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Abstract. We use deformation theory of pseudorepresentations to study the
analogue of Mazur’s Eisenstein ideal with squarefree level. Given a prime
number p > 3 and a squarefree number N satisfying certain conditions, we
study the Eisenstein part of the p-adic Hecke algebra for �0(N), and show
that it is a local complete intersection and isomorphic to a pseudodeformation
ring. We also show that, in certain cases, the Eisenstein ideal is not principal
and that the cuspidal quotient of the Hecke algebra is not Gorenstein. As
a corollary, we prove that “multiplicity one” fails for the modular Jacobian
J0(N) in these cases. In a particular case, this proves a conjecture of Ribet.
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1. Introduction

In his landmark study [Maz77] of the Eisenstein ideal with prime level, Mazur
named five “special settings” in which “it would be interesting to develop the theory
of the Eisenstein ideal in a broader context” [pg. 39, loc. cit.], the first of which is
the setting of squarefree level. In this paper, we develop such a theory in certain
cases.

1.1. Mazur’s results and their squarefree analogues. Let p � 3 and ` be
primes, and let T` be the p-adic Eisenstein completion of the Hecke algebra acting
on modular forms of weight 2 and level `, and let T` ⇣ T0

`
be the cuspidal quotient.

Let I
0
`
⇢ T0

`
be the Eisenstein ideal, and let m0

`
= (p, I0

`
) be the maximal ideal.

Mazur proved the following results [Maz77]:

(1) T0
`
/I

0
`
⇠= Zp/(

`�1
12 )Zp,
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(2) I
0
`
is principal,

(3) T0
`
is Gorenstein,

(4) if q 6= ` is a prime such that q 6⌘ 1 (mod p) and such that q is not a p-th power
modulo `, then Tq � (q + 1) generates I0

`
.

Mazur calls a prime q as in (4) a good prime for (`, p). We note that, of course, (4)
implies (2) implies (3). We also note that (2) implies that T` is Gorenstein also.

The analogue of (1) has been proven for squarefree levels by Ohta [Oht14]. How-
ever, as has been noted by many authors, notably Ribet and Yoo [Rib15, Yoo19b],
the statements (2)-(4) are not true in the squarefree setting. Still, in this paper, we
prove, in certain cases, analogues of (2)-(4). Namely, we count the minimal number
of generators of the Eisenstein ideal, count the dimension of the Eisenstein kernel
of the Jacobian, and give su�cient (and sometimes also necessary) conditions for
a list of elements Tq � (q + 1) to generate the Eisenstein ideal. As a corollary, we
produce new level-raising results for modular forms congruent to Eisenstein series.

1.2. Motivation and applications. As applications of his results on the structure
of the prime level Hecke algebra T`, Mazur proves the following arithmetic results:

(i) J0(`)(Q)tors is a cyclic group of order n, where n is the numerator of `�1
12 ,

generated by the class of the divisor (0)� (1).
(ii) The dimension of J0(`)[m0

`
] over Fp is 2.

Part (i) was conjectured by Ogg. As Mazur points out [Maz77, Remark, pg. 143],
if one ignores the 2-torsion, part (i) is much easier and does not require the results
(1)-(4) on the Hecke algebra. Indeed, Ohta has proven the squarefree analog of (i)
(ignoring 2-torsion) [Oht14]. When we pass to squarefree level, the dimension in (ii)
is no longer 2 in general; Ribet and Yoo [Rib15, Yoo19b] have partial results and
conjectures as to what the dimension is. We count this dimension exactly, using
our results on the Hecke algebra.

Just as Mazur’s results on T` have had many arithmetic applications, we expect
that our results about the structure of TN for squarefree level N will find more
applications. We mention a few directions that are of particular interest to us:

• Connecting the rank of TN with Massey products, class groups, and Mazur-
Tate L-functions, in analogy to our previous work [WWE20] and the works
of Merel [Mer96] and Lecouturier [Lec20] in the prime level case. This should
have application to Venkatesh’s conjectures for derived Hecke algebras in the
case of weight 1 forms with squarefree level, just as Merel’s work is applied in
the prime level case by Harris and Venkatesh [HV19].

• Implications of the Gorenstein property of TN for the arithmetic of cyclotomic
fields and Iwasawa theory, as in the works of Ohta [Oht05] and Sharifi [Sha11].

• Applications to the Iwasawa theory of residually reducible modular forms,
esspecially conjectures of Greenberg [Gre99, Conj. 1.11] and Vatsal [Vat05,
Conj. 1.14] on µ-invariants.

It is also interesting to consider applications of our results in the setting of Hida
theory (see §1.8 for a discussion of this). We hope to return to these applications
in future work.

1.3. Techniques of pseudomodularity. Our main technical result is an R =
T theorem, where R is a deformation ring for Galois pseudorepresentations and
T is the Eisenstein part of the Hecke algebra. Although we consider this result
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to be secondary to our results on the structure of the Hecke algebra, we believe
that the proof techniques we develop may be of independent interest, and are a
step toward integral refinement of the modularity results of Skinner–Wiles [SW99].
Therefore we describe them here. The strategy is similar to that of our previous
works [WWE20, WWE19], where we gave new proofs and refinements of Mazur’s
results. However, there are several points of interest that are new in this setting.

(a) In the case of prime level `, Calegari and Emerton [CE05] have already applied
deformation theory to study Mazur’s Eisenstein ideal. Their method is to
rigidify the deformation theory of Galois representations using auxiliary data
coming from the prime level `. In the case of squarefree level, a similar strategy
will not work: the deformation problem at prime level is already rigid, and
cannot be further rigidified to account for the additional primes.

(b) In the case of squarefree level, there are multiple Eisenstein series, and one has
to account for the possibility of congruences among them.

(c) At squarefree level, unlike prime level, the Tate module of the Jacobian may
not be free over the Hecke algebra. Since this Tate module is the natural
way to construct Galois representations, it is really necessary to work with
pseudorepresentations.

(d) We prove R = T even in some cases where the Galois cohomology groups
controlling the tangent space of R are all non-cyclic (see Remark 1.5.8). In
this case, the universal pseudodeformation cannot arise from a representation.

To address issue (a), we have to develop a theory of Cayley–Hamilton represen-
tations and pseudorepresentations with squarefree level, which has the required
flexibility; for this, we drew inspiration from our previous joint works [WWE18,
WWE20, WWE19] and the work of Calegari–Specter [CS19]. The ideas are dis-
cussed later in this introduction in §1.9. To address issue (b), we make extensive
use of an idea of Ohta [Oht14]: we use the Atkin–Lehner involutions at ` | N to
define T, rather than the usual Hecke operators U`.

1.4. Setup. We introduce notation in order to state our main results precisely.
Throughout the paper we fix a prime p and let N denote a squarefree integer with
distinct prime factors `0, `1, . . . , `r. The case p | N is not excluded.

1.4.1. Assumption on p. Throughout the paper we assume that p > 3. The as-
sumption that p 6= 2 is used crucially throughout the paper in several ways. First,
we use the fact that there is no primitive pth root of unity in Q, so the mod-p
cyclotomic character is non-trivial. Second, we use the fact that a local ring with
residue characteristic p cannot have a non-trivial involution, so p-adic modules with
a Hecke action admit a direct sum decomposition according to the Aktin–Lehner
eigenvalues. Finally – and this is the only place where we also need p 6= 3 – we use
the fact that ⇣(�1) = �1

12 is a p-adic unit. This is reflected in the Galois cohomol-
ogy computation that we quote from [WWE20] as the fact that Ki(Z)⌦Zp = 0 for
i = 2, 3. It is also used to say that a non-zero constant cannot be a mod-p modular
form of weight 2. Because these do not seem to be crucial points, it is plausible
that our techniques could be adapted to include the case p = 3. However, we do
not pursue this here.

1.4.2. Eisenstein series and Hecke algebras. The Eisenstein series of weight two
and level �0(N) have a basis {E

✏

2,N}, labeled by elements ✏ = (✏0, . . . , ✏r) in the
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set E = {±1}r+1
\ {(1, 1, . . . , 1)}. The E

✏

2,N are characterized in terms of Hecke
eigenvalues by the properties that

(1) TnE
✏

2,N =

0

@
X

0<t|n

t

1

AE
✏

2,N for all n with gcd(n,N) = 1, and

(2) w`iE
✏

2,N = ✏iE
✏

2,N for the Atkin–Lehner involutions w`0 , . . . , w`r ,

together with the normalization a1(E✏

2,N ) = 1. The constant coe�cients satisfy

(1.4.1) a0(E
✏

2,N ) = �
1

24

rY

i=0

(✏i`i + 1).

(See §2.1.3 for more about these Eisenstein series.) Based on the philosophy that
congruences between Eisenstein series and cusp forms should happen when the
constant term is divisible by p, we expect the most interesting congruences to
occur when `i ⌘ �✏i (mod p) for many i. (Note that we do not have to consider
constant terms at other cusps: if a modular form f of level �0(N) is an eigenform
for all the Atkin–Lehner involutions, and a0(f) = 0, then f is a cusp form.)

Consider the Hecke algebra of weight 2 and level �0(N) generated by all Tn with
gcd(n,N) = 1 and by all Atkin–Lehner involutions w`0 , . . . , w`r . Let T✏

N
denote

the completion of this algebra at the maximal ideal generated by p together with
the annihilator of E✏

2,N .
Let I✏ denote the annihilator of E✏

2,N in T✏

N
, so T✏

N
/I

✏ = Zp, and let m✏ = (I✏, p)
be the maximal ideal of T✏

N
. For a Hecke module M , let M

✏

Eis denote the tensor
product of M with T✏

N
over the Hecke algebra. In particular, let M2(N)✏Eis (resp.

S2(N)✏Eis) denote the resulting module of modular forms (resp. cuspidal forms). Let
T✏,0
N

denote the cuspidal quotient of T✏

N
, and let I✏,0 be the image of I✏ in T✏,0

N
.

1.4.3. Another Hecke algebra. In contrast with our approach, one often studies a
di↵erent Hecke algebra T✏

N,U
, containing the operators U` instead of w`, and with

Eisenstein ideal I✏
U
generated by Tq�(q+1) for q - N and U`i�`

✏i+1
2

i
for i = 0, . . . , r.

We prove that T✏

N,U
= T✏

N
in some of the cases that we consider — see Appendix A.

Our main results together with Appendix A can be used to prove results about T✏

N,U

that are closely related to the results of authors including Ribet [Rib10, Rib15], Yoo
([Yoo19b, Yoo19a, Yoo17] and others) and Hsu [Hsu19].

We take the point of view that the reason to consider Hecke operators at primes
dividing N is to distinguish various oldforms modulo p. When T✏

N
6= T✏

U,N
, it is

because there are multiple oldforms that have congruent U`-eigenvalues for some ` |
N . Because this multiplicity does not occur among w`-eigenvalues, such multiplicity
causes T✏

U,N
to have larger rank than T✏

N
. Therefore, we think of T✏

N
as a superior

to T✏

U,N
as a superior desingularization of the unramified Hecke algebra (that is,

the Hecke algebra generated by Tn for (N,n) = 1). We mostly consider T✏

N
, but

see Appendix A for a comparison of T✏

N
and T✏

U,N
.

1.4.4. The number fields Ki. Let ` be a prime such that ` ⌘ ±1 (mod p). Then
there is a unique degree p Galois extension K`/Q(⇣p) such that

(1) Gal(Q(⇣p)/Q) acts on Gal(K`/Q(⇣p)) via the character !�1,
(2) the prime (1� ⇣p) of Q(⇣p) splits completely in K`, and
(3) only the primes above ` ramify in K`/Q(⇣p).
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For each i such that `i ⌘ ±1 (mod p), let Ki = K`i (see also Definition 3.10.4).

1.5. Structure of the Hecke algebra. Our main results concern the structure
of the Hecke algebra T✏

N
.

Theorem 1.5.1. Assume that ✏ = (�1, 1, . . . , 1). Let

S = {i 2 {1, . . . , r} | `i ⌘ �1 (mod p)}

and let s = #S. Then

(1) T✏

N
is a complete intersection ring.

(2) T0,✏
N

is Gorenstein if and only if I✏ is principal.
(3) There is a short exact sequence

(1.5.2) 0 !

rM

i=1

Zp/(`i + 1)Zp ! I
✏
/I

✏2
! Zp/(`0 � 1)Zp ! 0.

(4) The minimal number of generators of I✏ is s+ � where

� =

⇢
1 if `0 splits completely in Ki for all i 2 S, or
0 otherwise.

Proof. Parts (1) and (3) are proved in §5 (see especially Theorem 5.2.6). It is known
to experts that Part (2) follows from (1) (see Lemma 2.4.2). Part (4) is Theorem
7.1.1. ⇤
Remark 1.5.3. In fact, we show that, unless s = r, there are no newforms in
M2(N)✏Eis, so we can easily reduce to the case s = r (i.e. the case that `i ⌘ �1
(mod p) for all i > 0). When s = r, one could use this theorem to prove that there
are newforms in M2(N)✏Eis, but this is known (see [Rib15], [Yoo19a, Thm. 1.3(3)]).

Remark 1.5.4. The criterion of Part (4) determines whether or not the extension
class defined by the sequence (1.5.2) is p-cotorsion. In fact, one can describe this
extension class exactly in terms of algebraic number theory, but we content ourselves
with the simpler statement (4).

Theorem 1.5.5. Assume r = 1 and ✏ = (�1,�1) and that `0 ⌘ 1 (mod p) but
`1 6⌘ 1 (mod p). If `1 is not a p-th power modulo `0, then there are no newforms
in M2(N)✏Eis. In particular, I✏ is principal, and generated by Tq � (q + 1) where q

is a good prime (of Mazur) for (`0, p).

Proof. This is Theorem 6.3.1. ⇤
Remark 1.5.6. In the case `1 6= p, this is a theorem of Ribet [Rib10] and Yoo
[Yoo19a, Thm. 2.3]. Yoo has informed us that the method should work for the case
`1 = p as well. In any case, our method is completely di↵erent.

Theorem 1.5.7. Assume r = 1 and ✏ = (�1,�1) and that `0 ⌘ `1 ⌘ 1 (mod p).
Assume further that

`i is not a p-th power modulo `j for (i, j) 2 {(0, 1), (1, 0)}.

Then

(1) there are newforms in M2(N)✏Eis.
(2) T✏

N
is a complete intersection ring.

(3) T✏,0
N

is not a Gorenstein ring.

(4) I
✏,0

/I
✏,02 ⇠= Zp/(`0 � 1)Zp � Zp/(`1 � 1)Zp.
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Proof. Parts (2) and (4) are proven in Theorem 6.4.1. Part (1), the precise meaning
of which is given in Definition 6.4.3, follows from Part (2) by Theorem 6.4.4. Part
(3) follows from (2) and (4) by Lemma 2.4.2. ⇤
Remark 1.5.8. The proof of this theorem may be of particular interest for experts
in the deformation theory of Galois representations. The proof is the first (as far
as we are aware) example of an R = T theorem, where R is a universal pseudo-
deformation ring, and where we do not rely on certain Galois cohomology groups
being cyclic. (This cyclicity ensures that the pseudorepresentations come from true
representations.) In fact, with the assumptions of the theorem, the relevant coho-
mology groups are not cyclic. However, see [BK15, Thm. 8.2], where R

0 = T is
proved, where R

0 is a certain quotient of a universal pseudodeformation ring.

Remark 1.5.9. Outside of the cases considered in these theorems, we cannot expect
that T✏

N
is a complete intersection ring, as Remark 1.5.10 and the examples in §1.10

below illustrate. Our method, which applies Wiles’s numerical criterion [Wil95],
proves that T✏

N
is a complete intersection ring as a byproduct. A new idea is needed

to proceed beyond these cases. The authors along with C. Hsu are currently working
out such an idea [HWWE21].

Remark 1.5.10. Consider the case ✏ = (�1,�1, . . . ,�1) with `i ⌘ 1 (mod p) for
i = 0, . . . , r. There is a numerological reason why our arguments work for r = 1,
but not for r > 1. To see that T✏

N
satisfies the numerical criterion, its cotangent

module I
✏
/I

✏2 must not be any bigger than its reducible quotient contributed by
Lemma 4.2.3. In order for the irreducible submodule of I✏/I✏2 to vanish, we have
to show that there are (r+1)2 relations which kill o↵ all of the (r+1)2 generators.
We can always see that (r+1) of them hold, and when certain additional conditions
(like the assumptions in Theorem 1.5.7) on the `i hold, we show that another (r+1)
relations hold (see Lemma 6.2.1). This gives a total of 2(r + 1), and only when
r = 1 do we have (r + 1)2 = 2(r + 1).

1.6. Applications to multiplicity one. For an application of the main result,
we let J0(N) be the Jacobian of the modular curve X0(N).

Corollary 1.6.1. In the following cases, we can compute dimFp J0(N)(Qp)[m
✏]:

(1) With the assumptions of Theorem 1.5.1, we have

dimFp J0(N)(Qp)[m
✏] = 1 + s+ �,

where s and � are as in Theorem 1.5.1.
(2) With the assumptions of Theorem 1.5.5, we have dimFp J0(N)(Qp)[m

✏] = 2.

(3) With the assumptions of Theorem 1.5.7, we have dimFp J0(N)(Qp)[m
✏] = 3.

Proof. This follows from the named theorems together with Lemma 2.4.3 (which is
known to experts). ⇤

One says that “multiplicity one holds” if dimFp J0(N)(Qp)[m
✏] = 2. This corol-

lary implies that multiplicity one holds in case (1) if and only if s+ � = 1, always
holds in case (2), and always fails in case (3).

1.6.1. Ribet’s Conjecture. Previous works on multiplicity one have used a di↵er-
ent Hecke algebra T✏

N,U
, defined in §1.4.3 (see, for example, [Yoo19b]). Let m✏

U
=

(I✏
U
, p) ⇢ T✏

N,U
be its maximal ideal. The previous corollary together with Propo-

sition A.2.3 give the following.
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Corollary 1.6.2 (Generalized Ribet’s Conjecture). With the assumptions of The-
orem 1.5.1, assume in addition that `i 6⌘ 1 (mod p) for i > 0. Then

dimFp J0(N)(Qp)[m
✏

U
] = 1 + s+ �,

where s and � are as in Theorem 1.5.1.

The case s = r = 1 of Corollary 1.6.2 was conjectured by Ribet [Rib15] (see also
[Yoo17, pg. 4]).

Remark 1.6.3. After we told Yoo about the results of this paper, he found an
alternate proof of this corollary in the case s = r = 1. His proof involves a delicate
study of the geometry of J0(N), and relies on the following particular results of
this paper:

(i) I
✏ is principal if and only if T0,✏

N
is Gorenstein, from Theorem 1.5.1(2), and

(ii) T0,✏
N,U

= T0,✏
N

under the assumption s = r = 1, from Proposition A.2.3, so that

the conclusion of (i) can be applied to the ideal I✏
U
⇢ T0,✏

N,U
.

In particular, Yoo’s proof does not make use of our formula for the number of
generators for I

✏ in Theorem 1.5.1(4), and we believe that his methods could be
used to give a new proof of that result in this case.

In contrast, our proof is immediate from the ring-theoretic properties given in
Theorem 1.5.1 and a standard argument (found in [Maz77], for example), and
no additional geometric argument is needed. The fact that our proof is almost
completely ring-theoretic demonstrates the power of the Gorenstein property and
is a reason for our interest in using T✏

N
rather than T✏

N,U
.

1.6.2. Gorensteinness, and multiplicity one for the generalized Jacobian. The fol-
lowing observations are not used (nor proven) in this paper (although they are
familiar to experts), but we include them to illustrate the the arithmetic signifi-
cance of the Gorenstein property for T✏

N
proved in Theorems 1.5.1, 1.5.5 and 1.5.7.

