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Abstract. We study the Eisenstein ideal for modular forms of even weight
k > 2 and prime level N . We pay special attention to the phenomenon of extra
reducibility: the Eisenstein ideal is strictly larger than the ideal cutting out
reducible Galois representations. We prove a modularity theorem for these
extra reducible representations. As consequences, we relate the derivative
of a Mazur-Tate L-function to the rank of the Hecke algebra, generalizing a
theorem of Merel, and give a new proof of a special case of an equivariant
main conjecture of Kato. In the second half of the paper, we recall Kato’s
formulation of this main conjecture in the case of a family of motives given
by twists by characters of conductor N and p-power order and its relation to
other formulations of the equivariant main conjecture.
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1. Introduction

1.1. Summary. Mazur initiated the study of the Eisenstein ideal in the context
of modular forms of weight 2 and prime level N as a powerful tool for studying

Date: April 7, 2022.
1



2 PRESTON WAKE

the arithmetic of modular curves and L-functions [Maz77]. In this context, the
Eisenstein ideal measures congruences modulo p between the Eisenstein series and
a cusp form that occur because p divides an Euler factor in the L-function that is
the constant term of the Eisenstein series.

This paper grew out of an attempt to unify two approaches for answering a
question of Mazur on the Zp-rank of the Eisenstein ideal [Maz77, Section II.19,
pg. 140]. The first approach, starting with Merel [Mer96] and more recently Lecou-
turier [Lec21], is analytic, and relates the rank to the order of vanishing of an L-
function. The second approach, starting with Calegari–Emerton [CE05] and more
recently the author with Wang-Erickson [WWE20], relates the rank to class groups
or Galois cohomology of characters.

Although the analytic and algebraic approaches seem completely di↵erent, we
identify a theme that is central to both approaches: the idea of extra reducibility. In
[Lec21], this idea manifests itself in the existence of extra mod-p Eisenstein series of
level �0(N) when p divides N � 1. In [WWE20], it manifests itself in the existence
of first-order deformations of the residual representation that are still reducible.

In the first part of this paper, we explore the theme of extra reducibility in the
context of modular forms of even weight k > 2. We compute the Galois deforma-
tion ring parameterizing the reducible deformations. We show that these reducible
deformations are all accounted for by extra Eisenstein series in characteristic p. We
think of this as a ‘reducible modularity’ theorem. As a consequence, we prove that
the obstruction to deforming the mod-p Eisenstein series as a cusp form is given
by an equivariant L-function that we call the Mazur-Tate ⇣-function ⇠MT. We use
this to prove our main result, which relates the rank of the Eisenstein ideal to the
order of vanishing of ⇠MT, generalizing a theorem of Merel [Mer96] to higher weight.
In the case where this order of vanishing is one, we relate the value of the leading
term, an analytic invariant, to an algebraic invariant in Galois cohomology.

In the second part of the paper, we leave behind modular forms and discuss
the conjecture framework concerning relations between the analytic and algebraic
invariants of the type mentioned in the last sentence of the previous paragraph.
As will be unsurprising to experts, these relations are ultimately predicted by an
equivariant version of the Iwasawa main conjecture. However, this relation is not
totally transparent. We derive the relation from first principles using Kato’s for-
mulation of the main conjecture [Kat93b, Kat93a] 1 , specialized to the case of
‘tame families’. Using a method of “changing Selmer conditions”, we show that our
results are equivalent to a version of the equivariant main conjecture formulated
by Greither and Popescu [GP15] (which has already been proven). We end with a
discussion of several equivalent forms of the conjecture in terms of: Fitting ideals
of cohomology, obstructions to lifting residual cohomology classes, cup products,
and slopes of cohomology classes (or “L-invariants”).

Our results in the second part concern proving that various formulations of the
main conjecture are equivalent. We emphasize that our methods of the first part
only give a new proof of the main conjecture; we do not prove any new cases. Other
proofs have been given by Coates–Sinnot [CS74], using Stickelberger’s theorem, and

1Kato’s main conjecture is a reformulation of the Bloch-Kato conjecture [BK90] that is suitable
for considering families of motives. A similar reformulation was found independently, around the
same time, by Fontaine and Perrin-Riou [FPR94]. We focus on Kato’s formulation because of the
attention he pays to integral aspects of the theory.
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by Greither–Popescu [GP15], using the main conjecture for totally real fields proven
by Wiles [Wil90]. However, unlike known proofs, we do not use p-adic methods,
which significantly simplifies the proofs.

Kato’s insights about the importance of p-adic Hodge theory in the study of
special values of L-functions have led to an emphasis on p-adic aspects of the
theory in most expositions. We hope that our explication of Kato’s ideas in the
tame case, where p-adic Hodge theory plays no special role, can be of expository
value. We believe that this method, using tame families, is quite versatile. It may
be possible to apply these techniques to study main conjectures for other motives,
or, in cases where the main conjecture is known, to prove finer results.

1.1.1. Extra reducibility for X0(11). Before we discuss our results in more detail,
we illustrate the idea of extra reducibility in the simplest case: the modular curve
X0(11) (which is an elliptic curve). As made famous by Mazur [Maz77], the Frobe-
nius traces on X0(11) satisfy

(1.1.1) a`(X0(11)) ⌘ 1 + ` (mod 5)

for all primes ` 6= 11. There are two (related) explanations for this congruence:

Galois: the Galois representation X0(11)[5] is reducible,
Modular: the cusp form fX0(11) associated to X0(11) is congruent modulo 5 to

the Eisenstein series of weight 2 and level 11.

The congruence (1.1.1) can be called reducibility for X0(11). However, there is a
stronger congruence

(1.1.2) a`(X0(11)) ⌘ �(`) + �
�1(`)` (mod 25)

where � : (Z/11Z)⇥ ! (Z/25Z)⇥ is the unique character taking the primitive root
2 to 6. This congruence also has a Galois-theoretic explanation:

Galois II: the Galois representation X0(11)[5] is reducible and semi-simple.

Using the theory of lattices (as in Ribet’s Lemma [Rib76, Proposition 2.1]), this
semi-simplicity implies that a`(X0(11)) must satisfy a congruence like (1.1.2) for
some character �; finding which character is then a simple computation. However,
there is no obvious modular explanation for (1.1.2): the right-hand side of the
congruence is not the reduction of the `th Fourier coe�cient of an Eisenstein series.
We call this kind of congruence extra reducibility, for the kind reducibility not
caused by congruence with an Eisenstein series.

Even though Galois II can be used to prove the congruence (1.1.2), this proof
is unsatisfying to us for two reasons. The first is that (1.1.2) is lattice-independent,
in that it is true not just for X0(11) but for any elliptic curve that is rationally-
isogenous to it. But Galois II is lattice-dependent: it is true only for X0(11). We
would prefer to have a lattice-independent proof of a lattice-independent fact. The
second reason is that Galois II only explains that (1.1.2) is true for some character
�, and gives no insight into why it is true for the particular character �. A number
theorist may like to theorize about the number 6: why does � send 2 to 6 and not
11 or 16?

In this paper, our goal is to:

• generalize the formula (1.1.2) to modular forms of higher weight (see (1.2.5)
below),

• give a modular and lattice-independent explanation for this formula, and
• explain the arithmetic significance of the character � that appears.
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The character � is significant both algebraically, in that it controls a delicate invari-
ant in Galois cohomology, and analytically, in that the values is related to special
values of L-functions. Another goal is to explain that the relation between the these
algebraic and analytic invariants is predicted by a special case of a conjecture of
Kato (see [Kat93a, Iwasawa Main Conjecture (4.9)] and Section 6.2) and that extra
reducibility can be used to prove this special case.

Remarks 1.1.3 (On the history of X0(11)). The history of the above results is
di�cult for us to sort out because, although not much was published about this
before Mazur’s landmark paper [Maz77], it is certain that this particular case was
understood earlier. Shimura studied X0(11) extensively, and had access to compu-
tations of a`(X0(11)) by Trotter [Shi66]. It’s unclear whether he knew Galois II
or the congruence (1.1.2), but he knew how to construct two complementary sub-
representations of X0(11)[5], using the cusps and using the cover X1(11) ! X0(11),
respectively. This latter construction was written about in [Shi71, Remark 7.27,
pg. 196], but the first reference that discusses the non-trivial Galois action seems
to be by Ogg in 1973 [Ogg73, pg. 230]. Mazur [Maz77, Proposition II.18.9, pg. 138]
gave a generalization of Galois II to X0(N) for primes N , and named the Shimura

subgroup after Shimura’s work. Mazur attributes the first proof of (1.1.2) to Serre
[Maz77, pg. 139].

1.2. Eisenstein ideal for weight k forms. For the entire paper, we fix a triple
of integers (k, p,N) such that

• k > 2 is an even integer,
• p is a prime such that ⇣(1� k) 2 Z⇥

(p),

• N is a prime with p | (N � 1).

Note that ⇣(1 � k) 2 Z(p) if and only if (p � 1) - k by the von Staudt–Clausen
Theorem (see [Was97, Theorem 5.10, pg. 56]). If ⇣(1�k) 2 Z(p), then ⇣(1�k) 2 Z⇥

(p)

if p is a regular prime.
To simplify this introduction, we assume in addition that p2 - (N � 1) and that

p - k(k � 1). For example, we may take (k, p,N) = (14, 5, 11). The general results
are stated and proven in Section 5 below.

1.2.1. Reducible modularity. Let T denote the completion of the Hecke algebra act-
ing on weight-k forms of level �0(N) at the p-Eisenstein ideal. Let T0 denote the
quotient acting on cusp forms, and let I0 ⇢ T0 be its Eisenstein ideal.

As in [WWE20], we study T by considering a Galois deformation ring RD̄ for
the residual pseudorepresentation D̄ = Fp(k � 1) � Fp of the Eisenstein series.
We construct a surjective Zp-algebra homomorphism RD̄ ⇣ T that we expect is
an isomorphism. We do not attempt to prove this (although see Remark 3.2.1),
but we focus instead on proving a weaker reducible modularity theorem. Let Rred

D̄
denote the quotient of RD̄ parameterizing deformations that are reducible, and let
Tred = T⌦RD̄

R
red
D̄

. Let ⇤ = Zp[(Z/NZ)⇥ ⌦Z Zp] and ⇤1 = ⇤/I2Aug, where IAug is
the augmentation ideal.

Theorem 1.2.1. The map RD̄ ! T induces an isomorphism R
red
D̄

⇠
�! Tred

, and

both R
red
D̄

and Tred
are isomorphic to ⇤1 as Zp-modules.

The isomorphism Tred
! ⇤1 in the theorem comes from a modular eigenform

Ẽk,N with coe�cients in ⇤1 that we call the deformation Eisenstein series, whose
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base-change to Zp is a usual Eisenstein series Ek,N of level �0(N). The construction
of Ẽk,N is inspired by [Lec21]. The idea is to take linear combinations of Eisenstein
series Ek(�, 1) and Ek(1,�) of level �1(N) and show that, if � is an infinitesimal
deformation of the trivial character, then these linear combinations can descend to
�0(N).

Remark 1.2.2 (On the Shimura subgroup). Unlike in previous analytic studies of
the Eisenstein ideal [Maz77, Mer96, Lec21], no special role is played in this paper
by the Shimura cover X1(N) ! X0(N). Indeed, the significance of this cover
seems special to weight 2 and we do not know a weight-k analog. Given this, the
use of �1(N)-structure in the construction of Ẽk,N seems ad hoc. The important
phenomenon is that a representation that a priori has deeper level-N structure in
fact has �0(N)-invariants, and this phenomenon appears to be quite general. We
plan to study generalizations in the future.

1.2.2. The cuspidal-reducible locus and the Mazur-Tate ⇣-function. Considering ⇤
as the ring of functions on a Dirichlet character of modulus N and p-power order,
we have the function

� 7! L(1� k,�)

which we call the Mazur-Tate ⇣-function after [MT87], and denote by ⇠MT 2 ⇤.
The image ⇠MT( ) 2 Zp of ⇠MT under the augmentation map is ⇣(1�k)(1�N

k�1).
The derivative ⇠

0
MT 2 Fp is the image of ⇠MT � ⇠MT( ) under the isomorphism

IAug/I
2
Aug

⇠
�! (Z/NZ)⇥ ⌦ Zp

logN
���! Fp.

where logN is a fixed choice of isomorphism (the ‘discrete logarithm’). Explicitly,

⇠
0
MT =

1

k

N�1X

i=1

Bk(i) logN (i)

where Bk(x) is the Bernoulli polynomial.
The constant term ⇠

Eis
MT := a0(Ẽk,N ) 2 ⇤1 is closely related to 1

2⇠MT. It has the

same derivative, but its constant term is 1
2⇣(1�k)(1�N

k/2). Let T0,red = T0
⌦TTred.

We prove the following.

Theorem 1.2.3. There is an isomorphism T0,red ⇠= ⇤1/⇠
Eis
MT.

When ⇠
0
MT 6= 0, there is a explicit isomorphism ⇤1/⇠

Eis
MT

⇠= Z/p2Z. In that case,
the theorem implies that there is a cuspidal eigenform with coe�cients in Z/p2Z
with reducible pseudorepresentation. If there is a unique cuspidal eigenform with
coe�cients in Zp (i.e. if T0 is smooth over Zp), then this gives an explicit formula
for its reduction modulo p

2. In other words, it gives an explicit formula for the
extra reducibility.

1.2.3. Criteria for smoothness of T0
. For k = 2, Mazur proved a criterion for T0 to

equal Zp in terms of the Weil pairing on J0(N) [Maz77, Proposition II.19.2, pg. 140].
Merel [Mer96, Théorème 2] built on Mazur’s result to prove the remarkable formula

that T0 = Zp if and only if
PN�1

2
i=1 i logN (i) ⌘ 0 (mod p) (this quantity is now called

Merel’s number). Later, Lecouturier [Lec18, Proposition 1.2] showed that Merel’s
number vanishes if and only if ⇠0MT (for k = 2) does. Putting these things together,
we see that, for k = 2, we have T0 = Zp if and only if ⇠0MT = 0.
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Using the description of T0,red from Theorem 1.2.3, we prove a weight-k analog
of this result. When T0 = Zp, we also give an explicit description of the map
T0 ⇣ Z/p2Z in terms of ⇠0MT, describing the extra reducibility in this case (compare
(1.2.5) to the formula (1.1.2) for X0(11)).

Theorem 1.2.4. The inclusion Zp ! T0
is an isomorphism if and only if both of

the following conditions hold:

(1) ⇠
0
MT 6= 0

(2) I
0
is principal.

Moreover, if Zp ! T0
is an isomorphism, then the unique homomorphism T0

!

Z/p2Z is given by
2

(1.2.5) T` 7! 1 + `
k�1 + p

 
⇣(1� k)(1� `

k�1)
(1�N

k
2 )

p

logN (`)

⇠
0
MT

!
(mod p

2)

for primes ` 6= N .

