2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-2055-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/FOCS52979.2021.00069

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

Constructive Separations and Their Consequences

Lijie Chen Ce Jin Rahul Santhanam R. Ryan Williams
Elect. Eng. & Comp. Sci. Elect. Eng. & Comp. Sci. Dept. of Computer Science Elect. Eng. & Comp. Sci.
MIT MIT University of Oxford MIT
Cambridge, MA USA Cambridge, MA USA Oxford, UK Cambridge, MA USA
lijieche @mit.edu cejin@mit.edu rahul.santhanam@cs.ox.ac.uk rrw @mit.edu

Abstract—For a complexity class C and language L, a
constructive separation of “L is not in C” gives an efficient
algorithm (also called a refuter) to find counterexamples (bad
inputs) for every C-algorithm attempting to decide L. We study
the questions: Which lower bounds can be made constructive?
What are the consequences of constructive separations? We
build a case that “constructiveness” serves as a dividing line
between many weak lower bounds we know how to prove, and
strong lower bounds against P, ZPP, and BPP. Put another
way, constructiveness is the opposite of a complexity barrier:
it is a property we want lower bounds to have. Our results fall
into three broad categories.

1. For many separations, making them constructive would
imply breakthrough lower bounds. Our first set of results shows
that, for many well-known lower bounds against streaming
algorithms, one-tape Turing machines, and query complexity,
as well as lower bounds for the Minimum Circuit Size Problem,
making these lower bounds constructive would imply break-
through separations ranging from “EXP not equal to BPP” to
even “P not equal to NP”.

2. Most conjectured uniform separations can be made
constructive. Our second set of results shows that for most
major open problems in lower bounds against P, ZPP, and BPP,
including “P not equal to NP”, “P not equal to PSPACE”, “P
not equal to PP, “ZPP not equal to EXP”, and “BPP not equal
to NEXP”, any proof of the separation would further imply
a constructive separation. Our results generalize earlier results
for “P not equal to NP” [Gutfreund, Shaltiel, and Ta-Shma,
CCC 2005] and “BPP not equal to NEXP” [Dolev, Fandina
and Gutfreund, CIAC 2013]. Thus any proof of these strong
lower bounds must also yield a constructive version, compared
to many weak lower bounds we currently know.

3. Some separations cannot be made constructive. Our
third set of results shows that certain complexity separations
cannot be made constructive. We observe that for all super-
polynomially growing functions t, there are no constructive
separations for detecting high t-time Kolmogorov complexity
(a task which is known to be not in P) from any complexity
class, unconditionally. We also show that under plausible
conjectures, there are languages in NP - P for which there
are no constructive separations from any complexity class.

Keywords-computational complexity;
lower bounds; barriers; refuters

circuit complexity;

I. INTRODUCTION

A primary goal of complexity theory is to derive strong
complexity lower bounds for natural computational prob-
lems. When a lower bound holds for a problem II against a

model M of algorithms, this implies that for each algorithm
A from M, there is an infinite sequence of counterexamples
{x;} for which A fails to solve II correctly.' In this paper,
we study the question: can such a family of counterexamples
be constructed efficiently, for fixed II and a given algorithm
A in M? We call a positive answer to this question a
constructive separation of IT from M.

There are several motivations for studying this question
in a systematic way for natural problems II and models
M. Computer science is inherently a constructive discipline,
and it is natural to ask if a given lower bound can be
made constructive. Indeed, this can be seen as an “explicit
construction” question of the kind that is studied intensively
in the theory of pseudorandomness, where we may have a
proof of existence of certain objects with optimal parame-
ters, e.g., extractors, and would like to construct such objects
efficiently. At a high level, cryptography is based on the
constructiveness of lower bounds: we need lower bounds to
exist, and we also need to sample hard instances efficiently.

Our primary motivation is to understand the general lower
bound problem better! Constructive lower bounds have led
to some recent resolutions of lower bound problems in
complexity theory, and we believe they will lead to more. In
his Geometric Complexity Theory approach, Mulmuley [2]
suggests that in order to break the “self referential paradox”
of P vs NP and related problems?, one has to shoot for algo-
rithms which can efficiently find counterexamples for any
algorithms claiming to solve the conjectured hard language.
This view has been dominant in the GCT approach towards
the VNP vs. VP problem [3], [4], [5].

The ability to “construct bad inputs for a hard function”
has also been critical to some recent developments in

UIf the family of counterexamples was finite, we could hard-code them
into the algorithm A to give a new algorithm A’ that solves II correctly,
for most “reasonable” models M.

2A superficial difference is that in cryptography, we would like to
construct instances that are hard for any efficient algorithm, whereas in our
setting, there is a fixed algorithm, and we would like to construct instances
that are hard for it. This difference vanishes when the problem II has an
optimal algorithm in the sense of Levin [1], since any instance that is hard
for the optimal algorithm is hard for all efficient algorithms.

3Namely, since the P vs. NP problem is a universal statement about
mathematics that says that discovery is hard, why could it not preclude its
own proof and hence be independent of the axioms of set theory?

2575-8454/21/$31.00 ©2021 IEEE 646
DOI 10.1109/FOCS52979.2021.00069

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

(Boolean) complexity theory. Chen, Jin, and Williams [6]
studied a notion of constructive proof they called explicit
obstructions. They show several “sharp threshold” results
for explicit obstructions, demonstrating (for example) that
explicit obstructions unconditionally exist for n?~¢-size De-
Morgan formulas, but if they existed for n>*¢-size formulas
then one could prove the breakthrough lower bound EXP ¢
NCL. (We discuss the differences between their work and
ours in Section II-E, along with other related work.)

Constructive lower bounds have also been directly useful
in proving recent lower bounds. Chen, Lyu, and Williams [7]
recently showed how to strengthen several prior lower
bounds for ENP based on the algorithmic method to hold
almost everywhere. A key technical ingredient in this work
was the development of an constructive version of a nonde-
terministic time hierarchy that was already known to hold
almost everywhere [8]. The “refuter” in the constructive
lower bound (the algorithm producing counterexamples) is
used directly in the design of the hard function in ENP. This
gives a further motivation to study when lower bounds can
be made constructive.

The Setup: More formally, for a function f: {0,1}* —

{0, 1} and algorithm A, we define the search problem Dy 4
of counterexamples to be Dy 4 := {(1",z) | € {0,1}" A
f(z) # A(z)}. Intuitively, a refuter for f against A is an
algorithm for the search problem Dy 4, proving in an algo-
rithmic way that the algorithm A cannot compute f. (This
notion seems to have first been introduced by Kabanets [9]
in the context of derandomization; see Section II-E for more
details.)

Definition I.1 (Refuters and Constructive Separations). An
algorithm R is a refuter for f against A if there are infinitely
many n such that (1", R(1")) € Dy 4. For complexity
classes C and D, we say there is a D-constructive separation
of f ¢ C if for every algorithm A computable in C there is
a refuter for f against A that is computable in D.

Note that we allow the refuter algorithm to depend on the
algorithm A. The notion of refuter can also be extended
naturally to randomized algorithms. Formally, we say a
randomized algorithm R solves Dy 4 infinitely often, if
for infinitely many integers n, (1™, R(1")) € Dy 4 with
probability at least 2/3. If for these infinitely many integers
n, it holds in addition that R(1™) either outputs L or a
counterexample such that (17, R(1™)) € Dy, 4, we say R is
a zero-error randomized algorithm solving Dy, a.

