t Upu+vp(k)
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and we have
0 = al,UpVJr’Up(k) + upl/+’l)p(k) — (al'U + u)pu+vp(k)
in Z/p?+tvr(¥) 7, But since we assume a; € pZy and u € Z,;, we have ayv+u € Z,

so this is a contradiction. Hence in the presentation (ip([tt)]) = T° we must have

deg(F) =1 and T° = Z,,.

(]

Remarks 5.2.8.

(1) In the case of weight k = 2, the question of when T° = Z, was first
considered by Mazur [Maz77, Section 11.19, pg. 140]. In that case, Mazur
proved that I° is always principal [Maz77, Proposition 11.16.6, pg. 126]. In
that case, the analog of our corollary is that T° = Z,, if and only if &}, is
a unit, and this was proven by Merel [Mer96, Théoreme 2]@ Our proof of
the corollary is inspired by Lecouturier’s recent new proof of Merel’s result
[Lec21, Theorem 1.1]. In [WWE20], we gave a completely different proof of
Merel’s result using deformation theory, which is related to the discussion
in the Section [£.3] below.

(2) One can check computationally that I° is very often principal, but not
always. Indeed, if Remark is correct, then I° should be principal if
and only if the equality (3.2.3)) fails to hold. See [Deo21] for some recent
results about this.

(3) Using the same methods as [WWE20], we could prove directly that, if J™®
is principal, then Rp is a free Zy-module of rank 2 if and only if, in the

notation of Proposition cUlogy # 0.

Corollary 5.2.9. Suppose that Z, = T, so that there is a unique element f €
Sk(Lo(N), Zy)gis with a1(f) = 1 and it is an eigenform. Then f is a lift of the
form f of Corollary[5.2.5. In particular, we have

ag(f) =1+ 4 p (1 — - logy (O (mod p?+r®)
for all £ # N, where « is the extra reducibility constant (5.2.2).

Proof. Since T° = Zy, there is a unique Z,-algebra homomorphism T -7/ p2vten(k)z,
and it is given by Ty — as(f). By Theorem we know that &, is a unit, so
Corollary furnishes an explicit homomorphism T® — Z/p?*Tv»(¥)7Z given by
f. The coincidence of these two homomorphisms gives the result. ([

5.3. Consequences for Galois representations when I° is principal. In this
section, we construct some Galois representations when I° is principal.

Corollary 5.3.1. Assume that T = Z,. Then there is a representation p :
Go.np — GLo(Z/p? o7 with

) Feye' Xa© 0
C Xa

N—-1

2
6In fact, Merel proved that TO = Zyp if and only if H i’ is a p-th power modulo N, which
i=1
is equivalent to &, being a unit by a non-trivial (but elementary) computation (see [Lecl8,
Proposition 1.2]). We learned of this equivalence from Akshay Venkatesh, who discovered it
together with Frank Calegari.
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where Xo : Go.np — (Z/p?*T» L)% is the extra reducibility character (5.2.3) and
where C' satisfies
(1) C‘Gp = 0)_
(2) the map C : Gg,np — Fp obtained by reducing C has the property that
Cw'=F . Go,np = Fp(1 — k) is a cocycle with non-zero cohomology class.

Remark 5.3.2. The function C : Gg,np — 7./p*+vr(F) 7, is not group cocycle in the
usual sense, but we do have C' € Zé;@ Np(mfy_clxgl, Xa) for the Ext'-cocycle group
Z}(—,—) defined in [Bell2, Section 3.1], so we will still refer to C as a “cocycle”.

Proof. First note that, by Theorem [5.2.7] our assumption implies that &, is a
unit, so the extra reducibility constant « is well-defined.

Let f be the form defined in Corollary and let Gonp — GL(Vj) =
GL2(Qp) denote the associated Galois representation. The semi-simplification of
the reduction of any stable lattice in Vf~ is w*~1 @ 1. By Ribet’s Lemma [Rib76
Proposition 2.1], we can choose a lattice Tf~ such that the reduction is a non-split
extension of w®~! by 1. Choosing an appropriate basis for Tf, we obtain a repre-
sentation p; : Go,np — GL2(Zp) such that

k—1
w 0
pf®Fp:<wk_lc 1)7

where ¢ : Gg,np — Fp(1—k) is a cocycle whose cohomology class is non-zero. Since
f is ordinary, we know that pf|Gp is upper triangular, so c|g, = 0.

Let p = PRz, Z/p2V+”P(k)Z. By Theorem , we know that the pseudorepre-

sentation associated to p is the reduction modulo &4 of the universal reducible de-
formation of Lemma In our current notation, this reduction is k& ! x5! & xa-
Since p is reducible as a pseudorepresentation, and p ® IF,, is lower-triangular but
non-split, we see that p is lower triangular. This proves that p has the desired
properties. (I

There are also variations in the case &} is not a unit, the simplest being the
following.

Corollary 5.3.3. Assume that I° is principal, that & is not a unit, and that
v =1 andv,(k) = 0. Then there is a representation p : Go,np — GLa2(F,[X]/(X?))

with
o= n’c“y_cl x ' o0
¢ X

where x : Gonp — (Fp[X]/(X?))* denotes the character x(o) = 1+ logy (o)X,
and where C satisfies the same conditions as the previous corollary.

Proof. The assumptions imply that TV is a ramified DVR, so there is a unique
eigenform and it has coefficients in the fraction field of T°. The representation p is
obtained by taking a T-lattice in its Galois representation, and reducing modulo
(I°)2 4 pTO. The properties are proven just as in the last corollary. O

Remark 5.3.4. Note that in the construction of these Galois representations, the
only reason we need the assumption that I is principal is in order to lift to charac-
teristic zero and apply Ribet’s Lemma. It likely that these representations can be
constructed directly using the geometry of modular curves, without the assumption
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that I° is principal. Morally, the representations should exist simply because f is
a cuspidal eigenform. This raises the question: what does the condition of being
“cuspidal” mean in the deformation ring?

Now consider the element[] & € A defined as

_ — k =
(5.3.5) &ur(X) = {i((ll _IZ)(;) A );74 i

Note that & # EmT, but we think of £ as the alteration of & with dual local
condition at N. The image of & in Ay is
S = C(1—k)(1 = N¥) + &4 X,
In the next theorem, we use the notation H(lp) (Z[1/Np],—) for the trivial-at-p
Selmer group — see Appendix [B for the definition.

