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ABSTRACT. We use pseudodeformation theory to study Mazur’s Eisenstein
ideal. Given prime numbers N and p > 3, we study the Eisenstein part of the
p-adic Hecke algebra for I'g(N). We compute the rank of this Hecke algebra
(and, more generally, its Newton polygon) in terms of Massey products in
Galois cohomology, answering a question of Mazur and generalizing a result of
Calegari-Emerton. We also also give new proofs of Merel’s result on this rank
and of Mazur’s results on the structure of the Hecke algebra.
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1. INTRODUCTION

Let N and p > 3 be prime numbers. Let T denote the completion of the Hecke
algebra with weight 2 and level I'g (V) at the Eisenstein maximal ideal with residual
characteristic p, and let T° denote the cuspidal quotient of T. In his influential paper
[Maz77], Mazur studied T® and showed that T° # 0 if and only if p | (N —1). In
that same paper, he posed the question “Is there anything general that can be said
about the Newton polygon of T, or even about rankz,, (T°)?” [pg. 140, loc. cit.].
In this paper, we give a complete answer to his question, showing that this Newton
polygon can be computed exactly in terms of arithmetic invariants present in Galois
cohomology.

It remains an interesting avenue of research to systematically compute these new
arithmetic invariants. This might be achieved by relating them to more analytic
invariants coming from the theory of L-functions. We do this in the case of the
lowest-order invariants, by relating our invariant to one studied by Merel [Mer96],
thus giving a new proof of Merel’s result. The higher-order invariants remain mys-
terious; however, see Remark about a recent preprint of Lecouturier that
extends Merel’s approach. Also, for results along these lines when p = 2 or p = 3,
see [CEO05].

1.1. Galois cohomology. In order to state the main theorems, we need to estab-
lish some notation for certain Galois cohomology groups; full definitions are found
in Appendix |§ Let (Z/p°Z) sz, and (p1ps ) jz, denote the constant and multiplicative
group schemes of order p* over Z,, respectively. We let

Hp 400 (Z/p°ZL) = Bxt' (Z/p°Z) /2, (Z/P°L) z,),
H, 000 (Z/p°L(1)) = Bxt' (Z/p°L) /2, (pe) /2,):
and Hy, g, (Z/p°Z(-1)) = Bxt' ((4p+) /2, (Z/p°L) z,),
where the extension groups are taking place in the category of finite flat p*-torsion
group schemes over Z,,.

For each i = 0,1, —1, we have H, 4., (Z/p*Z(i)) C H'(Qp, Z/p*Z(i)), an inclusion
into local Galois cohomology. Let

H 0 (Z/p*L(1))

be the resulting global cohomology groups, which are instances of Selmer groups.
We will see that, if p* | (N — 1), each of the spaces H},, (Z[1/Np|,Z/p°Z(i)) is a
free Z/p*Z-module of rank 1 (Corollary[6.1.5). If p* || (N — 1), choose generators

a € Hj,(Z[1/Npl, Z/p'Z), b€ Hij,(Z[1/Np], Z/p'Z(1)),
¢ € Hy, (Z[1/Np], Z/p'Z(-1)).
Below we consider these elements as being in H(Z[1/Np], Z/p'Z(3)).

HA\ (Z[1/Np), 2/p°2(0)) = ker (Hl(Z[l/Np],Z/psm)) L 2@z psz“”)

1.2. Criterion for rank 1. We can now state the first main theorem.

Theorem 1.2.1. Suppose that p | (N — 1). The following are equivalent:
(1) rankyz, (T°) > 2
(2) The cup product bU ¢ vanishes in H*(Z[1/Np],F,)
(3) The cup product a U c vanishes in H*(Z[1/Np],F,(—1)).
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Theorem is the special case n = s = 1 of Theorem [14.0.1| below (see also
the remarks following that theorem). This theorem can also be interpreted in terms
of class groups. We denote the ideal class group of a number field K by Cl(K).

Corollary 1.2.2. Suppose that p | (N —1). Let (@(C](\I;), ») denote the degree p
subextension of Q(Cn,(p)/Q((p). Consider the following conditions:
(1) The group CI(Q(N'/P))[p] is cyclic.
(2) The group CI(Q(C](\I,’),Cp))[p](,l) is cyclic. Here the subscript {(—1)” refers
to the w™t-eigenspace for the action of Gal(Q(¢,)/Q).
(3) The rank of the Z,-algebra T is one.
Then (1) implies (2), and (2) is equivalent to (3).

In this paper, we relate (1) and (2) to the cup products bUc and aUc, respectively,
in Proposition[11.1.1] Then it is a corollary of Theorem that either of (1) and
(2) imply (3). The remaining implication that (3) implies (2) is due to Lecouturier
[Lec18b).

Remarks 1.2.3. We note the following relations with other works.

e The implication (1) = (3) of this corollary was first obtained by Calegari—
Emerton, and is the main theorem of [CEQ5] (for p > 3).

e The converse implication (3) = (1) is false in general, but, for regular p,
a partial converse is provided by Schaefer-Stubley [SS19, Thm. 1.1.2]. In
particular, they prove that the converse is true for p = 5.

e The implication (3) = (2) was proven by Lecouturier [Lec18b, Thm. 1.7] using
Merel’s theorem (Theorem [1.5.1] below). Also using that theorem, he proves a
partial converse of (1) = (3): he proves that

p—2
dimg, (CHQ(NY?))[p]) = 1+ ri(xo0)
=1

for some non-negative integers r;(xo), and proves that r1(xo) = 1 if and only
if rankz, (T%) = 1 (see the proof of [LecI8b, Thm. 1.1] on pg. 54).

e It would interesting to see if these finer results can be deduced from Sharifi’s
theory relating class groups of Kummer extensions to cup products and Massey
products [Sha07].

1.3. Higher rank and Massey products. Consider the following matrix of co-
cycles:

_(a b HY(Z[1/Np|,Z/p'Z)  H'(Z[1/Np|,Z/p'Z(1))
M= ( —a > - ( HY(Z[1/Np], Z/p'Z(-1))  H'(Z[1/Npl,Z/p'Z) )

We have the “matrix cup product” M U M given by

aUa+bUc aUb—bUa )

MUM = ( cUa—aUc cUb+aUa

Using the skew-commutativity of (scalar) cup products, we can see that, if MUM =
0, then bUc = cUa = 0. In fact, one can show that M U M = 0 if and only if
bUc = cUa = 0. This suggests that, in order to generalize Theorem [I.2.1]to higher
rank, one should consider “higher cup powers” of M.

We can formalize this by considering M as an element of

H'(Z[1/Np], End(Z/p'Z(1) & Z/p'Z))



4 PRESTON WAKE AND CARL WANG-ERICKSON

and using the product on End(Z/p'Z(1) ® Z/p'Z). Roughly, for s < t, we define
Massey product powers (M)* € H2(Z[1/Np|, End(Z/p*Z(1) & Z/p*Z)) of M induc-
tively, assuming (M)k_l = 0. The base case is the cup product <M>2 =MUM.

Theorem 1.3.1. Let k > 1 and suppose that rankz, (T°) > k — 1. The following
are equivalent:

(1) rankz, (T°) > k

(2) (M)* =0 in H2(Z[1/Np|, End(F,(1) ® F,)).

This theorem is morally correct, but not quite precise: we actually need to
choose the extra data of a defining system for the Massey product <M>k to be
defined. See Theorem for a precise statement, and Remark for the
fact that vanishing behavior does not depend on the choice of defining system. As
with Theorem in the case k = 2, for general k the matrix Massey product
vanishing (M >k = 0 is equivalent to the vanishing of one of its coordinates. See
Appendix [A] for the definition of Massey products and their coordinates, and see
Proposition for the equivalence.

1.4. Newton polygons. For this subsection, we let e = rankgz, (T°) and recall
that ¢t = v, (N — 1). As Mazur noted, there is an isomorphism

T° = Z, [yl /(F(y))
where F'(y) is a polynomial of the form

Fly)=o1+ay+ ...y ' +y° Fly)=y° (modp), vp(on) ="t

The polynomial F(y) is not determined canonically, but its Newton polygon is.
Mazur’s original question addressed this Newton polygon, which influences the
factoring behavior of F(y). This is interesting because one can read off partial
(but, often, complete) information about the number of Eisenstein-congruent cusp
forms and the “depth” of these congruences from the Newton polygon — see [BKK14]
for a careful discussion. In particular, one knows that the normalization TO of T?

is of the form .
™ =[]0y,
i=1

where the product is over the normalized eigenforms f; congruent to the Eisenstein
series, and Oy, is the valuation ring in the p-adic field Q,(f;) generated by the
coefficients of f;. In particular, rankz (Oy) = [Qp(fi) : Qp), and m equals the
number of factors of F(y).

Theorem 1.4.1. The Newton polygon of T® is completely and explicitly determined
by the list of integerst =t >ty > -+ > t. > 0, where, for i > 1, t; is the mazimal
integer s < t;_1 such that (M)" =0 in H*(Z[1/Np|,End(Z/p°Z(1) © Z/p°Z)).

For the precise result, see Theorem [14.0.1] Here is a precise consequence.

Corollary 1.4.2. Assume that max(e,t) > 2 and min(e,t) > 1 and that M UM is
non-zero in H?(Z[1/Np|,End(Z/p*Z(1) & Z/p*Z)).

Then the vertices of the Newton polygon of T° are {(0,t),(1,1),(e,0)}. In par-
ticular, TO is not irreducible, and, moreover, there is a cuspidal eigenform f with
coefficients in Z, that is congruent modulo p to the Eisenstein series of weight 2

and level N.
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Note that if max(e,t) < 2 or min(e,t) < 1, then there is only one possibility for
the Newton polygon. Next, we consider an analytic interpretation of M U M.

1.5. Relation to Merel’s work. Mazur give a different criterion for rankz, (T%) =
1 in terms of the geometry of modular curves [Maz77, Prop. I1.19.2; pg. 140], and
Merel [Mer96] gave a number-theoretic interpretation of this criterion.

Theorem 1.5.1 (Merel). Assume that p | (N —1). The following are equivalent:
(1) rankg, (T°) =1
(2) The element of (Z/NZ)* given by the formula

N—-1
2

i' (mod N)
i=1
18 not a p-th power.

There is an alternate formulation, by Calegari and Venkatesh, of this theorem
in terms of zeta values, which was explained to us by Venkatesh. Assume that
p* | (N —=1), and let G = (Z/NZ)* and Ig = ker(Z/p°*Z|G] — Z/p°Z) be the
augmentation ideal. Consider the element

(= > Bu(li/N)li] € Z/p°Z[G),
i€(Z/NZ)*

where By(x) = 22 — 2+ 1/6 is the second Bernoulli polynomial and where [i/N | €

[0,1) N %Z is the fractional part of i/N. This element comes from considering the
function
{x: (Z/NZ)* = Fp} = Fp, x> L(=1,X)

where x is a character and L(s, x) is the Dirichlet L-function. One knows that
L(—1,triv) = 12X which vanishes in Z/p*Z when p* | (N—1), and that L(—1, x) =
—%BZX. We use ¢ to give meaning to the “order of vanishing of L(—1,x) at
x = triv.”

Following Mazur and Tate [MTS87], we let ords(¢) € Z be the maximal integer r
such that ¢ € I5.. Then Merel’s theorem can be restated as follows.

Theorem 1.5.2 (Merel). Assume that p | (N — 1), and take s = 1 in the above
discussion. Then ordy(¢) > 1, and the following are equivalent:

(1) rankg (T°) =1
(2) ord;(¢) = 1.
We give a new proof of this theorem, combining Theorem [1.2.1|with the following
proposition.
Proposition 1.5.3. Assume that p® | (N—1). Then ords(¢) > 1, and the following
are equivalent:
(1) M UM is non-zero in H*(Z[1/Np], End(Z/p*Z(1) ® Z/p°7Z)).
(2) ords(¢) = 1.
No1 o
(3) Merel’s number [[,2 4" is a not a p*-th power modulo N.
Combining this result with Corollary we see that if Merel’s number is not
a p?-th power modulo N, then there is only one possibility for the Newton polygon

of T°. The proof is a variant of Stickelberger theory, and is inspired by the work of
Lecouturier |[LecI8b] and unpublished work of Calegari and Emerton.
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In Iwasawa-theoretic parlance, one could see the condition rankz, (TY) =1 as an
intermediary between the algebraic side (the non-vanishing of cup products) and
the analytic side (¢ vanishes to order 1). Based on this, one might conjecture that
ranky, (T°) = ord;(¢). This is not quite correct, as the examples below show, but
it is true strikingly often. In particular, we optimistically conjecture the following,
for which our only evidence is a computation for N < 10000.

Conjecture 1.5.4. Assume that rankz, (T°) > 2. Then the following are equiva-
lent:

(1) rankz (T°) =2
(2) ord;(¢) = 2.

Remark 1.5.5. After posting an earlier version of this paper on arXiv, we learned
that Lecouturier was working on an approach to some of the problems considered in
this paper using an “analytic side” approach. In particular, he gives another new
proof of Merel’s Theorem [1.5.1] and proves Conjecture Lecouturier’s work
has since appeared as a preprint [LecI8a]. It would be interesting to study the
connections between our work and his.

More generally, Theorem relates rankz,, (T?) to an “algebraic side” (vanish-
ing of Massey products). It is natural to ask whether there is a corresponding object
on the analytic side — is there a zeta element ¢ such that ord(() = ranky, (T°)?

Finally, we remark that, although we give a new proof of Merel’s theorem, it is
intriguing to consider the possibility of, in a different context, doing the opposite.
That is, Theorem relates an algebraic side (vanishing of cup product) to an
analytic side (order of vanishing of zeta element). In a different context where one
wants to prove the same type of result (e.g. BSD conjecture, Bloch-Kato conjec-
ture), it is interesting to consider if there is an analog of ranksz, (T?) that can serve
as an intermediary: on one hand being related to the algebraic side via deformation
theory, and on the other hand being related to the analytic side via geometry.

1.6. Examples. We give some explicit examples, computed using the SAGE com-
puter algebra software. See [Maz77, Table, pg. 40] for some relevant computations
of rankyz, (T°) (denoted e, there).

1.6.1. An example witnessing Corollary|1.2.2(2). Take p =5 and N = 31. In this
case we have ranky, (T°) = 2. One can compute that

QY () ~ Z/2Z. & 7./22. & 7./10Z & Z,/10Z.

We see that the p-torsion subgroup is non-cyclic, as predicted by Corollary
(2).

1.6.2. An example where the converse to Calegari-Emerton’s result is false. Take
p="T7and N = 337 and note that 7 | 336. One can compute that CI(Q(N'/P)) ~
Z]TZ & Z/TZ. One also checks Merel’s number is

N—-1
2

I # =227 (mod 337)

=1

which is not a 7th power modulo 337. In particular, we have rankz, (T =1 even
though CI(Q(N'/?))[p] is not cyclic. This example was found independently by
Lecouturier |[LecI8b] and in unpublished work of Calegari-Emerton.



THE RANK OF MAZUR’S EISENSTEIN IDEAL 7

N
181
1321
1381
1571
2621
3001
3671
4159
4229
4931
4957
5381
5651
5861
6451
6761
7673
9001
9521

rankz (T%) | ord({)

DO =
<= Y

=~ Ot W

T Ot Ot Ot J Ot = ~J Ut Ot ot Ot

—_
w
>

OB W WWHE B WWWWHhe U W Wwwww

[SARNGL RN |

TABLE 1. All examples with rank at least 3, N < 10000

1.6.3. Examples of higher order vanishing. We computed rankz, (T°) and ord(¢)
for every value of (N,p) with N < 10000. In Table 1, we give a list of all the
examples with rankz (T°) > 2. In the ord(¢) column, we only list the result if
rankz, (T°) # ord(¢). Note that for all examples with rankz (T°) = 2, we found
that ord(¢) = 2, and vice versa, confirming Conjecture for N < 10000.

1.6.4. Examples where T° is not irreducible. We also computed the ranks of the
irreducible components of T° for for every value of (N, p) with N < 10000. (See
for the significance of these ranks.)

In Table 2, we give all examples where T? is not irreducible and list the ranks
of the components. For each example having either v,(N — 1) > 2 or rankz, > 2,
except for (N,p) = (3001,5), we computed that Merel’s number is not a p?-th
power modulo N, and so the Newton polygon is given by Theorem In the
case (N, p) = (3001,5), Merel’s number is a p?>-th power modulo N, and the Newton
polygon has vertices {(0, 3), (1,2),(3,1),(6,0)}.

1.7. Statistics. In the previous subsection, we gave examples of pairs (N, p) where
TO exhibits exceptional behavior. In this subsection, we analyze the statistical be-
havior of the examples we computed. This discussion was influenced by discussions
with Ravi Ramakrishna. We will consider the situation for p fixed and N varying.
To emphasize the dependence on N, in this subsection we will write TQ;, instead of
TO, for the Hecke algebra associated to the pair (N, p).
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N
751
2351
3001
3251
3631
3701
4001
5651
6451
6761
7253
9001
9901

rankz (T°) | Ranks
(1, 1)

—_

[\
—

—
= WP NN W ===

N s s s s s

e = e e T s s T e D s

~

— —
U‘O‘l\]wCﬂCﬂO"CﬂHO’\O‘YU‘O‘l@
N =N WWERENDNNDNDDNDODDNDDND
\-/\_/\-/\_/V\_/\_/\_/\_/\_/w\_/

TABLE 2. Ranks of irreducible components of T°

For fixed p, let P(z) = {N | N is prime, N <z, N =1 (mod p)}. Consider the
function r(d,z) : N x N — [0, 1] given by

r(d, ) = #{N € P(z) | rankg, (TY) = d}
T #P(x)

Since we computed examples for all N < 10000, we let r(d) = r(d, 10000), and give
the values of r(d) for various p and d. Before doing this, we explain a heuristic

guess for r(d, ) for comparison.
For N € P(z), we know that rankz (T%) = dimg, (T% /p), and that

TX/p = Fplyl /(a1 (N)y + az(N)y +...),

where a;(N) € F,. In particular, dimg, (T /p) = min{i | a;(N) # 0}. Our
main Theorem may be interpreted as saying that the numbers a;(N) can be
extracted from values of certain Massey products. If we make the guess that the
values a;(IN) are distributed uniformly randomly in F, as N varies, we arrive at
the following heuristic guess g(d) for r(d, z),

=) ()

Indeed, this is the probability that, for a uniformly randomly chosen sequence
bi,ba,...,bq,... of elements of F),, we have by = by = --- = bg—1 = 0 and bgq # 0.

In Table 2, we give our computed values of r(d) for p = 5,7,11,13, and the
relevant values of g(d), to three decimals of precision. In each, case, we let n =
#P(10000), the size of the “sample space.”

Although the sample size is too small to be convincing, the data seems to align
with the heuristic guess. This leads to the question: can one determine the sta-
tistical behavior of the Massey products (M )k? Are they uniformly random as N
varies?
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p=>5 pP="7 p=11 p=13
n = 306 n =203 n =125 n =99
d| r(d) | g(d) ||d| r(d) | g(d) ||d| r(d) | g(d) ||d]| r(d) | g(d)
110.745(0.800 || 1 |0.892 | 0.857 || 1 | 0.912 | 0.909 || 1 | 0.929 | 0.923
210.216 | 0.160 || 2 | 0.089 | 0.122 || 2 | 0.080 | 0.083 || 2 | 0.061 | 0.071
310.023 | 0.032 || 3| 0.015 | 0.017 || 3| 0.008 | 0.008 || 3 | 0.010 | 0.005
41 0.010 | 0.006 || 4 | 0.005 | 0.002
51 0.003 | 0.001
6 | 0.003 | 0.000

TABLE 3. Distribution of ranks r(d) versus heuristic distribution g(d)

1.8. Outline of the proof. The proofs of our main theorems follow the basic
strategy of Wiles [Wil95]: Hecke algebras are related to Galois deformation rings,
which are related to Galois cohomology. This is also the strategy used by Calegari—
Emerton [CEO05], but whereas they study “rigidified” deformations of Galois repre-
sentations, we use deformation theory of pseudorepresentations, as in our previous
work [WWEIS].