At this point it is natural to ask:

Question 1: Which lower bounds imply a corre-
sponding constructive lower bound?

Naively, one might expect that the answer to Question
1 is positive when the lower bound is relatively easy to
prove. We show that this intuition is wildly inaccurate. On
the one hand, we show that for many natural examples
of problems II and weak models M, a lower bound is

647

easily provable (and well-known), but constructivizing the
same lower bound would imply a breakthrough separation
in complexity theory (a much stronger type of lower bound).
On the other hand, we show that for many “hard” problems
II and strong models M, a lower bound for II against
M automatically constructivizes: the existence of the lower
bound alone can be used to derive an algorithm that produces
counterexamples. So, in contrast with verbs such as “rela-
tivize” [10], “algebrize” [11], and “naturalize” [12], we want
to prove lower bounds that constructivize! We are identifying
a desirable property of lower bounds.

We now proceed to discuss our results in more detail, and
then give our interpretation of these results.

A. Most Conjectured Poly-Time Separations Can Be Made
Constructive

Generalizing prior work [13], [14], we show that for most
major open lower bound problems regarding polynomial
time, their resolution implies corresponding constructive
lower bounds for most complete problems.

Theorem 12. Let C € {P,ZPP,BPP} and let
D € {NP,XoP,... , XxP, ..., PP,PSPACE, EXP, NEXP,
EXPNP}. Then D ¢ C implies that for every paddable D-
complete language L, there is a C-constructive*separation
of L ¢ C.°> Furthermore, ®P ¢ C implies that for ev-
ery paddable ®P-complete language L, there is a BPP-
constructive separation of L ¢ C.

In other words, for many major separation problems such
as PP # BPP, EXP # ZPP, and PSPACE # P, proving the
separation automatically implies constructive algorithms that
can produce counterexamples to any given weak algorithm.
We find Theorem 1.2 to be mildly surprising: intuitively it
seems that proving a constructive lower bound should be
strictly stronger than simply proving a lower bound. (Indeed,
we will later see other situations where making known
lower bounds constructive would have major consequences!)
Moreover, for separations beyond P # NP, the polynomial-
time refuters guaranteed by Theorem 1.2 are producing hard
instances for a problem that does not have short certificates,
in general.

B. Unexpected Consequences of Making Some Separations
Constructive

Given Theorem 1.2, we see that most of the major
open problems surrounding polynomial-time lower bounds
would yield constructive separations. Can all complexity
separations can be made constructive? It turns out that

4When we use the term C-constructive for a class C such as P or BPP,
we mean the functional version of the class

SThroughout this paper when we say a language L is D-complete,
we mean it is D-complete under polynomial-time many-one reductions.
A language L is paddable if there is a deterministic polynomial-time
algorithm that receives (x, 1") as input, where string « has length at most
n — 1, and then outputs a string y € {0, 1}" such that L(z) = L(y).

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

for several “weak” lower bounds proved by well-known
methods, making them constructive requires proving other
breakthrough lower bounds!

Thus, there seems to be an algorithmic “dividing line”
between many lower bounds we are able to prove, and many
of the longstanding lower bounds that seem perpetually out
of reach. The longstanding separation questions (as seen
in Theorem 1.2) require a constructive proof: an efficient
algorithm that can print counterexamples. Here we show
that many lower bounds we are able to prove do not require
constructivity, but if they could be made constructive then we
would prove a longstanding separation! In our minds, these
results confirm the intuition of Mulmuley that we should
“go for explicit proofs” in order to make serious progress
on lower bounds, especially uniform ones.

Constructive Separations for (Any) Streaming Lower
Bounds Imply Breakthroughs: 1t is well-known that various
problems are unconditionally hard for low-space randomized
streaming algorithms. For example, from the randomized
communication lower bound for the Set-Disjointness (DISJ)
problem [15], [16], [17], it follows that no nl_s-space
randomized streaming algorithm can solve DISJ on 2n input
bits.®

Clearly, every n°M-space streaming algorithm for DISJ
must fail to compute DISJ on some input (indeed, it must
fail on many inputs). We show that efficient refuters against
streaming algorithms attempting to solve any NP problem
would imply a breakthrough lower bound on general ran-
domized algorithms, not just streaming algorithms.

Theorem 1.3. Ler f(n) > w(l). For every language
L € NP, a PNP-constructive separation of L from uniform
randomized streaming algorithms with O(n - (logn)/ (™)
time and O(logn)/"™) space’ implies EXPNP £ BPP.

Essentially every lower bound proved against streaming
algorithms in the literature holds for a problem whose
decision version is in NP. Theorem 1.3 effectively shows
that if any of these lower bounds can be made constructive,
even in a PNP sense, then we would separate randomized
polynomial time from EXPVP a longstanding open problem
in complexity theory. A more constructive separation (with
an algorithm in a lower complexity class than PNP) would
imply a stronger separation. We are effectively showing that
the counterexamples printed by such a refuter algorithm
must encode a function that is hard for general randomized
algorithms.

Stronger lower bounds follow from more efficient refuters
for DISJ against randomized streaming algorithms. At the

®Recall in the DISJ problem, Alice is given an n-bit string z, Bob is
given an n-bit string y, and the goal is to determine whether their inner
product Y7, @;y; is nonzero.

"That is, for every such randomized streaming algorithm A, there is a
PNP refuter B such that B(1™) prints an input z of length n such that A
decides whether = € L incorrectly, for infinitely many n.

648

extreme end, we find that uniform circuits refuting DISJ
against randomized streaming algorithms would even imply
P #£ NP.

Theorem L4. Let f(n) > w(l). A polylogtime-uniform-
AC°-constructive separation of DIS) from randomized
streaming algorithms with O(n - (logn)/™) time and
O(logn)!™ space® implies P # NP.

To recap, it is well-known that DISJ does
not have randomized streaming algorithms with
O(n - (logn)/™) time and O(logn)’™ space, even

for f(n) < o(logn/loglogn), by communication
complexity arguments. We are saying that, if (given the
code of such an algorithm) we can efficiently construct
hard instances of DISJ for that algorithm, then strong lower
bounds follow. That is, making communication complexity
arguments constructive would imply strong unconditional
lower bounds.

Constructive Separations for One-Tape Turing Ma-
chines Imply Breakthroughs: Next, we show how making
some rather old lower bounds constructive would imply
a circuit complexity breakthrough. It has been known at
least since Maass [18] that nondeterministic one-tape Turing
machines require (2(n?) time to simulate nondeterministic
multitape Turing machines. However, those lower bounds
are proved by non-constructive counting arguments. We
show that if there is a PNP algorithm that can produce
bad inputs for a given one-tape Turing machine, then ENP
requires exponential-size circuits. This in turn would imply
BPP C PNP 4 breakthrough simulation of randomized
polynomial time.

Theorem L5. For every language L computable by a
nondeterministic n1+°M _time RAM, a PNP -constructive sep-
aration of L from nondeterministic O(n*-*)-time one-tape
Turing machines implies EN? ¢ SIZE[297] for some constant
0 >0.

Constructive Separations for Query Lower Bounds Im-
ply Breakthroughs: Now we turn to query complexity. Con-
sider the following basic problem PromiseMAJORITY,, .
for a parameter £ < 1/2.

