
Constructive Separations and Their Consequences

Lijie Chen

Elect. Eng. & Comp. Sci.
MIT

Cambridge, MA USA
lijieche@mit.edu

Ce Jin

Elect. Eng. & Comp. Sci.
MIT

Cambridge, MA USA
cejin@mit.edu

Rahul Santhanam

Dept. of Computer Science
University of Oxford

Oxford, UK
rahul.santhanam@cs.ox.ac.uk

R. Ryan Williams

Elect. Eng. & Comp. Sci.
MIT

Cambridge, MA USA
rrw@mit.edu

Abstract—For a complexity class C and language L, a
constructive separation of “L is not in C” gives an efficient
algorithm (also called a refuter) to find counterexamples (bad
inputs) for every C-algorithm attempting to decide L. We study
the questions: Which lower bounds can be made constructive?
What are the consequences of constructive separations? We
build a case that “constructiveness” serves as a dividing line
between many weak lower bounds we know how to prove, and
strong lower bounds against P, ZPP, and BPP. Put another
way, constructiveness is the opposite of a complexity barrier:
it is a property we want lower bounds to have. Our results fall
into three broad categories.

1. For many separations, making them constructive would
imply breakthrough lower bounds. Our first set of results shows
that, for many well-known lower bounds against streaming
algorithms, one-tape Turing machines, and query complexity,
as well as lower bounds for the Minimum Circuit Size Problem,
making these lower bounds constructive would imply break-
through separations ranging from “EXP not equal to BPP” to
even “P not equal to NP”.

2. Most conjectured uniform separations can be made
constructive. Our second set of results shows that for most
major open problems in lower bounds against P, ZPP, and BPP,
including “P not equal to NP”, “P not equal to PSPACE”, “P
not equal to PP”, “ZPP not equal to EXP”, and “BPP not equal
to NEXP”, any proof of the separation would further imply
a constructive separation. Our results generalize earlier results
for “P not equal to NP” [Gutfreund, Shaltiel, and Ta-Shma,
CCC 2005] and “BPP not equal to NEXP” [Dolev, Fandina
and Gutfreund, CIAC 2013]. Thus any proof of these strong
lower bounds must also yield a constructive version, compared
to many weak lower bounds we currently know.

3. Some separations cannot be made constructive. Our
third set of results shows that certain complexity separations
cannot be made constructive. We observe that for all super-
polynomially growing functions t, there are no constructive
separations for detecting high t-time Kolmogorov complexity
(a task which is known to be not in P) from any complexity
class, unconditionally. We also show that under plausible
conjectures, there are languages in NP - P for which there
are no constructive separations from any complexity class.

Keywords-computational complexity; circuit complexity;
lower bounds; barriers; refuters

I. INTRODUCTION

A primary goal of complexity theory is to derive strong

complexity lower bounds for natural computational prob-

lems. When a lower bound holds for a problem Π against a

model M of algorithms, this implies that for each algorithm

A from M, there is an infinite sequence of counterexamples
{xi} for which A fails to solve Π correctly.1 In this paper,

we study the question: can such a family of counterexamples

be constructed efficiently, for fixed Π and a given algorithm

A in M? We call a positive answer to this question a

constructive separation of Π from M.

There are several motivations for studying this question

in a systematic way for natural problems Π and models

M. Computer science is inherently a constructive discipline,

and it is natural to ask if a given lower bound can be

made constructive. Indeed, this can be seen as an “explicit

construction” question of the kind that is studied intensively

in the theory of pseudorandomness, where we may have a

proof of existence of certain objects with optimal parame-

ters, e.g., extractors, and would like to construct such objects

efficiently. At a high level, cryptography is based on the

constructiveness of lower bounds: we need lower bounds to

exist, and we also need to sample hard instances efficiently.2

Our primary motivation is to understand the general lower

bound problem better! Constructive lower bounds have led

to some recent resolutions of lower bound problems in

complexity theory, and we believe they will lead to more. In

his Geometric Complexity Theory approach, Mulmuley [2]

suggests that in order to break the “self referential paradox”

of P vs NP and related problems3, one has to shoot for algo-
rithms which can efficiently find counterexamples for any

algorithms claiming to solve the conjectured hard language.

This view has been dominant in the GCT approach towards

the VNP vs. VP problem [3], [4], [5].

The ability to “construct bad inputs for a hard function”

has also been critical to some recent developments in

1If the family of counterexamples was finite, we could hard-code them
into the algorithm A to give a new algorithm A′ that solves Π correctly,
for most ”reasonable” models M.

2A superficial difference is that in cryptography, we would like to
construct instances that are hard for any efficient algorithm, whereas in our
setting, there is a fixed algorithm, and we would like to construct instances
that are hard for it. This difference vanishes when the problem Π has an
optimal algorithm in the sense of Levin [1], since any instance that is hard
for the optimal algorithm is hard for all efficient algorithms.

3Namely, since the P vs. NP problem is a universal statement about
mathematics that says that discovery is hard, why could it not preclude its
own proof and hence be independent of the axioms of set theory?

646

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00069

20
21

 IE
EE

 6
2n

d
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

78
-1

-6
65

4-
20

55
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

52
97

9.
20

21
.0

00
69

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

(Boolean) complexity theory. Chen, Jin, and Williams [6]

studied a notion of constructive proof they called explicit
obstructions. They show several “sharp threshold” results

for explicit obstructions, demonstrating (for example) that

explicit obstructions unconditionally exist for n2−ε-size De-

Morgan formulas, but if they existed for n2+ε-size formulas

then one could prove the breakthrough lower bound EXP �⊂
NC1. (We discuss the differences between their work and

ours in Section II-E, along with other related work.)
Constructive lower bounds have also been directly useful

in proving recent lower bounds. Chen, Lyu, and Williams [7]

recently showed how to strengthen several prior lower

bounds for ENP based on the algorithmic method to hold

almost everywhere. A key technical ingredient in this work

was the development of an constructive version of a nonde-

terministic time hierarchy that was already known to hold

almost everywhere [8]. The “refuter” in the constructive

lower bound (the algorithm producing counterexamples) is

used directly in the design of the hard function in ENP. This

gives a further motivation to study when lower bounds can

be made constructive.
The Setup: More formally, for a function f : {0, 1}� →

{0, 1} and algorithm A, we define the search problem Df,A

of counterexamples to be Df,A := {(1n, x) | x ∈ {0, 1}n ∧
f(x) �= A(x)}. Intuitively, a refuter for f against A is an

algorithm for the search problem Df,A, proving in an algo-

rithmic way that the algorithm A cannot compute f . (This

notion seems to have first been introduced by Kabanets [9]

in the context of derandomization; see Section II-E for more

details.)

Definition I.1 (Refuters and Constructive Separations). An

algorithm R is a refuter for f against A if there are infinitely

many n such that (1n, R(1n)) ∈ Df,A. For complexity

classes C and D, we say there is a D-constructive separation
of f /∈ C if for every algorithm A computable in C there is

a refuter for f against A that is computable in D.

Note that we allow the refuter algorithm to depend on the

algorithm A. The notion of refuter can also be extended

naturally to randomized algorithms. Formally, we say a

randomized algorithm R solves DL,A infinitely often, if

for infinitely many integers n, (1n, R(1n)) ∈ DL,A with

probability at least 2/3. If for these infinitely many integers

n, it holds in addition that R(1n) either outputs ⊥ or a

counterexample such that (1n, R(1n)) ∈ DL,A, we say R is

a zero-error randomized algorithm solving DL,A.
At this point it is natural to ask:

Question 1: Which lower bounds imply a corre-

sponding constructive lower bound?