1.8.1. The definition of R. Let Gg be an absolute Galois group of Q, and let Gg g
be its quotient ramified only at the places S supporting Npoo. Let D = (1 @ w),
a IF,-valued 2-dimensional pseudorepresentation of Gg,s — here w is the mod p
cyclotomic character, and i means “take the associated pseudorepresentation.”
This is the residual representation modulo p associated to the Eisenstein series of
weight 2 and level N. We consider deformations D : Gg s — A of D subject to the
following constraints:

(1) det(D) = Keye

(2) D|ry =¢(1@1),ie. D is trivial on an inertia group Iy at N

(3) Dlg, is “finite-flat,” where G}, is a decomposition group at p. That is, it

arises from the @p—points of a finite flat group scheme over Z,.

Condition (1) is related to “weight 2” and condition (2) is related to “level I'o(N)”
(note that a pseudorepresentation being trivial is analogous to a representation
being unipotent).

Condition (3) is a kind of “geometricity” condition, and is the most delicate to
define. There is a well-known finite-flat deformation theory of representations, due
to Ramakrishna [Ram93]. The difficulty is transferring the notation of “finite-flat”
from representations to pseudorepresentations. We addressed a similar difficulty in
our previous work [WWE18] on the ordinary condition. In [WWE19], which started
as a companion paper to this one, we present an axiomatic approach to go from
properties of representations to properties of pseudorepresentations. This allows us
to construct pseudodeformation rings satisfying any “deformation condition” (in
the sense of Ramakrishna). In §2| we overview the results of [WWEI9] as they
apply to finite-flat pseudorepresentations.

1.8.2. Proving R = T. Once we have defined R, the pseudorepresentation attached
to modular forms gives a map R — T, and a standard argument shows that it is
surjective. We use (a variant of) Wiles’s numerical criterion [Wil95, Appendix] to
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prove that the map is an isomorphism. To verify the criterion, we have to compare
the n-invariant to the size of a relative tangent space of R. The n-invariant has
been computed by Mazur [Maz77] using the constant term of the Eisenstein series.

To study the relative tangent space of R, we first consider reducible deforma-
tions. These are the simplest deformations, arising as D = ¥ (x1 @ X.) where x1
and x,, are characters deforming 1 and w, respectively. We show that the “size” of
the space of reducible deformations is equal to the n-invariant. Next, we use com-
putations in Galois cohomology to show, first, that any square-zero deformation
is reducible, and, second, that the space of reducible deformations is cut out by
a single equation. This allows us to conclude that the size of the relative tangent
space of R is equal to the size of the space of reducible deformations, which we
know is the n-invariant. The numerical criterion then lets us conclude that R =T
and that both are complete intersections.

As a consequence of our R = T theorem, we give new proofs of the results on
Mazur on the structure of T, including the Gorenstein property, the principality
of the Eisenstein ideal, and the classification of generators of the Eisenstein ideal
in terms of “good primes.”

1.8.3. Studying deformations. Having proven R = T, we can reduce questions about
rankyz, (T°) to questions about rankz, (R). As a consequence of the proof, we see
that the tangent space of R is 1-dimensional — in other words, there is a unique
(up to scaling) mod p first order deformation Dy of D. The question of computing
rankyz, (R) is reduced to computing to what order D; can be further deformed.

Using more detailed Galois cohomology computations, we show that D; and each
of its further deformations (if they exist) arise as the pseudorepresentation associ-
ated to a representation. Then we can relate obstruction theory for representations,
which is controlled by cup products (and, more generally, Massey products), to ob-
structions to deforming D;. As explained in [WEIS8b], the formula of Theorem
determines the highest order unrestricted global deformation of a unique first
order deformation corresponding to M. Our proofs imply that the local constraints
do not contribute additional obstructions.
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1.10. Notation and conventions.
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e Rings are commutative and algebras are associative but not necessarily com-
mutative.

e A representation of an R-algebra E is the following data: a commutative R-
algebra A, a finitely generated projective A-module V' of constant rank, and
R-algebra homomorphism p : E — End4 (V). We sometimes write this data
as p or as V, when the meaning is clear from context.

e A representation of a group G is a representation of R[G].

e A character is a representation of constant rank 1.

e The symbol ¥(p) denotes the pseudorepresentation associated to a representa-
tion p.

e If G is a profinite group, we let GP™P be the maximal pro-p quotient. If G is
finite and abelian, we write GPP** instead of GP*P.

e We use the symbol “—” for the multiplication in the differential graded alge-
bra of group cochains valued in an algebra, and “U” for the cup product of
cohomology classes. We sometimes use [—] to denote the cohomology class of
a cocycle. If x,y are cocycles, then [z — y] = [z] U [y], and we often denote
this cohomology class by =z U y.

e Throughout the paper, we abbreviate the cohomology groups H*(Z[1/Np], —)
(resp. H (Qg,—)) to H'(—) (vesp. H}(—)). For further Galois cohomology
notation, including the definition of the groups H(, (=), Hi,. (=), Hfae ,(—),
and H(Z'N)(f), see Appendix |§

e For an integer i > 0 and a ring A, we abbreviate Ale]/(e/*1) to Ale;].

e We write v,(z) € ZU {oo} for the p-adic valuation for z € Q,.

e We write ficyc : Gg — Z, or Zy(1) for the p-adic cyclotomic character. When
it cannot cause confusion, we abuse notation and write Kcyc for keye ®z, Z /p°Z
or Z/p*Z(1).

1.10.1. Notation for Galois groups. Recall that N and p are prime numbers. We
fix algebraic closures Q and Q,, and embeddings Q < Q, for £ = p, N. This
determines decomposition subgroups Gy C Gg and G, C Gg. We also have the
quotient Gq,5 of Gg discussed above, the Galois group of the maximal extension of
Q ramified only at the set of places S that support Npoo. The cohomology groups
above are the cohomology of continuous cochains on these Galois groups.

Let Iy C Gy and I, C G, denote the inertia subgroups. We let I5” denote
the maximal pro-p quotient of Iny. We let I"” denote the kernel of the map
In — INP.

As is well-known, there is a non-canonical isomorphism Iy " ~ Z,,. We fix, once
and for all, a topological generator 4 of IN°?, and an element v € Iy mapping to

3.

Part 1. Pseudo-modularity and the Eisenstein Hecke algebra

We first recall the results of [WWE19] and construct a pseudodeformation ring
with the “finite-flat” property at p. We recall some results of Mazur on modular
curves and the Eisenstein Hecke algebra T, and construct a map R — T. We
compute Galois cohomology groups to control the structure of R, and use the
numerical criterion to prove R = T.
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2. FINITE-FLAT PSEUDODEFORMATIONS

This section is a summary of [WWE19]. In that paper, we develop the defor-
mation theory of pseudorepresentations with a prescribed property. Presently, we
only consider the case that is needed in this paper, where the property is the “flat”
condition of Ramakrishna [Ram93]. (To avoid confusion with flat modules over a
ring, we refer to this condition as “finite-flat” in this paper.)

We only give a brief summary of the parts of the theory that are needed in this
paper. We assume that the reader has some familiarity with pseudorepresentations
and generalized matrix algebras. For a more detailed treatment, see [WWE19].
Other references for pseudorepresentations and generalized matrix algebras include
[BCOY, §1], [Cheld], and [WE18a), §§2-3]. Proofs or references for all of the results
in this section are given in [WWEI9]; we only give specific references here to the
results that are new to [WWE19].

In this section, we will work in a slightly more general setup than in the rest
of the paper. Let F be a finite field of characteristic p. Let x1,x2 : Gg — F* be
characters such that xi|g, # X2|c, and such that x;|g, are finite-flat representa-
tions in the sense defined below. Let D : Gg — F be 1(x1 @ x2), the associated
pseudorepresentation. Let S be a finite set of places of Q including p, the infinite
places and any primes at which y; are ramified, and let Gg s be the Galois group
of the maximal unramified-outside-S extension of Q.

2.1. Finite-flat representations. We have G, =~ Gal(Q,/Q,). Let Modtzir[cp]
denote the category of Zy|Gp]-modules of finite cardinality. Let ffgs; denote the
category of finite flat group schemes over Z, of p-power rank. Via the generic
fiber functor figs; — Modtz(;f[(;p] given by G — G(Q,), which is known to be fully
faithful, we can consider ffgszp as a subcategory of Modtz‘;r[cp]. We call objects in
the essential image of this functor finite-flat Gp-modules.

Let G1,G5 € ffgszp and let V; = G;(Q,,) be the associated finite-flat G/)-modules.
The generic fiber functor defines a homomorphism

EXt%fgsZp (g27 gl) — EXtép (VQ, ‘/1)

We define Ex‘cép’ﬂat (Va, V1) to be the image of this homomorphism. If V; are Gg_s-
modules such that ‘7i|(;p =V, then we define

Vs, V -~ Exts (Va, V5
Exté@,s,ﬁat(VmVQ:ker (Extgq‘s(v%vl)_> G,,( 2, V1) >

Extg g (Va, V1)

Let (A, m4) be a Noetherian local Z,-algebra, and let M be a finitely generated
A-module with a commuting action of G,. Then M/m{,M € Modtz‘;r[(;p] for all
i > 0, and we say M is finite-flat if M /m’ M is a finite-flat G,-module for all i > 0.

2.2. Generalized matrix algebras. Let (A,my4) be a Noetherian local W (F)-
algebra with residue field F.

See [WWEI9, §2.1] for the definition of a pseudorepresentation. Let E be an
associative A-algebra. As noted in loc. cit., we may and do think of a pseudorepre-
sentation of dimension d on F, written D : E — A (or, if E = A[G] for a group G,
as D : G — A), as a rule that assigns to an element 2 € FE a degree d polynomial
xp(x)(t) € Aft]. These xp(z) satisfy many conditions as if they were characteristic
polynomials of a representation E — My(A). The Cayley—Hamilton property of a
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pseudorepresentation (defined in [Chel4, §1.17]) implies that xp(z)(x) = 0 in E
forall x € F.

A generalized matriz A-algebra or A-GMA (of type (1,1)) is an associative A-
algebra E equipped with an isomorphism

~ (A B
(2.2.1) <I>5.E—><C A).

This means an isomorphism of A-modules E = A@® B ® C @ A for some A-
modules B and C, such that the multiplication of E is given by 2 X 2-matrix
multiplication for some A-linear map B ® 4 C — A. We refer to the isomorphism
as the matriz coordinates of E. A morphism of GMAs (E, ®¢) — (E', ®g/)
is an algebra morphism ¢ : E — E’ preserving idempotents; that is, it satisfies
o0 ((58)) = 95/ ((59)) and 085" ((§9)) = @21 (§9)). Forming the trace and
determinant as functions F — A in the usual way from these coordinates, we have
a Cayley—Hamilton pseudorepresentation denoted Dg : E — A.

An GMA representation with residual pseudorepresentation D is a homomor-
phism p : Gg — E* such that, in matrix coordinates, p is given as

e () 020))

with p;;(0) = xi(0) (mod my). There is an associated pseudorepresentation ¥anma (p) :
Gg — A given by tr(vama(p)) = pi1 + p22 and det(Pama(p)) = pr1p22 — p12p21-

A Cayley-Hamilton representation of Gg g over A with residual pseudorepre-
sentation D is a triple (E,p: Gg.s — E*,D : E — A) where F is an associative
A-algebra that is finitely generated as an A-module, D is a Cayley—Hamilton pseu-
dorepresentation, and p is a homomorphism such that D’ = D o p is a pseudorep-
resentation deforming D.

Proposition 2.2.2.

(1) The functor sending a complete Noetherian local W (IF)-algebra A with residue
field F to the set of deformations D : Gg.s — A of D is represented by a
ring Rp and universal pseudodeformation D" : Gg,s = Rp.

(2) There is an Rp-GMA representation p* : Gg — Eg with residual repre-
sentation D such that (Ep, py, Dg) is the universal Cayley—Hamilton rep-
resentation with residual pseudorepresentation D, and D* = Dg o p*.

Remark 2.2.3. Whenever D is multiplicity-free (i.e. x1 # X2, which we have as-
sumed), any Cayley—Hamilton representation (E,p : Gg,s — E*,D : E — A) with
residual pseudorepresentation D admits an orthogonal lift (e1,ez) of the idempo-
tents (1,0),(0,1) over the kernel of x1 & x2 : £ — F, x F,. See e.g. [WWEIS,
Lem. 5.6.8]. We always order the idempotents so that e; lifts x; and ey lifts ya.
It is these idempotents that specify the coordinate decomposition: for example
B = e1Fey and p; j(7) = e;jp(y)e; for i,j € {1,2}. We also refer to a choice of
these idempotents by the corresponding choice of matrix coordinates.

2.3. Finite-flat pseudorepresentations. We retain the notation of the previous
subsection.

Definition 2.3.1. Let (E, p, D) be a Cayley—Hamilton representation of Gg s over
A with residual pseudorepresentation D. Then F is a finitely generated A-module,
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and it has an action of G}, via p|g, and the left action of E on itself by multiplication.
We say that (E, p, D) is finite-flat if E/m% E is a finite-flat G,-module for all i > 1.

We say a pseudorepresentation D' : Gg s — A is finite-flat if D’ = D o p for
some finite-flat Cayley—Hamilton representation (FE, p, D).

We show that there is a universal finite-flat Cayley-Hamilton representation of
Gq,s with residual pseudorepresentation D.

Theorem 2.3.2 (WWEIL9, §2.5]).

(1) Thereis a universal finite-flat Cayley—Hamilton representation (Ep gay, Pfat :
Go,s — Eg,ﬂat’ Daat :;ED,ﬂat — Rp gat) of Go,s over Rp g, with residual
pseudorepresentation D. The algebra Ep g, is a quotient of Ep.

(2) The algebra Rp g, is the quotient of Rp such that, for any deformation
D : Ggs — A of D, the corresponding map Rp — A factors through

Rp fat if and only if D is a finite-flat pseudorepresentation.

EDH _ ( RD,ﬂat BD,ﬂat )
JHat — _ _
OD,ﬂat RD,ﬂat

We let

represent a choice of matrix coordinates of F g,¢ induced by those of Ep.

Finite-flat Cayley—Hamilton representations can arise from endomorphism alge-
bras of modules. The following theorem shows that the notion of finite-flat Cayley—
Hamilton representation behaves as expected in this case.

Theorem 2.3.3 ([WWEI19, §2.6]). Let (E,p,D : E — A) be a Cayley—Hamilton
representation of G, and let M be a faithful E-module that is finitely generated as
an A-module. Consider M as a A[Gp]-module via the map p : A[Gp] — E. Then
M is a finite-flat G,-module if and only if (E, p, D) is a finite-flat Cayley—Hamilton
representation.

The following example illustrates the utility of this theorem. It is exactly the
situation coming from the Jacobian Jy(N), as encountered by Mazur in [Maz77|

§811.7-8], which we apply in
Example 2.3.4. Let G = {G;} be a p-divisible group with good reduction outside

S. Then the Tate module V = T,G = @QZ(@) is a finitely generated, free Z,-
module with an action of Gg,s. In particular, V' is a finite-flat representation.
Now assume that V' has a commuting action of A, where A is a finite flat Z,-

algebra, and that there is an isomorphism of A-modules
VX &Xs

where X; are A-modules satisfying End4(X;) = A (but X; may not be free as
A-modules). This decomposition induces a decomposition

N A HOmA(Xl’XQ)
EIldA(V) - ( HomA(XQ,Xl) A )

giving End4 (V) the structure of an A-GMA, where the idempotents arise from
projection onto each summand. Let py : Gg,s — Auta(V) be the action map,
and let Dy : End4 (V) — A be the GMA-pseudorepresentation. Then the theorem
implies that (End4(V), pv, Dy) is a finite-flat Cayley—Hamilton representation.
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2.4. Reducibility. We say that a pseudorepresentation D is reducible if D =
Y(v1 @ vy) for characters v;.

Proposition 2.4.1. Let D : Ggs — R be a pseudorepresentation deforming D.

(1) There is a quotient R*% of R characterized as follows. For any homo-
morphism ¢ : R — R, the map ¢ factors through R™% if and only if the
composite pseudorepresentation D' = ¢po D : Gg g — R’ is reducible.

(2) Let
e=(¢ 1)

be a choice of matriz coordinates of E = Ep ®r, R. Then the image of
the R-linear map B ®4 C — R equals the kernel of R — R™9.

We call the ideal ker(R — R™?) the reducibility ideal of D. For the finite-flat
pseudodeformation ring, we can describe the reducible quotient.

Proposition 2.4.2 ([WWEI19, §4.3]). For i = 1,2, let R; denote Ramakrishna’s
finite-flat deformation ring of the character x;, and let v; : Ggs — R denote
red

the universal character. Then there is an isomorphism RE% . = R1®W(F)R2

identifying 1 (v1 © v2) as the universal reducible finite-flat deformation of D.

2.5. Reducible GMAs and extensions. For this section, we fix a surjective ho-
momorphism Rr[—‘;dﬁat — R’. By Proposition , this homomorphism determines
finite-flat characters v} : Gg,s — R'* deforming x; for i« = 1,2. We can deter-
mine the structure of Bp gay @rp .., R and Cp gy Ry ., B in terms of Galois

cohomology.

Proposition 2.5.1 ([WWEI9, §4.3]). Let M be a finitely generated R’'-module.
Then there are canonical isomorphisms

~ 1
HomR/(BD,ﬂat ®Rb,ﬂat R/’ M) - EXtG@ﬁs,ﬂat(Véa Vi QR M)

and
Homp/ (CD,ﬂat ®Rﬁ’f13t Rl) M) = EXté‘@,s,ﬂat (l/{, Vé QR M)

3. THE MODULAR PSEUDOREPRESENTATION

In this section, we recall some results of Mazur [Maz77] on modular curves and
Hecke algebras.

3.1. Modular curves, modular forms, and Hecke algebras. The statements
given here are all well-known. We review them here to fix notations. Our reference
is the paper of Ohta [Oht14].

3.1.1. Modular curves. Let Yo(N),z, be the Z,-scheme representing the functor
taking a Z,-scheme S to the set of pairs (E,C), where E is an elliptic curve over
S and C' C E[N] is a finite-flat subgroup scheme of rank N. Let Xo(N),z, be
the usual compactification of Yy(N) /7,» and let cusps denote the complement of
Yo(N)z, in Xo(N)z,, considered as an effective Cartier divisor on Xo(V),z,-
Finally, let

Xo(N) = Xo(N)/z, © Qp.
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3.1.2. Modular forms. The map Xo(N),z, — Spec(Z,) is known to be LCI, and
we let Q be the sheaf of regular differentials. Let

Sa(N;Zy) = H*(Xo(N)z,,9), Ma(N;Zy,) = H(Xo(N) z,, Q(cusps))

There is an element F € My(N;Z,) with ¢-expansion

N-1 &
1.1 E=—— n,
(3.1.1) YR > d]q
n=1 \0<d|n, N{d

3.1.3. Hecke algebras. Let T’ and T'° be the subalgebras of
Endzp (M3 (N; Zp))a Ende (S2(NV; Zp))a

respectively, generated by all Hecke operators T, with (N,n) = 1. These are
commutative Zjy-algebras.

Let I' = Anny (E), and let T be the completion of T’ at the maximal ideal
(I',p), and let T = T @ T. Let I = I'T and let I° be the image of I in T". Let
U, € T be the unique unit root of the polynomial

X2 -T,X+p=0,

which exists by Hensel’s lemma. Since T}, — (p+1) € I, we see that U, —1 € I. For
a T'-module M, let Mg;s = M @1 T.
There are perfect pairings of free Z,-modules

My(N;Zy)gis X T — Zp,  So(N;Zp)gis x T° — Z,,

given by (f,t) — a1(t - f), where ai(—) refers to the coefficient of ¢ in the g¢-
expansion. In particular, Ma(N;Z,)gis (resp. So(N;Zp)mis) is a dualizing (and
hence faithful) T-module (resp. T°-module). The map T — Z, so induced by F is a
surjective ring homomorphism with kernel I. We refer to this as the augmentation
map for T.

3.2. Congruence number. We recall the following theorem of Mazur, and related
results.

Theorem 3.2.1 (Mazur). There is an isomorphism T°/I° ~ Z, /(N — 1)Z,,.

This is [Maz77, Prop. I1.9.7, pg. 96]. We give a slightly different proof of this the-
orem using ideas of Ohta and Emerton [Eme99]. This should help clarify the proof
of [WWEI1S8, Prop. 3.2.5], which uses the same idea but is needlessly complicated;
we thank the referee for pointing this out.

We recall that if A — C and B — C' are commutative ring homomorphisms, the
pullback ring A x¢ B is defined and the underlying set is the same as the pullback
in the category of sets.

Lemma 3.2.2. The composition of the augmentation map T — Z, with the quotient
map Zy — L, /(N — 1)Z, factors through T° and induces an isomorphism

T ~ TO XZP/(N,DZP Zp.