PromiseMAJORITY,, .: Given an input = €

{0,1}", letting p = L3 | @y, distinguish be-

tween the cases p < 1/2—c orp>1/2+e.

This is essentially the “coin problem” [19]. It is well-known
that every randomized query algorithm needs ©(1/¢2)
queries to solve PromiseMAJORITY, . with constant suc-
cess probability (uniform random sampling is the best one
can do). That is, any randomized query algorithm making
0(1/?) must make mistakes on some inputs, with high

8That is, for every such randomized streaming algorithm A, there is a
polylogtime-uniform ACP circuit family {C.,} such that A fails to solve
DISJ on 2n-bit inputs correctly on the output C, (1™) for infinitely many
n.

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

probability. We show that constructing efficient refuters for
this simple sampling lower bound would imply P # NP!

Theorem L.6. Let ¢ be a function of n satisfying £(n) <
1/(logn)*™.

o If there is a polylogtime-uniform-AC’-constructive
separation of PromiseMAJORITY,, . from random-
ized query algorithms A using o(1/e%) queries and
poly(1/e) time, then NP # P.

o If there is a polylogtime-uniform-NCl-constructive
separation of PromiseMAJORITY,, . from random-
ized query algorithms A using o(1/€%) queries and
poly(1/e) time, then PSPACE # P.

Note that PromiseMAJORITY,, . can be easily computed
in NC'. If for every randomized query algorithm A running
in n® time and making n® queries for some o > 0, we can
always find inputs in NC' on which A makes mistakes, then
would separate P from PSPACE.

Constructive Separations for MCSP Against AC® Im-
ply Breakthroughs: Informally, the Minimum Circuit Size
Problem (MCSP) is the problem of determining the circuit
complexity of a given 2"-bit truth table. Recent results on
the phenomenon of hardness magnification [20], [21], [22],
[23], [6] show that, for various restricted complexity classes
C:

o Strong lower bounds against C are known for explicit
languages.

o Standard complexity-theoretic hypotheses imply that
such lower bounds should hold also for MCSP (and
its variants).

« However, actually proving that MCSP ¢ C would imply
a breakthrough complexity separation.

In such situations, there is also often a slightly weaker lower
bound against C that can be shown for MCSP, suggesting
that we are quantitatively “close” to a breakthrough separa-
tion in some sense.

‘We show that a similar phenomenon holds for constructive
separations. It is well known that versions of MCSP are
not in AC® [24], but strongly constructive separations are
not known. We show that strongly constructive separations
would separate P from NP, and that they exist under a
standard complexity hypothesis. Moreover, we show that
slightly weaker constructive separations do exist, and the
strong constructive separations we seek do hold for other
hard problems such as Parity.

In the following, MCSP[f(n)] is the computational prob-
lem that asks whether a Boolean function on n bits, repre-
sented by its truth table, has circuits of size at most f(n).

Theorem 1.7. Let f(n) > n1oe™* " pe any time-
constructive super-quasipolynomial function. The following

hold:
1) (Major Separation from Constructive Lower Bound) If
there is a polylogtime-uniform AC° [quasipoly] refuter

649

for MCSP[f(n)] against every polylogtime-uniform
AC® algorithm, then P # NP.

(Constructive Lower Bound Should Exist) If PH ¢
SIZE(f(n)?), then there is a polylogtime-uniform-
AC®[quasipoly] refuter for MCSP|f (n)] against every
polylogtime-uniform AC° algorithm.

(Somewhat Constructive Lower Bound) There is
a polylogtime-uniform-AC°[2P°Y (F ()] refuter for
MCSP[f(n)] against every polylogtime-uniform AC®
algorithm.

(Constructive Lower Bound for a Different Hard Lan-
guage) There is a quasipoly(N)-size polylogtime-
uniform-AC° [quasipoly]-list-refuter for Parity against
every polylogtime-uniform AC° algorithm.

2)

3)

4)

Note that in item 3, the input size N to the problem
is N 2", hence 2P°¥(/(") s only slightly super-
quasipolynomial in N.

Comparison with Theorem 1.2: It is very interesting
to contrast Theorem 1.2 with the various theorems of this
subsection. On the one hand, Theorem 1.2 tells us that
many longstanding open problems in lower bounds would
automatically imply constructive separations, when resolved.
On the other hand, we see that extending simple and well-
known lower bounds to become constructive would resolve
other major lower bounds! Taken together, we view the
problem of understanding which lower bounds can be made
constructive as a significant key to understanding the future
landscape of complexity lower bounds.

C. Certain Lower Bounds Cannot Be Made Constructive

Finally, we can give some negative answers to our Ques-
tion 1. We show that for some hard functions, there are
no constructive separations from any complexity classes.
Specifically, we show (unconditionally or under plausible
complexity conjectures) that there are no refuters for these
problems against a trivial decision algorithm that always
returns the same answer (zero, or one). Hence, there can be
no constructive separations of these hard languages from any
complexity class containing the constant zero or constant one
function. (All complexity classes that we know of contain
both the constant zero and one function.)

For a string z € {0, 1}*, the ¢-time-bounded Kolmogorov
complexity of x, denote by K*(z), is defined as the length
of the shortest program prints z in time ¢(|x|). We use R
to denote the set of strings = such that K*(z) > |z| — 1.
Hirahara [25] recently proved that for any super-polynomial
t(n) > n?@ | Ry ¢ P. We observe that this separation
cannot be made P-constructive.

Proposition L8. For any t(n) > n“W), there is no P-refuter
for Rk against the constant zero function.

Since Rk: is a function in EXP, it would be interesting

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

to find functions in NP with no constructive separations.’

We show that under plausible conjectures, such languages
in NP exist.

Theorem 1.9. The following hold:

e IfNE # E, then there is a language in NP\ P that does
not have P refuters against the constant one function.'°

o If NE # RE, then there is a language in NP \ P that
does not have BPP refuters against the constant one
function.!!

Thus, under natural conjectures about exponential-time
classes, there are some problems in NP with no constructive
separations at all, not even against the trivial algorithm that
always accepts.

D. Intuition

Let us briefly discuss the intuition behind some of our
results. We will first focus on the results showing that con-
structive separations of known lower bounds would imply
complexity breakthroughs, as we believe these are the most
interesting of our paper.

Constructive Separations of Known Lower Bounds Im-
ply Breakthroughs: Suppose for example we want to show
that a constructive separation of SAT from quick low-space
streaming algorithms implies ExPNP # BPP. The proof
is by contradiction: assuming EXPN? = BPP, we aim
to construct a streaming algorithm running in n(log n)w(l)
time and (logn)“(!) space which solves 3SAT correctly on
all instances produced by PNP algorithms. Given a PNP
algorithm R, EXP"" = BPP implies EXP"" < P/,q,
which further implies that the output of R(1™) must have
circuit complexity at most polylog(n) (construed as a truth
table).

Extending work of McKay, Murray, and Williams [21],
we show that NP C BPP (implied by EXPN" = BPP)
implies there is an n(logn)“™) time and (logn)“(") space
randomized algorithm with one-sided error for finding a
polylog(n)-size circuit encoding the given length-n input, if
such a circuit exists. So given any input R(1") from a poten-
tial refuter R, our streaming algorithm can first compute a
polylog(n)-size circuit C' encoding R(1™), and it construes
this circuit C' as an instance of the Succinct-3SAT problem.
Since Succinct-3SAT € NEXP BPP, our streaming
algorithm can solve Succinct-3SAT(C) in polylog(n) ran-
domized time, which completes the proof.