In weight 2, the Eisenstein ideal is always principal, as was proven by Mazur
[Maz77, Proposition II.16.1, pg. 125]. It is not always principal in weight k > 2,
but it seems that it is principal if and only if

p�1Y

i=1

(1� ⇣
i
p)

i2�k

6= 0 in F⇥
N ⌦ Fp

where ⇣p 2 F⇥
N is a primitive p-th root of unity. The ‘if’ part follows from [WWE21]

for k ⌘ 2 (mod p � 1), and it seems that the same method works in general (see
Remark 3.2.1). See [Deo21] for some results in this direction.

1.3. Applications to Iwasawa theory. By combining Theorem 1.2.3 and Theo-
rem 1.2.4, we can see that, if I0 is principal and ⇠

0
MT 6= 0, then there is a cuspidal

eigenform f with coe�cients in Zp whose Galois representation, when reduced mod-
ulo p

2, is reducible. Using Ribet’s technique [Rib76], we can use this f to construct
non-trivial mod-p2 global Galois cohomology classes that are trivial locally at p.

To state this result precisely, we require more notation. Let cyc : GQ ! Z⇥
p

and ! : GQ ! F⇥
p be the p-adic and mod-p cyclotomic characters, respectively. Let

logp : (Z/p2Z)⇥ ! Fp be x 7!
!�1(x)x�1

p .

Let c 2 H
1(Z[1/Np],Fp(1�k)) be a non-zero class whose restriction toH1(Qp,Fp(1�

k)) is zero (this class is unique up to scaling). Since the vector space H1(QN ,Fp(1�
k)) is two-dimensional with canonical basis, we can speak of the slope of an element
in H

1(QN ,Fp(1� k)) (see Section 8.3 for more details).

Theorem 1.3.1. Assume that ⇠
0
MT 6= 0 and that I

0
is principal. Then:

(1) There is a class c̃ 2 H
1(Z[1/Np], (Z/p2Z)(��2

↵ 
1�k
cyc )) that lifts c and whose

restriction to H
1(Qp, (Z/p2Z)(��2

↵ 
1�k
cyc )) is zero.

(2) The cup product c [ logp(�
�2
↵ 

1�k
cyc ) vanishes.

2The quantity in large parentheses should be considered in Z/pZ. Note that ⇠0MT 6= 0 by (1),

and that, although ⇠0MT depends on the choice of logN , the ratio logN (`)
⇠0MT

2 Z/pZ is independent

of choices.
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(3) The restriction c|N 2 H
1(QN ,Fp(1� k)) of c has slope

k

(1� k)

⇣(1� k)

⇠
0
MT

.

Here �↵ : GQ ! (Z/p2Z)⇥ is � 7! 1 + p↵ logN (�), where ↵ = (1�Nk/2)⇣(1�k)
p⇠0MT

2

Z/pZ, and (Z/p2Z)(��2
↵ 

1�k
cyc ) denotes Z/p2Z with GQ acting by �

�2
↵ 

1�k
cyc .

In fact, we show in Section 8 that (1) implies (2) and (3) without any assumption.
Using the assumptions that ⇠

0
MT 6= 0 and that I

0 is principal, the class c̃ in (1) is
constructed using the cuspidal eigenform f (see Corollary 5.3.1).

As we explain in Section 8 (see Remark 8.3.3), the slope of c|N is a tame analog
of the algebraic L-invariant that appears in the Gross-Stark conjecture [Gro81,
DDP11]. Hence one can think of (3) as a kind of tame analog of the Gross-Stark
conjecture.

1.3.1. Kato’s main conjecture for tame families. Theorem 1.3.1 provides a link
between the Mazur-Tate ⇣-function and Galois cohomology. This is reminiscent
of the Iwasawa main conjecture, but, whereas the Iwasawa main conjecture deals
with p-adic families (i.e. twists by powers of the p-adic cyclotomic character), this
result has to do with tame families (i.e. twists by characters of p-power-order and
conductor N).

Kato has formulated a version of the main conjecture that encompasses very
general families [Kat93b, Kat93a]. We survey this formulation in the special case of
tame families in the second part of this paper. A consequence of Kato’s conjecture is
that ⇠MT controls the size of the Galois cohomology H

2(Z[1/Np],⇤(k)) (where GQ
acts on ⇤ via the mod-N cyclotomic character GQ ! (Z/NZ)⇥). Using Theorem
1.3.1 and a method of “changing Selmer conditions”, we give a new proof of the
following, which is a consequence of Kato’s conjecture.

Corollary 1.3.2. Assume that ⇠
0
MT 6= 0 and that I

0
is principal. Then

(1.3.3) Ann⇤H
2(Z[1/Np],⇤(k)) = ⇠MT⇤.

We first prove a result about Galois cohomology with di↵erent Selmer conditions
(Theorem 5.4.1), and show that this result is equivalent (Theorem 7.3.1).

The equality (1.3.3) (without any assumption) is a special case of a known result:
the Coates–Sinnott conjecture as formulated by Greither–Popescu [GP15]. The
original results of Coates and Sinnott [CS74] show that ⇠MT is in the annihilator,
and this su�ces to prove the equality in this case by a simple argument. Greither–
Popescu [GP15] give a di↵erent proof, showing that the result follows from the
Iwasawa main conjecture for totally real fields [Wil90] and the vanishing of µ-
invariants [FW79]. The novelty of our proof is that we construct the required
cohomology classes using tame families of modular forms. See the introductory
paragraph to Part 2 for further discussion.

Remark 1.3.4 (Comparison with irregular weight 1 forms). An analogous situation
to the one considered in this paper has been studied, to great e↵ect, by Dasgupta
and his coauthors – first with Darmon and Pollack [DDP11] and more recently
with Kakde and Ventullo [DKV18]. (For a deformation-theoretic perspective on
[DDP11], see [BDP21].) These authors consider p-adic families of cuspforms passing
through an irregular weight 1 Eisenstein point. There, the analog of T0,red is
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computed using linear combinations of Eisenstein series, and the derivative of a
p-adic L-function appears as a coe�cient in this linear combination.

One key di↵erence between that situation and ours is that, in our case, the
reducibility quotient Tred is not the quotient of T acting faithfully on Eisenstein
series (and this is the meaning of “extra” in “extra reducibility” – there is more
reducibility than is explained just by Eisenstein series). Indeed, in our case, the
Eisenstein quotient is Zp. The extra “deformation Eisenstein series” only appears
when we consider torsion coe�cients.
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1.5. Notation. The general setup throughout the paper is as follows:

• k � 2 is an even integer, and k > 2 in Part 13,
• p is a prime such that ⇣(1� k) 2 Z⇥

(p),

• N is a prime with p | (N � 1),
• ⌫ > 0 is the p-adic valuation of N � 1.

As we remarked at the beginning of Section 1.2, the assumption that ⇣(1�k) 2 Z⇥
(p)

implies that (p� 1) - k (so, in particular, p 6= 2, 3).

Remark 1.5.1. In weight k, there are Eisenstein congruences whenever at least one
of the following occur

(1) p divides Nk
� 1

(2) p divides the numerator of ⇣(1� k).

However, extra reducibility will only occur when p divides N � 1. In order to focus
on this phenomenon, we limit our scope to this situation.

3Everything in Part 1 should work for k = 2 as well, but requires extra delicacy regarding
convergence (the Eisenstein series of weight 2 and level 1 is non-holomorphic). We consider the
case k = 2 in greater detail in work-in-progress with Lecouturier and Wang-Erickson.
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Also note that, with our assumptions on N and p, Eisenstein congruences will
only occur in the �1-eigenspace for the Atkin-Lehner involution wN , so we focus
our attention on this eigenspace. See [WWE21] for some cases where congruences
occur in +1-eigenspaces.

Throughout the paper, we continue to use the notation cyc and ! for the p-adic
and mod-p cyclotomic characters, respectively, and we let logp : (Z/p2Z)⇥ ! Fp be

x 7!
!�1(x)x�1

p .

Let vp(�) denote the p-adic valuation on Q. Let GQ,Np denote the Galois group
of the maximal extension of Q that is unramified outside Np, and let GQN , GQp ⇢

GQ,Np be a choice of decomposition group at N and p. Let IN ⇢ GQN and Ip ⇢

GQp denote the inertia groups. Choose an element �N 2 IN that topologically

generates the pro-p quotient. Let ⇣(p)N 2 Q(⇣N ) be an element such that Q(⇣(p)N )/Q
is the maximal pro-p subextension of Q(⇣N )/Q. Then �N maps to a generator of

Gal(Q(⇣(p)N )/Q) ⇠= (Z/NZ)⇥ ⌦Z Zp. This determines an isomorphism

logN : (Z/NZ)⇥ ⌦Z Zp
⇠
�! Z/p⌫Z.

We abuse notation and also denote by �N the element log�1
N (1) 2 (Z/NZ)⇥ ⌦Z Zp,

and denote by logN the composite character

GQ,Np ! Gal(Q(⇣(p)N )/Q)
⇠
�! (Z/NZ)⇥ ⌦Z Zp

⇠
�! Z/p⌫Z.

If K is a `-adic local field and x 2 A
⇥ for some ring A, let �(x) : GK ! A

⇥

denote the unramified character sending the arithmetic Frobenius to x.
If C is a cochain complex, we let Z

i(C) denote the i-cocycles and B
i(C) de-

note the i-coboundaries. For a complex like R�(G,M) we denote Z
i(R�(G,M)),

B
i(R�(G,M)), and H

i(R�(G,M)) by Z
i(G,M), Bi(G,M) and H

i(G,M), respec-
tively, and similarly for the related complexes introduced in Appendix B. See Ap-
pendix B for more notation regarding Galois cohomology.

Part 1. The Eisenstein ideal for weight k forms

In this part, we prove most of our main results, including Theorem 1.2.1 (see
Theorem 5.1.1) Theorem 1.2.3 (see Theorem 5.1.2), and Theorem 1.2.4 (see Theo-
rem 5.2.7 and Corollary 5.2.9).

In Section 2, we review the necessary background material on modular forms and
Hecke algebras. In Section 3, we review deformation theory of Galois pseudorepre-
sentations as developed in [WWE20, WWE19, WWE21]; this section includes the
definition of RD̄ and the calculation of Rred

D̄
. In Section 4, we carry out our main

construction of “derivative Eisenstein series”, as inspired by [Lec21]. In Section 5,
we prove our main results.

2. Modular forms and their Galois representations

In this section, we recall some basic facts about modular forms and their Galois
representations. All the results from this section are well-known – some references
are [Kat73, DI43, Gro90, Gou88, Maz77]., We review them here just to fix our
notation.

2.1. Modular forms and Hecke algebras. We recall some basics about algebraic
modular forms.
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2.1.1. Modular forms. Let � be a subgroup of SL2(Z) with �(N) ⇢ � (we will only
consider � = �0(N) or �1(N)). For a Z[1/N ]-module K, let Mk(�,K) denote the
module of algebraic modular forms of weight k and level � with coe�cients in K,
as defined by Katz [Kat73], and let Sk(�,K) denote the submodule of cusp forms.
If K is a flat Z[1/N ]-algebra (such as Zp), these can be defined in terms of classical
modular forms with integral q-expansion [Oht14, Section 1.3]. For f 2 Mk(�,K)
we write its q-expansion (at the 1-cusp) as f(q) =

P1
n=0 an(f)q

n
2 K⌦Z[1/N ][[q]].

2.1.2. Hecke algebra. Let T0 denote the sub Zp-algebra of EndZpMk(�0(N),Zp)
generated by the T` Hecke operators for primes ` 6= N together with the Atkin-
Lehner involution wN ; it is a reduced commutative ring. Let T00 denote the image
of T0 in EndZpSk(�0(N),Zp). For a T0-module M let M± denote the largest direct
summand of M on which wN acts by ±1.

2.1.3. Residue exact sequence. There is an exact sequence of T0-modules

(2.1.1) 0 ! Sk(�0(N),Zp)
±
! Mk(�0(N),Zp)

± a0
�! Zp ! 0

where a0 is the map sending f to its constant Fourier coe�cient a0(f). The ex-
actness in the middle comes from the fact that wN switches the two cusps, so a
wN -eigenform whose constant term at one cusp is zero automatically has constant
term zero at the other cusp.

The surjectivity of a0 follows from the vanishing of H1 of the sheaf of cusp forms
of weight k, as in the proof of the base-change property [Kat73, Theorem 1.7.1].
The surjectivity can also be proven directly from the base-change property, as we
now sketch. Suppose, for the sake of contradiction, that the image of a0 is piZp for
some i > 0, and let f 2 Mk(�0(N),Zp)± be such that a0(f) = p

i. Then f̄ := f

(mod p) is in Sk(�0(N),Fp)± because a0(f̄) = 0. By the base-change property,
there is an f̃ 2 Sk(�0(N),Zp)± with f̃ ⌘ f̄ (mod p). Then, since f � f̃ ⌘ 0

(mod p), we see that g := f̃�f
p is in Mk(�0(N),Zp)± by the q-expansion principle.

But a0(g) =
a0(f)

p = p
i�1, contradicting our assumption about the image of a0.

2.1.4. Duality. There are perfect pairings of free Zp-modules

T0±
⇥Mk(�0(N),Zp)

±
! Zp, T00±

⇥ Sk(�0(N),Zp)
±
! Zp

given by (t, f) 7! a1(tf). This can be proven just as in [Oht14, Corollary 2.4.7],
using integral Atkin-Lehner theory [Oht14, Proposition 2.1.2].

In particular, there is a unique element T0 2 T0± such that a1(T0f) = a0(f)
for all f 2 Mk(�0(N),Zp)±, which we call the universal constant term operator,
following Emerton [Eme99, Section 2]. Taking the dual of the sequence (2.1.1), we

see that T0 generates the ideal ker(T0±
! T00±) and that this ideal is free of rank

1 as a Zp-module.

2.1.5. Eisenstein series of level �0(N). Let Ek(z) denote the normalized Eisenstein

series of weight k and level 1. It has constant term ⇣(1�k)
2 and is an eigenform with

T`-eigenvalue 1 + `
k�1 for any prime `.

Define Eisenstein series E±
k,N of level �0(N) by

E
±
k,N (z) = Ek(z)±N

k/2
Ek(Nz).
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They are eigenforms with T`-eigenvalue 1 + `
k�1 for any prime ` 6= N and with

wNE
±
k,N = ±E

±
k,N . The have constant terms a0(E

±
k,N ) = 1

2⇣(1� k)(1±N
k/2).

2.1.6. Eisenstein series of level �1(N). For each non-trivial even character � :
(Z/NZ)⇥ ! Q̄⇥, there are two normalized Eisenstein series Ek(1,�) and Ek(�, 1)
of level �1(N), given by the q-expansions

Ek(1,�) =
L(1� k,�)

2
+
X

n�1

0

@
X

d|n

�(d)dk�1

1

A q
n

and

Ek(�, 1) =
X

n�1

0

@
X

d|n

�(n/d)dk�1

1

A q
n
.