Naively, one might expect that the answer to Question

1 is positive when the lower bound is relatively easy to

prove. We show that this intuition is wildly inaccurate. On

the one hand, we show that for many natural examples

of problems Π and weak models M, a lower bound is

easily provable (and well-known), but constructivizing the

same lower bound would imply a breakthrough separation

in complexity theory (a much stronger type of lower bound).

On the other hand, we show that for many ”hard” problems

Π and strong models M, a lower bound for Π against

M automatically constructivizes: the existence of the lower

bound alone can be used to derive an algorithm that produces

counterexamples. So, in contrast with verbs such as “rela-

tivize” [10], “algebrize” [11], and “naturalize” [12], we want
to prove lower bounds that constructivize! We are identifying

a desirable property of lower bounds.

We now proceed to discuss our results in more detail, and

then give our interpretation of these results.

A. Most Conjectured Poly-Time Separations Can Be Made
Constructive

Generalizing prior work [13], [14], we show that for most

major open lower bound problems regarding polynomial

time, their resolution implies corresponding constructive
lower bounds for most complete problems.

Theorem I.2. Let C ∈ {P,ZPP,BPP} and let
D ∈ {NP,Σ2P, . . . ,ΣkP, . . . ,PP,PSPACE,EXP, NEXP,
EXPNP}. Then D � C implies that for every paddable D-
complete language L, there is a C-constructive4separation
of L /∈ C.5 Furthermore, ⊕P � C implies that for ev-
ery paddable ⊕P-complete language L, there is a BPP-
constructive separation of L /∈ C.

In other words, for many major separation problems such

as PP �= BPP, EXP �= ZPP, and PSPACE �= P, proving the

separation automatically implies constructive algorithms that

can produce counterexamples to any given weak algorithm.

We find Theorem I.2 to be mildly surprising: intuitively it

seems that proving a constructive lower bound should be

strictly stronger than simply proving a lower bound. (Indeed,

we will later see other situations where making known
lower bounds constructive would have major consequences!)

Moreover, for separations beyond P �= NP, the polynomial-

time refuters guaranteed by Theorem I.2 are producing hard

instances for a problem that does not have short certificates,

in general.

B. Unexpected Consequences of Making Some Separations
Constructive

Given Theorem I.2, we see that most of the major

open problems surrounding polynomial-time lower bounds

would yield constructive separations. Can all complexity

separations can be made constructive? It turns out that

4When we use the term C-constructive for a class C such as P or BPP,
we mean the functional version of the class

5Throughout this paper when we say a language L is D-complete,
we mean it is D-complete under polynomial-time many-one reductions.
A language L is paddable if there is a deterministic polynomial-time
algorithm that receives (x, 1n) as input, where string x has length at most
n− 1, and then outputs a string y ∈ {0, 1}n such that L(x) = L(y).

647

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

for several “weak” lower bounds proved by well-known

methods, making them constructive requires proving other
breakthrough lower bounds!

Thus, there seems to be an algorithmic “dividing line”

between many lower bounds we are able to prove, and many

of the longstanding lower bounds that seem perpetually out

of reach. The longstanding separation questions (as seen

in Theorem I.2) require a constructive proof: an efficient

algorithm that can print counterexamples. Here we show

that many lower bounds we are able to prove do not require

constructivity, but if they could be made constructive then we

would prove a longstanding separation! In our minds, these

results confirm the intuition of Mulmuley that we should

“go for explicit proofs” in order to make serious progress

on lower bounds, especially uniform ones.

Constructive Separations for (Any) Streaming Lower
Bounds Imply Breakthroughs: It is well-known that various

problems are unconditionally hard for low-space randomized

streaming algorithms. For example, from the randomized

communication lower bound for the Set-Disjointness (DISJ)

problem [15], [16], [17], it follows that no n1−ε-space

randomized streaming algorithm can solve DISJ on 2n input

bits.6

Clearly, every no(1)-space streaming algorithm for DISJ
must fail to compute DISJ on some input (indeed, it must

fail on many inputs). We show that efficient refuters against

streaming algorithms attempting to solve any NP problem

would imply a breakthrough lower bound on general ran-

domized algorithms, not just streaming algorithms.

Theorem I.3. Let f(n) ≥ ω(1). For every language
L ∈ NP, a PNP-constructive separation of L from uniform
randomized streaming algorithms with O(n · (log n)f(n))
time and O(log n)f(n) space7 implies EXPNP �= BPP.

Essentially every lower bound proved against streaming

algorithms in the literature holds for a problem whose

decision version is in NP. Theorem I.3 effectively shows

that if any of these lower bounds can be made constructive,

even in a PNP sense, then we would separate randomized

polynomial time from EXPNP, a longstanding open problem

in complexity theory. A more constructive separation (with

an algorithm in a lower complexity class than PNP) would

imply a stronger separation. We are effectively showing that

the counterexamples printed by such a refuter algorithm

must encode a function that is hard for general randomized

algorithms.

Stronger lower bounds follow from more efficient refuters

for DISJ against randomized streaming algorithms. At the

6Recall in the DISJ problem, Alice is given an n-bit string x, Bob is
given an n-bit string y, and the goal is to determine whether their inner
product

∑n
i=1 xiyi is nonzero.

7That is, for every such randomized streaming algorithm A, there is a
PNP refuter B such that B(1n) prints an input x of length n such that A
decides whether x ∈ L incorrectly, for infinitely many n.

extreme end, we find that uniform circuits refuting DISJ
against randomized streaming algorithms would even imply

P �= NP.

Theorem I.4. Let f(n) ≥ ω(1). A polylogtime-uniform-
AC0-constructive separation of DISJ from randomized
streaming algorithms with O(n · (log n)f(n)) time and
O(log n)f(n) space8 implies P �= NP.

To recap, it is well-known that DISJ does

not have randomized streaming algorithms with

O(n · (log n)f(n)) time and O(log n)f(n) space, even

for f(n) ≤ o(log n/ log logn), by communication

complexity arguments. We are saying that, if (given the

code of such an algorithm) we can efficiently construct

hard instances of DISJ for that algorithm, then strong lower

bounds follow. That is, making communication complexity
arguments constructive would imply strong unconditional
lower bounds.

Constructive Separations for One-Tape Turing Ma-
chines Imply Breakthroughs: Next, we show how making

some rather old lower bounds constructive would imply

a circuit complexity breakthrough. It has been known at

least since Maass [18] that nondeterministic one-tape Turing

machines require Ω(n2) time to simulate nondeterministic

multitape Turing machines. However, those lower bounds

are proved by non-constructive counting arguments. We

show that if there is a PNP algorithm that can produce

bad inputs for a given one-tape Turing machine, then ENP

requires exponential-size circuits. This in turn would imply

BPP ⊆ PNP, a breakthrough simulation of randomized

polynomial time.

Theorem I.5. For every language L computable by a
nondeterministic n1+o(1)-time RAM, a PNP-constructive sep-
aration of L from nondeterministic O(n1.1)-time one-tape
Turing machines implies ENP �⊂ SIZE[2δn] for some constant
δ > 0.

Constructive Separations for Query Lower Bounds Im-
ply Breakthroughs: Now we turn to query complexity. Con-

sider the following basic problem PromiseMAJORITYn,ε

for a parameter ε < 1/2.