For our results on constructive query lower bounds, we
use ideas from learning theory. Set ¢ < 1/poly(logn).
Assuming PSPACE = P, we want to show that for ev-
ery n-bit string printed by an uniform NC' circuit C' on

Note that Ryt is in coNTIME[t(n)], but it is likely not in coNP.

10Here, E = TIME[2O(">], the class of languages decidable in (deter-
ministic) 2°0(") time, and NE is the corresponding nondeterministic class.

UHere, RE = RTIME[2O(")], the class of languages decidable in
randomized 2°(™) time with one-sided error.

650

the input 17, we can decide the PromiseMAJORITY,, .
problem with o(1/¢%) randomized queries in poly(1/e)
time. (Then, any sufficiently constructive lower bound that
PromiseMAJORITY,, . requires ©(1/£2) queries would im-
ply P # PSPACE.) PSPACE = P implies that for every
uniform NC! circuit C, its output can be encoded by some
polylog(n)-size circuit D. Now, also assuming PSPACE =
P, this circuit D can be PAC-learned with error £/2 and
failure probability 1/10 using only poly log(n)/e queries
(and randomness). Let D’ be the circuit we learnt through
this process; it approximates D well enough that we can
make O(1/¢%) random queries to the circuit D', without
querying D in poly(1/e,logn) time, and return the majority
answer as a good answer for the original n-bit answer. Such
an algorithm only makes polylog(n)/e < o(1/?) queries
to the original input and runs in poly(1/e) time.
Constructive Separations for Uniform Complexity Sep-
arations: Next, we highlight some insights behind the proof
of Theorem 1.2, whose proof appears in the full version of
this paper [26]. The proof is divided into several different
cases; we will focus on the intuition behind one of them,
which applies to all complexity classes with a downward
self-reducible complete language (such as PSPACE or X, P).

We take the PSPACE vs. P problem as an example. Gut-
freund, Shaltiel, and Ta-Shma [13] showed how to construct
refuters for P # NP, but their proof utilizes the search-to-
decision reduction for NP-complete problems, and no such
reduction exists for PSPACE. We show how a downward
self-reduction can be used to engineer a situation similar to
that of [13].

Let M be a downward self-reducible PSPACE-complete
language and let A be a P algorithm. We also let D
be a polynomial-time algorithm defining a downward-self
reduction for M, so that for all but finitely many n € N and
x € {0,1}"™,

D(z)Msn-1 = M(x). (1)
That is, D can compute M (x) given access to an M-oracle
for all strings of length less than |x|. Our key idea is that (1)
also defines M. Assuming the polynomial-time algorithm
A cannot compute M, it follows that (1) does not always
hold if M is replaced by A. In particular, the following NP
statement is true for infinitely many n:
3z € {0,1}" such that D(z)?< =1 # A(z). (2)
Now we use a similar approach as in [13]: we use A and
a standard search-to-decision reduction to find the shortest
string z* so that (2) holds. If A fails to do so, we can
construct a counterexample to the claim that A solves the
PSPACE-complete language M similarly to [13]. If A finds
such an z*, then by definition A(y) = M (y) for all y with
ly| < |z*| — 1 and we have A(z*) # M (x*) from (2), also

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

a counterexample.'?

E. Organization

In Section II we introduce the necessary definitions and
technical tools for this paper, as well as review other related
work. In Section III we show that making known streaming
and query lower bounds constructive implies major com-
plexity separations, proving Theorem 1.3 and Theorem 1.4.

The full version of the paper [26] contains proofs of our
other results, such as Theorem 1.7, Theorem 1.2, Proposi-
tion 1.8 and Theorem 1.9.

In Section IV we conclude with some potential future
work.

II. PRELIMINARIES
A. Notation

We use O(f) as shorthand for O(f - polylog(f)) through-
out the paper. All logarithms are base-2. We use n to denote
the number of input bits. We say a language L C {0,1}*
is f(n)-sparse if |L,| < f(n), where L, = LN {0,1}".
We assume knowledge of basic complexity theory (see [27],
(28D).

B. Other Refuter Notions

For some of our results, it will be useful to generalize
the notion of a refuter to allow the production of a [list of
strings, such that at least one of them is a counterexample.

Definition II.1 (List-Refuters). For a function s: N — N, a
language L and an algorithm A that fails to solve L, an
s-size D-list-refuter (where D € {P,BPP,ZPP}) for L
against A is a D-algorithm B that, given input 1", prints
a list of s(n) strings xg), acg), .. ,x&?(”” of lengths n2(1),
such that for infinitely many n, the following hold:
1) If D = P there is an i € [s(n)] for which A(z) #
L(z$).
2) If D = BPP, with constant probability there exists
i € [s(n)] for which A(z$)) # L(z%).
3) If D = ZPP, then either the algorithm outputs “fail”
or there exists 4 € [s(n)] for which A(Igf)) # L(xsf)),
and the latter event happens with constant probability.

Refuters for Non-Uniform Models: We can also define
refuters for circuit families. For a circuit class C, we use
Dy ¢ to denote the family {Dy, 4} acc. We say a determin-
istic oracle algorithm R solves the search problem family
Dy ¢ infinitely often, if for every {Cph}nen € C, there
are infinitely many integers n such that (1", R(1")) €
Dy (G 3o We use R198SC(Cn)}neni (o denote that the oracle
algorithm R gets access to the descriptions of the circuit
family {C,, }, instead of only black box query access to it.

12Note the argument above only finds a single counterexample; using a
paddable PSPACE-complete language, one can adapt the above argument
to find infinitely many counter examples, see the full version [26] for details.

651

We can similarly generalize the above to randomized or
zero-error randomized algorithms in the natural way.

Definition IL.2 (Refuters and Constructive Separations for
Language L against Nonuniform Class C). For a language L,
a D refuter R for L against circuit class C is a D algorithm
solving Dy, ¢ infinitely often. We also say that R gives a
D-constructive separation L ¢ C.

We can extend the above definitions to list-refuters by al-
lowing the corresponding algorithm to output a (polynomial-
size) candidate list instead of a single counterexample. And
we say a P list-refuter R solves Dy 4 infinite often if
for infinitely many n, there exists a € R(1™) such that
(1",a) € D, 4. One can also similarly define BPP or ZPP
list-refuters.

Finally, for a list-refuter according to Definition 11.2, we
say it is an oblivious list-refuter, if it does not need access
fo {desc(Cn)}neN,

C. Definitions of MCSP and time-bounded Kolmogorov
complexity

The Minimum Circuit Size Problem (MCSP) [29] and
t-time-bounded Kolmogorov complexity (K') are studied
in (the full version of) this paper [26]. We recall their
definitions.

Definition II.3 (MCSP). Let s: N — N satisfy s(m) >
m — 1 for all m.

Problem: MCSP[s(m)].

Input: A function f: {0,1}"™ — {0,1}, presented as a
truth table of n = 2™ bits.

Decide: Does f have a (fan-in two) Boolean circuit C' of
size at most s(m)?