In particular, ker(T — T°) = Anng(I).
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Proof. By [Oht14] Lem. 3.2.3] there is an exact sequence
(%) 0 — So(N, Zp)gis — Ma(N, Zp)gis — Zp — 0,

where the first map is the inclusion and where ao(f) denotes the constant term in
the g-expansion of f. By duality, we see that ker(T — T°) = Annt(Sa(N, Zy)gis) is
the free Z,-module generated by the element Ty € T that satisfies a1(Tof) = ao(f)
for all f S MQ(N, Zp)Eis-

Since ag(E) = 2% maps to 0 in Z,/(N — 1)Z,, we see that the composite
T — Z,/(N — 1)Z, factors through T°. We have a commutative diagram with

exact rows

0 TyZ, T TO 0

]

0O—(N-12,—Z,—Z,/(N—-1)Z, —0

where the center vertical map is the augmentation ¢ — a1 (tF). Since a1(ToFE) =
%, the leftmost vertical map is surjective and hence an isomorphism since the
domain and codomain are both free of rank 1. An easy diagram chase then shows
that the map T — T Xz,/(N-1)z, Zp is an isomorphism. The fact that ker(T —
T = Anng(I) follows formally from this and the fact that I° is a faithful T°-

module. O

3.3. Trace and determinant. Let Jy(N) be the Jacobian of X(N). The p-adic
Tate module Ta,(Jo(N)(Q)) is a T"°[Gg,s]-module. Let T = Ta,(Jo(N)(Q))gis.-

Lemma 3.3.1. The T°[1/p]-module T[1/p] is free of rank 2.
Proof. See [MazT7, Lem. IL.7.7, pg. 92], for example. O

Let prpi/p ¢ Ga,s — Autgop ) (T[1/p]) ~ GLo(T°[1/p]) be the corresponding
Galois representation.

Lemma 3.3.2. The representation pi/p)|1y is unipotent.

Proof. This is proven in the course of the proof of [Maz77, Prop. 11.14.1, pg. 113],
and we recall the argument here. By the theorem of Mazur and Rapoport [Maz77,
Thm. A.1, pg. 173] (attributed there to Deligne), Jo(N) has semi-stable reduction
at N. By the critére Galoisien de réduction semi-stable [GRR72| Exposé IX, Prop.
3.5, pg. 350], this implies the result. O

Lemma 3.3.3. Let {{ Np be a prime, and let Fr; € Gg,s be a Frobenius element.
Then the characteristic polynomial char(pyy1p))(Fre) € TO[1/p][X] is given by

Char(pT[l/p])(Frg) = X% - Ty X +¢.

In particular, we have det(pr(1/p)) = Keye and, for any o € Go,s, tr(pr1/p)(0)) €
TO.

Proof. The formula for the characteristic polynomial follow from the Eichler—Shimura
relation (see e.g. [Maz77| §11.6, pg. 89]). The remaining parts follow by Chebotaryov
density. [
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From this lemma, we see that there is a pseudorepresentation D7 : Gg g — T°
determined by det(Dy) = keye and tr(Dy)(Frp) = T, for all £ { Np, and that

D7 @70 TO[1/p] = ¥ (p7(1/4)-

Proposition 3.3.4. Assume that p | (N —1). There is a short exact sequence of
T°[G,]-modules

0=T™ =T =T%=0

where T is free of rank 1 as a T-module and T is a dualizing T°-module. The
Gp-action on T is unramified, and the sequence splits as T°-modules.

Proof. The sequence is constructed in [Maz77, §I1.8, pg. 93], using the connected-
étale exact sequence for the Néron model of Jo(N). It follows by construction that
the G-action on T¢ is unramified. As remarked in loc. cit., the sequence is self-
Z,-dual by Cartier duality. Then [Maz77, Cor. I1.14.11, pg. 120] implies that 7™%!
is a free T%-module of rank 1. By duality, 7¢ is a dualizing T°-module.

Finally, to see that the sequence splits as T’-modules, we note that (either by
Lemmaor by construction) G, acts on 7% by the character kcyc. Let 7 € I,
be an element such that keye(7) = —1. Then we see that 7 = (7 — 1)7T & (1 + 1)T
as TY-modules. O

Remark 3.3.5. Note that this proposition does not use the the fact that T° is a
Gorenstein ring. See, for example, [Oht14] Thm. 3.5.10], where a similar statement
is proven in a more general setting where the Hecke algebra need not be Gorenstein.

Lemma 3.3.6. Let Fr, € G, be a Frobenius element. Then Fr, acts on T by the
scalar U, € TO.

Proof. By the previous proposition, we know that Fr, acts on T by a well-defined
unit in T°. To determine the unit, we extend scalars to T°[1/p]. We know that
T¢ = T, (the inertia coinvariants), so it suffices to determine the action of Fr,
on (pri1/p))1,- The fact that Fr, acts on (p7y1/))1, as Uy follows from local-global
compatibility for modular forms [Sch90, Thm. 1.2.4(ii)]. O

We let E7 = Endqo(T), and let p7 : Go,s — EF.

Corollary 3.3.7. The T°-algebra E+ admits a T°-GMA structure £ such that
D7 = D¢, o pr, and Dt is a finite-flat pseudorepresentation.

Proof. Following Example @ a choice of T%-module isomorphism 7~ = T° &
(T9)V arising from Proposition @ produces a GMA structure £ on Eg. As
in that example, it follows from Theorem that (E7,p7, De, ) is a finite-flat
Cayley—Hamilton representation (since 7, is a finite-flat Z,[G,]-module). It is

easy to check that Dy = Dg, o pr, so Dy is a finite-flat pseudorepresentation by
Definition 2.3.1] O

4. THE PSEUDODEFORMATION RING

Let D = ¢(w @ 1). In this section, we construct R, the universal pseudodefor-
mation ring for D satisfying the following additional conditions:
(1) D is finite-flat at p
(2) D1y =v(1&1)
(3) det(D) = Keye



THE RANK OF MAZUR’S EISENSTEIN IDEAL 19

Let Dgis : Gg,s — Z, be the reducible pseudorepresentation ¥(Z,(1) & Z,). We
will show that Dgis and the pseudorepresentation D7 : Gg,s — TO both satisfy
conditions (1)-(3), and we use this fact to produce a surjection R — T.

4.1. Construction of R. Let Rp g, be the universal finite-flat pseudodeformation
ring, and let Ep g, = Ep @Ry Rp gat be the universal finite-flat Cayley-Hamilton
algebra (see Theorem [2.3.2).

Let Iqet C Rp ga denote the ideal generated by the set

{det(D)(0) — feye(o) | o € Gos}
and let Iss C Rp g, denote the ideal generated by the set
{tr(D)(r) —2 | 7 € In}.
(The notation I, comes from “semi-stable at N” (cf. Lemma [3.3.2).) Define
R = Rp gat/(Laet + Lss).

Proposition 4.1.1. The ring R pro-represents the functor sending an Artinian
local Zy-algebra A with residue field F, to the set of pseudorepresentations D :
Gq,s — A satisfying

(1) D®sF, =D

(2) D is finite-flat at p

(3) Dlry =41 @1)

(4) det(D) = Keye.

Proof. We already know by Theorem that Rp g, is the deformation ring for
pseudorepresentations satisfying (1) and (2). We have to show that, for any A as
in the proposition, and any homomorphism ¢ : Rp g,y — A, the corresponding
pseudorepresentation D satisfies (3) and (4) if and only if ¢ factors through R.
We note that, since Kcyc is unramified at N, a pseudorepresentation D satisfying
(4) will also satisfy (3) if and only if tr(D)|r,, = 2. We see that D satisfies (4) if and
only if ker(¢) D I4et, and so D satisfies (3) and (4) if and only if ker(¢) D Iqet + Iss-
This completes the proof. ([l

Let E = Ep gat ORp 4, B and let p = pag @ry . R We fix an arbitrary choice
of matrix coordinates on E, so that we can write p as

Co do’

(4.1.2) p: GQ,S — EX, o — ( e bo ) .

Let D =¢(p) : Gg,s — R be the universal pseudorepresentation for the functor of
Proposition 4.1.1

4.2. The map R — T. First we construct a homomorphism R — T°.

Lemma 4.2.1. The pseudorepresentation Dy : Gg,s — TO induces a homomor-
phism R — T°. Moreover, we have tr(D1)(Fry) = T, and

tr(D7)(Fre) =14+ ¢ (mod I°)
for any £ 1 Np.
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Proof. To show the first statement, we have to check that D+ satisfies conditions
(1)-(4) of Proposition[f.1.1} Note that the second statement implies (1), so we prove
the second statement first. The fact that tr(D7)(Fry) = Ty follows from Lemma
It follows from the formula that Ty — (14 ¢) € I°, and so the second
statement follows.

Condition (2) follows from Corollary [3.3.7, condition (3) follows from Lemma
3.3.2) and condition (4) follows from Lemma O

Lemma 4.2.2. The pseudorepresentation Dyis = ¢¥(Z, & Zy(1)) induces a homo-
morphism R — Z,. Moreover, we have tr(Dg;s)(Fre) = 1+ £ for all 1 Np.

Proof. The second statement is clear, and implies that Dpg;g satisfies condition (1)

of Proposition Conditions (3) and (4) are clear, and condition (2) follows
from Theorem and the fact that Z, ® Z,(1) is the Tate module of the generic

fiber of the p-divisible group
(Q/Zp & Mp“)/Zp- ([l

This map R — Z, gives R the structure of an augmented Z,-algebra. We let
Jmin = ker(R — Z,), and refer to J™" as the augmentation ideal of R. We
see that J™" C R is the ideal generated by the reducibility ideal J of R (since
Dg;s is obviously reducible) along with lifts over R — R/J of the image under

R%?ﬂat — R/J of the set

(4.2.3) {v1(0) = Fieye(0), v2(0) = 1 0 € Go.s} C RS

where v1, v, (the universal finite-flat deformations of w and F,,, respectively) arise
from Proposition [2.4.2

Using the two maps R — T and R — Z,, we can produce a map R — T, as in
[WWEIS, Cor. 7.1.3].

Proposition 4.2.4. There is a surjective homomorphism R — T of augmented Z,,-
algebras. Moreover T and T® are generated as Zy-algebras by the Hecke operators
T, with (n, Np) = 1. In particular, T and T° are reduced.

Proof. We already have R — T° via D, and R — Z, via Dg;s. By Lemma [3.2.2]
to construct a homomorphism R — T, is suffices to show that the composite maps
R—T°—T%1° -7,/ (N -1)Z,

and
R—Z,—Zy,/(N—1)Z,
coincide. Equivalently, we have to show that
D7 &0 Zyp/(N —1)Zy = Dgis ®z, Zyp/(N — 1)Zy

as pseudorepresentations Gg s — Zp/(IN — 1)Z,. However, we have already shown
in Lemma and Lemma that these two pseudorepresentations agree at
Fry for all £ { Np, hence they agree by continuity. This defines a map R — T. By
construction, we see that the composite map

R—>T—T/I=1Z,

coincides with the augmentation R — Z,, and so R — T is a map of augmented
Z,-algebras.
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Under the isomorphism T = T? Xz,/(N—-1)z,Zp, we can think of an element of T as
a pair (t,a) € TV x Zy. Then the pseudorepresentation Dt : Gg,s — T correspond-
ing to the map R — T constructed above is given by Dy(o) = (D7 (), Dgis(0)). In
this notation, for any prime ¢4 Np, the element Ty € T for £{ N corresponds to the
pair (Ty,£ + 1), and we see that tr(Dt)(Fr,) = (Ty, €+ 1) for any prime £ 1 Np. By
Chebotaryov density, R is generated as a Zy-algebra by the elements tr(Dr)(Fre)
for £1 Np; indeed, by [Chel4, Cor. 2.39], Ry is generated by the values of the char-
acteristic polynomial on Frobenius elements, and its quotient R has determinants
valued in Z,. Then we see that the image of R — T is generated, as a Z,-algebra,
by the elements T}.

It remains to show that the image of R — T contains 7},. Since U:Z =T,Up+p =0,
we see that the it is enough to show that the image contains U, and U, 1 In the
notation above, the element U, € T corresponds to the pair (U,,1) € T x L.
Choose a Frobenius element Fr, € G, and let z = kcyc(Frp). By Proposition
and Lemma we have

U1«
7 (Fr :( P )
P ( P) 0 Up

Choose an element o € I, such that w(o) # 1, and let = K¢yc(0). Then we have

z2U- L %
— P
p7(Fryo) ( 0 U, ) .

We see that tr(D7)(Frpo) — atr(D7)(Frp) = (1 — 2)Up. We also see easily that
tr(Dgis) (Frpo) — otr(Dgis) (Frp) = 1 — . Hence we see that ((1 —z)Up,1 —z) € T
is in the image of R — T. Since

z=w(o)#Z1 (mod p)

we see that 1 —x € Z), and so we have that U, is in the image of R — T. A similar
argument shows that U, ! is also in the image, completing the proof.

The operators T,, for (n, N) = 1 are well-known to act semi-simply on the mod-
ules of modular forms and cusp forms. Since T and T° are generated by these
operators, we see that they are reduced. ([l

Remark 4.2.5. In [CEQ5], the authors present a proof of a related result. However,
the proof of [CE05, Lem. 3.16] contains a subtle error about the difference between
T, and U,. To correct that error, one would have to argue as above. Similarly,
the proof of [CEQ5, Prop. 3.18] is flawed and must be corrected as in the proof of

Corollary below.

5. COMPUTATION OF Rred

Let R denote the quotient of R representing the pseudodeformations of D that
satisfy the conditions of Proposition and are also reducible. Such a quotient
exists in light of the theory of reducibility for pseudorepresentations reviewed in
In this section we give a presentation of R**d.

5.1. Presentation of R™. For this section, we let R = Rp g,:/laet (recall the

notation of .
Lemma 5.1.1. We have R"™9 ~ Z,[Gal(Q({n)/Q)PPart].
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D, flat
R, aat are the finite-flat deformation rings of 1 and w, respectively, and the universal

deformation is ¢ (v, ®v1 ), where v, and v are the universal deformation characters.
Using the well-known description of the universal deformation ring of a character,
and the fact that finite-flat deformations of 1 (resp. w) are trivial (resp. trivial after
a twist by kL) on I,, we have

cyc
Rw,ﬂat = Rl,ﬂat = Zp[Ga](Q(CN)/Q>p—part]

and that v, = keye(—) and 11 = (—), where (—) is the character given by

Ga,s — Gal(Q(Cn)/Q)P ™" C Zy[Gal(Q(Cn) /Q)P ]

(the quotient map, followed by map sending group element to the corresponding
group-like element).
By the definition of I3t we see that
Rw,ﬂat®ZpR1,ﬂat
(vo(0) @ v1(0) = Feye(0) 1 0 € Ga.s)

Proof. By Proposition , we have R4 = Ry 8a1®z, Ro fat, where Ry gag and

R/red ~

~ Z,[Gal(Q(¢{n)/Q)P P>, O

We fix this isomorphism so that the universal pseudodeformation D™ : Gg ¢ —
R'™d can be written as D™ = ¢((—)Keye ® (=7,

Recall from that we have chosen an element v € Iy such that v topo-
logically generates IN“?. Let g € Gal(Q(¢{n)/Q)PP** be the image of v in the
quotient. Since Gal(Q(¢x)/Q)P P is the Galois group of a finite p-extension of Q
that is totally ramified at N, we see that g generates Gal(Q((n)/Q)PPart.

Proposition 5.1.2. There is a presentation
R 2,[X] (X2, (N = 1)X)
where the universal deformation D™ : Gos — Zp[X]/(X2, (N — 1)X) is given

by D™ = p((—)keye ® <;>_1). Here (—) is the character o — (14 X)™, where
mey € Z/p"Z is defined so that o maps to g™ in Gal(Q(Cn)/Q)PPart.

Proof. Let t = v,(N — 1), so that #Gal(Q(¢n)/Q)P P> = pt. There are isomor-
phisms

Zyla]/(a” — 1) = Zp[Gal(Q(¢n) /Q)F P 22 R4,
where the first sends z to the group-like element g. We use these isomorphisms as
identifications in the rest of the proof.

The quotient R*? of R™**4 corresponds to the condition that D'**¢ satisfy D'™d|;,
(1@ 1). We know that det(D'™%) = keye, which satisfies feye|ry = 1. Then the
only condition is that tr(D"™*%)|;, = 2. We know that tr(D*d)|;, = (=) + (=)~
For o € Iy, we have

-1 Mo me\—1 _ _mg —My
(@) + (o) =(g")+{g") =" +a7".
Since m., = 1 by our choice of g, we see that the condition tr(D"™)|;, = 2 is
equivalent to the conditions
l,?n + aj—'f”/ — 2
for all m = 1,...,p". This proves that R*? is the quotient of Z,[z] by the ideal a
generated by the set

{aP" —1}U{z™ +2 ™™ =2 m=1,...,p"}.
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It only remains to simplify the presentation. Notice that z is a unit, and that
(M T —2) =2 — 22"+ 1 = (2™ — 1)2
Since this is a multiple of (z — 1)2, we sce that a is generated by {z?" —1, (z —1)2}.
Letting X = x — 1, notice that
2? —1=(X+1)? —1=p'X (mod X?2).
We see that a is generated by {p'X, X?}, so a = (N — 1)X, X?). O
5.2. Structure of J™" /J. Recall that J™" = ker(R — Z,), where R — Z, is

the augmentation defined in Lemma Let J C R be the reducibility ideal, so
that R4 = R/J. Note that J C J™i*.

Corollary 5.2.1. We have J™" /J ~7Z,/(N — 1)Z,.
Proof. By Proposition [5.1.2] we have a presentation
Rmd = ZP[X]/(X27 (N B 1)X)7

which we will use as an identification. Then the image of J™ in R™d is X Rred
and we have

Juin /72 XRe ~ R /(Anngeea (X)) = R*Y/(X,N - 1) 2 Z,/(N - 1)Z,. O

Proposition 5.2.2. LetY =1—d., (herey € Iy is as in §1.10.1 and d € R is as
in (A.1.2)). ThenY € J™® and the image of Y in J™® /J is a generator of that
cyclic group. Moreover, Y? = —bycy € J and there is an inclusion (Jmin)2 g,

Proof. The fact that Y € J™" is immediate from the description of J™" in ([4.2.3).
By Proposition [5.1.2] we have a presentation

R =7,[X]/(X?, (N - 1)X).

From the proof of that proposition, we see that ¥ maps to X, which generates
Jmin /J

To see that Y2 = —b,cy, note that, in R, we have the equation a, +d, = 2 and
so ay = 1+ Y. Then we have

_( ay by _ 1+Y by
P(’Y)—(CV d7>_< Cy 1-Y J°

The equation det(p)(y) = Keye(y) = 1 forces
1-Y)14Y)=bye, = 1.

This implies Y2 = —bycy.
Finally, the fact that the image of Y in J™/J is a generator implies that
Jmn = YR+ J. Since Y2 € J, we see that (J™n)2 C J. O

We will use Galois cohomology to see that J is a principal ideal and that b,c, is a
generator (Theorem [6.1.2). This will imply that J = (J™#)2 and that J™* =Y R

(Corollary [7.1.2).
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6. CALCULATIONS IN (GALOIS COHOMOLOGY

In this section, our goal is to determine the structure of E/J™" E. We have
already determined this structure in terms of Galois cohomology. This was done
in Proposition which we will recall shortly. Therefore, we must calculate
various Galois cohomology groups. Namely, certain global finite-flat cohomology
groups H§,,(—) must be determined. This cohomology theory and other cohomo-
logical tools are defined in Appendix [Bl The reader will find it necessary to review
Appendix[B before following this section’s arguments in detail. We use the notation
and definitions introduced in Appendix [B freely here.

The calculations of Hj,, are crucial to our proof of R = T and to our com-
putation of ranks. The calculations of Hj,,, on the other hand, are not logically
necessary for the proofs. We include them as a guide to understand this work in
the general context of deformation theory: the groups Hﬂzat are the “correct H?
groups,” in that they are the right place to compute the obstructions to lifting a
global finite-flat deformation. However, we prove an injectivity result in Propo-
sition that implies that it is sufficient to calculate these obstructions in the
usual global cohomology H?. Therefore, we can limit the amount of new technol-
ogy we have to introduce, at the cost of, in places, doing ad hoc work to make a
deformation finite-flat. See Remark [[0.6.3] for more on this.

