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ABSTRACT. We use deformation theory of pseudorepresentations to study the
analogue of Mazur’s Eisenstein ideal with squarefree level. Given a prime
number p > 3 and a squarefree number N satisfying certain conditions, we
study the Eisenstein part of the p-adic Hecke algebra for I'g(N), and show
that it is a local complete intersection and isomorphic to a pseudodeformation
ring. We also show that, in certain cases, the Eisenstein ideal is not principal
and that the cuspidal quotient of the Hecke algebra is not Gorenstein. As
a corollary, we prove that “multiplicity one” fails for the modular Jacobian
Jo(N) in these cases. In a particular case, this proves a conjecture of Ribet.
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1. INTRODUCTION

In his landmark study [Maz77] of the Eisenstein ideal with prime level, Mazur
named five “special settings” in which “it would be interesting to develop the theory
of the Eisenstein ideal in a broader context” [pg. 39, loc. cit.], the first of which is

the setting of squarefree level. In this paper, we develop such a theory in certain
cases.

1.1. Mazur’s results and their squarefree analogues. Let p > 3 and ¢ be
primes, and let T, be the p-adic Eisenstein completion of the Hecke algebra acting
on modular forms of weight 2 and level £, and let Tg — T9 be the cuspidal quotient.
Let I C TY be the Eisenstein ideal, and let my = (p,I{) be the maximal ideal.
Mazur proved the following results ﬂm

(1) T/ =2,/ (G2,
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(2) I is principal,

(3) TY is Gorenstein,

(4) if ¢ # ¢ is a prime such that ¢ Z 1 (mod p) and such that ¢ is not a p-th power
modulo ¢, then T, — (¢ + 1) generates I}.

Mazur calls a prime ¢ as in (4) a good prime for (¢,p). We note that, of course, (4)
implies (2) implies (3). We also note that (2) implies that T, is Gorenstein also.
The analogue of (1) has been proven for squarefree levels by Ohta [Oht14]. How-
ever, as has been noted by many authors, notably Ribet and Yoo [Rib15] [Yoo19b],
the statements (2)-(4) are not true in the squarefree setting. Still, in this paper, we
prove, in certain cases, analogues of (2)-(4). Namely, we count the minimal number
of generators of the Eisenstein ideal, count the dimension of the Eisenstein kernel
of the Jacobian, and give sufficient (and sometimes also necessary) conditions for
a list of elements T, — (¢ + 1) to generate the Eisenstein ideal. As a corollary, we
produce new level-raising results for modular forms congruent to Eisenstein series.

1.2. Motivation and applications. As applications of his results on the structure
of the prime level Hecke algebra T,, Mazur proves the following arithmetic results:

(i) Jo(0)(Q)tors is a cyclic group of order n, where n is the numerator of %,
generated by the class of the divisor (0) — (00).
(ii) The dimension of Jy(¢)[mY] over F,, is 2.
Part (i) was conjectured by Ogg. As Mazur points out [Maz77, Remark, pg. 143],
if one ignores the 2-torsion, part (i) is much easier and does not require the results
(1)-(4) on the Hecke algebra. Indeed, Ohta has proven the squarefree analog of (i)
(ignoring 2-torsion) [Oht14]. When we pass to squarefree level, the dimension in (ii)
is no longer 2 in general; Ribet and Yoo [Rib15 [Yool9b] have partial results and
conjectures as to what the dimension is. We count this dimension exactly, using
our results on the Hecke algebra.
Just as Mazur’s results on T, have had many arithmetic applications, we expect

that our results about the structure of Ty for squarefree level N will find more
applications. We mention a few directions that are of particular interest to us:

e Connecting the rank of Ty with Massey products, class groups, and Mazur-
Tate L-functions, in analogy to our previous work [WWE20] and the works
of Merel [Mer96| and Lecouturier [Lec20] in the prime level case. This should
have application to Venkatesh’s conjectures for derived Hecke algebras in the
case of weight 1 forms with squarefree level, just as Merel’s work is applied in
the prime level case by Harris and Venkatesh [HV19].

e Implications of the Gorenstein property of Ty for the arithmetic of cyclotomic
fields and Iwasawa theory, as in the works of Ohta [Oht05] and Sharifi [Shall].

e Applications to the Iwasawa theory of residually reducible modular forms,
esspecially conjectures of Greenberg [Gre99, Conj. 1.11] and Vatsal [Vat05|
Conj. 1.14] on p-invariants.

It is also interesting to consider applications of our results in the setting of Hida
theory (see for a discussion of this). We hope to return to these applications
in future work.

1.3. Techniques of pseudomodularity. Our main technical result is an R =
T theorem, where R is a deformation ring for Galois pseudorepresentations and
T is the Eisenstein part of the Hecke algebra. Although we consider this result
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to be secondary to our results on the structure of the Hecke algebra, we believe
that the proof techniques we develop may be of independent interest, and are a
step toward integral refinement of the modularity results of Skinner-Wiles [SW99).
Therefore we describe them here. The strategy is similar to that of our previous
works [WWE20, WWEI9], where we gave new proofs and refinements of Mazur’s
results. However, there are several points of interest that are new in this setting.

(a) In the case of prime level ¢, Calegari and Emerton [CE05] have already applied
deformation theory to study Mazur’s Eisenstein ideal. Their method is to
rigidify the deformation theory of Galois representations using auxiliary data
coming from the prime level £. In the case of squarefree level, a similar strategy
will not work: the deformation problem at prime level is already rigid, and
cannot be further rigidified to account for the additional primes.

(b) In the case of squarefree level, there are multiple Eisenstein series, and one has
to account for the possibility of congruences among them.

(c) At squarefree level, unlike prime level, the Tate module of the Jacobian may
not be free over the Hecke algebra. Since this Tate module is the natural
way to construct Galois representations, it is really necessary to work with
pseudorepresentations.

(d) We prove R = T even in some cases where the Galois cohomology groups
controlling the tangent space of R are all non-cyclic (see Remark . In
this case, the universal pseudodeformation cannot arise from a representation.

To address issue (a), we have to develop a theory of Cayley—Hamilton represen-
tations and pseudorepresentations with squarefree level, which has the required
flexibility; for this, we drew inspiration from our previous joint works [WWEIS,
WWE20, WWEI9] and the work of Calegari-Specter [CS19]. The ideas are dis-
cussed later in this introduction in To address issue (b), we make extensive
use of an idea of Ohta |Ohtl4]: we use the Atkin—Lehner involutions at £ | N to
define T, rather than the usual Hecke operators Up.

1.4. Setup. We introduce notation in order to state our main results precisely.
Throughout the paper we fix a prime p and let N denote a squarefree integer with
distinct prime factors £, ¢1,...,£.. The case p | N is not excluded.

1.4.1. Assumption on p. Throughout the paper we assume that p > 3. The as-
sumption that p # 2 is used crucially throughout the paper in several ways. First,
we use the fact that there is no primitive pth root of unity in Q, so the mod-p
cyclotomic character is non-trivial. Second, we use the fact that a local ring with
residue characteristic p cannot have a non-trivial involution, so p-adic modules with
a Hecke action admit a direct sum decomposition according to the Aktin—Lehner
eigenvalues. Finally — and this is the only place where we also need p # 3 — we use
the fact that {(—1) = %21 is a p-adic unit. This is reflected in the Galois cohomol-
ogy computation that we quote from [WWE20] as the fact that K;(Z) ® Z, = 0 for
1 = 2,3. It is also used to say that a non-zero constant cannot be a mod-p modular
form of weight 2. Because these do not seem to be crucial points, it is plausible
that our techniques could be adapted to include the case p = 3. However, we do
not pursue this here.

1.4.2. Fisenstein series and Hecke algebras. The Eisenstein series of weight two
and level T'g(NV) have a basis {E5 v}, labeled by elements € = (¢o, .. .,€,) in the
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set & = {£1}"*1\ {(1,1,...,1)}. The Ej y are characterized in terms of Hecke
eigenvalues by the properties that

(1) TLE5 y = Z t | E5 y for all n with ged(n, N) = 1, and
0<t|n
(2) wy, ES Ny =€6E5 N for the Atkin-Lehner involutions wy,, ..., ws,,
together with the normalization a;(FE5 y) = 1. The constant coefficients satisfy

1 T

(1.4.1) ao(E5 N) = —5; H)(q& +1).

(See for more about these Eisenstein series.) Based on the philosophy that
congruences between Eisenstein series and cusp forms should happen when the
constant term is divisible by p, we expect the most interesting congruences to
occur when ¢; = —¢; (mod p) for many i. (Note that we do not have to consider
constant terms at other cusps: if a modular form f of level I'g(N) is an eigenform
for all the Atkin—Lehner involutions, and ao(f) = 0, then f is a cusp form.)

Consider the Hecke algebra of weight 2 and level I'g(IV) generated by all T,, with
ged(n, N) = 1 and by all Atkin—Lehner involutions wy,,...,ws.. Let TS denote
the completion of this algebra at the maximal ideal generated by p together with
the annihilator of Ej .

Let I¢ denote the annihilator of E5 y in Tf, so T4 /I¢ = Z,, and let m® = (I°, p)
be the maximal ideal of T¢;. For a Hecke module M, let Mg,  denote the tensor
product of M with TS, over the Hecke algebra. In particular, let Ma(N)g;, (resp.
S2(N)%;s) denote the resulting module of modular forms (resp. cuspidal forms). Let
']I‘;\’,O denote the cuspidal quotient of TS, and let 1% be the image of I¢ in Tj\’,o.

1.4.3. Another Hecke algebra. In contrast with our approach, one often studies a
different Hecke algebra T v, containing the operators Uy instead of wy, and with

ej+1
Eisenstein ideal If; generated by T, —(g+1) for ¢ f N and Uy, —¢; > fori=0,...,r.
We prove that Ty ;; = T in some of the cases that we consider — see Appendix|A
Our main results together with Appendixlﬂcan be used to prove results about T, (;
that are closely related to the results of authors including Ribet [Rib10, [Rib15], Yoo
([Yo019b, Yool9al [Yool7] and others) and Hsu [Hsul9].

We take the point of view that the reason to consider Hecke operators at primes
dividing N is to distinguish various oldforms modulo p. When T¢, # Ty n, it 1s
because there are multiple oldforms that have congruent Uy-eigenvalues for some / |
N. Because this multiplicity does not occur among wy-eigenvalues, such multiplicity
causes Tf; y to have larger rank than Tf,. Therefore, we think of Tf as a superior
to Tf y as a superior desingularization of the unramified Hecke algebra (that is,
the Hecke algebra generated by T, for (N,n) = 1). We mostly consider TS, but
see Appendix A/ for a comparison of Tf, and Tf; y.

1.4.4. The number fields K;. Let £ be a prime such that £ = £1 (mod p). Then
there is a unique degree p Galois extension K,/Q((,) such that

(1) Gal(Q(¢p)/Q) acts on Gal(K,/Q(p)) via the character w1,

(2) the prime (1 — ¢p) of Q((p) splits completely in K,, and

(3) only the primes above ¢ ramify in K,;/Q(¢p).
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For each ¢ such that ¢; = £1 (mod p), let K; = Ky, (see also Definition |3.10.4).

1.5. Structure of the Hecke algebra. Our main results concern the structure
of the Hecke algebra T¢.

Theorem 1.5.1. Assume that e = (—1,1,...,1). Let
S={ie{l,....,r}|4;=-1 (mod p)}
and let s = #S. Then

(1) TS is a complete intersection ring.
(2) T?\}e is Gorenstein if and only if I¢ is principal.
(8) There is a short exact sequence

(1.5.2) 0= P z,/ (i + )2y — I9/TI? = 7, /(g — 1)Z,, — 0.
i=1
(4) The minimal number of generators of I¢ is s + § where
5= 1 if £y splits completely in K; for alli € S, or
10 otherwise.

Proof. Parts (1) and (3) are proved in §5| (see especially Theorem|5.2.6)). It is known
to experts that Part (2) follows from (1) (see Lemma [2.4.2). Part (4) is Theorem

11 O
Remark 1.5.3. In fact, we show that, unless s = r, there are no newforms in
M5(N)§ie, so we can easily reduce to the case s = r (i.e. the case that ¢; = —1

(mod p) for all ¢ > 0). When s = r, one could use this theorem to prove that there
are newforms in My (V). but this is known (see [Rib15], [Yool9al Thm. 1.3(3)]).

Remark 1.5.4. The criterion of Part (4) determines whether or not the extension
class defined by the sequence is p-cotorsion. In fact, one can describe this
extension class exactly in terms of algebraic number theory, but we content ourselves
with the simpler statement (4).

Theorem 1.5.5. Assume r = 1 and € = (—1,—1) and that o = 1 (mod p) bdut
£y £ 1 (mod p). If £y is not a p-th power modulo £y, then there are no newforms
in Ma(N)gs- In particular, I¢ is principal, and generated by T, — (¢ + 1) where g
is a good prime (of Mazur) for (¢o,p).

Proof. This is Theorem [6.3.1 (]

Remark 1.5.6. In the case ¢; # p, this is a theorem of Ribet [Rib10] and Yoo
[Yool9al Thm. 2.3]. Yoo has informed us that the method should work for the case
{1 = p as well. In any case, our method is completely different.

Theorem 1.5.7. Assume r =1 and e = (=1,—1) and that ¢y = ¢; =1 (mod p).
Assume further that
¢; is not a p-th power modulo ¢; for (i,7) € {(0,1),(1,0)}.

Then

(1) there are newforms in Ma(N ),

(2) TS is a complete intersection ring.

(3) TS is not a Gorenstein ring.

(4) 10)1°0% = 7, /(o — 1)y & Ly (12 — 1)y,
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Proof. Parts (2) and (4) are proven in Theorem Part (1), the precise meaning
of which is given in Definition follows from Part (2) by Theorem Part
(3) follows from (2) and (4) by Lemma [2.4.2 O

Remark 1.5.8. The proof of this theorem may be of particular interest for experts
in the deformation theory of Galois representations. The proof is the first (as far
as we are aware) example of an R = T theorem, where R is a universal pseudo-
deformation ring, and where we do not rely on certain Galois cohomology groups
being cyclic. (This cyclicity ensures that the pseudorepresentations come from true
representations.) In fact, with the assumptions of the theorem, the relevant coho-
mology groups are not cyclic. However, see [BK15] Thm. 8.2], where R’ = T is
proved, where R’ is a certain quotient of a universal pseudodeformation ring.

Remark 1.5.9. Outside of the cases considered in these theorems, we cannot expect
that T% is a complete intersection ring, as Remark[1.5.10]and the examples in
below illustrate. Our method, which applies Wiles’s numerical criterion [Wil95],
proves that T¢ is a complete intersection ring as a byproduct. A new idea is needed
to proceed beyond these cases. The authors along with C. Hsu are currently working
out such an idea [HWWE2I].

Remark 1.5.10. Consider the case ¢ = (—1,-1,...,—1) with ¢, = 1 (mod p) for
i =0,...,r. There is a numerological reason why our arguments work for r = 1,
but not for » > 1. To see that T¢, satisfies the numerical criterion, its cotangent
module 7¢/I¢? must not be any bigger than its reducible quotient contributed by
Lemma In order for the irreducible submodule of I¢/I¢* to vanish, we have
to show that there are (r +1)? relations which kill off all of the (r + 1) generators.
We can always see that (r+1) of them hold, and when certain additional conditions
(like the assumptions in Theorem on the ¢; hold, we show that another (r+41)
relations hold (see Lemma [6.2.1). This gives a total of 2(r 4+ 1), and only when
r =1 do we have (r +1)% =2(r + 1).

1.6. Applications to multiplicity one. For an application of the main result,
we let Jo(NN) be the Jacobian of the modular curve Xo (V).
Corollary 1.6.1. In the following cases, we can compute dimg, Jo(N)(Q,)[me]:
(1) With the assumptions of Theorem|[1.5.1, we have
dimg, Jo(N)(Q,)[m] =1+ 5+,

where s and § are as in Theorem [LA5 1l B
(2) With the assumptions of Theorem |1.5.5, we have dimg, Jo(N)(Q,)[m<] = 2.
(3) With the assumptions of Theorem |1.5.7, we have dimg, Jo(N)(Q,)[m¢] = 3.

Proof. This follows from the named theorems together with Lemma (which is
known to experts). O

One says that “multiplicity one holds” if dimg, Jo(N)(Q,)[m¢] = 2. This corol-
lary implies that multiplicity one holds in case (1) if and only if s + § = 1, always
holds in case (2), and always fails in case (3).

1.6.1. Ribet’s Conjecture. Previous works on multiplicity one have used a differ-
ent Hecke algebra Tf r;, defined in §1.4.3) (see, for example, [YooI9b]). Let mf; =
(Ig,p) C T ¢ be its maximal ideal. The previous corollary together with Propo-
sition give the following.
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Corollary 1.6.2 (Generalized Ribet’s Conjecture). With the assumptions of The-
orem|1.5.1, assume in addition that £; Z 1 (mod p) fori > 0. Then

dimg, Jo(N)(@,)[miy] =1+ s+ 6,
where s and § are as in Theorem [.5.1.

