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Abstract

Low completion rates of math courses pose a major challenge for community college stu-
dents’ educational progress and outcomes. Contextualized instruction has been identified as
a promising approach to removing some of the longstanding barriers within math teaching
and learning. Still, the empirical base on this topic remains small, with particularly little
evidence on how exposure to math contextualization relates to students’ longer-term edu-
cational outcomes, which bear important implications for institutions’ performance metrics
and policymaking. We contribute new research on this front by examining how exposure
to math contextualization relates to a range of interim and longer-term educational out-
comes at a large community college in a Midwestern state. We applied the genetic match-
ing approach to construct a study sample that was balanced in background characteristics
between the student group receiving contextualized math instruction and their counterparts
enrolled in traditional math courses. We adopted a set of regression analyses based on the
matched sample, and found a significant positive relationship between exposure to math
contextualization and students’ outcome measures, including course performance, term
GPA, continuous postsecondary enrollment, credential completion, and upward transfer.

Keywords Active learning - Community colleges - Contextualized instruction - Math
contextualization - Technical education - Student outcomes

Students beginning at public 2-year institutions represent a vital population of college
attendees who have been historically underserved in postsecondary education. Hailing
from more diverse backgrounds relative to students beginning at baccalaureate institutions
(Cohen et al., 2014), community college students represent a unique talent pool that pro-
pels institutions to invest in efforts toward not only diversification of the student body, but
also full participation and equitable outcomes. However, nationally, community college
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students’ persistence, completion, and transfer rates remain low (Martin et al., 2014; Presi-
dent’s Council of Advisors on Science & Technology, 2012; Snyder et al., 2016), calling
for stronger institutional efforts to better serve these students and enhance their educational
success in the short and long run.

One particular area of struggle that has been identified as impeding student suc-
cess is in mathematics (hereafter shortened to math). Indeed, research has shown that
math courses at both developmental and college levels act as a gatekeeper that often
derails community colleges students’ pathways to success (Hagedorn & Kuznetsova,
2016; Perin, 2011; Wang, 2017). Math course completion rates have been low, hovering
around 50% for developmental math courses (Chen, 2016; Rutschow, 2019) and 48% for
college-level math courses (Chen, 2016). Further exacerbating the issue is the deeply
concerning fact that non-completion of math courses often marks the end of a student’s
college career (Adelman, 2006; Lundy-Wagner, 2014; Wang, 2020).

Clearly, math offerings at community colleges need to be reimagined, improved
upon, and potentially reformed to flip the narrative so that they can act as a gateway
to student success. Toward this end, a number of innovative approaches to redesigning
developmental and college-level math have gained national traction. Notable examples
include shortening or accelerating math sequences through compression (Ariovich &
Walker, 2014; Kosiewicz et al., 2016; Schudde & Keisler, 2019), co-requisite models
(Adams et al., 2009; Jaggars et al., 2015; Ran & Lin, 2019), and revamping early assess-
ment and placement processes through multiple measures (Burdman, 2012; Melguizo
et al., 2014; Ngo & Kwon, 2015). While these structural reforms hold promise, instruc-
tional changes are as, if not more, critical. One particular area of interest and impor-
tance is contextualized instruction as a means to improve teaching and learning experi-
ences within the community college math classroom.

We focus on contextualization not only because of its potential to resolve the math
struggle, but also because it rests with what happens within the classroom, an argu-
ably key and primary venue through which the vast majority of community college stu-
dents experience college. Research has shown that what happens or does not happen
within the classroom profoundly affects a community college student’s prospects of col-
lege progress and completion (e.g., Deil-Amen, 2006; Deil-Amen & Rosenbaum, 2002),
especially within math courses (e.g., Wang et al., 2017). Accordingly, when contending
with multiple ways to address the larger math reform, it is pivotal to develop teaching
approaches that effectively facilitate and enhance students’ learning. By situating more
abstract subject matter within real-life settings, contextualized instruction has shown
promise to enhance student learning, as suggested by evidence on language and literacy
instruction (e.g., Gillam et al., 2012; Perin, 2013; Shrum, 2015).

To date, only a handful of empirical studies explicitly examined contextualization
in math courses in community college settings (e.g., Parker et al., 2018; Wang et al.,
2017), all pointing to contextualization’s potential to cultivate positive learning expe-
riences and motivational beliefs among math learners. At the same time, little extant
evidence touches upon the connection between math contextualization and students’
educational outcomes, such as transfer and completion, which bear important implica-
tions for institutions’ performance metrics and policymaking across institutional, state,
and national levels. Thus, our study is aimed at contributing new research on this front
by addressing the following overarching research question: How does exposure to math
contextualization relate to community college students’ interim and longer-term educa-
tional outcomes? The following set of specific questions guide our inquiry:
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First, what is the relationship between exposure to math contextualization and students’
math course performance, measured by course grade?

Second, what is the relationship between exposure to math contextualization and stu-
dents’ academic performance in the same term, measured by term GPA?

Third, what is the relationship between exposure to math contextualization and students’
educational progress and attainment, measured by continuous postsecondary enroll-
ment, credential completion, or upward transfer?

We address our research questions through a set of regression analyses of a matched
sample consisting of both students receiving contextualized math instruction and their
counterparts enrolled in traditional math courses. Our findings suggest that exposure to
contextualization has a significantly positive relationship with these set of outcomes.

Literature Review

In this section, we situate our study by first examining the literature on how contextualiza-
tion has been shown to be a promising teaching approach across various subjects. Next,
we review the literature that specifically touches upon existing evidence speaking to math
contextualization’s potential impact on community college students.

