
Truly Low-Space Element Distinctness and Subset Sum
via Pseudorandom Hash Functions∗

Lijie Chen†

MIT
Ce Jin‡

MIT
R. Ryan Williams§

MIT
Hongxun Wu ¶

Tsinghua University

Abstract

We consider low-space algorithms for the classic Element Distinctness problem: given an array
of n input integers with O(log n) bit-length, decide whether or not all elements are pairwise distinct.
Beame, Clifford, and Machmouchi [FOCS 2013] gave an Õ(n1.5)-time randomized algorithm for Element
Distinctness using only O(log n) bits of working space. However, their algorithm assumes a random oracle
(in particular, read-only random access to polynomially many random bits), and it was asked as an open
question whether this assumption can be removed.

In this paper, we positively answer this question by giving an Õ(n1.5)-time randomized algorithm using
O(log3 n log log n) bits of space, with one-way access to random bits. As a corollary, we also obtain a poly(n)-
space O∗(20.86n)-time randomized algorithm for the Subset Sum problem, removing the random oracles
required in the algorithm of Bansal, Garg, Nederlof, and Vyas [STOC 2017].

The main technique underlying our results is a pseudorandom hash family based on iterative restrictions,
which can fool the cycle-finding procedure in the algorithms of Beame et al. and Bansal et al.

1 Introduction
What problems can be solved simultaneously in low time and low space? When we restrict the space usage for
solving a problem, how does this affect the possible running time of algorithms? The area of time-space tradeoffs
has studied such questions for decades, beginning with Cobham [Cob66]. A central problem studied in time-space
tradeoffs is Element Distinctness:

Element Distinctness: Given an array of n positive integers a1, a2, . . . , an with ai ≤ poly(n) for
all i, decide whether all ai’s are distinct.

The problem is extremely basic and useful: thinking of the array as describing a function from [n] to [poly(n)], we
are asking if the function is injective. The obvious algorithm that checks all pairs of elements takes O(n2) time
and uses O(log n) bits of workspace. If we allow Õ(n) bits of workspace, Element Distinctness can be solved
in near-linear time by sorting the input array. Applying low-space sorting algorithms directly [MP80, PR98],
one can interpolate between these two algorithms and solve Element Distinctness in time T (n) and space
S(n) for all T (n), S(n) such that T (n) · S(n) ≤ Õ(n2). For comparison-based algorithms, in which the only
operation on elements allowed are pairwise comparisons, this time-space tradeoff was shown to be near-optimal
in the 1980s [BFM+87, Yao88].

In 2013, Beame, Clifford, and Machmouchi [BCM13] surprisingly bypassed this longstanding lower bound,
by giving a non-comparison-based algorithm for Element Distinctness with the time-space tradeoff T (n) ≤
Õ(n3/2/S(n)1/2). In particular, their algorithm can run in Õ(n1.5) time using only O(log n) bits of space. For
brevity, we call this the BCM algorithm. A major disadvantage of the BCM algorithm is that it requires a random
oracle: read-only random access to polynomially many uniform random bits (which do not count towards the

∗Supported by NSF CCF-1909429 and NSF CCF-2127597. Lijie Chen is also supported by an IBM Fellowship. The full version
of this paper [CJWW21] is at https://arxiv.org/abs/2111.01759.

†lijieche@mit.edu
‡cejin@mit.edu
§rrw@mit.edu
¶wuhx18@mails.tsinghua.edu.cn

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1661

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2111.01759

space complexity). In the BCM algorithm, these random bits are used to specify the outgoing edges of a random
1-out digraph, on which Floyd’s cycle-finding algorithm [Knu69] is performed to look for a pair of equal elements.
Due to complicated dependencies on the paths in this random digraph, it looks difficult to reduce the number of
random bits using pseudorandomness. It was asked as an open question [BCM13, BGNV18] whether the BCM
algorithm can be modified to work with only “one-way access” to random bits, where we may toss up to O(t) coins
in time t, but cannot randomly access arbitrary coins tossed in the past. In particular, [BCM13] stated it “seems
plausible” that the random oracle in the BCM algorithm could be replaced by some family of poly log(n)-wise
independent hash functions in the analysis.

1.1 Our Results Our main result in this paper proves that one-way access to randomness is sufficient for
implementing the BCM algorithm. We design a pseudorandom hash family with O(log3 n log log n)-bit seed
length based on iterative restrictions of O(log n log log n)-wise independent generators, and show that the analysis
of the BCM algorithm still works when the random oracle is replaced by our pseudorandom generator. In fact,
our proofs use a careful coupling-based analysis of an infinite tree generated from our pseudorandom generator.
Hence we have the following result.

Theorem 1.1. Element Distinctness can be decided by a Monte Carlo algorithm in Õ(n1.5) time, with
O(log3 n log log n) bits of workspace and no random oracle. Moreover, when there is a colliding pair, the algorithm
reports one.

A closely related problem is the List Disjointness problem (which is equivalent to the 2-Sum problem).

List Disjointness: Given two integer arrays (a1, a2, . . . , an) and (b1, b2, . . . , bn) with entries in
[poly(n)], decide whether there are i, j ∈ [n] such that ai = bj .