We learned this point of view from papers of Ohta, especially [Oht05].
As is well-known, and as we explain in §2.4, multiplicity one holds if and only if

T0,✏
N

is Gorenstein. The nomenclature “multiplicity one” comes from representation
theory. It is related to the question of whether H1

ét(X0(N)Q,Zp(1))✏Eis is a free T0,✏
N

-

lattice in the free T0,✏
N

[ 1
p
]-module H

1
ét(X0(N)Q,Qp(1))✏Eis.

There is another natural lattice to consider, namely H
1
ét(Y0(N)Q,Zp(1))m✏,DM,

the image of H1
ét(Y0(N)Q,Zp(1))✏Eis under the Drinfeld-Manin splitting

H
1
ét(Y0(N)Q,Qp(1))

✏

Eis �! H
1
ét(X0(N)Q,Qp(1))

✏

Eis.

In a similar manner to the proof of Lemma 2.4.1, one can show that T✏

N
is Gorenstein

if and only if H1
ét(Y0(N)Q,Zp(1))m✏,DM is a free T0,✏

N
-module, if and only if

dimFp GJ0(N)(Qp)[m
✏] = 2,

where GJ0(N) is the generalized Jacobian of J0(N) relative to the cusps (see e.g.
[Oht99, §3] for a discussion of generalized Jacobians). Hence our result that T✏

N
is

Gorenstein can be thought of as a multiplicity one result for GJ0(N).
Finally, we note that these ideas illustrate why the failure of multiplicity one in

Corollary 1.6.1 is related to the failure of I✏ to be principal: if T✏

N
is Gorenstein,

H
1
ét(X0(N)Q,Zp(1))

✏

Eis ,! H
1
ét(Y0(N)Q,Zp(1))m✏,DM
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has the form, as T0,✏
N

-modules, of

T0,✏
N

� I
0,✏
,! T0,✏

N
� T0,✏

N
.

Hence H
1
ét(X0(N)Q,Zp(1))✏Eis is free if and only if I0,✏ is principal.

1.7. Good primes. We also prove analogues of Mazur’s good prime criterion
(statement (5) of §1.1).

In the situation of Theorem 1.5.7, our good prime criterion is necessary and
su�cient, exactly analogous to Mazur’s. To state it, we let

log
`
: (Z/`Z)⇥ ⇣ Fp

denote an arbitrary surjective homomorphism, for any prime ` that is congruent to
1 modulo p (the statement below will not depend on the choice).

Theorem 1.7.1. With the assumptions of Theorem 1.5.7, fix primes q0, q1 not
dividing N (but possibly dividing p). Then the elements Tq0 � (q0 + 1) and Tq1 �

(q1 + 1) together generate I
✏ if and only if

(q0 � 1)(q1 � 1) det

✓
log

`0
(q0) log

`0
(q1)

log
`1
(q0) log

`1
(q1)

◆
2 F⇥

p
.

Remark 1.7.2. For a single prime `, Mazur’s criterion for q to be a good prime can
be written as (q � 1) log

`
(q) 2 F⇥

p
, so this is a natural generalization.

In the situation of Theorem 1.5.1, we only give a su�cient condition, and even
this is cumbersome to state.

Definition 1.7.3. Assume that ✏ = (�1, 1, . . . , 1), and order the primes `i so that
`i ⌘ �1 (mod p) for i = 1, . . . , s and `i 6⌘ �1 (mod p) for s < i  r. We use the
number fields Ki set up in §1.4.4.

Consider an ordered set of primes Q0 = {q0, q1, . . . , qs} disjoint from the primes
dividing N and satisfying the following conditions:

(1) q0 6⌘ 1 (mod p), and
(2) q0 not a p-th power modulo `0;

and, for i = 1, . . . , s,

(3) qi ⌘ 1 (mod p),
(4) `0 is not a p-th power modulo qi,
(5) qi does not split completely in Ki, and
(6) qi does split completely in each Kj for j = 1, . . . , s with j 6= i.

In the following cases, the described ordered subset Q of Q0 is called a good set of
primes for (N, p, ✏):

• if � = 1, Q := Q
0,

• if � = 0 and `0 ⌘ 1 (mod p), then Q := Q
0
\ {qj} for an index j > 0 such

that b0 [ cj 6= 0,
• if `0 6⌘ 1 (mod p), then Q := Q

0
\ {q0}.

Remark 1.7.4. Note that, by Chebotarev density, there is an infinite set of primes
q0 satisfying (1)-(2), and, for each i, there is an infinite set of primes qi satisfying
(3)-(6). Note that when p - N and `0 ⌘ 1 (mod p), it is possible that p 2 Q.

Theorem 1.7.5. Let Q be a good set of primes for (N, p, ✏). Then {Tq � (q + 1) |
q 2 Q} ⇢ T✏

N
is a minimal set of generators for I

✏.
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Remark 1.7.6. We can also write down a necessary and su�cient condition, but
cannot compute with it, so we doubt its practical use.

1.8. Relation to Hida Hecke algebras. The reader will note that we have al-
lowed for the possibility that p | N . When p | N , in Appendix A, we also consider
a related Hecke algebra T✏

N,H
that contains Up instead of wp (but still has all other

w` for ` | N

p
) and show that, in many cases we consider, T✏

N,H
= T✏

N
.

This is related to Hida theory assuming that (as is well-known for the Hecke
algebra T✏

N,U
) there is a Hida-theoretic Hecke algebra T✏

⇤ that is a free module of
finite rank over ⇤ ' Zp[[T ]] that satisfies a control theorem with respect to T✏

N,H
:

there is an element !2 2 ⇤ such that T✏

N,H
= T✏

⇤/!2T✏

⇤.
Then our results about T✏

N
(including its Gorensteinness and the number of

generators of its Eisenstein ideal) translate directly to T✏

⇤. Subsequently, these
results can be specialized into higher weights, as is usual in Hida theory.

1.9. Method of pseudodeformation theory. Like our previous work [WWE20],
the method of proof of the theorems in §1.5 is to construct a pseudodeformation
ring R and prove that R = T using the numerical criterion. The ring R is the defor-
mation ring of the residual pseudorepresentation D̄ =  (! � 1) associated to E

✏

2,N

that is universal subject to certain conditions (here  is the functor associating
a pseudorepresentation to a representation, and ! is the mod p cyclotomic char-
acter). These conditions include the conditions considered in our previous works
[WWE18, WWE20] (having cyclotomic determinant, being flat at p, being ordinary
at p), but they also include new conditions at ` dividing N that are of a di↵erent
flavor, as we now explain.

1.9.1. The Steinberg at ` condition. Fix ` = `i | N , assume ` 6= p, and let G` ⇢ GQ
be a decomposition group at `. Let f be a normalized cuspidal eigenform of weight
2 and level �0(N). Let ⇢f : GQ ! GL2(Of ) be the associated Galois representation,
where Of is a finite extension of Zp.

If f is old at `, then ⇢f |G` is unramified. If f is new at `, we have

(1.9.1) ⇢f |G` ⇠

✓
�(a`(f))cyc ⇤

0 �(a`(f))

◆

where �(x) is the unramified character of G` sending a Frobenius element �` to x,
and a`(f) is the coe�cient of q` in the q-expansion of f (see Lemma 2.3.1). Note
that since det(⇢f ) = cyc, we have �(a`(f))2 = 1. In fact, a`(f) is the negative of
the w`-eigenvalue of f . We call such representations (1.9.1) “±1-Steinberg at `”,
where ±1 = ⌥a`(f) is the w`-eigenvalue of f .

Now assume in addition that f 2 S2(N)✏Eis, so that the semi-simplification of
the residual representation of ⇢f is ! � 1 and w`f = ✏f , where ✏ = ✏i. We want to
impose a condition on pseudorepresentations that encapsulates the condition that
⇢f |G` is either unramified or ✏-Steinberg. The main observation is the following,
and is inspired by the work of Calegari–Specter [CS19].

Observation 1.9.2. Suppose that ⇢ : G` ! GL2(O) is either unramified or ✏-
Steinberg. Then

(1.9.3) (⇢(�)� �(�✏)cyc(�))(⇢(⌧)� �(�✏)(⌧)) = 0

for all �, ⌧ 2 G` with at least one of � or ⌧ in the inertia group I`.
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This is clear if ⇢ is unramified: the factor involving the one of � or ⌧ that is in I`

will be zero. If ⇢ is ✏-Steinberg, then the given product (1.9.3) will have the form
✓

0 ⇤

0 ⇤

◆✓
⇤ ⇤

0 0

◆

and any such product is zero (note that the order is important!).
To impose the unramified-or-✏-Steinberg condition on the pseudodeformation

ring R, we impose the condition (1.9.3) on the universal Cayley–Hamilton algebra,
using the theory of [WWE19] (see §3).

1.9.2. The ordinary at p condition. When p | N and f 2 S2(N)✏Eis is a newform,
then ✏p = �1 and the representation ⇢f |Gp is ordinary. In this paper, we define
“ordinary pseudorepresentation” exactly as we define the unramified-or-✏-Steinberg,
following ideas of Calegari–Specter. In our previous paper [WWE18], we gave a
di↵erent definition of ordinary, and we prove in this paper that the two definitions
coincide (see Lemma 3.7.4). This gives an answer to a question of Calegari–Specter
[CS19, pg. 2].

1.10. Examples. We conclude this introduction with examples that illustrate the
theorems and show that the hypotheses are necessary. For examples where we show
that T✏

N
is not Gorenstein, it is helpful to note that T✏

N
is Gorenstein if and only

if Soc(T✏

N
/pT✏

N
) is 1-dimensional, where Soc(T✏

N
/pT✏

N
) is the annihilator of the

maximal ideal (see §C.1).
All computations are using algorithms we have written for the Sage computer

algebra software [S+18].

1.10.1. Examples illustrating Theorem 1.5.1.

Example 1.10.1. Let p = 5, `0 = 41, `1 = 19, so N = 19 · 41, and let ✏ = (�1, 1).
In this case, we compute that K19 is the field cut out by

x
20

� x
19

� 7x18 + 21x17 + 22x16 + 223x15
� 226x14

� 1587x13 + 4621x12

+ 5202x11
� 91x10

� 3142x9
� 439x8

� 2143x7
� 2156x6

� 58x5

+ 1237x4 + 414x3 + 148x2 + 56x+ 16

and that 41 splits completely in K19. The theorem says that I
✏ has 2 generators.

Moreover, Theorem 1.7.5 says, in this case, that I
✏ is generated by Tq0 � (q0 + 1)

and Tq1 � (q1 + 1) where q0 is a good prime for (41, 5) and where q1 satisfies

(a) q1 is a prime such that q1 ⌘ 1 (mod 5),
(b) 41 is not a 5-th power modulo q1, and
(c) q1 does not split completely in K19.

A quick search yields that q0 = 2 and q1 = 11 satisfy these criteria. And indeed,
we compute that there is an isomorphism

F5[x, y]

(y2 � 2x2, xy)
⇠
�! T✏

N
/5T✏

N
, (x, y) 7! (T2 � 3, T11 � 12).

Example 1.10.2. Let p = 5, `0 = 11, `1 = 19, `2 = 29, so N = 11 · 19 · 29, and
let ✏ = (�1, 1, 1). In this case, 11 does not split completely in either of the fields
K19,K29, and the theorem says that I✏ has 2 generators. Moreover, Theorem 1.7.5
says, in this case, that I✏ is generated by Tq0 � (q0 +1) and Tq1 � (q1 +1) where q0

is a good prime for (11, 5) (for example q0 = 2) and where the prime q1 satisfies:
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(a) q1 ⌘ 1 (mod 5),
(b) 11 is not a 5-th power modulo q1,
(c) q1 does not split completely in K19, and
(d) q1 does split completely in K29.

In this case, K19 is the field computed in the previous example and K29 is the field
cut out by

x
20

� x
19

� 11x18 + 9x17 + 124x16
� 223x15

� 1244x14 + 2111x13 + 14291x12

� 19804x11 + 7169x10 + 7938x9
� 10937x8 + 15603x7

� 9472x6

� 2582x5 + 8233x4
� 3732x3 + 1808x2

� 832x+ 256.

A quick search finds that q1 = 181 satisfies the conditions (a)-(d). And indeed, we
compute that there is an isomorphism

F5[x, y]

(x3 + 2x2, y3, xy + y2)
⇠
�! T✏

N
/5T✏

N
, (x, y) 7! (T2 � 3, T181 � 182).

Note that these conditions are far from necessary. For example T2�3 and T7�8
also generate the Eisenstein ideal.

1.10.2. Examples related to Theorem 1.5.5. We give examples illustrating that the
assumption is necessary. In fact, it seems that the assumption is necessary even for
the Gorensteinness of T✏

N
.

Example 1.10.3. Let p = 5, `0 = 11, `1 = 23, so N = 11 ·23, and let ✏ = (�1,�1).
Then `1 ⌘ 1 (mod 11) is a 5-th power so the theorem does not apply. We can
compute that

F5[x, y]

(x2, xy, y2)
⇠
�! T✏

N
/5T✏

N
, (x, y) 7! (T2 � 3, T3 � 4)

has dimension 3. Since T0
11 = Z5, we see that the space of oldforms has dimension

2, so there must be a newform at level N . Moreover, Soc(T✏

N
/5T✏

N
) = xF5 � yF5,

so T✏

N
is not Gorenstein.

Example 1.10.4. Let p = 5, `0 = 31, `1 = 5, so N = 5 · 31, and let ✏ = (�1,�1).
Then note that `1 = 5 ⌘ 75 (mod 31), so the theorem does not apply. We can
compute that

F5[x, y]

(x3, xy, y2)
⇠
�! T✏

N
/5T✏

N
, (x, y) 7! (T2 � 3, 2T2 + T3)

has dimension 4. Since rankZ5(T0
31) = 2, we see that the space of oldforms has

dimension 3, and there must be a newform at level N . Moreover, Soc(T✏

N
/5T✏

N
) =

x
2F5 � yF5, so T✏

N
is not Gorenstein.

In this last example, the reader may think that `0 = 31 is special because the
rank of T0

31 is 2. However, we can take p = `1 = 5 and `0 = 191 (note that
T0
191 = Zp). Noting that 5 ⌘ 185 (mod 191), we again see that the theorem does

not apply, and we can compute that T✏

N
is also not Gorenstein in this case.

1.10.3. Examples related to Theorem 1.5.7. First, we give examples illustrating that
the assumption is necessary. Again, it seems that the assumption is necessary even
for the Gorenstein property of T✏

N
.
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Example 1.10.5. Let p = 5, `0 = 11, `1 = 61, so N = 11 ·61, and let ✏ = (�1,�1).
Then note that 11 ⌘ 85 (mod 61) so the theorem does not apply (but note that 61
is not a 5-th power modulo 11). We can compute that

F5[x, y]

(x2, xy, y3)
⇠
�! T✏

N
/5T✏

N
, (x, y) 7! (T3 � T2 � 1, T2 � 3).

We see that Soc(T✏

N
/5T✏

N
) = xF5 � y

2F5, so T✏

N
is not Gorenstein.

Example 1.10.6. Let p = 5, `0 = 31, `1 = 191, so N = 31 · 191, and let ✏ =
(�1,�1). We have 191 ⌘ 75 (mod 31) and 31 ⌘ 615 (mod 191), so the assumption
of the theorem fails most spectacularly. We can compute that

F5[x, y]

((x, y)4, 2x3 + xy2 + 3y3, x3 � x2y + 2y3)
⇠
�! T✏

N
/5T✏

N
,

(x, y) 7! (T2 � 3, T7 � 8).

Letting m̄✏ denote the maximal ideal of T✏

N
/5T✏

N
, we see that (m̄✏)4 = 0 but that

(m̄✏)3 is 2-dimensional, so dimF5 Soc(T✏

N
/5T✏

N
) > 1 and T✏

N
is not Gorenstein.

Finally, we give an example illustrating Theorem 1.7.1.

Example 1.10.7. Let p = 5, `0 = 11, `1 = 41, so N = 11 ·41, and let ✏ = (�1,�1).
We see that neither of 11 or 41 is a 5-th power modulo the other, so Theorem 1.7.1
applies. We consider the primes 2, 3, 7 and 13, none of which are congruent to 1
modulo 5.

q Is 5-th power modulo 11? Is 5-th power modulo 41?
2 No No
3 No Yes
7 No No
13 No No

From this we see that

det

✓
log11(3) log11(q)
log41(3) log41(q)

◆
= log11(3) · log41(q) 6= 0.

for any q 2 {2, 7, 13}. By Theorem 1.7.1, {T3� 4, Tq � (q+1)} generates I✏ for any
q 2 {2, 7, 13}, and we can see by direct computation that this is true.

More subtly, we can compute that

det

✓
log11(2) log11(7)
log41(2) log41(7)

◆
6= 0, det

✓
log11(2) log11(13)
log41(2) log41(13)

◆
= 0.

By Theorem 1.7.1, this implies that {T2 � 3, T7 � 8} generates I✏, but that {T2 �

3, T13 � 14} does not, and we again verify this by direct computation.
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1.12. Notation and Conventions. We let @ij denote the Kronecker symbol,
which is 1 if i = j and 0 otherwise.

For each prime ` | Np, we fix G` ⇢ GQ, a decomposition group at `, and let
I` ⇢ G` denote the inertia subgroup. We fix elements �` 2 G` whose image in
G`/I`

⇠= Gal(F`/F`) is the Frobenius. For ` 6= p, we fix elements �` 2 I` such that
the image in the maximal pro-p-quotient I

pro�p

`
(which is well-known to be pro-

cyclic) is a topological generator. Let �p 2 Gal(Qp/Qnr
p
(⇣p)) ⇢ Ip be an element

such that the image of �p in Gal(Qnr
p
(⇣p, p

p
p)/Qnr

p
(⇣p)) is non-trivial. When ` = `i

for i 2 {0, . . . , r} (i.e. ` | N), we also write �i := �`i and �i := �`i for these
elements. We write GQ,S for the Galois group of the maximal extension of Q
unramified outside of the set places S of Q supporting Np1, and use the induced
maps G` ! GQ,S . For primes q - Np, we write Frq 2 GQ,S for a Frobenius element
at q.

As in the theory of representations, Cayley–Hamilton representations, actions
on modules, pseudorepresentations, and cochains/cocycles/cohomology of profinite
groups G discussed in [WWE19], these objects and categories are implicitly meant
to be continuous without further comment. Here all of the targets are finitely
generated A-modules for some Noetherian local (continuous) Zp-algebra A with
ideal of definition I, and the I-adic topology is used on the target. Profinite groups
used in the sequel satisfy the �p-finiteness condition (i.e. the maximal pro-p quotient
of every finite-index subgroup is topologically finitely generated), which allows the
theory of [WWE19] to be applied.

We write

H
i(Z[1/Np],M) = H

i(C•(Z[1/Np],M)) =
Z

i(Z[1/Np],M)

Bi(Z[1/Np],M)

for (continuous) cohomology of a GQ,S-module M , together with this notation for
cochains, cocycles, and coboundaries. We write x1 ^ x2 2 C

⇤(Z[1/Np],M1 ⌦M2)
for the cup product of xi 2 C

⇤(Z[1/Np],Mi), and a1[a2 2 H
⇤(Z[1/Np],M1⌦M2)

for cup product of cohomology classes ai 2 H
⇤(Z[1/Np],Mi).

2. Modular forms

In this section, we recall some results about modular curves and modular forms.
Our reference is the paper of Ohta [Oht14].

2.1. Modular curves, modular forms, and Hecke algebras. The statements
given here are all well-known. We review them here to fix notation.

2.1.1. Modular curves. Let Y0(N)/Zp
be the coarse moduli space of pairs (E,C),

where E is an elliptic curve over S and C ⇢ E[N ] is a finite-flat subgroup scheme of
rank N and cyclic (in the sense of Katz-Mazur [KM85]). Let X0(N)/Zp

be the usual
compactification of Y0(N)/Zp

, and let {cusps} denote the complement of Y0(N)/Zp
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in X0(N)/Zp
, considered as an e↵ective Cartier divisor on X0(N)/Zp

. Finally, let
X0(N) = X0(N)/Zp

⌦Qp.