Theorem 5.3.6. Assume that I° is principal. If &r is a unit, then map
H{y (Z[1/Npl, (A/&r) (L = k) = H{y (Z[1/Np],Fp(1 — k),
induced by the quotient map in the coefficients, is non-zero. -
If &y is not a unit, v =1, and vy(k) = 0, then the image of & in Ay is zero,
and the map
H{, (Z[1/Np), Ay(1 = k)) — H(,) (Z[1/Np], Fp(1 — k),
induced by the quotient map in the coefficients, is non-zero.
Proof. When & is a unit, we have
A&r = 2/p VL

by X — —%(TD. This shows that Gg np acts (A/&r)(1 — k) as the character
Kg};kxgg. By Corollary we have the representation p, and we see that the
extension class Cx, ! defined by p ® y;! is in H(lp)(Z[l/Np], (A/&r)(1 —k)) and
has non-zero reduction.

In the case &7 is not a unit, v = 1, and v,(k) = 0, we have the representation

p of Corollary g

5.4. Algebraic number theory consequence. Our Theorem has the fol-
lowing consequence.

Theorem 5.4.1. Assume that T® = Z,,. We have AnnA(H(Qp) (Z[1/Np], A(1-k))) =
SYEI®

The proof that Theorem [5.4.1]follows from Theorem is given in Proposition
BII]below. In Section[8] we also give other interpretations of this theorem in terms
of cup products and slopes.

As we will see in the remainder of the paper, this theorem is predicted by an
equivariant version of the Bloch-Kato conjecture, as formulated by Kato. Moreover,
we show, using a version of the Equivariant Iwasawa Main Conjecture that has been
proven [CS74] [GP15], that the equality AnnA(H(zp)(Z[l/Np],A(l — k) = &arA
holds without any assumption (see Theorem and Theorem .

"The fact that £ is in A is not automatic, but follows easily from the fact that &yp is in A.
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Part 2. Tame Bloch-Kato conjecture

The purpose of Part 2 is to explain how Theorem fits into to the general
framework of special values conjectures. We especially want to address why the
“altered” Mazur-Tate (-function &1 appears (as opposed to the unaltered variant
&ur). We will show that it has to do with the “trivial at p” Selmer condition on the
Galois cohomology in Theorem (as opposed to unaltered Galois cohomology).

The main new result of Part 2 is Theorem [7.3.1} where we prove that the an-
nihilator equality in Theorem [5.4.1|is equivalent to an “unaltered” variant. This
unaltered variant is a Coates-Sinnot formulation of the Equivariant Iwasawa Main
Conjecture (EIMC), which they also have proven in this case [CS74]. By combining
Theorem with Theorem we have a new proof of EIMC when T° = Z,,.

We were unable to prove Theorem [7.3.1] - the equivalence of the altered and un-
altered versions — using standard techniques of Iwasawa theory (like Fitting ideals,
etc.). Instead, following a suggestion of Venkatesh, we attempted to show why
Theorem follows from Kato’s formulation of the Bloch-Kato conjecture for
families of motives [Kat93a]. It was only in this process that we saw why both
Theorem and the EIMC follow from Kato’s conjecture, and this is the basis
of our proof of Theorem [7.3.1

In Section [6] we discuss Kato’s conjecture in special case where the family of
motives is given by twisting a fixed motive by a tame character. In Section |7} we
further specialize to the case where the motive is Q(1 — k), and show that Kato’s
conjecture in this case implies Theorem By altering the Selmer conditions,
we prove Theorem We view Sections [6] and [7] as a kind of “worked example”
of Kato’s conjecture; we hope that this has some expository value. In Section
(which is independent from the other sections in Part 2), we prove relations between
main conjectures formulated in terms of: annihilators of cohomology, cup products,
lifting cohomology classes, and slopes. These results explain why Theorem [5.3.6]
implies Theorem

Throughout Part 2, we use the notions of determinants and regulators introduced
in Appendix [A] We also use the notation for Galois cohomology established in
Appendix |E; here we give a brief summary of this notation (but see Appendix B
for the actual definitions):

e RI'(Z[1/Np], —) is short hand for the continuous cochain complex of Gg np,

e RI'(,)(Z[1/Np],—) (vesp. RT'(n)(Z[1/Np], —)) is the Selmer complex of Gg, n-
cohomology with the “trivial” condition at p (resp. at N) and no condition
at other places,

e RT'.(Z[1/Np],—) is “compactly supported cohomology” of Gg np,

e RI'(Qg, —) is local Galois cohomology,

e RI'¢(Qq, —) is the Bloch-Kato finite cohomology (if £ = p) or unramified
cohomology (if ¢ # p),

e RI'/;(Qg, —) is the “non-finite” cohomology (i.e. the cone of RI'y — RI'),

e RT'f(Z[1/Np], —) is the Bloch-Kato Selmer complex.

We also retain our notation from Section especially the assumptions about the
primes N and p and the integer k.



26 PRESTON WAKE

6. KATO’S MAIN CONJECTURE FOR TAME FAMILIES

Bloch and Kato [BK90] formulated a beautiful conjecture explaining the arith-
metic content of special values of motivic L-functions. Kato [Kat93b, Kat93aJE| later
formulated a version of the conjecture that allows for the consideration of families
of motives. Central to Kato’s formulation is the idea of zeta elements. In this
section, we discuss the relevant special case of Kato’s conjecture. We frequently
refer to the nice survey [Fla04, Part I], which contains more detail and considers
the general case.

6.1. Setup. We consider a pure motive M that has good reduction at N and p,
and let S be the set of primes at which M has bad reduction together with IV, p and
infinity. We consider the family of motives {M (x)} that are twists of M (1) := M
by Dirichlet characters x of conductor dividing N and p-power order (for the rest
of this section, x will always refer to such a character). We assume that the Betti
and de Rham realizations of each M (x) satisfy

(6.1.1) Hp(M(x))" =0, (Har/F°Har)(M(x)) =0,

where the superscript “4” indicates the part fixed by complex conjugation.