PromiseMAJORITYn,ε: Given an input x ∈
{0, 1}n, letting p = 1

n

∑n
i=1 xi, distinguish be-

tween the cases p < 1/2− ε or p > 1/2 + ε.
This is essentially the “coin problem” [19]. It is well-known

that every randomized query algorithm needs Θ(1/ε2)
queries to solve PromiseMAJORITYn,ε with constant suc-

cess probability (uniform random sampling is the best one

can do). That is, any randomized query algorithm making

o(1/ε2) must make mistakes on some inputs, with high

8That is, for every such randomized streaming algorithm A, there is a
polylogtime-uniform AC0 circuit family {Cn} such that A fails to solve
DISJ on 2n-bit inputs correctly on the output Cn(1n) for infinitely many
n.

648

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

probability. We show that constructing efficient refuters for

this simple sampling lower bound would imply P �= NP!

Theorem I.6. Let ε be a function of n satisfying ε(n) ≤
1/(log n)ω(1).

• If there is a polylogtime-uniform-AC0-constructive
separation of PromiseMAJORITYn,ε from random-
ized query algorithms A using o(1/ε2) queries and
poly(1/ε) time, then NP �= P.

• If there is a polylogtime-uniform-NC1-constructive
separation of PromiseMAJORITYn,ε from random-
ized query algorithms A using o(1/ε2) queries and
poly(1/ε) time, then PSPACE �= P.

Note that PromiseMAJORITYn,ε can be easily computed

in NC1. If for every randomized query algorithm A running

in nα time and making nα queries for some α > 0, we can

always find inputs in NC1 on which A makes mistakes, then

would separate P from PSPACE.
Constructive Separations for MCSP Against AC0 Im-

ply Breakthroughs: Informally, the Minimum Circuit Size

Problem (MCSP) is the problem of determining the circuit

complexity of a given 2n-bit truth table. Recent results on

the phenomenon of hardness magnification [20], [21], [22],

[23], [6] show that, for various restricted complexity classes

C:

• Strong lower bounds against C are known for explicit

languages.

• Standard complexity-theoretic hypotheses imply that

such lower bounds should hold also for MCSP (and

its variants).

• However, actually proving that MCSP /∈ C would imply

a breakthrough complexity separation.

In such situations, there is also often a slightly weaker lower

bound against C that can be shown for MCSP, suggesting

that we are quantitatively “close” to a breakthrough separa-

tion in some sense.

We show that a similar phenomenon holds for constructive

separations. It is well known that versions of MCSP are

not in AC0 [24], but strongly constructive separations are

not known. We show that strongly constructive separations

would separate P from NP, and that they exist under a

standard complexity hypothesis. Moreover, we show that

slightly weaker constructive separations do exist, and the

strong constructive separations we seek do hold for other

hard problems such as Parity.

In the following, MCSP[f(n)] is the computational prob-

lem that asks whether a Boolean function on n bits, repre-

sented by its truth table, has circuits of size at most f(n).

Theorem I.7. Let f(n) ≥ nlog(n)ω(1)

be any time-
constructive super-quasipolynomial function. The following
hold:

1) (Major Separation from Constructive Lower Bound) If
there is a polylogtime-uniform AC0[quasipoly] refuter

for MCSP[f(n)] against every polylogtime-uniform
AC0 algorithm, then P �= NP.

2) (Constructive Lower Bound Should Exist) If PH �⊂
SIZE(f(n)2), then there is a polylogtime-uniform-
AC0[quasipoly] refuter for MCSP[f(n)] against every
polylogtime-uniform AC0 algorithm.

3) (Somewhat Constructive Lower Bound) There is
a polylogtime-uniform-AC0[2poly(f(n))] refuter for
MCSP[f(n)] against every polylogtime-uniform AC0

algorithm.
4) (Constructive Lower Bound for a Different Hard Lan-

guage) There is a quasipoly(N)-size polylogtime-
uniform-AC0[quasipoly]-list-refuter for Parity against
every polylogtime-uniform AC0 algorithm.

Note that in item 3, the input size N to the problem

is N = 2n, hence 2poly(f(n)) is only slightly super-

quasipolynomial in N .

Comparison with Theorem I.2: It is very interesting

to contrast Theorem I.2 with the various theorems of this

subsection. On the one hand, Theorem I.2 tells us that

many longstanding open problems in lower bounds would

automatically imply constructive separations, when resolved.

On the other hand, we see that extending simple and well-

known lower bounds to become constructive would resolve

other major lower bounds! Taken together, we view the

problem of understanding which lower bounds can be made

constructive as a significant key to understanding the future

landscape of complexity lower bounds.

C. Certain Lower Bounds Cannot Be Made Constructive

Finally, we can give some negative answers to our Ques-

tion 1. We show that for some hard functions, there are

no constructive separations from any complexity classes.

Specifically, we show (unconditionally or under plausible

complexity conjectures) that there are no refuters for these

problems against a trivial decision algorithm that always
returns the same answer (zero, or one). Hence, there can be

no constructive separations of these hard languages from any

complexity class containing the constant zero or constant one

function. (All complexity classes that we know of contain

both the constant zero and one function.)

For a string x ∈ {0, 1}∗, the t-time-bounded Kolmogorov

complexity of x, denote by Kt(x), is defined as the length

of the shortest program prints x in time t(|x|). We use RKt

to denote the set of strings x such that Kt(x) ≥ |x| − 1.

Hirahara [25] recently proved that for any super-polynomial

t(n) ≥ nω(1), RKt /∈ P. We observe that this separation

cannot be made P-constructive.

Proposition I.8. For any t(n) ≥ nω(1), there is no P-refuter
for RKt against the constant zero function.

Since RKt is a function in EXP, it would be interesting

649

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

to find functions in NP with no constructive separations.9

We show that under plausible conjectures, such languages

in NP exist.

Theorem I.9. The following hold:
• If NE �= E, then there is a language in NP\P that does

not have P refuters against the constant one function.10

• If NE �= RE, then there is a language in NP \ P that
does not have BPP refuters against the constant one
function.11

Thus, under natural conjectures about exponential-time

classes, there are some problems in NP with no constructive

separations at all, not even against the trivial algorithm that

always accepts.

D. Intuition

Let us briefly discuss the intuition behind some of our

results. We will first focus on the results showing that con-

structive separations of known lower bounds would imply

complexity breakthroughs, as we believe these are the most

interesting of our paper.

Constructive Separations of Known Lower Bounds Im-
ply Breakthroughs: Suppose for example we want to show

that a constructive separation of SAT from quick low-space

streaming algorithms implies EXPNP �= BPP. The proof

is by contradiction: assuming EXPNP = BPP, we aim

to construct a streaming algorithm running in n(log n)ω(1)

time and (log n)ω(1) space which solves 3SAT correctly on

all instances produced by PNP algorithms. Given a PNP

algorithm R, EXPNP = BPP implies EXPNP ⊂ P/poly,

which further implies that the output of R(1n) must have

circuit complexity at most polylog(n) (construed as a truth

table).

Extending work of McKay, Murray, and Williams [21],

we show that NP ⊂ BPP (implied by EXPNP = BPP)

implies there is an n(log n)ω(1) time and (log n)ω(1) space

randomized algorithm with one-sided error for finding a

polylog(n)-size circuit encoding the given length-n input, if

such a circuit exists. So given any input R(1n) from a poten-

tial refuter R, our streaming algorithm can first compute a

polylog(n)-size circuit C encoding R(1n), and it construes

this circuit C as an instance of the Succinct-3SAT problem.