Contextualization as an Instructional Approach

Contextualization is broadly conceived as an umbrella term that encompasses a wide
range of teaching strategies with the goal of purposefully integrating foundational skills—
through concrete applications—within contexts aligned with students’ academic and career
interests (Mazzeo, 2008). By nature, contextualization fosters active learning (Faust &
Paulson, 1998; Prince, 2004) by helping students see how to utilize concepts within realis-
tic settings in their future studies as well as work (Rivet & Krajcik, 2008), and by guiding
students to investigate real-world problems (Bouillion & Gomez, 2001; Rivet & Krajcik,
2008). Through a contextualized approach, faculty intentionally use problems or examples
that are meaningful to students to guide them toward mastery of the content (Edelson et al.,
1999; Rivet & Krajcik, 2008).

Although the literature lacks a clearly defined distinction between contextualization and
its “opposite”—decontextualization, likely because instructional approaches are more fluid
than dichotomously categorized, a common feature of a “decontextualized”! approach is
heavy reliance on one or more of the following approaches: lecture-based teaching (Levin
& Calcagno, 2008), drill and practice (Cox, 2015; Grubb, 2013), and routine questions
absent from real-world contexts (Mesa et al., 2011). Overall, “decontextualized” instruc-
tional approaches are not conducive to creating opportunities for students to actively
engage in authentic applications based on their learning (Levin & Calcagno, 2008) and

! We acknowledge that, in reality, very few social activities such as teaching and learning in the class-
room can be described as fully decontextualized. Thus, we adopt the term from the literature but put it in
quotation marks. In these “decontextualized” classes, examples from real life may well have occurred, but
contextualization goes far beyond incidental utilization of real-life examples and is rather an intentional
approach guiding curricular design (Valenzuela, 2018).
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develop crucial conceptual knowledge and mastery toward deeper math learning (Cox,
2015; Quarles & Davis, 2017).

As an active learning approach, contextualization connects academic content (e.g., read-
ing, writing, and/or math) with meaningful contexts that appeal to students’ interests and
backgrounds, which has been shown to lead to learning gains (e.g., Perin, 2013; Shrum,
2015). The National Council for Workforce Education (2010) also advocated for the adop-
tion of contextualization given the documented evidence on its efficacy on student learning.

Math Contextualization as a Potential Gateway to Community College Student
Success

Despite the importance of math preparation, success rates in both developmental and col-
lege-level math courses have been low (Chen, 2016; Rutschow, 2019). Math courses have
acted more as a gatekeeper than a gateway to success, especially for underrepresented stu-
dents (e.g., Bryk & Treisman, 2010). Traditionally, the aforementioned decontextualized
approach characterized by an environment with little interaction among students has domi-
nated the community college classroom (Grubb, 2001, 2010), creating a strong disconnect
between the learning materials presented in class and real-life contexts (Grubb et al., 1999;
Wang et al., 2017).

The extant empirical base on math contextualization at community colleges is small
but growing. This literature has demonstrated the potential of contextualization to nurture
more active math learning among community college students by allowing students to cul-
tivate the connection between abstract math content with real-life experiences, where they
can utilize what they learn in the moment toward true mastery (Baker et al., 2009). In addi-
tion, a qualitative study by Wang et al. (2017) revealed that math contextualization helped
boost community college students’ math self-efficacy beliefs by alleviating their fear of
learning math.

Further, math contextualization has been shown to contribute to increased course pass-
ing rates (Wiseley, 2009) and math scores (Perin, 2011). In particular, a set of quantitative
analyses by Jenkins et al. (2009) and Zeidenberg et al. (2010) compared students enrolled
in the Integrated Basic Education and Skills Training (I-BEST) courses—a contextualiza-
tion model that integrates basic skills education, such as math, with job-training—with
similar students enrolled in non-I-BEST options, and found that I-BEST students were
more likely to achieve higher scores on basic skills exams, earn college credits, or complete
an occupational certificate.

Despite the initial evidence pointing to math contextualization’s potential in cultivat-
ing positive learning experiences, motivational beliefs, and course performance, research
is still scant on math contextualization’s impact on longer-term educational outcomes of
community college students above and beyond short-term progress.

Conceptual Framework

Our conceptual framework is grounded within Wang’s (2017) theoretical model of momen-
tum for community college student success while also integrating relevant higher educa-
tion literature on students’ educational progress in college. The momentum model offers a
holistic approach to understanding community college student success. Dynamic in nature
and with an intentional focus on the classroom as community college students’ primary
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venue of engagement, the model presents important areas for community colleges to build
and support positive momentum toward meaningful and successful educational experi-
ences and outcomes for students. In terms of key domains that build momentum, the model
includes three areas: a) the curricular domain that underscores continued educational pro-
gress through well-sequenced and scaffolded courses across the curricula, b) the teaching
and learning domain that calls for instructional practices that foster active learning and
skills to master the subject matter, and c¢) the motivational domain that is concerned with
the development of aspirations, mindsets, perseverance and agency that support students in
advancing through college.

