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Abstract
Low completion rates of math courses pose a major challenge for community college stu-
dents’ educational progress and outcomes. Contextualized instruction has been identified as 
a promising approach to removing some of the longstanding barriers within math teaching 
and learning. Still, the empirical base on this topic remains small, with particularly little 
evidence on how exposure to math contextualization relates to students’ longer-term edu-
cational outcomes, which bear important implications for institutions’ performance metrics 
and policymaking. We contribute new research on this front by examining how exposure 
to math contextualization relates to a range of interim and longer-term educational out-
comes at a large community college in a Midwestern state. We applied the genetic match-
ing approach to construct a study sample that was balanced in background characteristics 
between the student group receiving contextualized math instruction and their counterparts 
enrolled in traditional math courses. We adopted a set of regression analyses based on the 
matched sample, and found a significant positive relationship between exposure to math 
contextualization and students’ outcome measures, including course performance, term 
GPA, continuous postsecondary enrollment, credential completion, and upward transfer.

Keywords  Active learning · Community colleges · Contextualized instruction · Math 
contextualization · Technical education · Student outcomes

Students beginning at public 2-year institutions represent a vital population of college 
attendees who have been historically underserved in postsecondary education. Hailing 
from more diverse backgrounds relative to students beginning at baccalaureate institutions 
(Cohen et al., 2014), community college students represent a unique talent pool that pro-
pels institutions to invest in efforts toward not only diversification of the student body, but 
also full participation and equitable outcomes. However, nationally, community college 
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students’ persistence, completion, and transfer rates remain low (Martin et al., 2014; Presi-
dent’s Council of Advisors on Science & Technology, 2012; Snyder et al., 2016), calling 
for stronger institutional efforts to better serve these students and enhance their educational 
success in the short and long run.

One particular area of struggle that has been identified as impeding student suc-
cess is in mathematics (hereafter shortened to math). Indeed, research has shown that 
math courses at both developmental and college levels act as a gatekeeper that often 
derails community colleges students’ pathways to success (Hagedorn & Kuznetsova, 
2016; Perin, 2011; Wang, 2017). Math course completion rates have been low, hovering 
around 50% for developmental math courses (Chen, 2016; Rutschow, 2019) and 48% for 
college-level math courses (Chen, 2016). Further exacerbating the issue is the deeply 
concerning fact that non-completion of math courses often marks the end of a student’s 
college career (Adelman, 2006; Lundy-Wagner, 2014; Wang, 2020).

Clearly, math offerings at community colleges need to be reimagined, improved 
upon, and potentially reformed to flip the narrative so that they can act as a gateway 
to student success. Toward this end, a number of innovative approaches to redesigning 
developmental and college-level math have gained national traction. Notable examples 
include shortening or accelerating math sequences through compression (Ariovich & 
Walker, 2014; Kosiewicz et  al., 2016; Schudde & Keisler, 2019), co-requisite models 
(Adams et al., 2009; Jaggars et al., 2015; Ran & Lin, 2019), and revamping early assess-
ment and placement processes through multiple measures (Burdman, 2012; Melguizo 
et al., 2014; Ngo & Kwon, 2015). While these structural reforms hold promise, instruc-
tional changes are as, if not more, critical. One particular area of interest and impor-
tance is contextualized instruction as a means to improve teaching and learning experi-
ences within the community college math classroom.

We focus on contextualization not only because of its potential to resolve the math 
struggle, but also because it rests with what happens within the classroom, an argu-
ably key and primary venue through which the vast majority of community college stu-
dents experience college. Research has shown that what happens or does not happen 
within the classroom profoundly affects a community college student’s prospects of col-
lege progress and completion (e.g., Deil-Amen, 2006; Deil-Amen & Rosenbaum, 2002), 
especially within math courses (e.g., Wang et al., 2017). Accordingly, when contending 
with multiple ways to address the larger math reform, it is pivotal to develop teaching 
approaches that effectively facilitate and enhance students’ learning. By situating more 
abstract subject matter within real-life settings, contextualized instruction has shown 
promise to enhance student learning, as suggested by evidence on language and literacy 
instruction (e.g., Gillam et al., 2012; Perin, 2013; Shrum, 2015).

To date, only a handful of empirical studies explicitly examined contextualization 
in math courses in community college settings (e.g., Parker et  al., 2018; Wang et  al., 
2017), all pointing to contextualization’s potential to cultivate positive learning expe-
riences and motivational beliefs among math learners. At the same time, little extant 
evidence touches upon the connection between math contextualization and students’ 
educational outcomes, such as transfer and completion, which bear important implica-
tions for institutions’ performance metrics and policymaking across institutional, state, 
and national levels. Thus, our study is aimed at contributing new research on this front 
by addressing the following overarching research question: How does exposure to math 
contextualization relate to community college students’ interim and longer-term educa-
tional outcomes? The following set of specific questions guide our inquiry:
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First, what is the relationship between exposure to math contextualization and students’ 
math course performance, measured by course grade?
Second, what is the relationship between exposure to math contextualization and stu-
dents’ academic performance in the same term, measured by term GPA?
Third, what is the relationship between exposure to math contextualization and students’ 
educational progress and attainment, measured by continuous postsecondary enroll-
ment, credential completion, or upward transfer?

We address our research questions through a set of regression analyses of a matched 
sample consisting of both students receiving contextualized math instruction and their 
counterparts enrolled in traditional math courses. Our findings suggest that exposure to 
contextualization has a significantly positive relationship with these set of outcomes.

Literature Review

In this section, we situate our study by first examining the literature on how contextualiza-
tion has been shown to be a promising teaching approach across various subjects. Next, 
we review the literature that specifically touches upon existing evidence speaking to math 
contextualization’s potential impact on community college students.