Since Succinct-3SAT ∈ NEXP = BPP, our streaming

algorithm can solve Succinct-3SAT(C) in polylog(n) ran-

domized time, which completes the proof.

For our results on constructive query lower bounds, we

use ideas from learning theory. Set ε � 1/ poly(log n).
Assuming PSPACE = P, we want to show that for ev-

ery n-bit string printed by an uniform NC1 circuit C on

9Note that RKt is in coNTIME[t(n)], but it is likely not in coNP.
10Here, E = TIME[2O(n)], the class of languages decidable in (deter-

ministic) 2O(n) time, and NE is the corresponding nondeterministic class.
11Here, RE = RTIME[2O(n)], the class of languages decidable in

randomized 2O(n) time with one-sided error.

the input 1n, we can decide the PromiseMAJORITYn,ε

problem with o(1/ε2) randomized queries in poly(1/ε)
time. (Then, any sufficiently constructive lower bound that

PromiseMAJORITYn,ε requires Ω(1/ε2) queries would im-

ply P �= PSPACE.) PSPACE = P implies that for every

uniform NC1 circuit C, its output can be encoded by some

polylog(n)-size circuit D. Now, also assuming PSPACE =
P, this circuit D can be PAC-learned with error ε/2 and

failure probability 1/10 using only poly log(n)/ε queries

(and randomness). Let D′ be the circuit we learnt through

this process; it approximates D well enough that we can

make O(1/ε2) random queries to the circuit D′, without
querying D in poly(1/ε, log n) time, and return the majority

answer as a good answer for the original n-bit answer. Such

an algorithm only makes polylog(n)/ε � o(1/ε2) queries

to the original input and runs in poly(1/ε) time.

Constructive Separations for Uniform Complexity Sep-
arations: Next, we highlight some insights behind the proof

of Theorem I.2, whose proof appears in the full version of

this paper [26]. The proof is divided into several different

cases; we will focus on the intuition behind one of them,

which applies to all complexity classes with a downward

self-reducible complete language (such as PSPACE or ΣkP).

We take the PSPACE vs. P problem as an example. Gut-

freund, Shaltiel, and Ta-Shma [13] showed how to construct

refuters for P �= NP, but their proof utilizes the search-to-

decision reduction for NP-complete problems, and no such

reduction exists for PSPACE. We show how a downward

self-reduction can be used to engineer a situation similar to

that of [13].

Let M be a downward self-reducible PSPACE-complete

language and let A be a P algorithm. We also let D
be a polynomial-time algorithm defining a downward-self

reduction for M , so that for all but finitely many n ∈ N and

x ∈ {0, 1}n,

D(x)M≤n−1 = M(x). (1)

That is, D can compute M(x) given access to an M -oracle

for all strings of length less than |x|. Our key idea is that (1)

also defines M . Assuming the polynomial-time algorithm

A cannot compute M , it follows that (1) does not always

hold if M is replaced by A. In particular, the following NP
statement is true for infinitely many n:

∃x ∈ {0, 1}n such that D(x)A≤n−1 �= A(x). (2)

Now we use a similar approach as in [13]: we use A and

a standard search-to-decision reduction to find the shortest

string x∗ so that (2) holds. If A fails to do so, we can

construct a counterexample to the claim that A solves the

PSPACE-complete language M similarly to [13]. If A finds

such an x∗, then by definition A(y) = M(y) for all y with

|y| ≤ |x∗| − 1 and we have A(x∗) �= M(x∗) from (2), also

650

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

a counterexample.12

E. Organization

In Section II we introduce the necessary definitions and

technical tools for this paper, as well as review other related

work. In Section III we show that making known streaming

and query lower bounds constructive implies major com-

plexity separations, proving Theorem I.3 and Theorem I.4.

The full version of the paper [26] contains proofs of our

other results, such as Theorem I.7, Theorem I.2, Proposi-

tion I.8 and Theorem I.9.

In Section IV we conclude with some potential future

work.

II. PRELIMINARIES

A. Notation

We use Õ(f) as shorthand for O(f ·polylog(f)) through-

out the paper. All logarithms are base-2. We use n to denote

the number of input bits. We say a language L ⊆ {0, 1}�
is f(n)-sparse if |Ln| ≤ f(n), where Ln = L ∩ {0, 1}n.

We assume knowledge of basic complexity theory (see [27],

[28]).

B. Other Refuter Notions

For some of our results, it will be useful to generalize

the notion of a refuter to allow the production of a list of

strings, such that at least one of them is a counterexample.

Definition II.1 (List-Refuters). For a function s : N → N, a

language L and an algorithm A that fails to solve L, an

s-size D-list-refuter (where D ∈ {P,BPP,ZPP}) for L
against A is a D-algorithm B that, given input 1n, prints

a list of s(n) strings x
(1)
n , x

(2)
n , . . . , x

(s(n))
n of lengths nΩ(1),

such that for infinitely many n, the following hold:

1) If D = P there is an i ∈ [s(n)] for which A(x
(i)
n) �=

L(x
(i)
n).

2) If D = BPP, with constant probability there exists

i ∈ [s(n)] for which A(x
(i)
n) �= L(x

(i)
n).

3) If D = ZPP, then either the algorithm outputs “fail”

or there exists i ∈ [s(n)] for which A(x
(i)
n) �= L(x

(i)
n),

and the latter event happens with constant probability.

Refuters for Non-Uniform Models: We can also define

refuters for circuit families. For a circuit class C, we use

DL,C to denote the family {DL,A}A∈C . We say a determin-

istic oracle algorithm R solves the search problem family

DL,C infinitely often, if for every {Cn}n∈N ∈ C, there

are infinitely many integers n such that (1n, R(1n)) ∈
DL,{Cn}n∈N

. We use R{desc(Cn)}n∈N to denote that the oracle

algorithm R gets access to the descriptions of the circuit

family {Cn}, instead of only black box query access to it.

12Note the argument above only finds a single counterexample; using a
paddable PSPACE-complete language, one can adapt the above argument
to find infinitely many counter examples, see the full version [26] for details.

We can similarly generalize the above to randomized or

zero-error randomized algorithms in the natural way.

Definition II.2 (Refuters and Constructive Separations for

Language L against Nonuniform Class C). For a language L,

a D refuter R for L against circuit class C is a D algorithm

solving DL,C infinitely often. We also say that R gives a

D-constructive separation L /∈ C.

We can extend the above definitions to list-refuters by al-

lowing the corresponding algorithm to output a (polynomial-

size) candidate list instead of a single counterexample. And

we say a P list-refuter R solves DL,A infinite often if

for infinitely many n, there exists a ∈ R(1n) such that

(1n, a) ∈ DL,A. One can also similarly define BPP or ZPP
list-refuters.

Finally, for a list-refuter according to Definition II.2, we

say it is an oblivious list-refuter, if it does not need access

to {desc(Cn)}n∈N.

C. Definitions of MCSP and time-bounded Kolmogorov
complexity

The Minimum Circuit Size Problem (MCSP) [29] and

t-time-bounded Kolmogorov complexity (Kt) are studied

in (the full version of) this paper [26]. We recall their

definitions.

Definition II.3 (MCSP). Let s : N → N satisfy s(m) ≥
m− 1 for all m.

Problem: MCSP[s(m)].
Input: A function f : {0, 1}m → {0, 1}, presented as a

truth table of n = 2m bits.