2.1.2. Modular forms and Hecke algebras. The mapX0(N)/Zp
! Spec(Zp) is known

to be LCI, and we let ⌦ be the sheaf of regular di↵erentials. Let

S2(N ;Zp) = H
0(X0(N)/Zp

,⌦), M2(N ;Zp) = H
0(X0(N)/Zp

,⌦({cusps}))

Let T0
N

and T00
N

be the subalgebras of

EndZp(M2(N ;Zp)), EndZp(S2(N ;Zp)),

respectively, generated by the standard Hecke operators Tn with (N,n) = 1, and
all Atkin–Lehner operators w` for ` | N (we do not include any U` for ` | N). These
are semi-simple commutative Zp-algebras (see e.g. [AL70]).

2.1.3. Eisenstein series and Eisenstein parts. For each ✏ 2 {±1}r+1
\{(1, 1, . . . , 1)},

there is a element E✏

2,N 2 M2(N ;Zp) that is an eigenform for all Tn with (N,n) = 1,
and has q-expansion

(2.1.1) E
✏

2,N = �
1

24

rY

i=0

(✏i`i + 1) +
1X

n=1

anq
n

where an =
P

0<d|n t when gcd(n,N) = 1 (in particular, a1 = 1), and w`iE
✏

2,N =
✏iE

✏

2,N (see [Oht14, Lem. 2.3.4]).
Let I

0✏ = AnnT0
N
(E✏

2,N ), and let T✏

N
be the completion of T0

N
at the maximal

ideal (I 0✏, p), and let T0,✏
N

= T00
N
⌦T0

N
T✏

N
. Let I✏ = I

0✏T✏

N
and let I0,✏ be the image

of I✏ in T0,✏
N

. For a T0
N
-module M , let M

✏

Eis = M ⌦T0
N
T✏

N
. The map T✏

N
⇣ Zp

induced by E
✏

2,N is a surjective ring homomorphism with kernel I✏. We refer to
this as the augmentation map for T✏

N
.

Note that we have w`i = ✏i as elements of T✏

N
. Indeed, this follows from w

2
`i
= 1,

w`i � ✏i 2 I
✏, and p 6= 2: consider (w`i � ✏i)(w`i + ✏i) = 0 and observe that

w`i + ✏i 2 (T✏

N
)⇥. Consequently, T✏

N
is generated as a Zp-algebra by Tq for q - N .

If p - N , let Up 2 T✏

N
denote the unit root of the polynomial

X
2
� TpX + p = 0,

which exists and is unique by Hensel’s lemma. Since Tp � (p+ 1) 2 I
✏, we see that

Up � 1 2 I
✏. Moreover, we see that Tp = Up + pU

�1
p

.

2.1.4. Duality. As in [Oht14, Thm. 2.4.6], there are perfect pairings of free Zp-
modules

(2.1.2) M2(N ;Zp)
✏

Eis ⇥ T✏

N
�! Zp, S2(N ;Zp)

✏

Eis ⇥ T0,✏
N

�! Zp

given by (f, t) 7! a1(t · f), where a1(�) refers to the coe�cient of q in the q-
expansion. In particular, M2(N ;Zp)✏Eis (resp. S2(N ;Zp)✏Eis) is a dualizing T✏

N
-

module (resp. T0,✏
N

-module).
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2.1.5. Oldforms and stabilizations. If ` | N is a prime and f 2 S2(N/`;Zp) is an
eigenform for all Tn with (n,N/`) = 1, then the subspace

{g 2 S2(N ;Zp) : an(g) = an(f) for all (n,N/`) = 1}

has rank two, with basis f(z), f(`z). If we let f±(z) = f(z)±`f(`z), then w`f±(z) =
±f±(z). Note that, since p 6= 2, we have f+ 6⌘ f� (mod p). In particular, if
✏
0
2 {±1}r is the tuple obtained from ✏ by deleting the entry corresponding to `,

then there are injective homomorphisms given by f 7! f✏` ,

M2(N/`;Zp)
✏
0

Eis ,! M2(N ;Zp)
✏

Eis and S2(N/`;Zp)
✏
0

Eis ,! S2(N ;Zp)
✏

Eis.

2.2. Congruence number. We recall this theorem of Ohta, and related results.

Theorem 2.2.1 (Ohta). There is an isomorphism T✏,0
N

/I
✏,0 ⇠= Zp/a0(E✏

2,N )Zp.

This is [Oht14, Thm. 3.1.3]. His method of proof actually can be used to give
the following stronger result, exactly as in [WWE20, Lem. 3.2.2]. See Lemma C.2.1
for a discussion of fiber products of rings.

Lemma 2.2.2. The composition of the augmentation map T✏

N
! Zp with the quo-

tient map Zp ! Zp/a0(E✏

2,N )Zp factors through T0,✏
N

and induces an isomorphism

T✏

N

⇠
�! T0,✏

N
⇥Zp/a0(E✏

2,N )Zp
Zp.

In particular, ker(T✏

N
! T0,✏

N
) = AnnT✏

N
(I✏).

2.3. Eigenforms and associated Galois representations. Let ⌫ : T0,✏
N
,! T̃0,✏

N

denote the normalization of T0,✏
N

.

Lemma 2.3.1. We record facts about T̃0,✏
N

and associated Galois representations.

(1) Letting q vary over primes q - Np, there is an isomorphism

h : T̃0,✏
N

⇠
�!

M

f2⌃

Of , ⌫(Tq) 7! (aq(f))f2⌃,

where ⌃ ⇢ S2(N ;Qp)
✏

Eis is the set of normalized eigenforms, and Of is the
valuation ring of the finite extension Qp(aq(f)q-Np)/Qp.

(2) For each f 2 ⌃, there is an absolutely irreducible representation ⇢f : GQ,S !

GL2(Of [1/p]) such that the characteristic polynomial of ⇢f (Frq) is X2
�aq(f)X+

q for any q - Np.
(3) Assume `i 6= p. The representation ⇢f |G`i

is unramified if f is old at `i.
Otherwise, f is new at `i and there is an isomorphism

(2.3.2) ⇢f |G`i
'

✓
�(a`i(f))cyc ⇤

0 �(a`i(f))

◆
,

where a`i(f) = �✏i.
(4) There is an isomorphism

(2.3.3) ⇢f |Gp '

✓
�(ap(f)�1)cyc ⇤

0 �(ap(f))

◆
.

Moreover,
(a) ⇢f |Gp is finite-flat if and only if either

(i) p - N , in which case h : ⌫(Up) 7! (ap(f))f2⌃, or
(ii) p | N and f is old at p.
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(b) If p | N and f is new at p, then ap(f) = �✏p = +1, i.e. ✏p = �1.

Proof. For (1)-(3) and (4a) see, for example, [DDT94, Thm. 3.1]. In (4b), the fact
that ap(f) = �✏p is [AL70, Thm. 3]. To see that ✏p = �1, note that the semi-simple
residual representation ⇢̄ss

f
is !� 1, but (2.3.3) implies ⇢̄ss

f
|Gp = �(�✏p)!� �(�✏p).

Since !|Gp is ramified, this implies that �(�✏p) = 1, so ✏p = �1. ⇤
Combining Lemmas 2.2.2 and 2.3.1, we obtain an injective homomorphism

(2.3.4) T✏

N
! Zp � T0,✏

N
! Zp �

M

f2⌃

Of

determined by sending Tq to (q + 1, aq(f)f2⌃) for q - Np and, if p - N , sending Up

to (1, ap(f)f2⌃).

2.4. The kernel of m✏ on the modular Jacobian and the Gorenstein con-
dition. In this section, we use some results of Ohta (following ideas of Mazur) to
relate the structure of the rings T✏

N
and T0,✏

N
to the geometry of the Néron model

J0(N)/Zp
of the Jacobian of X0(N). Let J0(N) = J0(N)/Zp

⌦Qp.
For a Zp-module M , let Tap(M) = Hom(Qp/Zp,M) be the Tate module of M ,

let M⇤ = HomZp(M,Qp/Zp) be the Pontrjagin dual, and let M_ = HomZp(M,Zp)
be the Zp-dual. If M is p-divisible, then there is an identification M

⇤ ⇠= Tap(M)_.
Let T = H

1
ét(X0(N)Q,Zp(1)) ⇠= Tap(J0(N)(Qp)).

Lemma 2.4.1. There is an exact sequence of T0,✏
N

[Ip]-modules

0 �! T0,✏
N

(1) �! T
✏

Eis �! (T0,✏
N

)_ �! 0.

The sequence splits as T0,✏
N

-modules. In particular, we have

dimFp J0(N)[m✏](Qp) = dimFp(T /m✏
T ) = 2 + �(T0,✏

N
)

where �(T0,✏
N

) is the Gorenstein defect of T0,✏
N

. (See §C.1 for a discussion of Goren-
stein defect.)

Proof. Ohta has shown in [Oht14, Prop. 3.5.4 and Prop. 3.5.9] that

dimFp J0(N)/Zp
(Fp)[m

✏]  1.

This implies the result, following [Maz77, §§II.7-II.8] (see also [Maz97]). ⇤
Lemma 2.4.2. Suppose that T✏

N
is Gorenstein. Then there is an isomorphism of

T✏

N
-modules

I
✏ ⇠
�! (T0,✏

N
)_.

In particular, the minimal number of generators of I
✏ is �(T0,✏

N
) + 1, and I

✏ is
principal if and only if T0,✏

N
is Gorenstein.

Proof. Like the proof of [Oht14, Lem. 3.2.5], there is an exact sequence of T✏

N
-

modules
0 �! S2(N ;Zp)

✏

Eis �! M2(N ;Zp)
✏

Eis
Res
��! Zp �! 0

where T✏

N
acts on Zp via the augmentation map T✏

N
! T✏

N
/I

✏ = Zp. Since we
assume that T✏

N
is Gorenstein, we see by the duality (2.1.2) that M2(N ;Zp)✏Eis is

a free T✏

N
-module of rank 1. We may choose a generator f of M2(N ;Zp)✏Eis such

that Res(f) = 1. Then we obtain a surjective T✏

N
-module homomorphism

T✏

N
⇣ Zp, T 7! Res(Tf)
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whose kernel is isomorphic to S2(N ;Zp)✏Eis. This is a T✏

N
-module homomorphism

that sends 1 to 1, so it is the augmentation map T✏

N
⇣ Zp. Thus I✏ ⇠= S2(N ;Zp)✏Eis,

so duality (2.1.2) yields the isomorphism of the lemma. The remaining parts follow
from §C.1. ⇤

Combining the preceding two lemmas, we obtain the following

Lemma 2.4.3. Assume that T✏

N
is Gorenstein. Then

dimFp J0(N)[m✏](Qp) = 1 + dimFp(I
✏
/m✏

I
✏).

3. The pseudodeformation ring

In this section, we set up the deformation theory of Galois pseudorepresentations
modeling those that arise from Hecke eigenforms of weight 2 and level N that are
congruent to the Eisenstein series E

✏

2,N . These are the Galois representations of
Lemma 2.3.1. See §1.9 for further introduction.

3.1. Theory of Cayley–Hamilton representations. This section is a summary
of [WWE19]. Only for this section, we work with a general profinite group G

satisfying condition �p (of §1.12). All pseudorepresentations are assumed to have
dimension 2, for simplicity.

3.1.1. Pseudorepresentations. A pseudorepresentation D : E ! A is the data of an
associative A-algebra E along with a homogeneous multiplicative polynomial law
D from E to A. This definition is due to Chenevier [Che14]; see [WWE19] and
the references therein. Despite the notation, the pseudorepresentation D includes
the data of a multiplicative function D : E ! A, but is not characterized by this
function alone. It is characterized by the pair of functions TrD, D : E ! A, where
TrD is defined by the characteristic polynomial :

(3.1.1) D(x� t) = t
2
� TrD(x)t+D(x) 2 A[t].

A pseudorepresentation D : E ! A is said to be Cayley–Hamilton if, for every
commutative A-algebra B, every element x 2 E ⌦A B satisfies its characteristic
polynomial. We also denote by D : G ! A a pseudorepresentation D : A[G] ! A.

3.1.2. Cayley–Hamilton representations. In the category of Cayley–Hamilton rep-
resentations of a profinite group G, an object is a triple

(⇢ : G ! E
⇥
, E,D : E ! A),

and sometimes referred to more briefly as “⇢.” Here ⇢ is a homomorphism (con-
tinuous, as always), E is an associative A-algebra that is finitely generated as an
A-module, (A,mA) is a Noetherian local Zp-algebra, and D is a Cayley–Hamilton
pseudorepresentation. We call A the scalar ring of E. The induced pseudorepre-
sentation of ⇢ is D � ⇢ : G ! A, also denoted  (⇢). The functor  is essentially
surjective. The Cayley–Hamilton representation ⇢ is said to be over  (⇢)⌦AA/mA,
and  (⇢) is said to be a pseudodeformation of  (⇢) ⌦A A/mA. If (⇢, E,D) is a
Cayley–Hamilton representation of G and x 2 A[G], then we abuse notation and
write D(x) for D(⇢(x)) (where we also abuse notation and write ⇢ : A[G] ! E for
the linearization of ⇢).

Given a pseudorepresentation D̄ : G ! F for a field F, there is a universal object
in the category of Cayley–Hamilton representations over D̄. This is denoted by

(⇢u
D̄

: G �! (Eu

D̄
)⇥, Eu

D̄
, DE

u
D̄
: Eu

D̄
! R

u

D̄
),
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and the induced pseudorepresentation D
u

D̄
:=  (⇢u

D̄
) is the universal pseudodefor-

mation of D̄.

3.1.3. Generalized matrix algebras (GMA). An important example of a Cayley–
Hamilton algebra is a generalized matrix algebra (GMA). An A-GMA E is given by
the data (B,C,m) where B and C are finitely-generated R-modules, m : B⌦RC !

R is an R-module homomorphism satisfying certain conditions, and E =
�
R B

C R

�

(see [WWE19, Example 3.1.7]). There is a Cayley–Hamilton pseudorepresentation
D : E ! A given by the usual formula for characteristic polynomial. We write a
homomorphism ⇢ : G ! E

⇥ as ⇢ =
�
⇢1,1 ⇢1,2
⇢2,1 ⇢2,2

�
.

If D̄ is multiplicity-free (see [WWE19, Defn. 3.2.1]), then E
u

D̄
has a GMA struc-

ture whose associated pseudorepresentation is DE
u
D̄

[WWE19, Thm. 3.2.2].

3.1.4. Reducibility. We will refer to the condition that a Cayley–Hamilton represen-
tation or a pseudorepresentation is reducible. We also refer to the reducibility ideal
in rings receiving a pseudorepresentations. For these definitions, see [WWE19, §4.2]
or [WWE18, §5.7]. The important case for this paper is that, if (⇢, E,D : E ! A)
is a Cayley–Hamilton representation where E is the GMA associated to (B,C,m),
then the reducibility ideal of D is the image of m. There are also universal objects,
denoted ⇢red, etc.

3.1.5. Conditions on Cayley–Hamilton representations. We consider two flavors of
conditions P imposed on Cayley–Hamilton representations of G:

(1) P is a condition that certain elements vanish, e.g. Definition 3.4.1.
(2) P is a property applying to finite-length Zp[G]-modules and satisfying a

basic stability condition, e.g. §3.5.

In case (1), one produces a universal Cayley–Hamilton ⇢P
D̄

representation of G
satisfying P by taking the quotient by the two-sided ideal of ED̄ generated by the
relevant elements, and then taking a further quotient so that a pseudorepresentation
exists. This final quotient is known as the Cayley–Hamilton quotient of ⇢u

D̄
for P.

See [WWE19, Defn. 2.4.7] for details; cf. also [WWE18, Defn. 5.9.5].
In case (2), we consider E

u

D̄
as a G-module using its left action on itself by

multiplication, and find in [WWE19, §2.4] that the maximal left quotient module
satisfying P can be defined and is an algebra quotient. The subsequent Cayley–
Hamilton quotient is then shown to satisfy the desired properties of ⇢P

D̄
.

3.1.6. Conditions on pseudorepresentations. As discussed in [WWE19, §2.5], one
says that a pseudorepresentation D of G satisfies P if there exists a Cayley–
Hamilton representation ⇢ of G such that  (⇢) = D and ⇢ satisfies P. Then
the universal pseudodeformation of D̄ with property P turns out to be  (⇢P

D̄
).

3.2. Universal Cayley–Hamilton representations of Galois groups. Let ` |
Np be a prime. Recall from §1.12 the decomposition group G` ! GQ,S . Let
D̄ : GQ,S ! Fp denote the pseudorepresentation  (Fp(1)� Fp).

We denote by

(⇢D̄ : GQ,S �! E
⇥
D̄
, ED̄, DED̄

: ED̄ ! RD̄)

the universal Cayley–Hamilton representation of GQ,S over D̄. The scalar ring RD̄

is the universal pseudodeformation ring of D̄, with universal pseudorepresentation
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DD̄ :=  (⇢D̄). Similarly, we let the triple

(⇢` : G` ! E
⇥
`
, E`, DE` : E` ! R`)

denote the universal Cayley–Hamilton representation ofG` over D̄|G` , so thatD` :=
 (⇢`) : G` ! R` is the universal pseudodeformation of D̄|G` .

Definition 3.2.1. Note that D̄ is multiplicity-free, and that, if ` 6⌘ 1 (mod p), then
D̄|G` is multiplicity-free. In this case, E` and ED̄ have the structure of a GMA. In
this paper, whenever we fix such a structure, we assume that (⇢`)1,1 ⌦R` Fp

⇠= !|G`

(resp. (⇢D̄)1,1 ⌦RD̄
Fp

⇠= !).

3.3. Case ` - Np: unramified. For ` - Np, we want Galois representations to be
unramified at `. We impose this by considering representations of GQ,S , as opposed
to Gal(Q/Q).

3.4. Case ` 6= p and ` | N : the unramified-or-Steinberg condition. In this
subsection, we write ` for one of the factors of N referred to elsewhere in this
manuscript as `i. Likewise, we write ✏` for ✏i.

Definition 3.4.1. Let (⇢ : G` ! E,E,DE : E ! A) be a Cayley–Hamilton
representation of G` over D̄|G` . We call ⇢ unramified-or-✏`-Steinberg (or US✏`

`
) if

(3.4.2) V
✏`
⇢
(�, ⌧) := (⇢(�)� �(�✏`)(�)cyc(�))(⇢(⌧)� �(�✏`)(⌧)) 2 E

is equal to 0 for all (�, ⌧) ranging over the set

I` ⇥G` [G` ⇥ I` ⇢ G` ⇥G`.

Write V
✏`
⇢

for the set of all elements V ✏`
⇢
(�, ⌧) over this range.

A pseudodeformation D : G` ! A of D̄|G` is called US✏
`
if there exists a US✏

`

Cayley–Hamilton representation ⇢ of G` such that  (⇢) = D.

Definition 3.4.3. Let (E✏`
`
, D

E
✏`
`

: E✏`
`

! R
✏`
`
) be the Cayley–Hamilton quotient

of (E`, D`) by V
✏`
⇢`
. Let

(⇢✏`
`

: G` ! (E✏`
`
)⇥, E✏`

`
, D

E
✏`
`

: E✏`
`

! R
✏`
`
),

be the corresponding Cayley–Hamilton representation, with induced pseudorepre-
sentation of G` denoted D

✏`
`

:=  (⇢✏`
`
) : G` ! R

✏`
`
.

By the theory of §3.1.5, ⇢✏`
`
is the universal US✏`

`
Cayley–Hamilton representation

over D̄|G` , and D
✏`
`

is the universal US✏`
`

pseudodeformation of D̄|G` .