We will also consider search-MCSP, the search version
of MCSP, in which the small circuit C' must be output when
it exists.

For a time bound ¢: N — N, recall that the K* complexity
(t-time-bounded Kolmogorov complexity) of string z is the
length of the shortest program which outputs z in at most
t(Jz|) time.

Definition II.4 (Rk:). Let ¢t: N — N.
Problem: R:.
Input: A string = € {0,1}".
Decide: Does = have K*(x) complexity at least n — 1?

D. Implications of Circuit Complexity Assumptions on Re-
futers

The following technical lemma shows that, assuming
uniform classes have non-trivially smaller circuits, the output
of a refuter may be assumed to have low circuit complexity.
This basic fact will be useful for several proofs in the paper.

Lemma ILS. Let s: N — N be an increasing function. The
Sfollowing hold:

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1) Assuming ENP C SIZE[s(n)], then for every PNP
algorithm A such that A(1™) outputs n bits, it holds
that A(1™) has circuit complexity at most s(O(logn)).

2) Assuming E C SIZE[s(n))], then for every P algorithm
A such that A(1™) outputs n bits, it holds that A(1™)
has circuit complexity at most s(O(logn)).

3) Assuming SPACE[O(n)] C SIZE[s(n)], then for every
LOGSPACE algorithm A such that A(1™) outputs n
bits, it holds that A(1™) has circuit complexity at most
s(O(logn)).

Proof: In the following we only prove the first item, the
generalization to the other two items are straightforward.

Consider the following function f4(n,¢), which takes two
binary integers n and ¢ € [n] as inputs, and output the i-th
bit of the output of A(1™). The inputs to f4 can be encoded
in O(logn) bits in a way that all inputs (n,) with the same
n has the same length.

Since A is in PNP, we have f4 € ENP. By our assumption
and fix the first part of the input to f4 as n, it follows that
A(1™) has circuit complexity at most s(O(logn)). [|

The following simple corollary of Lemma II.5 will also
be useful.

Corollary IL6. If EN° C P, (E C Py or
SPACE[O(n)] < Pjpoly), then for every PNP (P or
LOGSPACE) algorithm A such that A(1™) outputs n bits, it
holds that A(1™) has circuit complexity at most polylog(n).

We also observe that P = NP has strong consequences
for polylogtime-uniform AC" circuits.

Lemma IL.7. The following hold:

1) Assuming P = NP, then for every polylogtime-uniform
AC® algorithm A such that A(1™) outputs n bits, it
holds that A(1™) has circuit size complexity at most
polylog(n).

2) Assuming P = PSPACE, then for every polylogtime-
uniform NC* algorithm A such that A(1™) outputs n
bits, it holds that A(1™) has circuit size complexity at
most polylog(n).

Proof: Let B be a polylogtime-uniform algorithm that,
on the integer n (in binary) and O(logn)-bit additional
input, reports gate and wire information for an ACY circuit
A,,. Consider the function f(n,) which determines the i-th
output bit of the circuit A,, on the input 1", given n and ¢
in binary. The function f is a problem in PH: given input
of length m = O(logn), by existentially and universally
guessing and checking gate/wire information (and using the
polylog(n)-time algorithm B to verify the information), the
A, of n°M) size can be evaluated in X, TIME[mF] for a
constant d depending on the depth of A,, and a constant
k depending on the algorithm B. Since P NP, f is
computable in P, i.e., f is in time at most am® for some
constant « depending on k, d, and the polynomial-time SAT

652

algorithm. Therefore f has a circuit family of size at most
m¢ for some fixed ¢, where m = clogn. Thus the output
of such a family always has small circuits.

The same argument applies if we replace ACY by NC!
and replace PH by PSPACE. [|

E. Other Related Work

As mentioned in the introduction, Kabanets [9] defined
and studied refuters in the context of derandomization. A
primary result from that paper is that it is possible to
simulate one-sided error polynomial time (RP) in zero-error
subexponential time (ZPSUBEXP) on all inputs produced
by refuters (efficient time algorithms that take 1™ and
output strings of length n).! In other words, nontrivial
derandomization is indeed possible when we only consider
the outputs of refuters: there is no constructive separation
of RP ¢ ZPSUBEXP. This result contrasts nicely with
some of our own, which show that if we could prove (for
example) EXP = ZPP holds with respect to refuters, then
EXP = ZPP holds unconditionally. (Of course this is a
contrapositive way of stating our results; we don’t believe
that EXP = ZPP holds!) Kabanets’ work effectively shows
that if RP ¢ ZPSUBEXP implied a constructive separation
of RP ¢ ZPSUBEXP, then RP C ZPSUBEXP holds
unconditionally (because there is no constructive separation
of RP from ZPSUBEXP).

Chen, Jin, and Williams [6] studied a notion of con-
structive proof they called explicit obstructions. Roughly
speaking, an explicit obstruction against a circuit class C is
a (deterministic) polynomial-time algorithm A outputting a
list L,, of input/output pairs {(z;,y;)} with distinct z;, such
that all circuits in C fail to be consistent on at least one in-
put/output pair. Chen, Jin, and Williams show several “sharp
threshold” results for explicit obstructions, demonstrating
(for example) that explicit obstructions unconditionally exist
for n2~¢-size DeMorgan formulas, but if they existed for
n?+te_size formulas then one could prove the breakthrough
lower bound EXP ¢ NC!. In this work, we are considering
a “uniform” version of this concept: instead of outputting
a list of bad input/output pairs (that do not depend on the
algorithm), here we only have to output one bad instance
that depends on the algorithm given.

Another motivation for studying constructive proofs
comes from proof complexity and bounded arithmetic. A
circuit lower bound for a language L € P can naturally be
expressed by a IIy statement .S,, that says: “For all circuits
C of a certain type, there exists x of length n such that
C(z) # L(z)”. In systems of bounded arithmetic such as
Cook’s theory PV; [31] (formalizing poly-time reasoning)
or Jefabek’s theory APC; [32] (formalizing probabilistic

13The exact statement involves an “infinitely-often” qualifier, which we
omit here for simplicity. A version of the simulation that removes the
restriction to refuters, with the addition of a small amount of advice, was
given in [30].

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

poly-time reasoning), a proof of S,, for infinitely many n
immediately implies a constructive separation. The reason
is that these theories have efficient witnessing: any proof of
a I, statement Vz3yR(x,y) (for R that can be expressed
purely with bounded quantifiers and poly-time concepts) in
these theories constructs an efficiently computable function
f such that R(z, f(x)) holds. Here the function f plays the
role of the refuter in a constructive separation. Therefore,
situations in which constructive separations are unlikely to
exist may provide clues about whether complexity lower
bounds could be independent of feasible theories. Con-
versely, the constructiveness of a separation is a precondition
for the provability of that separation in these feasible theo-
ries. !

Hardness Magnification: Another related line of work
is hardness magnification [20], [21], [35], [23]. This line
of work shows how very minor-looking lower bounds ac-
tually hide the whole difficulty of P vs NP and related
problems. However, one might say that those results simply
illuminate large holes in our intuition: those minor-looking
lower bounds are far more difficult to prove than previously
believed. One has to be skeptical in considering hardness
magnification as a viable lower bounds approach, because
we really don’t understand how difficult the “minor-looking”
lower bounds actually are.