Decide: Does f have a (fan-in two) Boolean circuit C of

size at most s(m)?

We will also consider search-MCSP, the search version

of MCSP, in which the small circuit C must be output when

it exists.

For a time bound t : N → N, recall that the Kt complexity

(t-time-bounded Kolmogorov complexity) of string x is the

length of the shortest program which outputs x in at most

t(|x|) time.

Definition II.4 (RKt). Let t : N → N.

Problem: RKt .

Input: A string x ∈ {0, 1}n.

Decide: Does x have Kt(x) complexity at least n− 1?

D. Implications of Circuit Complexity Assumptions on Re-
futers

The following technical lemma shows that, assuming

uniform classes have non-trivially smaller circuits, the output

of a refuter may be assumed to have low circuit complexity.

This basic fact will be useful for several proofs in the paper.

Lemma II.5. Let s : N → N be an increasing function. The
following hold:

651

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1) Assuming ENP ⊂ SIZE[s(n)], then for every PNP

algorithm A such that A(1n) outputs n bits, it holds
that A(1n) has circuit complexity at most s(O(log n)).

2) Assuming E ⊂ SIZE[s(n)], then for every P algorithm
A such that A(1n) outputs n bits, it holds that A(1n)
has circuit complexity at most s(O(log n)).

3) Assuming SPACE[O(n)] ⊂ SIZE[s(n)], then for every
LOGSPACE algorithm A such that A(1n) outputs n
bits, it holds that A(1n) has circuit complexity at most
s(O(log n)).

Proof: In the following we only prove the first item, the

generalization to the other two items are straightforward.

Consider the following function fA(n, i), which takes two

binary integers n and i ∈ [n] as inputs, and output the i-th
bit of the output of A(1n). The inputs to fA can be encoded

in O(log n) bits in a way that all inputs (n, i) with the same

n has the same length.

Since A is in PNP, we have fA ∈ ENP. By our assumption

and fix the first part of the input to fA as n, it follows that

A(1n) has circuit complexity at most s(O(log n)).
The following simple corollary of Lemma II.5 will also

be useful.

Corollary II.6. If ENP ⊂ P/poly (E ⊂ P/poly or
SPACE[O(n)] ⊆ P/poly), then for every PNP (P or
LOGSPACE) algorithm A such that A(1n) outputs n bits, it
holds that A(1n) has circuit complexity at most polylog(n).

We also observe that P = NP has strong consequences

for polylogtime-uniform AC0 circuits.

Lemma II.7. The following hold:
1) Assuming P = NP, then for every polylogtime-uniform

AC0 algorithm A such that A(1n) outputs n bits, it
holds that A(1n) has circuit size complexity at most
polylog(n).

2) Assuming P = PSPACE, then for every polylogtime-
uniform NC1 algorithm A such that A(1n) outputs n
bits, it holds that A(1n) has circuit size complexity at
most polylog(n).

Proof: Let B be a polylogtime-uniform algorithm that,

on the integer n (in binary) and O(log n)-bit additional

input, reports gate and wire information for an AC0 circuit

An. Consider the function f(n, i) which determines the i-th
output bit of the circuit An on the input 1n, given n and i
in binary. The function f is a problem in PH: given input

of length m = O(log n), by existentially and universally

guessing and checking gate/wire information (and using the

polylog(n)-time algorithm B to verify the information), the

An of nO(1) size can be evaluated in ΣdTIME[mk] for a

constant d depending on the depth of An, and a constant

k depending on the algorithm B. Since P = NP, f is

computable in P, i.e., f is in time at most αmα for some

constant α depending on k, d, and the polynomial-time SAT

algorithm. Therefore f has a circuit family of size at most

mc for some fixed c, where m = c log n. Thus the output

of such a family always has small circuits.

The same argument applies if we replace AC0 by NC1

and replace PH by PSPACE.

E. Other Related Work

As mentioned in the introduction, Kabanets [9] defined

and studied refuters in the context of derandomization. A

primary result from that paper is that it is possible to

simulate one-sided error polynomial time (RP) in zero-error

subexponential time (ZPSUBEXP) on all inputs produced

by refuters (efficient time algorithms that take 1n and

output strings of length n).13 In other words, nontrivial

derandomization is indeed possible when we only consider

the outputs of refuters: there is no constructive separation

of RP �⊂ ZPSUBEXP. This result contrasts nicely with

some of our own, which show that if we could prove (for

example) EXP = ZPP holds with respect to refuters, then

EXP = ZPP holds unconditionally. (Of course this is a

contrapositive way of stating our results; we don’t believe

that EXP = ZPP holds!) Kabanets’ work effectively shows

that if RP �⊆ ZPSUBEXP implied a constructive separation
of RP �⊆ ZPSUBEXP, then RP ⊆ ZPSUBEXP holds

unconditionally (because there is no constructive separation

of RP from ZPSUBEXP).

Chen, Jin, and Williams [6] studied a notion of con-

structive proof they called explicit obstructions. Roughly

speaking, an explicit obstruction against a circuit class C is

a (deterministic) polynomial-time algorithm A outputting a

list Ln of input/output pairs {(xi, yi)} with distinct xi, such

that all circuits in C fail to be consistent on at least one in-

put/output pair. Chen, Jin, and Williams show several “sharp

threshold” results for explicit obstructions, demonstrating

(for example) that explicit obstructions unconditionally exist

for n2−ε-size DeMorgan formulas, but if they existed for

n2+ε-size formulas then one could prove the breakthrough

lower bound EXP �⊂ NC1. In this work, we are considering

a “uniform” version of this concept: instead of outputting

a list of bad input/output pairs (that do not depend on the

algorithm), here we only have to output one bad instance

that depends on the algorithm given.

Another motivation for studying constructive proofs

comes from proof complexity and bounded arithmetic. A

circuit lower bound for a language L ∈ P can naturally be

expressed by a Π2 statement Sn that says: ”For all circuits

C of a certain type, there exists x of length n such that

C(x) �= L(x)”. In systems of bounded arithmetic such as

Cook’s theory PV1 [31] (formalizing poly-time reasoning)

or Jeřábek’s theory APC1 [32] (formalizing probabilistic

13The exact statement involves an “infinitely-often” qualifier, which we
omit here for simplicity. A version of the simulation that removes the
restriction to refuters, with the addition of a small amount of advice, was
given in [30].

652

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

poly-time reasoning), a proof of Sn for infinitely many n
immediately implies a constructive separation. The reason

is that these theories have efficient witnessing: any proof of

a Π2 statement ∀x∃yR(x, y) (for R that can be expressed

purely with bounded quantifiers and poly-time concepts) in

these theories constructs an efficiently computable function

f such that R(x, f(x)) holds. Here the function f plays the

role of the refuter in a constructive separation. Therefore,

situations in which constructive separations are unlikely to

exist may provide clues about whether complexity lower

bounds could be independent of feasible theories. Con-

versely, the constructiveness of a separation is a precondition

for the provability of that separation in these feasible theo-

ries.14

Hardness Magnification: Another related line of work

is hardness magnification [20], [21], [35], [23]. This line

of work shows how very minor-looking lower bounds ac-

tually hide the whole difficulty of P vs NP and related

problems. However, one might say that those results simply

illuminate large holes in our intuition: those minor-looking

lower bounds are far more difficult to prove than previously

believed. One has to be skeptical in considering hardness

magnification as a viable lower bounds approach, because

we really don’t understand how difficult the “minor-looking”

lower bounds actually are.