Lemma 3.4.4. If ` 6= p, then, for any ✏`, we have D
✏`
`
(⌧) = 1 and Tr

D
✏`
`
(⌧) = 2

for all ⌧ 2 I`. That is, (D✏`
`
)|I` =  (1� 1).

Proof. Let ⌧ 2 I`. We see in (3.4.2) that V
✏`

⇢
✏`
`

(⌧, ⌧) = (⇢✏`
`
(⌧) � 1)2 = 0. Thus

by [Che14, Lem. 2.7(iv)], we see Tr
D

✏`
`
(⌧ � 1) = D

✏`
`
(⌧ � 1) = 0. As traces are

additive, we have Tr
D

✏`
`
(⌧) = Tr

D
✏`
`
(1) = 2. Applying (3.1.1) with x = ⌧ and using

the naturality of D✏`
`

with respect to the morphism R
✏`
`
[t] ! R

✏`
`

given by t 7! 1,
we find that D✏`

`
(⌧) = 1. ⇤

Lemma 3.4.5. Suppose that ✏` = +1 and ` 6⌘ �1, 0 (mod p). Then ⇢✏`
`

is unram-
ified (i.e. ⇢✏`

`
|I` = 1).
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Proof. Let � 2 G` be the element �` defined in §1.12. By definition of E✏`
`
,

V
✏`

⇢
✏`
`

(⌧,�) = (⇢✏`
`
(⌧)� 1)(⇢✏`

`
(�) + 1) = 0,

for any ⌧ 2 I`. To prove the lemma, it su�ces to show that (⇢✏`
`
(�) + 1) 2 (E✏`

`
)⇥.

By the Cayley–Hamilton property, we know that any element x 2 E
✏`
`

satisfies
x
2
� Tr

D
✏`
`
(x)x + D

✏`
`
(x) = 0. In particular, we see that x 2 (E✏`

`
)⇥ if D✏`

`
(x) 2

(R✏`
`
)⇥. Hence it will su�ce to show that D✏`

`
(� + 1) 2 (R✏`

`
)⇥.

Writing m ⇢ R
✏`
`

for the maximal ideal, we know that D✏`
`

⌘ D̄ (mod m), so it
will su�ce to show that D̄(�+1) 2 F⇥

p
. Because ` 6= p and D̄ =  (!�1), we apply

(3.1.1) with x = � and t = �1, calculating that D̄(� + 1) = 2(`+ 1) 2 Fp. This is
a unit because p is odd and ` 6⌘ �1 (mod p). ⇤

3.5. The finite-flat case: ` = p and p - N . A finite-length Zp[Gp]-module V is
said to be finite-flat when it arises as G(Qp), where G is a finite flat group scheme
over Zp. In [WWE19, §5.2] we check that the theory of §3.1.5 can be applied to
the finite-flat condition. This theory gives us

(⇢flat
p

: Gp ! (Eflat
p

)⇥, Eflat
p

, DEflat
p

: Eflat
p

! R
flat
p

),

the universal finite-flat Cayley–Hamilton representation of Gp over D̄|Gp . The
pseudorepresentation D

flat
p

:=  (⇢flat
p

) : Gp ! R
flat
p

is the universal finite-flat pseu-
dodeformation of D̄|Gp .

Consider a GMA structure on E
flat
p

as in Definition 3.2.1, which we write as

⇢
flat
p

=

✓
⇢
flat
p,1,1 ⇢

flat
p,1,2

⇢
flat
p,2,1 ⇢

flat
p,2,2

◆
: Gp �!

✓
R

flat
p

B
flat
p

C
flat
p

R
flat
p

◆⇥

.

Lemma 3.5.1. For any such GMA structure on Ep, Cflat
p

= 0.

Proof. The proof is implicit in [WWE20] but not stated in this form there. One
simply combines the following facts. See [WWE20, §B.4] for the notation.

• As the maximal ideal of R
flat
p

contains the reducibility ideal, we have

HomRflat
p

(Cflat
p

,Fp) = Ext1↵gs/Zp
(µp,Z/pZ), where ↵gs/Zp is the category

of finite flat groups schemes over Zp, by [WWE19, Thm. 4.3.5].
• We see in [WWE20, Lem. 6.2.1(1)] that Ext1↵gs/Zp

(µp,Z/pZ) = 0.

As Cflat
p

is a finitely-generated R
flat
p

-module, this implies that Cflat
p

= 0. ⇤

Now that we know that C
flat
p

= 0, ⇢flat
p,i,i

are R
flat
p

-valued characters of Gp, for
i = 1, 2. Similarly to [WWE20, §5.1], using the fact that !|Gp 6= 1, we see the
following

Lemma 3.5.2. A pseudodeformation D of D̄|Gp is finite-flat if and only if D =
 (cyc�1 � �2) where �1,�2 are unramified deformations of the trivial character.

3.6. The finite-flat case: ` = p, p | N , and ✏p = +1. By Lemma 2.3.1(4), we
see that, if ✏p = +1, then the residually Eisenstein cusp forms are old at p with
associated GQ,S-representation being finite-flat at p. We impose this condition
exactly as in §3.5. Namely, we say that a Cayley–Hamilton representation of Gp is
unramified-or-(+1)-Steinberg (or US+1

p
) if it is finite-flat.
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3.7. The ordinary case: ` = p, p | N , and ✏p = �1. Based on the form of
Galois representations arising from p-ordinary eigenforms given in Lemma 2.3.1(4),
we proceed exactly as in the case ` 6= p given in §3.4.

Definition 3.7.1. We say that a Cayley–Hamilton representation or a pseudode-
formation over D̄|Gp is ordinary (or US�1

p
) when it satisfies Definition 3.4.1, simply

letting ` = p.

Similarly to Definition 3.4.3, let (Eord
p

, DEord
p

) be the Cayley–Hamilton quotient

of (Ep, DEp) by V
�1
⇢p

, and let (⇢ord
p

, E
ord
p

, DEord
p

: Eord
p

! R
ord
p

) be the correspond-

ing Cayley–Hamilton representation. As per §3.1.5, ⇢ord
p

is the universal ordinary

Cayley–Hamilton representation over D̄|Gp , and D
ord
p

:=  (⇢ord
p

) : Gp ! R
ord
p

is
the universal ordinary pseudodeformation of D̄|Gp .

Remark 3.7.2. If one applies V
+1
⇢p

= 0 in the case ✏p = +1, one does not get the
the desired finite-flat condition of §3.6 that agrees with Lemma 2.3.1(4b). Instead,
one finds that E+1

p
= 0 (i.e. no deformations of D̄ satisfy this condition).

We set up the following notation, which includes all cases: ✏p = ±1 or p - N .

Definition 3.7.3. For any N and ✏, we establish notation

(⇢✏p
p
, E

✏p
p
, D

E
✏p
p
, R

✏p
p
, D

✏p
p
) :=

(
(⇢ord

p
, E

ord
p

, DEord
p

, R
ord
p

, D
ord
p

) if p | N, ✏p = �1,

(⇢flat
p

, E
flat
p

, DEflat
p

, R
flat
p

, D
flat
p

) otherwise.

In [WWE18, §5], we developed an alternative definition of ordinary Cayley–
Hamilton algebra. (This definition applies to general weight, which we specialize
to weight 2 here.) Choose a GMA structure on Ep, as in Definition 3.2.1. Let
J
ord
p

⇢ Ep be the two-sided ideal generated by the subset

⇢p,2,1(Gp)
[

(⇢p,1,1 � cyc)(Ip)
[

(⇢p,2,2 � 1)(Ip).

As in [WWE18, Lem. 5.9.3], Jord
p

is independent of the choice of GMA-structure.

Lemma 3.7.4. The Cayley–Hamilton quotient of Ep by J
ord
p

is equal to E
ord
p

.

Proof. Let (V ord
⇢p

) denote the kernel of Ep ⇣ E
ord
p

, which contains (but may not

be generated by) V
ord
p

(see §3.1.5). It will su�ce to show that (V ord
⇢p

) = J
ord
p

.

The inclusion (V ord
⇢p

) ⇢ J
ord
p

is straightforward: see the calculations in [WWE18,

§5.9], from which it is evident that the Cayley–Hamilton quotient of ⇢p by J
ord
p

is a
Cayley–Hamilton representation that is ordinary (in the sense of Definition 3.4.1).
It remains to show that Jord

p
⇢ (V ord

⇢p
).

First we will show that Dord
p

|Ip =  (cyc�1)|Ip ⌦Zp R
ord
p

. For any ⌧ 2 Ip, ⇢ordp
(⌧)

satisfies both polynomials

T
2
� TrDord

p
(⌧)T �D

ord
p

(⌧) and (T � cyc(⌧))(T � 1),

the first by the Cayley–Hamilton condition and the second by Definition 3.7.1. If
!(⌧) 6= 1, Hensel’s lemma implies that these two polynomials are identical. For
such ⌧ , we have D

ord
p

(⌧) = cyc(⌧) and TrDord
p

(⌧) = cyc(⌧) + 1. Now choose an

arbitrary element of Ip and write it as �⌧ with !(�),!(⌧) 6= 1. We immediately
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see that Dord
p

(�⌧) = cyc(�⌧), since both sides are multiplicative. Let r� = ⇢
ord
p

(�)

and r⌧ = ⇢
ord
p

(⌧). Since E
ord
p

is Cayley–Hamilton, we have

(t�r� + t⌧r⌧ )
2
� TrDord

p
(t�r� + t⌧r⌧ )(t�r� + t⌧r⌧ ) +D

ord
p

(t�r� + t⌧r⌧ ) = 0

in the polynomial ring E
ord
p

[t�, t⌧ ]. We can expand D
ord
p

(t�r�+ t⌧r⌧ ) using [Che14,
Example 1.8]. Taking the coe�cient of t�t⌧ and writing Tr = TrDord

p
for brevity,

r�r⌧ + r⌧r� � Tr(�)r⌧ � Tr(⌧)r� � Tr(�⌧) + Tr(�)Tr(⌧) = 0.

Substituting for r�r⌧ using V
ord
⇢p

(�, ⌧) = 0 and for r⌧r� using V
ord
⇢p

(⌧,�) = 0, one
obtains the desired conclusion Tr(�⌧) = cyc(�⌧) + 1.

Let � 2 Ip, and let ⌧ 2 Ip be such that !(⌧) 6= 1. Using the fact that ⇢ord
p

|Ip is

reducible, we see that the (1, 1)-coordinate of V ord
⇢ord
p

(�, ⌧) is

(⇢ord
p,1,1(�)� cyc(�))(⇢

ord
p,1,1(⌧)� 1) = 0

Since ⇢ord
p,1,1 is a deformation of !, we have ⇢ord

p,1,1(⌧) � 1 2 (Rord
p

)⇥, so this implies

⇢
ord
p,1,1(�)� cyc(�) = 0. This shows that (⇢p,1,1 � cyc)(Ip) ⇢ (V ord

⇢p
), and a similar

argument gives (⇢ord
p,2,2 � 1)(Ip) ⇢ (V ord

⇢p
).

It remains to show that ⇢ord
p,2,1(Gp) = 0. Let m ⇢ R

ord
p

be the maximal ideal.

In fact, we will show that Cord
p

/mC
ord
p

= 0, which is equivalent because ⇢ord
p,2,1(Gp)

generates the finitely generated R
ord
p

-module C
ord
p

. We work with ⇢̄
ord := ⇢

ord
p

(mod m). Since ⇢̄ord is reducible, we can consider ⇢̄ord2,1 2 Z
1(Gp, C

ord
p

/mC
ord
p

⌦Fp

Fp(�1)), and [BC09, Thm. 1.5.5] implies that there is an injection

HomFp(C
ord
p

/mC
ord
p

,Fp) ,! H
1(Gp,Fp(�1))

sending � to the class of the cocycle � � ⇢̄
ord
2,1 . So to show that Cord

p
/mC

ord
p

is zero,

it is enough to show that ⇢̄ord2,1 is a coboundary, or, equivalently, that ⇢̄ord2,1 (�) = 0

for all � 2 ker(!) ⇢ Gp. However, we compute that the (2, 1)-entry of V ord
⇢p

(�, ⌧) is

⇢
ord
p,2,1(�)(⇢

ord
p,1,1(⌧)� 1) + (⇢ord

p,2,2(�)� cyc(�))⇢
ord
p,2,1(⌧).

Taking � 2 ker(!) and ⌧ 2 Ip such that !(⌧) 6= 1, we see that ⇢ord
p,1,1(⌧) � 1 ⌘

!(⌧)� 1 6⌘ 0 (mod m) and ⇢ord
p,2,2(�)� cyc(�) 2 m, so this implies ⇢̄ord2,1 (�) = 0. ⇤

We have the following consequence, following [WWE18, §5.9].

Proposition 3.7.5. A Cayley–Hamilton representation (⇢ : Gp ! E
⇥
, E,D : E !

A) over D̄|Gp is ordinary if and only if it admits a GMA structure such that

(1) it is upper triangular, i.e. ⇢2,1 = 0, and
(2) the diagonal character ⇢1,1 (resp. ⇢2,2) is the product of cyc ⌦Zp A (resp.

the constant character A) and an unramified A-valued character.

Corollary 3.7.6. Any finite-flat Cayley–Hamilton representation of Gp over D̄|Gp

is ordinary. The resulting morphism of universal Cayley–Hamilton representations
of Gp, (⇢ordp

, E
ord
p

, DEord
p

) ! (⇢flat
p

, E
flat
p

, DEflat
p

), induces an isomorphism on uni-

versal pseudodeformation rings R
ord
p

⇠
! R

flat
p

. The universal pseudodeformations

D
ord
p

⇠= D
flat
p

of D̄|Gp have the form  (cyc�1 � �2), where �1,�2 are unramified
deformations of the trivial character 1 : Gp ! F⇥

p
.
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Proof. The Cayley–Hamilton representation ⇢flat
p

satisfies conditions (1) and (2) of
Proposition 3.7.5 by Lemmas 3.5.1 and 3.5.2, respectively. The isomorphism of
universal pseudorepresentations becomes evident by comparing Lemma 3.5.2 and
Proposition 3.7.5(2). ⇤

3.8. Global formulation. We now combine the local constructions to define what
it means for a global Cayley–Hamilton representation or pseudorepresentation to
be unramified-or-Steinberg of level N and type ✏.

Definition 3.8.1. Let (⇢ : GQ,S ! E
⇥
, E,DE : E ! A) be a Cayley–Hamilton

representation over D̄. We say that ⇢ is unramified-or-Steinberg of level N and type
✏ (or US✏

N
) when ⇢|G` is US✏`

`
for all primes ` | N , and, if p - N , ⇢|Gp is finite-flat.

Let D : GQ,S ! A be a pseudodeformation of D̄. We say that D is unramified-
or-Steinberg of level N and type ✏ (or US✏

N
) when there exists a Cayley–Hamilton

representation (⇢ : GQ,S ! E
⇥
, E,DE : E ! A) such that D =  (⇢) and ⇢ is US✏

N
.

Recall the Cayley–Hamilton representation ⇢D̄ set up in §3.2. There are maps of
Cayley–Hamilton algebras ◆` : (E`, DE`) ! (ED̄, DED̄

) arising from the fact that
⇢D̄|G` is a Cayley–Hamilton representation of G` over D̄|G` . For any ` | Np, write
J
✏

`
for the kernel of E` ! E

✏`
`

(refer to Definition 3.7.3 for E
✏p
p ).

Definition 3.8.2. Let (E✏

N
, DE

✏
N
) denote the Cayley–Hamilton algebra quotient

of ED̄ by the union of ◆`(J✏

`
) over all primes ` | Np. We denote the quotient

Cayley–Hamilton representation of GQ,S by

(⇢✏
N

: GQ,S �! (E✏

N
)⇥, E✏

N
, DE

✏
N
: E✏

N
�! R

✏

N
)

and its induced pseudorepresentation by D
✏

N
=  (⇢✏

N
) : GQ,S ! R

✏

N
.

Using §3.1.5, we see that ⇢✏
N

(resp. D✏

N
) is the universal US✏

N
Cayley–Hamilton

representation (resp. pseudodeformation) over D̄. In particular, a homomorphism
RD̄ ! A factors through R

✏

N
if and only if the corresponding pseudodeformation

D : GQ,S ! A of D̄ satisfies US✏
N
.

Proposition 3.8.3. Let D : GQ,S ! A be a pseudodeformation of D̄ satisfying
US✏

N
. Then D(⌧) = cyc(⌧) for all ⌧ 2 GQ,S.

Proof. It su�ces to show that D(⌧) = cyc(⌧) for all ⌧ 2 I` and all ` | Np, since
this will show that GQ,S 3 � 7! D(�)�1

cyc(�) 2 A
⇥ is a character of GQ,S that is

unramified everywhere and hence trivial. For ` 6= p, this follows from Lemma 3.4.4,
and for ` = p this follows from Corollary 3.7.6. ⇤

3.9. Information about B
✏

N
and C

✏

N
. Recall that we fixed a GMA structure on

Ep in §3.7. This defines a GMA structure on E
✏p
p and E

✏

N
via the Cayley–Hamilton

algebra morphisms Ep ! E
✏p
p and E

✏p
p ! E

✏

N
(see [WWE19, Theorem 3.2.2]). We

write this GMA structure as

(3.9.1) E
✏

N
=

✓
R

✏

N
B

✏

N

C
✏

N
R

✏

N

◆
, ⇢

✏

N
(⌧) =

✓
a⌧ b⌧

c⌧ d⌧

◆
.

3.9.1. Computation of Bmin
flat and C

min
flat . First we work in the case that either p - N

or ✏p = +1, so E
✏p
p = E

flat
p

, with a GMA structure chosen. Let (Eflat, DEflat)
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represent the Cayley–Hamilton quotient of ED̄ by ◆p(J✏

p
), with a GMA structure

coming from E
flat
p

! Eflat. Write this GMA structure as

(3.9.2) Eflat
⇠=

✓
Rflat Bflat

Cflat Rflat

◆
, ⇢flat(⌧) =

✓
aflat,⌧ bflat,⌧

cflat,⌧ dflat,⌧

◆
.

Let J
min
flat = ker(Rflat ! Zp), where Rflat ! Zp corresponds to  (Zp(1) � Zp),

which is obviously finite-flat. Let

B
min
flat = Bflat/J

min
flat Bflat, C

min
flat = Cflat/J

min
flat Cflat.

By [WWE20, Prop. 2.5.1], we have, for any finitely-generated Zp-module M , iso-
morphisms

HomZp(B
min
flat ,M) ⇠= H

1
flat(Z[1/Np],M(1))

HomZp(C
min
flat ,M) ⇠= H

1
(p)(Z[1/Np],M(�1)).

(3.9.3)

where H
1
flat(Z[1/Np],M(1)) equals

ker

✓
H

1(Z[1/Np],M(1)) !
H

1(Qp,M(1))

Ext↵gs/Zp
(Zp,M ⌦Zp Tap(µp1))

◆

and

H
1
(p)(Z[1/Np],M(�1)) = ker(H1(Z[1/Np],M(�1)) ! H

1(Qp,M(�1))).

Here ↵gs/Zp is the category of locally-free group schemes of finite rank over Zp,
which maps to the category of Gp-modules by taking generic fiber. In other words,
a class in H

1
flat(Z[1/Np],M(1)) (resp. H1

(p)(Z[1/Np],M(�1))) is represented by a

Galois representation ⇢ that is an extension of Zp by M(1) (resp. M(�1)), such
that ⇢|Gp is isomorphic to the generic fiber of a locally-free group scheme of finite
rank over Zp (resp. ⇢|p is a trivial extension). The Galois cohomology computations
of [WWE20, §6.3] allow us to compute these.

Lemma 3.9.4. Recall that N = `0`1 · · · `r, and recall the elements �i 2 I`i for
i = 0, . . . , r defined in §1.12. There are isomorphisms

Z�r+1
p

⇠
�! B

min
flat ,

rM

i=0

Zp/(`
2
i
� 1)Zp

⇠
�! C

min
flat

given by ei 7! bflat,�i and ei 7! cflat,�i , where ei 2 Z�r+1
p

is the i-th standard basis
vector.