Contextualization as an Instructional Approach

Contextualization is broadly conceived as an umbrella term that encompasses a wide 
range of teaching strategies with the goal of purposefully integrating foundational skills—
through concrete applications—within contexts aligned with students’ academic and career 
interests (Mazzeo, 2008). By nature, contextualization fosters active learning (Faust & 
Paulson, 1998; Prince, 2004) by helping students see how to utilize concepts within realis-
tic settings in their future studies as well as work (Rivet & Krajcik, 2008), and by guiding 
students to investigate real-world problems (Bouillion & Gomez, 2001; Rivet & Krajcik, 
2008). Through a contextualized approach, faculty intentionally use problems or examples 
that are meaningful to students to guide them toward mastery of the content (Edelson et al., 
1999; Rivet & Krajcik, 2008).

Although the literature lacks a clearly defined distinction between contextualization and 
its “opposite”—decontextualization, likely because instructional approaches are more fluid 
than dichotomously categorized, a common feature of a “decontextualized”1 approach is 
heavy reliance on one or more of the following approaches: lecture-based teaching (Levin 
& Calcagno, 2008), drill and practice (Cox, 2015; Grubb, 2013), and routine questions 
absent from real-world contexts (Mesa et al., 2011). Overall, “decontextualized” instruc-
tional approaches are not conducive to creating opportunities for students to actively 
engage in authentic applications based on their learning (Levin & Calcagno, 2008) and 

1  We acknowledge that, in reality, very few social activities such as teaching and learning in the class-
room can be described as fully decontextualized. Thus, we adopt the term from the literature but put it in 
quotation marks. In these “decontextualized” classes, examples from real life may well have occurred, but 
contextualization goes far beyond incidental utilization of real-life examples and is rather an intentional 
approach guiding curricular design (Valenzuela, 2018).
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develop crucial conceptual knowledge and mastery toward deeper math learning (Cox, 
2015; Quarles & Davis, 2017).

As an active learning approach, contextualization connects academic content (e.g., read-
ing, writing, and/or math) with meaningful contexts that appeal to students’ interests and 
backgrounds, which has been shown to lead to learning gains (e.g., Perin, 2013; Shrum, 
2015). The National Council for Workforce Education (2010) also advocated for the adop-
tion of contextualization given the documented evidence on its efficacy on student learning.

Math Contextualization as a Potential Gateway to Community College Student 
Success

Despite the importance of math preparation, success rates in both developmental and col-
lege-level math courses have been low (Chen, 2016; Rutschow, 2019). Math courses have 
acted more as a gatekeeper than a gateway to success, especially for underrepresented stu-
dents (e.g., Bryk & Treisman, 2010). Traditionally, the aforementioned decontextualized 
approach characterized by an environment with little interaction among students has domi-
nated the community college classroom (Grubb, 2001, 2010), creating a strong disconnect 
between the learning materials presented in class and real-life contexts (Grubb et al., 1999; 
Wang et al., 2017).

The extant empirical base on math contextualization at community colleges is small 
but growing. This literature has demonstrated the potential of contextualization to nurture 
more active math learning among community college students by allowing students to cul-
tivate the connection between abstract math content with real-life experiences, where they 
can utilize what they learn in the moment toward true mastery (Baker et al., 2009). In addi-
tion, a qualitative study by Wang et al. (2017) revealed that math contextualization helped 
boost community college students’ math self-efficacy beliefs by alleviating their fear of 
learning math.

Further, math contextualization has been shown to contribute to increased course pass-
ing rates (Wiseley, 2009) and math scores (Perin, 2011). In particular, a set of quantitative 
analyses by Jenkins et al. (2009) and Zeidenberg et al. (2010) compared students enrolled 
in the Integrated Basic Education and Skills Training (I-BEST) courses—a contextualiza-
tion model that integrates basic skills education, such as math, with job-training—with 
similar students enrolled in non-I-BEST options, and found that I-BEST students were 
more likely to achieve higher scores on basic skills exams, earn college credits, or complete 
an occupational certificate.

Despite the initial evidence pointing to math contextualization’s potential in cultivat-
ing positive learning experiences, motivational beliefs, and course performance, research 
is still scant on math contextualization’s impact on longer-term educational outcomes of 
community college students above and beyond short-term progress.

Conceptual Framework

Our conceptual framework is grounded within Wang’s (2017) theoretical model of momen-
tum for community college student success while also integrating relevant higher educa-
tion literature on students’ educational progress in college. The momentum model offers a 
holistic approach to understanding community college student success. Dynamic in nature 
and with an intentional focus on the classroom as community college students’ primary 
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venue of engagement, the model presents important areas for community colleges to build 
and support positive momentum toward meaningful and successful educational experi-
ences and outcomes for students. In terms of key domains that build momentum, the model 
includes three areas: a) the curricular domain that underscores continued educational pro-
gress through well-sequenced and scaffolded courses across the curricula, b) the teaching 
and learning domain that calls for instructional practices that foster active learning and 
skills to master the subject matter, and c) the motivational domain that is concerned with 
the development of aspirations, mindsets, perseverance and agency that support students in 
advancing through college.