The case s = r = 1 of Corollary was conjectured by Ribet [Rib15] (see also
[Yool7l pg. 4]).

Remark 1.6.3. After we told Yoo about the results of this paper, he found an
alternate proof of this corollary in the case s = r = 1. His proof involves a delicate
study of the geometry of Jy(N), and relies on the following particular results of
this paper:

(i) I€ is principal if and only if ']T?\}E is Gorenstein, from Theorem |1.5.1(2), and
(ii) ']I‘?\}fU = T%* under the assumption s = r = 1, from Proposition so that
the conclusion of (i) can be applied to the ideal I, C T?\}EU.

In particular, Yoo’s proof does not make use of our formula for the number of
generators for I¢ in Theorem [I.5.1(4), and we believe that his methods could be
used to give a new proof of that result in this case.

In contrast, our proof is immediate from the ring-theoretic properties given in
Theorem and a standard argument (found in [Maz77|, for example), and
no additional geometric argument is needed. The fact that our proof is almost
completely ring-theoretic demonstrates the power of the Gorenstein property and
Is a reason for our interest in using T% rather than Tf ;.

1.6.2. Gorensteinness, and multiplicity one for the generalized Jacobian. The fol-
lowing observations are not used (nor proven) in this paper (although they are
familiar to experts), but we include them to illustrate the the arithmetic signifi-
cance of the Gorenstein property for TS, proved in Theorems|1.5.1] [1.5.5]and [1.5.7]
We learned this point of view from papers of Ohta, especially |[Oht05].

As is well-known, and as we explain in multiplicity one holds if and only if
’]I‘(])\’,6 is Gorenstein. The nomenclature “multiplicity one” comes from representation
theory. It is related to the question of whether H}, (Xo(N)g, Zp(1))s 1s a free TS -
lattice in the free T [2]-module HZ (Xo(N)g, Qp(1))fie-

There is another natural lattice to consider, namely Hé}t(Yo(N)@, Zy(1))me DM,
the image of Hélt(Yo(N)@, Zp(1))f;e under the Drinfeld-Manin splitting

Hg, (Yo(N)g, Qo(1))imse — Hit (Xo(N)gg, Qo (1))
In a similar manner to the proof of Lemma one can show that T¢; is Gorenstein
if and only if H} (Yo (N)g» Zp(1))me,pm is a free T?\}e—module, if and only if
dimg, GJo(N)(Q,)[m] = 2,

where GJy(N) is the generalized Jacobian of Jo(IV) relative to the cusps (see e.g.
[Oht99, §3] for a discussion of generalized Jacobians). Hence our result that T¢ is
Gorenstein can be thought of as a multiplicity one result for G.Jy(N).

Finally, we note that these ideas illustrate why the failure of multiplicity one in
Corollary is related to the failure of I¢ to be principal: if T% is Gorenstein,

H(}t(XO(N)@a Zp(1))Eis < Hélt(YO(N)@v Zp(1))me, oM
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has the form, as T(I)\}E—modules, of
T @ 1% — T & TX .
Hence Hy, (Xo(N)g, Zp(1))fyg s free if and only if 1% is principal.

1.7. Good primes. We also prove analogues of Mazur’s good prime criterion
(statement (5) of §1.1)).

In the situation of Theorem [1.5.7} our good prime criterion is necessary and
sufficient, exactly analogous to Mazur’s. To state it, we let

log, : (Z/¢Z)* — F,

denote an arbitrary surjective homomorphism, for any prime ¢ that is congruent to
1 modulo p (the statement below will not depend on the choice).

Theorem 1.7.1. With the assumptions of Theorem |1.5.7, fix primes qg,q1 not
dividing N (but possibly dividing p). Then the elements Ty, — (qo + 1) and Ty, —
(1 + 1) together generate I€ if and only if

log, (qo) log, (q1) ) X
—1)(qy — 1) det 0 ’ € ¥y
(g0 —1)(q1 —1)de <logg1(QO) logy, (q1) :

Remark 1.7.2. For a single prime ¢, Mazur’s criterion for g to be a good prime can
be written as (¢ — 1)log,(q) € F,’, so this is a natural generalization.

In the situation of Theorem [1.5.1] we only give a sufficient condition, and even
this is cumbersome to state.

Definition 1.7.3. Assume that e = (—1,1,...,1), and order the primes ¢; so that
l;=—1 (mod p) fori=1,...,s and ¢; Z —1 (mod p) for s < i < r. We use the
number fields K; set up in §1.4.4]
Consider an ordered set of primes Q" = {qo,q1,-..,¢s} disjoint from the primes

dividing N and satisfying the following conditions:

(1) g0 #1 (mod p), and

(2) go not a p-th power modulo £;
and, fori=1,...,s,
) ¢; =1 (mod p),
) {o is not a p-th power modulo ¢;,
) ¢i does not split completely in K;, and
(6) g; does split completely in each K for j =1,...,s with j # i.

(3
(4
(5

In the following cases, the described ordered subset Q of Q' is called a good set of
primes for (N,p,€):
eifd=10:=9,
e if 6 =0and {y =1 (mod p), then Q := Q" \ {g;} for an index j > 0 such
that by U Cj #0,
e if {5 £ 1 (mod p), then Q := Q" \ {¢o}-
Remark 1.7.4. Note that, by Chebotarev density, there is an infinite set of primes

qo satisfying (1)-(2), and, for each i, there is an infinite set of primes ¢; satisfying
(3)-(6). Note that when pt N and ¢y =1 (mod p), it is possible that p € Q.

Theorem 1.7.5. Let Q be a good set of primes for (N,p,e). Then {Ty — (¢+1) |
q € Q} C TS is a minimal set of generators for I€.
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Remark 1.7.6. We can also write down a necessary and sufficient condition, but
cannot compute with it, so we doubt its practical use.

1.8. Relation to Hida Hecke algebras. The reader will note that we have al-
lowed for the possibility that p | N. When p | N, in Appendix |A] we also consider
a related Hecke algebra T ;; that contains U), instead of wj, (but still has all other
wy for ¢ | %) and show that, in many cases we consider, T, ; = T

This is related to Hida theory assuming that (as is well-known for the Hecke
algebra T ;;) there is a Hida-theoretic Hecke algebra T that is a free module of
finite rank over A ~ Z,[T] that satisfies a control theorem with respect to Ty 4
there is an element wy € A such that Ty 5 = T§ /waT§.

Then our results about T% (including its Gorensteinness and the number of
generators of its Eisenstein ideal) translate directly to T. Subsequently, these
results can be specialized into higher weights, as is usual in Hida theory.

1.9. Method of pseudodeformation theory. Like our previous work [WWE20],
the method of proof of the theorems in §1.5|is to construct a pseudodeformation
ring R and prove that R = T using the numerical criterion. The ring R is the defor-
mation ring of the residual pseudorepresentation D = 1)(w @ 1) associated to E5
that is universal subject to certain conditions (here % is the functor associating
a pseudorepresentation to a representation, and w is the mod p cyclotomic char-
acter). These conditions include the conditions considered in our previous works
[WWE1S,[WWE20] (having cyclotomic determinant, being flat at p, being ordinary
at p), but they also include new conditions at ¢ dividing N that are of a different
flavor, as we now explain.

1.9.1. The Steinberg at £ condition. Fix { = ¢; | N, assume ¢ # p, and let Gy C Gg
be a decomposition group at £. Let f be a normalized cuspidal eigenform of weight
2 and level T'o(N). Let py : Gg — GL2(Oy) be the associated Galois representation,
where Oy is a finite extension of Z,.

If fis old at ¢, then ps|g, is unramified. If f is new at ¢, we have

(1.9.1) prlae ~ ( A(M(J(C)))ﬁcyc A(a:(f)) )

where A(z) is the unramified character of G, sending a Frobenius element o, to z,
and ay(f) is the coefficient of ¢* in the g-expansion of f (see Lemma [2.3.1). Note
that since det(ps) = eye, we have Mae(f))? = 1. In fact, ag(f) is the negative of
the we-eigenvalue of f. We call such representations (|1.9.1) “£1-Steinberg at £”,
where £1 = Fay(f) is the wy-eigenvalue of f.

Now assume in addition that f € Sa(N)g;,, so that the semi-simplification of
the residual representation of ps is w @ 1 and w,f = €f, where € = ¢;. We want to
impose a condition on pseudorepresentations that encapsulates the condition that
pfla, is either unramified or e-Steinberg. The main observation is the following,
and is inspired by the work of Calegari-Specter [CS19].

Observation 1.9.2. Suppose that p : Gy — GL2(O) is either unramified or e-
Steinberg. Then

(1.9.3) (p(0) = M=€)ficye(0))(p(T) = A(=€)(7)) =0

for all 0,7 € Gy with at least one of ¢ or 7 in the inertia group I,.
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This is clear if p is unramified: the factor involving the one of o or 7 that is in I,
will be zero. If p is e-Steinberg, then the given product ((1.9.3) will have the form

(o) s)

and any such product is zero (note that the order is important!).

To impose the unramified-or-e-Steinberg condition on the pseudodeformation
ring R, we impose the condition (|1.9.3) on the universal Cayley—Hamilton algebra,
using the theory of [WWEI9] (see '

1.9.2. The ordinary at p condition. When p | N and f € So(N)§;, is a newform,
then €, = —1 and the representation p¢|g, is ordinary. In this paper, we define
“ordinary pseudorepresentation” exactly as we define the unramified-or-e-Steinberg,
following ideas of Calegari-Specter. In our previous paper [WWEIS|, we gave a
different definition of ordinary, and we prove in this paper that the two definitions
coincide (see Lemma. This gives an answer to a question of Calegari-Specter
[CS19] pg. 2].

1.10. Examples. We conclude this introduction with examples that illustrate the
theorems and show that the hypotheses are necessary. For examples where we show
that T} is not Gorenstein, it is helpful to note that T, is Gorenstein if and only
if Soc(TS;/pTS) is 1-dimensional, where Soc(T¢;/pT%) is the annihilator of the
maximal ideal (see §C.1)).

All computations are using algorithms we have written for the Sage computer
algebra software [ST18].

1.10.1. Ezamples illustrating Theorem|1.5.1.

Example 1.10.1. Let p =5, {p =41, {1 = 19,80 N =19-41, and let e = (—1,1).
In this case, we compute that K;g is the field cut out by

220 — 219 — 721 4 21217 4 22410 4 22321° — 2262 — 1587213 + 4621212
+ 52022 — 91210 — 31422° — 43923 — 214327 — 21562° — 582°
+12372% 4 41423 + 14822 + 562 + 16

and that 41 splits completely in Kj9. The theorem says that I¢ has 2 generators.
Moreover, Theorem says, in this case, that I¢ is generated by Ty, — (g0 + 1)
and Ty, — (g1 + 1) where g is a good prime for (41, 5) and where ¢; satisfies

(a) ¢1 is a prime such that ¢ =1 (mod 5),

(b) 41 is not a 5-th power modulo ¢;, and

(¢) g1 does not split completely in Kig.
A quick search yields that ¢o = 2 and ¢; = 11 satisfy these criteria. And indeed,
we compute that there is an isomorphism

FE) [{E, y]
(y* — 222, zy)
Example 1.10.2. Let p =5, ¢y =11, {1 =19, {5 =29, s0 N = 11-19-29, and
let e = (—=1,1,1). In this case, 11 does not split completely in either of the fields
K9, K29, and the theorem says that I has 2 generators. Moreover, Theorem [1.7.5]
says, in this case, that I is generated by T, — (qo +1) and T, — (¢1 + 1) where qo
is a good prime for (11,5) (for example gy = 2) and where the prime ¢; satisfies:

% 5\7/5’]1‘5\77 ($7y) — (TQ - 371-111 - 12)
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(a) ¢1 =1 (mod 5),

(b) 11 is not a 5-th power modulo g1,

(¢) q1 does not split completely in K19, and
(d) ¢ does split completely in Kag.

In this case, K19 is the field computed in the previous example and Kog is the field
cut out by

220 — 219 — 1128 + 9217 + 124216 — 22321° — 12442 + 21112"3 + 14291212
— 19804z + 716920 + 79382° — 1093722 + 1560327 — 947245
— 2582x° + 82332* — 373223 + 180822 — 832z + 256.

A quick search finds that ¢; = 181 satisfies the conditions (a)-(d). And indeed, we
compute that there is an isomorphism

FS [l‘, y]

LTS /BT, (2, y) — (Th — 3, Ty — 182).
(@3 1 222,13, 7y + 42) /5Ty, (@,y) = (T2 181 )

Note that these conditions are far from necessary. For example T, —3 and 77 — 8
also generate the Eisenstein ideal.

1.10.2. Ezamples related to Theorem We give examples illustrating that the
assumption is necessary. In fact, it seems that the assumption is necessary even for
the Gorensteinness of T.

Example 1.10.3. Let p =5, ¢y =11, ¢; = 23,50 N = 11-23, and let e = (-1, —1).
Then ¢; = 1 (mod 11) is a 5-th power so the theorem does not apply. We can
compute that

FE)[xay] ~ € €
@y /T (@y) = (-3 T —4)

has dimension 3. Since TY; = Zs, we see that the space of oldforms has dimension
2, so there must be a newform at level N. Moreover, Soc(T% /5T%) = 2F5 @ yFs,
so T is not Gorenstein.

Example 1.10.4. Let p=5, 4, =31, {; =5,s0 N =5-31, and let e = (—1,—1).
Then note that ¢; = 5 = 7° (mod 31), so the theorem does not apply. We can
compute that

Fslx, ~ e .
MH /Ty, (z,y) — (To — 3,215 + T)

has dimension 4. Since rankz, (T9;) = 2, we see that the space of oldforms has
dimension 3, and there must be a newform at level N. Moreover, Soc(TS;/5T%) =
2%F5 @ yFs, so T% is not Gorenstein.

In this last example, the reader may think that ¢; = 31 is special because the
rank of TY; is 2. However, we can take p = ¢; = 5 and ¢y = 191 (note that
T, = Z,). Noting that 5 = 185 (mod 191), we again see that the theorem does
not apply, and we can compute that T is also not Gorenstein in this case.

1.10.3. Ezamples related to Theorem|1.5.7. First, we give examples illustrating that
the assumption is necessary. Again, it seems that the assumption is necessary even
for the Gorenstein property of T¢.
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Example 1.10.5. Let p =5, 4y =11, ¢; = 61,80 N = 1161, and let e = (—1, —1).
Then note that 11 = 8% (mod 61) so the theorem does not apply (but note that 61
is not a 5-th power modulo 11). We can compute that

F5 ) ~ 13 €
(xziyy;g) — TN /5Ty, (z,y) = (T3 -T2 — 1,15 = 3).

We see that Soc(TS;/5T%) = 2F5 & y°F5, so T is not Gorenstein.

Example 1.10.6. Let p = 5, {y = 31, {1 = 191, so N = 31 -191, and let ¢ =
(—1,—1). We have 191 = 7° (mod 31) and 31 = 61° (mod 191), so the assumption
of the theorem fails most spectacularly. We can compute that

F5[x,y]
((z, )%, 223 4+ zy? + 3y, 23 — 22y + 2y3)
(1‘,y) — (T2 — 3,T7 — 8)

= Ty /5T,

Letting m¢ denote the maximal ideal of TS /5T, we see that (m€)* = 0 but that
(m)3 is 2-dimensional, so dimg, Soc(T/5T%) > 1 and T4 is not Gorenstein.

Finally, we give an example illustrating Theorem [1.7.1

Example 1.10.7. Let p =5, ¢y =11,¢; =41,s0 N = 11-41, and let e = (—1, —1).
We see that neither of 11 or 41 is a 5-th power modulo the other, so Theorem [1.7.1]
applies. We consider the primes 2,3,7 and 13, none of which are congruent to 1
modulo 5.

q ‘ Is 5-th power modulo 117 ‘ Is 5-th power modulo 417
2 No No
3 No Yes
7 No No
13 No No

From this we see that

logy1(3) logyy(q) >
det =1lo 3)-lo 0.
( log,,(3) log,;(q) g11(3) - logy (q) #
for any ¢ € {2,7,13}. By Theorem|[1.7.1| {73 —4,T, — (¢+ 1)} generates I¢ for any
q € {2,7,13}, and we can see by direct computation that this is true.

More subtly, we can compute that

logy1(2) logy;(7) ) ( logy1(2) logy;(13) )

det 0, det =0.
( log,;(2) logy(7) 7 log,;(2) logy;(13)

By Theorem this implies that {T5 — 3,77 — 8} generates I¢, but that {7 —

3,T13 — 14} does not, and we again verify this by direct computation.
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1.12. Notation and Conventions. We let 0;; denote the Kronecker symbol,
which is 1 if ¢ = j and 0 otherwise.