3.9.2. Computation of B
min
ord and C

min
ord . Next we compute in the case p | N and

✏p = �1, so E
✏p
p = E

ord
p

. Let (Eord, DEord) be the Cayley–Hamilton quotient of ED̄

by ◆p(J✏

p
), receiving a GMA structure via E

ord
p

! Eord. Write this GMA structure
as

(3.9.5) Eord
⇠=

✓
Rord Bord

Cord Rord

◆
, ⇢ord(⌧) =

✓
aord,⌧ bord,⌧

cord,⌧ dord,⌧

◆
.

Let J
min
ord = ker(Rord ! Zp), where Rord ! Zp corresponds to  (Zp(1) � Zp),

which is obviously ordinary. Let

B
min
ord = Bord/J

min
ord Bflat, C

min
ord = Cord/J

min
ord Cord.
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Just as in [WWE17, Lem. 4.1.5], we have, for any finitely-generated Zp-module M ,
isomorphisms

HomZp(B
min
ord ,M) ⇠= H

1(Z[1/Np],M(1)),

HomZp(C
min
ord ,M) ⇠= H

1
(p)(Z[1/Np],M(�1)).

(3.9.6)

The Galois cohomology computations of [WWE20, §6.3] allow us to compute these.
Recall that �i is defined in §1.12, even when `i = p.

Lemma 3.9.7. There are isomorphisms

Z�r+1
p

⇠
�! B

min
ord ,

rM

i=0

Zp/(`
2
i
� 1)Zp

⇠
�! C

min
ord

given by ei 7! bord,�i and ei 7! cord,�i , where ei 2 Z�r+1
p

is the i-th standard basis
vector.

3.9.3. Information about B
✏,min
N

and C
✏,min
N

. Let J
min := ker(R✏

N
! Zp), where

this homomorphism is induced by the US✏
N

pseudodeformation  (Zp(1)�Zp) of D̄.

Lemma 3.9.8. We consider B
✏,min
N

= B
✏

N
/J

min
B

✏

N
and C

✏,min
N

= C
✏

N
/J

min
C

✏

N
.

(1) If ✏i = 1 and `i 6= p, then the image of b�i in B
✏,min
N

is 0.

(2) If ✏i + `i 6⌘ 0 (mod p), then the image of c�i in C
✏,min
N

is 0.

Moreover, there are surjections
rM

i=0

Zp/(✏i + 1)Zp ⇣ B
✏,min
N

,

rM

i=0

Zp/(`i + ✏i)Zp ⇣ C
✏,min
N

.

given by ei 7! b�i and ei 7! c�i , respectively.

Proof. Note that for ⇢✏,min
N

= ⇢
✏

N
⌦R

✏
N
R

✏

N
/J

min , in the GMA structure, we have

⇢
✏,min
N

=

✓
cyc b

c 1

◆
.

Note that we have

V
✏i

⇢
✏,min
N

(�i,�i) = (⇢✏,min
N

(�i)� 1)(⇢✏,min
N

(�i) + ✏i) = 0.

In GMA notation, this is

0 =

✓
0 b�i

c�i 0

◆✓
`i + ✏i b�i

c�i 1 + ✏i

◆
=

✓
0 (1 + ✏i)b�i

(`i + ✏i)c�i 0

◆
.

In case (1), (1 + ✏i) is invertible, so b�i = 0. In case (2), (`i + ✏i) is invertible, so
c�i = 0.

The final statement follows from (1) and (2) and Lemma 3.9.7 if p | N and
✏p = �1; otherwise, it follows from Lemma 3.9.4. ⇤

3.10. Labeling some cohomology classes. Later, in §7, it will be convenient to
have notation for the extension classes, taken as Galois cohomology classes, arising
from homomorphisms B✏,min

N
! Fp and C

✏,min
N

! Fp.

Definition 3.10.1. We call a cohomology class x 2 H
1(Z[1/Np],M) ramified at a

prime ` when its image in H
1(I`,M) is non-zero. For certain i with 0  i  r, we

designate bi and ci as follows.
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• For i = 0, . . . , r, let b̃i denote the F⇥
p
-scaling of the Kummer cocycle of `i such

that b̃i(�i) = 1, and let bi 2 H
1(Z[1/Np],Fp(1)) be the class of b̃i.

• Let T = {0  j  r : `i ⌘ ±1 (mod p)}. For i 2 T , let ci 2 H
1
(p)(Z[1/Np],Fp(�1))

be an element that is ramified exactly at `i and such that c̃i(�i) = 1 for any
cocycle c̃i representing ci.

Lemma 3.10.2. The sets {bi}
r

i=0 and {ci}i2T are well-defined and satisfy the fol-
lowing properties:

(i) bi is characterized up to F⇥
p
-scaling by being ramified at `i, unramified out-

side {`i, p}, and finite-flat at p if `i 6= p.
(ii) If p | N , the set {bi}ri=0 is a basis of H1(Z[1/Np],Fp(1)).
(iii) The subset {bi : `i 6= p} is a basis of H1

flat(Z[1/Np],Fp(1)).
(iv) The set {ci}i2T is a basis of H1

(p)(Z[1/Np],Fp(�1)).

Proof. The value of b̃i(�i) is well-defined for the same reason when `i 6= p, and
bp(�p) is well-defined by the choice of �p (in §1.12). Parts (i), (ii), and (iii) follow
from Kummer theory (note that the Kummer class of p is not finite-flat at p).

For part (iv), note that the module C✏,min
N

is computed in [WWE20, Prop. 6.3.3].
Together with (3.9.3), this computation implies the existence of ci 2 H

1
(p)(Fp(�1))

characterized up to F⇥
p
-scaling by being ramified exactly at `i. These statements

also imply part (iv). Because !|I`i = 1, c̃i|I`i : I`i ⇣ Fp is a homomorphism not
dependent on the choice of c̃i. ⇤

The stated bases are almost dual bases, with the exception arising from the
possibility that bi is ramified at p even when `i 6= p.

Lemma 3.10.3. Under the perfect pairings

(1) Bflat ⌦Rflat Fp ⇥H
1
flat(Z[1/Np],Fp(1)) �! Fp,

(2) Cord ⌦Rord Fp ⇥H
1
(p)(Z[1/Np],Fp(�1)) �! Fp

(3) Cflat ⌦Rflat Fp ⇥H
1
(p)(Z[1/Np],Fp(�1)) �! Fp,

defined by (3.9.3) and (3.9.6), the following are respective dual basis pairs

(1) {bflat,�i : i = 0, . . . , r if `i 6= p} and {bi : i = 0, . . . , r if `i 6= p}

(2) {cord,�i : i 2 T} and {ci : i 2 T}

(3) {cflat,�i : i 2 T} and {ci : i 2 T}

Also, for 0  i, j  r such that `i = p or `j 6= p, we have bi(bord,�j ) = @ij.

Proof. We give the proof for (1), the other parts being similar. The pairing (3.9.3)
sends a class x 2 H

1
flat(Z[1/Np],Fp(1)) to a homomorphism Bflat ! Fp that sends

b⌧ to x̃(⌧), where x̃ is a particular cocycle representing x (the choice is determined
by the choice of GMA structure on Eflat). However, if !(⌧) = 1, the value of x̃(⌧)
is independent of the choice of cocycle, and we may write this value as x(⌧). Hence
we see that bi(bflat,�j ) = bi(�j) = @ij . ⇤

Definition 3.10.4. For each i 2 T , let Ki be the fixed field of ker(c̃i|GQ(⇣p),S
),

where c̃i is any cocycle c̃i : GQ,S ! Fp(�1) representing ci.

One readily verifies that Ki is the unique extension of Q(⇣p) satisfying the prop-
erties of §1.4.4.
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4. Toward R = T

4.1. The map R
✏

N
! T✏

N
. We prove the following proposition, following the con-

struction technique of Calegari–Emerton [CE05, Prop. 3.12].

Proposition 4.1.1. There is a surjective homomorphism R
✏

N
⇣ T✏

N
of augmented

Zp-algebras. Moreover, T✏

N
is generated as a Zp-algebra by Tq for any cofinite set

of primes q not dividing Np.

Proof. For this proof, it is important to note that the elements TrD✏
N
(Frq) for any

such set of primes q generate R
✏

N
as a Zp-algebra. This follows the fact that R✏

N
is

a quotient of the (unrestricted) universal pseudodeformation ring RD̄, that traces
{TrDD̄

(�) : � 2 GQ,S} of the universal pseudodeformation generate RD̄ (because
the residue characteristic is not 2, see [Che14, Prop. 1.29]), and Chebotarev density.

In the rest of the proof, we use the notation ⌃, ⇢f and Of established in Lemma
2.3.1. We proceed in three steps:

Step 1. Construct a homomorphismR
✏

N
! Of for each f 2 ⌃ that sends TrD✏

N
(Frq)

to aq(f) for each prime q - Np.
Step 2. Show that the resulting map R

✏

N
! Zp �

L
f
Of sends TrD✏

N
(Frq) to the

image of Tq under the map T✏

N
! Zp �

L
f
Of of (2.3.4), for each q - Np.

This gives a homomorphism R
✏

N
! T✏

N
whose image is the Zp-subalgebra

generated by the Tq for all q - Np. This completes the proof if p | N .
Step 3. In the case that p - N , show that the image of R✏

N
! T✏

N
contains Up

and U
�1
p

. This shows both that R
✏

N
! T✏

N
is surjective and that T✏

N
is

generated as a Zp-algebra by Tq for q - Np.

Proof of Step 1. Let f 2 ⌃. Then  (⇢̄f ) = D̄, so  (⇢f ) induces a map RD̄ ! Of .
For each prime q - Np, we have Tr(⇢f (Frq)) = aq(f), so RD̄ ! Of sends TrDD̄

(Frq)
to aq(f).

In order to show that RD̄ ! Of factors through R
✏

N
, we prove that  (⇢f ) and

⇢f are US✏
N

by verifying local conditions, as per Definition 3.8.1.

• For ` | N with ` 6= p, ⇢f |G` is US✏`
`

by Lemma 2.3.1(3).
• If p - N , or if p | N and f is old at p, then ⇢f |Gp is finite-flat by Lemma

2.3.1(4a). Also, when p | N , this implies that ⇢f |Gp is US✏p
p

by definition if
✏p = +1 and by Corollary 3.7.6 if ✏p = �1.

• If f is new at p, then ✏p = �1 and ⇢f |Gp is US�1
p

by Lemma 2.3.1(4b). ⇤

Proof of Step 2. By construction, the map R
✏

N
! Zp �

L
f
Of sends TrD✏

N
(Frq) to

(1 + q,
L

f
aq(f)), which, by (2.3.4), is the image of Tq. ⇤

Proof of Step 3. Let ⌧ 2 Ip be an element such that !(⌧) 6= 1. Let x = cyc(⌧) 2
Zp, so that 1 � x 2 Z⇥

p
. Let �p 2 Gp be the element defined in §1.12 and let

z = cyc(�p). By Lemma 2.3.1(4), we see that Tr(⇢f (�p)) = zap(f)�1 + ap(f) and
Tr(⇢f (⌧�p)) = xzap(f)�1 + ap(f). Hence we have

ap(f) =
1

x� 1

�
xTr(⇢f (�p))� Tr(⇢f (⌧�p))

�
and

ap(f)
�1 =

1

z � xz

�
Tr(⇢f (�p))� Tr(⇢f (⌧�p))

�
.
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We see that Up is the image of 1
x�1 (xTrD✏

N
(�p) � TrD✏

N
(⌧�p)) and U

�1
p

is the

image of 1
z�xz

(TrD✏
N
(�p) � TrD✏

N
(⌧�p)). Since T✏

N
is generated by Tq for q - Np

along with Tp = Up + pU
�1
p

, we see that R✏

N
! T✏

N
is surjective. ⇤

4.2. Computation of (R✏

N
)red. In this section, we will frequently make use of the

elements �i and �i defined in §1.12. We denote by M
p-part the maximal p-primary

quotient of a finite abelian group M .
Consider the group Gal(Q(⇣N )/Q)p-part. We have isomorphisms

Gal(Q(⇣N )/Q)p-part
⇠
�!

rY

i=0

Gal(Q(⇣`i)/Q)p-part
⇠
�!

rY

i=0

Zp/(`i � 1)Zp.

Since Q(⇣`i)/Q is totally ramified at `i, we can and do choose the second isomor-
phism so that the image of �i is (0, . . . , 0, 1, 0, . . . , 0) (with 1 in the i-th factor). We
define ↵i

j
to be the j-th factor of the image of �i, so that �i 7! (↵i

0,↵
i

1, . . . ,↵
i

r
) (we

can and do assume that ↵i

i
= 0).

Remark 4.2.1. Note that if `j ⌘ 1 (mod p), we may choose a surjective homo-
morphism log

`j
: (Z/`jZ)⇥ ⇣ Fp such that log

`j
(`i) ⌘ ↵

i

j
(mod p). By abuse of

notation, we denote by log
j
= log

`j
a Fp-valued character of GQ,S produced by

composition with the canonical surjection GQ,S ⇣ Gal(Q(⇣`j )/Q)
⇠
! (Z/`j)⇥.

This isomorphism determines an isomorphism of group rings

Zp[Gal(Q(⇣N )/Q)p-part]
⇠
�! Zp

"
rY

i=0

Zp/(`i � 1)Zp

#
⇠= Zp[y0, . . . , yr]/(y

p
vi

i
� 1)

where vi = vp(`i�1), and where the second isomorphism sends yi to the group-like
element (0, . . . , 0, 1, 0, . . . , 0) (with 1 in the i-th factor). Let

h�i : GQ,S ! (Zp[y0, . . . , yr]/(y
p
vi

i
� 1))⇥

be the character obtained by the quotient GQ,S ⇣ Gal(Q(⇣N )/Q)p-part followed by
this isomorphism. Note that

h�ii = yi, h�ii =
rY

j=0

y
↵

i
j

j
.

Let Rred
flat(cyc) (resp. R

red
ord(cyc)) be the quotient of the finite-flat global deforma-

tion ring Rflat (resp. ordinary global deformation ring Rord) defined in §3.9.1 (resp.
§3.9.2) by the ideal generated by the reducibility ideal along with {DD̄(�)�cyc(�) :
� 2 GQ,S}. That is, we are insisting that the determinant is cyc.

Lemma 4.2.2. The surjection Rord ⇣ Rflat induces an isomorphism R
red
ord(cyc)

⇠
!

R
red
flat(cyc). Moreover, they are both isomorphic as rings to

Zp[y0, . . . , yr]/(y
p
vi

i
� 1)

and the universal reducible pseudorepresentation pulls back to D
red =  (cych�i

�1
�

h�i) via these isomorphisms.

Proof. The quotient map Rord ⇣ Rflat comes from the first part of Corollary 3.7.6,
and the two rings di↵er only in the local condition at p. After imposing the re-
ducibility and determinant conditions, the universal pseudodeformations both have
the form  (cyc��1

��) for a character � that deforms the trivial character. By the
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latter parts of the corollary, the finite-flat and ordinary conditions on such pseudo-
deformations are identical. The last statement is proven just as in [WWE20, Lem.
5.1.1]. ⇤

Let Yi = yi � 1.

Lemma 4.2.3. There is an isomorphism

(R✏

N
)red ⇠= Zp[Y0, . . . , Yr]/a

where a is the ideal generated by the elements

Y
2
i
, (`i � 1)Yi, (✏i + 1)Yi, Yi

0

@
rY

j=0

(1� ↵̃
j

i
Yj)� 1

1

A ,

for i = 0, . . . , r, where ↵̃j

i
2 Zp is any lift of ↵j

i
2 Zp/(`j � 1)Zp (note that a is

independent of the choice of this lift).

Proof. We consider (E✏

N
)red = E

✏

N
⌦R

✏
N

(R✏

N
)red. We write the base-change of

⇢
✏

N
to this algebra as ⇢red, for simplicity. Write h�i : GQ,S ! ((R✏

N
)red)⇥ for

the composite of h�i with the quotient R
red
flat(cyc) ! (R✏

N
)red, which exists by

Proposition 3.8.3. (We use R
red
flat(cyc) even in the ordinary case, in light of Lemma

4.2.2.)
First we show that the mapR

red
flat(cyc) ! (R✏

N
)red factors through Zp[Y0, . . . , Yr]/a.

We can write ⇢red in GMA notation as

⇢
red =

 
cych�i

�1
⇤

⇤ h�i

!
.

Since V
✏i

⇢red(�i, �i) = (⇢red(�i)� 1)2 = 0 in (E✏

N
)red, we see that Y 2

i
= 0 in (R✏

N
)red.

Since (1 + Yi)p
vi

� 1 = 0, this implies that p
viYi = 0 in (R✏

N
)red. Moreover, by

Lemma 3.4.5, if ✏i = +1 and vi > 0, then ⇢red(�i) = 1; for such i, this implies that
Yi = 0 in (R✏

N
)red. We can rephrase this as (✏i + 1)Yi = 0 for all i.

From now on, consider i such that ✏i = �1. Already, we see that

h�ii =
rY

j=0

y
↵

i
j

j
=

rY

j=0

(1 + ↵̃
i

j
Yj)

Since V
✏i

⇢red(�i,�i) = (⇢red(�i)� 1)(⇢red(�i)� 1) = 0 in (E✏

N
)red, we obtain

(h�ii
�1

� 1)(`ih�ii
�1

� 1) = 0, (h�ii � 1)(h�ii � 1) = 0.

These imply

0 = Yi

0

@
rY

j=0

(1� ↵̃
j

i
Yj)� 1

1

A = Yi

0

@
rY

j=0

(1 + ↵̃
j

i
Yj)� 1

1

A .

However, this last equation is redundant because
0

@�

rY

j=0

(1 + ↵̃
j

i
Yj)

1

A

0

@
rY

j=0

(1� ↵̃
j

i
Yj)� 1

1

A ⌘

0

@
rY

j=0

(1 + ↵̃
j

i
Yj)� 1

1

A (mod Y
2
0 , . . . , Y

2
r
).
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This shows that R
red
flat(cyc) ! (R✏

N
)red factors through Zp[Y0, . . . , Yr]/a. It re-

mains to verify that the pseudorepresentation D : GQ,S ! Zp[Y0, . . . , Yr]/a defined

by  (cych�i
�1

� h�i) is US✏
N
. This is checked easily. ⇤

5. The case ✏ = (�1, 1, 1, . . . , 1)

In this section, we consider the case where ✏0 = �1 and ✏i = 1 for 0 < i  r.
Without loss of generality, we can and do, for this section, assume that the primes
{`i}

r

i=0 are ordered so that `i ⌘ �1 (mod p) for i = 1, . . . , s and `i 6⌘ �1 (mod p)
for s < i  r. Here s is an integer, 0  s  r. The most interesting case is s = r,
and, in fact, we immediately reduce to this case.

5.1. Reduction to the case s = r. Let N(s) =
Q

s

i=0 `i and ✏(s) 2 {±1}s+1

be defined by ✏(s)0 = �1 and ✏(s)i = 1 for 0 < i  s. There is a natural map

T✏

N
⇣ T✏(s)

N(s) by restricting to the space of forms that are old at `i for s < i  r.

There is also a natural surjection R
✏

N
⇣ R

✏(s)
N(s), since ⇢

✏(s)
N(s) is unramified (resp.

finite-flat) at `i when `i 6= p (resp. `i = p) and s < i  r.

Lemma 5.1.1. The natural map R
✏

N
⇣ R

✏(s)
N(s) is an isomorphism. Moreover, if

the map R
✏(s)
N(s) ⇣ T✏(s)

N(s) is an isomorphism, then the surjections R
✏

N
⇣ T✏

N
and

T✏

N
⇣ T✏(s)

N(s) of Proposition 4.1.1 are isomorphisms.