They are eigenforms for all the T`. An elementary computation shows that

(2.1.2) wNEk(�, 1) =
g(�)

Nk/2
Ek(1,�

�1),

where g(�) =
P

a2(Z/NZ)⇥ �(a)e
2⇡ia
N is the Gauss sum (see [Wei77, Proposition

1]). Note that, since wN is an involution, this implies that wNEk(1,��1) =
Nk/2

g(�) Ek(�, 1).

2.2. Eisenstein ideal. From now on, we only consider �1-eigenspaces for wN . We
define Ek,N := E

�
k,N , and let I 0 = AnnT0(Ek,N ) and let m0 denote the maximal ideal

of T0 generated by I
0 and p. We define T and T0 to be the completion at m0 of T0

and T00, respectively. Note that, since p > 2, the local ring T cannot contain any
non-trivial involution, so wN = �1 in T.

For a T0-module M , we let MEis denote M ⌦T0 T, and we note that MEis =
(M�)Eis. In particular, we have the exact sequences

0 ! Sk(�0(N),Zp)Eis ! Mk(�0(N),Zp)Eis
a0
�! Zp ! 0

and

(2.2.1) 0 ! T0Zp ! T ! T0
! 0,

that are dual to each other under the perfect pairings

T⇥Mk(�0(N),Zp)Eis ! Zp, T0
⇥ Sk(�0(N),Zp)Eis ! Zp.

The normalization of T is the product
Q

f Of where f ranges over normalized

eigenforms in Mk(�0(N), Q̄p)Eis, and where Of is the valuation ring in the finite
extension of Qp obtained by adjoining the Fourier coe�cients a`(f) for ` 6= N . The
normalization map T !

Q
f Of is injective, as T is reduced.

2.3. Representations associated to cusp forms. Let f be a cuspidal eigenform
of level �0(N) and weight k. Let ⇢f : GQ,Np ! GL2(Q̄p) denote the associated p-
adic Galois representation. It is the unique irreducible representation satisfying
det(⇢f ) = 

k�1
cyc and tr(⇢f )(Fr`) = a`(f) for all primes ` not dividing Np. The

following lemma recalls the local properties of this representation in the cases of
interest.

Lemma 2.3.1. Assume that ap(f) is a p-adic unit and that wN (f) = �f . Then
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(1) The representation ⇢f |GQp
is ordinary. That is, we have

⇢f |GQp
⇠

✓

k�1
cyc �(ap(f)�1) ⇤

0 �(ap(f))

◆

(2) If f is old at N , then ⇢f |GQN
is unramified.

(3) If f is new at N , then ⇢f |GQN
is Steinberg. This is, we have

⇢f |GQN
⇠ �(N

k
2�1)

✓
cyc ⇤

0 1

◆

3. Deformation theory

Let D̄ = !
k�1

�1 : GQ,Np ! Fp, the residual pseudorepresentation of the Eisen-
stein series of weight k. In this section, we define a ring RD̄ which represents the
functor for pseudorepresentations D that deform D̄ and satisfy certain conditions
so they “look like” pseudorepresentations associated to modular forms of weight k
and level �0(N).

A method for imposing these conditions has developed extensively in the au-
thor’s previous papers with Carl Wang-Erickson [WWE20, WWE19, WWE21],
specifically in the case of weight k = 2. In this paper, we simply sketch how the
methods of those papers can be adapted to weight k. We freely use the language of
pseudorepresentations and Cayley-Hamilton representations. We refer the reader
to [WWE21, Section 3] for more detail.

3.1. Deformation ring. Let RD̄ denote the pseudodeformation ring parameter-
izing deformations D : GQ,Np ! A of D̄, where A is an Artin local Zp-algebra with
residue field Fp, subject to the following conditions:

• det(D) = 
k�1
cyc ,

• D is ordinary at p,
• D is unramified-or-Steinberg4 at N .

These latter two conditions need definitions. By definition, they are true if and
only if there is a Cayley-Hamilton representation ⇢ : GQ,Np ! E

⇥ inducing D with
the same property. We now define these properties for Cayley-Hamilton represen-
tations.

A Cayley-Hamilton representation ⇢ : GQ,Np ! E
⇥ is ordinary at p if

(⇢(�)� 
k�1
cyc (�))(⇢(⌧)� 1) = 0

for all �, ⌧ 2 Ip, the inertia group of GQp .
A Cayley-Hamilton representation ⇢ : GQ,Np ! E

⇥ is unramified-or-Steinberg

at N if
(⇢(�)� cyc(�)�(N

k
2�1)(�))(⇢(⌧)� �(N

k
2�1)(⌧)) = 0

for all (�, ⌧) 2 IN ⇥GQN [GQN ⇥ IN . Note that an unramified representation will
satisfy this property: if � 2 IN , then the first factor is zero, and if ⌧ 2 IN , then
the second factor is zero.

Given these definitions, the existence of the deformation ring RD̄ parameterizing
deformations with these conditions is proven exactly as in [WWE21, Section 3]. The

4This condition would be called “unramified-or-(�1)-Steinberg” in [WWE21], where the sign
refers to a choice of unramified quadratic twist related to the wN -eigenvalue. In this paper, we
only consider a single twist (because we only consider the wN = �1-eigenspace), so we drop the
sign from the notation.
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idea of the construction is to start with the universal Cayley-Hamilton algebra and
impose these conditions by taking a quotient in the category of Cayley-Hamilton
algebras; the ring RD̄ is obtained as the scalar ring of this quotient.

We let Du : GQ,Np ! RD̄ denote the universal pseudorepresentation. The pseu-
dorepresentation 

k�1
cyc � 1 over Zp, which we refer to as the minimal deformation,

defines a map RD̄ ⇣ Zp which gives RD̄ the structure of an augmented Zp-algebra;
we call the kernel Jmin

⇢ RD̄, and refer to it as the minimality ideal.

3.2. Map RD̄ ! T. There is a unique surjective Zp-algebra homomorphism

RD̄ ! T

such that trace(Du)(Fr`) 7! T` for all ` - Np. Using the fact that RD̄ is generated
by the elements trace(Du)(Fr`) as a Zp algebra, this map can be constructed and
proven to be surjective just as in the proof of [WWE21, Proposition 4.1.1], following
three steps:

Step 1: The pseudorepresentation associated to an eigenform f defines a map
RD̄ ! Of sending trace(Du)(Fr`) to a`(f) for all ` - Np. (The fact that this
pseudorepresentation satisfies the required conditions follows from Lemma
2.3.1.)

Step 2: The resulting map RD̄ !
Q

f Of sends trace(Du)(Fr`) to the image of T`

under the normalization T !
Q

f Of . Hence the map RD̄ !
Q

f Of factors
through a map RD̄ ! T whose image is the subalgebra generated by the
T` for ` - Np.

Step 3: The image of RD̄ ! T also contains Tp (using the interpretation of ap(f)
in terms of Galois representations). This completes the proof the RD̄ ! T
is surjective.

Remark 3.2.1. We expect that the map RD̄ ⇣ T is an isomorphism. This kind of
result was proven in [WWE20] in the weight 2 case. However, since the there is no
“finite flat” condition in weight k > 2, this situation is more closely analogous to
the case k = 2 and level �0(Np), which was treated in [WWE21]. It seems that the
same method can prove that if the restriction map

(3.2.2) H
1(Z[1/p],Fp(k � 1)) ! H

1(QN ,Fp(k � 1))

is non-zero, then J
min is principal and RD̄ ⇣ T is an isomorphism. Using our

assumption that ⇣(1 � k) 2 Z⇥
(p), it is easy to see that H

1(Z[1/p],Fp(k � 1)) is

generated by image of the Deligne-Soulé cyclotomic element [Del79, Sou87] (see
also [Kur92, Section 5]), so (3.2.2) is zero if and only if

(3.2.3)
p�1X

i=1

i
k�2 logN (1� ⇣

i
p) ⌘ 0 (mod p)

where ⇣p 2 FN is any primitive pth root of unity. In the case k ⌘ 2 (mod p�1), this
is equivalent to logN (p) ⌘ 0 (mod p), which is the condition that was considered
in [WWE21]. See [Deo21] for some recent results regarding this.

The map RD̄ ! T ! T/I ⇠
�! Zp coincides with the minimal deformation RD̄ !

Zp, so the map RD̄ ! T is a map of augmented Zp-algebras.
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3.3. The group ring ⇤ and its quotient ⇤1. In order to describe the reducible
quotient of RD̄, we set up some notation regarding group rings that will also be
used later.

We let ⇤ = Zp[Gal(Q(⇣(p)N )/Q)], which we think of as the universal unramified-
outside-N deformation ring of the trivial character GQ,N ! F⇥

p . The localization
⇤ ⌦ Q is a product of totally ramified finite extensions Qp(�) of Qp labeled by

characters � : Gal(Q(⇣(p)N )/Q) ! Q̄⇥:

⇤⌦Q ⇠=
Y

�

Qp(�).

We write IAug = ker(⇤ ! Zp) for the augmentation ideal, and let ⇤1 = ⇤/I2Aug,
which we think of as parameterizing first-order deformations.

The choices made in Section 1.5 define isomorphisms

(3.3.1) ⇤
⇠
�! Zp[Z/p⌫Z]

⇠
�!

Zp[X]

((X + 1)p⌫
� 1)

.

such that the composition is [a] 7! (1+X)logN (a) for a group-like element [a]. These
isomorphisms define an isomorphism

(3.3.2) ⇤1
⇠
�!

Zp[X]

(X2, p⌫X)

via [a] 7! 1 + logN (a)X. Throughout the paper, we will forget about (3.3.1), but
we will use (3.3.2) as an identification. In particular, the letter X will always refer
to an element of ⇤1 that is a generator of IAug/I

2
Aug inducing the isomorphism

IAug/I
2
Aug

⇠= Z/p⌫Z of Section 1.5.

We let ⇤̄1 = ⇤1/p
⌫⇤1. Via the identification (3.3.2), ⇤̄1 is identified with the ring

of dual numbers over Z/p⌫Z. The quotient map ⇤1 ! ⇤̄1 induces an isomorphism

(3.3.3) X⇤1
⇠
�! X⇤̄1 = X · Z/p⌫Z,

which we also use as an identification.
We let h�i : GQ,Np ! ⇤⇥

1 denote the character h�i = 1 + logN (�)X.

3.4. Reducible deformation ring. Let RN ! R
red
N denote the quotient param-

eterizing deformations D : GQ,Np ! A that are still reducible (that is D = �1 ��2

for some characters �1,�2 : GQ,Np ! A
⇥).

Lemma 3.4.1. The pseudorepresentation

D
red : GQ,Np ! ⇤1

determined by D
red = 

k�1
cyc h�i

�1
� h�i is a deformation of D̄ and determines an

isomorphism

R
red
D̄

⇠
�! ⇤1.

Proof. It can be checked easily that Dred defines a reducible deformation of D̄ that
is ordinary at p and unramified-or-Steinberg at N , so it defines a map R

red
D̄

! ⇤1.
We must construct the inverse map. The proof is just as in [WWE20, Proposition
5.1.2] or [WWE21, Lemma 4.2.3], so we will simply sketch the argument.

Let Du,red = �1��2 : GQ,Np ! R
red
D̄

denote the universal reducible deformation.

Since det(Du,red) = 
k�1
cyc we can write �1 = 

k�1
cyc �

�1
2 . Now �2 is a deformation

of the trivial character. The ordinary condition forces �2 to be unramified at p.
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Hence there is a surjection ⇤ ⇣ R
red
D̄

. The unramified-or-Steinberg at N condition
forces this surjection to factor through

Zp[Gal(Q(⇣(p)N )/Q)]

([�N ] + [�N ]�1 � 2)
.

Under the isomorphism (3.3.1), this quotient is identified with ⇤1 and the universal
character is identified with h�i. This gives a surjection ⇤1 ! R

red
D̄

that is inverse
to R

red
D̄

! ⇤1. ⇤

4. Derivative Eisenstein series

4.1. Mazur-Tate ⇣-function. We first consider the constant terms L(1 � k,�)
of the Eisenstein series Ek(1,�) and note that they interpolate into an element
⇠MT 2 ⇤ that we call the Mazur-Tate ⇣-function (after [MT87]).5

We consider the function � 7! L(1� k,�) for a character � : Gal(Q(⇣(p)N )/Q) !
Q̄⇥

p , where L(s,�) is the Dirichlet L-function and we think of � as a Dirichlet
character of modulus N . A priori, this function is an element ⇠MT of the group ring

Q̄p[Gal(Q(⇣(p)N )/Q)]. Explicitly, we have the formula (see e.g. [Was97, Thm. 4.2,
pg. 32]),

L(1� k,�) = �
Bk,�

k
= �

N
k�1

k

N�1X

a=1

Bk(a/N)�(a)

for any Dirichlet character of modulus N , where Bk,� is the Bernoulli number

and Bk(x) is the Bernoulli polynomial, so ⇠MT = �
Nk�1

k

PN�1
a=1 Bk(a/N)[a], and

we see ⇠MT 2 Qp[Gal(Q(⇣(p)N )/Q)]. It is known that ⇠MT is the integral subring

⇤ ⇢ Qp[Gal(Q(⇣(p)N )/Q)] (see [CS74, Theorem 1.2], and note that their k+1 is our
k, and that the integer wk(Q) appearing in the statement is prime-to-p because of
our assumption (p� 1) - k).

In the next lemma, we use the identifications of Section 3.3.

Lemma 4.1.1. The image of ⇠MT in ⇤1 is given by

⇣(1� k)(1�N
k�1) + ⇠

0
MTX

where ⇠
0
MT 2 Z/p⌫Z is the element

�
N

k�1

k

N�1X

a=1

Bn(a/N) logN (a) 2 Z/p⌫Z

In particular, the image of ⇠MT in ⇤1 annihilates X.

Proof. The image of ⇠MT under the augmentation is L(1 � k, ), where denotes
the trivial character modulo N . This is easily seen to be equal to ⇣(1�k)(1�N

k�1).
This shows that

⇠MT � ⇣(1� k)(1�N
k�1) = �

N
k�1

k

N�1X

a=1

Bk(a/N)([a]� 1).

5It could be called the “tame L-function”, to highlight the analogy with p-adic L-functions, or
a Stickelberger element.
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The isomorphism IAug/I
2
Aug

⇠= Z/p⌫Z sends [a] � 1 to logN (a) and sends X to 1,
so we have

⇠MT � ⇣(1� k)(1�N
k�1) =

 
�
N

k�1

k

N�1X

a=1

Bk(a/N) logN (a)

!
X.

The last statement follows from the fact that the annihilator of X in ⇤1 is the ideal
generated by N � 1 and X. ⇤

4.2. Group-ring valued Eisenstein series. Consider the Eisenstein series

Ek(1, [�]) =
1

2
⇠MT +

X

n�1

0

@
X

d|n

[d]dk�1

1

A q
n
2 Zp[(Z/NZ)⇥/{±}][[q]]

and

Ek([�], 1) =
X

n�1

0

@
X

d|n

[n/d]dk�1

1

A q
n
2 Zp[(Z/NZ)⇥/{±}][[q]].