For each prime ¢ | Np, we fix Gy C Gg, a decomposition group at ¢, and let
I; C Gy denote the inertia subgroup. We fix elements o, € Gy whose image in
Go/I; = Gal(Fy/Fy) is the Frobenius. For £ # p, we fix elements vy, € I, such that
the image in the maximal pro-p-quotient I;"°* (which is well-known to be pro-
cyclic) is a topological generator. Let v, € Gal(Q,/Q5(¢p)) C I, be an element
such that the image of 7, in Gal(Q}"(¢p, ¥/P)/Q," (¢p)) is non-trivial. When £ = ¢;
for i € {0,...,7r} (i.e. £ | N), we also write o; := oy, and ~; := ~, for these
elements. We write Gg,s for the Galois group of the maximal extension of Q
unramified outside of the set places S of QQ supporting Npoo, and use the induced
maps Gy — Gq,s. For primes ¢ { Np, we write Fry € Gg s for a Frobenius element
at q.

As in the theory of representations, Cayley—Hamilton representations, actions
on modules, pseudorepresentations, and cochains/cocycles/cohomology of profinite
groups G discussed in [WWE19], these objects and categories are implicitly meant
to be continuous without further comment. Here all of the targets are finitely
generated A-modules for some Noetherian local (continuous) Z,-algebra A with
ideal of definition I, and the I-adic topology is used on the target. Profinite groups
used in the sequel satisfy the ®,-finiteness condition (i.e. the maximal pro-p quotient
of every finite-index subgroup is topologically finitely generated), which allows the
theory of [WWEI9] to be applied.

We write

Z'(Z[1/Np|, M)
BY(Z[1/Npl, M)

for (continuous) cohomology of a Gg,s-module M, together with this notation for
cochains, cocycles, and coboundaries. We write x1 — x5 € C*(Z[1/Np|, M1 ® M>)
for the cup product of x; € C*(Z[1/Npl, M;), and a3 Uas € H*(Z[1/Np], M1 @ M>)
for cup product of cohomology classes a; € H*(Z[1/Np], M;).

H'(Z[1/Np], M) = H'(C*(Z[1/Np], M)) =

2. MODULAR FORMS

In this section, we recall some results about modular curves and modular forms.
Our reference is the paper of Ohta [Oht14].

2.1. Modular curves, modular forms, and Hecke algebras. The statements
given here are all well-known. We review them here to fix notation.

2.1.1. Modular curves. Let Yo(NV),z, be the coarse moduli space of pairs (E,C),
where FE is an elliptic curve over S and C C E[N] is a finite-flat subgroup scheme of
rank N and cyclic (in the sense of Katz-Mazur [KM85]). Let Xo(V),z, be the usual
compactification of Yo(V)/z,, and let {cusps} denote the complement of Yo(V),z,
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in Xo(N)/z,, considered as an effective Cartier divisor on Xo(N),z,. Finally, let
Xo(N) = Xo(N)/z, ® Qp.

2.1.2. Modular forms and Hecke algebras. The map Xo(N)z, — Spec(Z,) is known
to be LCI, and we let £ be the sheaf of regular differentials. Let

S2(N:Zp) = H*(Xo(N) 2, Q), Ma(N;Zp) = H*(Xo(N) z,,, Q({cusps}))
Let T’y and T’y be the subalgebras of
Endz, (M2(N;Zy)), Endgz, (S2(N;Zy)),

respectively, generated by the standard Hecke operators T;, with (N,n) = 1, and
all Atkin—Lehner operators wy for £ | N (we do not include any Uy for £ | N'). These
are semi-simple commutative Z,-algebras (see e.g. [AL70]).

2.1.3. Eisenstein series and Eisenstein parts. For each e € {£1}7T1\{(1,1,...,1)},
there is a element E5 v € Ma(N;Z,) that is an eigenform for all T;, with (N, n) =1,
and has g-expansion

T (oo}

€ 1 n
(2.1.1) By = ~21 H(ei&—kl)—l—Zanq

1=0 n=1

where a, =} o4, t when ged(n, N) =1 (in particular, a; = 1), and w, Ef y =
€5\ (see [Oht14, Lem. 2.3.4]).

Let I' = Anny (E5 y), and let Ty be the completion of Ty at the maximal
ideal (I'°, p), and let T = T @r, T%. Let I¢ = I"°T%, and let I°< be the image
of I¢ in ']T?\’,e. For a Tyy-module M, let Mg, = M @7, Tq. The map Ty — Z,
induced by E§ y is a surjective ring homomorphism with kernel I¢. We refer to
this as the augmentation map for TS,.

Note that we have wy, = ¢; as elements of T%,. Indeed, this follows from wz =1,
wy, —€; € I°, and p # 2: consider (wy, — €;)(we, + ¢;) = 0 and observe that
wy, + € € (TS )*. Consequently, TS, is generated as a Z,-algebra by T;, for ¢ t N.

If pt N, let U, € TS denote the unit root of the polynomial

X?*-T,X +p=0,
which exists and is unique by Hensel’s lemma. Since T, — (p+ 1) € I¢, we see that
U, — 1 € I*. Moreover, we see that T}, = U, + pU, "
2.1.4. Duality. As in [Oht14] Thm. 2.4.6], there are perfect pairings of free Z,-
modules
(2.12) My(N3 Zy)sis X Ty — Zpy  S2(N3Zp)ss x T — Zy

given by (f,t) — a1(t- f), where ai(—) refers to the coefficient of ¢ in the ¢-
expansion. In particular, My(N;Z,)5s (resp. Sa(N;Z,)5) is a dualizing TS -
module (resp. TX -module).
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2.1.5. Oldforms and stabilizations. If £ | N is a prime and f € S3(N/¢;Z,) is an
eigenform for all T, with (n, N/¢) = 1, then the subspace
{9 € S2(N;Zy) = an(g) = an(f) for all (n, N/¢) =1}

has rank two, with basis f(z), f(¢z). If welet f1(z) = f(2)2£Lf(€z), then wyfy(z) =
+f+(2). Note that, since p # 2, we have fi # f_ (mod p). In particular, if
¢ € {£1}" is the tuple obtained from e by deleting the entry corresponding to ¢,
then there are injective homomorphisms given by f — f.,,

Mo(N/6:Zp)igs > Ma(N:Zy)ige and - Sy(N/6Zp)iss < Sa(N: L)
2.2. Congruence number. We recall this theorem of Ohta, and related results.
Theorem 2.2.1 (Ohta). There is an isomorphism TY /1¢0 = Zp/ao(E5 ) Lp.

This is [Oht14] Thm. 3.1.3]. His method of proof actually can be used to give
the following stronger result, exactly as in [WWE20, Lem. 3.2.2]. See Lemma
for a discussion of fiber products of rings.

Lemma 2.2.2. The composition of the augmentation map TS — Z, with the quo-
tient map Ly — ZLp/ao(E5 x)Zy factors through T% and induces an isomorphism

€ ~ 0,6
v — Ty ><Zp/ao(E§,1\,)Zp L.

In particular, ker(Tg — TX) = Annre (19).

2.3. Eigenforms and associated Galois representations. Let v : ']I‘?\’,6 — ’ﬁ‘?\’f
denote the normalization of T(J)\}e.

Lemma 2.3.1. We record facts about TI'?\’,E and associated Galois representations.

(1) Letting q vary over primes q { Np, there is an isomorphism

h: ']T?\’,E = @ Oy, v(Ty) = (ag(f))ress
fex

where ¥ C SQ(N;@p)fEiS is the set of normalized eigenforms, and Oy is the
valuation ring of the finite extension Qp(aq(f)gnp)/Qp-

(2) For each f € X, there is an absolutely irreducible representation py : Gg,s —
GL2(O¢[1/p]) such that the characteristic polynomial of ps(Fry) is X2 —a,(f) X+
q for any gt Np.

(3) Assume l; # p. The representation pyfla, is unramified if f is old at {;.
Otherwise, f is new at ¢; and there is an isomorphism

~ )\(a i(f))K’CyC *
(2.3.2) PrlGe, = < “0 Aae, (1)) )
where agp, (f) = —¢;.
(4) There is an isomorphism
(M) e
(2.3.3) prla, ~ ( 0 Aap(f)) ) '
Moreover,

(a) psla, is finite-flat if and only if either
(i) pt N, in which case h : v(Up) = (ap(f))sex, or
(i) p| N and f is old at p.
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(b) If p| N and f is new at p, then a,(f) = —€, = +1, i.e. ¢, = —1.

Proof. For (1)-(3) and (4a) see, for example, [DDT94, Thm. 3.1]. In (4b), the fact
that a,(f) = —¢, is [AL70, Thm. 3]. To see that ¢, = —1, note that the semi-simple
residual representation p¥ is w @ 1, but (2.3.3) implies p%|c, = A(—€p)w & A(—€p).

Since w|g, is ramified, this implies that A(—e¢,) = 1, so ¢, = —1. O
Combining Lemmas and we obtain an injective homomorphism
(2.3.4) N Ly TN > Z, & POy
fex

determined by sending Ty to (¢ + 1,aq(f)sex) for ¢t Np and, if pt N, sending U,
to (1, ap(f)fe2)~

2.4. The kernel of m® on the modular Jacobian and the Gorenstein con-
dition. In this section, we use some results of Ohta (following ideas of Mazur) to
relate the structure of the rings TS, and ']I‘?\’,E to the geometry of the Néron model
Jo(N) z, of the Jacobian of Xo(N). Let Jo(N) = Jo(N)/z, @ Q.

For a Z,-module M, let Ta,(M) = Hom(Q,/Z,, M) be the Tate module of M,
let M* = Homg, (M,Q,/Z,) be the Pontrjagin dual, and let M" = Homg, (M, Z,)
be the Z,-dual. If M is p-divisible, then there is an identification M* = Ta,(M)".

Let T = H},(Xo(N)g. Zy(1)) = Ta, (Jo(N)(T,)).

Lemma 2.4.1. There is an exact sequence of T?\}G[Ip]—modules
0 — TH(1) — Tis — (TX)Y — 0.
The sequence splits as T?\}E-modules, In particular, we have
dimg, Jo(N)[m](Q,) = dimg, (7/mT) = 2+ §(TX)
where 5(']1‘?\’,6) is the Gorenstein defect of ']I‘?\}E. (See éC.] for a discussion of Goren-
stein defect.)
Proof. Ohta has shown in [Ohtl14] Prop. 3.5.4 and Prop. 3.5.9] that

dimg, Jo(N) 2, (Fy)[m] < 1.
This implies the result, following [Maz77, §§I1.7-I1.8] (see also [Maz97]). O

Lemma 2.4.2. Suppose that TS is Gorenstein. Then there is an isomorphism of
TS -modules
I¢ 5 (TR,
In particular, the minimal number of gemerators of I¢ is 5(1‘(1)\}6) + 1, and I is
L. . g X
principal if and only if T is Gorenstein.

Proof. Like the proof of [Ohtl4l Lem. 3.2.5], there is an exact sequence of T¢,-
modules

0 — S2(N; Zp)y — Ma(N3 Z, ) = Zy — 0
where TY acts on Z, via the augmentation map T — T4 /I¢ = Z,. Since we
assume that T%; is Gorenstein, we see by the duality that Ma(N;Zp )5y s
a free TS-module of rank 1. We may choose a generator f of Ma(N;Z,)§;, such
that Res(f) = 1. Then we obtain a surjective T%-module homomorphism

Ty - Z,, T — Res(Tf)
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whose kernel is isomorphic to S2(N;Z, )5 This is a TS -module homomorphism
that sends 1 to 1, so it is the augmentation map TS, — Z,. Thus I¢ = So(N; Zp )is;
so duality yields the isomorphism of the lemma. The remaining parts follow
from O

Combining the preceding two lemmas, we obtain the following
Lemma 2.4.3. Assume that TS is Gorenstein. Then
dimg, Jo(N)[m(Q,) = 1 + dimg, (I°/mI°).
3. THE PSEUDODEFORMATION RING

In this section, we set up the deformation theory of Galois pseudorepresentations
modeling those that arise from Hecke eigenforms of weight 2 and level IV that are
congruent to the Eisenstein series Ej y. These are the Galois representations of
Lemma See for further introduction.

3.1. Theory of Cayley—Hamilton representations. This section is a summary
of [WWE19]. Only for this section, we work with a general profinite group G
satisfying condition ®,, (of . All pseudorepresentations are assumed to have
dimension 2, for simplicity.

3.1.1. Pseudorepresentations. A pseudorepresentation D : E — A is the data of an
associative A-algebra E along with a homogeneous multiplicative polynomial law
D from E to A. This definition is due to Chenevier [Cheld]; see [WWE19] and
the references therein. Despite the notation, the pseudorepresentation D includes
the data of a multiplicative function D : E — A, but is not characterized by this
function alone. It is characterized by the pair of functions Trp, D : E — A, where
Trp is defined by the characteristic polynomial:

(3.1.1) D(x —t) =1* — Trp(x)t + D(x) € A[t].

A pseudorepresentation D : E — A is said to be Cayley—Hamilton if, for every
commutative A-algebra B, every element © € E ®4 B satisfies its characteristic
polynomial. We also denote by D : G — A a pseudorepresentation D : A[G] — A.

3.1.2. Cayley—Hamilton representations. In the category of Cayley—Hamilton rep-
resentations of a profinite group G, an object is a triple

(p:G—E*E,D: E— A),

and sometimes referred to more briefly as “p.” Here p is a homomorphism (con-
tinuous, as always), E is an associative A-algebra that is finitely generated as an
A-module, (4, my,) is a Noetherian local Z,-algebra, and D is a Cayley-Hamilton
pseudorepresentation. We call A the scalar ring of E. The induced pseudorepre-
sentation of pis Do p: G — A, also denoted v (p). The functor ¢ is essentially
surjective. The Cayley—Hamilton representation p is said to be over ¥(p)®4 A/m4,
and ¥(p) is said to be a pseudodeformation of (p) ®4 A/ma. If (p,E,D) is a
Cayley—Hamilton representation of G and x € A[G], then we abuse notation and
write D(z) for D(p(x)) (where we also abuse notation and write p : A[G] — E for
the linearization of p).

Given a pseudorepresentation D : G — T for a field F, there is a universal object
in the category of Cayley-Hamilton representations over D. This is denoted by

(rp: G — (E%)X,E%,DE% : B — RY),
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and the induced pseudorepresentation D% := 1(p%) is the universal pseudodefor-
mation of D.

3.1.3. Generalized matriz algebras (GMA). An important example of a Cayley—
Hamilton algebra is a generalized matriz algebra (GMA). An A-GMA F is given by
the data (B, C,m) where B and C are finitely-generated R-modules, m : BQrC —
R is an R-module homomorphism satisfying certain conditions, and F = (g g)
(see WWEI9, Example 3.1.7]). There is a Cayley—Hamilton pseudorepresentation
D : E — A given by the usual formula for characteristic polynomial. We write a
homomorphism p : G — E* as p= (pb1 o33 ).

If D is multiplicity-free (see [NWET9, Defn. 3.2.1]), then E% has a GMA struc-

ture whose associated pseudorepresentation is Dpgu [WWE19, Thm. 3.2.2].

3.1.4. Reducibility. We will refer to the condition that a Cayley—Hamilton represen-
tation or a pseudorepresentation is reducible. We also refer to the reducibility ideal
in rings receiving a pseudorepresentations. For these definitions, see [WWEI9, §4.2]
or [WWEIS, §5.7]. The important case for this paper is that, if (p, E,D : E — A)
is a Cayley—Hamilton representation where E is the GMA associated to (B, C,m),
then the reducibility ideal of D is the image of m. There are also universal objects,
denoted pd, etc.

3.1.5. Conditions on Cayley—Hamilton representations. We consider two flavors of
conditions P imposed on Cayley—Hamilton representations of G:

(1) P is a condition that certain elements vanish, e.g. Definition
(2) P is a property applying to finite-length Z,[G]-modules and satisfying a
basic stability condition, e.g.

In case (1), one produces a universal Cayley—Hamilton pg representation of G
satisfying P by taking the quotient by the two-sided ideal of E generated by the
relevant elements, and then taking a further quotient so that a pseudorepresentation
exists. This final quotient is known as the Cayley-Hamilton quotient of p%, for P.
See [WWE19, Defn. 2.4.7] for details; cf. also [WWEIS, Defn. 5.9.5].

In case (2), we consider E% as a G-module using its left action on itself by
multiplication, and find in [WWEIL9, §2.4] that the maximal left quotient module
satisfying P can be defined and is an algebra quotient. The subsequent Cayley—
Hamilton quotient is then shown to satisfy the desired properties of pg.