Proof. The isomorphy of R
✏

N
⇣ R

✏(s)
N(s) can be rephrased as saying that, for all

s < i  r, ⇢✏
N

is unramified (resp. finite-flat) at `i if `i 6= p (resp. if `i = p).
This follows from Lemma 3.4.5 and §3.6. For the second statement, consider the
commutative diagram of surjective ring homomorphisms

R
✏

N
//

o

✏✏

T✏

N

✏✏

R
✏(s)
N(s)

// T✏(s)
N(s).

⇤

5.2. The case s = r. Now we assume that s = r (i.e. that `i ⌘ �1 (mod p)
for i = 1, . . . , r). We write J

min
⇢ R

✏

N
for the augmentation ideal, and J

red =
ker(R✏

N
⇣ (R✏

N
)red). We have the following consequence of Wiles’s numerical

criterion [Wil95, Appendix].

Proposition 5.2.1. The surjection R
✏

N
⇣ T✏

N
is a isomorphism of complete in-

tersection rings if and only if

#J
min

/J
min 2

 p
vp(`0�1)

·

rY

i=1

p
vp(`i+1)

.

If this is the case, then equality holds.

Proof. The surjection comes from Proposition 4.1.1. Note that

p
vp(`0�1)

·

rY

i=1

p
vp(`i+1) = #Zp/a0(E

✏)Zp.

The proposition follows from Theorem 2.2.1 and the numerical criterion, as in
[WWE20, Thm. 7.1.1]. ⇤
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Lemma 5.2.2. There is an isomorphism

J
min

/J
red ⇠= Zp/(`0 � 1)Zp

sending d�0 � 1 to 1, and J
min 2

⇢ J
red.

Proof. By Lemma 4.2.3, we have

(R✏

N
)red = Zp[Y0]/((`0 � 1)Y0, Y

2
0 ),

and we can easily see that d�0 � 1 maps to Y0 and generates the image of Jmin .
Since Y

2
0 = 0, we have the second statement. ⇤

Lemma 5.2.3. There is a surjection

Zp/(`0 � 1)Zp �

 
rM

i=1

Zp/(`i + 1)Zp

!
⇣ J

red
/J

min
J
red

given by ei 7! b�0c�i .

Proof. By Lemma 3.9.8, we have surjections

Zp ⇣ B
✏,min
N

, 1 7! b�0

and

Zp/(`0 � 1)Zp �

 
rM

i=1

Zp/(`i + 1)Zp

!
⇣ C

✏,min
N

, ei 7! c�i .

By [BC09, Prop. 1.5.1], in any A-GMA E =
�
A B

C A

�
, the structure map B⌦AC ! A

has image equal to the reducibility ideal of E. Applying this to the R
✏

N
-GMA E

✏

N

of (3.9.1) we have an R
✏

N
-module surjection B

✏

N
⌦R

✏
N
C

✏

N
⇣ J

red. Tensoring this
by R

✏

N
/J

min = Zp, we have a surjection

(5.2.4) B
✏,min
N

⌦Zp C
✏,min
N

⇣ J
red

/J
min

J
red

, b⌦ c 7! bc.

Combining these, we have the lemma. ⇤

Lemma 5.2.5. The element b�0c�0 2 R
✏

N
is in J

min 2
.

Proof. Since V
✏0
⇢
✏
N
(�0, �0) = (⇢✏

N
(�0)� 1)2 = 0, we see that (a�0 � 1)2 + b�0c�0 = 0.

Since a�0 � 1 2 J
min , we have the lemma. ⇤

We have arrived at the main theorem.

Theorem 5.2.6. Let N = `0`1 · · · `r and ✏ = (�1, 1, . . . , 1). Then the map
R

✏

N
⇣ T✏

N
is a isomorphism of augmented Zp-algebras, and both rings are complete

intersection. The ideal Jmin is generated by the elements b�0c�i for i = 1, . . . , r
together with d�0 � 1. There is an exact sequence

(5.2.7) 0 !

rM

i=1

Zp/(`i + 1)Zp ! I
✏
/I

✏2
! Zp/(`0 � 1)Zp ! 0.

Proof. By Lemma 5.2.2, there is an exact sequence

(5.2.8) 0 ! J
red

/J
min 2

! J
min

/J
min 2

! Zp/(`0 � 1)Zp ! 0

Combining Lemmas 5.2.3 and 5.2.5, we see that there is a surjection

(5.2.9)
rM

i=1

Zp/(`i + 1)Zp ⇣ J
red

/J
min 2
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given by ei 7! b�0c�i . This shows that

#J
min

/J
min 2

 p
vp(`0�1)

·

rY

i=1

p
vp(`i+1)

.

By Proposition 5.2.1, this shows that R
✏

N
⇣ T✏

N
is an isomorphism of complete

intersection rings, and that this inequality is actually equality. This implies that
(5.2.9) is an isomorphism. Using Lemma 5.2.2 and Nakayama’s lemma, this shows
that J

min is generated by the stated elements. Since J
min maps isomorphically

onto I
✏, the desired sequence follows from (5.2.8). ⇤

6. The case ✏ = (�1,�1)

In this section, we assume that r = 1 and also that ✏ = (�1,�1).

6.1. No interesting primes. If `i 6⌘ 1 (mod p) for i = 0, 1, then there are no
cusp forms congruent to the Eisenstein series.

Theorem 6.1.1. If `i 6⌘ 1 (mod p) for i = 0, 1, then T✏

N
= Zp and T✏,0

N
= 0.

Proof. It is enough to show that R✏

N
= Zp. By Lemma 4.2.3, we have R

✏,red
N

= Zp

and by Lemma 3.9.8 we have C
✏

N
= 0, so J

red = 0. This implies R✏

N
= Zp. ⇤

6.2. Generators of B
✏

N
. Since nothing interesting happens if there are no inter-

esting primes, we now assume that `0 ⌘ 1 (mod p). We emphasize that, in this
section, we do not assume that `1 6= p. Recall the notation a⌧ , b⌧ , c⌧ , d⌧ for ⌧ 2 GQ,S

from (3.9.1) and the elements �i,�i 2 GQ,S from §1.12.

Lemma 6.2.1. Assume that `1 is not a p-th power modulo `0. Then the subset
{b�0 , b�0} ⇢ B

✏

N
generates B

✏

N
as a R

✏

N
-module.

Proof. We give the proof in the case `1 = p; the case `1 6= p is exactly analogous,
changing ‘ordinary’ to ‘finite-flat’ everywhere. Because B

min
ord surjects onto B

✏

N

and by Nakayama’s lemma, it is enough to show that the images b̄ord,�0 , b̄ord,�0 of
bord,�0 , bord,�0 in B

min
ord /pB

min
ord generate B

min
ord /pB

min
ord .

Using bi, b̃i defined in §3.10 and the lemmas there, we know that {b̄ord,�0 , b̄ord,�1}

is a basis for Bmin
ord /pB

min
ord and b1(b̄ord,�j ) = @1j for j = 0, 1. Hence it is enough to

show that b1(b̄ord,�0) 6= 0. As in the proof of Lemma 3.10.3, the fact that !(�0) = 1
implies that b1(b̄ord,�0) = b̃1(�0). Because `1 is not a p-th power modulo `0, class
field theory implies that b̃1(�0) 6= 0. ⇤
Proposition 6.2.2. Assume that `1 is not a p-th power modulo `0. Then

b�0c�0 , b�1c�1 , b�1c�0 2 J
min 2

.

If, in addition, `1 ⌘ 1 (mod p) and `0 is not a p-th power modulo `1, then b�0c�1 2

J
min 2

as well.

Proof. The proof for b�0c�0 , b�1c�1 is just as in Lemma 5.2.5. If we prove that

b�1c�0 2 J
min 2

, then we get b�0c�1 2 J
min 2

in the second statement by symmetry.

So it su�ces to prove b�1c�0 2 J
min 2

.
Let X = a�0 � `0 and W = a�0 � 1, and note that X,W 2 J

min . From the
(1, 1)-coordinate of the equation V

✏`0
⇢
✏
N
(�0, �0) = 0 defined in (3.4.2), we see that

XW + b�0c�0 = 0. In particular, b�0c�0 2 J
min 2

.
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By Lemma 6.2.1, we know that b�1 is in the R
✏

N
-linear span of b�0 and b�0 .

Because both b�0c�0 and b�0c�0 lie in J
min 2

, so does b�1c�0 . ⇤
6.3. One interesting prime. We assume that `0 ⌘ 1 (mod p) and `1 6⌘ 1 (mod p)
(including the possibility that `1 = p). There is a natural surjective homomorphism
T✏

N
⇣ T`0 by restricting to forms that are old at `1.

Theorem 6.3.1. Assume that `0 ⌘ 1 (mod p), that `1 6⌘ 1 (mod p), and that `1 is
not a p-th power modulo `0. Then the natural map T✏

N
⇣ T`0 is an isomorphism.

In particular, I✏ is principal, T✏

N
and T✏,0

N
are complete intersections, and there are

no newforms in S2(N)✏Eis.

Proof. Just as in the proof of Lemma 5.1.1, it su�ces to show that the map R
✏

N
⇣

T`0 is an isomorphism. By Lemma 4.2.3, there is an isomorphism

R
✏,red
N

⇠= Zp[Y0]/(Y
2
0 , (`0 � 1)Y0),

where the image of Jmin is the ideal generated by Y0. This implies that J
min 2

⇢

J
red and that there is an isomorphism

Zp/(`0 � 1)Zp

⇠
�! J

min
/J

red
, 1 7! Y0.

On the other hand, we know that J
red is generated by the set {b�0c�0 , b�1c�0} by

Lemma 3.9.8 and the surjection (5.2.4). By Proposition 6.2.2, we see that this set

is contained in J
min 2

. Hence J
red

⇢ J
min 2

, and so J
red = J

min 2
.

Now we have #J
min

/J
min 2

= p
vp(`0�1) and, by the numerical criterion (Propo-

sition 5.2.1), R✏

N
⇣ T`0 is an isomorphism. ⇤

Remark 6.3.2. The assumption that `1 is not a p-th power modulo `0 is necessary:
see the examples in §1.10.2.

6.4. Two interesting primes. We consider the case `i ⌘ 1 (mod p) for i = 0, 1.

Theorem 6.4.1. Let N = `0`1 and ✏ = (�1,�1). Assume that `i ⌘ 1 (mod p) for
i = 0, 1 and assume that neither prime is a p-th power modulo the other. Then the
map R

✏

N
⇣ T✏

N
is an isomorphism of complete intersection rings augmented over

Zp, and there is an isomorphism

I
✏
/I

✏2 ⇠= Zp/(`0 � 1)Zp � Zp/(`1 � 1)Zp.

Proof. By Lemma 4.2.3, we see that there is an isomorphism

R
✏,red
N

⇠= Zp[Y0, Y1]/(Y
2
0 , Y0Y1, Y

2
1 , (`0 � 1)Y0, (`1 � 1)Y1)

and that the image of Jmin is the ideal generated by (Y0, Y1). In particular Jmin 2
⇢

J
red and

J
min

/J
red ⇠= Zp/(`0 � 1)Zp � Zp/(`1 � 1)Zp.

Moreover, by Proposition 6.2.2 and Lemma 3.9.8, we see that J red
⇢ J

min 2
so we

have
J
min

/J
min 2

= J
min

/J
red ⇠= Zp/(`0 � 1)Zp � Zp/(`1 � 1)Zp.

In particular, #J
min

/J
min 2

= p
vp(`0�1)+vp(`1�1).

Now the numerical criterion of Proposition 5.2.1 implies that R
✏

N
⇣ T✏

N
is a

isomorphism of complete intersection augmented Zp-algebras. It follows that I✏ =
J
min , and so the description of I✏/I✏2 also follows. ⇤
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Remark 6.4.2. Again, the assumptions are necessary. See the examples in §1.10.3.

Definition 6.4.3. We say there are no newforms in M2(N ;Zp)✏Eis if

M2(N ;Zp)
✏

Eis = M2(`0;Zp)Eis +M2(`1;Zp)Eis,

where the later are considered submodules of the former via the stabilizations in
§2.1.5. Otherwise, we say there are newforms in M2(N ;Zp)✏Eis.

Theorem 6.4.4. Let N = `0`1 and ✏ = (�1,�1) and assume that `i ⌘ 1 (mod p)
for i = 0, 1. If there are no newforms in M2(N ;Zp)✏Eis, then T✏

N
is not Gorenstein.

In particular, if neither prime `i is a p-th power modulo the other, then there are
newforms in M2(N ;Zp)✏Eis.

Proof. The second statement follows from the first statement by Theorem 6.4.1.
Now assume that there are no newforms in M2(N ;Zp)✏Eis. We count that

rankZp(M2(N ;Zp)
✏

Eis) = rankZp(M2(`0;Zp)Eis) + rankZp(M2(`1;Zp)Eis)� 1

(by Lemma 2.3.1, for example).
We claim that, under this assumption, we have an isomorphism T✏

N

⇠
�! T`0 ⇥Zp

T`1 . To see this, consider the commutative diagram of free Zp-modules, where
the right square consists of canonical surjective homomorphisms of commutative
Zp-algebras and the rows are exact:

0 // a1 //

✏✏

T✏

N
// //

✏✏✏✏

T`1
//

✏✏✏✏

0

0 // I0 // T`0
// // Zp

// 0.

By Lemma C.2.1, it is enough to show that a1 ! I0 is an isomorphism. From this
diagram and the above rank count, we see that rankZp(a1) = rankZp(I0). Thus it
su�ces to show that the Zp-dual map is surjective. By duality (2.1.2), the dual
map is identified with the map

M2(`0;Zp)Eis/ZpE2,`0 ! M2(N ;Zp)
✏

Eis/M2(`1;Zp)Eis

induced by stabilization, which is surjective by our assumption M2(N ;Zp)✏Eis =
M2(`0;Zp)Eis +M2(`1;Zp)Eis. This proves that a1 ! I0 is an isomorphism.

Using this isomorphism T✏

N

⇠
�! T`0 ⇥Zp T`1 and Mazur’s results (§1.1) on the

structure of T`i , it is then a simple computation to see that

T✏

N
/pT✏

N
⇠= Fp[y0, y1]/(y

e0+1
0 , y

e1+1
1 , y0y1), for some e0, e1 > 0.

Thus Soc(T✏

N
/pT✏

N
) = Fpy

e0
0 � Fpy

e1
1 . By Lemma C.1.3, T✏

N
is not Gorenstein. ⇤

7. Generators of the Eisenstein ideal

In this section, we prove Part (4) of Theorem 1.5.1 about the number of gen-
erators of the Eisenstein ideal, as well as Theorems 1.7.5 and 1.7.1, about specific
generators.
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7.1. Determining the number of generators of I
✏ when " = (�1, 1, . . . , 1).

In this subsection, we prove Part (4) of Theorem 1.5.1. Assume we are in the setting
of that theorem, so ✏ = (�1, 1, . . . , 1). Recall the fields Ki of Definition 3.10.4.

Theorem 7.1.1. Assume that `i ⌘ �1 (mod p) for i = 1, . . . , r. The minimal
number of generators of I✏ is r + � where

(7.1.2) � =

⇢
1 if `0 splits completely in Ki for i = 1, . . . , r
0 otherwise.

This immediately implies Part (4) of Theorem 1.5.1 by Lemma 5.1.1. For the
rest of §7.1, we assume that r > 0 and `i ⌘ �1 (mod p) for i = 1, . . . , r, and we
use � to refer to the integer (7.1.2).

7.1.1. Outline of the proof. By Theorem 5.2.6, we see that R✏

N
! T✏

N
is an isomor-

phism and that it induces an isomorphism J
min ⇠

�! I
✏. Hence we are reduced to

computing the number of generators of Jmin . Moreover, (5.2.7) implies that this
number of generators is either r or r + 1, and we are reduced to showing that it is
r + 1 if and only if the splitting condition in (7.1.2) holds.

We do some initial reductions in §7.1.2. We use class field theory to show that the
splitting condition in (7.1.2) is equivalent to the vanishing of certain cup products in
Galois cohomology. The number of generators of Jmin is the same as the dimension
of the tangent space of R✏

N
/pR

✏

N
, and this is related to cup products. Explicitly,

Belläıche proved in [Bel12, Thm. A] that the the tangent space tD̄ of RD̄/pRD̄

(where RD̄ is the unrestricted pseudodeformation ring of D̄ – without any local
conditions) fits in an exact sequence

tD̄
◆ // H1(Fp(1))⌦Fp H

1(Fp(�1))
b
0⌦c

0 7!(b0[c
0
,c

0[b
0) // H2(Fp)�H

2(Fp).

In other words, the tangent space is larger as more cup products vanish. We show
that this immediately implies one implication of Theorem 7.1.1: if the number of
generators of Jmin is r + 1, this forces the tangent space of tD̄ to be large, which
can only happen if the cup products vanish.

The other implication is more delicate. If we assume that the cup products van-
ish, then Belläıche’s theory only tells us that the tangent space of the unrestricted
deformation ring is large. We have to show that these first-order deformations can
be made to satisfy the right local conditions at primes dividing Np. To do this, we
construct in §7.1.3 a particular GMA representation ⇢M that realizes Belläıche’s
tangent space computation, and show that ⇢M satisfies the US✏

N
local conditions.

In §7.1.4, we show that ⇢M indeed realizes the tangent space of R✏

N
/pR

✏

N
, and this

completes the proof.

7.1.2. First reductions. Note that because m = J
min + pR

✏

N
⇢ R

✏

N
is the maximal

ideal, we have

J
min

/mJ
min ⇠= m/(p,m2).

By Nakayama’s lemma, the minimal cardinality of a generating subset of Jmin is
dimFp m/(p,m2). By Theorem 5.2.6 we have I✏ ⇠= J

min , so, to prove Theorem 7.1.1,
it su�ces to show that dimFp m/(p,m2) = r + �, and this is what we will prove.

Recall the notation of §3.10, in particular, the class b0 2 H
1(Z[1/Np],Fp(1)) and

the representing cocycle b̃0, as well as the classes c0, . . . , cr 2 H
1
(p)(Z[1/Np],Fp(�1))
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(note that c0 is only defined if `0 ⌘ ±1 (mod p)). The starting point is the following
proposition, which is proven in Appendix B.

Proposition 7.1.3. Let i 2 {1, . . . , r}. Then `0 splits completely in Ki if and only
if `0 ⌘ 1 (mod p) and b0 [ ci vanishes in H

2(Z[1/Np],Fp).

We can now prove one implication of Theorem 7.1.1.

Proposition 7.1.4. Suppose that the minimal number of generators of I✏ is r+1.
Then � = 1.

Proof. By Theorem 5.2.6, we see that minimal number of generators of I✏ is r + 1
if and only if `0 ⌘ 1 (mod p) and the images of the elements b�0c�i for i = 1, . . . , r
in m/(p,m2) are linearly independent. In particular, for each i, the image of b�0c�i

in m/(p,m2) is non-zero. Fix such an i, and let (writing Fp["] for Fp["]/("2))

↵ : R✏

N
/(p,m2) ! Fp["]

be a ring homomorphism sending b�0c�i to ".

Let E =
� Fp["] Fp

Fp Fp["]

�
be the Fp["]-GMA with data (Fp,Fp,m) where m : Fp ⇥

Fp ! Fp["] is the map (x, y) 7! xy". By Lemma 3.10.3, we have a homomorphism
of GMAs A : E✏

N
! E given by

A =

✓
↵ b̃0

c̃i ↵

◆
.