6.1. Main results. Recall the notations of Let

e~ (2 2)

be the GMA form of E as in (4.1.2)), i.e. B and C are R-modules, and the multi-

plication in F induces an R-module homomorphism B ® p C' — R. We know from

Proposition that the image of this homomorphism is the reducibility ideal J.
Let B™n = B/Jmn B and C™in = C/J™nC. Since Iger + Iss C J™T, the

natural maps Bp g /J™" Bp gay — B™" and Cp g,/ J™ Cp gay — C™" are

isomorphisms. By Proposition [2.5.1] for any Z,-module M we have

Hom(Bmin ) M) = EXté@,s,ﬂat (va M(l))a Hom(cmin ) M) = EXtéQ.s,ﬂa‘c (ZP(1)7 M)

In the notation of Appendix [B, this is

(6.1.1)  Hom(B™" M) = Hj,(M(1)), Hom(C™" M) = Hg, (M(-1)).

In this section we compute these cohomology groups to reach our goal, the
following characterizations of B™" and C™".

Theorem 6.1.2. Let v € In be the element chosen in §1.10.1. Recall the notation
of E12).
(1) There are isomorphisms
Bmn ~7, C™ ~ 7, /(N —1)Z,,.

(2) The R-modules B and C are cyclic and by € B and ¢y, € C are generators.
(3) The ideal J C R is principal and bycy € J is a generator.

Remark 6.1.3. While the Z,-module structures of B™" and C™" suffice for the
sequel, the interested reader may find it useful to know that there are canonical
isomorphisms

Bmin = ]q'gatL (Zp)’ Cmin = H(QN)(ZP(Q))a
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where “flat™” refers to the dual condition to the flat condition on the cohomology

of Z,(1), in the standard sense (see e.g. [GVIS8, App. B]), but will not be used in
our computations. The latter isomorphism is proved in Proposition [6.3.3

Remark 6.1.4. We note that (2) implies (3) and (2) follows easily from (the proof
of) (1). For the proof of R = T (Corollary [7.1.3|below), it is only necessary to prove
part (3). To prove (3) directly, one could work exclusively with cohomology with
[F,-coefficients, rather than the more cumbersome Z/p”Z-coefficients we use below.
However, the methods are essentially the same, and the payoff of using Z/p"Z-
coefficients is the result ( Wthh is crucial to our study of the finer structure of

R and T (see §7.2 and §10.2]

The following “dual” result to Theorem [6.1.2] specifies the cohomology groups
generated by the cohomology classes a, b, ¢ of the introduction.

Corollary 6.1.5. Let s be an integer such that p* | (N—1). Then HJ, (Z/p*Z(i)) ~
Z/p°Z for i = —1,0,1. Moreover,

(1) H},.(Z/p°Z) is generated by the class of the cocycle

Go,s — Gal(Q(¢n)/Q) - Z/p°Z,

for any choice of surjective homomorphism Gal(Q({n)/Q) — Z/p°Z.
(2) Hy, (Z/p°Z(1)) is generated by the Kummer class of N.
(3) Hpj,(Z/p°Z(-1)) is equal to H,(Z/p*Z(~1)).

Along the way, we also prove the following result, which will be used in our study
of obstruction theory for R.

Proposition 6.1.6. For anyr >0 and i € {0,1,—1}, the natural map
HY(Z/p"L(i)) — H,(Z/p"L(i))/Hy ot (Z/0"L(0))
is surjective. Equivalently, the natural map
Hio(Z/p"2(i)) — H*(Z/p"Z(i))
1s injective.

Remark 6.1.7. The equivalence is clear from the cone construction of H . See
further comments in Remark [10.6.3

6.2. Calculation of certain H, g, (V). For this section and we drop the

convention that N is prime and p | (N — 1), allowing it to be a squarefree integer
N such that pt N.

In order to begin computing, we first need to compute some extension groups in
the category of finite flat group schemes. Here Q)" denotes the maximal unramified

subextension of @p /Qp.

Lemma 6.2.1. For any r > 0, we have:

(1) Hy g0 (Z/p"Z(=1)) = 0.

(2) Under the identification H)(Z/p"Z(1)) = Q) ® Z/p"Z of Kummer theory,
H; fat(Z/P"Z(1)) corresponds to the subgroup Z, ® Z/p"ZL.

(3) Hp o (Z/p" ) = ker(H,(Z/p"Z) — H'(Q}', Z/p"Z)).
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Proof. (1) Indeed, this group corresponds to extensions
0 —Z/p"Z — 7 — pipr — 0

in the category of group schemes of exponent p” over Z,, and no such non-
trivial extensions exist (see e.g. the proof of [Con97, Thm. 1.8]).

(2) This can be proven by Kummer theory as in [CE05, Lem. 2.6], working over
the fppf-site of Spec(Z,) (of which the category of finite flat group schemes
is an exact subcategory).

(3) Indeed, this group corresponds to extensions

0—Z/p"Z —?—Z/p"Z —0

in the category of group schemes of exponent p” over Z,. In such an exact
sequence, all the terms must be étale, and the category of finite étale groups
schemes over Z, is equivalent to the category of finite abelian groups with
T (Zp) = Gal(Qpr/Qp)-action. O

6.3. Cohomology computations. In this section, we state the results of our
computations, continuing to allow N to be squarefree where pt N. In many cases,
when the computation is particularly straightforward and standard, we leave the
proofs to the reader.

Proposition 6.3.1. We have Hgat(Z ) =Zp, Hi,(Z,) =0 fori ¢ {0,2}, and
Hﬁat H Zp/ (t-1)Z
¢|Nprime
Proof. Exercise in class field theory. O
Proposition 6.3.2. There are isomorphisms
Hioo(Z/p"Z(1)) = Z[1/N]* © Z/p"Z ~ Z,/p" Z#{INPrime}

and

HE 2/ 2(1) = ker | €D Z/p'Z 5 Zfp'Z | = 7/p z#HNerime} =1,
£|Nprime

Proof. Exercise in Kummer theory. O
By Lemma we have H) .. (Z/p"Z(-1)) = 0. Using the notation of
we have H}, (Z/p"Z(—1)) = H(lp) (Z/p"Z(-1)).
Proposition 6.3.3. We have
O™ = Hvy(2,(2)) = Hy(2,2) = €D Z/ (&

£|Nprime

Proposition will follow from the duality Theorem together with the
following two lemmas.

Lemma 6.3.4. Let ¢ be a prime different from p. Then H°(Qq,Z,(2)) = 0,
H'(Qy, Zp(2)) ~ Zp/(£2 - 1)Zy, and H*(Qy, Zp(2)) =~ Zp/(L = 1)Zy

Also, H*(Qyp,Z,(2)) = 0.

Proof. This follows from [NSWO08, Thm. 7.3.10, pg. 400]. O
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Lemma 6.3.5. For any p > 3, there are isomorphisms
H(Z,2)= P FeoZ,~ @ z,/(t-1)Z,
£|Nprime £|Nprime
Fori# 2, H(Z,(2)) = 0.
Proof. This follows from combining the excision spectral sequence associated to

Spec(Z[1/Npl|) C Spec(Z[1/p]) (cf. [SouT9, Prop. 1 of I11.1.3, pg. 18]) with the fact
that H*(Z[1/p], Z,(2)) = 0 for i > 0 if p > 3. (The Chern class map

Cimn * K2n—1(Z) ® Zp — HZ(Z[I/M? Zp(n))
is known to be isomorphism, where K3(Z) ~ Z/48Z and Ko(Z) ~ 7Z/27Z.) O

Proof of Proposition[6.3.3 By the isomorphism (6.1.1) along with Lemma [6.2.1}
we have

Cmin = H(lp)(Qp/Zp(_l))*~
By duality Theorem we have
Ccmin o H(QN) (Z,(2)).
By Lemma H'(Zp(2)) = 0. By the duality theorem, Hly(Z,(2)) =
H ?p) (Qp/Z,(—1))* = 0. Then the cone construction of H () gives an exact sequence
0 — Hy(Zy(2)) = Hiny (Zp(2)) = H*(Z(2)) — HR (Zy(2)) = 0.

By Lemmas and [6.3.5, we see that H?(Z,(2)) and H%(Z,(2)) are both finite
groups of the same order (which is the p-part of [T ypime(¢ — 1)). Therefore the
rightmost surjection in the exact sequence is an isomorphism. Hence we have a
canonical isomorphism

Hy(Zp(2)) = Hiny (Zp(2)).
Finally, Lemma [6.3.4] gives the computation of HY (Z,(2)). O

Finally, we complete the proof of Proposition We leave the case of i = 0,1
to the reader, and sketch the proof of i = —1 in the next lemma.

Lemma 6.3.6. For any r > 0, there are isomorphisms
Hy(Z/p"Z(-1)) = Z/p"Z, H,(Z/pZ(-1)) = @ Z,/(* - 1,p")Z,
£|Nprime
and there is an eract sequence
0— Hiy(Z/p"Z(-1)) = H'(Z/p"Z(-1)) — H,(Z/p"Z(-1)) — 0.
In particular,
#H Z/pZ(-1)=p - [] #Zp/(C =1,p")Z,.
£|Nprime

Proof. The isomorphism H;(Z/pTZ(—l)) ~ 7 /p"Z follows from Hg(Qp/ZP(—l)) =
0 and H}(Qp/Zy(—1)) ~ Qp/Z, (see [NSWOS, Thm. 7.3.10, pg. 400]). Since
Hiyy(Z,(2)) = 0, we have HZ\\(Z/p"Z(2)) = Hiy)(Zy(2)) ©Z/p"Z, so the descrip-
tion of H (1p) (Z/p"Z(-1)) follows from Proposition and the duality Theorem
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The proof is completed by considering the exact sequence
(6.3.7) 0 — Hiy(Z/p"Z(=1)) = H(Z/p"Z(-1)) = Hy(Z/p"Z(-1))
and the inequality

W T T-)) 20 [[ #2102,
£|Nprime

This inequality follows from the instance H'(Z/p"Z(—1)) = H(QC) (p~"ZJZ(2))* of

Poitou—Tate duality, along with the three consecutive terms

0=H'(Z,(2)) = Hy(Z,(2)) & D HI(Zy(2)) = HE,)(Z(2))
prime ¢|N

of the standard long exact sequence in Galois cohomology. Here the leftmost van-
ishing is recorded in Lemma H}(Z,(2)) is calculated in Lemma and it
is well-known that H}(Z,(2)) ~ Zy,. O

6.4. Proof of Theorem and Corollary We now return to the con-
vention that N is prime and p | (N — 1).

Propositions and give us part (1) of the theorem. Part (3) follows
from part (2) and the fact that J = B - C. It remains to show (2). We give the
proof for B, the proof for C' being almost identical. The strategy will be to use the
following version of Nakayama’s lemma.

Lemma 6.4.1. Let (A, m, k) be a local ring and M be a finitely generated A-module.
Then M is cyclic if and only if the k-vector space Hom 4 (M, k) is one-dimensional.
If M is cyclic, then an element m € M is a generator if and only if (m) # 0 for
some non-zero ¢ € Homy (M, k).

Now we let m C R be the maximal ideal (so m = J™ + pR). Using (6.1.1)) we
calculate

(6.4.2) Hompg (B, R/m) = Homg(B™", R/m) = H,, (F,(1)).

Proposition shows that this is a 1-dimensional F,-vector space. Hence B is a
cyclic R-module. Moreover, Proposition implies that any cocycle generating
H} . (F,(1)) is ramified at N.

Now, the maps in are given as follows. Let ¢ € Hompg (B, R/m) be non-
zero (and hence a generator). Then the corresponding extension of 1 by F,(1)

) JH(wg>¢@»>

If ¢(b,) were zero, then this extension would be trivial at Iy and hence unramified
at N. Since we know, by (6.4.2), that this extension generates H},, (F,(1)) and
that any such generator is ramified at N, we must have ¢(by) # 0. The lemma
then implies that b, generates B. This completes the proof of the theorem.

To prove Corollary first we see that its main statement for ¢ = £1 follows
directly from Theoremin light of . The main statement for ¢ = 0, along
with statements (1) and (2), are basic class field theory. Statement (3) follows
immediately from Lemma [6.2.1
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7. R =T AND APPLICATIONS

In this section, we use the numerical criterion to prove that the map R — T con-
structed in Proposition is an isomorphism. We also give further information
about the structure of R and the R-modules B and C.

7.1. Numerical criterion. We will use the strengthening of Wiles’s numerical
criterion [Wil95] Appendix] due to Lenstra (see [dSRS97, Criterion I, pg. 343]).

Theorem 7.1.1 (Wiles—Lenstra numerical criterion). Let O be a DVR and let R
and T be augmented O-algebras with augmentation ideals Ir and I and assume
that T is finite and flat over O. Let m : R — T be a surjective homomorphism of
augmented O-algebras. Let np be the image of Annp(Ir) in O.

Then length(Ir/I%) > length(O/nr) with equality if and only if 7 is an isomor-
phism of complete intersection rings.

We apply this to the map R — T constructed in In this case, the DVR O
is Z, and the augmentation ideals are J™® C R and I C T. Let n C Z, be the
image of Anny (/) under the augmentation T — Z,,, so that

Zy/n="T/(I+ Anny([)).
By Theorem [3.2.1] and Lemma [3.2.2] we have
Zy/n=T/(I+ Annp(I)) = T°/1° = Z,/(N — 1)Z,.

On the other hand, we have this consequence of Proposition and Theorem
6.1.21
Corollary 7.1.2. We have J™ = YR, J = (J™*)2 gnd Jmin /(Jmin)2 ~
Zy/(N —1)Z,.
Proof. We already know by Proposition that J™» = Y R+J, and by Theorem
that J is generated by b,c.. Since b,c, = —Y? we see that J C YR and so

Jm = YR, Tt also follows that J = (J™")2 and, since we know by Corollary
that J™in /J 2 7, /(N — 1)Z,, the last part follows as well. O

We can now apply the numerical criterion.

Corollary 7.1.3. The surjection R — T from Proposition[{.2.4)is an isomorphism
and both rings are complete intersections.

Proof. This is immediate from the numerical criterion: we know that T is a finite
flat Z,-algebra and we have the calculations of Z,/n and J™in /(Jmin )2, O

Corollary 7.1.4. The ideals I C T and I° C T are principal. In particular, T°
is a complete intersection.

Proof. Tt follows from Corollary that J™® is principal. Since R — T is an
isomorphism of augmented algebras, it follows that J™" = [ and so I is also
principal. Then I° must also be principal. Since TV is a flat Z,-algebra and TO/1°
is finite, 1Y must be generated by a non-zero divisor. Since T°/I° = Z,/(N —1)Z,
is complete intersection, TP is also complete intersection. ([

We can also reprove Mazur’s results regarding generators of I (see Corollary

below).
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7.2. Structure of R, B and C. We have this immediate corollary.
Corollary 7.2.1. The ring R is reduced, and it is finite and flat as a Z,-algebra.

Proof. This follows from the isomorphism R — T and the corresponding properties
for T (§3.1.2] Proposition [4.2.4). O

In particular, it follows that any generator of J™" as an ideal is a generator for
R as a Z,-algebra. Similarly, any generator of I will generate T as a Z,-algebra, as
well as its quotient TO.

Corollary 7.2.2. Let Y € R be the element described in Proposition|5.2.2, so that
Y is a generator of J™" . Let g(y) € Zy,[y] be the monic minimal polynomial of Y,
so that there is an isomorphism

Zplyl/(9(y)) — R

given by y > Y. Then g(y) = yf(y) for some f(y) € Zyly] with f(y) = y'*=/
(mod p) and f(0)Z, = (N —1)Z,, and Anng(J™™) is the image of the ideal (f(y)).

Proof. The fact that the map is an isomorphism is a standard exercise. The image
of (y) is the augmentation ideal YR = J™  so reducing modulo (y) we obtain
a Zpy-algebra homomorphism Z,/(g(0)) — Z,, which implies that ¢g(0) = 0, and
so g(y) = yf(y). The annihilator of (y) is (f(y)), so the annihilator of J™" is
the image of (f(y)). Since R is local and Y € J™ g is distinguished and the
congruence f(y) = y°&/ (mod p) follows. Finally, under the isomorphism R = T,
we see that Z,/(f(0)) corresponds to Z,/n = Z,/(N — 1)Z,, so the valuation of
£(0) must equal that of N — 1. O

We see that deg f = rankyz (R)—1 = rankg, (T°). We write R® = R/Anng(J™"),
so that the isomorphism R = T induces R® = TY.

Lemma 7.2.3.

(1) There are isomorphisms J ~ J™® ~ RO of R-modules.
(2) Any non-zero ideal a C Anng(J™™) is of the form p! Anng(J™") for some
12> 0.

Proof. (1) Since both ideals are principal, it suffices to show Anng(J) = Anng(J™).
But we know that J™* =Y R and J = Y2R, so this follows from the fact that R

is reduced (Corollary [7.2.1)).

(2) By Corollary We may study subideals of (f(y)) in Z,[y]/(yf(y)). As
Z,-modules, the ideal (f(y)) is a free direct summand of Z,[y]/(yf(y)) of rank 1.
Since any subideal must also by a sub-Z,-module, the lemma follows. O

Corollary 7.2.4. The module B is free of rank 1 as an R module and there is an
isomorphism C ~ J of cyclic R-modules. In particular, the map B @z C' — J is
an tsomorphism.

Proof. The second sentence follows from the first, since we already have a surjection
B ®pr C — J and the first sentence implies that B ® g C' ~ J as R-modules.

By Theorem[6.1.2] B and C are cyclic R-modules, so it suffices to show that B is
faithful as an R-module and that Anng(C) = Anng(J). Since we have a surjection
B®grC — J, we know that Anng(B) and Anng(C) are subideals of Anng(J). By
the previous lemma, we have Anng(B) and Anng(C) are either zero or of the form
p*Anng(J™") for some i > 0.
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Now, by Corollary we have isomorphisms
R/(p' Anng(J™" )@ R R/T™ = Z,[y] /(4.5 F()) = Zp/ (0" F(0)) = Zp /' (N —1) .
On the other hand, we know by Theorem that
B®grR/J™™ ~7Z, C®gR/J™ ~7,/(N —1)Z,.
It follows that Anng(B) = 0 and that Anng(C) = Anng(J™®) = Anng(J). O
We have the following immediate consequence of foregoing statements.

Corollary 7.2.5. Let e = ranky, (T°). Using the isomorphism R = Z,[y]/(yf(y))
of Corollary|7.2.2, the R-modules J, J™™ , R®, and C' are isomorphic to Z,[y]/(f(y))-
In particular, we have that C/pC ~ F,[y]/(y®) as a module for R/pR = F,[y]/(y*T1).

Remark 7.2.6. These results on the R-module structures of B and C' are proven
for an arbitrary choice of GMA structure on F, and so they hold for any choice of
GMA structure. This is not surprising because the modules obtained for a different
choice of GMA structure will be a priori isomorphic.

Remark 7.2.7. Using Proposition and Corollary [7.2.4] one can prove that
(E, p, D) is ordinary in the sense of [WWEIS| Defn. 5.9.1].

8. THE NEWTON POLYGON OF T AND A FINER INVARIANT

By the results of the previous section, there are isomorphisms

T =~ Zy[yl/(uf (), T =Zplyl/(f(v))-

These presentations are not canonical, but, as is well-known, the Newton polygon
of f(y) is a canonical invariant of T (and, of course, it can be determined from
the Newton polygon of T). Mazur [Maz77, §I1.19, pg. 140] asked what can be said
about this Newton polygon. In this section, we introduce a finer invariant than the
Newton polygon and prepare some lemmas to relate it to deformation theory.

8.1. Newton polygons. For this subsection, we fix g(z) = Y.I", auz’ € Zy[z] a
monic, distinguished polynomial (i.e. vp(a;) > 1 for i < m and a,,, = 1). Note that
a coefficient may be zero, so it is possible that v,(a;) = oo in what follows. We
slightly abuse terminology by calling these valuations “integers” nonetheless.

Definition 8.1.1. The Newton polygon of g(x) is the lower convex hull of the points
{(i,vp(c)) i =0,...,m} in R? where a point is omitted when v,(a;) = co. We
denote it by NP(g).

Define a sequence zg, ..., z,, inductively by
20 = vp(ap), zi =min{z;_1,v,(0q)} fori=1,...,m.

Then it is an easy exercise to see that NP(g) is the lower convex hull of the points
{(i,2)) :1=0,...,m}.