3.1.6. Conditions on pseudorepresentations. As discussed in [WWEI9| §2.5], one
says that a pseudorepresentation D of G satisfies P if there exists a Cayley—
Hamilton representation p of G such that #(p) = D and p satisfies P. Then
the universal pseudodeformation of D with property P turns out to be w(pg).

3.2. Universal Cayley—Hamilton representations of Galois groups. Let / |
Np be a prime. Recall from the decomposition group Gy — Ggs. Let
D : Gg.s — F, denote the pseudorepresentation ¢ (F,(1) & F,).

We denote by

(pp : Gos — Ef,Ep,Dg, : Ep — Rp)

the universal Cayley-Hamilton representation of Gg,s over D. The scalar ring Rp
is the universal pseudodeformation ring of D, with universal pseudorepresentation
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Dp :=1(pp). Similarly, we let the triple
(pg : Gg — EZX,EE,DEZ : Eg — R/)

denote the universal Cayley-Hamilton representation of G over D|g,, so that Dy :=
¥(pe) : G¢ — Ry is the universal pseudodeformation of D|g,.

Definition 3.2.1. Note that D is multiplicity-free, and that, if £ # 1 (mod p), then
D\, is multiplicity-free. In this case, E; and E5 have the structure of a GMA. In
this paper, whenever we fix such a structure, we assume that (p¢)11 ®g, Fp = w|q,

(resp. (pp)1,1 Orp Fp Zw).

3.3. Case {1 Np: unramified. For ¢t Np, we want Galois representations to be
unramified at /. We impose this by considering representations of Gg,g, as opposed

to Gal(Q/Q).

3.4. Case ¢ # p and ¢ | N: the unramified-or-Steinberg condition. In this
subsection, we write ¢ for one of the factors of N referred to elsewhere in this
manuscript as ¢;. Likewise, we write €, for ¢;.

Definition 3.4.1. Let (p : G, — E,E,Dg : E — A) be a Cayley-Hamilton
representation of Gy over D|g,. We call p unramified-or-e;-Steinberg (or US}*) if
(3.4.2) Vii(o,7) = (p(0) = A(=€0)(0)feye(9)) (p(T) — M—€e)(7)) € E
is equal to 0 for all (o, 7) ranging over the set

I xGoUG, x I, C Gy xGy.

Write V¢ for the set of all elements V¢ (o, 7) over this range.
A pseudodeformation D : Gy — A of D|g, is called USj if there exists a US;
Cayley—Hamilton representation p of Gy such that ¥ (p) = D.

Definition 3.4.3. Let (E;*, Dy : E;* — R;") be the Cayley-Hamilton quotient
4
of (E¢, Dy) by V;f Let
(py' : G — (E;‘*)X,E;‘*,DEEZ c B}t — Ry,
be the corresponding Cayley—Hamilton representation, with induced pseudorepre-

sentation of Gy denoted D;* :=v(py’) : Gy — R}

By the theory of §3.1.5] p}* is the universal US;* Cayley-Hamilton representation
over D|g,, and D}’ is the universal US}* pseudodeformation of D|g,.

Lemma 3.4.4. If { # p, then, for any €, we have D;*(1) = 1 and Trpee (1) =2
for all T € I,. That is, (Dy")|r, =¥ (1®1).

Proof. Let T € I,. We see in that V;fe (r,7) = (py(r) — 1)> = 0. Thus
by [Chel4, Lem. 2.7(iv)], we see Trpee (r — 1; = D;*(t — 1) = 0. As traces are
additive, we have Tr . (1) = Trpee (1) = 2. Applying with 2 = 7 and using
the naturality of Dj* with respect to the morphism Rj‘[t] — R, given by ¢ — 1,
we find that Dy*(7) = 1. O

Lemma 3.4.5. Suppose that e, = +1 and £ # —1,0 (mod p). Then p;* is unram-
ified (i.e. py'l, =1).
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Proof. Let 0 € Gy be the element o, defined in §1.12| By definition of Ej*,
Ve (o) = (5t (1) = V(o) + 1) =0,

for any 7 € I,. To prove the lemma, it suffices to show that (p}*(0) + 1) € (E;“)*.

By the Cayley-Hamilton property, we know that any element z € E;* satisfies
2 — Trpee (x)x + D (x) = 0. In particular, we see that x € (E;*)* if Dy'(z) €
(R;*)*. Hence it will suffice to show that D;* (o + 1) € (R}*)*.

Writing m C R;* for the maximal ideal, we know that Dy’ = D (mod m), so it
will suffice to show that D(c+1) € F). Because £ # p and D = 1(w@ 1), we apply
with z =0 and t = —1, calculatlng that D(o + 1) = 2(¢ + 1) € F,. This is
a unit because p is odd and £ # —1 (mod p). O

3.5. The finite-flat case: { =p and pt N. A finite-length Z,[Gp]-module V is
said to be finite-flat when it arises as G (@p), where G is a finite flat group scheme
over Z,. In [WWE19, §5.2] we check that the theory of can be applied to
the finite-flat condition. This theory gives us

( flat . G N (Eﬂat) E\:[f;la»t,DEgdt : E;lat N R;lat)’

the universal finite-flat Cayley-Hamilton representation of G, over D|GP. The
pseudorepresentation Dgat = z/;(pgat) Gy — Rgat is the universal finite-flat pseu-
dodeformation of D|g, .

Consider a GMA structure on Egat as in Definition which we write as

flat flat Rﬂat Bﬁmt X
Pgdt ( pp’l’l pﬁélt’Q ) 1 Gp — < Cﬂat Rﬂat ) .
Pp,2,1 Pp,2,2

Lemma 3.5.1. For any such GMA structure on E,, C’Eat =0.

Proof. The proof is implicit in [WWE20] but not stated in this form there. One
simply combines the following facts. See [WWE20, §B.4] for the notation.
e As the maximal ideal of Rgat contains the reducibility ideal, we have
Hongat(Cgat,IFp) = Ext%fgs/zp (1p, Z/pZ), where figs/Z, is the category
of finite flat groups schemes over Z,, by [WWE1L9, Thm. 4.3.5].
o We sce in [WWE20, Lem. 6.2.1(1)] that Extgy, /s (14, Z/pZ) = 0.

As C2t is a finitely-generated RI*-module, this implies that CH* = 0. O

Now that we know that Cf** = 0, phat, are Ri**-valued characters of G,

i = 1,2. Similarly to [VVWE2O §5.1], using the fact that w|g, # 1, we see the
following

Lemma 3.5.2. A pseudodeformation D of D|G,, s finite-flat if and only if D =
P(KeyeX1 B X2) where x1, X2 are unramified deformations of the trivial character.

3.6. The finite-flat case: { = p, p | N, and ¢, = +1. By Lemma 4), we
see that, if €, = +1, then the residually Eisenstein cusp forms are old at p with
associated GQ s- representation being finite-flat at p. We impose this condition
exactly as in §3.5] Namely, we say that a Cayley-Hamilton representation of G, is
unramified-or- (+1) Steinberg (or USH) if it is finite-flat.
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3.7. The ordinary case: ¢ = p, p | N, and ¢, = —1. Based on the form of
Galois representations arising from p-ordinary eigenforms given in Lemma ),
we proceed exactly as in the case £ # p given in

Definition 3.7.1. We say that a Cayley—Hamilton representation or a pseudode-
formation over D|g, is ordinary (or US, 1) when it satisfies Definition simply
letting ¢ = p.

Similarly to Definition let (Egrd, D Egrd) be the Cayley—Hamilton quotient
of (Ey, Dp,) by V,*, and let (pp', Eg™d, D e Eg — Ro™) be the correspond-
ing Cayley—Hamilton representation. A_s per pgrd is the universal ordinary
Cayley-Hamilton representation over D|g,, and Dgrd = w(pgrd) Gy — Rgrd is

the universal ordinary pseudodeformation of D|GP.

Remark 3.7.2. If one applies Vp‘gl = 0 in the case ¢, = +1, one does not get the
the desired finite-flat condition of that agrees with Lemma 4b). Instead,
one finds that E;r L' =0 (i.e. no deformations of D satisfy this condition).

We set up the following notation, which includes all cases: ¢, = +1 or p{ N.
Definition 3.7.3. For any N and ¢, we establish notation

d ppord d pordy _
o5 Do g oy | OB D RELDE) it Ny = 1
PP B 0T ) (pgat,Egat,DEgac,Rgat,Dgat) otherwise.

In [WWEIS, §5], we developed an alternative definition of ordinary Cayley—
Hamilton algebra. (This definition applies to general weight, which we specialize
to weight 2 here.) Choose a GMA structure on E,, as in Definition Let
Jgrd C E, be the two-sided ideal generated by the subset

Pp,2,1(Gp) U(pp,l,l — Keye) (Ip) U(Pp,2,2 —1)(Lp).
As in [WWEIS| Lem. 5.9.3], Jl?rd is independent of the choice of GMA-structure.
Lemma 3.7.4. The Cayley—Hamilton quotient of E, by Jgrd 1s equal to Ef,rd,

Proof. Let (Vp‘jd) denote the kernel of E, — E;,’rd, which contains (but may not
be generated by) Vo (see i} It will suffice to show that (Vp‘?prd) = Jod.
The inclusion (Vp‘;rd) C Jord is straightforward: see the calculations in [WWEIS,
§5.9], from which it is evident that the Cayley-Hamilton quotient of p, by J]C;rd isa

Cayley—Hamilton representation that is ordinary (in the sense of Definition [3.4.1).
It remains to show that Jo*¢ C (V,rd).

First we will show that D™ = th(keye @1)|1, ©z, RS, For any 7 € I, pord(7)
satisfies both polynomials

T? — Trpea(T)T = Dp'(r)  and (T = keye(T))(T = 1),

the first by the Cayley—Hamilton condition and the second by Definition If
w(T) # 1, Hensel’s lemma implies that these two polynomials are identical. For
such 7, we have D™(7) = Feye(T) and Trpera(7) = feye(T) + 1. Now choose an
arbitrary element of I, and write it as o7 with w(o),w(7) # 1. We immediately
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see that D™ (07) = Keye(oT), since both sides are multiplicative. Let 7, = po™(0)

and 7, = pgrd( ). Since Egrd is Cayley—Hamilton, we have

(tors + tTT‘T)2 — Tngrd (toTo + o )(tore + trrr) + D;rd(tgrg +t.r)=0

in the polynomial ring Egrd [to,tr]. We can expand Dgrd(tgrg +t,;7,) using [Cheld,
Example 1.8]. Taking the coefficient of ¢,t, and writing Tr = Tr Dgrd for brevity,

ToTr + 1776 — Tr(o)rr — Tr(7)re — Tr(oT) + Tr(o)Tr(r) = 0.

Substituting for r,r, using Vp‘fd(a, 7) = 0 and for r;r, using Vp(;rd (r,0) =0, one
obtains the desired conclusion Tr(o7) = Keyc(o7) + 1.

Let o € I, and let 7 € I, be such that w(7) # 1. Using the fact that pgrdhp is
reducible, we see that the (1, 1)-coordinate of Vpc’;rrﬁ (o,7) is

(Pp11(0) = eye(@))(ppia (1) = 1) = 0
ord

Since p9'f; is a deformation of w, we have o™ (1) — 1 € (R9™)*, so this implies
PO 1(0) = Keye(o) = 0. This shows that (pp,11 — keye)(Ip) C (Vp‘;rd), and a similar
argument gives (po"s, — 1)(1,) C (Vord)

It remains to show that po(G,) = 0. Let m C RY™ be the maximal ideal.
In fact, we will show that Cgrd /mC’]‘D”fd = 0, which is equivalent because pgrg 1(Gp)
generates the finitely generated Rgrd—module C’grd. We work with pord := pgrd
(mod m). Since p°™ is reducible, we can consider g3 € Z1(Gp, Co* /mCo™ @,
F,(-1)), and [BCO9, Thm. 1.5.5] implies that there is an injection

Homg, (CS™ /mCo™ F,)) — H' (G, Fy(—1))

sending ¢ to the class of the cocycle ¢ o pord So to show that Cord /mC’Ord is zero,
it is enough to show that p"rd is a coboundary, or, equwalently, that pord( )=0

for all o € ker(w) C G,. However, we compute that the (2, 1)-entry of Vpoprd(o, T) is

P51 (9) (P51 (T) = 1) + (pp5.2(0) = Fieye(0)) ppiga (7).

Taking o € ker(w) and 7 € I, such that w(r) # 1, we see that po'{ (7) — 1
w(T) =1 #0 (mod m) and pgrgg( ) — Feye(0) € m, so this implies p§'f (o) = 0.

|

We have the following consequence, following [WWEIS, §5.9].

Proposition 3.7.5. A Cayley-Hamilton representation (p: G, — E*, E,D : E —
A) over D|gq, is ordinary if and only if it admits a GMA structure such that
(1) it is upper triangular, i.e. p31 =0, and
(2) the diagonal character py1 (resp. p22) is the product of keye ®z, A (Tesp.
the constant character A) and an unramified A-valued character.

Corollary 3.7.6. Any finite-flat Cayley—Hamilton representation of G, over D|Gp
is ordinary. The resulting morphism of universal Cayley—Hamilton representations
of Gp, (pgrd,Egrd,DEgrd) — (pgat,Egat,DEgac), induces an isomorphism on uni-
versal pseudodeformation rings Rgrd = Rgat. The universal pseudodeformations
Dgrd = Dgat of D\Gp have the form ¥ (keyeXx1 ® X2), where x1, X2 are unramified

deformations of the trivial character 1: G, — F.
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Proof. The Cayley—Hamilton representation pg"“ satisfies conditions (1) and (2) of
Proposition by Lemmas and respectively. The isomorphism of
universal pseudorepresentations becomes evident by comparing Lemma and
Proposition [3.7.5(2). O

3.8. Global formulation. We now combine the local constructions to define what
it means for a global Cayley—Hamilton representation or pseudorepresentation to
be unramified-or-Steinberg of level N and type e.

Definition 3.8.1. Let (p: Ggs - E*,E,Dg : E — A) be a Cayley—Hamilton
representation over D. We say that p is unramified-or-Steinberg of level N and type
e (or USYy) when p|g, is US}* for all primes £ | N, and, if p{ N, p|g, is finite-flat.

Let D : Gg,s — A be a pseudodeformation of D. We say that D is unramified-
or-Steinberg of level N and type e (or US%;) when there exists a Cayley—Hamilton
representation (p: Gg,s = E*,E,Dg : E — A) such that D = ¢(p) and p is US.

Recall the Cayley—Hamilton representation pp set up in There are maps of
Cayley-Hamilton algebras vy : (Ey, Dg,) — (Ep, Dg,) arising from the fact that
ppla, is a Cayley—Hamilton representation of Gy over D|g,. For any ¢ | Np, write
J§ for the kernel of E;, — E;* (refer to Definition for E,).

Definition 3.8.2. Let (Efv’DE;,) denote the Cayley—Hamilton algebra quotient
of Ep by the union of t,(J;) over all primes £ | Np. We denote the quotient
Cayley—Hamilton representation of Gg g by

(P : Gos — (BN)™, By, Dig, « Ey — Ry)
and its induced pseudorepresentation by DS, = ¥ (p%) : Go,s — RS-

Using we see that p% (resp. D) is the universal USy Cayley—Hamilton
representation (resp. pseudodeformation) over D. In particular, a homomorphism
Rp — A factors through R if and only if the corresponding pseudodeformation
D : Gg,s — A of D satisfies USYy.

Proposition 3.8.3. Let D : Gg.s — A be a pseudodeformation of D satisfying
USYy. Then D(T) = Keye(T) for all T € Go,s.

Proof. Tt suffices to show that D(7) = Keyc(7) for all 7 € I, and all £ | Np, since
this will show that Gg.s > 0 — D(0)kge(0) € A* is a character of Gg,s that is
unramified everywhere and hence trivial. For ¢ # p, this follows from Lemma [3.4.4]

and for ¢ = p this follows from Corollary O

3.9. Information about Bf;, and C§;. Recall that we fixed a GMA structure on
E, in §3.7, This defines a GMA structure on E,” and Ef; via the Cayley-Hamilton
algebra morphisms E, — E,” and E,* — E (see [NWWEIL9, Theorem 3.2.2]). We
write this GMA structure as

c _( By By < (1) —

3.9.1. Computation of BFit and CFir. First we work in the case that either pf N
or ¢, = +1, so Ef = Egat, with a GMA structure chosen. Let (Egat, Dgy.,)
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represent the Cayley-Hamilton quotient of Ep by ¢,(J5), with a GMA structure
coming from Egat — FEgac. Write this GMA structure as

Raat  DBaat Aflat,r  Dfat,r
3.9.2 Faa & R (7)) = ’ ’ .
( ) flat ( Chat  Raat PR t( ) Clat, dﬁat,‘r

Let Jit = ker(Raas — Zp), where Raae — Z, corresponds to ¢(Z,(1) & Z,),
which is obviously finite-flat. Let

Biat = Biat/ Jfat Bat:  Chiat = Ctiat/Jfiat Chat-

By [WWE20, Prop. 2.5.1], we have, for any finitely-generated Z,-module M, iso-

morphisms
(393) HomZp(BfIglél7M) gHéat(Z[l/NpLM(l))
Homy, (CiY', M) = H, (Z[1/Np], M(~1)).

where H{, (Z[1/Npl], M (1)) equals

ker (Hl(Z[l/Np], M(1)) — Extergs/z ?ZiQﬁgz(l)j?ap(ﬂp“)))

and
H{, (Z[1/Np), M(~1)) = ker(H"(Z[1/Np], M(-1)) = H'(Q,, M(-1))).