Let DA =  (A � ⇢
✏

N
) : GQ,S ! Fp["] be the corresponding deformation of D̄. Then

DA contributes a non-zero element to the tangent space tD̄ of RD̄/pRD̄. Examining
[Bel12], the image of DA under ◆ in the exact sequence of [Bel12, Thm. A]

tD̄
◆ // H1(Fp(1))⌦Fp H

1(Fp(�1))
b
0⌦c

0 7!(b0[c
0
,c

0[b
0) // H2(Fp)�H

2(Fp)

is b0⌦ ci, and hence b0[ ci = 0. Since this is true for all i, Proposition 7.1.3 implies
that � = 1. ⇤

The remainder of the proof of Theorem 7.1.1 relies on the following construction.

7.1.3. Construction of a maximal first-order pseudodeformation. Let H be the ker-
nel of the map

H
1
(p)(Z[1/Np],Fp(�1)) �! H

2(Z[1/Np],Fp)�H
1(I`0 ,Fp(�1)),

x 7! (b0 [ x, x|I`0
).

Lemma 7.1.5. If `0 ⌘ 1 (mod p) and � = 0, then b0 [ ci 6= 0 for some i. In that
case, there are elements ↵j 2 Fp such that the set {cj�↵jci} for j 2 {1, . . . , r}\{i}
is a basis for H. Otherwise, the set {c1, . . . , cr} is a basis for H.

Proof. The first statement follows from Proposition 7.1.3. Recall that ci is ramified
at `0 if and only if i = 0, so H is contained in the span of the linearly independent
set {c1, . . . , cr}. Since

dimFp H
2(Z[1/Np],Fp) =

⇢
1 when `0 ⌘ 1 (mod p)
0 when `0 6⌘ 1 (mod p),

the lemma follows. ⇤
Lemma 7.1.6. If `0 6= p and h 2 H, the image h|G`0

2 H
1(Q`0 ,Fp(�1)) is zero.
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Proof. If `0 6⌘ ±1 (mod p), then H
1(Q`0 ,Fp(�1)) = 0. If `0 ⌘ �1 (mod p), then

H
1(Q`0 ,Fp(�1)) = H

1(Q`0 ,Fp(1)), and so this follows from Lemma B.1.1. Now
assume `0 ⌘ 1 (mod p). Then, since h [ b0 = 0 in H

2(Z[1/Np],Fp), b0 is ramified
at `0, and h is unramified at `0, Lemma B.1.3 implies that h|G`0

= 0. ⇤
Construction 7.1.7. We construct a cocycle C : GQ,S ! H

⇤(�1), where H
⇤ =

HomFp(H,Fp) with trivial GQ,S-action, and a cochain F : GQ,S ! H
⇤ such that:

(1) C|Gp = 0,
(2) if `0 6= p, then C|G`0

is a coboundary,

(3) dF = b̃0 ^ C,
(4) F |Ip = 0,

(5) For any cocycle h̃ whose cohomology class h is in H, and any ⌧ 2 GQ,S

with !(⌧) = 1, we have C(⌧)(h) = h̃(⌧).

Proof. For any GQ,S-module X, let

Z
1
(p)(Z[1/Np], X) = {(a, x) 2 Z

1(Z[1/Np], X)⇥X | a(⌧) = (⌧ � 1)x, 8 ⌧ 2 Gp}.

There is a surjection Z
1
(p)(Z[1/Np],Fp(�1)) ⇣ H

1
(p)(Z[1/Np],Fp(�1)) sending (a, x)

to the class of a. Choose a linear section s : H ,! Z
1
(p)(Z[1/Np],Fp(�1)), and write

s(h) = (s(h)1, s(h)2) 2 Z
1(Z[1/Np],Fp(�1))⇥ Fp(�1).

Define an element (C 0
, x) 2 C

1(Z[1/Np], H⇤(�1)) ⇥ H
⇤(�1) by C

0(⌧)(h) =
s(h)1(⌧) and x(h) = s(h)2 for h 2 H. One observes (C 0

, x) 2 Z
1
(p)(Z[1/Np], H⇤(�1)).

Then let C = C
0
� dx, so that C|Gp = 0 and (1) holds. We also see that (5) holds,

since the value h̃(⌧) is independent of the choice of cocycle. Computing with dual
vector spaces, it is easy to see that b0[C = 0 in H

2(Z[1/Np], H⇤) and that Lemma
7.1.6 implies (2).

Finally, to see (3) and (4), let y be any cochain such that dy = b̃0 ^ C. Note
that the restriction map

H
1(Z[1/Np], H⇤) ! H

1(Ip, H
⇤)

is surjective, and that, since H
⇤ has trivial action, we may and do identify a coho-

mology class with its representing cocycle. Since C|Ip = 0 and dy = b̃0 ^ C, we
see that y|Ip 2 H

1(Ip, H⇤). Hence there is a cocycle y
0
2 H

1(Z[1/Np], H⇤) with

y
0
|Ip = y|Ip . Letting F = y � y

0, we have dF = dy = b̃0 ^ C and F |Ip = 0. ⇤
Let M = H

⇤
�Z/(p, `0 � 1), and let Fp[M ] be the vector space Fp �M thought

of as a local Fp-algebra with square-zero maximal ideal M . We write elements of
Fp[M ] as triples (x, y, z) with x 2 Fp, y 2 H

⇤ and z 2 Z/(p, `0 � 1)Z.
Let EM be the Fp[M ]-GMA given by the data (Fp, H

⇤
,m) where m is the ho-

momorphism

m : Fp ⌦Fp H
⇤ ⇠= H

⇤ ⇠
! H

⇤
� {0} ⇢ M ,! Fp[M ].

Let ⇢M : GQ,S �! E
⇥
M

be the function

(7.1.8) ⇢M (⌧) =

✓
!(⌧)(1, F (⌧), log

`0
(⌧)) b̃0(⌧)

!(⌧)C(⌧) (1, b̃0(⌧)C(⌧)� F (⌧),� log
`0
(⌧))

◆
.

Then ⇢M is a homomorphism by Construction 7.1.7. Let DM : GQ,S ! Fp[M ]
denote the pseudorepresentation DM :=  (⇢M ).

Lemma 7.1.9. ⇢M satisfies US✏
N
.
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Proof. As per Definition 3.8.1, we verify US✏
N

by proving that ⇢M |Gp is finite-flat
if `0 6= p, and that ⇢M |G` satisfies condition US✏`

`
for all ` | N .

If `0 6= p, ⇢M |Gp is finite-flat: For this, we will make frequent use of the notion
of a Cayley–Hamilton module, developed in [WWE19, §2.6].

Let E
0
M

be the Fp[M ]-sub-GMA of EM given by E
0
M

=
� Fp[M ] Fp

0 Fp[M ]

�
. Since

C|Gp = 0, we see that the action of Gp on EM via ⇢M factors through E
0
M
. Hence

(⇢M |Gp : Gp ! E
0⇥
M
, E

0
M
, DE

0
M

: E
0
M

! Fp[M ]), which we denote by ⇢
0
M,p

for
convenience, is a Cayley–Hamilton representation of Gp. Then EM is a faithful
Cayley–Hamilton module of ⇢0

M,p
; by [WWE19, Thm. 2.6.3], it is enough to show

that ⇢0
M,p

is finite-flat.

Consider the extension E
b̃0

defined by b̃0:

0 �! Fp(1) �! E
b̃0

�! Fp �! 0,

which is finite-flat by Kummer theory. Let W! = Fp[M ] and W1 = Fp[M ] with
Gp acting by the characters !(1, F, log

`0
) and (1,�F,� log

`0
), respectively. Since

F |Ip and log
`0
|Ip are zero, W! and W1 are finite-flat. We have exact sequences of

Fp[M ][Gp]-modules

0 ! M(1) ! W! ! Fp(1) ! 0, 0 ! M ! W1 ! Fp ! 0.

Let l : Fp ,! M be an injective linear map. This induces a injection Fp(1) ,! W!

of Fp[M ][Gp]-modules. Taking the pushout of E
b̃0

by this injection, we obtain an
exact sequence

0 �! W! �! E
b̃0,!

�! Fp �! 0.

Pulling back this sequence by W1 ⇣ Fp, we obtain an exact sequence

0 �! W! �! E
b̃0,!,1 �! W1 �! 0.

Following [WWE20, App. C], we see that E
b̃0,!,1 is finite-flat and that there is an

isomorphism E
b̃0,!,1

⇠= Fp[M ]�2 under which the action of Gp is given by

(7.1.10)

✓
!(1, F, log

`0
) (0, b̃0 · l(1))

0 (1,�F,� log
`0
)

◆����
Gp

: Gp ! GL2(Fp[M ]).

We now use this isomorphism E
b̃0,!,1

⇠= Fp[M ]�2 as an identification.
We have an injective Fp[M ]-GMA homomorphism l

0 : E0
M

! EndFp[M ](Eb̃0,!,1) =
M2⇥2(Fp[M ])) given by

l
0 =

✓
idFp[M ] l

0 idFp[M ]

◆
.

By (7.1.10), we see that action of Gp-action on E
b̃0,!,1 factors through l

0. In other
words, E

b̃0,!,1 is a faithful Cayley–Hamilton module of ⇢0
M,p

. Since E
b̃0,!,1 is finite-

flat, ⇢0
M,p

is finite-flat by [WWE19, Thm. 2.6.3].
If `0 = p, then ⇢M |Gp is ordinary: This follows from Proposition 3.7.5 and
Construction 7.1.7.
If `0 ⌘ 1 (mod p), then ⇢M |G`0

is US�1
`0

: Since `0 ⌘ 1 (mod p), !|G`0
= 1. By

Construction 7.1.7, we have C|G`0
= 0. Then, for any �, ⌧ 2 G`0 , we have

V
�1
⇢M

(�, ⌧) := (⇢M (�)� !(�))(⇢(⌧)� 1) =

✓
"1 b̃0(�)
0 "2

◆✓
"3 b̃0(⌧)
0 "4

◆
= 0,

where "i 2 M ⇢ Fp[M ].
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If `0 6⌘ 0, 1 (mod p), then ⇢M |G`0
is US�1

`0
: By assumption, we have M = H

⇤ and
log

`0
= 0, so we write elements of Fp[M ] as pairs (x, y) with x 2 Fp and y 2 H

⇤.
Since C|G`0

is a coboundary, there exists z 2 H
⇤ such that C(⌧) = (!�1(⌧) � 1)z

for all ⌧ 2 G`0 .
Let ⇢0

M
: GQ,S ! E

⇥
M

be the composite of ⇢M with the automorphism EM

⇠
! EM

given by conjugation by
�
1 0
z 1

�
2 E

⇥
M
. By explicit computation, we see that

⇢
0
M

=

✓
!(1, Fa) b̃0

!(C � (!�1
� 1)z) (1, Fd)

◆
,

where Fa = F�!
�1

b̃0z and Fd = b̃0C�F+!b̃0z; in particular, the (2, 1)-coordinate
of ⇢0

M
|G`0

is zero. This implies that Fa|G`0
, Fd|G`0

: G`0 ! H
⇤ are homomorphisms.

Because `0 6⌘ 0, 1 (mod p) and H
⇤ has exponent p, they are unramified.

For any (�, ⌧) 2 G`0 ⇥ I`0 , we compute that

V
�1
⇢
0
M
(�, ⌧) =

✓
" ⇤

0 ⇤

◆✓
0 ⇤

0 0

◆
= 0

where " 2 M . Equivalently, V �1
⇢M

= 0. A similar computation shows that V �1
⇢M

(�, ⌧) =
0 for (�, ⌧) 2 I`0 ⇥G`0 .
If ` | N and ` 6= `0, then ⇢M |G` is US+1

`
: In this case we have ` ⌘ �1 (mod p),

and hence !|G` = �(�1). Since ` 6= `0, we have b0|I` = 0, so b0|G` = 0 by
Lemma B.1.1. Hence there exists z 2 Fp such that b̃0(⌧) = (!(⌧) � 1)z for all
⌧ 2 G`. Exactly as in the previous case, we can show that V

+1
⇢M

(�, ⌧) = 0 for all

(�, ⌧) 2 G` ⇥ I` [ I` ⇥G` by conjugating ⇢M by
�
1 z

0 1

�
2 E

⇥
M
. ⇤

7.1.4. End of the proof. We will show that DM is, in a sense, the universal US✏
N

first-order deformation of D̄.

Proposition 7.1.11. The pseudodeformation DM of D̄ induces an isomorphism
R

✏

N
/(p,m2)

⇠
! Fp[M ].

Proof. By Lemma 7.1.9, ⇢M is US✏
N
, so DM is also US✏

N
by Definition 3.8.1, and

there is an induced map E
✏

N
! EM . This gives us a local homomorphism R

✏

N
!

Fp[M ], and any such map factors through R
✏

N
/(p,m2) ! Fp[M ]. Let f denote the

restriction m/(p,m2) ! M . It su�ces to show that f is an isomorphism.
Assume that the GMA structure on E

✏

N
is chosen so that E✏

N
! EM is a mor-

phism of GMAs (such a GMA structure is known to exist by [WWE19, Thm. 3.2.2]).
By Theorem 5.2.6, we see that the elements b�0c�i for i = 1, . . . , r together with the
element d�0 � 1 generate m/(p,m2), and, moreover, if `0 6⌘ 1 (mod p), the elements
b�0c�i for i = 1, . . . , r are a basis.

By construction, we see that f(b�0c�i) = (0, b̃0(�0)C(�i), 0) = (0, C(�i), 0), and
that f(d�0 � 1) = (0, 0,� log

`0
(�0)) (which is non-zero if `0 ⌘ 1 (mod p)). By

Lemma 7.1.13 below, f is surjective.
Now we count dimensions. By Theorem 5.2.6 and Proposition 7.1.4, we have

dimFp(m/(p,m2)) =

⇢
r if � = 0
r or r + 1 if � = 1.

By Lemma 7.1.5, we have

(7.1.12) dimFp(M) =

⇢
r if � = 0
r + 1 if � = 1.

Since f is surjective, this implies that f is an isomorphism in all cases. ⇤
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Lemma 7.1.13. Let ⌧1, . . . , ⌧r 2 GQ,S be any elements such that:

• !(⌧i) = 1 for i = 1, . . . , r, and
• c̃j(⌧i) = @ij for all 1  i, j  r.

If � = 1 or `0 6⌘ 1 (mod p), then the set {C(⌧i) : i = 1, . . . , r} is a basis for H
⇤.

Otherwise b0 [ cj 6= 0 for some j and the set {C(⌧i) : i = 1, . . . , r, i 6= j} is a basis
for H

⇤.

Proof. Indeed, if cj � ↵ck 2 H for some ↵ 2 Fp and j, k 2 {1, . . . , r}, then by
Construction 7.1.7(5) we have

C(⌧i)(cj � ↵ck) = c̃j(⌧i)� ↵c̃k(⌧i) = @ij � ↵@ik.

Using the explicit basis of H constructed in Lemma 7.1.5, the lemma follows. ⇤

Proof of Theorem 7.1.1. By Proposition 7.1.11, we have m/(p,m2)
⇠
! M , and the

dimension of M is given by (7.1.12). This completes the proof. ⇤

7.2. Good sets of primes in the case ✏ = (�1, 1, . . . , 1). In this section, we
prove Theorem 1.7.5. Recall Definition 1.7.3 for the meaning of the set of good
primes Q.

Proof of Theorem 1.7.5. We freely refer to ⇢M and related objects in this proof (see
(7.1.8)). Let J be the index set of Q (i.e. J = {0, . . . , s}, J = {0, . . . , s} \ {j} or
J = {1, . . . , s} in the three cases of Definition 1.7.3, respectively).

By Theorem 5.2.6, Proposition 7.1.11, and Nakayama’s lemma, it su�ces to show
that the projection ⌥(q) of Tq� (q+1) under T✏

N

⇠
! R

✏

N
⇣ Fp[M ] comprise a basis

{⌥(q)}q2Q of M . The conditions (1)-(6) on Q have been chosen so that:

(i) If 0 2 J and q0 6= p, then !(Frq0) 6= 1 and log
`0
(Frq0) 6= 0. This follows from

(1) and (2).
(ii) !(Frqi) = 1 for i 2 J with i > 0. This follows from condition (3).
(iii) b̃0(Frqi) 6= 0 for i 2 J with i > 0. This follows from (4) by class field theory.
(iv) {C(Frqi) : i 2 J, i > 0} is a basis for H⇤. This follows from Lemma 7.1.13 by

(ii), (5), and (6).

When qi 6= p, it is clear that ⌥(qi) = Tr⇢M (Frqi)� (qi + 1), and we calculate:

(a) By (ii), ⌥(qi) = (0, b̃0(Frqi) · C(Frqi), 0) 2 Fp[M ] for i 2 J with i > 0. By (iii)
and (iv), these elements form a basis of H⇤.

(b) If 0 2 J and q0 6= p, then ⌥(q0) 2 Fp[M ] lies in M and projects via M ⇣
Z/(p, `0 � 1) to (!(Frq0)� 1) log

`0
(Frq0). This is non-zero, by (i).

(c) If 0 2 J and q0 = p, we claim that ⌥(p) 2 Fp[M ] lies in M and maps to
log

`0
p 6= 0 under the summand projectionM ⇣ Z/(p, `0�1). This follows from

the same argument as in Case q0 = p of the proof in §7.3, but is simpler. ⇤

Remark 7.2.1. The reader will note that, in this proof, our conditions are used to
ensure that a certain matrix is diagonal with non-zero diagonal entries. Of course,
the necessary and su�cient condition is simply that this same matrix is invertible.

7.3. Good pairs of primes in the case ✏ = (�1,�1). In this section, we prove
Theorem 1.7.1. We assume we are in the setting of Theorem 6.4.1.

Proof of Theorem 1.7.1. By Theorem 6.4.1 and Nakayama’s lemma, T✏

N
is gener-

ated by {Tqi � (qi + 1)}i=0,1 if and only if their images {⌥(qi)}i=0,1 via T✏

N

⇠
!
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R
✏

N
⇣ R

✏

N
/(p,m2) are a basis of m/(p,m2). We see in the proof of Theorem 6.4.1

that J red = J
min 2

. In particular, as m = J
min +(p) ⇢ R

✏

N
, there are isomorphisms

R
✏

N
/(p,m2)

⇠
! R

✏,red
N

/(p) ⇠= Fp[Y0, Y1]/(Y
2
0 , Y0Y1, Y

2
1 ), m/(p,m2)

⇠
! (Y0, Y1),

which we use as identifications. Then D
✏

N
pulls back to the pseudorepresentation

D =  (!h�i
�1

� h�i) : GQ,S ! R
✏,red
N

/(p), where, for particular choices of log
`i
,

GQ,S 3 ⌧ 7! h⌧i := 1 + log
`0
(⌧)Y0 + log

`1
(⌧)Y1 2 (R✏,red

N
/(p))⇥.

We see that if qi 6= p, then ⌥(qi) = TrD(Frqi)� (qi + 1).
Case q0, q1 6= p. One computes that the matrix expressing {⌥(q0),⌥(q1)} in the
basis {Y0, Y1} of m/(p,m2) ⇠= (Y0, Y1) is

✓
(q0 � 1) log

`0
q0 (q1 � 1) log

`0
q1

(q0 � 1) log
`1
q0 (q1 � 1) log

`1
q1

◆
2 M2(Fp),

which completes the proof.
Case q0 = p. We note that the images of Tp � (p + 1) and Up � 1 in I

✏
/mI

✏ are
equal, so we may replace Tp � (p+ 1) by Up � 1 in the statement. We recall from
Step 3 of the proof of Proposition 4.1.1 that Up is the image under R

✏

N

⇠
! T✏

N

of 1
x�1 (xTr(⇢

✏

N
)(�p) � Tr(⇢✏

N
)(⌧�p)), where ⌧ 2 Ip is such that !(⌧) 6= 1 and

x = cyc(⌧). We compute that

⌥(p) =
1

x� 1

�
xTrD(�p)� TrD(⌧�p)

�
� 1 = log

`0
(p)Y0 + log

`1
(p)Y1.