From now on, we only consider the p-adic étale realizations M, () of the M (x).
We let Tyy C M, denote a stable Z,-lattice in M,. Note that Q,-points of A
correspond to Dirichlet characters x as above, and that for any such point x : A —
Qp, we have My(x) = (Tm ®z, A) @ Q. In other words, the p-adic realizations

M, (x) are the points in the family Ths ®z, A.

6.2. Kato’s main conjecture. In this setting, Kato’s main conjecture states that
there is a canonical integral generator

(6.2.1) se € deta(RTW(Z[1/S), Ty ®z, A)),

called the zeta elememﬂ (see [Fla04, Conjecture 3 on pg. 6]). Assuming the Deligne-
Beilinson conjecture and regulator conjectures, the zeta element can be described
in terms the L-values L(M(x),0), as we now sketch.

6.2.1. Sketch of the origin of s.. We sketch the conjectural construction of s, fol-
lowing [Fla04]. For each character y, there is a canonical Q(x)-vector space, denoted
Z(M(x)) in [Fla04], built out of determinants of Hg (M (x))*, (Har/F°Har)(M (X)),
and the motivic cohomology of M(x) and its dual. The p-adic regulator conjec-
turally induces a canonical isomorphism

9y« E(M(x)) ®g Qp = detq, () (RT'(Z[1/S], My (x)))-
On the other hand, Beilinson’s regulator gives a conjectural canonical isomorphism
Yoo 1 R = E(M(x)) ®g R,

and the Deligne-Beilinson conjecture [Del79] [Bei84] states that ¥ (L(M(x),0) 1)
is in Z(M(x)). Assuming all these conjectures, we have a canonical element

se(X) = Up(Voc(L(M (x),0)™1)) € detq, () (RTe(Mp(x)))-

Then Kato’s conjecture is as follows.

8A similar formulation was found independently by Fontaine and Perrin-Riou [FPR94].
INote that this conjecture is independent of the choice of T [Kat93a, Remark 4.10].
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Conjecture 6.2.2 (Kato). The sections s.(x) glue to give an integral section
sc € detp (RLC(Z[1/S], T ®z, A))
and s. is a generator of this free A-module.

Remark 6.2.3. There is an analogy between Galois cohomology and cohomology of
three-manifolds (see, for example, [Maz73]). The existence of a canonical generator
can be thought of as an instance of this analogy. Indeed, the cohomology of
a manifold can be computed by taking a triangulation, and the resulting element in
the determinant of cohomology is independent of the choice of triangulation. Hence
the existence of the element s. can be though of as analogous to the existence of a
triangulation on a three-manifold. This analogy was explained to us by Venkatesh.

6.2.2. Characterization of s. in terms of zeta values. The specializations s.(x) €
detq, (x)(RCc(M(x))) of s. are characterized by zeta values. This characterization
involves a related section sy (x) of detq, (y)(RI'f(My(x))) that we now define.

For each x, we have an isomorphism

detq, (x) (R (Z[1/5], Mp(x))) = detg, () (RLe(Z[1/S], My(x)))® <® detg, () (R (Qs, Mp(x)))>

ses
We need to define a section of detq, () (RI'f(Qs, M (x))) for each s, where £ denotes
a finite place of S other than p:
s = oo: Wehave RT'¢(R, Mp(x))
detq, (x) (RT'# (R, Mp(x)))-
s ={¢: We have RI'f(Qg, Mp(x)) = [M,(x )Ie RN V' »(x)%¢], so there a canonical
2

[M,
element sg,(x) € detQp(X) (RI’ (Q »(X))) by Example
)

s =p: We have Dag(Mp(x))/Dar(Mp(x)) = 0 by (6.11), so RT(Qp, My(x)) =
[Derys(Mp(x)) — Dcrys(Mp(X))], so there a canonical element sqg,(x) €

detq, (v) (RFf(Q »(x))) by Example[A.1.2]
We can then define a section sy(x) € detq, (y) (RT4(Z[1/8S], M,(x))) by

(6.2.4) sp(x) = sc(x) ® <® 5Qs (x)) :

ses

~ 0 by([6.1.1), so there a canonical element sg(x) €

With this setup, Kato’s Conjecture implies that

(6.2.5) reg(s(x)) ™" = L(M(x),0).

Note that the function x — L(M(x),0) may not be an element of A. This is
a reflection of the fact that, although the sections s.(x) glue to give a section s,
over the whole family, the sections s¢(x) may not. Indeed, it may happen that
RI¢(Th ® A) is defined, but not a perfect complex. In the next section, we will
examine a case where this happens because (Th; ® A)’¥ is not a perfect A-module,
which, in turn, causes RT';(Qn,Tam ® A) not to be perfect.

7. THE CASE M = Q(1 — k)

In this section, we specialize the discussion of the previous section to the case
M = Q(1 — k) with k > 2 even. We write Q,(x)(1 — k) for M,(x). In this case, we
have S = {N, p,o0} and we write RI'(Z[1/Np], —) (and similar) instead of Z[1/5].
We may take Ths = Zp(1 — k), so we have Thy ® A = A(1 — k). In this section,
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since N is the only finite prime of S that is not p, we emphasize its importance by
defining Ry (Qn, A(1 — k)) := RI'(Qn, A(1 — k)) and RI ), (Qn, A(1 — k)) =
RT,¢(Qn,A(1—k)), and we denote the section sq, (x) € RTw(Qn, My(x)) defined
in the previous section by sy, ().

7.1. Imperfect complexes and the failure of p-adic continuity. For M =
Q(1 — k), the conjectural formula (6.2.5) becomes

(7.1.1) reg(ss(x) " = {i((ll_lz) . i; i

For the remainder of Section [7} we will refer to equation (as well as the
existence of the element s., which is used to define sy) as “Kato’s conjecture”.
Note that there is no Euler factor for x = 1, so reg(ss(x))~" is not equal to
the Mazur-Tate (-function &yr. In fact, it’s easy to see that the function x +—
reg(s¢(x)) ! is not even in A; we call this the failure of p-adic continuity.
There is a conceptual reason for this failure of p-adic continuity. In addition to

, we also have
RT1(Qy, Q) (1~ k) = [Qp(x) 2 Q)]

for every x. In this case, it is reasonable to define

RI(Qp, A1 — k) = [A 22205 4]

and RI'; (R, A(1 — k)) = 0, so the sections sg(x) and sq,(x) glue to gives sections
sg € detp(RIy(R,A(1—k))) and sq, € deta(RT'f(Qp, A(1—k))). In fact, sg is just
1, so we will leave it out below.