The ring Q̄p[(Z/NZ)⇥/{±}] is a product of Q̄p labeled by even characters �; the
map associated to a given � sends Ek(1, [�]) to Ek(1,�) and Ek([�], 1) to Ek(�, 1).
This implies that these q-series are q-expansions of modular forms elements of
Mk(�1(N), Q̄p[(Z/NZ)⇥/{±}]). By the q-expansion principle [Kat73, Corollary
1.6.2], they are actually elements of Mk(�1(N),Zp[(Z/NZ)⇥/{±}]).

4.3. Derivative Eisenstein series. Throughout the rest of this section, we fre-
quently use the notation for the group ring ⇤, its quotients ⇤1 and ⇤̄1, and the
element X 2 ⇤1 introduced in Section 3.3.

Let Ek(1, h�i), Ek(h�i, 1) 2 Mk(�1(N),⇤1) be the base-change of Ek(1, [�]) and
Ek([�], 1) via the quotient Zp[(Z/NZ)⇥/{±}] ! ⇤1. Let Ēk(1, h�i), Ēk(h�i, 1) 2
Mk(�1(N), ⇤̄1) be further the base change via ⇤1 ⇣ ⇤̄1.

By base-changing along the inclusion Zp ⇢ ⇤1, we can consider Ek,N as an
element in Mk(�1(N),⇤1). Then we have

X · Ek,N 2 Mk(�1(N), X⇤1) = Mk(�1(N), X⇤̄1),

where we have used the identification (3.3.3). We also have

X · Ēk(1, h�i), X · Ēk(h�i, 1) 2 Mk(�1(N), X⇤̄1).

Lemma 4.3.1. We have

X · Ek,N = X · Ēk(1, h�i) = X · Ēk(h�i, 1)

as elements of Mk(�1(N), X⇤̄1).

Proof. In this proof, we frequently use the fact that N = 1 in ⇤̄1. By the q-
expansion principle, we need only check that these forms have the same q-expansion.
We first check the constant terms. We have a0(Ek,N ) = 1

2⇣(1�k)(1�N
k/2), which is

zero in ⇤̄1, so a0(X ·Ek,N ) = 0. We also see trivially that a0(Ēk(h�i, 1)) = 0, so we
have to check that a0(X ·Ēk(1, h�i)) = 0. But we have a0(X ·Ek(1, h�i)) = 1

2X⇠MT,
which is zero in ⇤̄1 by Lemma 4.1.1.
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Next we consider aN coe�cients. We have

aN (X · Ek,N ) = X(1 +N
k�1

�N
k/2) = X

aN (X · Ēk(1, h�i)) = X

aN (X · Ēk(h�i, 1)) = N
k�1

X = X.

Finally, we check easily that, for any prime ` 6= N , all three have a`-coe�cient
X(1 + `

k�1). ⇤

Let E0
k,N 2 Mk(�1(N), ⇤̄1) be the element

E
0
k,N = Ēk(1, h�i)� Ēk(h�i, 1),

which we call the derivative Eisenstein series.

Lemma 4.3.2. The q-expansion of derivative Eisenstein series E
0
k,N takes values

in X⇤̄1. Moreover,

(1) the diamond operators act trivially on E
0
k,N ,

(2) a0(E0
k,N ) = 1

2⇠
0
MTX,

(3) E
0
k,N |(T`�`k�1�1) = logN (`)(`k�1

� 1)X · Ek,N for any prime ` 6= N , and

(4) E
0
k,N |wN = �E

0
k,N .

In particular, E
0
k,N 2 Mk(�0(N), X⇤̄1)Eis.

Proof. It follows from Lemma 4.3.1 that X · E
0
k,N = 0. This implies that the q-

expansion of E0
k,N takes values in the annihilator of X in ⇤̄1, which is X⇤̄1. This

proves the first statement. We proceed with the numbered statements.
(1) Since �N is a generator of (Z/NZ)⇥ ⌦Zp, it’s enough to show that h�N i � 1

acts by zero. But h�N i � 1 acts as multiplication by X, which annihilates E
0
k,N

since it has coe�cients in X⇤̄1.
(2) Since a0(Ēk(h�i, 1)) = 0, we have a0(E0

k,N ) = a0(Ēk(1, h�i)), which is the

image of 1
2⇠MT in ⇤̄1. This is equal to

1
2⇠

0
MTX by Lemma 4.1.1.

(3) Using the fact that Ēk(1, h�i) and Ēk(h�i, 1) are eigenforms for T`, we easily
compute that

Ēk(1, h�i)|(T`�`k�1�1) = `
k�1 logN (`)X · Ēk(1, h�i)

Ēk(h�i, 1)|(T`�`k�1�1) = logN (`)X · Ēk(h�i, 1).

The result now follows from Lemma 4.3.1.
(4) By (2.1.2), we have

E
0
k,N |wN =

N
k/2

g(h�i
�1)

Ēk(h�i
�1

, 1)�
g(h�i)

Nk/2
Ēk(1, h�i

�1),

where g(�) denotes the Gauss sum. Now we compute that

g(h�i) =
N�1X

a=1

(1 + logN (a)X)⇣aN = �1 + g(logN )X.

It follows that g(h�i
�1) = g(h�i)�1. Using the fact that N = 1 in ⇤̄1, we have

E
0
|wN = g(h�i)(Ēk(h�i

�1
, 1)� Ēk(1, h�i

�1)).

Claim. We have Ēk(h�i
�1

, 1)� Ēk(1, h�i
�1) = E

0
k,N .
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Proof. The automorphism ◆ : [g] 7! [g�1] of ⇤̄1 (thought of as quotient of the group
ring) acts by �1 on X · ⇤̄1. This implies that ◆(E0) equals �E

0 on one hand, and
equals Ēk(1, h�i

�1)� Ēk(h�i
�1

, 1) on the other hand. ⇤

Hence we have

E
0
k,N |wN = g(h�i)(Ēk(h�i

�1
, 1)� Ēk(1, h�i

�1)) = g(h�i)E0
k,N .

Since g(h�i) ⌘ �1 (mod X), and since E
0
k,N has coe�cients in X⇤̄1, we have

g(h�i)E0
k,N = �E

0
k,N . This completes the proof of (4).

To see the final statement, note that, for any Z[1/N ]-module A, the module
Mk(�0(N), A) is the invariants of Mk(�1(N), A) under the diamond operators (see
[Oht14, Lemma 1.2.6] or a similar argument in [Edi92, Section 2.1]). So by (1),
we have E

0
k,N 2 Mk(�0(N), X⇤̄1). Parts (3) and (4) show that I

2
E

0
k,N = 0, so

E
0
k,N 2 Mk(�0(N), X⇤̄1)Eis. ⇤

4.4. Deformation Eisenstein series. Consider the modular form

Ẽk,N = Ek,N + E
0
k,N ,

where the sum is taking place in Mk(�0(N),⇤1)Eis. We have

(4.4.1) a0(Ẽk,N ) =
1

2

⇣
⇣(1� k)(1�N

k/2) + ⇠
0
MTX

⌘
.

We define ⇠
Eis
MT := a0(Ẽk,N ) 2 ⇤1. Although ⇠

Eis
MT 6= ⇠MT, we use this notation

to invoke the idea of ⇠Eis
MT as an altered version of ⇠MT: the incarnation of ⇠MT as

the constant term of an Eisenstein series. Note that X⇠
Eis
MT = 0, just as in Lemma

4.1.1.

Proposition 4.4.2. There is a surjective morphism of augmented Zp-algebras

T ⇣ ⇤1

defined by T` 7! a`(Ẽk,N ) = 1+ `
k�1 +(1� `

k�1) logN (`)X for all ` - N . This map

sends T0 to ⇠
Eis
MT.

Proof. By duality (Section 2.1.4), we have to show that Ẽk,N is annihilated by the
following Hecke operators:

(1) T` � (1 + `
k�1 + logN (`)(`k�1

� 1)X)
(2) wN + 1.

This follows from Lemma 4.3.2. ⇤

5. An “Rred = Tred” theorem

5.1. Reducible modularity. Let J
red = ker(RD̄ ! R

red
D̄

) and let I
red

⇢ T be
the image of J

red under RD̄ ! T. Let Tred = T/Ired. Recall the surjective
homomorphism RD̄ ⇣ T of augmented Zp-algebras defined in Section 3.2.

Theorem 5.1.1. The map RD̄ ⇣ T induces an isomorphism R
red
D̄

! Tred
. The

inverse map is composite of map Tred
! ⇤1 induced by Proposition 4.4.2 and the

isomorphism ⇤1 ! R
red
D̄

of Lemma 3.4.1.
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Proof. The isomorphism R
red
D̄

⇠
�! ⇤1 of Lemma 3.4.1 sends trace(Du)(Fr`) for ` 6=

N to

cyc(Fr`)
k�1

hFr`i
�1 + hFr`i = `

k�1(1 + logN (`)X) + 1� logN (`)X

= 1 + `
k�1 + (1� `

k�1) logN (`)X,

which is the image of T` under the map T ! ⇤1 of Proposition 4.4.2. Since RD̄

is generated by the elements trace(Du)(Fr`), this implies that the two composite
maps

RD̄ ⇣ R
red
D̄

⇠
�! ⇤1, RD̄ ⇣ T ⇣ ⇤1

coincide. Hence the latter map sends J red to zero, and the induced composite map

R
red
D̄ ⇣ Tred

! ⇤1

is the isomorphism of Lemma 3.4.1. This implies that Rred
D̄

⇣ Tred is injective, and
hence an isomorphism. ⇤

Let I0,red ⇢ T0 be the image of Ired under T ⇣ T0, and let T0,red := T0
/I

0,red.

Theorem 5.1.2. The isomorphism Tred ⇠
�! ⇤1 of Theorem 5.1.1 induces an iso-

morphism

T0,red ⇠= ⇤1/⇠
Eis
MT.

Proof. Note that the map T ⇣ ⇤1 sends T0 to ⇠
Eis
MT. By the sequence (2.2.1), this

map induces a map T0 ⇣ ⇤1/⇠
Eis
MT. Call the kernel of this map I

0. The content of
the theorem is that I 0 = I

0,red.
We have a commutative diagram with exact rows and columns

0

✏✏

0

✏✏
Zp

✏✏

⇠ // ⇠Eis
MT⇤1

✏✏
0 // Ired //

o
✏✏

T //

✏✏

⇤1

✏✏

// 0

0 // I 0 // T0 //

✏✏

⇤1/⇠
Eis
MT

✏✏

// 0

0 0

where the vertical map Zp ! T is 1 7! T0. We will show that the map Zp ! ⇠
Eis
MT⇤1

is an isomorphism, which, by the snake lemma, will imply that the map I
red

! I
0

is an isomorphism. In other words, this will show I
0 = I

0,red, completing to proof
of the theorem.

It remains to show that the map Zp ! ⇠
Eis
MT⇤1 is an isomorphism. To see this,

first note that ⇠
Eis
MT⇤1 is the free Zp-submodule of ⇤1 generated by ⇠

Eis
MT. Indeed,

X⇠
Eis
MT = 0, so ⇠

Eis
MT⇤1 = ⇠

Eis
MTZp, and, since ⇠

Eis
MT (mod X⇤1) is a non-zero element

of Zp, the module ⇠Eis
MTZp is Zp-torsion-free. Since the map Zp ! ⇠

Eis
MT⇤1 sends 1 to

a1(T0Ẽk,N ) = a0(Ẽk,N ) = ⇠
Eis
MT, we see that this map is an isomorphism. ⇤
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Remark 5.1.3. Note that this theorem implies the equality

(5.1.4) T0
/I

0 = Zp/a0(Ek,N )Zp = Z/p⌫+vp(k)Z,
which is reminiscent of Mazur’s result [Maz77, Proposition II.9.6, pg. 96] on the in-
dex of the Eisenstein ideal. The theorem itself is reminiscent of results of Wiles and
Mazur-Wiles (for example [Wil90, Theorem 4.1]) relating the intersection between
Eisenstein and cuspidal Hida families to the Kubota-Leopoldt p-adic L-function.
The idea to prove this kind of result using the universal constant term operator
originated with Emerton [Eme99].

Corollary 5.1.5. The ring T0,red
is annihilated by p

2⌫+vp(k). Hence it is the quo-

tient of

(Z/p2⌫+vp(k)Z)[X]

(p⌫X,X2)

by the image of ⇠
Eis
MT. In particular, T0,red

has finite cardinality.

Proof. By Theorem 5.1.2, we have ⇠
Eis
MT = 0 in T0,red. This implies that we have

⇣(1� k)(1�N
k/2) + ⇠

0
MTX = 0

as elements on T0,red. Since vp(⇣(1 � k)(1 � N
k/2)) = ⌫ + vp(k), we see that

p
⌫+vp(k) is in the ideal X · T0,red. Since p

⌫
X = 0 in ⇤1, we see that p2⌫+vp(k) = 0

in T0,red. ⇤
5.2. Consequences for modular forms when ⇠

0
MT is a unit. Since ⇠

0
MT is the

coe�cient of X in ⇠
Eis
MT, if ⇠

0
MT is a unit, then X is equivalent to the image of an

element of Zp in ⇤1/⇠
Eis
MT. We introduce a constant to keep track of this element of

Zp.

Definition 5.2.1. Suppose that ⇠0MT 2 Z/p⌫Z is a unit. Define the extra reducibil-

ity constant ↵ 2 Z/p⌫Z by

(5.2.2) ↵ = ⇠
0�1
MT⇣(1� k)

(1�N
k/2)

p⌫+vp(k)
.

Define the extra reducibility character �↵ : GQ,Np ! (Z/p2⌫+vp(k)Z)⇥ by the for-
mula

(5.2.3) �↵(�) = 1 + p
⌫+vp(k)↵ logN (�).

The purpose of this definition comes from the following lemma.

Lemma 5.2.4. Suppose that ⇠
0
MT 2 Z/p⌫Z is a unit. Then there are isomorphisms

T0,red ⇠
�!

(Z/p2⌫+vp(k)Z)[X]

(p⌫X,X2, ⇠0MT · (p⌫+vp(k)↵�X))
⇠
�! Z/p2⌫+vp(k)Z

where the first map is T` 7! 1 + `
k�1 + (1� `

k�1) logN (`)X and the second map is

X 7! p
⌫+vp(k)↵, and where ↵ is the extra reducibility constant (5.2.2).

Proof. By the definition of ↵, we have

⇠
Eis
MT ⌘

1

2
⇠
0
MT · (p⌫+vp(k)↵�X) (mod p

2⌫+vp(k), p
⌫
X,X

2).