The momentum model emphasizes the classroom as a key space of community college 
students’ engagement with their education, thus front centering the teaching and learning 
domain as a vital venue through which students build momentum toward achieving their 
educational success (Wang, 2017). The teaching and learning domain particularly situates 
our study. This domain consists of two subareas: a) cognitive momentum, defined as stu-
dents’ “cumulative progress toward the learning and mastery of the subject matter at hand” 
(Wang, 2017, p. 284), which is primarily realized by classroom and other educational 
activities that facilitate students’ thinking, understanding, and learning of the content; b) 
metacognitive momentum, distinct from yet complementary with cognitive momentum, 
refers to students’ capacity to “apply strategies to regulate, adjust, adapt, and assess one’s 
own learning” (Wang, 2017, p. 284), which is cultivated through the processes of planning, 
problem-solving, and self-regulation that are fundamental for establishing and maintaining 
academic progress. The momentum model further elucidates that active learning experi-
ences (e.g., through a contextualized approach) are well positioned to cultivate students’ 
cognitive and metacognitive momentum by increasing students’ meaningful engagement 
with the subject matter and providing opportunities to apply their learning to real-world 
problems. Because contextualized math instruction entails approaches and strategies to 
support students in becoming active learners, it is a highly plausible mechanism for devel-
oping student momentum in the teaching and learning domain, which is linked to students’ 
educational progress and success.

Also integral to conceptualizing this study is a set of individual and contextual factors 
that have been shown to shape community college student progress and outcomes based on 
prior literature. These include student background characteristics, such as gender (Ngo & 
Melguizo, 2020; Wang & Wickersham, 2018), race/ethnicity (Cuellar & Gándara, 2020; 
Y. L. Zhang et  al., 2019), age (Chaves, 2006), first-generation status (Crisp & Delgado, 
2014), enrollment intensity (Adelman, 2006; Leinbach & Jenkins, 2008; Wang, 2017), and 
prior experience with postsecondary education (Laanan & Jain, 2017; Wang, 2020). In 
addition, financing postsecondary education poses a major concern for community college 
students (Collier & Parnther, 2021; Hallett & Freas, 2018; Wang, 2020), as many students 
hail from a low-income background, as often indicated by their Pell eligibility (Park & 
Scott-Clayton, 2018; Yang, & Venezia, 2020). Also of great relevance is students’ initial 
level of placement into a math sequence, including placement into developmental courses 
(Bahr et al., 2019; Kosiewicz & Ngo, 2020; Park et al., 2020; Xu & Dadgar, 2018). Com-
munity college students’ progress and outcomes can be further intricately linked to their 
educational pathways or programs (Baber, 2018; Bailey, 2015), as well as various instruc-
tor attributes, including gender (Bettinger & Long, 2005; Stout et al., 2018), race (Fairlie 
et al., 2014), age (van derKaay & Young, 2012), years of teaching (Lancaster & Lundberg, 
2019), along with part-time employment status (Eagan & Jaeger, 2009; Jaeger, 2008; Jae-
ger & Eagan, 2009).
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Taken together, for community college students, a contextualized math classroom and 
learning environment would serve as a viable space where they could gain momentum 
toward achieving their educational goals. Taking into consideration other relevant factors 
noted above, momentum accumulated via math contextualization would not only translate 
into students’ interim learning outcomes, such as passing the course and earning a good 
grade, but also would lead to improved long-term educational outcomes, including con-
tinuous enrollment, transfer, and completion of credentials.

Method

Research Site and Intervention

Research Site

This study took place at a large public community college in a Midwestern state. The col-
lege serves nearly 40,000 students, with 25% being students from underrepresented racial/
ethnic backgrounds, over 50% first-generation college students, and about 50% older than 
the age of 24. This distribution of student demographics largely aligns with the commu-
nity college student population nationally (American Association of Community Colleges, 
2018a). In terms of faculty composition, similar to national trends (American Association 
of Community Colleges, 2018b), around 80% of the faculty at the research site are white 
(75% nationally). While we do not assume that this study’s results will be fully generaliz-
able to other community colleges or other states, our findings will offer relevant insights 
and implications for similar institutions, leaders, and faculty grappling with math instruc-
tion and contextualization as a promising solution.

Intervention

In Fall 2018, as part of the college’s math professional development initiative, five math 
instructors adopted contextualized instruction for the first time in nine math courses they 
were teaching during the semester, with three of the five instructors teaching multiple 
math courses (two teaching two courses, one teaching three courses). In total, these nine 
courses enrolled 170 students. The instructors teaching these courses received prior profes-
sional training on math contextualization that places an intentional and explicit focus on 
connecting math instruction to real-world applications and engaging students to problem 
solve in contexts meaningful to them. Both the training and application of contextualiza-
tion were guided by the working definition: “Contextualization is the design of curriculum 
AND the way the curriculum is delivered that provides students with the opportunity to 
engage in ‘real work.’” This meant that both the design of the curriculum and the delivery 
of it through instruction intentionally prioritize activities and content that require students 
to work on realistic, relevant concepts they would encounter in authentic career and life 
contexts.

Treatment and Control Conditions

Enrollment in the nine contextualized math courses in Fall 2018 constituted the treatment 
condition, whereas the “counterfactual” condition involved enrollment in traditional math 



315Research in Higher Education (2022) 63:309–336	

1 3

courses that were taught without an intentional goal to contextualize. More specifically, 
contextualized math courses were characterized by the following two key features that 
distinguished them from other math courses offered at the college during the same time: 
First, the contextualized courses followed a curriculum that centered on several common 
learning outcomes: understanding and applying math concepts, learning about the context, 
learning/practicing skills critical for real work, questioning, estimating, engaging in discus-
sion, and challenging students themselves to figure it out. Second, aligned with these key 
learning outcomes, the contextualized math courses explicitly integrated in the curricu-
lum predetermined structures, opportunities, and activities to engage students in authentic 
applications of math content within real-life contexts on a regular and systematic basis. 
The math courses constituting the control condition were the ones that were taught “busi-
ness as usual” without these intentional features indicated above.