Here flgs/Z,, is the category of locally-free group schemes of finite rank over Z,,
which maps to the category of G,-modules by taking generic fiber. In other words,
a class in Hy, (Z[1/Np], M (1)) (resp. H,(Z[1/Np], M(-1))) is represented by a
Galois representation p that is an extension of Z, by M(1) (resp. M(—1)), such
that p|g, is isomorphic to the generic fiber of a locally-free group scheme of finite
rank over Z,, (resp. p|, is a trivial extension). The Galois cohomology computations
of [WWE20, §6.3] allow us to compute these.

Lemma 3.9.4. Recall that N = loly --- L., and recall the elements v; € Iy, for
1=0,...,7 defined in §1.12. There are isomorphisms

Zgr et = B, DL/ - 1)z, > o
=0

gwen by e; — baat,y, and €; — Chag,y;, where e; € fo’““ 1s the i-th standard basis
vector.

3.9.2. Computation of B™M and C™. Next we compute in the case p | N and
& = —1, 50 Eyf = B Let (Eoa, Dp,,,) be the Cayley-Hamilton quotient of Ep
by Lp(J;), receiving a GMA structure via Egrd — Eorq. Write this GMA structure

as

R rd B rd Qord, bord T
3.9.5 Bgz  fora Boa ) oy 2 G )
( ) d ( Cora  Rora ) P d(T) ( Cord,r dord,r

Let JM = ker(Rorq — Zp), where Roq — Z, corresponds to ¢(Z,(1) & Z,),

ord
which is obviously ordinary. Let

min min min min
ord — BOTd/Jord Bﬂata ord — COYd/ ord COFd'
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Just as in [WWELT, Lem. 4.1.5], we have, for any finitely-generated Z,-module M,
isomorphisms

Homg, (B, M) = H'(Z[1/Np], M(1)),
Homyg, (C', M) = H{, (Z[1/Np], M(-1)).

ord »

(3.9.6)

The Galois cohomology computations of [WWE20, §6.3] allow us to compute these.
Recall that ~; is defined in §1.12] even when ¢; = p.

Lemma 3.9.7. There are isomorphisms

ord

zg 5 o, D2,/ - 12, 5 Cni
=0

gwen by e; — bord 5, and €; — Cord ~,, Where e; € Z;‘f”l 1s the i-th standard basis
vector.

3.9.3. Information about B{™" and C{™". Let J™™ := ker(Ry — Z,), where
this homomorphism is induced by the US}; pseudodeformation ¢(Z,(1) ®Z,) of D.

Lemma 3.9.8. We consider By™™ = BS/J™" B, and Cy™" = C%,/J™" C5 .
(1) If e; = 1 and €; # p, then the image of b, in BY™™ is 0.
(2) If €, + ¢; 0 (mod p), then the image of ¢, in Cy™" is 0.

Moreover, there are surjections

@Zp/(ei + I)Zl) - B]é\,/min’ @Zp/(& + €i)Zp —» Cje\}min'
=0 i=0

given by e; — by, and e; — c,,, respectively.

Proof. Note that for pi\}min = pYy ®re, Ry /J™™, in the GMA structure, we have

e,min __ Reye b
pN - ( c 1 > .
Note that we have

Vi (7,03) = (05" (30) = D (™" (03) + &) = 0.

N

In GMA notation, this is

0= 0 b’Yz‘ El + €; bai _ 0 (1 + Ei)b'yl-
Cry, 0 Co, 1+4+¢; (& + 67;)0%. 0 ’

In case (1), (14 ¢;) is invertible, so by, = 0. In case (2), ({; + ¢;) is invertible, so
¢y, = 0.

The final statement follows from (1) and (2) and Lemma if p | N and
€p = —1; otherwise, it follows from Lemma ([

3.10. Labeling some cohomology classes. Later, in 7] it will be convenient to
have notation for the extension classes, taken as Galois cohomology classes, arising
from homomorphisms By™" — F, and Cy™" — F,,.

Definition 3.10.1. We call a cohomology class z € H(Z[1/Np], M) ramified at a
prime  when its image in H'(I;, M) is non-zero. For certain i with 0 < i < r, we
designate b; and c¢; as follows.
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e Fori=0,...,r, let b; denote the [ -scaling of the Kummer cocycle of ¢; such
that b;(v;) = 1, and let b; € H*(Z[1/Np],F,(1)) be the class of b;.

e LetT={0<j<r :4;==41 (mod p)}. Fori € T,let¢; € H(lp)(Z[l/Np],Fp(—l))

be an element that is ramified exactly at £; and such that ¢;(y;) = 1 for any
cocycle é; representing c;.

Lemma 3.10.2. The sets {b;}i_, and {c;}ier are well-defined and satisfy the fol-
lowing properties:

(i) b; is characterized up to F ) -scaling by being ramified at £;, unramified out-
side {¢;,p}, and finite-flat at p if £; # p.
(ii) If p | N, the set {b;}_, is a basis of H'(Z[1/Np],F,(1)).
(iii) The subset {b; : {; # p} is a basis of H}, t( [1/Np],F,(1)).
(iv) The set {c;}icT is a basis of H(lp)(Z[l/Np] »(—1)).

Proof. The value of l;z(%) is well-defined for the same reason when ¢; # p, and
by(vp) is well-defined by the choice of 7, (in §1.12)). Parts (i), (ii), and (iii) follow
from Kummer theory (note that the Kummer class of p is not finite-flat at p).

For part (iv), note that the module C'y™" is computed in [WWE20, Prop. 6.3.3).
Together with (3.9.3), this computation implies the existence of ¢; € H, (1p) (Fp(-1))
characterized up to IF-scaling by being ramified exactly at ¢;. These statements
also imply part (iv). Because w|r,, =1, &lr, @ Iy, - Fj is a homomorphism not
dependent on the choice of ¢;. O

The stated bases are almost dual bases, with the exception arising from the
possibility that b; is ramified at p even when ¢; # p.

Lemma 3.10.3. Under the perfect pairings
(1) Béat @ Ritas ]F X Hﬂat( [1/Np] ( )) — FZ”
(2) Cord ®pa Fp x Hi,) (Z[1/Np], F ( 1)) — Fp
(3) Chiat O Rejas ]F X H(p)( [l/Np] ( 1)) — IFP’

defined by (3.9.3) and (3.9.6), the following are respective dual basis pairs

(1) {baat,y; : 1 =0,...,7if €; #p} and {b; : i=0,...,7 if {; # p}
(2) {cordy; : €T} and {c; : 1 €T}
(3) {chat,y; : €T} and {c; : 1 €T}

Also, for 0 <i,j <1 such that {; = p or £; # p, we have b;(bord,y;) = Ojj-

Proof. We give the proof for (1), the other parts being similar. The pairing
sends a class € H}, (Z[1/Np],F,(1)) to a homomorphism By, — F,, that sends
b, to (1), where Z is a particular cocycle representing = (the choice is determined
by the choice of GMA structure on Eg,t). However, if w(7) = 1, the value of Z(1)
is independent of the choice of cocycle, and we may write this value as (7). Hence
we see that bi(bﬂat,'yj) = bi (’)/j) = (9” U

Definition 3.10.4. For each i € T\, let K; be the fixed field of ker(Gila,.,, s);
where ¢; is any cocycle ¢; : Gg,g — F,(—1) representing c;.

One readily verifies that K; is the unique extension of Q((,) satisfying the prop-

erties of §1.4.4]
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4. TOWARD R=T

4.1. The map Ry — T$,. We prove the following proposition, following the con-
struction technique of Calegari-Emerton [CEQ05, Prop. 3.12].

Proposition 4.1.1. There is a surjective homomorphism Ry — TS of augmented
Zy-algebras. Moreover, TS is generated as a Zy-algebra by Ty for any cofinite set
of primes q not diwiding Np.

Proof. For this proof, it is important to note that the elements Trpe (Fr,) for any
such set of primes ¢ generate Rf; as a Zjy-algebra. This follows the fact that RS, is
a quotient of the (unrestricted) universal pseudodeformation ring Rp, that traces
{Trp, (o) : 0 € Gg,s} of the universal pseudodeformation generate Rp (because
the residue characteristic is not 2, see [Chel4, Prop. 1.29]), and Chebotarev density.

In the rest of the proof, we use the notation X, py and Oy established in Lemma
We proceed in three steps:

Step 1. Construct a homomorphism Ry — Oy for each f € ¥ that sends Trpe (Fr,)
to aq(f) for each prime ¢ { Np.

Step 2. Show that the resulting map Ry — Z, & @[ Oy sends Trpe (Frq) to the
image of T, under the map TS, — Z, ® @f Oy of , for each ¢t Np.
This gives a homomorphism R, — T$, whose image is the Z,-subalgebra
generated by the Ty, for all ¢+ Np. This completes the proof if p | N.

Step 3. In the case that p { N, show that the image of Ry, — T% contains U,
and U, '. This shows both that Ry — T is surjective and that Tf is
generated as a Zy-algebra by T, for ¢{ Np.

Proof of Step 1. Let f € ¥. Then (pf) = D, so ¢(ps) induces a map Rp — Oy.
For each prime ¢ { Np, we have Tr(ps(Frq)) = aq(f), so Rp — Oy sends Trp, (Frg)

to aq(f).
In order to show that Rp — Oy factors through RY;, we prove that ¢(py) and

pr are USY by verifying local conditions, as per Definition m
e For ¢ | N with ¢ # p, pflc, is USy* by Lemma 3).
elf p{ N,orifp| N and f is old at p, then py|g, is finite-flat by Lemma
4a). Also, when p | N, this implies that pf|c, is US;” by definition if

¢p = +1 and by Corollary if e, = —1.
e If f is new at p, then ¢, = —1 and py|q, is US;1 by Lemma 4b). O

Proof of Step 2. By construction, the map Ry, — Z, ® @f Oy sends Trpe (Fry) to
(14 ¢, D aq(f)), which, by (2.3.4), is the image of Tj. O

Proof of Step 3. Let T € I, be an element such that w(7) # 1. Let & = Kcyo(T) €
Zp, so that 1 —xz € Z;. Let 0, € G) be the element defined in and let
% = Keye(0p). By Lemma 4), we see that Tr(pf(0,)) = za,(f) ™' + ap(f) and
Tr(ps(T0p)) = zza,(f)~! + ap(f). Hence we have

1

ap(f) = 7—1 (mTr(pf(op)) - Tr(pf(TJp))) and

ap(f)! = —— (Te(ps(op)) — Tr(ps(r0y)))-

Z— Xz
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We see that U, is the image of — (xTer (0p) — Trpe (T0p)) and U, ' is the
——(Trpe, (0p) — Trpe, (TO'p)). Since T¢ is generated by Tj for ¢ { Np
along with T, = U, —i—pUljl, we see that Ry, — T is surjective. ]

image of

4.2. Computation of (RS,)™?. In this section, we will frequently make use of the
elements o; and ~; defined in We denote by MPPat the maximal p-primary
quotient of a finite abelian group M.

Consider the group Gal(Q({y)/Q)PP?**. We have isomorphisms

Gal(Q(Cn)/Q)P P —= HGal (Ce) QPP = HZp/

Since Q(¢r,)/Q is totally ramlﬁed at ¢;, we can and do choose the second isomor-
phism so that the image of v; is (0,...,0,1,0,...,0) (with 1 in the i-th factor). We
define j to be the j-th fac_tor of the image of o;, so that o; — (o, al, ..., al) (we
can and do assume that o} = 0).

Remark 4.2.1. Note that if ¢; = 1 (mod p), we may choose a surjective homo-
morphism log,, : (Z/{;Z)* — F, such that log, (£;) = o} (mod p). By abuse of
notation, we denote by log, = logzj a Fp-valued character of Gig,s produced by

composition with the canonical surjection Gg,s — Gal(Q((r,)/Q) = (Z/4;)*.
This isomorphism determines an isomorphism of group rings

[1z/ - I)Zp] = Zplyos - yrl/ (] — 1)

=0

Zp[Gal(Q(¢n) / QPP = Zy

where v; = v, (¢; — 1), and where the second isomorphism sends y; to the group-like
element (0,...,0,1,0,...,0) (with 1 in the i-th factor). Let

(=) : Gos = (Zolyo - 0]/ (W = 1)
be the character obtained by the quotient Gg s — Gal(Q(¢xn)/Q)P P followed by
this isomorphism. Note that

(vi) = vi, (0i) = H y;x]
j=0

Let RE (Keye) (resp. R (Keye)) be the quotient of the finite-flat global deforma-
tion ring Raat (resp. ordinary global deformation ring Royq) defined in §3.9.1] (resp.
§3.9.2) by the ideal generated by the reducibility ideal along with {Dp(y) — Keye(7) :

v € Gg,s}. That is, we are insisting that the determinant is keye.

Lemma 4.2.2. The surjection Rorq — Raat induces an isomorphism Rg‘;‘j (Keye) =
Rred(ncyc). Moreover, they are both isomorphic as rings to

flat
Zolyos- -yl /(0 = 1)

and the universal reducible pseudorepresentation pulls back to D™ = Q/J(licyc<—>71@
(—)) via these isomorphisms.

Proof. The quotient map Ro.q — Rgat comes from the first part of Corollary
and the two rings differ only in the local condition at p. After imposing the re-
ducibility and determinant conditions, the universal pseudodeformations both have
the form 1/1(/<;CyCX*1 @) for a character x that deforms the trivial character. By the
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latter parts of the corollary, the finite-flat and ordinary conditions on such pseudo-
deformations are identical. The last statement is proven just as in [WWE20| Lem.
5.1.1]. O

Let Y; =y; — 1.
Lemma 4.2.3. There is an isomorphism
(R =2 Z,[Yy,...,Y,]/a
where a is the ideal generated by the elements

T

Y2 (- )Y (e + )Y | J[Ja-aly) -1,
j=0

fori =0,...,r, where & € Z, is any lift of o] € Z,/({; — 1)Z, (note that a is
independent of the choice of this lift).

Proof. We consider (E§)™! = Ef ®g:, (Ry)™. We write the base-change of

pS to this algebra as p®d, for simplicity. Write (=) : Gg.s — ((R§)™4)* for

the composite of (=) with the quotient RE$(keye) — (RS )™Y, which exists by
Proposition (We use R4 (Keye) even in the ordinary case, in light of Lemma

12.2])

First we show that the map RS (Keye) — (RS)™ factors through Z,[Yo, . .., Y, /a.

We can write p™d in GMA notation as

red _ "fcyc@_1 i )
' ( : <—>>

Since V;,jed (i, vi) = (p™4(7:) — 1)2 = 0 in (ES)™4, we see that Y? = 0 in (R§,)"9.
Since (1 +Y;)?" — 1 = 0, this implies that p*Y; = 0 in (R%)™. Moreover, by
Lemma if ¢, = +1 and v; > 0, then p™d(y;) = 1; for such i, this implies that
Y; =0 in (R%)™. We can rephrase this as (e; + 1)Y; = 0 for all 4.

From now on, consider i such that ¢, = —1. Already, we see that
T i T
a’ ~i
=" = TTa+ayy)
j=0 §=0

Since V;fed (vi,0:) = (P4 (v:) — 1)(p%(0;) — 1) = 0 in (ES)™4, we obtain

() = D(loy  —1)=0, () —1({on—1)=0.

These imply

T

T
0=Yi [ [[a-avy)-1|=vi|[[a+a)y;) -1
§=0 §=0

However, this last equation is redundant because

T T T

-T[a+avy ) [ [Ia-alv) -1 [[a+ay)-1| (mod Y§,...,
j=0 Jj=0 j=0

Y2

A

).
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This shows that R4 (keye) — (RG)™¢ factors through Z,[Yo, ..., Y.]/a. It re-
mains to verify that the pseudorepresentation D : Gg,s — Z,[Y0, ..., Y,]/a defined

by ¥(keye(—) @ (—)) is US§. This is checked easily. O
5. THE CASE e = (—1,1,1,...,1)

In this section, we consider the case where ¢¢ = —1 and ¢; = 1 for 0 < i < r.