In this paper, in contrast, we are mainly focused on
situations where we already know the lower bound holds
(and can prove that in multiple ways), but we are striving
to prove the known lower bound in a more constructive,
algorithmic way. This sort of situation comes up routinely
in applications of the probabilistic method, where an object
we want can be constructed with randomness, but it is a
major open problem to construct it deterministically. Our
results indicate that there is a deep technical gap between the
major complexity class separation problems, versus many
lower bounds we know how to prove. The former type of
lower bound problem automatically has constructive aspects
built into it, while the latter type of lower bound requires
a breakthrough in derandomization in order to be made
constructive.

III. CONSTRUCTIVE SEPARATIONS FOR STREAMING
AND QUERY ALGORITHMS IMPLY BREAKTHROUGH
LOWER BOUNDS

Streaming lower bounds and query complexity lower
bounds are often regarded as well-understood, and certain
lower bounds against one-tape Turing machines have been

l4We note, however, that these connections depend on the complexity
classes being separated. A circuit lower bound for an NP problem does
not have an obvious II2 formulation, so the efficient witnessing results
mentioned above do not directly apply. More complicated witnessing
theorems might still be relevant; we refer to [33] and the recent book on
Proof Complexity by Krajicek [34] for a more detailed discussion of these
matters.

653

known for 50 years. In this section we show that surpris-
ingly, making these separations constructive would imply
breakthrough separations such as ExPNP # BPP or even
P = NP.

A. Making Most Streaming Lower Bounds Constructive Im-
plies Breakthrough Separations

We show that if randomized streaming lower bounds for
any language L in NP can be made constructive, even with
a PNP refuter, then ExpNP #+ BPP.

Reminder of Theorem L3. Let f(n) > w(l). For
every language L € NP, a PNP-constructive separation
of L from uniform randomized streaming algorithms with
O(n - (logn)/™) time and O(logn)/™ space implies
EXPNP £ BPP.

Remark IIL1. Ler V(x,y) be a verifier for L, and assume
that the witness length |y| is at most |x|.'"> Then the
randomized streaming algorithms considered in Theorem 1.3
can be further assumed to solve the search-version of L with
one-sided error in the following sense: (1) A is also required
to output a witness y when it decides x € L (2) whenever
A outputs a witness y, we have V(z,y) = 1.

We need the following lemma for solving search-MCSP,
which adapts an oracle algorithm from [21]. The original
algorithm of [21] has two-sided error: that is, when z ¢
MCSP[s(n)], there is a small probability that the algorithm
outputs an incorrect circuit. We modify their approach with
a carefully designed checking approach so that the algorithm
has only one-sided error.

Lemma IIL2 ([21, Theorem 1.2], adapted). Assuming
NP C BPP, for a time-constructive s: N — N, there is a
randomized streaming algorithm for search-MCSP[s(n)] on
n-bit instances with O(n - s(n)¢) time and O(s(n)¢) space
for a constant c such that the following holds.
o If the input x € MCSP[s(n)], the algorithm outputs a
circuit C of size at most s computing x with probability
at least 1 — 1/n.
o If the input x ¢ MCSP[s(n)], the algorithm always
outputs NO.

Alternatively, if we assume NP = P instead, the above
randomized streaming algorithm can be made deterministic.

Proof: We first recall the ¥£3P problem Circuit-Min-
Merge introduced in [21]; here, we will only consider the
version with two given input circuits. In the following we
identify the integer ¢ from [2™] with the i-th string from
{0,1}™ (ordered lexicographically).

Note that since NP C BPP, it follows that
Circuit-Min-Merge is also in BPP. We can without loss of

SThat is, € L if and only if there exists y € {0,1}* such that
ly| < || and V(z,y) = 1.

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Circuit-Min-Merge
Circuit-Min-Merge[s(n)]

Input: Given two circuits C7,Cs on m = logn input bits

and three integers a < § < € [2™].

Output: The lexicographically first circuit C” such that for
ala<z<pB-1,0'(z) =C1(2), and for all 8 < z <+,
C’(z) = Ca(z). If there are no such circuits, it outputs an

all-zero string.

generality assume we have a BPP algorithm for it with error
at most 1/n>.

After processing the first p € [2™] bits of the input
x, our streaming algorithm maintains a list of at most m
circuits. Specifically, let p = ZZ;O ar, - 2F be the binary
representation of p, for each k¥ € [m]. We maintain a
circuit C}, that is intended to satisfy Cy(z) = =z, for all
NI 20 < 2 < DINTE 2¢. Note that when a;, = 0,
there is indeed no requirement on the circuit C;, and we can
simply set it to a trivial circuit.

Now, suppose we get the p + 1 bit of the input z. We
update the circuit list via the following algorithm.

e« We initialize D to be the linear-size circuit which
outputs x,11 on the input p + 1, and outputs 0 on all
other inputs.

e For k from 0 to m:

- If a = 1, we set D =
Circuit-Min-Merge(Cy, D, a, 8, 7) with
suitable «, 3,7, and set ap = 0 and Cj
to be a trivial circuit. We next check

whether D is indeed the correct output of

Circuit-Min-Merge(Cy, D, o, 3,v) by going
through all inputs in [o,7y]. We output
NO and halt the algorithm immediately if

we found D 1is not the correct output (if
Circuit-Min-Merge(Cy, D, «, 3,v) outputs the
all-zero string, we also output NO and halt the
algorithm).
If a, = 0, we set C, = D, and halt the update
procedure.

After we have processed the 2™-bit of =, we simply output
Cp. If z € MCSP[s(n)], then by a simple union bound, with
probability at least 1 — 1/n, all calls to our BPP algorithm
for Circuit-Min-Merge are answered correctly. In this case
C,, is a correct algorithm computing the input z. If = ¢
MCSP[s(n)], since we have indeed checked the output of all
Circuit-Min-Merge calls, our algorithm will only output the
circuit C,, if it is indeed of size at most s(n) and computes
x exactly. Since © ¢ MCSP[s(n)] implies there is no such
circuit C,,, our algorithm always outputs NO in this case.

For the running time, note that the above algorithm calls
Circuit-Min-Merge at most n-logn times on input of length
O(s(n)). Therefore calling Circuit-Min-Merge only takes n-

654

poly(s(n)) time in total. Note that merging Cj, and D takes
2% . poly(s(n)) time to verify the resulting circuit, but this
only happens at most n/2* times. So the entire algorithm
runs in n - poly(s(n)) time and poly(s(n)) space as stated.

|

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3: The idea is to show that
if EXPNP = BPP then we can construct a randomized
streaming algorithm for L € NP that “fools” all possible
PNP refuters. Interestingly, the assumption is used in three
different ways: (1) to bound the circuit complexity of the
outputs of PNP algorithms, (2) to obtain a randomized
streaming algorithm that finds a small circuit encoding the
input, and (3) to get an efficient algorithm to find a small
circuit encoding a correct witness when it exists.

Let L € NP, and Vg;uy) be a polynomial-time verifier
for L. Assuming EXPNP = BPP, we are going to construct
a randomized streaming algorithm A, such that it solves L
correctly on all possible instances which can be generated
by a PNP refuter.

Let B be an arbitrary PNP refuter. First, by Corollary IL.6,
EXPY? = BPP C P, implies that for all n € N, B(1")
has a circuit complexity of w(n) = polylog(n).