Study Sample and Data

Data Structure and Sample

Our dataset featured a four-level structure, namely course record, student, course, and 
instructor levels, each nested within the next level. For the treatment condition, 170 stu-
dents enrolled in nine contextualized courses taught by five instructors, for a total of 170 
course records. No students were enrolled in multiple contextualized courses. For the con-
trol condition, 4383 students enrolled in 271 traditional courses taught by 111 instructors, 
for a total of 4878 course records due to multiple enrollments in traditional courses. Given 
the fairly small number of contextualized courses and instructors who taught contextual-
ized courses, analysis at the instructor or course level would suffer severely from loss of 
statistical power. Thus, we decided to focus our analysis at the course record and student 
levels to ensure adequate statistical power while truthfully answering our research ques-
tions, with course performance analyzed at the course record level and other outcome 
measures analyzed at the student level.

For the course record level analysis, an important issue to address is concurrent enrollment in 
multiple courses by the same student. In our data, 290 students enrolled in multiple courses dur-
ing the same term, with 41 enrolled in both contextualized and non-contextualized courses and 
249 enrolled in multiple non-contextualized courses. We detail our procedures for handling this 
issue later under the data analysis section. The course record-level and student-level information 
is provided in Table 1, where we also describe the study’s variables in detail.

The college’s institutional research office provided available administrative data that 
included students’ background data and transcript records, instructors’ characteristics, 
as well as course attributes. Data from the National Student Clearinghouse (NSC) were 
also included to measure student attainment of postsecondary credentials and transfer. A 
detailed description of the study measures follows.

Outcome Measures

Based on our research questions, we examined the following interim and longer-term out-
comes. Interim outcome measures included course grade and Fall 2018 term GPA, and 
longer-term outcomes were represented by students’ cumulative GPA, continuous enroll-
ment, credential completion, and/or upward transfer as of Fall 2019.
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Table 1   Descriptive data of full course records and student sample

Students/records (Treat-
ment group)

Students (Control 
group)

Course records (Control 
group)

Students 170 (3.80%) 4300 (96.20%)
Course records 170 (3.49%) 4878 (96.63%)
Student attributes
Race/ethnicity
 White 107 (62.94%) 2533 (58.91%) 2586 (59.00%)
 Students of Color 63 (37.06%) 1767 (41.09%) 1797 (41.00%)
  Native American 1 (0.59%) 24 (0.56%) 25 (0.57%)
  Asian 8 (4.71%) 265 (6.16%) 269 (6.14%)
  African American 10 (5.88%) 451 (10.49%) 455 (10.38%)
  Hawaiian/Pacific 

Islander
0 (0.00%) 2 (0.05%) 2 (0.05%)

  Hispanic 25 (14.71%) 678 (15.77%) 694 (15.83%)
  Multi-Racial 14 (8.24%) 259 (6.02%) 262 (5.98%)
  Unknown 5 (2.94%) 88 (2.05%) 90 (2.05%)

Sex
 Male 113 (66.47%) 2038 (47.40%) 2103 (47.98%)
 Female 57 (33.53%) 2262 (52.60%) 2280 (52.02%)

Age
 Under 24 135 (79.41%) 2943 (68.46%) 3003 (68.53%)
 24 and older 35 (20.59%) 1356 (31.54%) 1379 (31.47%)

First-generation student
 Yes 88 (51.76%) 2632 (61.21%) 2681 (61.17%)
 No 82 (48.24%) 1668 (38.79%) 1702 (38.83%)

FAFSA filing status
 No 76 (44.71%) 1820 (42.33%) 1855 (42.32%)
 Yes 94 (55.29%) 2480 (57.67%) 2528 (57.68%)

Pell eligibility

 Not eligible 38 (22.35%) 846 (19.67%) 867 (19.22%)
 Eligible 56 (32.94%) 1634 (38.00%) 1661 (37.90%)
 Unknown 76 (44.71%) 1820 (42.33%) 1855 (42.32%)

Enrollment intensity
 Full-time 124 (72.94%) 2324 (54.05%) 2386 (54.44%)
 Less than full-time 46 (27.06%) 1976 (45.95%) 1997 (45.56%)

Academic plan track
 Liberal arts transfer 44 (25.88%) 2231 (51.88%) 2240 (51.11%)
 Technical education 74 (43.53%) 340 (7.91%) 398 (9.08%)
 Undeclared 52 (30.59%) 1729 (40.21%) 1745 (39.81%)

Math preparation
 Developmental 56 (32.94%) 1490 (34.65%) 1531 (34.93%)
 College ready 70 (41.18%) 1524 (35.44%) 1555 (35.48%)
 No placement 44 (25.88%) 1286 (29.91%) 1297 (29.59%)

Returning student
 No 85 (50.00%) 1694 (39.40%) 1734 (39.56%)
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Covariates

Based on the conceptual framework and prior literature we delineated earlier, we included 
a set of covariates that reflect students’ background characteristics as well as instructor and 
course attributes. Students’ background consisted of demographic information (i.e., sex, 
race/ethnicity, age, first-generation status), financial need, enrollment intensity, academic 
plan track, math preparation, and previous postsecondary enrollment and credentials. 
Course-level covariates included whether the course was offered in the math department 

Table 1   (continued)

Students/records (Treat-
ment group)

Students (Control 
group)

Course records (Control 
group)

 Yes 85 (50.00%) 2606 (60.60%) 2649 (60.44%)
Prior postsecondary 

credential
 No 166 (97.65%) 4128 (96.00%) 4211 (96.08%)
 Yes 4 (2.35%) 172 (4.00%) 172 (3.92%)

Treatment group Control group

Course attributes 9 (3.21%) 271 (96.79%)
Course offering unit
 Offered by math depart-

ment
6 (66.67%) 146 (53.87%)

 Offered by technical 
programs

3 (33.33%) 28 (10.33%)