The momentum model emphasizes the classroom as a key space of community college
students’ engagement with their education, thus front centering the teaching and learning
domain as a vital venue through which students build momentum toward achieving their
educational success (Wang, 2017). The teaching and learning domain particularly situates
our study. This domain consists of two subareas: a) cognitive momentum, defined as stu-
dents’ “cumulative progress toward the learning and mastery of the subject matter at hand”
(Wang, 2017, p. 284), which is primarily realized by classroom and other educational
activities that facilitate students’ thinking, understanding, and learning of the content; b)
metacognitive momentum, distinct from yet complementary with cognitive momentum,
refers to students’ capacity to “apply strategies to regulate, adjust, adapt, and assess one’s
own learning” (Wang, 2017, p. 284), which is cultivated through the processes of planning,
problem-solving, and self-regulation that are fundamental for establishing and maintaining
academic progress. The momentum model further elucidates that active learning experi-
ences (e.g., through a contextualized approach) are well positioned to cultivate students’
cognitive and metacognitive momentum by increasing students’ meaningful engagement
with the subject matter and providing opportunities to apply their learning to real-world
problems. Because contextualized math instruction entails approaches and strategies to
support students in becoming active learners, it is a highly plausible mechanism for devel-
oping student momentum in the teaching and learning domain, which is linked to students’
educational progress and success.

Also integral to conceptualizing this study is a set of individual and contextual factors
that have been shown to shape community college student progress and outcomes based on
prior literature. These include student background characteristics, such as gender (Ngo &
Melguizo, 2020; Wang & Wickersham, 2018), race/ethnicity (Cuellar & Gandara, 2020;
Y. L. Zhang et al., 2019), age (Chaves, 2006), first-generation status (Crisp & Delgado,
2014), enrollment intensity (Adelman, 2006; Leinbach & Jenkins, 2008; Wang, 2017), and
prior experience with postsecondary education (Laanan & Jain, 2017; Wang, 2020). In
addition, financing postsecondary education poses a major concern for community college
students (Collier & Parnther, 2021; Hallett & Freas, 2018; Wang, 2020), as many students
hail from a low-income background, as often indicated by their Pell eligibility (Park &
Scott-Clayton, 2018; Yang, & Venezia, 2020). Also of great relevance is students’ initial
level of placement into a math sequence, including placement into developmental courses
(Bahr et al., 2019; Kosiewicz & Ngo, 2020; Park et al., 2020; Xu & Dadgar, 2018). Com-
munity college students’ progress and outcomes can be further intricately linked to their
educational pathways or programs (Baber, 2018; Bailey, 2015), as well as various instruc-
tor attributes, including gender (Bettinger & Long, 2005; Stout et al., 2018), race (Fairlie
et al., 2014), age (van derKaay & Young, 2012), years of teaching (Lancaster & Lundberg,
2019), along with part-time employment status (Eagan & Jaeger, 2009; Jaeger, 2008; Jae-
ger & Eagan, 2009).
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Taken together, for community college students, a contextualized math classroom and
learning environment would serve as a viable space where they could gain momentum
toward achieving their educational goals. Taking into consideration other relevant factors
noted above, momentum accumulated via math contextualization would not only translate
into students’ interim learning outcomes, such as passing the course and earning a good
grade, but also would lead to improved long-term educational outcomes, including con-
tinuous enrollment, transfer, and completion of credentials.

Method
Research Site and Intervention
Research Site

This study took place at a large public community college in a Midwestern state. The col-
lege serves nearly 40,000 students, with 25% being students from underrepresented racial/
ethnic backgrounds, over 50% first-generation college students, and about 50% older than
the age of 24. This distribution of student demographics largely aligns with the commu-
nity college student population nationally (American Association of Community Colleges,
2018a). In terms of faculty composition, similar to national trends (American Association
of Community Colleges, 2018b), around 80% of the faculty at the research site are white
(75% nationally). While we do not assume that this study’s results will be fully generaliz-
able to other community colleges or other states, our findings will offer relevant insights
and implications for similar institutions, leaders, and faculty grappling with math instruc-
tion and contextualization as a promising solution.

Intervention

In Fall 2018, as part of the college’s math professional development initiative, five math
instructors adopted contextualized instruction for the first time in nine math courses they
were teaching during the semester, with three of the five instructors teaching multiple
math courses (two teaching two courses, one teaching three courses). In total, these nine
courses enrolled 170 students. The instructors teaching these courses received prior profes-
sional training on math contextualization that places an intentional and explicit focus on
connecting math instruction to real-world applications and engaging students to problem
solve in contexts meaningful to them. Both the training and application of contextualiza-
tion were guided by the working definition: “Contextualization is the design of curriculum
AND the way the curriculum is delivered that provides students with the opportunity to
engage in ‘real work.”” This meant that both the design of the curriculum and the delivery
of it through instruction intentionally prioritize activities and content that require students
to work on realistic, relevant concepts they would encounter in authentic career and life
contexts.

Treatment and Control Conditions

Enrollment in the nine contextualized math courses in Fall 2018 constituted the treatment
condition, whereas the “counterfactual” condition involved enrollment in traditional math
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courses that were taught without an intentional goal to contextualize. More specifically,
contextualized math courses were characterized by the following two key features that
distinguished them from other math courses offered at the college during the same time:
First, the contextualized courses followed a curriculum that centered on several common
learning outcomes: understanding and applying math concepts, learning about the context,
learning/practicing skills critical for real work, questioning, estimating, engaging in discus-
sion, and challenging students themselves to figure it out. Second, aligned with these key
learning outcomes, the contextualized math courses explicitly integrated in the curricu-
lum predetermined structures, opportunities, and activities to engage students in authentic
applications of math content within real-life contexts on a regular and systematic basis.
The math courses constituting the control condition were the ones that were taught “busi-
ness as usual” without these intentional features indicated above.