In this paper, in contrast, we are mainly focused on

situations where we already know the lower bound holds

(and can prove that in multiple ways), but we are striving

to prove the known lower bound in a more constructive,

algorithmic way. This sort of situation comes up routinely

in applications of the probabilistic method, where an object

we want can be constructed with randomness, but it is a

major open problem to construct it deterministically. Our

results indicate that there is a deep technical gap between the

major complexity class separation problems, versus many

lower bounds we know how to prove. The former type of

lower bound problem automatically has constructive aspects

built into it, while the latter type of lower bound requires

a breakthrough in derandomization in order to be made

constructive.

III. CONSTRUCTIVE SEPARATIONS FOR STREAMING

AND QUERY ALGORITHMS IMPLY BREAKTHROUGH

LOWER BOUNDS

Streaming lower bounds and query complexity lower

bounds are often regarded as well-understood, and certain

lower bounds against one-tape Turing machines have been

14We note, however, that these connections depend on the complexity
classes being separated. A circuit lower bound for an NP problem does
not have an obvious Π2 formulation, so the efficient witnessing results
mentioned above do not directly apply. More complicated witnessing
theorems might still be relevant; we refer to [33] and the recent book on
Proof Complexity by Krajı́ček [34] for a more detailed discussion of these
matters.

known for 50 years. In this section we show that surpris-

ingly, making these separations constructive would imply

breakthrough separations such as EXPNP �= BPP or even

P �= NP.

A. Making Most Streaming Lower Bounds Constructive Im-
plies Breakthrough Separations

We show that if randomized streaming lower bounds for

any language L in NP can be made constructive, even with

a PNP refuter, then EXPNP �= BPP.

Reminder of Theorem I.3. Let f(n) ≥ ω(1). For
every language L ∈ NP, a PNP-constructive separation
of L from uniform randomized streaming algorithms with
O(n · (log n)f(n)) time and O(log n)f(n) space implies
EXPNP �= BPP.

Remark III.1. Let V (x, y) be a verifier for L, and assume
that the witness length |y| is at most |x|.15 Then the
randomized streaming algorithms considered in Theorem I.3
can be further assumed to solve the search-version of L with
one-sided error in the following sense: (1) A is also required
to output a witness y when it decides x ∈ L (2) whenever
A outputs a witness y, we have V (x, y) = 1.

We need the following lemma for solving search-MCSP,

which adapts an oracle algorithm from [21]. The original

algorithm of [21] has two-sided error: that is, when x /∈
MCSP[s(n)], there is a small probability that the algorithm

outputs an incorrect circuit. We modify their approach with

a carefully designed checking approach so that the algorithm

has only one-sided error.

Lemma III.2 ([21, Theorem 1.2], adapted). Assuming
NP ⊆ BPP, for a time-constructive s : N → N, there is a
randomized streaming algorithm for search-MCSP[s(n)] on
n-bit instances with O(n · s(n)c) time and O(s(n)c) space
for a constant c such that the following holds.

• If the input x ∈ MCSP[s(n)], the algorithm outputs a
circuit C of size at most s computing x with probability
at least 1− 1/n.

• If the input x /∈ MCSP[s(n)], the algorithm always
outputs NO.

Alternatively, if we assume NP = P instead, the above
randomized streaming algorithm can be made deterministic.

Proof: We first recall the Σ3P problem Circuit-Min-

Merge introduced in [21]; here, we will only consider the

version with two given input circuits. In the following we

identify the integer i from [2m] with the i-th string from

{0, 1}m (ordered lexicographically).

Note that since NP ⊆ BPP, it follows that

Circuit-Min-Merge is also in BPP. We can without loss of

15That is, x ∈ L if and only if there exists y ∈ {0, 1}∗ such that
|y| ≤ |x| and V (x, y) = 1.

653

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Circuit-Min-Merge

Circuit-Min-Merge[s(n)]

Input: Given two circuits C1, C2 on m = log n input bits

and three integers α < β ≤ γ ∈ [2m].
Output: The lexicographically first circuit C ′ such that for

all α ≤ z ≤ β − 1, C ′(z) = C1(z), and for all β ≤ z ≤ γ,

C ′(z) = C2(z). If there are no such circuits, it outputs an

all-zero string.

generality assume we have a BPP algorithm for it with error

at most 1/n3.

After processing the first p ∈ [2m] bits of the input

x, our streaming algorithm maintains a list of at most m
circuits. Specifically, let p =

∑m
k=0 ak · 2k be the binary

representation of p, for each k ∈ [m]. We maintain a

circuit Ck that is intended to satisfy Ck(z) = xz for all∑
�>k a� · 2� < z ≤ ∑

�≥k a� · 2�. Note that when ak = 0,

there is indeed no requirement on the circuit Ck and we can

simply set it to a trivial circuit.

Now, suppose we get the p + 1 bit of the input x. We

update the circuit list via the following algorithm.

• We initialize D to be the linear-size circuit which

outputs xp+1 on the input p + 1, and outputs 0 on all

other inputs.

• For k from 0 to m:

– If ak = 1, we set D =
Circuit-Min-Merge(Ck, D, α, β, γ) with

suitable α, β, γ, and set ak = 0 and Ck

to be a trivial circuit. We next check

whether D is indeed the correct output of

Circuit-Min-Merge(Ck, D, α, β, γ) by going

through all inputs in [α, γ]. We output

NO and halt the algorithm immediately if

we found D is not the correct output (if

Circuit-Min-Merge(Ck, D, α, β, γ) outputs the

all-zero string, we also output NO and halt the

algorithm).

– If ak = 0, we set Ck = D, and halt the update

procedure.

After we have processed the 2m-bit of x, we simply output

Cn. If x ∈ MCSP[s(n)], then by a simple union bound, with

probability at least 1− 1/n, all calls to our BPP algorithm

for Circuit-Min-Merge are answered correctly. In this case

Cn is a correct algorithm computing the input x. If x /∈
MCSP[s(n)], since we have indeed checked the output of all

Circuit-Min-Merge calls, our algorithm will only output the

circuit Cn if it is indeed of size at most s(n) and computes

x exactly. Since x /∈ MCSP[s(n)] implies there is no such

circuit Cn, our algorithm always outputs NO in this case.

For the running time, note that the above algorithm calls

Circuit-Min-Merge at most n · log n times on input of length

Õ(s(n)). Therefore calling Circuit-Min-Merge only takes n·

poly(s(n)) time in total. Note that merging Ck and D takes

2k · poly(s(n)) time to verify the resulting circuit, but this

only happens at most n/2k times. So the entire algorithm

runs in n · poly(s(n)) time and poly(s(n)) space as stated.

Now we are ready to prove Theorem I.3.

Proof of Theorem I.3: The idea is to show that

if EXPNP = BPP then we can construct a randomized

streaming algorithm for L ∈ NP that “fools” all possible

PNP refuters. Interestingly, the assumption is used in three

different ways: (1) to bound the circuit complexity of the

outputs of PNP algorithms, (2) to obtain a randomized

streaming algorithm that finds a small circuit encoding the

input, and (3) to get an efficient algorithm to find a small

circuit encoding a correct witness when it exists.

Let L ∈ NP, and V (x, y) be a polynomial-time verifier

for L. Assuming EXPNP = BPP, we are going to construct

a randomized streaming algorithm A, such that it solves L
correctly on all possible instances which can be generated

by a PNP refuter.