Hence the lemma follows from Theorem 5.1.2 and Corollary 5.1.5. ⇤
We can interpret this in terms of modular forms.
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Corollary 5.2.5. Suppose that ⇠
0
MT 2 Z/p⌫Z is a unit. Then there is a normalized

eigenform f 2 Sk(�0(N),Z/p2⌫+vp(k)Z)Eis with

a`(f) = 1 + `
k�1 + p

⌫+vp(k)(1� `
k�1) logN (`)↵

for all ` 6= N , where ↵ is the extra reducibility constant (5.2.2).

Proof. It is equivalent to show that there is a surjective Zp-algebra homomorphism

(5.2.6) T0 ⇣ Z/p2⌫+vp(k)Z.

sending T` to 1+`
k�1+p

⌫+vp(k)(1�`
k�1) logN (`)↵. This is immediate from Lemma

5.2.4. ⇤

By the base-change property for algebraic modular forms, there is a cuspform
f̃ 2 Sk(�0(N),Zp)Eis lifting the eigenform f of the corollary, but there may not
be an eigenform f̃ lifting f in general. However, if Sk(�0(N),Zp)Eis happens to
be rank one as a Zp-module, then any normalized form is an eigenform, and this
guarantees that there is an eigenform f̃ lifting f . The next theorem gives a criterion
for the rank to be one.

Theorem 5.2.7. The inclusion Zp ! T0
is an isomorphism if and only if both of

the following conditions hold:

(1) ⇠
0
MT is a unit in Z/p⌫Z, and

(2) I
0
is principal.

Proof. We first prove the direct implication. If T0 = Zp, then any ideal is principal,
so (2) is immediate. On the other hand, if ⇠0MT is not a unit, then ⇠

Eis
MT ⌘ 0 (mod p).

Then, using Theorem 5.1.2, we have

T0,red
/pT0,red ⇠=

Fp[X]

(X2)
.

Since this is not a quotient of Zp, we have T0
6= Zp. This shows that if T0 = Zp,

then (1) is true.
Now assume (1) and (2). Then I

0 is principal and we know that T0
/I

0 =
Z/p⌫+vp(k)Z by (5.1.4). To illustrate the rest of the proof, we first consider the case
⌫ = 1 and vp(k) = 0. In that case, we see that T0 is a DVR with residue field Fp.
But by (5.2.6), we see that T0 has Z/p2Z as a quotient; this cannot occur if T0 is
a ramified DVR, so we must have T0 = Zp.

In the general case, T0 need not be a DVR, but we there is a presentation of
T0 of the form Zp[t]

(F (t))
⇠
�! T0, where t maps to a generator of I0 and F (t) is the

characteristic polynomial of t acting on T0. By (5.1.4), we have F (0) = up
⌫+vp(k)

with u 2 Z⇥
p , and, since T0 is local, F (t) is a distinguished polynomial. Assume,

for a contradiction, that deg(F ) > 1. In that case F (t) ⌘ a1t+ up
⌫+vp(k) (mod t

2)
with a1 2 pZp.

Composing our presentation with with the map (5.2.6) from Corollary 5.2.5 we

obtain a map � : Zp[t]
(F (t)) ⇣ Z/p2⌫+vp(k)Z. By (5.1.4), we must have �(t) = vp

⌫+vp(k)

for some v 2 Z⇥
p ; in particular, �(t2) = 0. Then � factors through a map

Zp[t]

(a1t+ up⌫+vp(k), t2)
⇣ Z/p2⌫+vp(k)Z, t 7! vp

⌫+vp(k)
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and we have
0 = a1vp

⌫+vp(k) + up
⌫+vp(k) = (a1v + u)p⌫+vp(k)

in Z/p2⌫+vp(k)Z. But since we assume a1 2 pZp and u 2 Z⇥
p , we have a1v+u 2 Z⇥

p ,

so this is a contradiction. Hence in the presentation Zp[t]
(F (t))

⇠
�! T0 we must have

deg(F ) = 1 and T0 = Zp.
⇤

Remarks 5.2.8.

(1) In the case of weight k = 2, the question of when T0 = Zp was first
considered by Mazur [Maz77, Section II.19, pg. 140]. In that case, Mazur
proved that I0 is always principal [Maz77, Proposition II.16.6, pg. 126]. In
that case, the analog of our corollary is that T0 = Zp if and only if ⇠0MT is
a unit, and this was proven by Merel [Mer96, Théorème 2]6. Our proof of
the corollary is inspired by Lecouturier’s recent new proof of Merel’s result
[Lec21, Theorem 1.1]. In [WWE20], we gave a completely di↵erent proof of
Merel’s result using deformation theory, which is related to the discussion
in the Section 5.3 below.

(2) One can check computationally that I
0 is very often principal, but not

always. Indeed, if Remark 3.2.1 is correct, then I
0 should be principal if

and only if the equality (3.2.3) fails to hold. See [Deo21] for some recent
results about this.

(3) Using the same methods as [WWE20], we could prove directly that, if Jmin

is principal, then RD̄ is a free Zp-module of rank 2 if and only if, in the
notation of Proposition 8.2.2, c [ logN 6= 0.

Corollary 5.2.9. Suppose that Zp = T0
, so that there is a unique element f̃ 2

Sk(�0(N),Zp)Eis with a1(f̃) = 1 and it is an eigenform. Then f̃ is a lift of the

form f of Corollary 5.2.5. In particular, we have

a`(f̃) ⌘ 1 + `
k�1 + p

⌫+vp(k)(1� `
k�1) logN (`)↵ (mod p

2⌫+vp(k))

for all ` 6= N , where ↵ is the extra reducibility constant (5.2.2).

Proof. Since T0 = Zp, there is a unique Zp-algebra homomorphism T0
! Z/p2⌫+vp(k)Z

and it is given by T` 7! a`(f̃). By Theorem 5.2.7, we know that ⇠0MT is a unit, so
Corollary 5.2.5 furnishes an explicit homomorphism T0

! Z/p2⌫+vp(k)Z given by
f . The coincidence of these two homomorphisms gives the result. ⇤
5.3. Consequences for Galois representations when I

0 is principal. In this
section, we construct some Galois representations when I

0 is principal.

Corollary 5.3.1. Assume that T0 = Zp. Then there is a representation ⇢ :
GQ,Np ! GL2(Z/p2⌫+vp(k)Z) with

⇢ =

✓

k�1
cyc �

�1
↵ 0

C �↵

◆

6In fact, Merel proved that T0 = Zp if and only if

N�1
2Y

i=1

ii is a p-th power modulo N , which

is equivalent to ⇠0MT being a unit by a non-trivial (but elementary) computation (see [Lec18,
Proposition 1.2]). We learned of this equivalence from Akshay Venkatesh, who discovered it
together with Frank Calegari.
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where �↵ : GQ,Np ! (Z/p2⌫+vp(k)Z)⇥ is the extra reducibility character (5.2.3) and
where C satisfies

(1) C|Gp = 0,
(2) the map C̄ : GQ,Np ! Fp obtained by reducing C has the property that

C̄!
1�k : GQ,Np ! Fp(1� k) is a cocycle with non-zero cohomology class.

Remark 5.3.2. The function C : GQ,Np ! Z/p2⌫+vp(k)Z is not group cocycle in the
usual sense, but we do have C 2 Z

1
GQ,Np

(k�1
cyc �

�1
↵ ,�↵) for the Ext1-cocycle group

Z
1
G(�,�) defined in [Bel12, Section 3.1], so we will still refer to C as a “cocycle”.

Proof. First note that, by Theorem 5.2.7, our assumption implies that ⇠
0
MT is a

unit, so the extra reducibility constant ↵ is well-defined.
Let f̃ be the form defined in Corollary 5.2.9, and let GQ,Np ! GL(Vf̃ )

⇠=
GL2(Qp) denote the associated Galois representation. The semi-simplification of
the reduction of any stable lattice in Vf̃ is !

k�1
� 1. By Ribet’s Lemma [Rib76,

Proposition 2.1], we can choose a lattice Tf̃ such that the reduction is a non-split

extension of !k�1 by 1. Choosing an appropriate basis for Tf̃ , we obtain a repre-
sentation ⇢f̃ : GQ,Np ! GL2(Zp) such that

⇢f̃ ⌦ Fp =

✓
!
k�1 0

!
k�1

c 1

◆
,

where c : GQ,Np ! Fp(1�k) is a cocycle whose cohomology class is non-zero. Since
f̃ is ordinary, we know that ⇢f̃ |Gp is upper triangular, so c|Gp = 0.

Let ⇢ = ⇢f̃ ⌦Zp Z/p2⌫+vp(k)Z. By Theorem 5.1.2, we know that the pseudorepre-

sentation associated to ⇢ is the reduction modulo ⇠
Eis
MT of the universal reducible de-

formation of Lemma 3.4.1. In our current notation, this reduction is k�1
cyc �

�1
↵ ��↵.

Since ⇢ is reducible as a pseudorepresentation, and ⇢ ⌦ Fp is lower-triangular but
non-split, we see that ⇢ is lower triangular. This proves that ⇢ has the desired
properties. ⇤

There are also variations in the case ⇠
0
MT is not a unit, the simplest being the

following.

Corollary 5.3.3. Assume that I
0
is principal, that ⇠

0
MT is not a unit, and that

⌫ = 1 and vp(k) = 0. Then there is a representation ⇢ : GQ,Np ! GL2(Fp[X]/(X2))
with

⇢ =

✓

k�1
cyc �

�1 0
C �

◆

where � : GQ,Np ! (Fp[X]/(X2))⇥ denotes the character �(�) = 1 + logN (�)X,

and where C satisfies the same conditions as the previous corollary.

Proof. The assumptions imply that T0 is a ramified DVR, so there is a unique
eigenform and it has coe�cients in the fraction field of T0. The representation ⇢ is
obtained by taking a T0-lattice in its Galois representation, and reducing modulo
(I0)2 + pT0. The properties are proven just as in the last corollary. ⇤
Remark 5.3.4. Note that in the construction of these Galois representations, the
only reason we need the assumption that I0 is principal is in order to lift to charac-
teristic zero and apply Ribet’s Lemma. It likely that these representations can be
constructed directly using the geometry of modular curves, without the assumption
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that I0 is principal. Morally, the representations should exist simply because f is
a cuspidal eigenform. This raises the question: what does the condition of being
“cuspidal” mean in the deformation ring?

Now consider the element7 ⇠?MT 2 ⇤ defined as

(5.3.5) ⇠
?
MT(�) :=

(
⇣(1� k)(1�N

k) � =

L(1� k,�) � 6= .

Note that ⇠?MT 6= ⇠MT, but we think of ⇠?MT as the alteration of ⇠MT with dual local
condition at N . The image of ⇠?MT in ⇤1 is

⇠
?
MT ⌘ ⇣(1� k)(1�N

k) + ⇠
0
MTX.

In the next theorem, we use the notation H
1
(p)(Z[1/Np],�) for the trivial-at-p

Selmer group – see Appendix B for the definition.

Theorem 5.3.6. Assume that I
0
is principal. If ⇠

0
MT is a unit, then map

H
1
(p)(Z[1/Np], (⇤/⇠?MT)(1� k)) ! H

1
(p)(Z[1/Np],Fp(1� k)),

induced by the quotient map in the coe�cients, is non-zero.

If ⇠
0
MT is not a unit, ⌫ = 1, and vp(k) = 0, then the image of ⇠

?
MT in ⇤̄1 is zero,

and the map

H
1
(p)(Z[1/Np], ⇤̄1(1� k)) ! H

1
(p)(Z[1/Np],Fp(1� k)),

induced by the quotient map in the coe�cients, is non-zero.

Proof. When ⇠
0
MT is a unit, we have

⇤/⇠?MT
⇠= Z/p2⌫+vp(k)Z

by X 7! �
⇠?MT( )
⇠0MT

. This shows that GQ,Np acts (⇤/⇠?MT)(1 � k) as the character


1�k
cyc �

�2
↵ . By Corollary 5.3.1 we have the representation ⇢, and we see that the

extension class C�
�1
↵ defined by ⇢⌦ �

�1
↵ is in H

1
(p)(Z[1/Np], (⇤/⇠?MT)(1� k)) and

has non-zero reduction.
In the case ⇠

0
MT is not a unit, ⌫ = 1, and vp(k) = 0, we have the representation

⇢ of Corollary 5.3.3. ⇤
5.4. Algebraic number theory consequence. Our Theorem 5.3.6 has the fol-
lowing consequence.

Theorem 5.4.1. Assume that T0 = Zp. We have Ann⇤(H2
(p)(Z[1/Np],⇤(1�k))) =

⇠
?
MT⇤.

The proof that Theorem 5.4.1 follows from Theorem 5.3.6 is given in Proposition
8.1.1 below. In Section 8, we also give other interpretations of this theorem in terms
of cup products and slopes.

As we will see in the remainder of the paper, this theorem is predicted by an
equivariant version of the Bloch-Kato conjecture, as formulated by Kato. Moreover,
we show, using a version of the Equivariant Iwasawa Main Conjecture that has been
proven [CS74, GP15], that the equality Ann⇤(H2

(p)(Z[1/Np],⇤(1 � k))) = ⇠
?
MT⇤

holds without any assumption (see Theorem 7.3.1 and Theorem 7.3.2).

7The fact that ⇠?MT is in ⇤ is not automatic, but follows easily from the fact that ⇠MT is in ⇤.
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Part 2. Tame Bloch-Kato conjecture

The purpose of Part 2 is to explain how Theorem 5.4.1 fits into to the general
framework of special values conjectures. We especially want to address why the
“altered” Mazur-Tate ⇣-function ⇠

?
MT appears (as opposed to the unaltered variant

⇠MT). We will show that it has to do with the “trivial at p” Selmer condition on the
Galois cohomology in Theorem 5.4.1 (as opposed to unaltered Galois cohomology).

The main new result of Part 2 is Theorem 7.3.1, where we prove that the an-
nihilator equality in Theorem 5.4.1 is equivalent to an “unaltered” variant. This
unaltered variant is a Coates-Sinnot formulation of the Equivariant Iwasawa Main
Conjecture (EIMC), which they also have proven in this case [CS74]. By combining
Theorem 5.4.1 with Theorem 7.3.1, we have a new proof of EIMC when T0 = Zp.

We were unable to prove Theorem 7.3.1 – the equivalence of the altered and un-
altered versions – using standard techniques of Iwasawa theory (like Fitting ideals,
etc.). Instead, following a suggestion of Venkatesh, we attempted to show why
Theorem 5.4.1 follows from Kato’s formulation of the Bloch-Kato conjecture for
families of motives [Kat93a]. It was only in this process that we saw why both
Theorem 7.3.1 and the EIMC follow from Kato’s conjecture, and this is the basis
of our proof of Theorem 7.3.1.

In Section 6, we discuss Kato’s conjecture in special case where the family of
motives is given by twisting a fixed motive by a tame character. In Section 7, we
further specialize to the case where the motive is Q(1 � k), and show that Kato’s
conjecture in this case implies Theorem 5.4.1. By altering the Selmer conditions,
we prove Theorem 7.3.1. We view Sections 6 and 7 as a kind of “worked example”
of Kato’s conjecture; we hope that this has some expository value. In Section 8
(which is independent from the other sections in Part 2), we prove relations between
main conjectures formulated in terms of: annihilators of cohomology, cup products,
lifting cohomology classes, and slopes. These results explain why Theorem 5.3.6
implies Theorem 5.4.1.