Study Sample and Data
Data Structure and Sample

Our dataset featured a four-level structure, namely course record, student, course, and
instructor levels, each nested within the next level. For the treatment condition, 170 stu-
dents enrolled in nine contextualized courses taught by five instructors, for a total of 170
course records. No students were enrolled in multiple contextualized courses. For the con-
trol condition, 4383 students enrolled in 271 traditional courses taught by 111 instructors,
for a total of 4878 course records due to multiple enrollments in traditional courses. Given
the fairly small number of contextualized courses and instructors who taught contextual-
ized courses, analysis at the instructor or course level would suffer severely from loss of
statistical power. Thus, we decided to focus our analysis at the course record and student
levels to ensure adequate statistical power while truthfully answering our research ques-
tions, with course performance analyzed at the course record level and other outcome
measures analyzed at the student level.

For the course record level analysis, an important issue to address is concurrent enrollment in
multiple courses by the same student. In our data, 290 students enrolled in multiple courses dur-
ing the same term, with 41 enrolled in both contextualized and non-contextualized courses and
249 enrolled in multiple non-contextualized courses. We detail our procedures for handling this
issue later under the data analysis section. The course record-level and student-level information
is provided in Table 1, where we also describe the study’s variables in detail.

The college’s institutional research office provided available administrative data that
included students’ background data and transcript records, instructors’ characteristics,
as well as course attributes. Data from the National Student Clearinghouse (NSC) were
also included to measure student attainment of postsecondary credentials and transfer. A
detailed description of the study measures follows.

Outcome Measures
Based on our research questions, we examined the following interim and longer-term out-
comes. Interim outcome measures included course grade and Fall 2018 term GPA, and

longer-term outcomes were represented by students’ cumulative GPA, continuous enroll-
ment, credential completion, and/or upward transfer as of Fall 2019.
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Table 1 Descriptive data of full course records and student sample

Students/records (Treat-  Students (Control Course records (Control
ment group) group) group)
Students 170 (3.80%) 4300 (96.20%)
Course records 170 (3.49%) 4878 (96.63%)
Student attributes
Race/ethnicity
White 107 (62.94%) 2533 (58.91%) 2586 (59.00%)
Students of Color 63 (37.06%) 1767 (41.09%) 1797 (41.00%)
Native American 1 (0.59%) 24 (0.56%) 25 (0.57%)
Asian 8 4.71%) 265 (6.16%) 269 (6.14%)
African American 10 (5.88%) 451 (10.49%) 455 (10.38%)
Hawaiian/Pacific 0 (0.00%) 2 (0.05%) 2 (0.05%)
Islander
Hispanic 25 (14.71%) 678 (15.77%) 694 (15.83%)
Multi-Racial 14 (8.24%) 259 (6.02%) 262 (5.98%)
Unknown 5 (2.94%) 88 (2.05%) 90 (2.05%)
Sex
Male 113 (66.47%) 2038 (47.40%) 2103 (47.98%)
Female 57 (33.53%) 2262 (52.60%) 2280 (52.02%)
Age
Under 24 135 (79.41%) 2943 (68.46%) 3003 (68.53%)
24 and older 35 (20.59%) 1356 (31.54%) 1379 (31.47%)
First-generation student
Yes 88 (51.76%) 2632 (61.21%) 2681 (61.17%)
No 82 (48.24%) 1668 (38.79%) 1702 (38.83%)
FAFSA filing status
No 76 (44.71%) 1820 (42.33%) 1855 (42.32%)
Yes 94 (55.29%) 2480 (57.67%) 2528 (57.68%)
Pell eligibility
Not eligible 38 (22.35%) 846 (19.67%) 867 (19.22%)
Eligible 56 (32.94%) 1634 (38.00%) 1661 (37.90%)
Unknown 76 (44.71%) 1820 (42.33%) 1855 (42.32%)
Enrollment intensity
Full-time 124 (72.94%) 2324 (54.05%) 2386 (54.44%)
Less than full-time 46 (27.06%) 1976 (45.95%) 1997 (45.56%)
Academic plan track
Liberal arts transfer 44 (25.88%) 2231 (51.88%) 2240 (51.11%)
Technical education 74 (43.53%) 340 (7.91%) 398 (9.08%)
Undeclared 52 (30.59%) 1729 (40.21%) 1745 (39.81%)
Math preparation
Developmental 56 (32.94%) 1490 (34.65%) 1531 (34.93%)
College ready 70 (41.18%) 1524 (35.44%) 1555 (35.48%)
No placement 44 (25.88%) 1286 (29.91%) 1297 (29.59%)
Returning student
No 85 (50.00%) 1694 (39.40%) 1734 (39.56%)
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Table 1 (continued)

Students/records (Treat-  Students (Control Course records (Control
ment group) group) group)
Yes 85 (50.00%) 2606 (60.60%) 2649 (60.44%)
Prior postsecondary
credential
No 166 (97.65%) 4128 (96.00%) 4211 (96.08%)
Yes 4 (2.35%) 172 (4.00%) 172 (3.92%)
Treatment group Control group
Course attributes 9 (3.21%) 271 (96.79%)
Course offering unit
Offered by math depart- 6 (66.67%) 146 (53.87%)
ment
Offered by technical 3 (33.33%) 28 (10.33%)
programs
Required technical ed
course
Yes 5 (55.56%) 48 (17.71%)
No 4 (44.44%) 223 (82.29%)
Instructor characteristics 5 111
Race/ethnicity
White 4 (80.00%) 91 (81.98%)
Faculty of Color 1 (20.00%) 20 (18.02%)
Asian 1 (20.00%) 5 (4.50%)
African American 0 0 1 (0.90%)
Hispanic 0 0 6 (5.41%)
Did not identify 0 0 8 (7.21%)
Sex
Male 4 (80.00%) 64 (57.66%)
Female 1 (20.00%) 47 (42.34%)
Employment status
Full-time 2 (40.00%) 26 (23.42%)
Part-time 3 (60.00%) 85 (76.58%)
Age 53.40 (5.59) 54.31 (11.03)
Years teaching at the 11.20 (4.18) 12.75 (8.24)
college
Covariates

Based on the conceptual framework and prior literature we delineated earlier, we included
a set of covariates that reflect students’ background characteristics as well as instructor and
course attributes. Students’ background consisted of demographic information (i.e., sex,
race/ethnicity, age, first-generation status), financial need, enrollment intensity, academic
plan track, math preparation, and previous postsecondary enrollment and credentials.
Course-level covariates included whether the course was offered in the math department
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or a technical education program and whether the course counted toward a technical educa-
tion degree. At the instructor-level, race/ethnicity, sex, employment status, age, and years
of teaching at the college were included. See Table 1 for a full list and description of the
variables.