We can define RI'¢(Z[1/Np|, A(1 — k)) to be the mapping ﬁbe of the map

RI(Z[1/Npl, A(1 = £)) = R (Qps A(1 — k) ® RT e (Quv, A1 — K)),

but note that A(1— k)~ is not a perfect A-module, so neither RI /,,(Qn, A(1—k))

nor RI'¢(Z[1/Np|, A(1—k)) is a perfect complex. This means that dety (RT'f(Z[1/Np], A(1—
k))) is not even defined, so we cannot hope that the sections s¢(x) glue together in

a reasonable way.

Remark 7.1.2. This failure of continuity is familiar from the study of p-adic L-
functions. In that case, the failure is due to an imperfect local complex at p, and
the solution is to change an Euler factor at p. Here, the failure is due to an imperfect
local complex at N, and, as we will see in Section the solution is to change the
Euler factor at N.

7.2. Kato’s conjecture implies p-adic continuity. We will produce a better

result by replacing RI's(Z[1/Np], A(1 — k)) with RI'(,,)(Z[1/Np], A(1 — k)), which

continues to impose the finiteness condition at p, but has no condition at N. The

cohomology RI'(,)(Z[1/Np], A(1 — k)) is defined as the mapping fiber of
RI(Z[1/Np], A(1 = k)) = RL/;(Qp, A(1 — k)

The advantage of this cohomology is that RI'(Qx, A(1 — k)) is computed by a
perfect complex of A-modules. The following lemma will be proven in Section
below.

10By ‘mapping fiber’ we mean Cone(—)[—1].
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Lemma 7.2.1. There integral generator sy of dety(RT'(Qn,A(1 — k))) and, for
each x, a generator s,(x) € detg, () RT'/u:(Qn, Mp(X)) such that

SN(X) = Sur(X) ® S/ur(X)

and
(7.2.2)
_J1=NFY =1 _Ja-=NMTt o x=1
reg(sur(x)) = {1 1 } , reg(s/ur(X)) = {1 e 1-}

We have the short exact sequence
where we have dropped the “Z[1/Np|” in the first two terms for brevity. Using
this lemma, we can, assuming the existence of Kato’s element s., define an integral
generator s,y € deta(RT(,)(Z[1/Np],A(1 - k))) as
S(p) = Sc X 5Q, X SN-

Comparing this to (6.2.4) and using the fact that sy (x) = sur(X) ® 5/ur(X), We see
that, for any x, we have

s (X) = s7(X) @ $/ur(X)-
The formula (7.2.2) together with Kato’s conjecture ([7.1.1) implies

Ly JCA RN x=1
(7.2.3) reg(s(p)) (X) = {L(l — k) x # 1.

In other words, the conjecture says that reg(s(, )7t = &yp, where &pp is the
modified Mazur-Tate L-function defined in

The conjecture has to do with the value of the regulator on a special
generator that comes from the zeta element. If we only care about the regulator
ideal, as in Definition[A.2.1] then this gives something closer to the classical Iwasawa
main conjecture, in that it relates the ideal generated by the L-function to an ideal
measuring the size of Galois cohomology.

Lemma 7.2.4. The complex RT,y(Z[1/Np|, A(1 — k)) is quasi-isomorphic to a

Eilg . .
complez [0 — A BN A] for some non-zero-divisor &g € A. If Kato’s conjecture
(7.2.3) is true, then &3, A = &y A.

Proof. The fact that RI'()(Z[1/Np], A(1 — k)) is a perfect complex of A-modules
follows from finiteness results in Galois cohomology, as in [Kat93a, Proposition
4.17). Simple computations shows that dimg, H{, (Z[1/Np],Fy(1 - k)) = 1 for
i = 1,2, and zero otherwise, and that RI'(,)(Z[1/Np], A [ﬂ (1 — k)) is acyclic.
Hence the hypotheses of Lemma are satisfied, and this yields the desired

quasi-isomorphism.

We see that reg(ez/e1) ™" = &2, so regulator ideal reg(RT () (Z[1/Np], A(1—k)))

alg?

is ( ;lg)_lA. On the other hand, if (7.2.3) is true, this implies
reg(RL () (Z[1/Npl, A(1 = k))) = (&rr) A,

HAlternatively, we could have worked with cohomology with the vanishing-at-IN condition,
and this process would yield the usual Mazur-Tate L-function &yr.
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50 A = G 0

The lemma implies that £}, A = AnnA(H(Qp) (Z[1/Np], A(1 —k))), so Kato’s con-
jecture implies that Anny (H? ) (Z[1/Np], A(1 - k))) = &r A, which is what
we proved in Theorem under some additional assumptions. In fact, as we see
in the next section, the equality AnnA(H(Qp) (Z[1/Np], A(1 — k))) = &1 can be
proven directly using the work of Coates—Sinnot [CS74].

We do not know how to construct the special generator s,y or approach Kato’s

conjecture ([7.2.3) using the modular methods of Part 1. However, we see from
Lemma that our Theorem is predicted by conjecture ((7.2.3). So we can
think of Theorem as evidence for conjecture (7.2.3) coming from modular

forms.

7.3. Comparison with the equivariant main conjecture. The equality of
ideals AnnA(H(Qp) (Z[1/Np],A(1 — k))) = &rA is equivalent to a known form of
the Equivariant Iwasawa Main Conjecture:

Theorem 7.3.1. The following equalities of ideals in A are equivalent:

(1) Anmp(H2, (Z[1/Npl, A(1 = k) = A

(2) Annp(H?(Z[1/Np],A(k))) = EmrA.
Proof. Let &, € A be as in Lemma|7.2.4] so

Eng = Annp (HE,) (Z[1/Np], A(1 - k))).
By Poitou-Tate dualit we have an isomorphism
RHOIHA(RF(p) (Z[I/Np], A(l — k)), A)[—?)] =~ RF(N) (Z[l/Np], A(k)).