Let B be an arbitrary PNP refuter. First, by Corollary II.6,

EXPNP = BPP ⊂ P/poly implies that for all n ∈ N, B(1n)
has a circuit complexity of w(n) = polylog(n).

Second, note that EXPNP = BPP also implies that NP ⊆
BPP. Let f(n) ≥ ω(1) and s(n) = (log n)f(n)/c1 for a

sufficiently large constant c1 > 1. By Lemma III.2, we have

a one-sided error randomized streaming algorithm AMCSP

for search-MCSP[s(n)] with running time n · s(n)O(1) and

space s(n)O(1). Since w(n) ≤ s(n), we apply AMCSP to

find an s(n)-size circuit C encoding B(1n).
Now, we have an s(n)-size circuit encoding the n-bit input

B(1n), and we wish to solve the Succinct-L problem16 on

this circuit. Note that Succinct-L is a problem in NEXP.

EXPNP = BPP implies NEXP ⊂ P/poly, so every

Succinct-L instance has a succinct witness with respect

to the verifier V : this follows from the easy witness

lemma of [36]. Formally, there exists a universal constant

k ∈ N such that, for every s(n)-size circuit D such that

tt(D) ∈ L, there exists an s(n)k-size circuit E such that

V (tt(D), tt(E)) = 1.

We consider the following problem:

Given an s(n)-size circuit D with truth-table

length n and an integer i ∈ [log(s(n)k)], exhaus-

tively try all circuits of size at most s(n)k, find

the first circuit E such that V (tt(D), tt(E)) = 1,

and output the i-th bit of the description of E.

Note that the above algorithm runs in 2poly(s(n))-time on

poly(s(n))-bit inputs, hence it is in EXP. Since EXP =
BPP, this problem is also in BPP. Therefore there is a BPP
algorithm which, given a Succinct-L instance D of size s(n),
outputs a description of a canonical circuit of size s(n)k

16Here, we define “Succinct-L” to be: given a circuit C with � input
bits, decide whether tt(C) ∈ L, where tt(C) is the truth table of C.

654

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

which encodes a witness for input tt(D) with respect to

verifier V .

Thus we obtain a randomized algorithm for L on all

instances with s(n)-size circuits. When the witness for x has

length at most |x| = n, the algorithm can take n·poly(s(n))
time to output the found witness by outputting the truth-table

of the circuit encoding the witness.

Setting c1 to be large enough and putting everything

together, we get the desired randomized streaming algorithm

which solves all instances generated by PNP refuters, which

is a contradiction to our assumption. Therefore, it follows

that EXPNP �= BPP.

IV. CONCLUSION

Many interesting questions remain for future work. While

we have given many examples of complexity separations that

can automatically be made constructive, it is unclear how

to extend our results to separations with complexity classes

within P. For example, let L be a P-complete language. If

L is not in uniform NC1, does a P-constructive separation

of L from uniform NC1 follow? How about separations

of P from LOGSPACE? Would establishing constructive

separations in these lower complexity classes have any

interesting consequences?

Note that there is no P-constructive separation of

MCSP[s] /∈ P for super-polynomially large s, unless

EXP requires super-polynomial size Boolean circuits. (A

polynomial-time refuter for the trivial algorithm that always

accepts, must print a hard function!) But do any interest-

ing consequences follow from a constructive separation of

search versions of MCSP from P? The same proof strategy

(of applying the conjectured refuter for the trivial algorithm

that always accepts) does not make sense in this case, as the

only hard instances for search problems are YES instances.

It would also be interesting to examine which proof meth-

ods for circuit lower bounds can be made constructive. We

list a few examples which should be particularly interesting:

(1) the Ω̃(n3) size lower bound against DeMorgan formulas

for Andreev’s function [37], [38],

(2) the Ω̃(n2) size lower bound against formulas for

Element-Distinctness [39],

(3) AC0[p] size-depth lower bounds via the approximation

method [40], [41].

Chen, Jin, and Williams [6] showed that constructing corre-

sponding explicit obstructions for (1) and (2) above would

imply EXP �⊂ NC1, but it is unclear whether one can

get a P-constructive separation without implying a major

breakthrough lower bound.

We remark that as shown in [6], most lower bounds

proved by random restrictions can be made constructive,

by constructing an appropriate pseudorandom restriction

generator. [6] explicitly constructed an oblivious list-refuter

for parity against subquadratic-size formulas, and we re-

mark that a similar oblivious list-refuter for parity against

polynomial-size AC0 circuits follows from the pseudoran-

dom restriction generator for AC0 of [42].

Finally, it would be interesting to consider constructive

separations against non-uniform algorithms. Should we ex-

pect a proof of NP �⊂ P/ poly or NEXP �⊂ P/ poly
to imply a refuter of some kind? In such a setting, one

would presumably need to feed the code of the non-uniform

algorithm to the polynomial-time algorithm as part of its

input (the algorithm should get the non-uniform code as

advice, one way or another).

ACKNOWLEDGMENT

The authors from MIT were partially supported by NSF

CCF-2127597 and CCF-1909429. L.C. was partially sup-

ported by an IBM PhD Fellowship. Part of this work was

completed while R.W. was visiting the Simons Institute for

the Theory of Computing, participating in the Theoretical
Foundations of Computer Systems and Satisfiability: Theory,
Practice, and Beyond programs.

REFERENCES

[1] L. Levin, “Universal sequential search problems,” Problems
of Information Transmission, vol. 9, no. 3, pp. 265–266, 1973.

[2] K. Mulmuley, “Explicit proofs and the flip,” CoRR, vol.
abs/1009.0246, 2010. [Online]. Available: http://arxiv.org/
abs/1009.0246

[3] ——, “Geometric complexity theory VI: the flip via saturated
and positive integer programming in representation theory
and algebraic geometry,” CoRR, vol. abs/0704.0229, 2007.
[Online]. Available: http://arxiv.org/abs/0704.0229

[4] ——, “The GCT program toward the P vs. NP problem,”
Commun. ACM, vol. 55, no. 6, pp. 98–107, 2012. [Online].
Available: https://doi.org/10.1145/2184319.2184341

[5] C. Ikenmeyer and U. Kandasamy, “Implementing geometric
complexity theory: on the separation of orbit closures
via symmetries,” in Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2020. ACM, 2020, pp. 713–726. [Online]. Available:
https://doi.org/10.1145/3357713.3384257

[6] L. Chen, C. Jin, and R. R. Williams, “Sharp threshold results
for computational complexity,” in Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020. ACM, 2020, pp. 1335–1348.

[7] L. Chen, X. Lyu, and R. R. Williams, “Almost-everywhere
circuit lower bounds from non-trivial derandomization,” in
61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020. IEEE, 2020, pp. 1–12. [Online].
Available: https://doi.org/10.1109/FOCS46700.2020.00009

[8] L. Fortnow and R. Santhanam, “New non-uniform lower
bounds for uniform classes,” in 31st Conference on Com-
putational Complexity (CCC 2016), 2016.

[9] V. Kabanets, “Easiness assumptions and hardness tests: Trad-
ing time for zero error,” J. Comput. Syst. Sci., vol. 63, no. 2,
pp. 236–252, 2001.