Without loss of generality, we can and do, for this section, assume that the primes
{€;}7_, are ordered so that ¢; = —1 (mod p) fori=1,...,s and ¢; Z —1 (mod p)
for s < i < r. Here s is an integer, 0 < s < r. The most interesting case is s = r,
and, in fact, we immediately reduce to this case.
5.1. Reduction to the case s = r. Let N(s) = [[]_ ¢ and €(s) € {£1}*!
be defined by €(s)g = —1 and €(s); = 1 for 0 < ¢ < s. There is a natural map
Ty — Tj\(/?l) by restricting to the space of forms that are old at ¢; for s < ¢ < r.
There is also a natural surjection R — Rj\(fz)’ since p;([‘zi) is unramified (resp.
finite-flat) at ¢; when ¢; # p (resp. ¢; = p) and s < i < 7.

Lemma 5.1.1. The natural map RS — Rj\(,Z) is an isomorphism. Moreover, if

the map Rj\(r?i) —» ’]I‘j\(,‘z)s) is an isomorphism, then the surjections RS — T4 and

TS — ']I‘j\(,?)s) of Proposition are isomorphisms.

Proof. The isomorphy of Rf — R;(,Z) can be rephrased as saying that, for all
s < i < r, pS is unramified (resp. finite-flat) at ¢; if ¢; # p (resp. if ¢; = p).
This follows from Lemma [3.4.5] and For the second statement, consider the
commutative diagram of surjective ring homomorphisms

Ry Ty

P :

RE(S) R TE(S)

N(s) N(s)®
5.2. The case s = r. Now we assume that s = r (i.e. that ¢, = —1 (mod p)
fori =1,...,7r). We write J™ C R for the augmentation ideal, and Jred =

ker(Ry — (R%)™). We have the following consequence of Wiles’s numerical
criterion [Wil95) Appendix].

Proposition 5.2.1. The surjection Ry, — T is a isomorphism of complete in-
tersection rings if and only if

r
#Jmin/Jmin2 < pvp(éo—l) . Hpvp(&:-‘rl).
=1

If this is the case, then equality holds.
Proof. The surjection comes from Proposition Note that

prto=h. HPUP(ZFH) = ##Lp/ao(E)ZLyp.
i=1
The proposition follows from Theorem and the numerical criterion, as in
[WWE20, Thm. 7.1.1]. (]
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Lemma 5.2.2. There is an isomorphism
Juin ygred =7, /(0y — 1)Z,
sending d, — 1 to 1, and J™® 2 cogred,
Proof. By Lemma [4.2.3] we have
(Ry)™ = Zp[Yo] /(o — 1)Y0, Y5),

and we can easily see that d,, — 1 maps to Yy and generates the image of Jmin
Since Y = 0, we have the second statement. (]

Lemma 5.2.3. There is a surjection

Zp/(fo — 1)Zp D (@ Zp/(& + 1)Zp> —» Jred/Jmin Jred
i=1
given by e; — by co, .
Proof. By Lemma we have surjections
Zp — BY™™, 1 by,

and

i=1

By [BCQ9, Prop. 1.5.1], in any A-GMA E = (4 &), the structure map B&,C — A
has image equal to the reducibility ideal of E. Applying this to the Ry -GMA Ef%;
of we have an Ry-module surjection By ®gs, Cy — J red " Tensoring this
by RS, /J™n = Z,, we have a surjection

Zyp/(bo — 1)Zp & (@ Zp/ (i + I)Zp> - O™, e ey,

(5.2.4) Bf\}min ®z, C]E\’,min — gredy min gred b @ ¢y be.
Combining these, we have the lemma. (I

Lemma 5.2.5. The element by,cy, € R% is in Jmin?,

Proof. Since VP%UV (Y0,70) = (p5(70) — 1)2 = 0, we see that (a,, — 1)> + b,,cy, = 0.
Since a,, — 1 € J™"  we have the lemma. O

We have arrived at the main theorem.

Theorem 5.2.6. Let N = {oly---4, and ¢ = (=1,1,...,1). Then the map
RS — TS is a isomorphism of augmented Zy-algebras, and both rings are complete
intersection. The ideal J™ is generated by the elements by c,, fori = 1,...,r
together with d., — 1. There is an exact sequence

(5.2.7) 0= P zZp/ (i + 1)y — I/ = L,y [ (b — 1)Z,, — 0.
i=1

Proof. By Lemma there is an exact sequence
(5.2.8) 0 — Jredymin? _y ymin g min® g g0 1)7, 50
Combining Lemmas [5.2.3] and we see that there is a surjection

(5.2.9) Bz,/(ti+ )T, — T /T
=1
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given by e; — by, cy,. This shows that

.
#Jmin/Jmin2 < pvp(éo—l) . Hpvp(lﬁ-l).
i=1
By Proposition [5.2.1] this shows that Ry — T is an isomorphism of complete
intersection rings, and that this inequality is actually equality. This implies that
(5.2.9)) is an isomorphism. Using Lemma and Nakayama’s lemma, this shows
that J™™ is generated by the stated elements. Since J™" maps isomorphically

onto I¢, the desired sequence follows from ([5.2.8)). O

6. THE CASE ¢ = (—1,—1)
In this section, we assume that » = 1 and also that e = (-1, —1).

6.1. No interesting primes. If ¢; # 1 (mod p) for i = 0,1, then there are no
cusp forms congruent to the Eisenstein series.

Theorem 6.1.1. If¢; #1 (mod p) fori=0,1, then TS = Z, and ']I‘;’]O =0.

Proof. 1t is enough to show that R§, = Z,. By Lemma we have Ry = 7,
and by Lemma we have C§ = 0, so J™4 = 0. This implies RS, = Z,. O

6.2. Generators of Bj;. Since nothing interesting happens if there are no inter-
esting primes, we now assume that ¢, = 1 (mod p). We emphasize that, in this
section, we do not assume that £; # p. Recall the notation a,, b;,c,,d, for 7 € Gg,s

from (3.9.1) and the elements ~;,0; € Gg,s from §1.12]

Lemma 6.2.1. Assume that {1 is not a p-th power modulo £y. Then the subset
{byy, b0, } C By generates By as a RS -module.

Proof. We give the proof in the case 1 = p; the case £ # p is exactly analogous,
changing ‘ordinary’ to ‘finite-flat’ everywhere. Because B™I surjects onto B
and by Nakayama’s lemma, it is enough to show that the images lf)ord’707 Bord,go of
bord,~os bord,oo i BRI /pBMiN generate BN /pBmin,

Using b;, b; defined in and the lemmas there, we know that {l;ordﬁo, Bordm}

is a basis for B2 /pB™in and by (bord,y;) = O1j for j = 0,1. Hence it is enough to
show that b; (l_)ordygo) # 0. As in the proof of Lemma|3.10.3} the fact that w(og) = 1
implies that bl(Bord,gO) = b1(0p). Because {1 is not a p-th power modulo £y, class

field theory implies that by (og) # 0. O
Proposition 6.2.2. Assume that {1 is not a p-th power modulo £y. Then
in 2
b’YoC’Yo’ b'ch’}’l? b’YlC’Yo € Jmn
If, in addition, ¢, =1 (mod p) and ly is not a p-th power modulo £y, then by, c,, €

.2
JMT as well.

Proof. The proof for by, cy,,by, cy, is just as in Lemma If we prove that
by cy, € J min2, then we get by,cy, € J™ % in the second statement by symmetry.

So it suffices to prove b, ¢y, € J™0 7.
Let X = a,, — o and W = a,, — 1, and note that X,W € J™_ From the
(1,1)-coordinate of the equation V;{f (00,70) = 0 defined in (3.4.2), we see that

XW + bgycyy = 0. In particular, by c,, € J™" 2
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By Lemma [6.2.1, we know that b,, is in the R$-linear span of b,, and b,,.
Because both by, cy, and by, c., lie in J™in 2, 50 does by, Cy,- O

6.3. One interesting prime. We assume that {p =1 (mod p) and ¢; Z 1 (mod p)
(including the possibility that ¢; = p). There is a natural surjective homomorphism
T% — Te, by restricting to forms that are old at ¢;.

Theorem 6.3.1. Assume that o =1 (mod p), that ¢; Z1 (mod p), and that ¢; is
not a p-th power modulo £y. Then the natural map TS — Ty, is an isomorphism.
In particular, I¢ is principal, TS and ']I‘R’,O are complete intersections, and there are
no newforms in So(N )&

Proof. Just as in the proof of Lemma it suffices to show that the map R$;, —
Ty, is an isomorphism. By Lemma there is an isomorphism

R 2 2, [Yo] (Y, (b — 1Y),

where the image of J™" is the ideal generated by Y. This implies that J™® *c
J**4 and that there is an isomorphism
Z,/(bo — 1)y —= J™0 /4 1 Y.

On the other hand, we know that J*¢ is generated by the set {by,Cyy, by, Cyo } by

Lemma and the surjection . By Proposition we see that this set
is contained in J™" . Hence Jred ¢ jmin 2, and so Jred = jmin?,

Now we have #J™min / jmin 2= p»(®=1) and, by the numerical criterion (Propo-
sition , RS — Ty, is an isomorphism. ([l

Remark 6.3.2. The assumption that ¢; is not a p-th power modulo ¢, is necessary:

see the examples in §1.10.2

6.4. Two interesting primes. We consider the case ¢; =1 (mod p) for i =0, 1.

Theorem 6.4.1. Let N = (¢ and e = (—1,—1). Assume that £; =1 (mod p) for
1= 20,1 and assume that neither prime is a p-th power modulo the other. Then the
map RS, — Tq is an isomorphism of complete intersection rings augmented over
Zy, and there is an isomorphism

16/162 = Zp/(€0 - 1)Zp ® Zp/(el - 1)ZP'
Proof. By Lemma we see that there is an isomorphism
Ry = 2, [Yo, 1]/ (Y5, o1, Y7, (b — 1)Yp, (61 — 1)Y1)

and that the image of J™" is the ideal generated by (Y, Y;). In particular J™® 2 c
Jred and
Jmin jgred 2 7, /(g — 1)Ly & Ly ) (1 — 1)Ly,

Moreover, by Proposition and Lemma , we see that J©d ¢ Jmin? 5o we
have

. .9 .
Jmin jmin® — gmin j yred o0 7 /(00 — 1)Z,, © Zp /(b1 — 1)Zyp.
In particular, #J™in / jmin 2 _ pvrlo=1)Fvp(br=1)
Now the numerical criterion of Proposition implies that Rf, — T% is a
isomorphism of complete intersection augmented Z,-algebras. It follows that I =
J™n and so the description of Ie/I62 also follows. O
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Remark 6.4.2. Again, the assumptions are necessary. See the examples in §1.10.3
Definition 6.4.3. We say there are no newforms in Ma(N;Z,)5; if
Ma(N; Zp) s = Ma(lo; Zyp)ris + Ma2(€1; Zy)wis,

where the later are considered submodules of the former via the stabilizations in
§2.1.5 Otherwise, we say there are newforms in Ma(N;Z,)%;s-

Theorem 6.4.4. Let N = {yl; and e = (—1,—1) and assume that ¢; =1 (mod p)
fori=0,1. If there are no newforms in Ma(N;Zy)%;s, then TS is not Gorenstein.
In particular, if neither prime {; is a p-th power modulo the other, then there are
newforms in Ma(N;Zp)fe-

Proof. The second statement follows from the first statement by Theorem [6.4.1
Now assume that there are no newforms in Ms(N;Zy)5;,. We count that

rankz, (M2(N;Zy)g;s) = rankz, (Ma(€o; Zy)gis) + rankz, (Ma(f1; Zp )Eis) — 1
(by Lemma [2.3.1] for example).

We claim that, under this assumption, we have an isomorphism TS, — Ty, x Zp
Te,. To see this, consider the commutative diagram of free Z,-modules, where
the right square consists of canonical surjective homomorphisms of commutative
Z,-algebras and the rows are exact:

0 a TS, T, 0
0 I Ty, Z, 0.

By Lemma it is enough to show that a; — Iy is an isomorphism. From this
diagram and the above rank count, we see that rankz, (a;) = rankg, (lp). Thus it
suffices to show that the Z,-dual map is surjective. By duality , the dual
map is identified with the map

Mo (Co; Zy)wis ) ZpEa ey — Ma(N; Zp)fis/Ma(£1; Zy)ris

induced by stabilization, which is surjective by our assumption Ma(N;Zp)5 =
My (lo; Zy)mis + M2 (€15 Zy)gis. This proves that a; — I is an isomorphism.

Using this isomorphism T¢, = Te, Xz, Te, and Mazur’s results E} on the
structure of Ty,, it is then a simple computation to see that

~/PTy = Fp[yo,yl]/(y(6)0+1ayfl-i_l,yoyl)a for some eg, €1 > 0.
Thus Soc(TS /pTS) = Fpye® @ Fpypt. By LemmalC.1.3] T is not Gorenstein. [

7. GENERATORS OF THE EISENSTEIN IDEAL

In this section, we prove Part (4) of Theorem about the number of gen-
erators of the Eisenstein ideal, as well as Theorems and [1.7.1} about specific
generators.
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7.1. Determining the number of generators of I when ¢ = (—1,1,...,1).
In this subsection, we prove Part (4) of Theorem Assume we are in the setting
of that theorem, so e = (—1,1,...,1). Recall the fields K; of Definition |3.10.4

Theorem 7.1.1. Assume that ¢; = —1 (mod p) for i = 1,...,r. The minimal
number of generators of I¢ is r + 0 where
(7.1.2) 5= 1 if by splits completely in K; fori=1,...,r
0 otherwise.
This immediately implies Part (4) of Theorem by Lemma For the
rest of we assume that » > 0 and ¢; = —1 (mod p) for i = 1,...,r, and we

use J to refer to the integer (7.1.2).

7.1.1. Outline of the proof. By Theorem we see that RS, — T is an isomor-
phism and that it induces an isomorphism J™* = ¢, Hence we are reduced to
computing the number of generators of J™" . Moreover, implies that this
number of generators is either r or » + 1, and we are reduced to showing that it is
r + 1 if and only if the splitting condition in holds.

We do some initial reductions in We use class field theory to show that the
splitting condition in is equivalent to the vanishing of certain cup products in
Galois cohomology. The number of generators of J™" is the same as the dimension
of the tangent space of RS /pR%, and this is related to cup products. Explicitly,
Bellaiche proved in [Bell2, Thm. A] that the the tangent space t; of Rp/pRp
(where Rp is the unrestricted pseudodeformation ring of D — without any local
conditions) fits in an exact sequence

b’ ®@c’'—(b'Uc’,c'ub’)

tp — Hl(FP(l)) OF, HI(FP(*I)) H2(FP) @ Hz(]Fp)-

In other words, the tangent space is larger as more cup products vanish. We show
that this immediately implies one implication of Theorem if the number of
generators of J™™ is r + 1, this forces the tangent space of tp to be large, which
can only happen if the cup products vanish.

The other implication is more delicate. If we assume that the cup products van-
ish, then Bellaiche’s theory only tells us that the tangent space of the unrestricted
deformation ring is large. We have to show that these first-order deformations can
be made to satisfy the right local conditions at primes dividing Np. To do this, we
construct in a particular GMA representation py; that realizes Bellaiche’s
tangent space computation, and show that pys satisfies the US%; local conditions.
In we show that pps indeed realizes the tangent space of RS, /pRY, and this
completes the proof.

7.1.2. First reductions. Note that because m = J™* + pRS, C R is the maximal
ideal, we have
Jmin /mein ~ m/(p, m2)'

By Nakayama’s lemma, the minimal cardinality of a generating subset of J™* is
dimg, m/(p, m?). By Theoremwe have I€ = J™ 50, to prove Theorem
it suffices to show that dimg m/(p, m?) = r + §, and this is what we will prove.

Recall the notation of §3.10} in particular, the class by € H'(Z[1/Np],F,(1)) and
the representing cocycle by, as well as the classes co, . . ., ¢, € H(lp) (Z[1/Np|,F,(-1))
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(note that cq is only defined if /o = 1 (mod p)). The starting point is the following
proposition, which is proven in Appendix [B.

Proposition 7.1.3. Leti € {1,...,r}. Then £y splits completely in K; if and only
if {o = 1 (mod p) and by U ¢; vanishes in H*(Z[1/Npl,F,).

We can now prove one implication of Theorem [7.1.1

Proposition 7.1.4. Suppose that the minimal number of generators of I€ is r+ 1.
Then § = 1.