Required technical ed 
course

 Yes 5 (55.56%) 48 (17.71%)
 No 4 (44.44%) 223 (82.29%)

Instructor characteristics 5 111
Race/ethnicity
 White 4 (80.00%) 91 (81.98%)
 Faculty of Color 1 (20.00%) 20 (18.02%)
 Asian 1 (20.00%) 5 (4.50%)
 African American 0 0 1 (0.90%)
 Hispanic 0 0 6 (5.41%)
 Did not identify 0 0 8 (7.21%)

Sex
 Male 4 (80.00%) 64 (57.66%)
 Female 1 (20.00%) 47 (42.34%)

Employment status
 Full-time 2 (40.00%) 26 (23.42%)
 Part-time 3 (60.00%) 85 (76.58%)

Age 53.40 (5.59) 54.31 (11.03)
Years teaching at the 

college
11.20 (4.18) 12.75 (8.24)
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or a technical education program and whether the course counted toward a technical educa-
tion degree. At the instructor-level, race/ethnicity, sex, employment status, age, and years 
of teaching at the college were included. See Table 1 for a full list and description of the 
variables.

Data Analysis

We adopted a matching approach to construct comparable treatment and control groups 
to reduce the bias of the treatment effect estimation since randomization was not feasible 
(Holmes, 2013). Although the “gold” standard to evaluate the treatment effect is randomi-
zation, in which students would be randomly assigned to the contextualized courses and 
traditional courses, it was not a realistic approach at the research site, as is the case in many 
education settings. Student self-selection into the treatment and control conditions may 
reflect their preexisting differences, introducing bias into the estimation of the treatment 
effect. To mitigate this concern, we first identified the treatment and control groups based 
on all available background covariates, followed by an outcome analysis using the matched 
groups (Stuart, 2010).

Genetic Matching

For both course record-level and student-level analyses, we adopted the genetic match-
ing algorithm to identify a control group, a subset of units in the control condition that 
was most comparable with their counterparts in the contextualized courses, to estimate 
the average treatment effect of the treated. Developed by Diamond and Sekhon (2013), 
the genetic matching algorithm is a multivariate matching method that adopts non-para-
metric generalization of Mahalanobis distance matching (MDM) to achieve the balance 
of observed covariates between treatment and control groups. This matching approach 
directly takes into account all covariates as well as their interactions by computing the 
Mahalanobis distance, thus accounting for the covariance of included covariates. There-
fore, it tends to produce exact or close to exact pairs, which is an ideal scenario of estimat-
ing causal inference since these pairs form the treated and control groups with a more bal-
anced multivariate distribution of the covariates (Stuart, 2010). Recent research has shown 
that multivariate matching performs at least similarly or better than univariate matching 
that is typically used in propensity score matching (PSM) approaches (e.g., nearest neigh-
bor matching, radius matching, and kernel matching) in reducing imbalance (Baser, 2006; 
King & Nielsen, 2019), but requires a large number of units under the control condition, 
which is the case for our study. The high control to treatment sample size ratio (over 25) of 
our study provided an excellent condition for the adoption of genetic matching to produce a 
sufficient number of matched pairs with the closest possible similarity to each other.

In genetic matching, the generalized Mahalanobis distance between course record/stu-
dent i and j was defined as follows:

where Xi and Xj were the covariate values of course record/student i and j, respectively, W 
was a positive definite weight diagonal matrix, and S

1

2 was the Cholesky decomposition of the 
sample variance–covariance matrix of the full control group. By choosing the elements of W, 

(

Xi,Xj

)

=

{

(

Xi − Xj
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1
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the genetic matching approach weighted each variable according to its relative importance for 
achieving the best overall balance, which was measured by paired t-tests and non-parametric 
Kolmogorov–Smirnov (KS) tests between the matched groups, thus optimizing the overall 
covariate balance (Stuart, 2010). The W included the inverse of the variances of covariates.

We employed the genetic matching algorithm to construct analytical samples specific 
to the level of outcomes and performed 1 to 1 matching with replacement. We adopted 1 
to 1 matching since increasing the number of control group units may only lead to limited 
increment of power that is largely driven by the smaller group size, which is often the treat-
ment group (Cohen, 1988; Stuart, 2010, 2020), as was the case in our study. Further, the 
genetic matching approach we used facilitates exact or close to exact matching in produc-
ing the treatment and control groups. Thus, adopting a high control to treatment sample 
size ratio in matching may include poor matches that may increase bias (Rubin & Thomas, 
2000). To further ensure that our results were robust to different matching scenarios, we 
also examined 2 to 1 and 5 to 1 matching. For both student- and course record-level match-
ing, the 5 to 1 matching approach did not achieve balance on covariates, with at least one 
covariate having a standardized mean difference (SMD) value greater than 0.1. For the 2 to 
1 matching approach, we were able to achieve balance. Across both scenarios, the relation-
ship between exposure to math contextualization and outcomes that we uncovered based on 
the 1 to 1 matched sample generally held. Essentially, our course record-level and student-
level analyses were based on 170 matched pairs of course records and 170 matched pairs 
of students, respectively. Due to the complexity of the data structure described earlier, we 
implemented matching through different procedures that were appropriate for the level of 
data. For course records, we first identified the 41 students enrolled in both contextualized 
and traditional courses whose course records from traditional classes served as optimal 
matches for their course records in contextualized courses. For the remaining 129 students 
without overlapping enrollment, we then adopted genetic matching by identifying matches 
in the control group. Matching at the student level was more straightforward, as each stu-
dent was a unique unit of analysis. We conducted all matching procedures using the R 
package, Matching (Sekhon, 2011).