By Lemma this implies that there is a quasi-isomorphism

RT ) (ZI1/Np), A()) = [0 — A 55 A]

and we see that reg(RT(n)(Z[1/Np], A(k))) ™! = &, A

alg”®™**
Just as in the proof of Lemmal(7.2.4] a simple computation verifies the hypotheses

of Lemma for RT'(Z[1/Np], A(k)), so there is a quasi-isomorphism
RI(Z[1/Np), A(k)) ~ [0 — A =25 A,
for some non-zero divisor &, € A, and we have
reg(RT(Z[1/Np], A(k))) " = Eugh = Annp (H?(Z[1/Np], A(K))).
Now, considering the triangle
RI' () (Z[1/Npl, A(k)) — RI(Z[1/Np], A(k)) = RT(Qn, A(k)),

we see that, ag = ujj,reg(sn) for some u € A*. Considering the formula (7.2.2)
for reg(sy), we also have & = Eprreg(sn), and this completes the proof. O

The equality Anna (H?(Z[1/Np],A(k))) = &urA is a (very) special case of the
Coates-Sinnot conjecture [CS74].

128¢¢ [Nek06, Theorem (6.3.4)] for the version we need (for complexes with Selmer conditions).
For a more down-to-earth treatment in terms of cohomology, see [GV18| Appendix B]; see [Sha09]
or the proof of [Nek06, Proposition (5.2.4)] for the technique used to upgrade from cohomology
to complexes.
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Theorem 7.3.2 (Coates—Sinnot). We have Annp(H?(Z[1/Np], A(k))) = émrA.

This conjecture has multiple known proofs. The results of [CS74] show that &y
is in the annihilator, and the result follows from this by a simple argument. It
is also proven by Greither and Popescu [GP15] Theorem 6.12] as a consequence
of their proof of their Equivariant Iwasawa Main Conjecture, which, in turn, they
show to follow from the Iwasawa Main Conjecture for totally real fields, due to
Wiles [Wil90], and the vanishing of u-invariants for abelian number fields, due to
Ferrero-Washington [FWT79].

7.4. Computation of the local generator sy. In this section, we give the proof

of Lemma [[.2.7]
By Lemma [B.2.1] H*(Qn,A(1 — k)) is computed by the total complex of the
bicomplex

(7.4.1) A1 = k)eg ——= A(1 — k)ey

\LlFr]_Vl llFrXIIN
A1 = k) fi —= A(1 — k)es

where the horizontal arrows are multiplication by the element X of A defined in
Section and A denotes multiplication by the element Zij\;l(l + X)® of A.
We define sy = eel‘fil. The computation of reg(sy) can be done directly using
Example but we compute on each specialization because we think this makes
the computation clearer.

For x = 1, X maps to 0 and N maps to multiplication-by-N. Choosing an
isomorphism Q,(1 — k) = Q, of Q,-vector spaces, the complex can be
identified with

0
QpeO I Qpel
i1—N’cl ll—N’“
0
Qpf1 —— Qpea.

Under this identification, RT'y(Qn, Qp(1 — k)) is the subcomplex

Qp(l - k’)eo % Qp(l - k)fl

and sy (1) = eo/ f1, so we see that reg(sy, (1)) = 1—N*"!. We can define s, (1) =
SN (L) ® sur(1)7" and we see reg(s (1)) = (1 — N*¥)~L.

For y # 1, X maps to a non-zero element z € Q,(x) and N maps to the identity.
Choosing an isomorphism Q,(x)(1 — k) = Q,(x) of Q,-vector spaces, the complex

becomes
Qy(x)eo ——= Qu(x)ex

[
Q00 f1 ——= Qp(x)ea-

)
The complex RT'w(Qn, M, (X)) is acyclic and reg(
sn(x), and we see that reg(s/u:(x)) = reg(sn(x)

sur(X)) = 1, s0 we define s/, (x) =
)=1.
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8. INTERPRETATION IN TERMS OF LIFTING, CUP PRODUCTS, AND SLOPES

In this section, we fix a generator ¢ € H(lp) (Z[1/Np|, (Z/p*torFZ)(1 — k)). We
interpret the main conjecture Anny (H(Qp) (Z[1/Np], A(1 — k))) = &yrA in terms of
c in three closely related Way

(1) what quotients of A(1 — k) does c lift to?

(2) for which cohomology classes a is does the cup product a U ¢ vanish?

(3) what is the image c|y of ¢ in H(Qu, (Z/p*T*®Z)(1 — k))?
In Part 1, we answered (1) in Theorem using modular forms. The main result
of this section is Proposition [8.1.1}) which allows us to deduce our result about the
main conjecture, Theorem from Theorem [5.3.6

The remainder of the section is meant to expose relationships and analogies
between this work and others. Results about (2) were obtained in [WWE20] and
[SS19]; Section explains how this relates to (1). Section shows that (3) is a

tame analog of the algebraic L-invariant that appears in the Gross-Stark conjecture
[Gro81l, [DDP11].

8.1. The main conjecture and lifting. We first explain how to interpret the
main conjecture in terms of lifting the class c.

Proposition 8.1.1. The following two conditions are equivalent:
(1) AnnA(H(Qp)(Z[l/Np], A1 —-k))) C &rA
(2) There is a class of H(lp) (Z[1/Np], (A/&r)(1—k)) that maps to c under the
reduction map.
Moreover, if &y is a unit, then (1) implies Annp (H? ) (A(1 - k))) = &ypA.

Proof. Lemma proves the equivalence of (1) and (2). In general, we know
that AnnA(H(zp)(A(l —k))) = &y A for some non-zero-divisor &, so if &y is a
unit, the inclusion in (1) must be equality. O

*
alg?

8.2. Lifting and cup products. For the remainder of the section, we assume that
v =1 and v,(k) = 0. We make this assumption so that there is a canonical section
of the map
(Z/pQUJrvp(k)Z) X (Z/pu+vp(k)Z) X

We only consider cup products in usual global cohomology H*(Z[1/Np], —); when
we write cU—, we are considering the image of ¢ in H'(Z[1/Np],F,(1—k)). We let
log, : (Z/p*Z)* — F,, denote the composition (Z/p*Z)* — (1+p(Z/p°Z))* — Fp,
where the first map is the projection x — w™!(x)x and the second map is 1+px — x
(mod p).