Proof. By Theorem we see that minimal number of generators of 1€ is v+ 1
if and only if /o =1 (mod p) and the images of the elements b, c,, fori =1,...,r
in m/(p,m?) are linearly independent. In particular, for each i, the image of by, c.,
in m/(p, m?) is non-zero. Fix such an i, and let (writing F,[e] for F,[e]/(g?))

o Ry /(p,m?) - Fyle]
be a ring homomorphism sending b,,c,, to .
Let B = ("p¥ ") be the F,[s]-GMA with data (F,,F,,m) where m : F, x
F, — Fp[e] is the map (z,y) — zye. By Lemma |3.10.3, we have a homomorphism
of GMAs A : E§, — E given by

A= « BO
o 61 « ’

Let Dg =9(Aopy): Gg,s — Fyle] be the corresponding deformation of D. Then
D 4 contributes a non-zero element to the tangent space tp of Rp/pRp. Examining
[Bell2], the image of D4 under ¢ in the exact sequence of [Bell2, Thm. A]

b’ ®c’+—(b'uc’,c'ub’)

tDéHl(Fp(l)) ®Fp Hl(Fp(_l)) H2(Fp)@H2(Fp)

is bg ® ¢;, and hence by Uc¢; = 0. Since this is true for all 7, Proposition implies
that § = 1. O

The remainder of the proof of Theorem relies on the following construction.

7.1.3. Construction of a maximal first-order pseudodeformation. Let H be the ker-
nel of the map
H{y (Z[1/Np),Fy(—1)) — H*(Z[1/Np,Fp) & H' (Iey, Fp(—1)),
x> (boUw, z(1,).
Lemma 7.1.5. If {; =1 (mod p) and § = 0, then bg U ¢; # 0 for some i. In that

case, there are elements o; € F), such that the set {c; —ajc;} forj € {1,...,r}\{i}
is a basis for H. Otherwise, the set {c1,...,c.} is a basis for H.

Proof. The first statement follows from Proposition Recall that ¢; is ramified
at g if and only if ¢ = 0, so H is contained in the span of the linearly independent
set {c1,...,¢.}. Since

1 when/fy=1 (mod p)
0 when ¢y Z1 (mod p),

the lemma follows. O

Lemma 7.1.6. If {o # p and h € H, the image h|g, € H'(Qq,,Fy(—1)) is zero.

dims, (201891, F,) = {
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Proof. If £y # +1 (mod p), then H*(Qg,,F,(—1)) = 0. If {5 = —1 (mod p), then
HY(Qq,,Fp(—1)) = H(Qg,,F,(1)), and so this follows from Lemma Now
assume ¢y = 1 (mod p). Then, since h U by = 0 in H(Z[1/Np],F,), by is ramified
at £y, and h is unramified at £, Lemma implies that h|@0 =0. O

Construction 7.1.7. We construct a cocycle C : Gg,s — H*(—1), where H* =

Homy, (H,F,) with trivial Gg, s-action, and a cochain F': Gg s — H* such that:

1) Clg, =0,

) if £o # p, then C|g,, is a coboundary,

) dF = by — C,

) F|Ip =0,

) For any cocycle h whose cohomology class h is in H, and any 7 € Gg,g
with w(7) = 1, we have C(7)(h) = h(7).

(

(2
(3
(4
(5

Proof. For any Gg s-module X, let
Zly (Z[1/Np), X) = {(a,2) € Z(Z[1/Np], X) x X | a(r) = (1 — D)z, VT € G,}.

There is a surjection Z(lp) (Z[1/Np],Fp(-1)) — H(lp)(Z[l/Np},Fp(—l)) sending (a, z)

to the class of a. Choose a linear section s : H — Z(lp) (Z[1/Np],F,(—1)), and write
s(h) = (s(h)1,5(h)2) € Z*(Z[1/Np],Fy(—1)) x Fp(-1).

Define an element (C’,z) € CY(Z[1/Np], H*(-1)) x H*(-=1) by C'(7)(h) =
s(h)1(7) and z(h) = s(h)s for h € H. One observes (C’, ) € Z(lp)(Z[l/Np], H*(-1)).
Then let C' = C’ — dz, so that C|g, = 0 and (1) holds. We also see that (5) holds,
since the value B(T) is independent of the choice of cocycle. Computing with dual
vector spaces, it is easy to see that byUC = 0 in H*(Z[1/Np], H*) and that Lemma
implies (2). )

Finally, to see (3) and (4), let y be any cochain such that dy = by — C. Note
that the restriction map

HY(Z[1/Np|, H*) — H*(I,, H*)
is surjective, and that, since H* has trivial action, we may and do identify a coho-
mology class with its representing cocycle. Since C|;, = 0 and dy = by — C, we
see that y|;, € H'(I,, H*). Hence there is a cocycle y' € H*(Z[1/Np], H*) with
Y'l1, = yl1,. Letting F' =y — ¢/, we have dF = dy = by — C and Fl|;, =0. O

Let M = H*©Z/(p, 4o — 1), and let F,[M] be the vector space F,, & M thought
of as a local Fp-algebra with square-zero maximal ideal M. We write elements of
F,[M] as triples (z,y,2) with x € F,, y € H* and z € Z/(p, {o — 1)Z.

Let Eys be the Fy[M]-GMA given by the data (F,, H*,m) where m is the ho-
momorphism

m:F,®p, H* =~ H* = H* ® {0} C M — F,[M].
Let par : Gg,s — Ej; be the function
w(T)(1, F(7), log, (7)) bo(7) )
7.1.8) pup(T) = < 0 ~ .
(L8 (@) RO WLiy)C) - B, ~log, ()

Then pjs is a homomorphism by Construction Let Dy : Gg,s — F,[M]
denote the pseudorepresentation Dy := ¥(par).

Lemma 7.1.9. pys satisfies USy.
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Proof. As per Definition we verify US% by proving that pas|q, is finite-flat
if £y # p, and that pys|q, satisfies condition US}* for all £ | N.

If 4y # p, pula, is finite-flat: For this, we will make frequent use of the notion
of a Cayley—Hamilton module, developed in [WWEI9, §2.6].

Let EY; be the F,[M]-sub-GMA of Eys given by Ej, = (]FPEM] FP]F[JM] ). Since
Cla, = 0, we see that the action of G, on Eys via pys factors through Ej;. Hence
(pule, + Gy = Ey;, By, D By — Fy[M]), which we denote by pf, , for
convenience, is a Cayley-Hamilton representation of G,. Then Ejs is a faithful
Cayley—Hamilton module of p’M7p; by [WWEIL9, Thm. 2.6.3], it is enough to show
that pj, is finite-flat.

Consider the extension & ~defined by bo:

0—Fy(1) — &, — F, —0,

which is finite-flat by Kummer theory. Let W,, = F,[M] and W7 = F,[M] with
G, acting by the characters w(1, F,log, ) and (1, —F, —log,, ), respectively. Since
F|1, and log,, |1, are zero, W, and W are finite-flat. We have exact sequences of
F,[M][G,]-modules

0—M(1) =W, =Fy(1) =0, 0—-M—W; =F,—0.

Let [ : F, < M be an injective linear map. This induces a injection F,(1) — W,
of Fp[M][Gy]-modules. Taking the pushout of & by this injection, we obtain an
exact sequence

0— W, —=& ,—F,—0.

0,W

Pulling back this sequence by W; — IF,,, we obtain an exact sequence
O—>Ww—>850w1—>W1—>0.

Following [WWE20, App. C], we see that &4y w1 18 finite-flat and that there is an

isomorphism &, = F,[M ]®2 under which the action of G, is given by

w(1,Flogy) (0,00 -1(1))
(7.1.10) < 0 o (1,—FO,—logeo))

: Gp = GLy(F,[M]).
GP
We now use this isomorphism &, = F,[M ]®2 as an identification.
We have an injective I, [M]-GMA homomorphism I : Ey; — Endy, (a1 (5, 1) =

Max2(Fp[M])) given by
) < ide oy )
0 ide,pn /-

By 7 we see that action of Gp-action on Sgo,w,l factors through I’. In other
words, 5507%1 is a faithful Cayley—Hamilton module of PM,p Since 5507%1 is finite-
flat, py, is finite-flat by [WWEL9, Thm. 2.6.3].

If /o = p, then py|g, is ordinary: This follows from Proposition and
Construction [L.T.7]

If {5 =1 (mod p), then pM|G£0 is US[OI: Since £op = 1 (mod p), w|G2O =1. By
Construction we have Clg, = 0. Then, for any 0,7 € Gy,, we have

Vpblor) = lpouto) —wlo)otr) -0 = (5 PO ) (5 M0 ) <o

€2 €4
where ¢, € M C F,[M].
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If {o # 0,1 (mod p), then pylg,, is USZ}l: By assumption, we have M = H* and
log,, = 0, so we write elements of IF,,[M] as pairs (z,y) with z € F, and y € H*.
Since C|g,, is a coboundary, there exists z € H* such that C(1) = (w™'(7) — 1)z
for all 7 € Gy,.

Let py; : Gg,s — EJ; be the composite of pps with the automorphism Ey = Epy
given by conjugation by (19) € E};. By explicit computation, we see that

/ . (A)(]., Fa) BO
PM= W= (w=1)2) (LE) )’
where F, = F—w ™ 'byz and Fy = byC — F+wbpz; in particular, the (2, 1)-coordinate
of P§\4|Geo is zero. This implies that Fa|G£0 , Fd‘Gzo : Gy, — H* are homomorphisms.

Because £y £ 0,1 (mod p) and H* has exponent p, they are unramified.
For any (o,7) € Gy, x Iy,, we compute that

on=(5 2)(34) o

where e € M. Equivalently, V; 1 = 0. A similar computation shows that V, (o, 7) =
0 for (o,7) € Iy, X Gy,.

If /| N and { # {y, then pys|g, is US/": In this case we have £ = —1 (mod p),

and hence w|g, = A(—1). Since ¢ # {3, we have bg|;, = 0, so bylg, = 0 by

Lemma Hence there exists z € F, such that by(7) = (w(r) — 1)z for all

7 € Gy. Exactly as in the previous case, we can show that V;*(o,7) = 0 for all

PM

(0,7) € Gy x Iy U Iy x Gy by conjugating pa by (§%) € Ej;. O

7.1.4. End of the proof. We will show that D) is, in a sense, the universal USj
first-order deformation of D.

Proposition 7.1.11. The pseudodeformation Dy of D induces an isomorphism
Riy/(p,m?) = Fy[M].

Proof. By Lemma pum is USSy, so Dy is also US%y by Definition [3.8.1} and
there is an induced map EY — Ejs. This gives us a local homomorphism R$ —

F,[M], and any such map factors through RS /(p, m?) — F,[M]. Let f denote the
restriction m/(p, m?) — M. It suffices to show that f is an isomorphism.

Assume that the GMA structure on EY is chosen so that ES, — Ejs is a mor-
phism of GMAs (such a GMA structure is known to exist by [WWEI19, Thm. 3.2.2]).
By Theorem we see that the elements b,,c,, for i = 1,...,r together with the
element d.,, — 1 generate m/(p, m?), and, moreover, if £y # 1 (mod p), the elements
by,cy, for i =1,...,7 are a basis.

By construction, we see that f(by,cy,) = (0,b(70)C(7),0) = (0,C(v;),0), and
that f(d,, — 1) = (0,0, —log,, (70)) (which is non-zero if £y = 1 (mod p)). By
Lemma [7.1.13] below, f is surjective.

Now we count dimensions. By Theorem and Proposition we have

. r ifé=0
dlm]pp(m/(p’m2)) = { rorr+1 ifd=1.
By Lemma we have

(7.1.12) dimg, (M) = { " ifo=0

r+1 ifd=1.

Since f is surjective, this implies that f is an isomorphism in all cases. O
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Lemma 7.1.13. Let 7i,...,7. € Gg,s be any elements such that:

e w(r)=1fori=1,...,r, and

o Gi(1) =0 foralll<i,j<r.
If6 =1 orly £ 1 (mod p), then the set {C(7;) : i=1,...,r} is a basis for H*.
Otherwise by Uc; # 0 for some j and the set {C(r;) : i=1,...,7,i % j} is a basis
for H*.
Proof. Indeed, if ¢; — acy, € H for some o € Fy, and j,k € {1,...,r}, then by
Construction [7.1.7(5) we have

C(’Ti)(cj' - ack) = éj(TZ') — aék(n) = aij — aﬁik.

Using the explicit basis of H constructed in Lemma the lemma follows. [J

Proof of Theorem[7.1.1. By Proposition 7.1.11L we have m/(p,m?) = M, and the

dimension of M is given by ([7.1.12). This completes the proof. ]
7.2. Good sets of primes in the case ¢ = (—1,1,...,1). In this section, we

prove Theorem [I.7.5] Recall Definition for the meaning of the set of good
primes Q.

Proof of Theorem[1.7.5. We freely refer to pps and related objects in this proof (see
(7.1.8)). Let J be the index set of Q (i.e. J ={0,...,s}, J={0,...,s}\{j} or
J={1,...,s} in the three cases of Definition respectively).

By Theorem[5.2.6] Proposition[7.1.11] and Nakayama’s lemma, it suffices to show
that the projection Y(q) of T, — (¢+1) under TS, = RS — F,[M] comprise a basis
{Y(q)}4eo of M. The conditions (1)-(6) on Q have been chosen so that:

(i) If 0 € J and qo # p, then w(Fry,) # 1 and log,, (Fry,) # 0. This follows from
(1) and (2).
(i) w(Fry,) =1 for i € J with ¢ > 0. This follows from condition (3).
(iii) bo(Fr,,) # 0 for i € J with i > 0. This follows from (4) by class field theory.
(iv) {C(Fry,) :i € J,i > 0} is a basis for H*. This follows from Lemma [7.1.13 by
(i), (5), and (6).

When ¢; # p, it is clear that Y(¢;) = Trpar(Frg,) — (¢; + 1), and we calculate:

(a) By (i), Y(q) = (0,bo(Fr,,) - C(Fr,,),0) € F,[M] for i € J with i > 0. By (iii)
and (iv), these elements form a basis of H*.

(b) If 0 € J and gy # p, then Y(qy) € Fy[M] lies in M and projects via M —»
Z/(p, o — 1) to (w(Fre,) — 1) logy, (Fry,). This is non-zero, by (i).

(¢c) If 0 € J and gy = p, we claim that Y(p) € F,[M] lies in M and maps to
log,, p # 0 under the summand projection M — Z/(p, £o—1). This follows from
the same argument as in Case gg = p of the proof in but is simpler. O

Remark 7.2.1. The reader will note that, in this proof, our conditions are used to
ensure that a certain matrix is diagonal with non-zero diagonal entries. Of course,
the necessary and sufficient condition is simply that this same matrix is invertible.

7.3. Good pairs of primes in the case ¢ = (—1,—1). In this section, we prove
Theorem We assume we are in the setting of Theorem [6.4.1

Proof of Theorem|1.7.1. By Theorem and Nakayama’s lemma, T, is gener-
ated by {T,, — (¢; + 1)}i=o0,1 if and only if their images {Y(g;)}i=01 via TS =
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RS — RS /(p,m?) are a basis of m/(p,m?). We see in the proof of Theorem
that Jred = Jmin? Ip particular, as m = J™ + (p) C RS, there are isomorphisms

R;\//(pva) = R;\}er (p) = ]FP[YOa}/l}/(}/O{YOYhle)v m/(p7m2) = (YO’Yl)a

which we use as identifications. Then D%, pulls back to the pseudorepresentation
D == " (=): Go.s — Rj\’,red (p), where, for particular choices of log,,,

Gao,s 3 7+ (1) =1+ log, (7)Yo + log,, (1)Y1 € (R /(p))*.

We see that if g; # p, then Y(¢;) = Trp(Fry,) — (¢; + 1).
Case ¢o,q1 # p. One computes that the matrix expressing {Y(go), Y(q1)} in the
basis {Yp, Y1} of m/(p,m?) = (Yo, Y1) is

( (qo — 1) logy, qo (g1 — 1)log,, 1 ) c

My(F,),
(g0 —1)1og,. o (g1 — 1)log,. ¢ 2(Fy)

which completes the proof.

Case ¢p = p. We note that the images of T, — (p + 1) and U, — 1 in I¢/mI€ are
equal, so we may replace T, — (p + 1) by U, — 1 in the statement. We recall from
Step 3 of the proof of Proposition that U, is the image under R, 5 TS
of 5 (aTr(p%)(op) — Tr(p%y)(T0p)), where 7 € I, is such that w(r) # 1 and
T = Keye(T). We compute that

T(p) = 1 1 (:cTrD(Jp) — TrD(Top)) — 1 =1logy, (p)Yo + log,, (p)Y1.

€T —

Thus, the matrix expressing {T(p), Y(q1)} in the basis {Y, Y1} of m/(p,m?) is

logg, p (g1 — 1)logy 1 )
‘ ‘ e My(F,). 0
( log,, p (q1 —1)log, @1 2(F)

APPENDIX A. COMPARISON WITH THE HECKE ALGEBRA CONTAINING Up

In order to compare our results with existing results and conjectures, in this
appendix we consider a Hecke algebra that contains the U, operators rather than
the wy operators. We prove comparison results between Eisenstein completions of
this algebra and the Eisenstein completions T%; studied in this paper. Throughout
this appendix, we drop the subscripts ‘N’ on all Hecke algebras to avoid cumbersome
notation.