Data Analysis

We adopted a matching approach to construct comparable treatment and control groups
to reduce the bias of the treatment effect estimation since randomization was not feasible
(Holmes, 2013). Although the “gold” standard to evaluate the treatment effect is randomi-
zation, in which students would be randomly assigned to the contextualized courses and
traditional courses, it was not a realistic approach at the research site, as is the case in many
education settings. Student self-selection into the treatment and control conditions may
reflect their preexisting differences, introducing bias into the estimation of the treatment
effect. To mitigate this concern, we first identified the treatment and control groups based
on all available background covariates, followed by an outcome analysis using the matched
groups (Stuart, 2010).

Genetic Matching

For both course record-level and student-level analyses, we adopted the genetic match-
ing algorithm to identify a control group, a subset of units in the control condition that
was most comparable with their counterparts in the contextualized courses, to estimate
the average treatment effect of the treated. Developed by Diamond and Sekhon (2013),
the genetic matching algorithm is a multivariate matching method that adopts non-para-
metric generalization of Mahalanobis distance matching (MDM) to achieve the balance
of observed covariates between treatment and control groups. This matching approach
directly takes into account all covariates as well as their interactions by computing the
Mahalanobis distance, thus accounting for the covariance of included covariates. There-
fore, it tends to produce exact or close to exact pairs, which is an ideal scenario of estimat-
ing causal inference since these pairs form the treated and control groups with a more bal-
anced multivariate distribution of the covariates (Stuart, 2010). Recent research has shown
that multivariate matching performs at least similarly or better than univariate matching
that is typically used in propensity score matching (PSM) approaches (e.g., nearest neigh-
bor matching, radius matching, and kernel matching) in reducing imbalance (Baser, 2006;
King & Nielsen, 2019), but requires a large number of units under the control condition,
which is the case for our study. The high control to treatment sample size ratio (over 25) of
our study provided an excellent condition for the adoption of genetic matching to produce a
sufficient number of matched pairs with the closest possible similarity to each other.

In genetic matching, the generalized Mahalanobis distance between course record/stu-
dent i and j was defined as follows:

(%) = { (557wt (- x,) |

where X; and X were the covariate values of course record/student i and j, respectively, W
was a positive deﬁnlte weight diagonal matrix, and S 2 was the Cholesky decomposition of the
sample variance—covariance matrix of the full control group. By choosing the elements of W,
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the genetic matching approach weighted each variable according to its relative importance for
achieving the best overall balance, which was measured by paired t-tests and non-parametric
Kolmogorov—Smirnov (KS) tests between the matched groups, thus optimizing the overall
covariate balance (Stuart, 2010). The W included the inverse of the variances of covariates.

We employed the genetic matching algorithm to construct analytical samples specific
to the level of outcomes and performed 1 to 1 matching with replacement. We adopted 1
to 1 matching since increasing the number of control group units may only lead to limited
increment of power that is largely driven by the smaller group size, which is often the treat-
ment group (Cohen, 1988; Stuart, 2010, 2020), as was the case in our study. Further, the
genetic matching approach we used facilitates exact or close to exact matching in produc-
ing the treatment and control groups. Thus, adopting a high control to treatment sample
size ratio in matching may include poor matches that may increase bias (Rubin & Thomas,
2000). To further ensure that our results were robust to different matching scenarios, we
also examined 2 to 1 and 5 to 1 matching. For both student- and course record-level match-
ing, the 5 to 1 matching approach did not achieve balance on covariates, with at least one
covariate having a standardized mean difference (SMD) value greater than 0.1. For the 2 to
1 matching approach, we were able to achieve balance. Across both scenarios, the relation-
ship between exposure to math contextualization and outcomes that we uncovered based on
the 1 to 1 matched sample generally held. Essentially, our course record-level and student-
level analyses were based on 170 matched pairs of course records and 170 matched pairs
of students, respectively. Due to the complexity of the data structure described earlier, we
implemented matching through different procedures that were appropriate for the level of
data. For course records, we first identified the 41 students enrolled in both contextualized
and traditional courses whose course records from traditional classes served as optimal
matches for their course records in contextualized courses. For the remaining 129 students
without overlapping enrollment, we then adopted genetic matching by identifying matches
in the control group. Matching at the student level was more straightforward, as each stu-
dent was a unique unit of analysis. We conducted all matching procedures using the R
package, Matching (Sekhon, 2011).

We examined the SMD to identify the covariate balance between the groups after
matching (Austin, 2009; Harder et al., 2010). More specifically:

. R
ptrearment - pcantrr)l
SMD =
\/ Purcatmen'(1=Prreatment) Peonsrot (1 =Peoniror)

2

Where Dypament @04 Deonor TEfET to the probability of being in a specific category (e.g.,
White) in treatment and control groups. A covariate was considered balanced if the SMD
value was smaller than 0.1 (Z. Zhang et al., 2019).