Throughout Part 2, we use the notions of determinants and regulators introduced
in Appendix A. We also use the notation for Galois cohomology established in
Appendix B; here we give a brief summary of this notation (but see Appendix B
for the actual definitions):

• R�(Z[1/Np],�) is short hand for the continuous cochain complex of GQ,Np,
• R�(p)(Z[1/Np],�) (resp. R�(N)(Z[1/Np],�)) is the Selmer complex ofGQ,Np-
cohomology with the “trivial” condition at p (resp. at N) and no condition
at other places,

• R�c(Z[1/Np],�) is “compactly supported cohomology” of GQ,Np,
• R�(Q`,�) is local Galois cohomology,
• R�f (Q`,�) is the Bloch-Kato finite cohomology (if ` = p) or unramified
cohomology (if ` 6= p),

• R�/f (Q`,�) is the “non-finite” cohomology (i.e. the cone of R�f ! R�),
• R�f (Z[1/Np],�) is the Bloch-Kato Selmer complex.

We also retain our notation from Section 1.5, especially the assumptions about the
primes N and p and the integer k.
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6. Kato’s main conjecture for tame families

Bloch and Kato [BK90] formulated a beautiful conjecture explaining the arith-
metic content of special values of motivic L-functions. Kato [Kat93b, Kat93a]8 later
formulated a version of the conjecture that allows for the consideration of families

of motives. Central to Kato’s formulation is the idea of zeta elements. In this
section, we discuss the relevant special case of Kato’s conjecture. We frequently
refer to the nice survey [Fla04, Part I], which contains more detail and considers
the general case.

6.1. Setup. We consider a pure motive M that has good reduction at N and p,
and let S be the set of primes at which M has bad reduction together with N , p and
infinity. We consider the family of motives {M(�)}� that are twists of M( ) := M

by Dirichlet characters � of conductor dividing N and p-power order (for the rest
of this section, � will always refer to such a character). We assume that the Betti
and de Rham realizations of each M(�) satisfy

(6.1.1) HB(M(�))+ = 0, (HdR/F
0
HdR)(M(�)) = 0,

where the superscript “+” indicates the part fixed by complex conjugation.
From now on, we only consider the p-adic étale realizations Mp(�) of the M(�).

We let TM ⇢ Mp denote a stable Zp-lattice in Mp. Note that Q̄p-points of ⇤
correspond to Dirichlet characters � as above, and that for any such point � : ⇤ !

Q̄p, we have Mp(�) = (TM ⌦Zp ⇤) ⌦⇤ Q̄p. In other words, the p-adic realizations
Mp(�) are the points in the family TM ⌦Zp ⇤.

6.2. Kato’s main conjecture. In this setting, Kato’s main conjecture states that
there is a canonical integral generator

(6.2.1) sc 2 det⇤(R�c(Z[1/S], TM ⌦Zp ⇤)),

called the zeta element
9 (see [Fla04, Conjecture 3 on pg. 6]). Assuming the Deligne-

Beilinson conjecture and regulator conjectures, the zeta element can be described
in terms the L-values L(M(�), 0), as we now sketch.

6.2.1. Sketch of the origin of sc. We sketch the conjectural construction of sc, fol-
lowing [Fla04]. For each character �, there is a canonicalQ(�)-vector space, denoted
⌅(M(�)) in [Fla04], built out of determinants ofHB(M(�))+, (HdR/F

0
HdR)(M(�)),

and the motivic cohomology of M(�) and its dual. The p-adic regulator conjec-
turally induces a canonical isomorphism

#p : ⌅(M(�))⌦Q Qp
⇠
�! detQp(�)(R�c(Z[1/S],Mp(�))).

On the other hand, Beilinson’s regulator gives a conjectural canonical isomorphism

#1 : R ⇠
�! ⌅(M(�))⌦Q R,

and the Deligne-Beilinson conjecture [Del79, Bei84] states that #1(L(M(�), 0)�1)
is in ⌅(M(�)). Assuming all these conjectures, we have a canonical element

sc(�) := #p(#1(L(M(�), 0)�1)) 2 detQp(�)(R�c(Mp(�))).

Then Kato’s conjecture is as follows.

8A similar formulation was found independently by Fontaine and Perrin-Riou [FPR94].
9Note that this conjecture is independent of the choice of TM [Kat93a, Remark 4.10].
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Conjecture 6.2.2 (Kato). The sections sc(�) glue to give an integral section

sc 2 det⇤(R�c(Z[1/S], TM ⌦Zp ⇤))

and sc is a generator of this free ⇤-module.

Remark 6.2.3. There is an analogy between Galois cohomology and cohomology of
three-manifolds (see, for example, [Maz73]). The existence of a canonical generator
(6.2.1) can be thought of as an instance of this analogy. Indeed, the cohomology of
a manifold can be computed by taking a triangulation, and the resulting element in
the determinant of cohomology is independent of the choice of triangulation. Hence
the existence of the element sc can be though of as analogous to the existence of a
triangulation on a three-manifold. This analogy was explained to us by Venkatesh.

6.2.2. Characterization of sc in terms of zeta values. The specializations sc(�) 2

detQp(�)(R�c(Mp(�))) of sc are characterized by zeta values. This characterization
involves a related section sf (�) of detQp(�)(R�f (Mp(�))) that we now define.

For each �, we have an isomorphism

detQp(�)(R�f (Z[1/S],Mp(�))) = detQp(�)(R�c(Z[1/S],Mp(�)))⌦

 
O

s2S

detQp(�)(R�f (Qs,Mp(�)))

!

We need to define a section of detQp(�)(R�f (Qs,Mp(�))) for each s, where ` denotes
a finite place of S other than p:

s = 1: We have R�f (R,Mp(�)) ' 0 by(6.1.1), so there a canonical element sR(�) 2
detQp(�)(R�f (R,Mp(�))).

s = `: We have R�f (Q`,Mp(�)) = [Mp(�)I`
1�Fr`
����! Mp(�)I` ], so there a canonical

element sQ`(�) 2 detQp(�)(R�f (Q`,Mp(�))) by Example A.1.2.
s = p: We have DdR(Mp(�))/D0

dR(Mp(�)) = 0 by (6.1.1), so R�f (Qp,Mp(�)) =
[Dcrys(Mp(�)) ! Dcrys(Mp(�))], so there a canonical element sQp(�) 2

detQp(�)(R�f (Qp,Mp(�))) by Example A.1.2.

We can then define a section sf (�) 2 detQp(�)(R�f (Z[1/S],Mp(�))) by

(6.2.4) sf (�) = sc(�)⌦

 
O

s2S

sQs(�)

!
.

With this setup, Kato’s Conjecture 6.2.2 implies that

(6.2.5) reg(sf (�))
�1 = L(M(�), 0).

Note that the function � 7! L(M(�), 0) may not be an element of ⇤. This is
a reflection of the fact that, although the sections sc(�) glue to give a section sc

over the whole family, the sections sf (�) may not. Indeed, it may happen that
R�f (TM ⌦ ⇤) is defined, but not a perfect complex. In the next section, we will
examine a case where this happens because (TM ⌦⇤)IN is not a perfect ⇤-module,
which, in turn, causes R�f (QN , TM ⌦ ⇤) not to be perfect.

7. The case M = Q(1� k)

In this section, we specialize the discussion of the previous section to the case
M = Q(1� k) with k � 2 even. We write Qp(�)(1� k) for Mp(�). In this case, we
have S = {N, p,1} and we write R�(Z[1/Np],�) (and similar) instead of Z[1/S].
We may take TM = Zp(1 � k), so we have TM ⌦ ⇤ = ⇤(1 � k). In this section,
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since N is the only finite prime of S that is not p, we emphasize its importance by
defining R�ur(QN ,⇤(1 � k)) := R�f (QN ,⇤(1 � k)) and R�/ur(QN ,⇤(1 � k)) :=
R�/f (QN ,⇤(1�k)), and we denote the section sQN (�) 2 R�ur(QN ,Mp(�)) defined
in the previous section by sur(�).

7.1. Imperfect complexes and the failure of p-adic continuity. For M =
Q(1� k), the conjectural formula (6.2.5) becomes

(7.1.1) reg(sf (�))
�1 =

(
⇣(1� k) � =

L(1� k,�) � 6= .

For the remainder of Section 7, we will refer to equation (7.1.1) (as well as the
existence of the element sc, which is used to define sf ) as “Kato’s conjecture”.

Note that there is no Euler factor for � = , so reg(sf (�))�1 is not equal to
the Mazur-Tate ⇣-function ⇠MT. In fact, it’s easy to see that the function � 7!

reg(sf (�))�1 is not even in ⇤; we call this the failure of p-adic continuity.
There is a conceptual reason for this failure of p-adic continuity. In addition to

(6.1.1), we also have

R�f (Qp,Qp(�)(1� k)) = [Qp(�)
1�pk�1

�����! Qp(�)]

for every �. In this case, it is reasonable to define

R�f (Qp,⇤(1� k)) = [⇤
1�pk�1

�����! ⇤]

and R�f (R,⇤(1� k)) = 0, so the sections sR(�) and sQp(�) glue to gives sections
sR 2 det⇤(R�f (R,⇤(1�k))) and sQp 2 det⇤(R�f (Qp,⇤(1�k))). In fact, sR is just
1, so we will leave it out below.

We can define R�f (Z[1/Np],⇤(1� k)) to be the mapping fiber10 of the map

R�(Z[1/Np],⇤(1� k)) ! R�/f (Qp,⇤(1� k))� R�/ur(QN ,⇤(1� k)),

but note that ⇤(1�k)IN is not a perfect ⇤-module, so neither R�/ur(QN ,⇤(1�k))
nor R�f (Z[1/Np],⇤(1�k)) is a perfect complex. This means that det⇤(R�f (Z[1/Np],⇤(1�
k))) is not even defined, so we cannot hope that the sections sf (�) glue together in
a reasonable way.

Remark 7.1.2. This failure of continuity is familiar from the study of p-adic L-
functions. In that case, the failure is due to an imperfect local complex at p, and
the solution is to change an Euler factor at p. Here, the failure is due to an imperfect
local complex at N , and, as we will see in Section 7.2, the solution is to change the
Euler factor at N .

7.2. Kato’s conjecture implies p-adic continuity. We will produce a better
result by replacing R�f (Z[1/Np],⇤(1 � k)) with R�(p)(Z[1/Np],⇤(1 � k)), which
continues to impose the finiteness condition at p, but has no condition at N . The
cohomology R�(p)(Z[1/Np],⇤(1� k)) is defined as the mapping fiber of

R�(Z[1/Np],⇤(1� k)) ! R�/f (Qp,⇤(1� k))

The advantage of this cohomology is that R�(QN ,⇤(1 � k)) is computed by a
perfect complex of ⇤-modules. The following lemma will be proven in Section 7.4
below.

10By ‘mapping fiber’ we mean Cone(�)[�1].
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Lemma 7.2.1. There integral generator sN of det⇤(R�(QN ,⇤(1 � k))) and, for

each �, a generator s/ur(�) 2 detQp(�) R�/ur(QN ,Mp(�)) such that

sN (�) = sur(�)⌦ s/ur(�)

and

(7.2.2)

reg(sur(�)) =

(
1�N

k�1
� = 1

1 � 6= 1

)
, reg(s/ur(�)) =

(
(1�N

k)�1
� = 1

1 � 6= 1.

)

We have the short exact sequence

R�c(⇤(1� k)) ! R�(p)(⇤(1� k)) ! R�(QN ,⇤(1� k))� R�f (Qp,⇤(1� k)),

where we have dropped the “Z[1/Np]” in the first two terms for brevity. Using
this lemma, we can, assuming the existence of Kato’s element sc, define an integral
generator s(p) 2 det⇤(R�(p)(Z[1/Np],⇤(1� k))) as

s(p) = sc ⌦ sQp ⌦ sN .

Comparing this to (6.2.4) and using the fact that sN (�) = sur(�)⌦ s/ur(�), we see
that, for any �, we have

s(p)(�) = sf (�)⌦ s/ur(�).

The formula (7.2.2) together with Kato’s conjecture (7.1.1) implies

(7.2.3) reg(s(p))
�1(�) =

(
⇣(1� k)(1�N

k) � = 1

L(1� k,�) � 6= 1.

In other words, the conjecture says that reg(s(p))
�1 = ⇠

?
MT, where ⇠

?
MT is the

modified Mazur-Tate L-function defined in (5.3.5)11.
The conjecture (7.2.3) has to do with the value of the regulator on a special

generator that comes from the zeta element. If we only care about the regulator

ideal, as in Definition A.2.1, then this gives something closer to the classical Iwasawa
main conjecture, in that it relates the ideal generated by the L-function to an ideal
measuring the size of Galois cohomology.

Lemma 7.2.4. The complex R�(p)(Z[1/Np],⇤(1 � k)) is quasi-isomorphic to a

complex [0 ! ⇤
⇠?alg
��! ⇤] for some non-zero-divisor ⇠

?
alg 2 ⇤. If Kato’s conjecture

(7.2.3) is true, then ⇠
?
alg⇤ = ⇠

?
MT⇤.

Proof. The fact that R�(p)(Z[1/Np],⇤(1 � k)) is a perfect complex of ⇤-modules
follows from finiteness results in Galois cohomology, as in [Kat93a, Proposition
4.17]. Simple computations shows that dimFp H

i
(p)(Z[1/Np],Fp(1 � k)) = 1 for

i = 1, 2, and zero otherwise, and that R�(p)(Z[1/Np],⇤
h
1
p

i
(1 � k)) is acyclic.

Hence the hypotheses of Lemma A.3.2 are satisfied, and this yields the desired
quasi-isomorphism.

We see that reg(e2/e1)�1 = ⇠
?
alg, so regulator ideal reg(R�(p)(Z[1/Np],⇤(1�k)))

is (⇠?alg)
�1⇤. On the other hand, if (7.2.3) is true, this implies

reg(R�(p)(Z[1/Np],⇤(1� k))) = (⇠?MT)
�1⇤,

11Alternatively, we could have worked with cohomology with the vanishing-at-N condition,
and this process would yield the usual Mazur-Tate L-function ⇠MT.
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so ⇠
?
alg⇤ = ⇠

?
MT⇤. ⇤

The lemma implies that ⇠?alg⇤ = Ann⇤(H2
(p)(Z[1/Np],⇤(1� k))), so Kato’s con-

jecture (7.2.3) implies that Ann⇤(H2
(p)(Z[1/Np],⇤(1� k))) = ⇠

?
MT⇤, which is what

we proved in Theorem 5.4.1 under some additional assumptions. In fact, as we see
in the next section, the equality Ann⇤(H2

(p)(Z[1/Np],⇤(1 � k))) = ⇠
?
MT⇤ can be

proven directly using the work of Coates–Sinnot [CS74].
We do not know how to construct the special generator s(p) or approach Kato’s

conjecture (7.2.3) using the modular methods of Part 1. However, we see from
Lemma 7.2.4 that our Theorem 5.4.1 is predicted by conjecture (7.2.3). So we can
think of Theorem 5.4.1 as evidence for conjecture (7.2.3) coming from modular
forms.