Proposition 8.2.1. Assume that v = 1 and vy(k) = 0 and that &y is a unit.
Let a € Z/p*Z and xo : Go,np — (Z/p*Z)* be the extra reducibility constant and
character, as in Definition[5.2.1. Consider the following conditions:

(1) The map
H{, (Z[1/Npl, (A/&r)(1 = k)) = H, (Z[1/Np], Fp(1 — k)

1S mon-zero,

13We consider (2) only in the case that v = 1 and vp(k) = 0, and (3) only when, additionally,
vp(k—1) =0.
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(2) cUlog,(xa%keyd) = 0 in H*(Z[1/Np],Fy(1 — k)).

cyc
Then (1) implies (2).
Proof. Note that, since &y is a unit, A/&p is isomorphic to Z/p?Z with Gg np
acting through x 2, just as in the proof of Theorem m
Considering the long exact sequence in cohomology coming from the short exact
sequence
(%) 0—=Fp(l —k) = (A/&ur)(1 — k) = Fp(1—k) =0,
we see that (1) implies that ¢ is in the kernel of the boundary map
H (21 /Np] Fy(1 = k)) 2 H(Z[1/Np|, Fy (1~ ))

for (x). By definition dc is given by dé, where é : Ggonp — (A/&r)(1 — k)
is a cochain lifting ¢. Taking ¢ to be the lift defined by the canonical splitting
(Z/pZ)* — (Z/p*Z)*, we compute easily that dé = ¢ U log,(x,2ké"), which

cyc

completes the proof. O

The proof of the next proposition is similar, replacing the sequence (x) by
0—=F,(1—k)—A(1—k)—=Fpy(1—k)—0.
In this case, the boundary map is cup product with logy.

Proposition 8.2.2. Consider the two conditions:

(1) The map

H{, (Z[1/Npl, Ar(1 — k) = H(,) (Z[1/Np], Fp(1 — k)
18 non-zero

(2) cUlogy =0 in H*(Z[1/Np],Fp(1 — k)).
Then (1) implies (2).
8.3. Cup product and slope. For this section, we continue to assume that
v =1 and vp(k) = 0, and also assume v,(1 — k) = 0. We consider the group
HY(Qn,F,(1 — k)). Choosing a primitive p-th root of unity in ¢, € Qx, we can
identify H'(Qn,F,(1 — k)) with H(Qn,F,). We know that H'(Qu,F,) has di-
mension two and that the cup product pairing

Hl(@NﬂFp) X Hl(QNva) i> Hz(QNvle) = IFP
is a symplectic form. Moreover H!(Qx,F,) has a basis {\,logy } where A : Gg,, —
F, is the unramified character sending Fry to 1. This choice of basis induces an
isomorphism
Slope : P(H'(Qn,Fp,)) = P (F,)
which we call the slope map. Explicitly, if L ¢ H'(Qn,F,) is a line, choose a
generator a € L and write
a=x\+ylogy,
then Slope(L) := [z : y]. If a generates L, we define Slope(a) := Slope(L). Note
that for non-zero a and o’ we have
(8.3.1) aUa =0 <= Slope(a) = Slope(a’).

Indeed, since the cup product pairing is symplectic, the equality a Ua’ = 0 is
equivalent to a and a’ spanning the same line.

Proposition 8.3.2. Assume that v =1 and v,(k) = v,(1 — k) = 0.
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(1) We have cUlogy in H*(Z[1/Np],F,(1 — k)) if and only if
Slope(c|n) =[0: 1].

(2) Assume Eyp is a unit and let xo be the extra reducibility character of Def-

U
zmtzon We have cUlog, (x5 ki) = 0 in H2(Z[1/Np],Fp(1 —k)) if

and only 1

Slope(c|n) = [(1 = k) - & : k- C(1 = K)].

Remark 8.3.3. We think of Slope(c|y) as a tame analog of the algebraic L-invariant
that appears in the Gross-Stark conjecture. Indeed, in [DDP11] Section 1], that
L-invariant is expressed as a slope of global p-adic cohomology class in terms of
local-at-p cohomology. Our Slope(c|y) is the slope of a global mod-p cohomology
class in terms of local-at-N cohomology — the adjective “tame” refers to fact that
N # p here.

Proof. Consider the commutative diagram

H'(Fy(1 — k) x H'(F,) ———— H>(F,(1 — k)

l |

HYQn,F,y(1 —k)) x H'(Qn,F,) —> HX(Qn,F,(1 — k))

where the vertical arrows are restriction. One can show that the right vertical arrow

is an isomorphism, just as in [WWE20, Lemma 12.1.1]. Hence the cup products

cUlogy and cUlog, (x5 %Ky k) vanish if and only if their restrictions at N vanish.
Using the equivalence (|8 , the only thing that remains to show is that

Slope(log, (X5 *keye ) |w) = [(1 — k) - &yp < k- C(1 — k).

We have log,, (x5 2kl v = log, (xa?)In +(1—k)log, (keye)| - From the definition

of a and x, (Definition [5.2.1) we see that for any o € Gg np, we have

N-1 ¢1-k)
p &ur

g, (:)(2) = (- o (o).

On the other hand logp(/icyc)| N is an unramified character sending Fry to %7 SO

log, (Keye)|n = %)\. Putting these together, we get

N—1 N -1 1—-k
Slope(logp( inck)‘N) {(1_16) p ke p 'g(gl/\/IT )}

which is equal to [(1 — k) - &y : k- (1 — K)]. O

Part 3. Appendices
APPENDIX A. ALGEBRAIC PRELIMINARIES

In this section, we recall some algebra used in Kato’s formulation of the main
conjecture.
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A.1. Determinant of a perfect complex. We review the theory of determi-
nants, as discussed in [Kat93b, Section 2.1]. In this subsection, A is a commutative
ring. A perfect compler of A-modules is an object E in the derived category of A-
modules that is represented by a bounded complex of finitely generated projective
A-modules. We say that a complex of A-modules (or a single A-module, considered
as a complex in degree zero) is perfect if its class is perfect.

The determinant functor det 4 is a functor from the category of perfect complexes
(with isomorphisms) to the category of invertible A-modules (with isomorphisms)
with the following properties:

e The functor det4 is multiplicative in short exact sequences of complexes.

e For a single finitely generated projective A-module P (concentrated in de-
gree 0), then det(P) is the highest exterior power of P. (In particular,
det4(0) = A.)

e If E=[--P, = P41 — -] with P; finitely generated projective, then
there is a canonical isomorphism det 4 (E) 2 ®;(det 4 (P;))(1)".

e If the cohomology modules H*(E) are all perfect, then there is a canonical
isomorphism det 4 (F) = ®@;(det 4 (H*(E)))(-1".