Let T = Zy[z]/(g(x)). We will call an element y € T a generator if (z) = (y)
as ideals of T. Such an element will also generate 1" as a Zjp-algebra. Since T'
is local, we can see that y = wa for some unit u € T*. Recall from that

(Z/p L)]ei) = (Z/p"Z)[e] /(7).
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Lemma 8.1.2. Fori =0,...,m, define t; (resp. ;) to be the mazimal integer r
such that there exists a surjective ring homomorphism

¢:T — (Z/p"Z)lei]

such that p(y) = € for some generator y € T (resp. such that ¢(x) = €). Then
ti=r; =z fort=0,...,m.

Proof. For i = 0, a homomorphism ¢ as in the statement must factor through
T/yT =T/zT = Z,/Z,, and so we see tg = ro = vp(ap) = 20. By induction, we
can assume the result for i < n for some 1 < n < m, and prove that t,, = r,, = z,.
Since the sequence t; is decreasing and since 7,—1 < t,,—1, we have v,(a;) > t,,—1 >
rp—q fori=0,...,n— 1.

For r < t,_1, a homomorphism ¢ : T — (Z/p"Z)[e,] with ¢(y) = € for a
generator y € T must factor through

T/ T +y™'T) = /(5T +2"'T) = Z/p"Zla]f(na™, ™),

For any generator y, there exists u(z) = up + 12 + - - - + Up,_1 2™ with ug € /i
such that z = u(z)y in T. We see that there is a such a homomorphism ¢ if and
only if there is a homomorphism

Z[p"Zlal /(o™ &™) = (Z/p"Z)[en]

sending x to eu(e). Such a homomorphism exists if and only if o, e™u(e) = uga,e”
is 0in (Z/p"Z)[ey). Similarly, a homomorphism ¢ such that ¢(z) = € exists if and
only if ay, €™ is 0 in (Z/p"Z)[e,]. Both of these happen if and only if v,(ay,) > 7, so
we see that t,, = r, = min{t,,_1, vp(an)} = min{z,_1,vp(an)} = 2n. ]

Note that the integers ¢; are an invariant of the pair (T, (z)) of T and the ideal
() C T generated by x. That is, we emphasize that {¢;} do not depend on the
particular choice of generator x of T. The lemma implies that NP(g) is the lower
convex hull of the points {(i,¢;) : ¢ = 0,...,m}, and hence is also an invariant of
(T, (x)). In applications, T" will be T or T° and (x) will be the Eisenstein ideal.

The following example witnesses the fact that the set {¢;} is a strictly finer
invariant than NP(g).

Example 8.1.3. Suppose that g(z) = 2%+ a2+ ag, with vy(ag) = 2 and v,(a;) >
0. Then NP(g) must be the line segment from (0,2) to (2,0), but there are two
possible values of (to, ¢1,t2): either (2,1,0) or (2,2,0). Moreover, the two different
possible values of ¢; encode information about g(z). For example, if g(z) is reducible
and t; = 2, then the two roots of g(x) can be additive inverses of each other, but
not if ¢; = 1. This applies to the generators of T given in Corollary

8.2. The Newton polygon of T. For the remainder of the paper, we will be
interested in studying the integers t; associated by Lemma to T. Combining
Lemma with the results of we have the following.

Proposition 8.2.1. Let y € T be a generator of I, so that Zy[z]/(g9(x)) = T via
x — y, where g(x) = Zf:é a;xt € Zyplx] is the monic minimal polynomial of y.
Define t; inductively by to = vy(ap) and t; = min{t;—1,vp(a;)} fori=1,...,e+1.
Then the sequence {t;} is independent of the choice of y, and NP(g) is the lower
convex hull of the set {(i,t;)}.

Moreover, for any 0 < n < e+ 1 and any positive integer s, the following are
equivalent:
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(1) s <tp,
(2) For any generator z € J™m | there is a homomorphism ¢ : R — Z/p*Zle,)
such that o(z) = e.

Note that tg = 0o, t1 = v,(IN — 1), t; > 0 for i <e, and t.1 = 0.

Part 2. Massey products and deformations

In this part, we use the results of the previous part to show that the tangent space
of R is 1-dimensional and choose an explicit basis D; of this space. We consider
three representations pg, p§ and pf that all have the same pseudorepresentation and
relate the existence of deformations of these three representations to the structure
of R and to different Massey products.

For this whole part, we fix the integer t = v,(N — 1) > 1.

9. THE TANGENT SPACE AND COCYCLES

In this section, we study the tangent space of R. Recall from the notation
that Z/p*Z[e;] = Z/p*Zle]/(€F1). The numbering makes Hom(R,Z/p*Z[e;]) the
space of i-th order deformations modulo p®. The tangent space (modulo p®) is the
space of first order deformations modulo p®.

Recall the other notations introduced in including the cyclotomic character
Kecye and the element v € Iy.

9.1. The tangent space of R and generators of T. We can describe the tangent
space of R using our explicit presentation of R in Corollary

Proposition 9.1.1. Let t = v,(N — 1).

(1) The Fp-vector space Hom(R,Fpe1]) is 1-dimensional. Any non-zero ele-
ment of this space sends J™ to (¢) and J to 0.

(2) There exists a local surjection R — Z/p°Zle1] if and only if s < t. Any
such surjection sends J™™ to (¢) and J to 0.

(3) Let Y = 1—d,. Let 1 : R — Z/p'Zle1] be the unique homomorphism
sending Y to €. Let a : Gos — Z/p'Z be the unique homomorphism
factoring through Gal(Q((x)/Q) and sending v to 1.

Then the pseudorepresentation Dy : Gg.s — Z/p'Z[e1] associated to ¢y
is given by det(D1) = Keye and

tr(D1) = (Keye + 1) + €a(keye — 1).
Proof. Parts (1) and (2) are clear from the structure of R computed in Corollary

Since J C ker(ip), we see that ¢, factors through R*d, so part (3) follows
from Proposition O

The following corollary was first proven by Mazur [Maz77, Prop. I11.16.1, pg. 125].
Recall that Mazur calls a prime number ¢ # N a good prime (for N and p) if both
of the following are true: (i) £ Z 1 (mod p) and, (ii) ¢ is not a p-th power modulo
N.

Corollary 9.1.2. Let £ # N be a prime number. Then Ty — ({ +1) € I is a
generator of the principal ideal I if and only if £ is a good prime.

Note that any generator of I is also a generator of T (and T°) as a Z.,-algebra.
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Proof. In this proof, for x € Z,, we write Z for the reduction modulo p of x, and
we define Dy = D, ®z/ptzer] Fpler].

First, assume ¢ # p. As in the proof of Proposition we have tr(Dr)(Fry) =
Ty, so we see that Ty — 1 — £ is a generator of I if and only if tr(D;)(Fr,) — 1 — £ is
non-zero. Since

tr(Dy)(Frg) — (1 +0) = (€ — 1)a(Fry)e

we see that Ty — (1 + £) is a generator of I if and only if (¢ — 1)a(Fry) # 0, which
happens if and only if £ # 1 (mod p) and a(Fr,) # 0. It follows from class field
theory that a(Fr,) # 0 if and only if ¢ is not a p-th power modulo N.

Now let ¢ = p. Since T}, = U, —i—pUp_1 we see that the images of T, — (p+ 1) and
U, — 1 in F,[e1] are the same. In particular, T, — (p + 1) generates I if and only if
Up — 1 generates I. Now let Fr, € G, be a Frobenius element, choose o € I, such
that w(o) # 1, and let & = Keyc(0). Then, as in the proof of Proposition we
have

U, = ﬁ(tr(DT)(Frpa) — ztr(Dr)(Frp))

so U, — 1 generates I if and only if

ﬁ (62(Dy) (Fry0) — Ztr(Dy)(Fry)) # 1.

Using the fact that a is unramified at p, we see that

1 _ _
12 (tr(D1)(Frpo) — ztr(Dy)(Frp)) = 1+ a(Frp)e.
Hence we see that U, — 1 generates I if and only if a(Fr,) # 0 and the proof
continues as above. g

9.2. A normalization for certain cocycles. We now depart from the notation
of where a,b and ¢ were cohomology classes chosen up to multiplication by
(Z/p'Z)*. We let a € Z}, (Z/p'Z) be the cocycle defined in Proposition [9.1.1} let
be Zi, . (Z/p'Z(1)) be a Kummer cocycle associated to a choice of p'-th root of N,
and let ¢ € Z},,(Z/p'Z(—1)) be an element such that ¢/, = 0 and whose image in
H{, (Z/p'Z(—1)) is a generator. Recall from Corollary|6.1.5|that H}  (Z/p'Z(i)) ~
Z/p'Z, and that the classes of a,b and c are generators. We have specified a
completely, and b and ¢ up to a multiple of (Z/p'Z)*.

Next, as with a, we want to normalize b and ¢ with respect to our choice of
v € Iy from §1.10.1} Since b(7y),c(y) # 0 (mod p), we can and do normalize so
that b(y) = —1 and ¢(y) = 1. Because of this choice we have

a(y)* +b(7)e(y) = 0.
Since a, b, ¢ are continuous homomorphisms on I, this implies that
(9.2.1) (a® +be)|ry = 0.

Remark 9.2.2. Note that these cocycles a,b,c are not related to the elements
G5,bs, ¢y introduced in (4.1.2). We write cochains in function notation (i.e. a(0)),
so hopefully this does not cause confusion.
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10. MATRIX-VALUED DEFORMATIONS

Let po : Go,s — GLa(Z/p'Z) be the representation Z/p'Z(1) & Z/p'Z. From
the choice of the cocycles a,b,c in we have a first order deformation of pg.
Namely, let

M= ( Z _ba > € Z'(End(Z/p'Z(1) ® Z/p'Z))

and define
p1=(1+ Me)po : Go.s — GLa(Z/p'Z]er)).
This is a finite-flat representation such that ¢ (p;) = D;.
We specify two more representations p, p& : Ggs — GL2(Z/p'Z) satisfying
¥(po) = 9 (pg) = ¥(p§), namely

b __ Kcyc b c __ Hcyc 0
p0< 0 1>’ ”O(mcycc 1>

In this section, we will consider deformations of pg, p} and p§, and how they are
related to R.

10.1. Notation for deformations and Massey products. We define the no-
tions of good, very good, and adapted deformations.

Definition 10.1.1. Let 1 < r < s and 0 < n < m be integers. Let v : Gg g —
GL2(Z/p®Z]ey]) be arepresentation. A representation v’ : Gg s — GL2(Z/p"Z[er))
is called an m-th order deformation of v modulo p" if there is an isomorphism

v ®z/prZlem] L/P Llen] =V ®z)pezie,) Z/P" Llen).

Definition 10.1.2. Let r < ¢, and let p,, : Gg,s — GL2(Z/p"Z[e,]) be a represen-
tation. We call p,, good if the following conditions are satisfied:

(1) ¥(pn) @z/przie,) L/P"% = (po) @z/ptz Z/p" L.

(2) det(pn) = Keye-

(3) pnlp is finite-flat and upper-triangular.

(4) tr(pn) 1y = 2.
When p,, is a good n-th order deformation of p; modulo p*, we define x4 (pn), xa(pn) :
Gq, — (Z/p°Z[e,])* to be the diagonal characters of py|,.

Note that after assuming (2), (4) is equivalent to 1(p, )|, being trivial, cf. §1.8.1|
and Proposition Thus a good representation induces a surjective homomor-
phism R — Z/p"Ze,] corresponding to ¥ (py).

—_— — — ~—

Definition 10.1.3. Suppose that p, is an n-th order deformation of p; modulo p*
with s <t. We call p,, mildly ramified at N if it satisfies

1+ ae be
pulry = ce 1—ae

We call p,, very good if it is good and mildly ramified at N.

In

Definition 10.1.4. Let 1 < s <t and let p, be an n-th order deformation of p;
modulo p®, and write p,, as

Zn a; b; i
i=1 v
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We say that an n-th order deformation pf, of p§ modulo p° is adapted to p,, if

n
. . Keye@i  bim1 \ 4
=t ( e
i—1

’icycci—i-l dz

for some ¢, 41 € CY(Z/p*Z(—1)), where by := 0. In this situation, we call ¢, ;1 the
cochain associated to p¢, and we note that p, — c,1 is a bijective correspondence
between the set of n-th order deformations p¢, of pf modulo p® that are adapted to
prn and the set of cochains ¢, 11 satisfying

n
deni1 = E Ci ~ Apt1—i +di —~ Cpgi—i-
i=1

Similarly, we say that an n-th order deformation p? of p§ modulo p® is adapted

to Pn if
- Keye@i  bit1 ;
b b cyclsq % )
Py = Po + E €
n 0 Pl < /{CI,Cci_l di )

for some b,,1 € CY(Z/p*Z(1)), where ¢y := 0. We also call b,.; the cochain
associated to p?, and note that there is a similar bijection p% + by, 11.

One readily calculates that when p¢ and p’ are adapted to p, as above, then
there is an equality of pseudorepresentations

(10.1.5) Upn) = (p;) = ¥(py,) : Gas — L/p°Llen).

We introduce some notation for Massey products, Massey powers, and their
connection with deformations; see Appendix [A] for full details. For s < ¢, let M,
denote the image of M in Z'(End(Z/p*Z(1) ® Z/p°Z)). 1If p, is an n-th order
deformation of p; modulo p?, it provides a defining system D for the Massey power
(M), We will abuse notation and say (M)%"™ vanishes in H?(End(Z/p*Z(1) ®
Z/p°Z)) if (MQZH = 0, and refer to the Massey relations for <M3>7£,+1 as the

Massey relations for (M)%Jrl modulo p®.

Remark 10.1.6. In the notation of the previous paragraph, if r < s, then p,®z/,:7[c,]
Z/p"Zley) is a deformation of p; modulo p”, which provides a defining system D,.

for the Massey power (M,)""!. Examining the definition, one sees that <Mr>gj1
n+1

is the image of (M,),"" under the natural map
H?(End(Z/p°Z(1) & Z/p°Z)) — H*(End(Z/p"Z(1) & Z/p" 7))

and similarly for the coordinate Massey relations. In particular, one sees that the
following are equivalent:

(1) (M) is 0 in H2(End(Z/p"Z(1) & Z/p"Z)).
(2) (M) is in the kernel of the natural map
H*(End(Z/p°Z(1) © Z/p°Z)) — H*(End(Z/p"Z(1) & Z/p"Z)).
(3) (M) is in the image of the map
H*(End(Z/p°Z(1) ® Z/p°Z)) — H*(End(Z/p°Z(1) & Z/p°Z))
induced by multiplication by p”.

This perhaps justifies the abuse of notation.
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10.2. GMA lemmas. In this subsection, we consider homomorphisms from gener-
alized matrix algebras to matrix algebras. This will be used to relate the existence
of certain matrix-valued deformations to properties of R.

Lemma 10.2.1. Let A be a commutative ring, let

(A Ba
a8
be an A-GMA, and let ® : By x Cp — A be the A-bilinear map that induces
the multiplication in E4. Then there is a bijection between the set of A-GMA
homomorphisms Eas — My(A) and the set of pairs (pp : Ba — A, e : Cq — A)
of A-module homomorphisms satisfying ®(b,c) = @p(b)pe(c) for all b € Ba and
ce Cy.

Proof. The map sends an A-GMA homomorphism ¥ : E4 — Ma(A) to (¥|p,, V|c,).
The fact that ¥ is an A-GMA homomorphism implies that ®(b,c) = ¥(b)¥(c) for
all b € B4 and ¢ € Cy4. Conversely, given a pair (s, ¢.), we can define a map of

A-modules by
1 ¢y
EA (goc 1) MQ(A),

and we see that it is a homomorphism of A-GMAs if and only if ®(b, ¢) = pp(b)we(c)
forallbe By and ¢ € Cy. [l

For the universal Cayley-Hamilton R-algebra E defined in the following
lemma shows that deformations of py give rise to GMA homomorphisms from F to
a matrix algebra.

Lemma 10.2.2. Let p, : Gg s — GL2(Z/p"Zle,)) be a good deformation of po
modulo p”. Then there exists a GMA structure on the Cayley—Hamilton R-algebra
E such that the Cayley—Hamilton representation p, : E — My(Z/p"Zley]) induced
by pn is a homomorphism of GMAs.

Proof. The Cayley-Hamilton representation p,, exists by virtue of the universal
property of E: p, is finite-flat and induces a pseudorepresentation with the prop-
erties enumerated in Proposition For the rest, see [WWE19, Thm. 3.2.2], for
example. [

10.3. Criteria for goodness and very goodness. Let 1 < s <t andlet n > 1
be an integer. Fix an n-th order good deformation p,, of p; modulo p°.

Lemma 10.3.1. Let p¢ and p’, be n-th order deformations of p§ and p’ modulo
p®, respectively, that are adapted to p,. Let cny1 € CYHZ/pZ(—1)) and byy1 €
CY(Z/p*Z(1)) be the associated cochains. Then
(1) pS is good if and only if cpy1lp = 0.
(2) pb is good if and only if b1 makes > biv1|pe’ define a finite-flat ex-
tension of xa(pn) by Xa(pn)-

Proof. By ([10.1.5), we see that p¢ and p% are good if and only if pS|, and pb|,,
respectively, are finite-flat and upper-triangular. This shows the “only if” part of

(1), and, since p?|, is automatically upper-triangular, (2) is immediate. It remains
to show that p¢|, is finite-flat if ¢, 41|, = 0.

If ¢pp1]p = 0, then pg|, is the extension of x4(pn) by Xa(pn) defined by 327" biei L.
Its class in Extz,peze,)ia,] (Xa(Pn); Xa(pn)) is the scalar multiple by e of the class
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of pn|p (which is finite-flat). Since scalar multiplication on extensions preserves
finite-flatness (see Remark |C.3.2)), p|, is finite-flat. O

Lemma 10.3.2. Let 1 < s <t, and let n > 1 be an integer. Suppose that p,,1 is
an (n + 1)-st order deformation of p1 modulo p*. Write pp4+1 as

b
pre = <1+;< ¢ d >E>p07
soa; =a,by =b,c; =canddy, = —a, and a;,d; € CH(Z/p°Z), b; € CY(Z/p*Z(1)),
ci € CYZ/p°Z(-1)). Suppose also that py := pny1 @zpzje, 1) L/P°Llen) is very
good. Then pn41 is very good if and only if these three conditions hold:
(i) cn1lp =0 and apialr, = dntalr, =0,
n+1
(i6) 3" bily€l defines a finite-flat extension of xa(psr) by Xa(ons),
i=1
(m) an+1‘IN = bn+1|IN = Cn+1|1N = dn+1|1N =0.

Proof. First assume that p,41 is very good. Then (iii) is clear from the definition
of very good. Since pp4+1 is good, we have that p,41|, is finite-flat and upper-
triangular. This implies that ¢,41|, = 0. Because xq(pn+1) (resp. xa(pn+1)) is a
finite-flat deformation of Z/p°Z(1) (resp. Z/p°Z), which is equivalent to being an
unramified deformation, we have (i). Then (ii) follows from p,,41|, being finite-flat.

Conversely, suppose that p,11 satisfies (i), (ii), and (iii). We have just explained
why pn1lp is finite-flat and upper-triangular. Also pn41 is clearly mildly ramified
at N and tr(p,41|ry) = 2. Because p, is good, det(py4+1) = Keyc(l + €"114) for
some 0 € Z'(Z/p*Z). We observe that (i) implies d|;, = 0. Since p,41 is mildly
ramified at N, we see that det(p,y1)|7, has the form 1 — (a? + be)|7y€2 = 1 by
the normalizations of . Thus ¢ is unramified everywhere and consequently
equals 0. O

10.4. Residually lower-triangular deformations. We study deformations of
P
Lemma 10.4.1. Let 1 < r < s <t, and let n > 1 be an integer. Suppose that
Pn 18 an n-th order deformation of p1 modulo p®, and suppose that p, is very
good. Let ¢ : R — Z/p°Z[e,| be the corresponding homomorphism, and let D be
the corresponding defining system for the Massey power <M>"+1, Write pp,r =
Prn ®z/pszie,] L/D" Llen]. Then the following are equivalent:

(1) There is a surjective homomorphism ¢’ @ R — Z/p"Zlen+1] such that the

following diagram commutes

/

%)

R Z/p"ZLlen1]
| |
Z/p°Zle,) —=7Z/p" Z|ey),
where the unlabeled arrows are the quotient maps.

(2) The Z/p"Z[ey]-module C ®g., Z/p"Zley) is free of rank 1.
(8) There is an n-th order deformation of p§ modulo p” that is adapted to p, ;.
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(4) There is an n-th order deformation of p§ modulo p" that is adapted to p, »
and is good.
(5) The Massey relation for (M)%+1 holds in the (2, 1)-coordinate modulo p".