7.3. Comparison with the equivariant main conjecture. The equality of
ideals Ann⇤(H2

(p)(Z[1/Np],⇤(1 � k))) = ⇠
?
MT⇤ is equivalent to a known form of

the Equivariant Iwasawa Main Conjecture:

Theorem 7.3.1. The following equalities of ideals in ⇤ are equivalent:

(1) Ann⇤(H2
(p)(Z[1/Np],⇤(1� k))) = ⇠

?
MT⇤

(2) Ann⇤(H2(Z[1/Np],⇤(k))) = ⇠MT⇤.

Proof. Let ⇠?alg 2 ⇤ be as in Lemma 7.2.4, so

⇠
?
alg⇤ = Ann⇤(H

2
(p)(Z[1/Np],⇤(1� k))).

By Poitou-Tate duality12 we have an isomorphism

RHom⇤(R�(p)(Z[1/Np],⇤(1� k)),⇤)[�3] ⇠= R�(N)(Z[1/Np],⇤(k)).

By Lemma 7.2.4, this implies that there is a quasi-isomorphism

R�(N)(Z[1/Np],⇤(k)) ' [0 ! ⇤
⇠?alg
��! ⇤]

and we see that reg(R�(N)(Z[1/Np],⇤(k)))�1 = ⇠
?
alg⇤.

Just as in the proof of Lemma 7.2.4, a simple computation verifies the hypotheses
of Lemma A.3.2 for R�(Z[1/Np],⇤(k)), so there is a quasi-isomorphism

R�(Z[1/Np],⇤(k)) ' [0 ! ⇤
⇠alg
��! ⇤].

for some non-zero divisor ⇠alg 2 ⇤, and we have

reg(R�(Z[1/Np],⇤(k)))�1 = ⇠alg⇤ = Ann⇤(H
2(Z[1/Np],⇤(k))).

Now, considering the triangle

R�(N)(Z[1/Np],⇤(k)) ! R�(Z[1/Np],⇤(k)) ! R�(QN ,⇤(k)),

we see that, ⇠alg = u⇠
?
algreg(sN ) for some u 2 ⇤⇥. Considering the formula (7.2.2)

for reg(sN ), we also have ⇠MT = ⇠
?
MTreg(sN ), and this completes the proof. ⇤

The equality Ann⇤(H2(Z[1/Np],⇤(k))) = ⇠MT⇤ is a (very) special case of the
Coates-Sinnot conjecture [CS74].

12See [Nek06, Theorem (6.3.4)] for the version we need (for complexes with Selmer conditions).
For a more down-to-earth treatment in terms of cohomology, see [GV18, Appendix B]; see [Sha09]
or the proof of [Nek06, Proposition (5.2.4)] for the technique used to upgrade from cohomology
to complexes.
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Theorem 7.3.2 (Coates–Sinnot). We have Ann⇤(H2(Z[1/Np],⇤(k))) = ⇠MT⇤.

This conjecture has multiple known proofs. The results of [CS74] show that ⇠MT

is in the annihilator, and the result follows from this by a simple argument. It
is also proven by Greither and Popescu [GP15, Theorem 6.12] as a consequence
of their proof of their Equivariant Iwasawa Main Conjecture, which, in turn, they
show to follow from the Iwasawa Main Conjecture for totally real fields, due to
Wiles [Wil90], and the vanishing of µ-invariants for abelian number fields, due to
Ferrero-Washington [FW79].

7.4. Computation of the local generator sN . In this section, we give the proof
of Lemma 7.2.1.

By Lemma B.2.1, H⇤(QN ,⇤(1 � k)) is computed by the total complex of the
bicomplex

(7.4.1) ⇤(1� k)e0
X //

1�Fr�1
N

✏✏

⇤(1� k)e1

1�Fr�1
N N

✏✏
⇤(1� k)f1

X // ⇤(1� k)e2

where the horizontal arrows are multiplication by the element X of ⇤ defined in
Section 3.3, and N denotes multiplication by the element

PN�1
i=0 (1 + X)i of ⇤.

We define sN = e0e2
e1^f1

. The computation of reg(sN ) can be done directly using
Example A.2.3, but we compute on each specialization because we think this makes
the computation clearer.

For � = , X maps to 0 and N maps to multiplication-by-N . Choosing an
isomorphism Qp(1 � k) ⇠= Qp of Qp-vector spaces, the complex (7.4.1) can be
identified with

Qpe0
0 //

1�Nk�1

✏✏

Qpe1

1�Nk

✏✏
Qpf1

0 // Qpe2.

Under this identification, R�ur(QN ,Qp(1� k)) is the subcomplex

Qp(1� k)e0
1�Nk�1

�����! Qp(1� k)f1

and sur( ) = e0/f1, so we see that reg(sur( )) = 1�N
k�1. We can define s/ur( ) =

sN ( )⌦ sur( )�1 and we see reg(s/ur( )) = (1�N
k)�1.

For � 6= , X maps to a non-zero element x 2 Qp(�) and N maps to the identity.
Choosing an isomorphism Qp(�)(1� k) ⇠= Qp(�) of Qp-vector spaces, the complex
(7.4.1) becomes

Qp(�)e0
x //

1�Nk�1

✏✏

Qp(�)e1

1�Nk�1

✏✏
Qp(�)f1

x // Qp(�)e2.

The complex R�ur(QN ,Mp(�)) is acyclic and reg(sur(�)) = 1, so we define s/ur(�) =
sN (�), and we see that reg(s/ur(�)) = reg(sN (�)) = 1.
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8. Interpretation in terms of lifting, cup products, and slopes

In this section, we fix a generator c 2 H
1
(p)(Z[1/Np], (Z/p⌫+vp(k)Z)(1� k)). We

interpret the main conjecture Ann⇤(H2
(p)(Z[1/Np],⇤(1 � k))) = ⇠

?
MT⇤ in terms of

c in three closely related ways13:

(1) what quotients of ⇤(1� k) does c lift to?
(2) for which cohomology classes a is does the cup product a [ c vanish?
(3) what is the image c|N of c in H

1(QN , (Z/p⌫+vp(k)Z)(1� k))?

In Part 1, we answered (1) in Theorem 5.3.6 using modular forms. The main result
of this section is Proposition 8.1.1, which allows us to deduce our result about the
main conjecture, Theorem 5.4.1, from Theorem 5.3.6.

The remainder of the section is meant to expose relationships and analogies
between this work and others. Results about (2) were obtained in [WWE20] and
[SS19]; Section 8.2 explains how this relates to (1). Section 8.3 shows that (3) is a
tame analog of the algebraic L-invariant that appears in the Gross-Stark conjecture
[Gro81, DDP11].

8.1. The main conjecture and lifting. We first explain how to interpret the
main conjecture in terms of lifting the class c.

Proposition 8.1.1. The following two conditions are equivalent:

(1) Ann⇤(H2
(p)(Z[1/Np],⇤(1� k))) ⇢ ⇠

?
MT⇤

(2) There is a class of H
1
(p)(Z[1/Np], (⇤/⇠?MT)(1�k)) that maps to c under the

reduction map.

Moreover, if ⇠
0
MT is a unit, then (1) implies Ann⇤(H2

(p)(⇤(1� k))) = ⇠
?
MT⇤.

Proof. Lemma A.3.1 proves the equivalence of (1) and (2). In general, we know
that Ann⇤(H2

(p)(⇤(1 � k))) = ⇠
?
alg⇤ for some non-zero-divisor ⇠

?
alg, so if ⇠0MT is a

unit, the inclusion in (1) must be equality. ⇤
8.2. Lifting and cup products. For the remainder of the section, we assume that
⌫ = 1 and vp(k) = 0. We make this assumption so that there is a canonical section
of the map

(Z/p2⌫+vp(k)Z)⇥ ⇣ (Z/p⌫+vp(k)Z)⇥.
We only consider cup products in usual global cohomologyH

i(Z[1/Np],�); when
we write c[�, we are considering the image of c in H

1(Z[1/Np],Fp(1�k)). We let
logp : (Z/p2Z)⇥ ! Fp denote the composition (Z/p2Z)⇥ ! (1+ p(Z/p2Z))⇥ ! Fp,
where the first map is the projection x 7! !

�1(x)x and the second map is 1+px 7! x

(mod p).

Proposition 8.2.1. Assume that ⌫ = 1 and vp(k) = 0 and that ⇠
0
MT is a unit.

Let ↵ 2 Z/p2Z and �↵ : GQ,Np ! (Z/p2Z)⇥ be the extra reducibility constant and

character, as in Definition 5.2.1. Consider the following conditions:

(1) The map

H
1
(p)(Z[1/Np], (⇤/⇠?MT)(1� k)) ! H

1
(p)(Z[1/Np],Fp(1� k))

is non-zero,

13We consider (2) only in the case that ⌫ = 1 and vp(k) = 0, and (3) only when, additionally,
vp(k � 1) = 0.
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(2) c [ logp(�
�2
↵ 

1�k
cyc ) = 0 in H

2(Z[1/Np],Fp(1� k)).

Then (1) implies (2).

Proof. Note that, since ⇠
0
MT is a unit, ⇤/⇠?MT is isomorphic to Z/p2Z with GQ,Np

acting through �
�2
↵ , just as in the proof of Theorem 5.3.6.

Considering the long exact sequence in cohomology coming from the short exact
sequence

(?) 0 ! Fp(1� k) ! (⇤/⇠?MT)(1� k) ! Fp(1� k) ! 0,

we see that (1) implies that c is in the kernel of the boundary map

H
1(Z[1/Np],Fp(1� k))

@
�! H

2(Z[1/Np],Fp(1� k))

for (?). By definition @c is given by dc̃, where c̃ : GQ,Np ! (⇤/⇠?MT)(1 � k)
is a cochain lifting c. Taking c̃ to be the lift defined by the canonical splitting
(Z/pZ)⇥ ! (Z/p2Z)⇥, we compute easily that dc̃ = c [ logp(�

�2
↵ 

1�k
cyc ), which

completes the proof. ⇤
The proof of the next proposition is similar, replacing the sequence (?) by

0 ! Fp(1� k) ! ⇤̄1(1� k) ! Fp(1� k) ! 0.

In this case, the boundary map is cup product with logN .

Proposition 8.2.2. Consider the two conditions:

(1) The map

H
1
(p)(Z[1/Np], ⇤̄1(1� k)) ! H

1
(p)(Z[1/Np],Fp(1� k))

is non-zero

(2) c [ logN = 0 in H
2(Z[1/Np],Fp(1� k)).

Then (1) implies (2).

8.3. Cup product and slope. For this section, we continue to assume that
⌫ = 1 and vp(k) = 0, and also assume vp(1 � k) = 0. We consider the group
H

1(QN ,Fp(1 � k)). Choosing a primitive p-th root of unity in ⇣p 2 QN , we can
identify H

1(QN ,Fp(1 � k)) with H
1(QN ,Fp). We know that H

1(QN ,Fp) has di-
mension two and that the cup product pairing

H
1(QN ,Fp)⇥H

1(QN ,Fp)
[
�! H

2(QN ,Fp) ⇠= Fp

is a symplectic form. Moreover H1(QN ,Fp) has a basis {�, logN} where � : GQN !

Fp is the unramified character sending FrN to 1. This choice of basis induces an
isomorphism

Slope : P(H1(QN ,Fp))
⇠
�! P1(Fp)

which we call the slope map. Explicitly, if L ⇢ H
1(QN ,Fp) is a line, choose a

generator a 2 L and write
a = x�+ y logN ,

then Slope(L) := [x : y]. If a generates L, we define Slope(a) := Slope(L). Note
that for non-zero a and a

0 we have

(8.3.1) a [ a
0 = 0 () Slope(a) = Slope(a0).

Indeed, since the cup product pairing is symplectic, the equality a [ a
0 = 0 is

equivalent to a and a
0 spanning the same line.

Proposition 8.3.2. Assume that ⌫ = 1 and vp(k) = vp(1� k) = 0.
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(1) We have c [ logN in H
2(Z[1/Np],Fp(1� k)) if and only if

Slope(c|N ) = [0 : 1].

(2) Assume ⇠
0
MT is a unit and let �↵ be the extra reducibility character of Def-

inition 5.2.1. We have c[ logp(�
�2
↵ 

1�k
cyc ) = 0 in H

2(Z[1/Np],Fp(1� k)) if
and only if

Slope(c|N ) = [(1� k) · ⇠0MT : k · ⇣(1� k)].

Remark 8.3.3. We think of Slope(c|N ) as a tame analog of the algebraic L-invariant
that appears in the Gross-Stark conjecture. Indeed, in [DDP11, Section 1], that
L-invariant is expressed as a slope of global p-adic cohomology class in terms of
local-at-p cohomology. Our Slope(c|N ) is the slope of a global mod-p cohomology
class in terms of local-at-N cohomology – the adjective “tame” refers to fact that
N 6= p here.

Proof. Consider the commutative diagram

H
1(Fp(1� k))⇥H

1(Fp)

✏✏

[ // H2(Fp(1� k))

✏✏
H

1(QN ,Fp(1� k))⇥H
1(QN ,Fp)

[ // H2(QN ,Fp(1� k))

where the vertical arrows are restriction. One can show that the right vertical arrow
is an isomorphism, just as in [WWE20, Lemma 12.1.1]. Hence the cup products
c [ logN and c [ logp(�

�2
↵ 

1�k
cyc ) vanish if and only if their restrictions at N vanish.

Using the equivalence (8.3.1), the only thing that remains to show is that

Slope(logp(�
�2
↵ 

1�k
cyc )|N ) = [(1� k) · ⇠0MT : k · ⇣(1� k)].

We have logp(�
�2
↵ 

1�k
cyc )|N = logp(�

�2
↵ )|N+(1�k) logp(cyc)|N . From the definition

of ↵ and �↵ (Definition 5.2.1) we see that for any � 2 GQ,Np, we have

logp(�
�2
↵ )(�) =

✓
k ·

N � 1

p
·
⇣(1� k)

⇠
0
MT

◆
logN (�).

On the other hand logp(cyc)|N is an unramified character sending FrN to N�1
p , so

logp(cyc)|N = N�1
p �. Putting these together, we get

Slope(logp(�
�2
↵ 

1�k
cyc )|N ) =


(1� k)

N � 1

p
: k ·

N � 1

p
·
⇣(1� k)

⇠
0
MT

�

which is equal to [(1� k) · ⇠0MT : k · ⇣(1� k)]. ⇤

Part 3. Appendices

Appendix A. Algebraic preliminaries

In this section, we recall some algebra used in Kato’s formulation of the main
conjecture.
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A.1. Determinant of a perfect complex. We review the theory of determi-
nants, as discussed in [Kat93b, Section 2.1]. In this subsection, A is a commutative
ring. A perfect complex of A-modules is an object E in the derived category of A-
modules that is represented by a bounded complex of finitely generated projective
A-modules. We say that a complex of A-modules (or a single A-module, considered
as a complex in degree zero) is perfect if its class is perfect.