We examined the SMD to identify the covariate balance between the groups after 
matching (Austin, 2009; Harder et al., 2010). More specifically:

where p̂treatment and p̂control refer to the probability of being in a specific category (e.g., 
White) in treatment and control groups. A covariate was considered balanced if the SMD 
value was smaller than 0.1 (Z. Zhang et al., 2019).

Note that the common support of propensity scores, a prevalent approach to evaluating 
the quality of propensity score matching (PSM), was not appropriate for our study that 
used genetic matching. In PSM, each course record’s/student’s probability of being in the 
treatment group would be derived by summarizing all covariates into one scalar (Rosen-
baum & Rubin, 1983), followed by matching the treatment and control cases according to 
their distance of propensity scores. However, we conducted genetic matching with the gen-
eralized Mahalanobis distance, which was computed using all covariates directly without 
summarizing the covariates into a single measure. Thus, drawing a single dimension plot to 
show common support was not appropriate in our study.

SMD =
p̂treatment − p̂control

√

p̂treatment(1−p̂treatment)+p̂control(1−p̂control)
2
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Outcomes Analysis

Following genetic matching, we applied a set of ordinal,  linear, and multinomial logistic 
regression analyses on the matched sample to investigate the relationship between exposure 
to math contextualization and a range of interim and longer-term outcomes with covariates 
to further reduce bias and standard error (Rubin, 1979). For course record-level analysis, 
we further adjusted for instructor-level covariates. Course grade was analyzed using ordinal 
regression given the ordinal nature of the outcome. Term GPA and cumulative GPA were 
analyzed using linear regression since the measures had more than 10 values. One-year 
educational progress and attainment were analyzed using multinomial regression given the 
categorical nature of the outcome variable.

Because our matched data were not independent given the data structure, we estimated 
sampling errors through bootstrapping with 1,000 replications to obtain reliable results. 
Within each replication, each pair of treatment and control course records/students was 
bootstrapped to maintain the balance of covariates. Three commonly used significance lev-
els, 0.05, 0.01, and 0.001, were used to detect the level of statistical significance of the 
coefficients.

We implemented the set of regression analyses using the R software (R Core Team, 
2019). We conducted linear regression and logistic regression analysis using the base R 
program, and ordinal and multinomial regression analysis using the MASS and nnet pack-
age, respectively (Venables & Ripley, 2002).

Sensitivity Analysis

One of the most important assumptions of matching is the ignorability of treatment assign-
ment (Rosenbaum & Rubin, 1983), which indicates that there is not an unobserved con-
founder that relates to: a) the probability of being in the treatment group while account-
ing for all observables, and b) the outcome of interest when controlling for the probability 
of being in the treatment as well as the observed covariates. The ignorability assumption 
cannot be fully verified given the unobserved nature of such a confounder (Pearl, 2009). 
Thus, we followed Cinelli and Hazlett (2020) to evaluate the sensitivity of our findings 
to the existence of an unobserved confounder. Specifically, the two crucial correlations 
mentioned above were transformed into two partial R-squared values, which introduced 
the robustness value (RV)—the amount of the residual variance of both selection into treat-
ment and the outcomes to be explained by the unobserved confounder. The RV ranges from 
0 to 1. An RV close to 1 indicates that the treatment effect is strong to the extent that even 
the existence of a confounder that explains close to 100% of the residuals would not change 
the conclusion. In contrast, an RV close to 0 indicates that a weak confounder may change 
the conclusion.

Results

Results From Matching

The 170 course records and 170 students in the treatment condition were successfully 
matched. Table 2 details the results from the balancing test by providing the marginal distri-
butions of the covariates and the SMD values pre- and post-matching. Overall, the balance 
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of marginal distributions of all covariates was improved after matching. For instance, for 
matching at the level of course records, the largest absolute SMD value decreased from 
0.75 (pre-matching) to 0.08 (post-matching). For matching at the student level, the largest 
absolute SMD value decreased from 0.89 (pre-matching) to 0.05 (post-matching).

Results From Regression Analyses

Table 3 details results from our regression analyses based on the matched sample (derived 
from genetic matching using the covariates described in Table  2). To account for addi-
tional imbalance between the treatment and control groups after matching, we included 
in the regression models a set of student-, course-, and instructor-level covariates. Regres-
sion adjustment using covariates can further reduce bias due to remaining imbalance 
between the treatment and control groups after matching (Rubin, 1979; Rubin & Thomas, 
2000). Covariates that are statistically significant further help explain the outcome vari-
ables included in regression adjustment based on a matched sample. Overall, we identified 
a statistically significant positive relationship between enrollment in contextualized math 
courses and all outcome measures except a null effect on transfer, holding constant the set 
of covariates included in the models.

From the ordinal regression, exposure to math contextualization was associated with greater 
math course performance. The odds of passing (relative to failing) the class and earning higher 
grades for the contextualized courses is estimated to be 2.55 times the odds for traditional courses 
when holding other covariates constant. Exposure to math contextualization was also associated 
with higher term GPA, holding all covariates constant. When looking at longer-term outcomes, 
enrollment in a contextualized course was related to a higher latest cumulative GPA, as well as 
greater odds of continuous enrollment (odds ratio value of 1.70) and credential completion (odds 
ratio value of 3.16), relative to enrollment in a traditional course.