Remark 10.4.2. For n = 1, we can take p, = p1®z/ptz[e,)Z/p*Z[e1], and the Massey
relation for (M)zD = M U M in the (2,1)-coordinate is simply cUa —a Uc = 0.
Using the skew-commutativity of the cup product, we see that this relation holds
if and only if a Uc = 0.

Proof. In the proof, it will be helpful to induce an alternate characterization of
(2). First note that (2) only depends on the R-module structure of C, which is
independent of the choice of GMA-structure on E. We apply Lemmal[10.2.2]to p,,,
which defines a GMA structure on F, and we will write £ = (g g) for this choice
of GMA structure. We write ® : BxC — R for the R-bilinear map coming from the
multiplication in E. Write C,, , := C®p,,Z/p"Z[e,] and By, , := BRp,,Z/p" L[ey).
By Lemmas [10.2.1] and [10.2.2] the deformation p,,, defines Z/p"Zle,]-module
homomorphisms ¢, : By, , — Z/p"Zle,] and ¢, : C,,» — Z/p"Zle,], both having
image €Z/p"Zley], and satistying ®(b, ¢) = vp(b)pc(c) for all b € B, and ¢ € Cy, .
With this notation, we can see that (2) is equivalent to the following condition:
(2’) There is a homomorphism @, : Cp,» — Z/p"Zley] of Z/p"Z[e,]-modules
such that € - ¢, = ..

Indeed, if C,,, is free, then it has a generator z such that ¢.(z) = €, and we can
define @. by ¢.(z) = 1. Conversely, any such @. must be surjective, so the fact
that C, , is cyclic implies that it must be free.

(1) <= (2): Choose a generator x € R such that p(x) = e. By Corollaries
and there is an isomorphism

Lp|z)/(xg(x)) = R

for some distinguished monic polynomial g(z) = Z?:o Bizt, and an isomorphism of
R-modules C' ~ Z,[x]/(g(x)). The existence of ¢ implies that v,(8;) > s for i < n.

We see that Z/p 2| Z]p"Zle]
i p"Z|e p'Zle
C @R, L/p"Llen] ~ (g(e), entD) - (Bnem, entl)

as an Z/p"Z[ey]-module. Hence (2) is equivalent to v,(3,) > r, which is equivalent
to (1) by Lemma [8.1.2]

(2') = (3): Let ¢, be as in (2’). Then we see that ®(b,c) = (e pp)(b)Pc(c) for
allb € By, and ¢ € Cy,;., so Lemmal[10.2.1]implies that the pair (e- s, @) induces a
GMA homomorphism E — My(Z/p"Zle,]). Pre-composing with p* : Gg ¢ — E*,
we obtain a representation p¢ : Gg.g — GL2(Z/p"Z[ey]) satisfying the conditions
in (3).

(3) = (4): Let pS be a deformation of p§ adapted to py ., and let ¢,41 €
CY(Z/p"Z(—1)) be the associated cochain. We have

n
deni1 = E Ci ~ Apt1—i +di ~ Cpyi—i-
i=1

Since py, is very good, we have ¢;|, = 0 for i < n, and so ¢, € Z}(Z/p"Z(—1)).
By Proposition [6.1.6] the map
HYZ/p"Z(-1)) - H,(Z/p"Z(-1))
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is surjective. Then we can subtract an element of Z!(Z/p"Z(—1)) from ¢, to
obtain an element ¢, ; such that dc,41 = dc],; and such that ¢}, |, = 0. We let
p5' be the deformation of pf that is adapted to p,,, associated to ¢, ;. By Lemma
10.3.1} p¢’ is good.

(4) = (2'): Let p¢ be a good deformation of p§ that is adapted to py, . This
induces an Z/p"Z[e,]|-algebra homomorphism

E®pr,, Z/p" L, = Mo(Z/p" Lleyn)).

By Lemma (10.2.1} this defines a homomorphism ¢, : C, , — Z/p"Z[e,] that, from
the definition of adapted, satisfies the condition of (2).

5) <= (3): This is Lemma [A.3.4 O
(5) (3)

10.5. Residually upper-triangular deformations. We consider deformations
of pj.

Lemma 10.5.1. Let 1 <r < s <t, and let n > 1 be an integer. Suppose that p,
is an n-th order deformation of p1 modulo p°*, and suppose that p, is very good.
Let ¢ : R — Z/p°Zle,] be the corresponding homomorphism, and let D be the
corresponding defining system for the Massey power (M>n+1. Then the following
are true:

(1) The Z/p*Zley]-module B ®p, , Z/p*Zley) is free of rank 1.

(2) There is a n-th order deformation of p% modulo p* that is adapted to py .
and is good.

(8) The Massey relation for <M>%+1 holds in the (1, 2)-coordinate modulo p°.

Remark 10.5.2. For n = 1 and r = s = t, we can take p, = p;, and the Massey
relation for (M)zD = MUM in the (1, 2)-coordinate is simply bUa—aUb = 0. Using
the skew-commutativity of the cup product, the lemma implies that a Ub = 0.

Proof. By Lemma B is a free R-module of rank 1. Then (1) is clear, and (2)
implies (3) by Lemma To show (2), we follow the proof of Lemma
and will use the same notation of ¢, and . introduced there. As in that proof, (1)
implies that there is a homomorphism @y : B — Z/p"Z[e,,] such that e- @, = ¢p. The
data (@p, € - ) give a GMA homomorphism E Qg , Z/p°Zle,| — M2(Z/p°Zle,)),
and this gives a finite-flat representation p? that is adapted to p,,. By Lemma
10.3.1} pb is good. ([l

10.6. Residually diagonal deformations. We consider deformations of p;.

Lemma 10.6.1. Let 1 <r < s <t, and let n > 1 be an integer. Suppose that py,
is a very good n-th order deformation of p1 modulo p®. Let D be the corresponding
defining system for the Massey power <M>n+1. Then the following are equivalent:

(1) There is an (n+ 1)-st order deformation of p, modulo p".
(2) There is an (n+ 1)-st order deformation of p, modulo p" that is very good.
(3) The Massey power (M)'5t" vanishes in H?(End(Z/p"Z(1) & Z/p"Z)).

Remark 10.6.2. For n = 1, we can take p,, = p1®z/ptz[e,]Z/p*Z[e1], and the Massey
power (M) = (M) is just the cup product

[ aUa+bUc aUb-bUa
MUM = < cUa—aUc aUa+cUb)'
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Using the skew-commutativity of the cup product and the fact that a Ub = 0
(Remark [10.5.2)), we see that <M>2D = 0 if and only if a U ¢ and bU ¢ are both zero.

Proof. First note that (1) is equivalent to (3) by Lemma and clearly (2)
implies (1). It remains to show that (1) implies (2). Fix a deformation p,41 :
Go,s — GL2(Z/p"Zey+1]) of p,, and write

n+1 a b )
<1+2< o d )e’)po
with a1 = a, by = b, ¢; = ¢ and dy = —a, and a;,d; € CYZ/p"Z), b; €
CHZ/p"Z(1)), ¢; € CH(Z/p"Z(—1)). We will construct another deformation p),

of py such that pj, , ; satisfies the conditions (i), (ii), (iii) of Lemma (10.3.2

Since p,41 is a representation, we have

pn+1

n
(%) dan1 = Z(ai — Qpy1—i +bi — Cnp1-)

i=1
in C?(Z/p"7Z). Since p,, is very good, we have ai|lr, = ¢ilr, =0fori=1,...,n, so
we see that a,41]7, is a cocycle. Similarly, we can see that dy, 1|7, and cp11], are
cocycles. As in the proof of (3) = (4) in Lemmal[10.4.1] we can use Proposition|[6.1.6]
to show that, by subtracting a global cocycle, we can obtain elements aj, ,,,d;, |,
and ¢, satisfying a;, 1|1, = d;, 1|1, = ¢, 11]p = 0.

Define X}, = keye(l + Do ailpe’ + al, 11 |pe™™) and ¥ = 1+ 37 | difpe’ +
dl,11|pe™™), and note that they are unramified deformations of keycl, and 1|y,
respectively.

Now, applying Lemma we can find an n-th order deformation p? of pf
modulo p*® that is adapted to p,, and is good. Let b, € CY(Z/p"Z(1)) be
the cochain associated to pf, and note that db),,; = db,+1. Since p is good,
pll, is a finite-flat extension of Xa(pn) by Xa(pn). Following Appendix |§, we
see that Y1 | b;|pe’ 4+ b, 11 |pe" ! is a finite-flat extension of x/, by X/, since it is
obtained from p%|, by first pulling back by x/; = xa(pn) and then pushing out
along Xa(pn) = €Xo = Xo-

We have now constructed cochains aj, ,, b, 1,¢),,; and d;,; such that da;, | =
dany1, dbj, ;1 = dbyy, de, | = depyr, and dd;, | = ddy,41, and satisfying condi-
tions (i) and (ii) of Lemma [10.3.2 To show (iii), we use:

s ! / / !
Claim. a;, 1|75, 1|1xn,Chiilin, dniilin are cocycles.

Proof. Indeed, this is clear from (the analog of) (x) if n > 1, using the fact that p,
is very good. For n =1, let 0 = 27" and 7 = y/ with 2,y € Iy"" and i,j € Z.
By our normalizations (see (9.2.1)) we have a(c) = c(0) =i and b(c) = —i (where
i € Z/p"Z is the reduction of 7). Then, by (*), we have

day(o,7) = a(o)a(r) + b(a)e(T) =7j —ij = 0.

Since pairs (o,7) of this type form a dense subset of Iy x Iy, and since daj is
continuous, we see that we see that aj|r, is a cocycle. The proof for b, c and d is
similar. (]

Subtracting a multiple of a from a;, , ;, we can arrange so that a;, ,,(y) = 0 while
maintaining the properties that da;, | ; = dan41, that a), 1|7, = 0, and that a], |7,
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is a cocycle. This implies that a;, |7, = 0, since +y is a generator of the pro-p part
of IN.

Similarly, we can alter b, ¢, .1, and d],,; so that they vanish on restriction
to In, without changing their properties on restriction to Gg, .

Now we define p;, , ; to be

n
b . a I
/ — 1+ Q; i €+ n+1 n+1 entl _
Prn+1 < ; ¢ d C;H-l dln+1 Po
Since day, | = daypy1, dbj, ;1 = dbpi1, de;,y = deyyq, and dd;, | = ddp1, we see
that pf,,; is a deformation of p,. By construction, we see that p;, ,, satisfies the
conditions (i), (ii), (iii) of Lemma |10.3.2} and so p;,,; is very good. d

Remark 10.6.3. Another way to think of this proposition is that, morally speaking,
the cup products and Massey products in this paper “should be” valued in the
global finite-flat cohomology group H3,, explained in §B.4.2l Then, for example,
the unconditional vanishing of the Massey relation in the (1,2)-coordinate would
follow from the fact that HZ, (Z/p'Z(1)) = 0 (see Proposition [6.3.2).

More generally, the pattern of the arguments that relate Massey product van-
ishing to the existence of a global finite-flat representation has been

(1) Choose a global cochain whose coboundary is the Massey product
(2) Modify it by a global cocycle (so that its coboundary does not change) so
that it is a finite-flat cocycle upon restriction to G,.

We have developed a theory of cup products and Massey products in global finite-
flat cohomology that would simplify such arguments. The same simplification can
be achieved using a formulation in terms of A,.-operations, which induces a choice
of Massey products compatible with this theory; for this, see [WEI8D, Thm. 3.4.1
and §12].

Since the relevant Hj,, groups are 1-dimensional in each coordinate (spanned
by a, b, ¢, and a, respectively), the resulting Massey products are unambiguously
defined (i.e. various choices of defining systems result in the same Massey product)
and we would not need to consider specific defining systems. However, this theory
would take several pages to properly develop. More importantly, it is not necessary
for our arguments because Proposition implies that it suffices to test a global
finite-flat Massey condition (in Hj,.) as a global Massey condition (in H?). An
inductive procedure produces appropriate defining systems.

Part 3. Massey products and arithmetic

In this part, we study some analytic and algebraic number-theoretic interpreta-
tions of the vanishing of cup products and Massey products. We prove that some
of the coordinate Massey relations considered in the previous part are equivalent to
each other. Combining these equivalence with the results of the previous part, we
prove our main result, interpreting the rank and Newton polygon of T in terms of
Massey products. The results of this part also explain how to deduce the main re-
sults of Calegari-Emerton [CE05| (for p > 3) and Merel [Mer96] from our Theorem
121l

For the entirety of Part 3, we continue to fix ¢t = v,(N — 1) > 1, and also fix an
integer s with 1 < s <t . We also let A = Gal(Q((p+)/Q) = (Z/p°Z)*.
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11. CUP PRODUCTS AND ARITHMETIC

In this section, we deduce a generalization of the main result of Calegari-Emerton
[CE05], relating e = ranky, (T°) to certain class groups.

11.1. Cup products and Galois theory. We let C](\I;S) € Q(¢n) denote an ele-

ment such that [Q( ](\fs)) : Q] = p®. Note that Q( I(f;s)) is the fixed field of the
kernel of the homomorphism a : Gg.s — Z/p'Z — Z/p*Z.

Proposition 11.1.1. (1) If bUc = 0 in HX(Z/p°Z), then CI(Q(NY?"))[p>]
admits 7/p°Z x Z/p*Z as a quotient.
(2) IfaUc = 0 in H2(Z/p*Z(—1)), then (CHQ(CE”, () [p>®]©Zp(1))A admits
Z/p°Z x L/p°Z as a quotient.

Proof. Replace a, b, ¢ with their reductions modulo p®.

(1) Let F € CY(Z/p*Z) be a cochain satisfying dF = b — c. Since ¢/, = 0, we
have that F|;, is a cocycle. Just as in the proof of Lemma we can subtract
an element of Z*(Z/p*Z) from F to ensure that F|; = 0. Moreover, since dF # 0,
we have F ¢ ZY(Z/p°Z).

Consider the function v : Gg ¢ — GL3(Z/p°Z) given by

1 c F
o~ 0 Keye b
0 O 1

Since dF' = b — ¢, we see that v is a homomorphism. Since K¢y is unramified at N,
the image of v|;, is unipotent. Since the unipotent radical of the upper-triangular
Borel in GL3(Z/p*Z) has exponent p*, and since Iy °* is pro-cyclic, we see that the
image of v|r, is a cyclic group. Because |, ¢|1, induce surjective homomorphisms
Iy — Z/p°Z, this cyclic group has order p*. Since Q(N'/?")/Q is totally ramified
at IV, this implies that the restriction of v to GQ(Nl/pS) is unramified at V.

At the start of we chose b to be a constant multiple of the Kummer cocycle
corresponding to the chosen root N/ " of N. Since we have now reduced b modulo
p®, b:Ggs — Z/p°Z(1) is given by

U(Nl/ps)

0 =

In particular, b|G@(N1/pS) = 0. This implies that F'|g € ZYQ(NY?"), Z/p°Z.),

and so it corresponds to a cyclic degree p® extension Kp/Q(N'/P) that is unramified
outside Np. Since F' is chosen to be unramified at p and V\GQ(Nl/ps) is unramified
at NV, we see that K is actually unramified everywhere. By class field theory, Kg
is cut out by a surjection CI(Q(N/P")) — Z/p°Z.

Finally, since the image of F in C'(Z/p"Z) is not a cocycle for any 1 < r <
s, we see that Kp is linearly disjoint from the genus field of Q(N/?"), which
is Q(Cﬁs),Nl/ps). Hence the two unramified degree p* extensions of Q(N'/")
given by Kr and Q(C%’S), N'/P*) correspond to linearly independent elements of
CI(Q(NY/P"))[p*] of order p°.

(2) Similar. O

QN1/P%)
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12. CuP PRODUCTS AND MEREL’S NUMBER

Let G = (Z/NZ)*, recall 1 < s <t =wv,(N—1), and let I be the augmentation

No1
ideal in (Z/p*Z)[G]. This section concerns Merel’s number [[, % ' that appears in
Merel’s Theorem [1.5.1] and its relation to cup products and to the “zeta element”

¢:= Y Bu(li/N])li € 2/p2)C],

i€(Z/NZ)*

where By(x) = 2% —x +1/6 is the second Bernoulli polynomial and where |i/N | €

[0,1) N +Z is the fractional part of i/N. We give a direct proof (not using defor-
mation theory or modular forms) that the following four statements are equivalent:
(1) aUc=0in H2(Z/p*Z(-1))
(2) bUc=0in H*(Z/p*Z)
(3) Merel’s number is a p*-th power modulo N
(4) ¢ €1, ie ords¢ > 2.

Combining this equivalence for s = 1 with Theorem [1.2.1] which we will prove in
we have a new proof of Merel’s Theorem[L.5.1]without considering the geometry
of modular Jacobians. For s =1, Theorem (without the equivalent condition
(1)) was known to Calegari and Emerton in unpublished work, but they did not
know Theorem We thank them for sharing their unpublished note with us.

The proof of Theorem is in two steps: first to relate the vanishing of
cup products to the non-vanishing of a certain Selmer group, and second to use
Stickelberger theory to relate the element ¢ to the Selmer group, as in the proof of
Herbrand’s theorem. The second step has already been carried out beautifully in
the paper [LecI8b| of Lecouturier, which we use as a reference.

12.1. Cup products and Selmer groups. In this section, we give a simple proof
that a Uc =0 in H%(Z/p*Z(—1)) if and only if bUc = 0 in H*(Z/p*Z), and relate
this vanishing to the non-vanishing of certain Selmer groups. The proof relies on
considering the cohomology of G, so we start with some remarks about it. We
note that since p® | (N — 1), there is a primitive p*-th root of unity (p- in Qn; we
fix a choice of (s € Qu, and this determines isomorphisms Z/p*Z — Z/p*Z(i) of
G ny-modules for all 4, which we will use as identifications.

By Tate duality, we have a canonical isomorphism HZ%(Z/p*(1)) = Z/p°Z,
which we use as an identification. By Kummer theory, we have H(Z/p%(1)) =
QX ®Z/p°Z, and we let Ly C Hy(Z/p*Z(1)) be the free rank-1 Z/p*Z-summand
spanned by the image of N under this isomorphism. Using our identification of
H(Z/p°Z(1)) and HX(Z/p°Z), and the canonical basis of H% (Z/p*(1)), we can
think of Tate duality as providing a symplectic pairing on the free rank-2 Z/p°Z-
module H (Z/p*Z).

Finally, note that since BN (Z/p'Z) = 0, we have Z\(Z/p*Z) = H}(Z/p°Z) and
we can (and will) safely conflate cocycles with their cohomology classes.

Lemma 12.1.1. For i = 0,—1, the map H*(Z/p°Z(i)) — H%(Z/p*Z(i)) is an
isomorphism.

Proof. The map H*(Z/p*Z(i)) — Hy,(Z/p°Z(i)) is surjective because

HY,(Z/p*Z() = HY(Z/p*Z(1 — i))" = 0.



THE RANK OF MAZUR’S EISENSTEIN IDEAL 45

Hence the map in question is surjective, so it is enough to show that the two groups
have the same cardinality. We are reduced to showing that #H?(Z/p°Z(i)) = p°.

Write hi(Z/p°Z(i)) = #HI(Z/p°Z(i)). By the global Euler characteristic for-
mula (see, for example, [NSWO0S, Corollary 8.7.5, pg. 509]), we have

W(Z/P°L) a0 s vy WH(Z/P°L(-1))
wzpzy ") S wa ) e
One sees easily that h'(Z/p°Z) = p®* and h°(Z/p°Z) = p°, so h*(Z/p°Z) = p°.

We also have h®(Z/p*Z(—1)) = 1, and, by Lemma hY(Z/p*Z(—-1)) = p**, so
WA(Z/p*Z(-1)) = p*. 0

W (Z/p°Z) =

Proposition 12.1.2. For i = 0,1, there is a commutative diagram

HY(Z/pZ(0)) x HY(Z/p"Z(~1)) —— HX(Z/p*Z(i - 1))

! :

HY(Z/p*L(3)) x Hy(Z/p*L(~1)) —> HE (Z/pL(i - 1)).

In particular, for x € HY(Z/p*Z(i)) and y € H(Z/p*Z(—1)), we have z Uy = 0 if
and only if x|y Uy|ny = 0.

Proof. The commutativity is clear, so this follows from the previous lemma. O

Lemma 12.1.3. Under our identification H(Z/p°Z) = HX(Z/p*Z(1)), both of
the elements a|y and b|y are generators of Ly C Hy (Z/p°Z).