Recall that we have the normalization map of Lemma [2.3.1

T Z,® | POy |,
fex

where 3, Oy were defined there. For each f € 3, there is a unique pair (Ny, f) of a
divisor Ny of N and a newform f of level Ny such that a4(f) = aq(f) for all primes

g not dividing Ny and ae(f) = —e, for primes ¢ dividing Ny. For this f, we have

aq(f) =1+ ¢ (mod my) for all ¢ { Ny.
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A.1. Oldforms and stabilizations. Just asin §2.1.5[if ¢ | N and f € S2(N/¢;Z,)
is an eigenform for all T,, with (n, N/¢) = 1, then there are two ways to stabilize f to
be a Ug-eigenform in So(N;Z,). Let ap(f), Be(f) denote the roots of 22 —ay(f)x+£.

Then fo,(2) = f(2) = Be(f)f(€2) and f3,(2) = f(2) — au(f) f(£2) satisty Upfo, =
oy(f)fa, and Usfs, = Be(f)fs,- Note that, unlike in it may happen that

ar(f) = e(f) (mod p).

A.2. The case p f N. For this section, assume p { N. Let T}, and T} be the
Z,-subalgebras of

Endz, (M2(N;Zy)) and Endg, (S2(N;Zp)),

respectively, generated by the Hecke operators Ty for £t N and U, for ¢ | N. These
are semi-simple commutative algebras (see [CE9S8] for the semi-simplicity).
For each € € € as in §1.4.2] we let I}¢ C T}, be the ideal generated by the set

{Ty = (g+1), UZ—ELQH :q{N, (| N primes}.

Note that Uy — 1 € I} if ¢, = —1 and U, — ¢ € I[§ if ¢, = 1, so the ideal I is the
annihilator of a certain stabilization of the Eisenstein series E5 1 (but generally not
E5. ~)- Let T, and ’]I‘%E denote the completions of T}, and ']I"g respectively, at the

maximal ideal (p, [}¥) C T};. Let m§; C T§, and my; € T be the maximal ideals.

A.2.1. The normalization of Tf;. Since Tf; and ’]I‘?f are semi-simple, the standard
description of prime ideals in terms of eigenforms allows us to describe their nor-
malizations, just as for T¢. For newforms f, we know that U,f = —w,f for all
¢ | N. For oldforms, we can use the stabilization formulas from and @ to
describe the eigenforms for T, in terms of the set 3. We write down the result of
this description explicitly in Lemma

We require the following notation. Let Ly = {¢ | N : £ =1 (mod p)}. For

each f € ¥ and each £ | Nﬁf, let ay(f) and Be(f) be the roots of x2 — ay(f)x + £.
Assume that ay(f) = 5 (mod p) and let Ly = {¢ | Nif : £ =1 (mod p)}. Let
O be the extension of Of generated by ay(f) and B¢(f). If £ # 1 (mod p), then
the congruence condition determines o (f) (and S,(f)) uniquely, and Oy = Oy; in
this case, only stabilizations of fa[ can appear in the completion S (N;Zy) Oy T
If =1 (mod p), then we label the two roots arbitrarily (in this situation, below,
we will use the two roots symmetrically), and @) r may be a quadratic extension of

Oy¢; in this case the stabilizations of both f,, and fs, can appear in the completion
So(N; Zy) Qo T

Lemma A.2.1. The normalization of T, is the injection
/
o (@) (@ @er))
LCLy feX \LCLy

where the primed summation in the first factor indicates that we omit the subset
L=Ly ife,=1 foralll & Ly. The map is given by

Ty = (1+ @) rcry>aq(f)res,ner,) for all gt N,
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and sending U, for £ | N as follows. In the factor T§, — Z,, for L C Ly, we have

(&g Ly and eg = —1, or
Up— 1 if {eLy—Lande =—1, or
feLande =1
and
L& Ly and ey =1, or
U— ( if teLy—Lande =1, or
feLl and e = —1

for all ¢ | N. In the factor Ty — (’jf corresponding to f € ¥ and L C Ly, we have
—€y Zf 12 | Nf
Up—ue(f) =% ou(f) if C|NJLINp gL
Be(f) if LIN,LfNy lel
forall ¢ | N.

The only part of the lemma that is not completely standard is the factor (@/L CLn Zp),
which corresponds to the Eisenstein series in My(N)%,,. For ¢ | N, if £ ¢ Ly, then
the Up-eigenvalue of any such Eisenstein series must be 6%, but if £ € Ly, then
the possible Uy-eigenvalues 1 and ¢ are congruent, and so both appear, regardless
of what ¢, is. We need to omit L = Ly in the case that ¢, = 1 for all £ € Ly
because that factor corresponds to the Eisenstein series with Uj-eigenvalue ¢ for all
£ | N, which is the non-holomorphic one.

The normalization of T?je is the same, but without the Eisenstein factor (5, - Ln Zy)

A.2.2. Comparisons. We now compare the algebras T?je and T%¢. The following
proposition gives a necessary and sufficient condition for the algebras to coincide.

Proposition A.2.2. Suppose that both of the following are true:
(1) for each f € ¥, we have Ly = 0; and
(2) T5" is generated as a Zy,-algebra by {T, : qf Np}.

Then T(" = T°. Moreover, if one of these conditions is false, then T§" # TO.

Proof. The first condition ensures that TEO and T¢Y have the same normalization,
so it is certainly necessary. The second condition is true for T¢° by Proposition
s0 it is necessary. Furthermore, if we assume (1) and (2), then T¢” and T¢°
are identified with the subalgebra of @ ;5 Oy generated by {(aq(f)s) : ¢t Np}. O

We now verify these conditions in certain cases considered in this paper.

Proposition A.2.3. Assume that {; 21 (mod p) for 0 < ¢ < r and assume that
e=(-1,1,...,1). Then TE’O =Te0,

Proof. We verify the conditions (1) and (2) of Proposition
To verify (1), assume, for a contradiction, that there is an f € ¥ with Ly # (). By

our assumptions on ¢;, we must have Ly = {{o}. Then the newform fes, (Ny;Qp)

satisfies a4(f) =1+ ¢ (mod p) for all ¢ ¥ Ny and a,(f) = —1 for all £ | Ny (since
lo { Ny by assumption). But this is impossible by a theorem of Ribet (see [BD14]
Thm. 2.6(ii)(b)]), so (1) holds.

We now turn to (2). Just as in the proof of Proposition we have a homo-
morphism R§, — ']I‘(l)]’E sending Tr(p% (Fry)) for ¢ f Np to Ty, and whose image is
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the subalgebra of TY, generated by {7}, : ¢t Np}. Note that, by (1), for each f € &
we have £y | Ny, so ug,(f) = 1. This implies Up, = 1 in TY,. Hence to verify (2),
we need only show that Uy is in the image of R§, — T%E for all ¢ | N with £ # {,.

Now fix such an ¢ and note that, by assumption, £ Z 1 (mod p) and e, = 1. Let
U € RS be the root of the polynomial z2 — Tr(p% (0¢))x + £ such that U — £ € mp;
such a U exists and is unique by Hensel’s Lemma. We claim that the image of U
in ’]I%6 is Uy. To prove the claim, it suffices to show that U ue(f) under the map
RS — Oy for each f € X.

First assume that ¢ | Ny. By [2:3.2)), Tr(ps(or)) = —(€+1). So U is sent to the
root of

2+ 0+ Dz +Ll=(z+1)(z+¢)

(that is, either —1 or —¢) that is congruent to £ modulo my. Since £ # —¢ (mod p),
we see that U is sent to —1. (Note that this shows that if £ | Ny, then £ = —1
(mod p), corroborating Lemma [5.1.1])

Next assume that £ | N and £t Ny, so Tr(ps(Frg)) = a¢(f). Then U is sent to
the root of

22 —ap(flz+ ¢

that is congruent to £ modulo my, which is cy(f) by definition.

This shows that, for f € ¥ the map Ry — Oy sends U to

{—1 if ¢]Ny
Oég(f) if EJ[Nf

which is equal to ug(f). Hence Uy is the image of U in T?je and the map R, — T?je
is surjective, verifying (2). O

The proof of the first part of the following proposition is almost identical, but
simpler, so we leave it to the reader. The second part is an application of Theorem

6.3.1}

Proposition A.2.4. Assume that N = £oly, that {1 Z 1 (mod p), and that € =
(—1,—1). Then T%¢ = T?je. If, in addition, £1 is not a p-th power modulo £y, then
T%¢ and ']1‘%’6 are both identical to the Hecke algebra at level £y considered by Mazur.

A.3. The case p | N. In this section, we maintain the notation of the previous
section, but we assume that £y = p and that e = —1 (for 0 < ¢ < r, ¢; is arbitrary).

We consider a variant T¢; of the Hecke algebra that is intermediate to T¢ and Tf;.
Namely, T¢; is the completion of the Hecke algebra generated by the Tj for ¢ f N,
together with U, and wy, for 0 < ¢ < r, at the ideal generated by p, T, — (¢ + 1),
Up — 1, and wy, — €;. Note that, as in the case of T¢, we have wy, = ¢; in T¢%. For
cach f € X, if pt Ny, we let o, (f) € O be the (unique) unit root of 2 —a, (f)z +p.

Just as in Lemma we can compute the normalization of T¢;. It is the
injective map

Ty — Zp ® | @ O
fex
sending T;, to (14¢, aq(f)s) for ¢ f N and U, as follows. The component T}, — Z,,
sends U, to 1. The component T%, — Oy sends U, to u,(f) defined by
1 if p | Nf
u = .
p(f) { ap(f) if  pt Ny
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Proposition A.3.1. With the assumptions that £y = p and ¢g = —1, we have
Ty = T¢ as subalgebras of Z, © (@fez Of) and T;O = T as subalgebras of

(Gafez Of)'

Proof. The proof is just as in the proof of Proposition so we will be brief.
We have a map Ry — T% and we need only show that U, is in the image of this
map. Now choose g, € G, to be a Frobemus element such that w(o,) =1, and let

Ue RS be the unique unit root of % — Tr(p% (0,,))z + p. We see that U maps to
U,. O

Corollary A.3.2. Let N = pl with £ =1 (mod p) and e = (—1,—1). Assume that
p is not a p-th power modulo £. Then the FEisenstein ideal of TS is generated by
Up, — 1. In particular, Ty and ']I‘?Lf are Gorenstein.

Proof. Combine the previous proposition with Theorem and Mazur’s good
prime criterion (§1.1). O

APPENDIX B. COMPUTATION OF SOME CUP PRODUCTS
B.1. Cohomology calculations.
Lemma B.1.1. If¢#£0,1 (mod p), then the restriction map
H'(Qe,Fp(1)) — H' (I, Fy(1))
18 injective.
Proof. Under the isomorphisms of Kummer theory, this map corresponds to the
map Q) ® F, — Q)" ® F,, induced by the inclusion. Since ¢ # 0,1 (mod p),

Q) @F, is generated by the class of ¢, which maps the class of ¢ in Q)" ® F,,
which is nonzero. g

Lemma B.1.2. Let N = {y--- £, be squarefree and assume p{ N. Let V = {i
p| (¢; —1)}. The local restriction maps induce an isomorphism

HA(2{LNDLFy) < @) B (@ Fy) = ) H(Qu, B

i=1 i€V

of vector spaces of dimension #V .

Proof. Just as in [WWE20| Lem. 12.1.1], we know that
H*(Z[1/Np),F,) — H2(Q,,F, @@H (Qq,,F,

is a surjection because H(:”C)(Z[l/Np],Fp) =~ HO9(Z[1/Np],F,(1))* = 0. By Tate du-
ality, H*(Q¢,F,) = H°(Qq,F,(1))*, which is one-dimensional if / = 1 (mod p) and
zero otherwise. It remains to verify that H%(Z[1/Np],F,) has the same dimension.
This follows from the global Tate Euler characteristic computation of [WWE20,
Lem. 12.1.1]. O

The following is a consequence of Tate duality.
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Lemma B.1.3. Assume that £ = 1 (mod p) is prime. Then H'(Q,F,(—1)) =
HY(Qq,Fp(1)). This cohomology group is 2-dimensional, the unramified subspace is
1-dimensional, and the cup product pairing

U HY Qe Fp(—1)) x HY(Qe, Fp(1)) — H*(Q, Fy)
is non-degenerate and symplectic. In particular, the cup product of two unram-

ified classes vanishes, and the cup product of a ramified class with a non-trivial
unramified class does not vanish.

B.2. Proof of Proposition By the description of the number fields K; in
Definition £y splits completely in K; if and only if £ =1 (mod p) and the
image ¢;lg,, of ¢; in H'(Qy,,Fy(—1)) is zero. Since bolg,, is ramified and ¢|g,, is
unramified, Lemma implies that ¢;|g, = 0 if and only if by|g,, U cilg,, = 0.
By Lemma, this happens if and only if by U ¢; = 0.

APPENDIX C. ALGEBRA

C.1. Some comments about Gorenstein defect. Let (A, my, k) be a regular
Noetherian local ring, and let (R, mg) be a finite, flat, local A-algebra.

More generally, for an A-module M, let MY = Homy (M, A). Also, let M =
M/maM. For a k-vector space M, let M* = Homy (M, k). For an R-module M,
give MV the R-module structure given by (r- f)(x) = f(rx) for f € MY and r € R,
and let gr(M) = dimy (M /mgrM) be the minimal number of generators of M. The
assumptions on A and R imply that R is a Cohen—Macaulay ring with dualizing
module RY.

Define the Gorenstein defect 6(R) of R to be the integer 6(R) = gr(RY) — 1.
Then R is Gorenstein if and only if §(R) = 0 [BH93, Thm. 3.3.7, pg. 111]. If R is
complete intersection, then R is Gorenstein [BH93, Prop. 3.2.1, pg. 95]. Kilford and
Wiese [KWO08| Defn. 1.4] define the Gorenstein defect of R to be dimy, Soc(R) — 1,
where Soc(R) = Annp(mpz). Our goal is Lemma|C.1.3} these definitions amount to
the same thing. The proofs of the following lemmas are elementary, but we include
them for completeness.

Lemma C.1.1. Assume that A = k. Then the canonical pairing R x RY — k
induces a perfect pairing Anng(mg) x RY/mgrRY — k. In particular, 6(R) =
dimk(AnnR(mR)) — 1.

Proof. By restriction, there is a surjective homomorphism of R-modules
Rv - AnnR(mR)v

which is easily seen to factor through RY/mgrRY. This gives the pairing. To show
it is perfect, it is enough to show that the dual map Anng(mg) — (RY/mrRY)Y
is surjective as well. This map is induced by the canonical isomorphism R — RV
given by x + ev,, where ev,(f) = f(z) for f € RY.

Let g € (RY/mgrRY)Y be an arbitrary element. Then g is induced by a R-module
homomorphism g : RV — k such that g(r.f) = 0 for all r € mg and f € RY. By
duality, we have § = ev, for some x € R. Then we have

0=g(r.f) = eva(r.f) = f(rz)
for all r € mpr and f € RY. This implies that 7z = 0 for all r € mp, so x €
Anng(mg). Hence g is in the image of Anng(mg) — (RY/mgRY)V, so this map is
surjective and the pairing is perfect. ([
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Lemma C.1.2. There is a canonical isomorphism of R-modules RV = R*.
Proof. Since R is projective as an A-module, the map
RY = Homu (R, A) — Homa (R, k) = Homy (R, k) = R*

is a surjective morphism of R-modules. Since m, annihilates the image, this
map must factor through RY. Since RY and R* both have k-dimension equal
to rank 4 (R), the map RY — R* is an isomorphism. O

Lemma C.1.3. We have §(R) = §(R) = dimy, Soc(R) — 1.
Proof. We have
RV®@pR/mp = (R ®r R)®p R/mp = RY @p R/mp
so gr(RY) = gg(RY). By Lemma we have
1+4(R) = gr(R") = gr(RY) = gr(R") = 1+ §(R).

This shows that §(R) = 6(R). The equality 6(R) = dimy, Soc(R) — 1 follows from
Lemma 0

C.2. Fiber products of commutative rings. Note that the category of com-
mutative rings has all limits. The underlying set of the limit of a diagram of
commutative rings is the limit of the diagram of underlying sets.

Lemma C.2.1. Consider a commutative diagram
A2 B
”Ci \Ldﬂs
¢c
C——D

in the category of commutative rings. Assume that all the maps are surjective and
that the map ker(rp) — ker(¢pc) induced by we is an isomorphism. Then the
canonical map A — B xp C is an isomorphism.

The proof is a diagram chase.
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