655

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

[10] T. P. Baker, J. Gill, and R. Solovay, “Relativizations
of the P =?NP question,” SIAM J. Comput., vol. 4,
no. 4, pp. 431–442, 1975. [Online]. Available: https:
//doi.org/10.1137/0204037

[11] S. Aaronson and A. Wigderson, “Algebrization: A new
barrier in complexity theory,” ACM Trans. Comput. Theory,
vol. 1, no. 1, pp. 2:1–2:54, 2009. [Online]. Available:
https://doi.org/10.1145/1490270.1490272

[12] A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 24–35, 1997. [Online].
Available: https://doi.org/10.1006/jcss.1997.1494

[13] D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP
languages are hard on the worst-case, then it is easy
to find their hard instances,” Computational Complexity,
vol. 16, no. 4, pp. 412–441, 2007. [Online]. Available:
https://doi.org/10.1007/s00037-007-0235-8

[14] S. Dolev, N. Fandina, and D. Gutfreund, “Succinct permanent
is NEXP-hard with many hard instances,” in Algorithms
and Complexity, 8th International Conference, CIAC 2013.
Proceedings, ser. Lecture Notes in Computer Science, vol.
7878. Springer, 2013, pp. 183–196. [Online]. Available:
https://doi.org/10.1007/978-3-642-38233-8 16

[15] B. Kalyanasundaram and G. Schnitger, “The probabilistic
communication complexity of set intersection,” SIAM J.
Discrete Math., vol. 5, no. 4, pp. 545–557, 1992. [Online].
Available: https://doi.org/10.1137/0405044

[16] A. A. Razborov, “On the distributional complexity of
disjointness,” Theor. Comput. Sci., vol. 106, no. 2, pp.
385–390, 1992. [Online]. Available: https://doi.org/10.1016/
0304-3975(92)90260-M

[17] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar,
“An information statistics approach to data stream and
communication complexity,” J. Comput. Syst. Sci., vol. 68,
no. 4, pp. 702–732, 2004. [Online]. Available: https:
//doi.org/10.1016/j.jcss.2003.11.006

[18] W. Maass, “Quadratic lower bounds for deterministic
and nondeterministic one-tape turing machines (extended
abstract),” in Proceedings of the 16th Annual ACM
Symposium on Theory of Computing. ACM, 1984, pp.
401–408. [Online]. Available: https://doi.org/10.1145/800057.
808706

[19] J. Brody and E. Verbin, “The coin problem and
pseudorandomness for branching programs,” in 51th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, 2010, pp. 30–39. [Online]. Available:
https://doi.org/10.1109/FOCS.2010.10

[20] I. C. Oliveira and R. Santhanam, “Hardness magnification
for natural problems,” in 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, 2018, pp.
65–76. [Online]. Available: https://doi.org/10.1109/FOCS.
2018.00016

[21] D. M. McKay, C. D. Murray, and R. R. Williams, “Weak
lower bounds on resource-bounded compression imply strong
separations of complexity classes,” in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019. ACM, 2019, pp. 1215–1225. [Online].
Available: https://doi.org/10.1145/3313276.3316396

[22] L. Chen, C. Jin, and R. R. Williams, “Hardness magnification
for all sparse NP languages,” in 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2019, 2019, pp. 1240–1255. [Online]. Available: https:
//doi.org/10.1109/FOCS.2019.00077

[23] L. Chen, S. Hirahara, I. C. Oliveira, J. Pich, N. Rajgopal,
and R. Santhanam, “Beyond natural proofs: Hardness
magnification and locality,” in 11th Innovations in Theoretical
Computer Science Conference, ITCS, 2020, pp. 70:1–
70:48. [Online]. Available: https://doi.org/10.4230/LIPIcs.
ITCS.2020.70

[24] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek,
and D. Ronneburger, “Power from random strings,” SIAM J.
Comput., vol. 35, no. 6, pp. 1467–1493, 2006. Preliminary
version in FOCS’02.

[25] S. Hirahara, “Unexpected hardness results for Kolmogorov
complexity under uniform reductions,” in Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020. ACM, 2020, pp. 1038–1051.
[Online]. Available: https://doi.org/10.1145/3357713.3384251

[26] L. Chen, C. Jin, R. Santhanam, and R. R. Williams,
“Constructive separations and their consequences,” Electronic
Colloquium on Computational Complexity (ECCC), vol.
TR21-159, 2021. [Online]. Available: https://eccc.weizmann.
ac.il/report/2021/159/

[27] S. Arora and B. Barak, Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[28] O. Goldreich, Computational complexity - a conceptual per-
spective. Cambridge University Press, 2008.

[29] V. Kabanets and J. Cai, “Circuit minimization problem,” in
Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, 2000, pp. 73–79. [Online].
Available: https://doi.org/10.1145/335305.335314

[30] R. R. Williams, “Natural proofs versus derandomization,”
SIAM J. Comput., vol. 45, no. 2, pp. 497–529, 2016.
[Online]. Available: https://doi.org/10.1137/130938219

[31] S. A. Cook, “Feasibly constructive proofs and the proposi-
tional calculus (preliminary version),” in Proceedings of the
7th Annual ACM Symposium on Theory of Computing, 1975.
ACM, 1975, pp. 83–97.

[32] E. Jeřábek, “Approximate counting in bounded arithmetic,” J.
Symb. Log., vol. 72, no. 3, pp. 959–993, 2007.

[33] M. Müller and J. Pich, “Feasibly constructive proofs
of succinct weak circuit lower bounds,” Ann. Pure
Appl. Log., vol. 171, no. 2, 2020. [Online]. Available:
https://doi.org/10.1016/j.apal.2019.102735

656

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

[34] J. Krajı́ček, Proof complexity. Cambridge University Press,
2019, vol. 170.

[35] I. C. Oliveira, J. Pich, and R. Santhanam, “Hardness
magnification near state-of-the-art lower bounds,” in 34th
Computational Complexity Conference, CCC 2019, 2019,
pp. 27:1–27:29. [Online]. Available: https://doi.org/10.4230/
LIPIcs.CCC.2019.27

[36] R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search
of an easy witness: exponential time vs. probabilistic
polynomial time,” J. Comput. Syst. Sci., vol. 65, no. 4, pp.
672–694, 2002. [Online]. Available: https://doi.org/10.1016/
S0022-0000(02)00024-7

[37] J. Håstad, “The shrinkage exponent of de Morgan formulas
is 2,” SIAM J. Comput., vol. 27, no. 1, pp. 48–64, 1998. [On-
line]. Available: https://doi.org/10.1137/S0097539794261556

[38] A. Tal, “Shrinkage of de morgan formulae by spectral
techniques,” in 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, 2014, pp. 551–560.
[Online]. Available: https://doi.org/10.1109/FOCS.2014.65

[39] E. Neciporuk, “On a boolean function,” Doklady of the
Academy of the USSR, vol. 169, no. 4, pp. 765–766, 1966.

[40] A. A. Razborov, “Lower bounds on the size of bounded
depth circuits over a complete basis with logical addition,”
Mathematical Notes of the Academy of Sciences of the USSR,
vol. 41, no. 4, pp. 333–338, 1987.

[41] R. Smolensky, “Algebraic methods in the theory of lower
bounds for boolean circuit complexity,” in Proceedings
of the 19th Annual ACM Symposium on Theory of
Computing, 1987, 1987, pp. 77–82. [Online]. Available:
https://doi.org/10.1145/28395.28404

[42] O. Goldreich and A. Wigderson, “On derandomizing
algorithms that err extremely rarely,” in Symposium on Theory
of Computing, STOC 2014. ACM, 2014, pp. 109–118.
[Online]. Available: https://doi.org/10.1145/2591796.2591808

657

Authorized licensed use limited to: MIT Libraries. Downloaded on August 15,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