Thus, the matrix expressing {⌥(p),⌥(q1)} in the basis {Y0, Y1} of m/(p,m2) is
✓

log
`0
p (q1 � 1) log

`0
q1

log
`1
p (q1 � 1) log

`1
q1

◆
2 M2(Fp). ⇤

Appendix A. Comparison with the Hecke algebra containing U`

In order to compare our results with existing results and conjectures, in this
appendix we consider a Hecke algebra that contains the U` operators rather than
the w` operators. We prove comparison results between Eisenstein completions of
this algebra and the Eisenstein completions T✏

N
studied in this paper. Throughout

this appendix, we drop the subscripts ‘N ’ on all Hecke algebras to avoid cumbersome
notation.

Recall that we have the normalization map of Lemma 2.3.1

T✏
,! Zp �

0

@
M

f2⌃

Of

1

A ,

where ⌃,Of were defined there. For each f 2 ⌃, there is a unique pair (Nf , f̃) of a
divisor Nf of N and a newform f̃ of level Nf such that aq(f) = aq(f̃) for all primes
q not dividing Nf and a`(f̃) = �✏` for primes ` dividing Nf . For this f̃ , we have
aq(f̃) ⌘ 1 + q (mod mf ) for all q - Nf .
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A.1. Oldforms and stabilizations. Just as in §2.1.5, if ` | N and f 2 S2(N/`;Zp)
is an eigenform for all Tn with (n,N/`) = 1, then there are two ways to stabilize f to
be a U`-eigenform in S2(N ;Zp). Let ↵`(f),�`(f) denote the roots of x2

�a`(f)x+`.
Then f↵`(z) = f(z) � �`(f)f(`z) and f�`(z) = f(z) � ↵`(f)f(`z) satisfy U`f↵` =
↵`(f)f↵` and U`f�` = �`(f)f�` . Note that, unlike in §2.1.5, it may happen that
↵`(f) ⌘ �`(f) (mod p).

A.2. The case p - N . For this section, assume p - N . Let T0
U

and T00
U

be the
Zp-subalgebras of

EndZp(M2(N ;Zp)) and EndZp(S2(N ;Zp)),

respectively, generated by the Hecke operators T` for ` - N and U` for ` | N . These
are semi-simple commutative algebras (see [CE98] for the semi-simplicity).

For each ✏ 2 E as in §1.4.2, we let I 0✏
U
⇢ T0

U
be the ideal generated by the set

{Tq � (q + 1), U` � `
✏`+1

2 : q - N, ` | N primes}.

Note that U` � 1 2 I
0✏
U

if ✏` = �1 and U` � ` 2 I
0✏
U

if ✏` = 1, so the ideal I 0✏
U

is the
annihilator of a certain stabilization of the Eisenstein series E2,1 (but generally not
E

✏

2,N ). Let T✏

U
and T0,✏

U
denote the completions of T0

U
and T00

U
respectively, at the

maximal ideal (p, I 0✏
U
) ⇢ T0

U
. Let m✏

U
⇢ T✏

U
and m0,✏

U
⇢ T0,✏

U
be the maximal ideals.

A.2.1. The normalization of T✏

U
. Since T✏

U
and T0,✏

U
are semi-simple, the standard

description of prime ideals in terms of eigenforms allows us to describe their nor-
malizations, just as for T✏. For newforms f , we know that U`f = �w`f for all
` | N . For oldforms, we can use the stabilization formulas from §2.1.5 and §A.1 to
describe the eigenforms for T✏

U
in terms of the set ⌃. We write down the result of

this description explicitly in Lemma A.2.1.
We require the following notation. Let LN = {` | N : ` ⌘ 1 (mod p)}. For

each f 2 ⌃ and each ` | N

Nf
, let ↵`(f) and �`(f) be the roots of x2

� a`(f̃)x + `.

Assume that ↵`(f) ⌘ `
✏`+1

2 (mod p) and let Lf = {` |
N

Nf
: ` ⌘ 1 (mod p)}. Let

Õf be the extension of Of generated by ↵`(f) and �`(f). If ` 6⌘ 1 (mod p), then
the congruence condition determines ↵`(f) (and �`(f)) uniquely, and Õf = Of ; in
this case, only stabilizations of f̃↵` can appear in the completion S2(N ;Zp)⌦T00

U
T✏

U
.

If ` ⌘ 1 (mod p), then we label the two roots arbitrarily (in this situation, below,
we will use the two roots symmetrically), and Õf may be a quadratic extension of
Of ; in this case the stabilizations of both f̃↵` and f̃�` can appear in the completion
S2(N ;Zp)⌦T00

U
T✏

U
.

Lemma A.2.1. The normalization of T✏

U
is the injection

T✏

U
,!

 0M

L⇢LN

Zp

!
�

0

@
M

f2⌃

0

@
M

L⇢Lf

Õf

1

A

1

A ,

where the primed summation in the first factor indicates that we omit the subset
L = LN if ✏` = 1 for all ` 62 LN . The map is given by

Tq 7! ((1 + q)L⇢LN , aq(f)f2⌃,L⇢Lf ) for all q - N,
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and sending U` for ` | N as follows. In the factor T✏

U
! Zp for L ⇢ LN , we have

U` 7! 1 if

8
<

:

` 62 LN and ✏` = �1, or
` 2 LN � L and ✏` = �1, or
` 2 L and ✏` = 1

and

U` 7! ` if

8
<

:

` 62 LN and ✏` = 1, or
` 2 LN � L and ✏` = 1, or
` 2 L and ✏` = �1

for all ` | N . In the factor TU ! Õf corresponding to f 2 ⌃ and L ⇢ Lf , we have

U` 7! u`(f) :=

8
<

:

�✏` if ` | Nf

↵`(f) if ` | N, ` - Nf , ` 62 L

�`(f) if ` | N, ` - Nf , ` 2 L

for all ` | N .

The only part of the lemma that is not completely standard is the factor
�L0

L⇢LN
Zp

�
,

which corresponds to the Eisenstein series in M2(N)✏Eis. For ` | N , if ` 62 LN , then

the U`-eigenvalue of any such Eisenstein series must be `
✏`+1

2 , but if ` 2 LN , then
the possible U`-eigenvalues 1 and ` are congruent, and so both appear, regardless
of what ✏` is. We need to omit L = LN in the case that ✏` = 1 for all ` 62 LN

because that factor corresponds to the Eisenstein series with U`-eigenvalue ` for all
` | N , which is the non-holomorphic one.

The normalization of T0,✏
U

is the same, but without the Eisenstein factor
�L

L⇢LN
Zp

�

A.2.2. Comparisons. We now compare the algebras T0,✏
U

and T0,✏. The following
proposition gives a necessary and su�cient condition for the algebras to coincide.

Proposition A.2.2. Suppose that both of the following are true:

(1) for each f 2 ⌃, we have Lf = ;; and
(2) T✏,0

U
is generated as a Zp-algebra by {Tq : q - Np}.

Then T✏,0
U

= T✏,0. Moreover, if one of these conditions is false, then T✏,0
U

6= T✏,0.

Proof. The first condition ensures that T✏,0
U

and T✏,0 have the same normalization,
so it is certainly necessary. The second condition is true for T✏,0 by Proposition
4.1.1, so it is necessary. Furthermore, if we assume (1) and (2), then T✏,0

U
and T✏,0

are identified with the subalgebra of
L

f2⌃ Of generated by {(aq(f)f ) : q - Np}. ⇤
We now verify these conditions in certain cases considered in this paper.

Proposition A.2.3. Assume that `i 6⌘ 1 (mod p) for 0 < i  r and assume that
✏ = (�1, 1, . . . , 1). Then T✏,0

U
= T✏,0.

Proof. We verify the conditions (1) and (2) of Proposition A.2.2.
To verify (1), assume, for a contradiction, that there is an f 2 ⌃ with Lf 6= ;. By

our assumptions on `i, we must have Lf = {`0}. Then the newform f̃ 2 S2(Nf ;Qp)

satisfies aq(f̃) ⌘ 1 + q (mod p) for all q - Nf and a`(f̃) = �1 for all ` | Nf (since
`0 - Nf by assumption). But this is impossible by a theorem of Ribet (see [BD14,
Thm. 2.6(ii)(b)]), so (1) holds.

We now turn to (2). Just as in the proof of Proposition 4.1.1, we have a homo-
morphism R

✏

N
! T0,✏

U
sending Tr(⇢✏

N
(Frq)) for q - Np to Tq, and whose image is
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the subalgebra of T0
U
generated by {Tq : q - Np}. Note that, by (1), for each f 2 ⌃

we have `0 | Nf , so u`0(f) = 1. This implies U`0 = 1 in T0
U
. Hence to verify (2),

we need only show that U` is in the image of R✏

N
! T0,✏

U
for all ` | N with ` 6= `0.

Now fix such an ` and note that, by assumption, ` 6⌘ 1 (mod p) and ✏` = 1. Let
Ũ 2 R

✏

N
be the root of the polynomial x2

�Tr(⇢✏
N
(�`))x+ ` such that Ũ � ` 2 mR;

such a Ũ exists and is unique by Hensel’s Lemma. We claim that the image of Ũ
in T0,✏

U
is U`. To prove the claim, it su�ces to show that Ũ 7! u`(f) under the map

R
✏

N
! Of for each f 2 ⌃.

First assume that ` | Nf . By (2.3.2), Tr(⇢f (�`)) = �(`+ 1). So Ũ is sent to the
root of

x
2 + (`+ 1)x+ ` = (x+ 1)(x+ `)

(that is, either �1 or �`) that is congruent to ` modulo mf . Since ` 6⌘ �` (mod p),
we see that Ũ is sent to �1. (Note that this shows that if ` | Nf , then ` ⌘ �1
(mod p), corroborating Lemma 5.1.1.)

Next assume that ` | N and ` - Nf , so Tr(⇢f (Fr`)) = a`(f̃). Then Ũ is sent to
the root of

x
2
� a`(f̃)x+ `

that is congruent to ` modulo mf , which is ↵`(f) by definition.
This shows that, for f 2 ⌃ the map R

✏

N
! Of sends Ũ to

⇢
�1 if ` | Nf

↵`(f) if ` - Nf

which is equal to u`(f). Hence U` is the image of Ũ in T0,✏
U

and the map R
✏

N
! T0,✏

U

is surjective, verifying (2). ⇤
The proof of the first part of the following proposition is almost identical, but

simpler, so we leave it to the reader. The second part is an application of Theorem
6.3.1.

Proposition A.2.4. Assume that N = `0`1, that `1 6⌘ 1 (mod p), and that ✏ =
(�1,�1). Then T0,✏ = T0,✏

U
. If, in addition, `1 is not a p-th power modulo `0, then

T0,✏ and T0,✏
U

are both identical to the Hecke algebra at level `0 considered by Mazur.

A.3. The case p | N . In this section, we maintain the notation of the previous
section, but we assume that `0 = p and that ✏0 = �1 (for 0 < i  r, ✏i is arbitrary).

We consider a variant T✏

H
of the Hecke algebra that is intermediate to T✏ and T✏

U
.

Namely, T✏

H
is the completion of the Hecke algebra generated by the Tq for q - N ,

together with Up and w`i for 0 < i  r, at the ideal generated by p, Tq � (q + 1),
Up � 1, and w`i � ✏i. Note that, as in the case of T✏, we have w`i = ✏i in T✏

H
. For

each f 2 ⌃, if p - Nf , we let ↵p(f) 2 Of be the (unique) unit root of x2
�ap(f̃)x+p.

Just as in Lemma A.2.1, we can compute the normalization of T✏

H
. It is the

injective map

T✏

H
,! Zp �

0

@
M

f2⌃

Of

1

A

sending Tq to (1+ q, aq(f)f ) for q - N and Up as follows. The component T✏

H
! Zp

sends Up to 1. The component T✏

H
! Of sends Up to up(f) defined by

up(f) :=

⇢
1 if p | Nf

↵p(f) if p - Nf .
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Proposition A.3.1. With the assumptions that `0 = p and ✏0 = �1, we have

T✏

H
= T✏ as subalgebras of Zp �

⇣L
f2⌃ Of

⌘
and T✏,0

H
= T✏,0 as subalgebras of

⇣L
f2⌃ Of

⌘
.

Proof. The proof is just as in the proof of Proposition A.2.3, so we will be brief.
We have a map R

✏

N
! T✏

H
and we need only show that Up is in the image of this

map. Now choose �p 2 Gp to be a Frobenius element such that !(�p) = 1, and let
Ũ 2 R

✏

N
be the unique unit root of x2

� Tr(⇢✏
N
(�p))x+ p. We see that Ũ maps to

Up. ⇤

Corollary A.3.2. Let N = p` with ` ⌘ 1 (mod p) and ✏ = (�1,�1). Assume that
p is not a p-th power modulo `. Then the Eisenstein ideal of T✏

H
is generated by

Up � 1. In particular, T✏

H
and T0,✏

H
are Gorenstein.

Proof. Combine the previous proposition with Theorem 6.3.1 and Mazur’s good
prime criterion (§1.1). ⇤

Appendix B. Computation of some cup products

B.1. Cohomology calculations.

Lemma B.1.1. If ` 6⌘ 0, 1 (mod p), then the restriction map

H
1(Q`,Fp(1)) ! H

1(I`,Fp(1))

is injective.

Proof. Under the isomorphisms of Kummer theory, this map corresponds to the
map Q⇥

`
⌦ Fp ! Qur

`

⇥
⌦ Fp induced by the inclusion. Since ` 6⌘ 0, 1 (mod p),

Q⇥
`
⌦ Fp is generated by the class of `, which maps the class of ` in Qur

`

⇥
⌦ Fp,

which is nonzero. ⇤

Lemma B.1.2. Let N = `0 · · · `r be squarefree and assume p - N . Let V = {i :
p | (`i � 1)}. The local restriction maps induce an isomorphism

H
2(Z[1/Np],Fp)

⇠
�!

rM

i=1

H
2(Q`i ,Fp) ⇠=

M

i2V

H
2(Q`i ,Fp).

of vector spaces of dimension #V .

Proof. Just as in [WWE20, Lem. 12.1.1], we know that

H
2(Z[1/Np],Fp) ! H

2(Qp,Fp)�
rM

i=1

H
2(Q`i ,Fp)

is a surjection because H
3
(c)(Z[1/Np],Fp) ⇠= H

0(Z[1/Np],Fp(1))⇤ = 0. By Tate du-

ality, H2(Q`,Fp) = H
0(Q`,Fp(1))⇤, which is one-dimensional if ` ⌘ 1 (mod p) and

zero otherwise. It remains to verify that H2(Z[1/Np],Fp) has the same dimension.
This follows from the global Tate Euler characteristic computation of [WWE20,
Lem. 12.1.1]. ⇤

The following is a consequence of Tate duality.
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Lemma B.1.3. Assume that ` ⌘ 1 (mod p) is prime. Then H
1(Q`,Fp(�1)) =

H
1(Q`,Fp(1)). This cohomology group is 2-dimensional, the unramified subspace is

1-dimensional, and the cup product pairing

[ : H1(Q`,Fp(�1))⇥H
1(Q`,Fp(1)) �! H

2(Q`,Fp)

is non-degenerate and symplectic. In particular, the cup product of two unram-
ified classes vanishes, and the cup product of a ramified class with a non-trivial
unramified class does not vanish.

B.2. Proof of Proposition 7.1.3. By the description of the number fields Ki in
Definition 3.10.4, `0 splits completely in Ki if and only if `0 ⌘ 1 (mod p) and the
image ci|G`0

of ci in H
1(Q`0 ,Fp(�1)) is zero. Since b0|G`0

is ramified and ci|G`0
is

unramified, Lemma B.1.3 implies that ci|G`0
= 0 if and only if b0|G`0

[ ci|G`0
= 0.

By Lemma B.1.2, this happens if and only if b0 [ ci = 0.

Appendix C. Algebra

C.1. Some comments about Gorenstein defect. Let (A,mA, k) be a regular
Noetherian local ring, and let (R,mR) be a finite, flat, local A-algebra.

More generally, for an A-module M , let M
_ = HomA(M,A). Also, let M̄ =

M/mAM . For a k-vector space M , let M
⇤ = Homk(M,k). For an R-module M ,

give M_ the R-module structure given by (r ·f)(x) = f(rx) for f 2 M
_ and r 2 R,

and let gR(M) = dimk(M/mRM) be the minimal number of generators of M . The
assumptions on A and R imply that R is a Cohen–Macaulay ring with dualizing
module R

_.
Define the Gorenstein defect �(R) of R to be the integer �(R) = gR(R_) � 1.

Then R is Gorenstein if and only if �(R) = 0 [BH93, Thm. 3.3.7, pg. 111]. If R is
complete intersection, then R is Gorenstein [BH93, Prop. 3.2.1, pg. 95]. Kilford and
Wiese [KW08, Defn. 1.4] define the Gorenstein defect of R to be dimk Soc(R̄)� 1,
where Soc(R̄) = AnnR̄(mR̄). Our goal is Lemma C.1.3: these definitions amount to
the same thing. The proofs of the following lemmas are elementary, but we include
them for completeness.

Lemma C.1.1. Assume that A = k. Then the canonical pairing R ⇥ R
_

! k

induces a perfect pairing AnnR(mR) ⇥ R
_
/mRR

_
! k. In particular, �(R) =

dimk(AnnR(mR))� 1.

Proof. By restriction, there is a surjective homomorphism of R-modules

R
_ ⇣ AnnR(mR)

_

which is easily seen to factor through R
_
/mRR

_. This gives the pairing. To show
it is perfect, it is enough to show that the dual map AnnR(mR) ! (R_

/mRR
_)_

is surjective as well. This map is induced by the canonical isomorphism R ! R
__

given by x 7! evx, where evx(f) = f(x) for f 2 R
_.

Let g 2 (R_
/mRR

_)_ be an arbitrary element. Then g is induced by a R-module
homomorphism g̃ : R_

! k such that g̃(r.f) = 0 for all r 2 mR and f 2 R
_. By

duality, we have g̃ = evx for some x 2 R. Then we have

0 = g̃(r.f) = evx(r.f) = f(rx)

for all r 2 mR and f 2 R
_. This implies that rx = 0 for all r 2 mR, so x 2

AnnR(mR). Hence g is in the image of AnnR(mR) ! (R_
/mRR

_)_, so this map is
surjective and the pairing is perfect. ⇤
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Lemma C.1.2. There is a canonical isomorphism of R̄-modules R_ ⇠= R̄
⇤.

Proof. Since R is projective as an A-module, the map

R
_ = HomA(R,A) ! HomA(R, k) ⇠= Homk(R̄, k) = R̄

⇤

is a surjective morphism of R-modules. Since mA annihilates the image, this
map must factor through R_. Since R_ and R̄

⇤ both have k-dimension equal
to rankA(R), the map R_ ! R̄

⇤ is an isomorphism. ⇤

Lemma C.1.3. We have �(R) = �(R̄) = dimk Soc(R̄)� 1.

Proof. We have

R_ ⌦R̄ R̄/mR̄ = (R_
⌦R R̄)⌦R̄ R̄/mR̄ = R

_
⌦R R/mR

so gR(R_) = gR̄(R_). By Lemma C.1.2, we have

1 + �(R) = gR(R
_) = gR̄(R_) = gR̄(R̄

⇤) = 1 + �(R̄).

This shows that �(R) = �(R̄). The equality �(R̄) = dimk Soc(R̄) � 1 follows from
Lemma C.1.1. ⇤

C.2. Fiber products of commutative rings. Note that the category of com-
mutative rings has all limits. The underlying set of the limit of a diagram of
commutative rings is the limit of the diagram of underlying sets.

Lemma C.2.1. Consider a commutative diagram

A
⇡B //

⇡C

✏✏

B

�B

✏✏
C

�C // D

in the category of commutative rings. Assume that all the maps are surjective and
that the map ker(⇡B) ! ker(�C) induced by ⇡C is an isomorphism. Then the
canonical map A ! B ⇥D C is an isomorphism.

The proof is a diagram chase.
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