Note that if A is a semi-local ring (and in this paper we only consider det4 for
A=A A=AR®Q, or A afield), then det4(E) is a free A-module of rank 1 for any
perfect complex E. The purpose of considering determinants is to compare different
generators of this free module. For us, one source of such generators comes from
Kato’s Conjecture Other, more prosaic, generators come from the following
examples.

Example A.1.1 (Acyclic complex).

(1) Let C* =M 2, M’] where ¢ is an isomorphism and M and M’ are rank-1
free A-modules. Then there is a generator of det(C®) given by taking m to
be any generator of M and taking ¢(m) as generator of M'. The resulting
generator % of det(C*) is independent of the choice of m.

(2) Let C* = [M 2, M'] where ¢ is an isomorphism and M and M’ are free
A-modules. Then there is a generator of det(C®) given by taking B to be
any basis of M and taking ¢(B) as basis of M’. The resulting generator

#(BB) of det(C*) is independent of the choice of B.

(3) More generally, if C* = [M, LLN M, LINN M,] is an acyclic complex
of free A-modules, we can define a generator of det(C*®) by taking a basis
By of My, completing §(By) to a basis By Ud(By) of My, completing 6(By)
to a basis of Ms, and so on. The resulting basis of det(C*®) is independent
of the choices.

Example A.1.2 (Endomorphisms).
(1) Let C* = [M 2, M] where M is a free A-module of rank 1. Let m be a

basis of M. The resulting generator ™ of det(C*) is independent of the
choice of m.

(2) Let D*® be a perfect complex of free A-modules, and let ¢ : D* — D* be an
endomorphism. Think of ¢ : D®* — D® as a double complex, and let C'*® be
the total complex of it. Then det(C*®) = det([det(D*) — det(D*®)]), so, by

the previous example, we have a canonical generator of det(C*).
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A.2. Regulator. Let A be a semi-local commutative ring and let Q(A) be the
total ring of fractions of A.

Definition A.2.1. We call a perfect complex E of A-modules rationally acyclic
if F®4 Q(A) is acyclic. In that case, by Example there is a canonical
isomorphism
regp : detga)(E @4 Q(A)) = Q(A)

that we call the regulator of E. Precomposing with the canonical map det4(E) —
detg(a) (£ ®4 Q(A)), we obtain a map regg : deta(E) — Q(A) that we also call
the regulator.

For any generator « € det4(F), the fractional ideal regy(z)A is independent of
the choice of x, and we call it reg(E), the regulator ideal of E.

Example A.2.2. Suppose E = [Aeg 2 Aeq] (so e; is in degree i) and that A €
A is a non-zero divisor. Then F is rationally acyclic, and ;—cf’l is the basis of

detg(a) (£ ®a Q(A)) that induces regg, so regp(eg/e1) = A.

(3)

Example A.2.3. Let E = [Ae 20 Ae @ Afy Lod), Aes], and suppose that
E' is rationally acyclic. In particular, there is a vector (;i) € Q(A)? such that
cd’ +dd’ =1, and the set of such vectors is a torsor under translation by Q(A)- (‘g)
Then the basis of detga)(E ®4 Q(A)) that induces regy is
€o€2

(ad' — 'b)er A fi

(note that this is independent of the choice of (2’, )) so regp (%% ) = (ad’ — ¢'b).

Note that, if we have a short exact sequence of complexes
0—+F —FEy,— E3—0
with each F; perfect and rationally acyclic, then the composition

detg(a)(E224Q(A)) = detgay(E1®4Q(A)®0o(a)detoa) (Es®aQ(A)) —2 Q(A)

coincides with the regulator of Fs.

A.3. Regulator and lifting. Let (A, m4, k) be a noetherian local ring and let E
be a perfect complex of A-modules. Assuming that F has a certain special form,
we show that reg(E) can be used to determine the lifting behavior of classes in
HY(E®ak). We also give a simple cohomological criterion for when a complex has
this special form.

Lemma A.3.1. Suppose that E = [A 2 Al[-1] with A € my N Q(A)*. Then, for

any proper ideal a C A, the map
HY(E®a AjJa) — H(E®a k)

is surjective if and only if A € a.

Proof. We have H'(E ®4 A/a) = ker(A/a 2 A/a) and H'(E ®4 k) = k, and the
map is induced by the quotient A/a — A/my = k.

If A € a, then HY(E ®4 A/a) = A/a and the map is clearly surjective. On the
other hand, if the map is surjective, then there is x € A with x € my4 such that
xA € a. Since A is local, this implies that x € A*, so A € a. O
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We give a criterion for the conditions of the lemma to be satisfied.

Lemma A.3.2. Let E be a perfect, rationally acyclic complex of A-modules. As-
sume that

(1) dimy H(E ®% k) =1 fori=1,2,

(2) H(E) =0 fori#1,2.
Then there is a quasi-isomorphism E ~ [A 2, A][-1] with A € ma N Q(A)*.

Proof. Since E is perfect, we can assume, without loss of generality, that E is a
bounded complex of finitely generated projective A-modules. Since H*(E) = 0 for
i > 2, we can further assume that E* = 0 for 4 > 2. Then the map

H*(E)®ak — HX(E Y k)
is an isomorphism. By (1) and Nakayama’s lemma, H?(E) is cyclic as a A-module.
Choose a surjection A — H?(E) and lift it to a map A — Z2(E). This defines a
map of complexes

Al-2] — E.