Note that the common support of propensity scores, a prevalent approach to evaluating
the quality of propensity score matching (PSM), was not appropriate for our study that
used genetic matching. In PSM, each course record’s/student’s probability of being in the
treatment group would be derived by summarizing all covariates into one scalar (Rosen-
baum & Rubin, 1983), followed by matching the treatment and control cases according to
their distance of propensity scores. However, we conducted genetic matching with the gen-
eralized Mahalanobis distance, which was computed using all covariates directly without
summarizing the covariates into a single measure. Thus, drawing a single dimension plot to
show common support was not appropriate in our study.
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Outcomes Analysis

Following genetic matching, we applied a set of ordinal, linear, and multinomial logistic
regression analyses on the matched sample to investigate the relationship between exposure
to math contextualization and a range of interim and longer-term outcomes with covariates
to further reduce bias and standard error (Rubin, 1979). For course record-level analysis,
we further adjusted for instructor-level covariates. Course grade was analyzed using ordinal
regression given the ordinal nature of the outcome. Term GPA and cumulative GPA were
analyzed using linear regression since the measures had more than 10 values. One-year
educational progress and attainment were analyzed using multinomial regression given the
categorical nature of the outcome variable.

Because our matched data were not independent given the data structure, we estimated
sampling errors through bootstrapping with 1,000 replications to obtain reliable results.
Within each replication, each pair of treatment and control course records/students was
bootstrapped to maintain the balance of covariates. Three commonly used significance lev-
els, 0.05, 0.01, and 0.001, were used to detect the level of statistical significance of the
coefficients.

We implemented the set of regression analyses using the R software (R Core Team,
2019). We conducted linear regression and logistic regression analysis using the base R
program, and ordinal and multinomial regression analysis using the MASS and nnet pack-
age, respectively (Venables & Ripley, 2002).

Sensitivity Analysis

One of the most important assumptions of matching is the ignorability of treatment assign-
ment (Rosenbaum & Rubin, 1983), which indicates that there is not an unobserved con-
founder that relates to: a) the probability of being in the treatment group while account-
ing for all observables, and b) the outcome of interest when controlling for the probability
of being in the treatment as well as the observed covariates. The ignorability assumption
cannot be fully verified given the unobserved nature of such a confounder (Pearl, 2009).
Thus, we followed Cinelli and Hazlett (2020) to evaluate the sensitivity of our findings
to the existence of an unobserved confounder. Specifically, the two crucial correlations
mentioned above were transformed into two partial R-squared values, which introduced
the robustness value (RV)—the amount of the residual variance of both selection into treat-
ment and the outcomes to be explained by the unobserved confounder. The RV ranges from
0to 1. An RV close to 1 indicates that the treatment effect is strong to the extent that even
the existence of a confounder that explains close to 100% of the residuals would not change
the conclusion. In contrast, an RV close to O indicates that a weak confounder may change
the conclusion.

Results

Results From Matching

The 170 course records and 170 students in the treatment condition were successfully
matched. Table 2 details the results from the balancing test by providing the marginal distri-

butions of the covariates and the SMD values pre- and post-matching. Overall, the balance
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of marginal distributions of all covariates was improved after matching. For instance, for
matching at the level of course records, the largest absolute SMD value decreased from
0.75 (pre-matching) to 0.08 (post-matching). For matching at the student level, the largest
absolute SMD value decreased from 0.89 (pre-matching) to 0.05 (post-matching).

Results From Regression Analyses

Table 3 details results from our regression analyses based on the matched sample (derived
from genetic matching using the covariates described in Table 2). To account for addi-
tional imbalance between the treatment and control groups after matching, we included
in the regression models a set of student-, course-, and instructor-level covariates. Regres-
sion adjustment using covariates can further reduce bias due to remaining imbalance
between the treatment and control groups after matching (Rubin, 1979; Rubin & Thomas,
2000). Covariates that are statistically significant further help explain the outcome vari-
ables included in regression adjustment based on a matched sample. Overall, we identified
a statistically significant positive relationship between enrollment in contextualized math
courses and all outcome measures except a null effect on transfer, holding constant the set
of covariates included in the models.

From the ordinal regression, exposure to math contextualization was associated with greater
math course performance. The odds of passing (relative to failing) the class and earning higher
grades for the contextualized courses is estimated to be 2.55 times the odds for traditional courses
when holding other covariates constant. Exposure to math contextualization was also associated
with higher term GPA, holding all covariates constant. When looking at longer-term outcomes,
enrollment in a contextualized course was related to a higher latest camulative GPA, as well as
greater odds of continuous enrollment (odds ratio value of 1.70) and credential completion (odds
ratio value of 3.16), relative to enrollment in a traditional course.

Here we offer some additional details regarding the regression results pertaining to the
covariates included in our models. Except part-time enrollment, which had a persistent
negative association with all outcome measures, other covariates demonstrated potentially
nuanced roles depending on the specific outcome under consideration. For instance, holding
other variables constant, race/ethnicity and gender did not turn out to be significant predic-
tors for the outcome measures, except that Students of Color had lower course performance
compared with their White counterparts. In addition, older students performed better than
their younger counterparts in terms of course grade, term GPA, and cumulative GPA. Com-
pared with those without a declared academic plan track, students on the technical education
track had higher term GPA, cumulative GPA, and a higher likelihood to complete a creden-
tial; whereas students on the transfer track were more likely to transfer. In addition, returning
students were more likely to have a higher cumulative GPA and to transfer, compared with
students who started as new freshmen. Also interesting to note, students enrolled in courses
taught by younger faculty or part-time instructors tended to receive a higher course grade.
For the full set of detailed results from the regression analyses, see Table 3.