Proof. We know that neither a|y nor b|y is divisible by p because their value on
is +1. So it will suffice to show that a|n,b|x € L.

We have b|y € Ly by Proposition Since the Tate pairing is symplectic, to
show that a|y € Ly, it is enough to show that a|y Ub|y = 0. But we know that
aUb =0 by Lemma so we are done by the previous proposition. O

Let HL(Z/p*Z(—1)) denote the Selmer group
Hy(Z/p*Z(~1)) = ker (H'(Z/p*L(~1)) — Hy(Z/p*L(-1)) & HN (Z/p°L) /L) -
Let H ., (Z/p°Z(2)) denote the “dual” Selmer group
Hy,. (Z/p°Z(2)) = ker (H'(Z/p°Z(2)) — Hy(Z/p°Z)/LN) -

Proposition 12.1.4. The following are equivalent:
(1) aUc=0 in H*(Z/pZ(-1))
(2) bUc=0 in H*(Z/p*Z)
(3) The image of c|n in Hy (Z/p*Z(—1)) is in the subgroup Ly
(4) Hy(Z/p Z(-1)) ~ Z/p*Z.
(5) HL, (2/p°L(2)) ~ Z/p°T.
(6) Thereis an element x € H'(Z/p°Z(2)) with non-zero image in H'(Z/pZ(2))
such that x|n € L.

Remark 12.1.5. By Remark|10.6.2] and using the notation from there, we see that all
these items are also equivalent to (M}zD being zero in H?(End(Z/p*Z(1)®Z/p°Z)).
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Proof. The equivalence of (1)-(3) follows from Proposition [12.1.2] Lemma [12.1.3]
and the fact that the Tate pairing is symplectic.

By the definition of HL(Z/p*Z(—1)), we have
Hy(Z/p*Z(-1)) = {z € H{,)(Z/p*Z(-1)) | o|n € Ln}.
Since H(lp)(Z/pSZ(—l)) ~ 7/p°Z is generated by ¢, we see that (3) and (4) are
equivalent.

By duality (Theorem [B.3.2), we have H&(Z/p*Z(—1)) = HE, (Z/p°Z(2))*, so
(4) is equivalent to Hy. (Z/p°Z(2)) ~ Z/p*Z. Here H}. (Z/p°Z(2)) fits into an
exact sequence

0 — Hyu (Z/p2(2)) — H'(Z/p"Z(2)) — Hy(Z/p"Z(2))/Lx
— H3 1 (Z/p°L(2)) — H*(Z/p*L(2)) — HE,(Z/p°L(2)) — 0.
As in the proof of Proposition the last map H*(Z/p°Z(2)) — Hy,(Z/p°Z(2))
is an isomorphism, so we have an exact sequence
0 — Hy, (Z/p"Z(2)) — HY(Z/p°Z(2)) —
Hy(Z/p*Z(2))/ £x — HE. (Z/p*Z(2)) — 0.
By Lemma we have HY(Z/p*Z(2)) = H?(Z,(2))[p®] ~ Z/p*Z, and we see
that € H(Z/p°Z(2)) is a generator if and only if its image in H(Z/pZ(2)) is
non-zero. Since HY (Z/p*Z(2))/Ly is also free Z/p*Z-module of rank 1 (see Lemma
6.3.4), this gives the equivalence of (4)-(6). O

In the end, we use condition (6) to relate cup products to Merel’s number.
12.2. Results of Lecouturier. We follow [LecI8b]. Choose a surjective homo-
morphism log : Zy, — Z/p°Z; it factors through a map Fy, — Z/p°Z, which we
also denote by log. Note that Merel’s number is a p°-th power modulo N if and

N—-1
only if }~, 2 ilog(i) =0 in Z/p°Z.
Lemma 12.2.1. We have the equality

N—-1

N—-1 4 2
i?log(i) = —= ilog(i
; g(i) 3; g(i)

in Z/p°Z.
Proof. This is [Lecl18b| Prop. 1.2]. O

Let A : QX ®z Z/p*Z — Z./p*Z be defined by A(N*z ® ) = alog(x) for k € Z,
z € Zy and o € Z/p°L.

Choose a prime ideal n C Z[(,] lying over N, so that the completion of Q((,) at
nis Qn. For z € Q((p), let x, € Qn denote the image in this completion. Finally,
for a Z[Iﬁ][Gal((@((p)/(@)]—module M and a character x : Gal(Q(¢)/Q) — Q"
let M, denote the x-eigenspace.

Proposition 12.2.2. There is an element G € (Z[1/Np, (p]* & Zy),,-1 such that

N—-1
2

A(G) =2 3 ilog(i)

=1

and whose natural image in (Z[1/Np,(p)* @ Fp),-1 is non-trivial.
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Proof. Let e,-1 -G € (Z[1/N,C(npl* ® Zp),,-1 be the element defined in [LecI8bl
§3.3]; it is a product of conjugates of Gauss sums. By [Leci8bl Prop. 3.4], we
actually have e -1 -G € (Z[1/N,(p|* @ Zp) 1.

Let g =314 w( )i € Zyp; as is well-known, 3 = py for some y € Z. Using the
Gross—Koblitz formula, Lecouturier computes that

(12.2.3) (ep-1-Gla=(—N®y)- (H I'n < ) )) €Qy ®Zy

where 'y is the N-adic Gamma function. In particular, (e,-1 - G), is not in the
image of Z3, ® Z, — Qx ® Z,, so its image in (Z[1/Np, (,]* ®F,),-1 is non-trivial.
Finally, the formula for A((e,-1 - G)n) follows by (12.2.3) and the formula

N—-1

jz:ijlog (FN (;)) = —% i: ilog (i)

i=1
obtained by combining [LecI8b, Lem. 4.3] (with x = w™!) with Lemma[12.2.1, O

12.3. Merel’s number and the zeta element. Recall the zeta element ( €
Z/p°Z|G] defined at the start of this section. Let ords( denoted the greatest integer
r such that ¢ € I, where I C Z/p°Z[G] is the augmentation ideal. We now show,
following Lecouturier, how Theorem @ follows from Merel’s result (Theorem
1.5.1).

Lemma 12.3.1. The following are equivalent:
(1) Merel’s number is a p®-th power modulo N
(2) ords¢ > 2.

Proof. We first note that ¢ € I because s < t = v,(/N —1). Furthermore, we recall
that there is an isomorphism

Ig/I% = G @ Z/p°7 % 7/p°Z

sending [g] — 1 € I to log(g) for g € G. Under this isomorphism, ¢ (mod I2) is
sent to

N-1
Z i“—i+1/6)log(i).
i=1

One sees easily that E =1 log i) and Z 1 !ilog(i) are both 0 in Z/pZ. Then

ordz¢ > 2 if and only if Zi:l i?log(i) = 0. The lemma now follows from Lemma
[2.2.1 O

12.4. Hochschild—Serre arguments. Let A = Gal(Q((p+)/Q) = (Z/p°Z)* and
let AY = (Z/pZ)* denote the prime-to-p subgroup, so A = A% x A, where A, ~
Z)p* 7.

Lemma 12.4.1. Let n be an integer such that (p — 1) ¥ n. Then, for all i > 0, we
have

H(A, Z/p*Z(n)) = 0.
Proof. Since A C A is prime-to-p, we have
H'(A,Z[p°Z(n)) = H'(Ay, H' (A, Z/p*Z(n))).
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Let (,—1 € (Z/p°Z)* be a primitive (p — 1)-st root of unity. Then
HO(AY, Z/pZ(n)) = {x € 2/p°Z, | ooy =
Since (p— 1) { n, we see that (' | # 1 (mod p). Hence H°(A®, Z/p*Z(n)) = 0. O
Lemma 12.4.2. Let n be an integer such that (p — 1) tn. Then
HY(Z/p°Z(n)) = H'(Z[1/Np, G, Z/p°L(n))>.

Proof. Note that H°(Z[1/Np,(ps],Z/p*Z(n)) = Z/p*Z(n) as A-modules. Then, by
the Hochschild—Serre spectral sequence, there is an exact sequence

HY(A,Z)p*Z(n)) — HY(Z/p*Z(n)) — HY(Z[1/Np,ps), Z/p°Z(n))>
— H*(A, Z/p*Z(n)),
so this follows from the previous lemma. O

12.5. Merel’s number and cup products. We can now complete the proof of
the following theorem.

Theorem 12.5.1. The following are equivalent:

(1) aUc=0 in H*(Z/p*Z(-1))

(2) bUc=0 in H*(Z/p*Z)

(8) Merel’s number is a p*-th power modulo N
(4) ords(C) = 2.

Proof. By Proposition [12.1.4] and Lemma we are reduced to showing that
Merel’s number is a p®-th power modulo N if and only if there exists some x €
HY(Z/p*7(2)) with non-zero image in H'(Z/pZ(2)) such that z|x € Ly

By Lemma (and with the notation there), we have

HY(Z[p°Z(2)) = H'(Z[1/Np, G ), Z/p°L(2))* = (H(Z[1/Np, G ], Z/p Z(1)) (1)
Then, by Kummer theory, we have an isomorphism
v HY(Z/p°Z(2)) = (Z[1/Np, (o] " @ Z/p°Z(1))>.

There is a commutative diagram

(Z[/Np, ()% @ L)1 —— (Z[1/Np, Gpo ] @ Z/p*Z(1))> — > HY(Z/p*Z(2))

| | |

(Z[1/Np, G]* @ Fp)y-1 === (Z[1/Np, ()" ® Z/pZ(1))* — H'(Z/pL(2)),

where j is induced by the inclusion Z[1/Np,(,]* C Z[1/Np,(p]*. Letting x =
t71(j(G)), where G is as in Proposition we see that the image of x in
HY(Z/pZ(2)) is non-zero. We have x|y € Ly if and only if A(G,) = 0, and by
Proposition this happens if and only if Merel’s number is a p°-th power
modulo N. ]

Taking s = 1 in the theorem gives Proposition from the introduction.
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13. EQUIVALENCE OF MASSEY PRODUCTS

In the previous section, we gave a direct algebraic proof that aUc = 0 if and only
if bUc = 0. In this section, we prove the analogous result for higher Massey powers
— namely, that the Massey relations in the (1,1), (2,1) and (2,2) coordinates are
all equivalent.

To state the result, we fix n > 2 and s < ¢ and assume that we have a very good
deformation p, : Go,s — Z/p°Zle,] of p1 @zpiz Z/p°Z, which we write as

Rcyc Reyci i 1
Pn = y =+ § Y €
ReycCi i

with a1 = a (mod p®), etc. Let D be the associated defining system for the Massey
power (M)"1,

Proposition 13.0.1. The Z/p*Z-valued 1-cochains an|n,bn|N,cnln,dn|n are 1-
cocycles, i.e. they lie in Z(Z/p°Z). In addition,

(1) an|n = —dn|n in Hy(Z/p°7Z),

(2) an|n = —bu|n in H\(Z/p°Z),

(3) The Massey relation for <M>%+1 in the (1,1)-coordinate holds modulo p° if
and only if c,|N = —bu|n in HN(Z/p°Z),

(4) The Massey relation for <M>73+1 in the (2,1)-coordinate holds modulo p® if
and only if c,|N = an|n in Hi(Z/p°Z)

(5) The Massey relation for (M)%+1 in the (2,2)-coordinate holds modulo p° if
and only if cp|N = —by|n in HN(Z/p*Z).

In particular, the Massey relation for (M)z+1 modulo p* in the (1,1), (2,1) and
(2,2)-coordinates are all equivalent to (M)'5t" vanishing in H?(End(Z/p*Z(1) ®
2/p'2)).

Proof. The final statement of the proposition follows from Lemmas([10.5.T]and[A.3.2]

As in the previous section, since Hx(Z/pZ) = ZN(Z/p°Z), we conflate 1-
cocycles with their cohomology classes. Since n > 2, by Lemma we have
M UM = 0, which implies that a U c = 0. By Proposition this implies that
C‘N €Ly C H}V(Z/pSZ). Then, by Lemma we have CL|N, b|]\/7 C‘N, d‘N € Ln,
where d = —a. We may write them as multiples of [N], the Kummer class of N.
Write b|y = z[N] with = € (Z/p'Z)*. By our normalizations (9.2.1), we have
a|y = ¢|x = —z[N] and d|y = z[N], as elements of Z}(Z/p°Z).

By induction, we may assume that a;|y = ¢;|nv = —bj|nv = —d;|ny for i =
1,...,n — 1. We first prove that a,|n is a cocycle. Note that

n—1

da, = g Qi ~ Qp_i +b; — cp_j.

i=1
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Restricting to G, we have by induction
n—1

dan|n =Y ailn — an_iln +biln — caoiln
=1

n—1
= Z cilv = cn—iln + (—ciln) = en—ily = 0.
=1

Hence a, |y € Z5(Z/p*Z). Similarly for by, ¢, d,.

(1) Since det(ps) = Kqyc, we have

n—1
ap +dy = § bicn—i — a;dp_;.
i=1

Using the induction hypotheses, this implies that

n—1

an|N + dnln =Y bilnen—iln — ailndn_i|y

i=1
n—1

= Z(*Ci|N)Cn—i|N — (¢i|n)(—en—iln) = 0.
i—1

(2) By Lemma [10.5.1, the Massey relation for <M>g+1 in the (1,2)-coordinate
holds. In other words, the class of the cocycle

> ai— bpoip1+bi = dnoig

i=1
is 0 in H2(Z/p°Z(1)). Restricting to H%(Z/p*Z(1)) and applying (1) and the
induction hypotheses, we find

0 Zai|N — bp—it1|v + bi|N — dn—it1|n

I
s
Il
_

3

(ciln = (—cn—it1|n) + (—¢iln) — (—en—it1|N))

o=V = buly + V] = (=aaln) + anly — V] + bl — [N])
= 2(=[N] = bn|n + [N] = (=an|n) + an|n — [N] + bn|n — [N])
= 2(=[N] — (an|y + bn|n) + (an|y + bn|n) — [N])

2x(an|N + bn|N) — [N]

Since 2z € (Z/p°Z)™, the fact that the Tate pairing is symplectic implies that
the class of a, |y +by,|n in HN(Z/p®Z)/ Ly is zero. Since p,, is very good, both
ay, and b, are unramified at N, so this implies that a,|ny = —bp|n-

(3) Let a € Z%(Z/p°Z) denote the cocycle

n
a= E A~ Apy1— +b; — Ccpy1g.
i=1
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The Massey relation for (M)™*! in the (1,1)-coordinate holds modulo p* if
and only if [a] = 0 in H?(Z/p°Z). By Lemma this is equivalent to the
equation [a|y] = 0 in H%(Z/p°Z). Using (2), this equation can be simplified
to 2z[N] — (bn|n +¢n|n) = 0. Then we apply the same kind of final argument
as in the proof of (2).

The remaining parts are similar. ([l

14. MAIN RESULT

Let e = rankg, (T9). Recall the sequence t =t; > -+ > t, > t.11 = 0, defined
in Proposition This sequence is invariant of T that determines its Newton
polygon, but may even be finer than it. In this section, we complete the proof of
our main theorem, which is an inductive procedure: assuming we know t1,...,%,,
we describe ¢,,11 in terms of Massey products.

Theorem 14.0.1. Let n and s be integers such that 1 <n < e and 1 < s < t,.
Then there is a very good n-th order deformation p, of p1 modulo p'".

Fix such an py, and let D be the corresponding defining system for the Massey
power <M>"+1 modulo p'». Then the following are equivalent:

(1) We have s < tp41.
(2) The Massey power (M) vanishes in H?(End(Z/p*Z(1) ® Z/p°Z)).

Proof. We first prove that (1) and (2) are equivalent, assuming the existence of
pn. Let o : R — Z/p'"Z[e,] be the corresponding surjective homomorphism. Let
z € J™ be a generator such that ¢(z) = e. Then (1) is equivalent to
(1)’ There is a surjective homomorphism ¢’ : R — Z/p*Z[e,+1] such that the
following diagram commutes

’

@

R Z/p°Z]en+1)

| |

Z/p' Zlen] —— Z/p*Zlen),

where the unlabeled arrows are the quotient maps.

Indeed, by Proposition (1) implies the existence of a homomorphism ¢’ such
that ¢’(z) = €, and such a homomorphism makes the diagram commute. Con-
versely, any ¢’ as in (1)’ must satisfy ¢(z’) = € for some generator 2’ € Jmin
which, by Proposition implies (1).

By Lemma (1)’ is equivalent to the Massey relation for (M >%+1 in the
(2,1)-coordinate modulo p®. This is equivalent to (2) by Proposition (and
by Remark for n =1).

Now we prove that p, exists by induction on n, the base case n = 1 being
vacuous. Assume that p,_; exists modulo pi»-*, and let D’ be the corresponding
corresponding defining system for the Massey power (M)" modulo p'»-1. By the
equivalence of (1) and (2) already proven, we see that the Massey power (M)},
vanishes in H2(End(Z/p'"Z(1) ®Z/p'~Z)). By Lemmal10.6.1] there is a very good
n-th order deformation of p,_; modulo p'», which we can take as p,. O

Remark 14.0.2. Note that since (1) in the theorem does not depend on the choice
of defining system D, the vanishing behavior of the Massey power (M >%+1 does not
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depend on the choice of D (as long as it is associated to a very good n-th order
deformation).

We now explain how to deduce the results stated in the introduction from this
main theorem. For n =1 in the theorem, we let p, = p; and observe that e > 2 if
and only if t5 > 0 if and only if (M)% = M U M vanishes in H?(End(F,(1) ©F,)).
This is equivalent to bUc¢ = 0 and to a Uc = 0 (see Remark . This proves
Theorem Corollary follows from this and Proposition [11.1.1

Finally, to prove Theor we note that if Merel’s number is not a p*-th
power, then Theorem implies that b U ¢ is non-zero in H*(Z/p?Z), which
implies that M U M is non-zero in H2(End(Z/p?*Z(1) & Z/p*Z)). By the main the-
orem, this implies that t, < 1, which implies Theorem by standard properties
of Newton polygons.

Part 4. Appendices

In the appendices, we collect some formal results. With the possible exception of
gA.3/and the contents are standard and will be known to experts. We include
them here for completeness and to fix notation.

APPENDIX A. MASSEY PRODUCTS

Massey products are a generalization of cup products. They were first introduced
in topology by Massey and Uehara—Massey [Mash8, [UM57]. For an introduction
to the subject, see Kraines [Kra66] and May [May69]. Massey products are closely
related to Asc-operations; see e.g. [WE18b| Part 2] for this relation, and the con-
nection with deformation theory. For applications of Massey products in Galois
cohomology, see Sharifi [Sha07].

In this section, we collect some statements that we will need and define “Massey
powers.” We do not give proofs, as all the results either follow immediately from
the definitions or by a purely formal computation.

In this section, we let G be a group, A be a ring, and V a A[G]-module equipped
with a pairing V@ V. — V. Given a € CY(G,V), b € C/(G,V) we let a —
b € CI(G,V) denote the composite of the usual cup product with the pairing
VeV —-V:

CY G, V) x CY(G, V) = CH(G,VeV)— CH(G,V).
A.1. Massey products.

Definition A.1.1. Let ay,...,a, € C'(G,V) be cochains. We say that a set
D ={a(i,j):1<i<j<n,(i,j) # (1,n)} C CHG,V) is a defining system for the
Massey product {aq,...,a,) if
(1) a(i,i) =a; foralli=1,...n, and
j—1
(2) da(i,j) =Y _a(i,k) — a(k +1,5) for all i, j.
k=i
In particular, (1) and (2) for ¢ = j imply that da(i,7) = da; = 0 for all 4.
If D is a defining system for the Massey product {(ai,...,a,), then we note that

e(D) = a(l,k) — a(k+1,n)



THE RANK OF MAZUR’S EISENSTEIN IDEAL 53

is an element of Z%(G, V) and we let (a1, ...,a,)p € H*(G,V) be the class of ¢(D).
We let

(a1,....an) ={{a1,...,an)p} C H?*(G,V)

where D ranges over all defining systems.
We say that (a1, ...,a,) is defined if it is non-empty (i.e. if there exists a defining
system). We say that (a1, ...,a,) vanishes if 0 € {aq,...,a,).

It is known that the set (aq,...,a,) only depends on the cohomology classes of
ai,...,a, [Kra66, Thm. 3].