Let C' = Cone(A[-2] — E). By construction, H*(C) = 0 for i > 1, so, just as we
argued above for E, we see that

HY(C)®4 k — H(C &Y k)
is an isomorphism. Considering the triangle obtained by applying (—) ®% k to

A2l - E—C

we can see that

HY(E @Y k) — HY(C @Y% k)
is an isomorphism, so dimy H'(C ®Y k) = 1. By Nakayama’s lemma, H*(C) is
cyclic as an A-module. Choose a surjection A — H'(C) and lift it to a map

A— ZYC) = ker(ADE! — E?), and let A 2, A be the composition of A — ZYC)
with the natural map Z!(C') — A. This defines a map of complexes

A A[-1] - E
that induces a surjection on H' and an isomorphism on all other H?. Hence we
have Q(A)/AQ(A) = H%(E @4 Q(A)), which is zero since E is rationally acyclic.
This implies that A € Q(A)*, so A is a non-zero divisor and H'([A 2 A][-1]) is
0. Since the map is surjection on H?!, this implies that H'(FE) is zero as well, and

hence that the map [A 2 A][—1] — E is a quasi-isomorphism. O

APPENDIX B. GALOIS COHOMOLOGY

B.1. Notation for Galois cohomology. In this section, we fix notation for vari-
ous Galois cohomology complexes. We follow the notation used by Flach in [Fla04].

The continuous group cohomology H*(G, —) of a topological group is computed
by the complex C(G, —) of continuous cochains. We let RT'(G, —) denote the class
of C(G, —) in the derived category.

Let S be a finite set of primes and let Gg,s to be the Galois group of the
maximal extension of Q that is unramified outside S. We denote RI'(Gg,s, —) by
RI(Z[1/S], —) (this makes sense because Gg, g is the étale fundamental group of
Z[1/8]). Similarly, we let RI'(Qq, —) denote RI'(Gg,, —) for £ € S.
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For ¢ € S, we let
RI()(Z[1/S], =) := Cone (RI'(Z[1/S5], =) = RI(Q¢, —)) [-1]

denote the Selmer complex with trivial-at-¢ condition, and let

RI.(Z[1/S], —) := Cone (RF(Z[l/S], -) = PRI (Q, _)> [—1]
cs
denote the ‘compactly-supported’ cohomology complex.

Now we define the local finite-cohomology complex RI'¢(Qs, —) for s € S. First
suppose s = £, a finite prime, and ¢ # p. If M is a pro-p abelian group with a
continuous action of Gg,, we will denote by RI'f(Qg, M) the complex
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For s = oo, we define RT'f(R, M) = RI'(R, M). If instead M is a finite-dimensional
Qp-vector space with a continuous action of Gg,, we will denote by RI';(Q,, M)
the complex
(1—Frp,id)
Derys (M) =" Derys(M) ® Dar(M)/Dgg(M).
For s € S, we define the local “non-finite” cohomology complex

RF/f(Qs,M) = Cone(RI'y(Qs, M) — RI'(Q,, M))

for M as in the previous paragraph.
Assuming that S contains p, oo and any prime where M ramifies, we define the
Bloch-Kato Selmer complex RI'¢(Z[1/S], M) to be

RT4(Z[1/S], M) = Cone (RT(Z[1/S]), M) — @4esRT;(Qs, M)) [—1].
We have the triangle
RI4(Z[1/S], M) — RT(Z[1/S], M) = @.csRT;(Qs, M).

By convention, when we write RI'(T'® A) for some module T, the Gg, np-action
on A is via the universal character. It is known that, if T" is perfect as a A-module,
then RT'(T'®A) and RI'(Qg, T®A) are perfect complexes of A-modules (see [Kat93al
Proposition 4.17] or [FK06, Proposition 1.6.5]).

B.2. A complex that computes tame local Galois cohomology. The follow-
ing lemma is surely well-known in some form. It is essentially how one computes
cohomology of a semi-direct product of cyclic groups.

Lemma B.2.1. Let N and p be distinct primes. Let R be a Zy-algebra, and let
M be an R-module that is finitely generated as Zp-module with continuous tamely-
ramified action of Gg, (i.e. the inertia group acts through its pro-p quotient). Let
v € Gy be an element that topologically generates the mazimal pro-p quotient,
and let Fry € Gg, be a Frobenius element. Then there is an isomorphism in the
derived category of R-modules

1—ry
—_—

M M
RI'(Qn, M) = 1FrN1i llFerN
M=

M

where N' = Zﬁgl e,
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Proof. We have an isomorphism
RI(Qu, M) 2 RT(Fy, RT(QY, M)).
where we are identifying Gal(Q% /Qn) = G, via Fry.
We first compute RL(QY, M). Let Ggar — G%rn;i*p be the maximal pro-p quo-

tient, and let G&?}é‘fp the the kernel of this quotient. Then we have

RT(QY, M) = RI(Ggy ", RI(Ggae ™", M)).

Since M is pro-p, we have RI‘(G&%’}*”, M) = ROF(GS;VITP, M), which is simply M,
since M is tamely-ramified. Hence we have

RI(QY. M) = RT(GRe ", M).
Since ng;fp is topologically generated by the image of -y, we have

RI(GE 7, M) = [BY(GE 7. M) — 21 (G ", M)]

Let M® be the R[Gy,]-module that is M is an R-module, but with Fry' acting by

N—-1
Fr;,1 om® = <FrN1 Z ’yi> m.
i=0

We have an isomorphism Zl(G&)VTp, M) = M" of R|GF,]-modules by f +— f(7).
Indeed, f is determined by f(v) as we have

Fom) =34 ()
1=0

as can be proven by induction using the cocycle property. Moreover, we have

(Fry' - f)(7) = Fry! f(FrayFryt)
= Fry' f(+Y)

N-—1 .
= (Frfvl ’yl> fo).
1=0

Similarly, we have an isomorphism M — B 1(G5€§-_p , M) of R|GFp,]-modules, given

by m — (g — (g—1)m). Under these isomorphisms, the inclusion Bl(G%fj;fp, M) —

Zl(G(%rn;_p, M) is identified with M S M
Hence we have
RI(GR P, M) = [M — M|
in the derived category of R[Gy, ]-modules.
Now, for complex of R[Gf, ]-modules M’, we have

-1
1-Fry

RI(Fy, M) = [M' M)
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in the derived category of R-modules. Hence we have

[BDP21]

[Bei84]

[Bel12]
[BK9O]
[CE05]
[CST74]
[DDP11]

[Del79]

[Deo21]
[D143]
[DKV18]
[Edi92]
[Eme99]

[FKO06)

=~ RI'(Fy, RT(GR ", M)
~ RI(Fy, [M =2 M)

MgMb

1—FrN1J/ J{l—Fer

1
M
1

I

— - M

I

-
-

1—xy
— M

M
M
1-Fry J{
M
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