Results From Sensitivity Analysis
Results from our sensitivity analysis showed that the estimated contextualization

effects would reduce to O when the unobserved confounder explained 10% to 17%
of the residual variance of both treatment assignment and outcomes; our conclusion
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would change if the unobserved confounder explained less than 0.01% to 7% of both
the residual variances of the treatment assignment and outcomes under the specific
sample size. While there are no established, steadfast criteria to evaluate robustness,
these residual variance values appear to fall below a reasonably small maximum value.
The effect of contextualization on continuous enrollment was the most vulnerable one
to an unobserved confounder. In contrast, the contextualization effect on the course
grade was the most robust one.

The two RVs of each outcome are listed in Table 4. The contour plots of the RVs are
shown in Figs. 1, 2.

Discussion

In this study, we examined the link between exposure to math contextualization and
community college students’ interim and longer-term educational outcomes. Using
genetic matching, we constructed a balanced sample consisting of students enrolled
in contextualized courses and their similar counterparts in traditional math courses.
We further compared the educational outcomes of this matched sample using a set of
regression analyses. Our findings revealed that the students enrolled in contextualized
math courses had significantly improved course performance and educational progress
and attainment.

The largely positive associations between enrollment in contextualized math courses
and student outcomes suggest that, when delivered through a contextualized approach,
math is less likely to be a barrier to student success. Contextualization may serve as
a powerful tool in improving math success and furthering community college student
progress. In light of our conceptual framework, our findings as a whole suggest that
contextualized math may indeed act as a generative mechanism for students to accrue
momentum toward greater math performance and achieving longer-term college suc-
cess. For example, our study demonstrates the potential of contextualization to boost
curricular momentum in terms of enrollment continuity (Wang, 2017), which supports
progression toward credential completion.

Math Contextualization’s Immediate and Enduring Role

The positive link between exposure to math contextualization and course performance
as indicated in students’ course grades and passing rates lends additional support to the
small research base (e.g., Wiseley, 2009) and further establishes math contextualization
as a significant predictor of immediate academic gains in math. This immediate boost in
students’ course performance suggests that contextualized math instruction may rapidly
and effectively translate into learning conditions conducive to positive math attitudes and
learning experiences. As one of the proximal indicators of, and building blocks toward,
longer-term academic success, a student’s course performance signals, albeit imperfectly,
how much they have learned and where they are with regard to attaining their educational
goals. Consequently, stronger course performance uncovered in our study not only signals
an important short-term benefit of contextualized math instruction, but it also serves as a
significant marker of long-term college success. This is especially tenable given the close
relationship between passing college-level math courses and college outcomes (e.g., Bel-
field et al., 2019; Calcagno et al., 2007; Cohen & Kelly, 2019), further reinforced by the
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Table 4 Results from robustness check

Analysis Outcome Robustness value (% of residual variance
explained)
Bring point estimate Bring corresponding
to 0 p— value>.05

One Course performance 17.00% 7.31%

Two Term GPA 16.09% 6.42%

Three Latest cumulative GPA 13.55% 3.58%

Four Continuous enrollment 9.85% <0.01%

Credential completion 13.45% 3.46%

Robustness checks were conducted for significant Bs only

larger literature pointing to students’ academic performance as one of the most consistent
predictors of college persistence and completion (e.g., Sass et al., 2018; Y. L. Zhang et al.,
2019).

Our results further resonate with and extend prior research on broader math reforms or
curricular models aimed at improving community college student outcomes. Often encom-
passing contextualized math instruction as one of the components, these initiatives have
been empirically shown to be positively linked to community college students’ completion
of developmental math coursework and academic milestones such as advancing to the next
math level, enrolling in and completing college-level math, declaring a major, and accumu-
lating college credit (Cox, 2015; Ngo, 2019; Quarles & Davis, 2017; Schudde & Keisler,
2019; Yamada et al., 2018). Our finding not only lends further credibility to the utility of
math contextualization in the reforms, but also highlights it as a potential key ingredient for
these reforms’ success. In this sense, our study offers deepened and nuanced insights into
the generalizability of these positive findings regarding broad-scale reforms by isolating
the refined connection between math contextualization and community college student out-
comes. That is, while large-scale, evidence-based reforms may be ideal, highly promising
instructional strategies such as contextualization can lead the way and serve as a jumping-
off point toward larger initiatives or reforms in community colleges. Indeed, our study’s
finding shows that it is highly plausible that the various types of momentum—cognitive,
metacognitive, and motivational (Wang, 2017)—as a result of exposure to math contextu-
alization transmit beyond a single course and extend into ongoing, broader ways in which
students navigate postsecondary education and stay more motivated to persist.

Implications for Policy and Practice

Several implications emerged from our study. First, in light of its largely positive relation-
ship with students’ outcomes that we uncovered in our study, the adoption of math contex-
tualization appears to be a viable and logical step toward fostering fruitful math learning
experiences and educational success among community college students. This recom-
mendation is further backed by promising empirical evidence from recent larger-scale
math reforms that integrate math contextualization as one of the components. However,
in practice, a contextualized approach is concerningly underutilized (Jenkins et al., 2018;
Wang et al., 2017; Wiseley, 2009). Further complicating this problem is that, even when
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Fig. 1 Sensitivity contour plots for treatment effect on course performance and term GPA. Upper panels: course
performance; lower panels: term GPA; left panel: point estimate; right panel: t— value. The red lines show the
partial R? of the unobserved confounder with treatment and outcome when the point estimate decreases to 0 or
the — value >0.05. Thus, the red line close to the bottom left indicates that the treatment effect was vulnerable;
the red line close to the top right indicates that the treatment effect was robust (Color figure online)

contextualization is adopted, the involved courses and programs often concentrate within
career and technical education, which does not align with the broad range of educational
pathways that mirror an inclusive set of community college students’ educational goals,
notably transfer (Wang, 2020). In future endeavors, community colleges should not only
promote the adoption of math contextualization, but also be particularly intentional about
broadening program, instructor, and student access to impactful evidence-based instruc-
tional practices such as math contextualization.