Example A.1.2. If n = 2, then the Massey product is defined if and only if
a,ay € Z1(G,V). If they are, then D = {a(1,1) = a;,a(2,2) = ay} is the only
defining system, and (a1, az2), = [a1 — ag).

Example A.1.3. Take V = A with trivial G-action. Suppose that D = {a(, ) :

1<i<j<mn(ij) # (1,n)} C CYG,A) is a defining system. Condition (2)
implies that the the cochains vy, v € CH(G, M,,(A)) given by

1 a(1,1) a(1,2) --- a(l,n—1)
0 1 a(2,2) --- a(2,n—1)
[
0 1 a(n—-1,n-1)
0 0 1
and
1 a(2,2) a(2,3) a(2,n)
0 1 a(3,3) a(3,n)
vo =] .-
0 e 1 a(n,n)
0 0 1
are cocycles (i.e. v1 and vo are homomorphisms). Notice that 11 and v, have a n —
1 x n — l-submatrix in common. The class (a1, ...,a,), € H*(G, A) measures the
obstruction to concatenating vy and v, in the following sense. If (ai,...,an)p =

0, then there exists a € C'(G, A) such that da = ¢(D) and the cochain v €
CY(G, Mn+1(A)) given by

1 a(1,1) a(1,2) --- a(l,n—1) a
0 1 a(2,2) - a(2,n —1) a(2,n)
V= 0 1 an—-1,n-1) an-—1,n)
0 1 a(n,n)
0 0 1
is a cocycle. Moreover, if (ai,...,an)p # 0, then no such v exists.

A.2. Massey powers. We remark that “Massey power” is not standard terminol-
ogy; we use it to refer to certain Massey products. More precisely, a Massey power
is not merely a Massey product of a set of identical 1-cochains, but also requires a
symmetry in the defining system that is not required by the definition of a Massey
product. These symmetries naturally occur in the defining systems induced by
deformations, as discussed in
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Definition A.2.1. Let a € C'(G,V) be a cochain, and let mq,...,mp_1 €
CY(G,V). We say that D := {my,...,mg_1} is a defining system for the Massey
power (a)* if the set

D ={a(i,j) =mj-it1:1<i <j <k, (i,]) # (1,k)}
is a defining system for the Massey product (a,...,a) (with a repeated k times). If
D is a defining system for the Massey power (a)”, then we let (a)% =(a,...,a)p,

and we let ¢(D) := ¢(D). We let
()" = {{a)p} € H*(G,V)

where D ranges over defining systems for the Massey powers. Note that <a>k -
(a,...,a).

Note that, for D = {my,...,mp_1} C CY(G,V), D is a defining system for the
Massey power (a)k if and only if m; = a and, for all¢=1,...,k — 1, we have

i—1
dmi = ij ~ Myi—j.
j=1
We also note that, for such D, we have
k—1
e(D) = ij — My
j=1

Lemma A.2.2. Let v : G — GL,(A) be a representation, and let V = End(v).
Let My,...,M, € CY(G,V) and let M = My, and, fori=1,...,r, definev; : G —
GLn(Ale]) by

i
vi=v+ E M;é.
j=1

Assume that v,_1 is a homomorphism. Then D = {Mj,...,M,_1} is a defining
system for (M)", and v, is a homomorphism if and only if dM,. = c¢(D) (in which
case (M), =0).

A.3. Coordinates of matrix Massey products. In the situation of the previous
lemma, if v is a reducible representation, it is interesting to consider the matrix
coordinates of the Massey power, as we now explain. For the rest of this section,
we fix two characters x1,x2 : G — A*, and let v = x1 ® x2. We also fix M €
ZY(G,End(v)).

Definition A.3.1. Let M € Z'(G,End(v)) and let D = {My,...,M,_1} be a
defining system for the Massey power (M)" in H?(G,End(v)). Write M; as
i)

M — X1a§:1 maﬁ? )
iy xeal)
where we think of aﬁ? and agg as elements of C1(G, A) and a§2 and agf as elements
of CY(G,x7 'x2) and C*(G, x1x5 '), respectively.
Consider the matrix
1 : o , o A o . o

() SO e - ey T e —ag Y ag < g

(7) (r—g) () (r—7) () (r—3)

(4) (r—3)
=1\ 421 ey Tt agy —ay azy ~ Ay ° A5y~ Gy
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as an element in
22(G,A)  Z%(G X1 xo)
722G, xix3")  Z%G, A) '
For s,t € {1,2}, we say that the Massey relation for (M)7, holds in the (s,t)-
coordinate if the (s,t)-coordinate of the matrix (*) vanishes in cohomology.

For example, the Massey relation for (M)7, holds in the (2,1)-coordinate if and
only if

r—1
>oaf — a7 +afy) <l € BAGoaxg -
j=1

Lemma A.3.2. Let D = {M,,...,M,_1} be a defining system for the Massey
power (M)" in H?*(G,End(v)). The Massey relation for (M)}, holds in the (s,t)-
coordinate for all s,t € {1,2} if and only if (M), = 0.

The purpose of the (s,t)-Massey relations is that they are useful for comparing

Massey products for different representations with the same semi-simplification.
With the notation as above, define a function v’ by

, ( Xl y >
vV = (1) .
X1G91 X2

Since M is a cocycle, v/ is a homomorphism.

Proposition A.3.3. Let r > 1 and let D = {My,...,M,_1} be a defining system
or the Massey power (M)" in H?(G,End(v)). Define a as in Definition |A.3.1|.
f Yy p ’ st
For1<i<r—1, define M| by the formula
,_ [ xaal)  xedlyV
M; = (i-+1) W |
X1G21 X2022
with agg) =0 and let M' = Mj. Then

(1) D' ={M],...,M!_,} is a defining system for (M")"~" in H?(G,End(2)),
and
=0 1n ,End(v')) if and only if Massey relation for "
2) (M'"Y51 =0 in H*(G,End(v')) if and only if M ! for (M),
holds in the (2,1)-coordinate.

Lemma A.3.4. Let {My,...,M, 1} C C*G,V), and suppose that v,_1 : G —
GL2(Aler—1]) is a homomorphism, where

r—1

Vp_1 = 1/+ZMjej.

Jj=1

Define M/ as in Proposition Choose an element a € CY(G,x7 " 'x2) and

define
r—1 r—2
M = ( Xlagl ) X2a52 ) )
r—1 — (r—1) .
xia X2099

Fori=1,...,r =1, define v, : G — GLa(Ale;]) by

K3
vi=v+ E Mjé.
J=1
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Then v} is a homomorphism fori < r—1, and v._; is a homomorphism if and only
if

da—z%l Vagq 7 —i—aé; Vagl 7.

APPENDIX B. GALOIS COHOMOLOGY - GENERALITIES

In this section, we use cone constructions to define cochain complexes that com-
pute Galois cohomology with various local conditions. In particular, we discuss
the compactly supported, partially compactly supported, and finite-flat variants.
The idea to consider derived versions of Selmer groups is due to Nekovai [Nek06].
For a more down-to-earth treatment (and all that will be needed here), see [GV18|
App. B], where they use the notation of fundamental groups 7$*(Z[1/Np]) (resp.
7¢4(Qy)) in place of our Gg.s (resp. Gy).

While N usually denotes a prime in the main text, here we allow it to be a
squarefree integer prime to p, as in §46.2}[6.3]

B.1. Notation from homological algebra. If (C*,d) is a cochain complex, we
let Z(C*) = ker(d : C* — C**1) and BY(C*®) = im(d : C*~1 — C%). Let (C[i]*, d[i])
be the complex C[i] = C7~% with differential d[i] = (—1)'d. If f : A* — B® is a
map of cochain complexes, we let Cone(f)® be the complex Cone(f) = B @ A1
and d(b,a) = (db — f(a), —da). Then there is an exact sequence

@02a, A1-1]* — 0.

—(b
0 — B* 2209 Cone(f)*
B.2. Notation for group cochains and cohomology groups. Let G be a topo-
logical group, and let M be a continuous G-module. Let C*(G, M) denote the
complex of continuous inhomogeneous cochains.
For N’ | Np, we define

C*(=) == C*(Z[1/Np], —) :== C*(Gg,s,—), Ci(=)=C*(Qp,—) = C*(Ge, —),
Cro(-)i= P G- Cv(-)= @ (=)
{|Np prime £|N’ prime

We let & — x|y denote the restriction map C*(—) — C¥,(—). We let
Cley (M) = Cone(C* (M) — Cit, (M))[1], Clyn (M) = Cone(C*(M) — CR. (M))[1]

The associated cohomology groups are H:(—) := H(C?(—)), where % is one
of the symbols {—, ¢, N’ loc, (¢), (£), (N')}. We call H(ic)(—) compactly supported
Galois cohomology, in analogy with the geometric situation.

B.3. Duality theories. Let M denote a p-power torsion Gg,s-module, and let M*
denote the Pontryagin dual of M. We have the the following duality theorem of
Poitou—Tate, which resembles Poincaré duality.

Theorem B.3.1. For:=0,...,3, the cup product induces a perfect paring

H(M) x HE (M*(1)) > Qy/Z,.

Then duality theory with “local constraints” gives the following generalization

of Theorem [B.3.1]
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Theorem B.3.2. For any divisor N' | Np andi = 0,...,3, the cup product induces
a perfect paring

HéN/)(M) H(SN;/N/)(M*(U) — Qp/Zy.

Proof. This is a special case of the duality theorem of [GVIS, App. B]. In the
notation of that theorem, we take the set of primes S to be the primes dividing
Np, and, for any divisor n of Np, we define a condition £,, by

fo0 it 0| n
Cﬁn(@évM)—{ C(Q[,M) ifﬁJ(n
for all primes ¢ dividing Np. Then we see that Hz (M) = H{y, (M), and that

the]dual condition L3, is given by £ ~Np/n'- The theorem follows from [GV18] Thm.
B.1]. O

B.4. Extensions of finite flat group schemes and cohomology. Let G/Z,
be a finite flat group scheme such that vg := g(@p) is free of finite rank as a
Z/p"-module. Then there is a subgroup

Extgi, (vg,vg) C Extyraa,) (vo, vg) = Hy (End(vg))
coming from extensions in the category of finite flat group schemes over Z, that
are killed by p”. We denote

H)) g1 (End(vg)) = Extg,, (vg, vg).

We also want to define H} 4., (—) in two other specific cases. If G & pi,r @z/,r7 A

for some Z /p"Z-module A, then vg ~ A(1). We write H} 4., (A(1)) for the subgroup

Exta, (Z/p"Z, A1) C Extyprgq,)(Z/p"Z, A(1)) = H, (A1)
and H; fat (A(—1)) for the subgroup

Extga, (A(1), Z/p"Z) C Extypgic,) (A1), Z/p"Z) = Hy(A(-1)).

Now suppose V' is a Gg,s-module such that V|g, is isomorphic to either vg,
A(1), or A(—1), as above. We wish to define cochain complexes C; g,,(V) and
C3..(V) such that

(1) HI(CI:ﬂat( )) pﬂat(v)
( —

2) H'(CR, (V) = ker(H' (V) = H,(V)/Hp 4, (V)
(3) H?(Cg,.(V)) controls obstructions to global finite-flat deformations.

B.4.1. The flat and non-flat local cochain complezes. We define C} ﬂdt( ) by

(V) ifi=0

Cy (V) = Z; aac(V) ifi=1
0 ifi>2
where
Zy e (V) =ker(Z, (V) = Hy(V)/H, 4.4 (V)
Then it is clear that C3 g, (V') C Cp (V) is a subcomplex, and that H'(Cp ., (V)) =
H; flat (V). We define Hl ﬂat(v) H( P, > fat (V)
We define
Cp non-fias (V) = Cone(Cy g, (V) = C5(V))

p,non- D,
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and HY | q. (V) := HY(C} | nqat (V). Then we have
H]?,non-ﬂat(v) = 03 sz),non—ﬂat(v) - HE(V),

and an exact sequence
0— H;ﬂat(v) — H;(V) — H;,non—ﬂat(v) — 0.

B.4.2. The global finite-flat cochain complex. Let (—)|p.aat : C*(V) = C?

p,non-flat (V)
denote the composition

(] |p (] L]
C (V) — Cp(v) — Cpﬁnon—ﬂat(v)'

Let

4 ° |p, at °

Cﬂat(v) = COHG(C (V) L) p,non-ﬂat(v))[l]'

We call the resulting cohomology Hg,, (V) := H*(Cg,.(V)) global flat cohomology.
The long exact sequence of the cone is
0= Hg,non—ﬂat(v) — Hfllat(v) — Hl(v) — H;,non—ﬁat(v)

— Hgat(v) — HQ(V) — Hg,non—ﬁat(v) — Hgat(v) — 0.
Take note of the isomorphisms

Hy(V)
Hln n-fl (V) = pia
ponon-flat H;,ﬂat(v)
which are useful interpretations of terms of the sequence.
We will often refer to ZJ,,(V'), which we will take to be the kernel of Z!(V) —
H;(V)/H;,ﬂat. (This is part of the data of a cocycle in the cone defining Hi, (V).)

Hg,non—ﬂat(v) = Hz(v)7 and Hgat(v) = H(3p) (V)’

ApPPENDIX C. OPERATIONS IN HOMOLOGICAL ALGEBRA IN TERMS OF COCYCLES

In this section, we show that some standard operations on representations, de-
scribed in terms of matrices and cocycles, behave nicely with finite-flat cohomology.
The reason is that these operations correspond to operations on extensions in a gen-
eral exact category, and so can be done equally well in the category of finite flat
group schemes of fixed exponent over a scheme, which is an full additive subcate-
gory of the category of abelian category of fppf-sheaves of abelian groups of that
exponent, and is closed under extensions (see [Oor66, Prop. 111.17.4, pg. 110]).

Below C will denote any exact category. This means C is an additive category
equipped with a class of pairs of composable morphisms A — X — B that should be
thought of as exact sequences, and satisfy certain axioms — for a precise definition,
see [Biih10], for example. For our purposes, it suffices to assume that C is a full
additive subcategory of an abelian category that is closed under extensions.

C.1. Pushout. Suppose we have short exact sequences
£:0—C—X-2B-—0
£:0—X X — A—0.

in the exact category C. Then, by the axioms of an exact category, the pushout X"
of i and j sits in an exact sequence

0—B—X"—A—0
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where X" — A is induced by the composite X’ x B — X’ — A. We called this
extension the pushout of £ by &’.

Example C.1.1. Let C be the exact category of representations of a group G in
projective R-modules of constant finite rank, where R is a commutative ring. We
explain how to interpret the pushout construction in terms of matrices. Write an
object A of C as a pair (Va, pa) with V4 a finite constant rank projective R-module
and p4 : G — GL(V4) a homomorphism.

Suppose we have A, B,C, X, X’ as above in this category. Then we may write

X in block matrix form as
_ ([ pc  pe
px= ( 0 pg >

and X’ as
pa 0 O
pxr = | pe1r pc  pe
pe2 0 pB

Direct computation as in Example below shows that the pushout of £ by &’
is given by the block matrix
(s on)
pe2 pPB )

C.2. Pullback. Suppose we have short exact sequences
£:0-—B-—X-234-—0
£:0—C-5Y —A—0.

in the exact category C. Then, by the axioms of an exact category, the pullback
Z = X X4 Y sits in an exact sequence

0—B—Z72—Y —0.

We call this the pullback of £ along &’.

Suppose Y gives an extension £ of A by C and X gives an extension &£ of A
by B. Then we can construct the pullback extension of Y by B as follows. Let
Z =X x4Y. The map Z — Y is an epimorphism with kernel isomorphic to B.
We call the resulting extension of Y by B the pullback of £ along &’.

Example C.2.1. We return to the category of finite rank representations from the
previous example, and retain the notation there. Suppose we have A, B,C, X,Y as
above in this category. Then we may write Y in block matrix form as

_(pra O
Py (Ps pc>

pa 0O
px = ( pe PB )
By direct computation as in Example below, we see that the pullback of
& along &’ is given by the block matrix
pa 0 0
pe pc O
per 0 pp

and X as
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C.3. Baer sum. Suppose we have short exact sequences
£:0—B-5X-24-—0
&:0—B-5Xx 2540

in C. Then, by the axioms of an exact category, the direct sum £®E’ is an extension
of A® A by B® B. The Baer sum £ + £’ is the extension of A by B obtained by
pulling back £ @ &’ by the diagonal A — A@® A and then pushing out the result by
the sum map B® B — B.

In an abelian category, there is an alternate construction of £ + &£’ given as
follows. There is a skew diagonal map A® : B — X x 4 X’ given by A% = ¢ x (—=i).
Let Y = coker(A®). The composite X x 4 X’ — X’ 2+ A induces an epimorphism

Y — A whose kernel is isomorphic to B. The resulting extension of A by B is
defined to be £ + &'.

Example C.3.1. We return to the category C of the previous examples. We explain
how to interpret the Baer sum construction in terms of matrices.

Recall that we write an object A of C as a pair (Va,pa). For an extension & of
A by B as above, we can choose a decomposition Vx = V4 @ Vg, and write px in

block matrix form as
_(pra O
px ( pe  pB >

with pe € Z1(G,Hom(V4, Vp)); the extension £ is determined by this cocycle.

Now, given two extensions £ and £ of A by B, to describe the extension £ + &,
we need only describe the cocycle peyer. We claim that it is given by peyer =
pe + per. Indeed, for Y = coker(A?®) as above, we can write a V3 as a direct sum
Vy = {(b,0)]b € Vg} @ {(a,a)la € Va}. Then for ¢ € G and a € Vy, the cocycle
pe+¢ is defined by the formula

py (0)(a,a) = (pa(o)a, pa(o)a) + (pe+e (0)a,0).
On the other hand, we compute that
oy (9)(a,a) = (pa(0)a + pe(0)a, pa(o)a + per(0)a)

(0)a, pa(o)a) + (pe(o)a, pe:(o)a)
(0)a, pa(o)a) + (pe(o)a + per(o)a,0),
using the fact that (—pg/(0)a, per(c)a) =0 in Vy.

= (pa +
= (pa +

Remark C.3.2. In this situation, there is also a “Baer scalar product” defining an
R-module structure on Ext}(B, A). For r € R and £ € Exty(B, A) as above, the
extension r - £ is obtained as a quotient of the direct sum X & A.

C.4. Application to finite-flat representations. We apply the above exam-
ples to the case of finite-flat deformations. Let R be a commutative ring of finite
cardinality.

Lemma C.4.1. Let v : G, — GL,(R) be a finite-flat representation, and let
v, : G, — GL,(Rle;]) be a finite-flat deformation of v for some r > 1. Let
z € CY(Gp,End(v)), and let v. = v, + xze". Then V.. is a finite-flat representation
if and only if x € Z§,,(Gp, End(v)).



THE RANK OF MAZUR’S EISENSTEIN IDEAL 61

Proof. We can think of a free R[e,]-module of rank n as being an R-module of rank
n(r + 1) with additional structure. In this way, we can apply the two examples
above to this situation. We write v, = v+ >;_, 2" with z; € C1(G,, End(v)).
Let v,_1 = v,/ v, and vy o = v, /e" 1y, (50 1o = 0 if 7 = 1).

First suppose that v/ is a finite-flat representation, and let a!. = x,. + . Then
since €"'v,. = €"v. 2 v, and V./€"v, =2 v._1, we can consider v, and V. as being
extensions of v,._1 by v. In block matrix form, they look like

_ Vpr_—1 0 r Vr_—1 0
vy = , V=
Ty Typ_1 - X1 ‘ v Xl we_yg o xp |V
By Example the Baer difference extension is given by
v 0 e 0 0
v 0 - T v 0 0
Ty 1 |Tpo -+ v |0
z 0 --- 0 ‘ v T 0 0 v

As in Example[C.1.1] we can pushout to obtain an extension of v by v whose cocycle
is given by x. Since the Baer sum and pushout can be done in any exact category,
we could equally well do these operations to the finite-flat groups schemes giving
rise to v, and v, and obtain an extension of finite flat group schemes whose cocycle
is «. This implies that z is a finite-flat cocycle.

Conversely, suppose that x € ZJ_, (G, End(v)). Then z gives rise to an extension
&, of v by v. As above, we can consider v, as an extension of v,._; by v. We can also
think of v,_1 as an extension &._1 of v by v,_o. By Example the pullback
extension & of £,._1 along &, can be written in block matrix form as

Vr_1 0

z 0 -+ O|v

Then, by Example we see that the Baer sum of £ with v, is given by the
same matrix as v].. As above, we see that the representation obtained from pullback

and Baer sum is finite-flat, so this implies that v/ is finite-flat. [l
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