The determinant functor detA is a functor from the category of perfect complexes
(with isomorphisms) to the category of invertible A-modules (with isomorphisms)
with the following properties:

• The functor detA is multiplicative in short exact sequences of complexes.
• For a single finitely generated projective A-module P (concentrated in de-
gree 0), then detA(P ) is the highest exterior power of P . (In particular,
detA(0) = A.)

• If E = [· · ·Pi ! Pi+1 ! · · · ] with Pi finitely generated projective, then

there is a canonical isomorphism detA(E) ⇠= ⌦i(detA(Pi))(�1)i .
• If the cohomology modules Hi(E) are all perfect, then there is a canonical

isomorphism detA(E) ⇠= ⌦i(detA(Hi(E)))(�1)i .

Note that if A is a semi-local ring (and in this paper we only consider detA for
A = ⇤, A = ⇤⌦Q, or A a field), then detA(E) is a free A-module of rank 1 for any
perfect complex E. The purpose of considering determinants is to compare di↵erent
generators of this free module. For us, one source of such generators comes from
Kato’s Conjecture 6.2.2. Other, more prosaic, generators come from the following
examples.

Example A.1.1 (Acyclic complex).

(1) Let C• = [M
�
�! M

0] where � is an isomorphism and M and M
0 are rank-1

free A-modules. Then there is a generator of det(C•) given by taking m to
be any generator of M and taking �(m) as generator of M 0. The resulting
generator m

�(m) of det(C•) is independent of the choice of m.

(2) Let C
• = [M

�
�! M

0] where � is an isomorphism and M and M
0 are free

A-modules. Then there is a generator of det(C•) given by taking B to be
any basis of M and taking �(B) as basis of M 0. The resulting generator
^B

^�(B) of det(C•) is independent of the choice of B.

(3) More generally, if C• = [M0
�0
�! M1

�1
�! . . .

�r�1
���! Mr] is an acyclic complex

of free A-modules, we can define a generator of det(C•) by taking a basis
B0 of M0, completing �(B0) to a basis B1 [ �(B0) of M1, completing �(B1)
to a basis of M2, and so on. The resulting basis of det(C•) is independent
of the choices.

Example A.1.2 (Endomorphisms).

(1) Let C
• = [M

�
�! M ] where M is a free A-module of rank 1. Let m be a

basis of M . The resulting generator m
m of det(C•) is independent of the

choice of m.
(2) Let D• be a perfect complex of free A-modules, and let � : D•

! D
• be an

endomorphism. Think of � : D•
! D

• as a double complex, and let C• be
the total complex of it. Then det(C•) ⇠= det([det(D•) ! det(D•)]), so, by
the previous example, we have a canonical generator of det(C•).
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A.2. Regulator. Let A be a semi-local commutative ring and let Q(A) be the
total ring of fractions of A.

Definition A.2.1. We call a perfect complex E of A-modules rationally acyclic

if E ⌦A Q(A) is acyclic. In that case, by Example A.1.1, there is a canonical
isomorphism

regE : detQ(A)(E ⌦A Q(A))
⇠
�! Q(A)

that we call the regulator of E. Precomposing with the canonical map detA(E) !
detQ(A)(E ⌦A Q(A)), we obtain a map regE : detA(E) ! Q(A) that we also call
the regulator.

For any generator x 2 detA(E), the fractional ideal regE(x)A is independent of
the choice of x, and we call it reg(E), the regulator ideal of E.

Example A.2.2. Suppose E = [Ae0
�
�! Ae1] (so ei is in degree i) and that � 2

A is a non-zero divisor. Then E is rationally acyclic, and e0
�e1

is the basis of
detQ(A)(E ⌦A Q(A)) that induces regE , so regE(e0/e1) = �.

Example A.2.3. Let E = [Ae0

�
a
b

�
���! Ae1 � Af1

(c,d)
���! Ae2], and suppose that

E is rationally acyclic. In particular, there is a vector
�
c0

d0

�
2 Q(A)2 such that

cc
0+dd

0 = 1, and the set of such vectors is a torsor under translation by Q(A) ·
�
a
b

�
.

Then the basis of detQ(A)(E ⌦A Q(A)) that induces regE is

e0e2

(ad0 � c0b)e1 ^ f1

(note that this is independent of the choice of
�
c0

d0

�
) so regE(

e0e2
e1^f1

) = (ad0 � c
0
b).

Note that, if we have a short exact sequence of complexes

0 ! E1 ! E2 ! E3 ! 0

with each Ei perfect and rationally acyclic, then the composition

detQ(A)(E2⌦AQ(A))
⇠
�! detQ(A)(E1⌦AQ(A))⌦Q(A)detQ(A)(E3⌦AQ(A))

reg
��! Q(A)

coincides with the regulator of E2.

A.3. Regulator and lifting. Let (A,mA, k) be a noetherian local ring and let E
be a perfect complex of A-modules. Assuming that E has a certain special form,
we show that reg(E) can be used to determine the lifting behavior of classes in
H

1(E⌦A k). We also give a simple cohomological criterion for when a complex has
this special form.

Lemma A.3.1. Suppose that E = [A
�
�! A][�1] with � 2 mA \Q(A)⇥. Then, for

any proper ideal a ⇢ A, the map

H
1(E ⌦A A/a) ! H

1(E ⌦A k)

is surjective if and only if � 2 a.

Proof. We have H
1(E ⌦A A/a) = ker(A/a

�
�! A/a) and H

1(E ⌦A k) = k, and the
map is induced by the quotient A/a ! A/mA = k.

If � 2 a, then H
1(E ⌦A A/a) = A/a and the map is clearly surjective. On the

other hand, if the map is surjective, then there is x 2 A with x 62 mA such that
x� 2 a. Since A is local, this implies that x 2 A

⇥, so � 2 a. ⇤
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We give a criterion for the conditions of the lemma to be satisfied.

Lemma A.3.2. Let E be a perfect, rationally acyclic complex of A-modules. As-

sume that

(1) dimk H
i(E ⌦

L
A k) = 1 for i = 1, 2,

(2) H
i(E) = 0 for i 6= 1, 2.

Then there is a quasi-isomorphism E ' [A
�
�! A][�1] with � 2 mA \Q(A)⇥.

Proof. Since E is perfect, we can assume, without loss of generality, that E is a
bounded complex of finitely generated projective A-modules. Since H

i(E) = 0 for
i > 2, we can further assume that Ei = 0 for i > 2. Then the map

H
2(E)⌦A k ! H

2(E ⌦
L
A k)

is an isomorphism. By (1) and Nakayama’s lemma, H2(E) is cyclic as a A-module.
Choose a surjection A ! H

2(E) and lift it to a map A ! Z
2(E). This defines a

map of complexes
A[�2] ! E.

Let C = Cone(A[�2] ! E). By construction, Hi(C) = 0 for i > 1, so, just as we
argued above for E, we see that

H
1(C)⌦A k ! H

1(C ⌦
L
A k)

is an isomorphism. Considering the triangle obtained by applying (�)⌦L
A k to

A[�2] ! E ! C

we can see that
H

1(E ⌦
L
A k) ! H

1(C ⌦
L
A k)

is an isomorphism, so dimk H
1(C ⌦

L
A k) = 1. By Nakayama’s lemma, H1(C) is

cyclic as an A-module. Choose a surjection A ! H
1(C) and lift it to a map

A ! Z
1(C) = ker(A�E

1
! E

2), and let A
�
�! A be the composition of A ! Z

1(C)
with the natural map Z

1(C) ! A. This defines a map of complexes

[A
�
�! A][�1] ! E

that induces a surjection on H
1 and an isomorphism on all other H

i. Hence we
have Q(A)/�Q(A) ⇠= H

2(E ⌦
L
A Q(A)), which is zero since E is rationally acyclic.

This implies that � 2 Q(A)⇥, so � is a non-zero divisor and H
1([A

�
�! A][�1]) is

0. Since the map is surjection on H
1, this implies that H1(E) is zero as well, and

hence that the map [A
�
�! A][�1] ! E is a quasi-isomorphism. ⇤

Appendix B. Galois cohomology

B.1. Notation for Galois cohomology. In this section, we fix notation for vari-
ous Galois cohomology complexes. We follow the notation used by Flach in [Fla04].

The continuous group cohomology H
⇤(G,�) of a topological group is computed

by the complex C(G,�) of continuous cochains. We let R�(G,�) denote the class
of C(G,�) in the derived category.

Let S be a finite set of primes and let GQ,S to be the Galois group of the
maximal extension of Q that is unramified outside S. We denote R�(GQ,S ,�) by
R�(Z[1/S],�) (this makes sense because GQ,S is the étale fundamental group of
Z[1/S]). Similarly, we let R�(Q`,�) denote R�(GQ` ,�) for ` 2 S.
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For ` 2 S, we let

R�(`)(Z[1/S],�) := Cone (R�(Z[1/S],�) ! R�(Q`,�)) [�1]

denote the Selmer complex with trivial-at-` condition, and let

R�c(Z[1/S],�) := Cone

 
R�(Z[1/S],�) !

M

`2S

R�(Q`,�)

!
[�1]

denote the ‘compactly-supported’ cohomology complex.
Now we define the local finite-cohomology complex R�f (Qs,�) for s 2 S. First

suppose s = `, a finite prime, and ` 6= p. If M is a pro-p abelian group with a
continuous action of GQ` , we will denote by R�f (Q`,M) the complex

M
I` 1�Fr`

����! M
I` .

For s = 1, we define R�f (R,M) = R�(R,M). If instead M is a finite-dimensional
Qp-vector space with a continuous action of GQp , we will denote by R�f (Qp,M)
the complex

Dcrys(M)
(1�Frp,id)
�������! Dcrys(M)�DdR(M)/D0

dR(M).

For s 2 S, we define the local “non-finite” cohomology complex

R�/f (Qs,M) = Cone(R�f (Qs,M) ! R�(Qs,M))

for M as in the previous paragraph.
Assuming that S contains p, 1 and any prime where M ramifies, we define the

Bloch-Kato Selmer complex R�f (Z[1/S],M) to be

R�f (Z[1/S],M) = Cone
�
R�(Z[1/S],M) ! �s2SR�/f (Qs,M)

�
[�1].

We have the triangle

R�f (Z[1/S],M) ! R�c(Z[1/S],M) ! �s2SR�f (Qs,M).

By convention, when we write R�(T ⌦⇤) for some module T , the GQ,Np-action
on ⇤ is via the universal character. It is known that, if T is perfect as a ⇤-module,
then R�(T⌦⇤) and R�(Q`, T⌦⇤) are perfect complexes of ⇤-modules (see [Kat93a,
Proposition 4.17] or [FK06, Proposition 1.6.5]).

B.2. A complex that computes tame local Galois cohomology. The follow-
ing lemma is surely well-known in some form. It is essentially how one computes
cohomology of a semi-direct product of cyclic groups.

Lemma B.2.1. Let N and p be distinct primes. Let R be a Zp-algebra, and let

M be an R-module that is finitely generated as Zp-module with continuous tamely-

ramified action of GQN (i.e. the inertia group acts through its pro-p quotient). Let

� 2 GQnr
N

be an element that topologically generates the maximal pro-p quotient,

and let FrN 2 GQN be a Frobenius element. Then there is an isomorphism in the

derived category of R-modules

R�(QN ,M) ⇠=

2

6664

M
1�� //

1�Fr�1
N

✏✏

M

1�Fr�1
N N

✏✏
M

1�� // M

3

7775

where N =
PN�1

i=0 �
i
.
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Proof. We have an isomorphism

R�(QN ,M) ⇠= R�(FN ,R�(Qnr
N ,M)).

where we are identifying Gal(Qnr
N /QN ) = GFN via FrN .

We first compute R�(Qnr
N ,M). Let GQnr

N
⇣ G

pro�p
Qnr

N
be the maximal pro-p quo-

tient, and let Gnon�p
Qnr

N
the the kernel of this quotient. Then we have

R�(Qnr
N ,M) ⇠= R�(Gpro�p

Qnr
N

,R�(Gnon�p
Qnr

N
,M)).

Since M is pro-p, we have R�(Gnon�p
Qnr

N
,M) = R

0�(Gnon�p
Qnr

N
,M), which is simply M ,

since M is tamely-ramified. Hence we have

R�(Qnr
N ,M) ⇠= R�(Gpro�p

Qnr
N

,M).

Since G
pro�p
Qnr

N
is topologically generated by the image of �, we have

R�(Gpro�p
Qnr

N
,M) ⇠= [B1(Gpro�p

Qnr
N

,M) ! Z
1(Gpro�p

Qnr
N

,M)]

Let M [ be the R[GFN ]-module that is M is an R-module, but with Fr�1
N acting by

Fr�1
N ·m

[ :=

 
Fr�1

N

N�1X

i=0

�
i

!
m.

We have an isomorphism Z
1(Gpro�p

Qnr
N

,M)
⇠
�! M

[ of R[GFN ]-modules by f 7! f(�).

Indeed, f is determined by f(�) as we have

f(�n) =
n�1X

i=0

�
i
f(�)

as can be proven by induction using the cocycle property. Moreover, we have

(Fr�1
N · f)(�) = Fr�1

N f(FrN�Fr�1
N )

= Fr�1
N f(�N )

=

 
Fr�1

N

N�1X

i=0

�
i

!
f(�).

Similarly, we have an isomorphism M
⇠
�! B

1(Gpro�p
Qnr

N
,M) of R[GFN ]-modules, given

bym 7! (g 7! (g�1)m). Under these isomorphisms, the inclusionB
1(Gpro�p

Qnr
N

,M) !

Z
1(Gpro�p

Qnr
N

,M) is identified with M
1��
���! M

[.

Hence we have

R�(Gpro�p
Qnr

N
,M) ⇠= [M

1��
���! M

[]

in the derived category of R[GFN ]-modules.
Now, for complex of R[GFN ]-modules M 0, we have

R�(FN ,M
0) ⇠= [M 0 1�Fr�1

N
�����! M

0]
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in the derived category of R-modules. Hence we have

R�(QN ,M) ⇠= R�(FN ,R�(Qnr
N ,M))

⇠= R�(FN ,R�(Gpro�p
Qnr

N
,M))

⇠= R�(FN , [M
1��
���! M

[])

⇠=

2

6664

M
1�� //

1�Fr�1
N

✏✏

M
[

1�Fr�1
N

✏✏
M

1�� // M [

3

7775

⇠=

2

6664

M
1�� //

1�Fr�1
N

✏✏

M

1�Fr�1
N N

✏✏
M

1�� // M

3

7775
.

⇤
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