Here we offer some additional details regarding the regression results pertaining to the 
covariates included in our models. Except part-time enrollment, which had a persistent 
negative association with all outcome measures, other covariates demonstrated potentially 
nuanced roles depending on the specific outcome under consideration. For instance, holding 
other variables constant, race/ethnicity and gender did not turn out to be significant predic-
tors for the outcome measures, except that Students of Color had lower course performance 
compared with their White counterparts. In addition, older students performed better than 
their younger counterparts in terms of course grade, term GPA, and cumulative GPA. Com-
pared with those without a declared academic plan track, students on the technical education 
track had higher term GPA, cumulative GPA, and a higher likelihood to complete a creden-
tial; whereas students on the transfer track were more likely to transfer. In addition, returning 
students were more likely to have a higher cumulative GPA and to transfer, compared with 
students who started as new freshmen. Also interesting to note, students enrolled in courses 
taught by younger faculty or part-time instructors tended to receive a higher course grade. 
For the full set of detailed results from the regression analyses, see Table 3.

Results From Sensitivity Analysis

Results from our sensitivity analysis showed that the estimated contextualization 
effects would reduce to 0 when the unobserved confounder explained 10% to 17% 
of the residual variance of both treatment assignment and outcomes; our conclusion 
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would change if the unobserved confounder explained less than 0.01% to 7% of both 
the residual variances of the treatment assignment and outcomes under the specific 
sample size. While there are no established, steadfast criteria to evaluate robustness, 
these residual variance values appear to fall below a reasonably small maximum value. 
The effect of contextualization on continuous enrollment was the most vulnerable one 
to an unobserved confounder. In contrast, the contextualization effect on the course 
grade was the most robust one.

The two RVs of each outcome are listed in Table 4. The contour plots of the RVs are 
shown in Figs. 1, 2.

Discussion

In this study, we examined the link between exposure to math contextualization and 
community college students’ interim and longer-term educational outcomes. Using 
genetic matching, we constructed a balanced sample consisting of students enrolled 
in contextualized courses and their similar counterparts in traditional math courses. 
We further compared the educational outcomes of this matched sample using a set of 
regression analyses. Our findings revealed that the students enrolled in contextualized 
math courses had significantly improved course performance and educational progress 
and attainment.

The largely positive associations between enrollment in contextualized math courses 
and student outcomes suggest that, when delivered through a contextualized approach, 
math is less likely to be a barrier to student success. Contextualization may serve as 
a powerful tool in improving math success and furthering community college student 
progress. In light of our conceptual framework, our findings as a whole suggest that 
contextualized math may indeed act as a generative mechanism for students to accrue 
momentum toward greater math performance and achieving longer-term college suc-
cess. For example, our study demonstrates the potential of contextualization to boost 
curricular momentum in terms of enrollment continuity (Wang, 2017), which supports 
progression toward credential completion.

Math Contextualization’s Immediate and Enduring Role

The positive link between exposure to math contextualization and course performance 
as indicated in students’ course grades and passing rates lends additional support to the 
small research base (e.g., Wiseley, 2009) and further establishes math contextualization 
as a significant predictor of immediate academic gains in math. This immediate boost in 
students’ course performance suggests that contextualized math instruction may rapidly 
and effectively translate into learning conditions conducive to positive math attitudes and 
learning experiences. As one of the proximal indicators of, and building blocks toward, 
longer-term academic success, a student’s course performance signals, albeit imperfectly, 
how much they have learned and where they are with regard to attaining their educational 
goals. Consequently, stronger course performance uncovered in our study not only signals 
an important short-term benefit of contextualized math instruction, but it also serves as a 
significant marker of long-term college success. This is especially tenable given the close 
relationship between passing college-level math courses and college outcomes (e.g., Bel-
field et al., 2019; Calcagno et al., 2007; Cohen & Kelly, 2019), further reinforced by the 
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larger literature pointing to students’ academic performance as one of the most consistent 
predictors of college persistence and completion (e.g., Sass et al., 2018; Y. L. Zhang et al., 
2019).

Our results further resonate with and extend prior research on broader math reforms or 
curricular models aimed at improving community college student outcomes. Often encom-
passing contextualized math instruction as one of the components, these initiatives have 
been empirically shown to be positively linked to community college students’ completion 
of developmental math coursework and academic milestones such as advancing to the next 
math level, enrolling in and completing college-level math, declaring a major, and accumu-
lating college credit (Cox, 2015; Ngo, 2019; Quarles & Davis, 2017; Schudde & Keisler, 
2019; Yamada et al., 2018). Our finding not only lends further credibility to the utility of 
math contextualization in the reforms, but also highlights it as a potential key ingredient for 
these reforms’ success. In this sense, our study offers deepened and nuanced insights into 
the generalizability of these positive findings regarding broad-scale reforms by isolating 
the refined connection between math contextualization and community college student out-
comes. That is, while large-scale, evidence-based reforms may be ideal, highly promising 
instructional strategies such as contextualization can lead the way and serve as a jumping-
off point toward larger initiatives or reforms in community colleges. Indeed, our study’s 
finding shows that it is highly plausible that the various types of momentum—cognitive, 
metacognitive, and motivational (Wang, 2017)—as a result of exposure to math contextu-
alization transmit beyond a single course and extend into ongoing, broader ways in which 
students navigate postsecondary education and stay more motivated to persist.

Implications for Policy and Practice

Several implications emerged from our study. First, in light of its largely positive relation-
ship with students’ outcomes that we uncovered in our study, the adoption of math contex-
tualization appears to be a viable and logical step toward fostering fruitful math learning 
experiences and educational success among community college students. This recom-
mendation is further backed by promising empirical evidence from recent larger-scale 
math reforms that integrate math contextualization as one of the components. However, 
in practice, a contextualized approach is concerningly underutilized (Jenkins et al., 2018; 
Wang et al., 2017; Wiseley, 2009). Further complicating this problem is that, even when 

Table 4   Results from robustness check

Robustness checks were conducted for significant Bs only

Analysis Outcome Robustness value (% of residual variance 
explained)

Bring point estimate 
to 0

Bring corresponding
p− value > .05

One Course performance 17.00% 7.31%
Two Term GPA 16.09% 6.42%
Three Latest cumulative GPA 13.55% 3.58%
Four Continuous enrollment 9.85%  < 0.01%

Credential completion 13.45% 3.46%



329Research in Higher Education (2022) 63:309–336	

1 3

contextualization is adopted, the involved courses and programs often concentrate within 
career and technical education, which does not align with the broad range of educational 
pathways that mirror an inclusive set of community college students’ educational goals, 
notably transfer (Wang, 2020). In future endeavors, community colleges should not only 
promote the adoption of math contextualization, but also be particularly intentional about 
broadening program, instructor, and student access to impactful evidence-based instruc-
tional practices such as math contextualization.