Second, note that EXPNP = BPP also implies that NP C
BPP. Let f(n) > w(1) and s(n) = (logn)/(™/e1 for a
sufficiently large constant ¢; > 1. By Lemma III.2, we have
a one-sided error randomized streaming algorithm Apcsp
for search-MCSP[s(n)] with running time n - s(n)?(") and
space s(n)°(). Since w(n) < s(n), we apply Amcsp to
find an s(n)-size circuit C' encoding B(1™).

Now, we have an s(n)-size circuit encoding the n-bit input
B(1™), and we wish to solve the Succinct-L problem'® on
this circuit. Note that Succinct-L is a problem in NEXP.

EXPN? = BPP implies NEXP C P /poly> SO every
Succinct-L instance has a succinct witness with respect
to the verifier V: this follows from the easy witness
lemma of [36]. Formally, there exists a universal constant
k € N such that, for every s(n)-size circuit D such that
tt(D) € L, there exists an s(n)*-size circuit £ such that
V(tt(D), tt(E)) = 1.

We consider the following problem:

Given an s(n)-size circuit D with truth-table

length n and an integer i € [log(s(n)*)], exhaus-

tively try all circuits of size at most s(n)¥, find

the first circuit E such that V(tt(D),tt(E)) = 1,

and output the i-th bit of the description of E.

Note that the above algorithm runs in 2P°%¥(5("))_time on
poly(s(n))-bit inputs, hence it is in EXP. Since EXP =
BPP, this problem is also in BPP. Therefore there is a BPP
algorithm which, given a Succinct-L instance D of size s(n),
outputs a description of a canonical circuit of size s(n)*

16Here, we define “Succinct-L” to be: given a circuit C' with £ input
bits, decide whether tt(C) € L, where tt(C') is the truth table of C.

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

which encodes a witness for input tt(D) with respect to
verifier V.

Thus we obtain a randomized algorithm for L on all
instances with s(n)-size circuits. When the witness for 2 has
length at most |z| = n, the algorithm can take n-poly(s(n))
time to output the found witness by outputting the truth-table
of the circuit encoding the witness.

Setting c¢; to be large enough and putting everything
together, we get the desired randomized streaming algorithm
which solves all instances generated by PNP refuters, which
is a contradiction to our assumption. Therefore, it follows
that EXPNP £ BPP. [

IV. CONCLUSION

Many interesting questions remain for future work. While
we have given many examples of complexity separations that
can automatically be made constructive, it is unclear how
to extend our results to separations with complexity classes
within P. For example, let L be a P-complete language. If
L is not in uniform NCl, does a P-constructive separation
of L from uniform NC' follow? How about separations
of P from LOGSPACE? Would establishing constructive
separations in these lower complexity classes have any
interesting consequences?

Note that there is no P-constructive separation of
MCSP[s] ¢ P for super-polynomially large s, unless
EXP requires super-polynomial size Boolean circuits. (A
polynomial-time refuter for the trivial algorithm that always
accepts, must print a hard function!) But do any interest-
ing consequences follow from a constructive separation of
search versions of MCSP from P? The same proof strategy
(of applying the conjectured refuter for the trivial algorithm
that always accepts) does not make sense in this case, as the
only hard instances for search problems are YES instances.

It would also be interesting to examine which proof meth-
ods for circuit lower bounds can be made constructive. We
list a few examples which should be particularly interesting:

(1) the Q(ng’) size lower bound against DeMorgan formulas
for Andreev’s function [37], [38],

(2) the Q(n?) size lower bound against formulas for
Element-Distinctness [39],

(3) AC® [p] size-depth lower bounds via the approximation
method [40], [41].

Chen, Jin, and Williams [6] showed that constructing corre-

sponding explicit obstructions for (1) and (2) above would

imply EXP ¢ NC!, but it is unclear whether one can

get a P-constructive separation without implying a major

breakthrough lower bound.

We remark that as shown in [6], most lower bounds
proved by random restrictions can be made constructive,
by constructing an appropriate pseudorandom restriction
generator. [6] explicitly constructed an oblivious list-refuter
for parity against subquadratic-size formulas, and we re-
mark that a similar oblivious list-refuter for parity against

655

polynomial-size AC° circuits follows from the pseudoran-
dom restriction generator for ACY of [42].

Finally, it would be interesting to consider constructive
separations against non-uniform algorithms. Should we ex-
pect a proof of NP ¢ P/poly or NEXP ¢ P/poly
to imply a refuter of some kind? In such a setting, one
would presumably need to feed the code of the non-uniform
algorithm to the polynomial-time algorithm as part of its
input (the algorithm should get the non-uniform code as
advice, one way or another).

ACKNOWLEDGMENT

The authors from MIT were partially supported by NSF
CCF-2127597 and CCF-1909429. L.C. was partially sup-
ported by an IBM PhD Fellowship. Part of this work was
completed while R.-W. was visiting the Simons Institute for
the Theory of Computing, participating in the Theoretical
Foundations of Computer Systems and Satisfiability: Theory,
Practice, and Beyond programs.

REFERENCES

[1] L. Levin, “Universal sequential search problems,” Problems

of Information Transmission, vol. 9, no. 3, pp. 265-266, 1973.
[2] K. Mulmuley, “Explicit proofs and the flip,” CoRR, vol.
abs/1009.0246, 2010. [Online]. Available: http://arxiv.org/
abs/1009.0246

(3]

, “Geometric complexity theory VI: the flip via saturated
and positive integer programming in representation theory
and algebraic geometry,” CoRR, vol. abs/0704.0229, 2007.
[Online]. Available: http://arxiv.org/abs/0704.0229

[4] ——, “The GCT program toward the P vs. NP problem,”

Commun. ACM, vol. 55, no. 6, pp. 98-107, 2012. [Online].

Available: https://doi.org/10.1145/2184319.2184341

[5

—

C. Ikenmeyer and U. Kandasamy, “Implementing geometric
complexity theory: on the separation of orbit closures
via symmetries,” in Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2020. ACM, 2020, pp. 713-726. [Online]. Available:
https://doi.org/10.1145/3357713.3384257

[6

—_

L. Chen, C. Jin, and R. R. Williams, “Sharp threshold results
for computational complexity,” in Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020. ACM, 2020, pp. 1335-1348.

[7

—

L. Chen, X. Lyu, and R. R. Williams, “Almost-everywhere
circuit lower bounds from non-trivial derandomization,” in
61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020. 1IEEE, 2020, pp. 1-12. [Online].
Available: https://doi.org/10.1109/FOCS46700.2020.00009
[8] L. Fortnow and R. Santhanam, “New non-uniform lower
bounds for uniform classes,” in 31st Conference on Com-
putational Complexity (CCC 2016), 2016.

[9] V. Kabanets, “Easiness assumptions and hardness tests: Trad-
ing time for zero error,” J. Comput. Syst. Sci., vol. 63, no. 2,
pp- 236-252, 2001.