Second and related, we are calling for inclusive and motivating institutional policies
that encourage practicing contextualization and active learning more broadly. One common
challenge in instructional change, in this case encouraging faculty to potentially reform
their instruction by moving away from a “decontextualized” tradition, requires significant

@ Springer



330 Research in Higher Education (2022) 63:309-336

=
o \
o
o _| s
o
~
o |
=}
.
~2
S -
o
=1

0.1

Unaljusted Seaaa .
5 —_——
— A 0.4 —

0.0

Partial R? of confounders with outcome
02

= _|
=] | \
1
1 e
1
1
« N
3 ! s
1
1
wl
1 ~,
1
o | 1
< 1
1 v
1
1
i) ~2
- | 1
e L
\
v ~1-
\
Unadjisted o
26) ~o
2 da T 7 |4 T emeaa 3
p= A TNt e e e e e — 1.98°
T T T T T T T T T T
0.0 0.1 0.2 03 04 0.0 01 02 03 04

Partial R? of confounders with treatment

Fig.2 Sensitivity contour plots for latest cumulative GPA and one— year educational attainment (Continu-
ous Enrollment and Credential Completion). Upper panels: cumulative GPA; middle panels: continuous
enrollment; lower panels: credential completion; left panel: point estimate; right panel: t— value. The red
lines show the partial R? of the unobserved confounder with treatment and outcome when the point estimate
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effect was vulnerable; the red line close to the top right indicates that the treatment effect was robust (Color
figure online)
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amounts of time, patience, and professional development. The effort involved may look
intimidating in early phases; thus, effective and equitable use of resources becomes criti-
cal. This also means that instructional change should not fall solely on faculty. Instead, it
should be a collective institutional endeavor. An open collaboration among faculty, admin-
istrators, and institutional researchers is pivotal for facilitating relationships, data, tools,
support, and development opportunities toward effective change.

Third, it bears great potential to think beyond a singular “high-impact” contextualized
math course and move toward cultivating a larger institutional environment that sustains
and amplifies the positive effect of contextualization. For instance, since dynamic, mean-
ingful interactions between faculty and students are critical in contextualization practices
(Baker et al., 2009; Perin, 2011), institutions should identify and cultivate additional ven-
ues beyond the classroom through which faculty and students can interact and communi-
cate. For instance, similar to many other community colleges, the faculty at our research
institution have close ties to industry, which represents a viable opportunity to facilitate
contextualized learning by drawing upon industry perspectives, contexts, and examples.
These extended opportunities could further solidify contextualization’s positive effect
through strengthened engagement with faculty, a highly predictive factor contributing to
community college students’ improved short- and long-term outcomes (Schudde, 2019).

Study Limitations and Areas for Future Research

Our study also contains a number of limitations and highlights areas for future research on
this topic. To begin, given sample size constraints, we were unable to test the potentially
heterogenous effects of different contextualization strategies. This represents a significant
direction for future research, as instructional strategies and approaches are profoundly
nuanced and diverse, even within the same larger umbrella term of contextualization.
Future inquiries that tease out different contextualization strategies in relation to students’
learning and outcomes will provide concrete evidence that allows practitioners, research-
ers, and policymakers to compare particular strategies and make well-informed decisions.

Similarly, given the small subsample sizes in terms of students’ race/ethnicity, our quan-
titative analysis was not able to disaggregate Students of Color into their distinct racial/
ethnic backgrounds. Especially given the glaring racial disparities and inequities in com-
munity college students’ educational outcomes (Crisp & Nuifiez, 2014; Jenkins et al., 2018;
Moore & Shulock, 2010; Wang, 2020), it is critically important to examine how students
from underrepresented groups are affected by interventions and practices designed to ben-
efit all students to ensure that they do not merely serve to advantage those already advan-
taged (Wang, 2020). Future research on math contextualization should continue to adopt a
more disaggregated approach to unpacking racial nuances and differences to fully under-
stand the impact of educational practices on the outcomes of all students, but particularly
those historically underserved.

Conclusion
Our study uncovered a positive association between exposure to contextualized math and
student outcomes, which illuminates contextualization’s potential in empowering students

to gain momentum through classroom teaching and learning. This promising relationship
may extend into other domains of students’ education where they can gain momentum in
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support of their longer-term success. Future research will benefit from a deeper under-
standing of math contextualization’s impact on the holistic range of spaces where students
can gain momentum for improved math performance and college success, as well as adopt-
ing a more nuanced approach to unraveling potential (in)equities in the implementation of
contextualization and its impact across student subpopulations, especially racially minor-
itized students.

Overall, our study offers quantitative evidence in support of contextualization as a
viable instructional approach to addressing the academic barriers that community college
students experience in math, as well as broader adoption of contextualization approaches
within larger-scale math reforms at community colleges. Contextualization holds potential
value as an integral part of the academic support system that can turn math courses into a
gateway, instead of a gatekeeper, for the many historically underserved students concen-
trated at community colleges.

Funding This study is based on work supported by the National Science Foundation under Grant No.
DUE-1700625.
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