Second and related, we are calling for inclusive and motivating institutional policies 
that encourage practicing contextualization and active learning more broadly. One common 
challenge in instructional change, in this case encouraging faculty to potentially reform 
their instruction by moving away from a “decontextualized” tradition, requires significant 

Fig. 1   Sensitivity contour plots for treatment effect on course performance and term GPA. Upper panels: course 
performance; lower panels: term GPA; left panel: point estimate; right panel: t− value. The red lines show the 
partial R2 of the unobserved confounder with treatment and outcome when the point estimate decreases to 0 or 
the − value > 0.05. Thus, the red line close to the bottom left indicates that the treatment effect was vulnerable; 
the red line close to the top right indicates that the treatment effect was robust (Color figure online)
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Fig. 2   Sensitivity contour plots for latest cumulative GPA and one− year educational attainment (Continu-
ous Enrollment and Credential Completion). Upper panels: cumulative GPA; middle panels: continuous 
enrollment; lower panels: credential completion; left panel: point estimate; right panel: t− value. The red 
lines show the partial R2 of the unobserved confounder with treatment and outcome when the point estimate 
decreases to 0 or the − value > 0.05. Thus, the red line close to the bottom left indicates that the treatment 
effect was vulnerable; the red line close to the top right indicates that the treatment effect was robust (Color 
figure online)
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amounts of time, patience, and professional development. The effort involved may look 
intimidating in early phases; thus, effective and equitable use of resources becomes criti-
cal. This also means that instructional change should not fall solely on faculty. Instead, it 
should be a collective institutional endeavor. An open collaboration among faculty, admin-
istrators, and institutional researchers is pivotal for facilitating relationships, data, tools, 
support, and development opportunities toward effective change.

Third, it bears great potential to think beyond a singular “high-impact” contextualized 
math course and move toward cultivating a larger institutional environment that sustains 
and amplifies the positive effect of contextualization. For instance, since dynamic, mean-
ingful interactions between faculty and students are critical in contextualization practices 
(Baker et al., 2009; Perin, 2011), institutions should identify and cultivate additional ven-
ues beyond the classroom through which faculty and students can interact and communi-
cate. For instance, similar to many other community colleges, the faculty at our research 
institution have close ties to industry, which represents a viable opportunity to facilitate 
contextualized learning by drawing upon industry perspectives, contexts, and examples. 
These extended opportunities could further solidify contextualization’s positive effect 
through strengthened engagement with faculty, a highly predictive factor contributing to 
community college students’ improved short- and long-term outcomes (Schudde, 2019).

Study Limitations and Areas for Future Research

Our study also contains a number of limitations and highlights areas for future research on 
this topic. To begin, given sample size constraints, we were unable to test the potentially 
heterogenous effects of different contextualization strategies. This represents a significant 
direction for future research, as instructional strategies and approaches are profoundly 
nuanced and diverse, even within the same larger umbrella term of contextualization. 
Future inquiries that tease out different contextualization strategies in relation to students’ 
learning and outcomes will provide concrete evidence that allows practitioners, research-
ers, and policymakers to compare particular strategies and make well-informed decisions.

Similarly, given the small subsample sizes in terms of students’ race/ethnicity, our quan-
titative analysis was not able to disaggregate Students of Color into their distinct racial/
ethnic backgrounds. Especially given the glaring racial disparities and inequities in com-
munity college students’ educational outcomes (Crisp & Nuñez, 2014; Jenkins et al., 2018; 
Moore & Shulock, 2010; Wang, 2020), it is critically important to examine how students 
from underrepresented groups are affected by interventions and practices designed to ben-
efit all students to ensure that they do not merely serve to advantage those already advan-
taged (Wang, 2020). Future research on math contextualization should continue to adopt a 
more disaggregated approach to unpacking racial nuances and differences to fully under-
stand the impact of educational practices on the outcomes of all students, but particularly 
those historically underserved.

Conclusion

Our study uncovered a positive association between exposure to contextualized math and 
student outcomes, which illuminates contextualization’s potential in empowering students 
to gain momentum through classroom teaching and learning. This promising relationship 
may extend into other domains of students’ education where they can gain momentum in 
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support of their longer-term success. Future research will benefit from a deeper under-
standing of math contextualization’s impact on the holistic range of spaces where students 
can gain momentum for improved math performance and college success, as well as adopt-
ing a more nuanced approach to unraveling potential (in)equities in the implementation of 
contextualization and its impact across student subpopulations, especially racially minor-
itized students.

Overall, our study offers quantitative evidence in support of contextualization as a 
viable instructional approach to addressing the academic barriers that community college 
students experience in math, as well as broader adoption of contextualization approaches 
within larger-scale math reforms at community colleges. Contextualization holds potential 
value as an integral part of the academic support system that can turn math courses into a 
gateway, instead of a gatekeeper, for the many historically underserved students concen-
trated at community colleges.

Funding  This study is based on work supported by the National Science Foundation under Grant No. 
DUE-1700625.
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