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

T. P. Baker, J. Gill, and R. Solovay, “Relativizations
of the P =7NP question,” SIAM J. Comput., vol. 4,
no. 4, pp. 431-442, 1975. [Online]. Available: https:
/ldoi.org/10.1137/0204037

S. Aaronson and A. Wigderson, “Algebrization: A new
barrier in complexity theory,” ACM Trans. Comput. Theory,
vol. 1, no. 1, pp. 2:1-2:54, 2009. [Online]. Available:
https://doi.org/10.1145/1490270.1490272

A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 24-35, 1997. [Online].
Available: https://doi.org/10.1006/jcss.1997.1494

D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP
languages are hard on the worst-case, then it is easy
to find their hard instances,” Computational Complexity,
vol. 16, no. 4, pp. 412-441, 2007. [Online]. Available:
https://doi.org/10.1007/s00037-007-0235-8

S. Dolev, N. Fandina, and D. Gutfreund, “Succinct permanent
is NEXP-hard with many hard instances,” in Algorithms
and Complexity, 8th International Conference, CIAC 2013.
Proceedings, ser. Lecture Notes in Computer Science, vol.
7878. Springer, 2013, pp. 183-196. [Online]. Available:
https://doi.org/10.1007/978-3-642-38233-8_16

B. Kalyanasundaram and G. Schnitger, “The probabilistic
communication complexity of set intersection,” SIAM J.
Discrete Math., vol. 5, no. 4, pp. 545-557, 1992. [Online].
Available: https://doi.org/10.1137/0405044

A. A. Razborov, “On the distributional complexity of
disjointness,” Theor. Comput. Sci., vol. 106, no. 2, pp.
385-390, 1992. [Online]. Available: https://doi.org/10.1016/
0304-3975(92)90260-M

Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar,
“An information statistics approach to data stream and
communication complexity,” J. Comput. Syst. Sci., vol. 68,
no. 4, pp. 702-732, 2004. [Online]. Available: https:
//doi.org/10.1016/j.jcss.2003.11.006

W. Maass, “Quadratic lower bounds for deterministic
and nondeterministic one-tape turing machines (extended
abstract),” in Proceedings of the 16th Annual ACM
Symposium on Theory of Computing. ACM, 1984, pp.
401-408. [Online]. Available: https://doi.org/10.1145/800057.
808706

J. Brody and E. Verbin, “The coin problem and
pseudorandomness for branching programs,” in 5Ith
Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, 2010, pp. 30-39. [Online]. Available:
https://doi.org/10.1109/FOCS.2010.10

I. C. Oliveira and R. Santhanam, “Hardness magnification
for natural problems,” in 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, 2018, pp.
65-76. [Online]. Available: https://doi.org/10.1109/FOCS.
2018.00016

656

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

D. M. McKay, C. D. Murray, and R. R. Williams, “Weak
lower bounds on resource-bounded compression imply strong
separations of complexity classes,” in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019. ACM, 2019, pp. 1215-1225. [Online].
Available: https://doi.org/10.1145/3313276.3316396

L. Chen, C. Jin, and R. R. Williams, “Hardness magnification
for all sparse NP languages,” in 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2019, 2019, pp. 1240-1255. [Online]. Available: https:
//doi.org/10.1109/FOCS.2019.00077

L. Chen, S. Hirahara, I. C. Oliveira, J. Pich, N. Rajgopal,
and R. Santhanam, “Beyond natural proofs: Hardness
magnification and locality,” in 1/th Innovations in Theoretical
Computer Science Conference, ITCS, 2020, pp. 70:1-
70:48. [Online]. Available: https://doi.org/10.4230/LIPIcs.
ITCS.2020.70

E. Allender, H. Buhrman, M. Koucky, D. van Melkebeek,
and D. Ronneburger, “Power from random strings,” SIAM J.
Comput., vol. 35, no. 6, pp. 1467-1493, 2006. Preliminary
version in FOCS’02.

S. Hirahara, “Unexpected hardness results for Kolmogorov
complexity under uniform reductions,” in Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020. ACM, 2020, pp. 1038-1051.
[Online]. Available: https://doi.org/10.1145/3357713.3384251

L. Chen, C. Jin, R. Santhanam, and R. R. Williams,
“Constructive separations and their consequences,” Electronic
Colloquium on Computational Complexity (ECCC), vol.
TR21-159, 2021. [Online]. Available: https://eccc.weizmann.
ac.il/report/2021/159/

S. Arora and B. Barak, Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

0. Goldreich, Computational complexity - a conceptual per-
spective. Cambridge University Press, 2008.

V. Kabanets and J. Cai, “Circuit minimization problem,” in
Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, 2000, pp. 73-79. [Online].
Available: https://doi.org/10.1145/335305.335314

R. R. Williams, “Natural proofs versus derandomization,”
SIAM J. Comput., vol. 45, no. 2, pp. 497-529, 2016.
[Online]. Available: https://doi.org/10.1137/130938219

S. A. Cook, “Feasibly constructive proofs and the proposi-
tional calculus (preliminary version),” in Proceedings of the
7th Annual ACM Symposium on Theory of Computing, 1975.
ACM, 1975, pp. 83-97.

E. Jetdbek, “Approximate counting in bounded arithmetic,” J.
Symb. Log., vol. 72, no. 3, pp. 959-993, 2007.

M. Miiller and J. Pich, “Feasibly constructive proofs
of succinct weak circuit lower bounds,” Ann. Pure
Appl. Log., vol. 171, no. 2, 2020. [Online]. Available:
https://doi.org/10.1016/j.apal.2019.102735

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

[34] 1. Krajicek, Proof complexity. Cambridge University Press,
2019, vol. 170.

[35] I. C. Oliveira, J. Pich, and R. Santhanam, “Hardness
magnification near state-of-the-art lower bounds,” in 34th
Computational Complexity Conference, CCC 2019, 2019,
pp. 27:1-27:29. [Online]. Available: https://doi.org/10.4230/
LIPIcs.CCC.2019.27

[36] R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search
of an easy witness: exponential time vs. probabilistic
polynomial time,” J. Comput. Syst. Sci., vol. 65, no. 4, pp.
672-694, 2002. [Online]. Available: https://doi.org/10.1016/
S0022-0000(02)00024-7

[37] J. Hastad, “The shrinkage exponent of de Morgan formulas
is 2,7 SIAM J. Comput., vol. 27, no. 1, pp. 48-64, 1998. [On-
line]. Available: https://doi.org/10.1137/S0097539794261556

[38] A. Tal, “Shrinkage of de morgan formulae by spectral
techniques,” in 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, 2014, pp. 551-560.
[Online]. Available: https://doi.org/10.1109/FOCS.2014.65

[39] E. Neciporuk, “On a boolean function,” Doklady of the
Academy of the USSR, vol. 169, no. 4, pp. 765-766, 1966.

[40] A. A. Razborov, “Lower bounds on the size of bounded
depth circuits over a complete basis with logical addition,”
Mathematical Notes of the Academy of Sciences of the USSR,
vol. 41, no. 4, pp. 333-338, 1987.

[41] R. Smolensky, “Algebraic methods in the theory of lower
bounds for boolean circuit complexity,” in Proceedings
of the 19th Annual ACM Symposium on Theory of
Computing, 1987, 1987, pp. 77-82. [Online]. Available:
https://doi.org/10.1145/28395.28404

[42] O. Goldreich and A. Wigderson, “On derandomizing
algorithms that err extremely rarely,” in Symposium on Theory

of Computing, STOC 2014. ACM, 2014, pp. 109-118.
[Online]. Available: https://doi.org/10.1145/2591796.2591808

657

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