This problem is harder than Element Distinctness, since the latter problem can be easily reduced to the former
with only O(log n)-factor overhead. The BCM algorithm for Element Distinctness does not straightforwardly
extend to List Disjointness, and it is still open whether List Disjointness can be solved in no(1)-space and
n2−Ω(1) time, even allowing random oracles. Recently, Bansal, Garg, Nederlof, and Vyas [BGNV18] showed that
a variant of the BCM algorithm can be applied to solve List Disjointness with an improved running time,
provided that the input arrays have small second frequency moment (i.e., there are few collision pairs within each
arrays). Formally, define

F2(a) =

n∑
i=1

n∑
j=1

1[ai = aj],

and assume an upper bound p on F2(a) + F2(b) is known. Then their algorithm solves the List Disjointness
problem in Õ(n

√
p/s) time and O(s log n) space (with random oracle), for any s ≤ n2/p. In this paper, we show

that our pseudorandom family designed for the BCM algorithm also applies to this setting for s = 1.

Theorem 1.2. There is a Monte Carlo algorithm for List Disjointness such that, given input arrays
a = (a1, . . . , an), b = (b1, . . . , bn) and an upper bound p ≥ F2(a) + F2(b), runs in Õ(n

√
p) time and uses

O(log3 n log log n) bits of workspace and no random oracle.

Combining the above List Disjointness algorithm with additive-combinatorial techniques, Bansal et al.
gave a poly(n)-space O∗(20.86n)-time algorithm for Subset Sum: Given positive input integers a1, a2 . . . , an and a
target integer t, find a subset of the input integers that sums to exactly t. They also solved the harder Knapsack
problem with essentially the same time and space complexity. Replacing their List Disjointness subroutine
with our Theorem 1.2, we immediately remove the assumption of random oracles in these algorithms as well.

Theorem 1.3. (Follows from Theorem 1.2 and [BGNV18]) Subset Sum and Knapsack can be solved by a
Monte Carlo algorithm in O∗(20.86n) time, with O(poly(n)) working space and no random oracle.

In our Element Distinctness algorithm (Theorem 1.1), the 1.5 exponent in the time complexity seems
hard to improve using current techniques. However, it is also difficult to prove a matching lower bound for
such a decision problem. Hence we are motivated to look at a closely related multi-output problem for which our
techniques still apply, and for which stronger time-space lower bounds are known. We consider the Set Intersection
problem:

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1662

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Set Intersection: Given two integer sets A,B represented as two (not necessarily sorted) input
arrays (a1, . . . , an), (b1, . . . , bn) which are promised to not contain duplicates, print all the elements in
their intersection A ∩B.

Patt-Shamir and Peleg [PP93] showed that any poly log(n)-space algorithm for this problem must have time
complexity Ω̃(n1.5), even if the printed elements can be in any order, and each element in A ∩B is allowed to be
printed multiple times. (The recent work of Dinur [Din20] also implies the same lower bound.) We observe that
our techniques imply a nearly-matching time upper bound for this problem, up to polylogarithmic factors.

Theorem 1.4. (Set Intersection) There is a randomized algorithm that, given input arrays A =
(a1, . . . , an), B = (b1, . . . , bn) where A and B are both YES instances of Element Distinctness, prints all
elements in {a1, . . . , an} ∩ {b1, . . . , bn} in Õ(n1.5) time, with O(log3 n log log n) bits of workspace and no random
oracle. The algorithm prints elements in no particular order, and the same element may be printed multiple times.

1.2 Related Work In the following, we discuss several related works from various areas.

Element Distinctness and Collision Finding. In cryptography there has been intensive study on finding
collisions in random-like functions using attacks based on the birthday paradox. Floyd’s cycle-finding algorithm
[Knu69, Pol75] has been used in memoryless birthday attacks [vOW99], which can be seen as low-space algorithms
for Element Distinctness (or List Disjointness) with random-like input. In contrast, we consider worst-case
input and do not rely on any heuristic assumptions.

Ambainis [Amb07] gave a quantum algorithm for Element Distinctness (as well as List Disjointness)
with optimal O(n2/3) query complexity [AS04]. The space complexity of Ambainis’ algorithm is Õ(n2/3). In
the poly log(n)-space setting, there are no known quantum algorithms that can significantly beat the simple
O(n)-query algorithm obtainable from Grover Search [HM21].

Time-Space Tradeoff Lower Bounds. Borodin and Cook [BC82] proved nearly-optimal time-space tradeoff
lower bounds for the sorting problem against (multi-way) branching programs. Their techniques were extended
to prove time-space lower bounds for many other multi-output functions [Yes84, Abr87, Abr91, Bea91, MNT93,
PP93]. Recently, McKay and Williams [MW19] generalized techniques of Beame [Bea91] to show quadratic time-
space product lower bounds against branching programs armed with random oracles. However, these techniques
cannot prove nontrivial time-space lower bounds for decision problems such as Element Distinctness. For
decision problems, the current best known time-space lower bound states that SAT cannot be solved in n1.801 time
and no(1) space ([Wil08, BW15], building on [FLvMV05]). For Element Distinctness, Ajtai [Ajt05] proved that
for every k ≥ 1, there exists an ε > 0 such that it cannot be solved by kn-time εn-space algorithms in the RAM
model. Other time-space tradeoff lower bounds for decision problems are proved in [Kar86, Ajt02, BV02, BSSV03].

Random oracles. In the usual notion of randomized space-bounded computation, the outcomes of previous coin
tosses cannot be recalled unless they are stored in working memory: this is typically called one-way access to
randomness. The stronger model where all previous coin tosses can be recalled (i.e., two-way access to randomness)
has also been studied in the computational complexity literature. For example, Nisan [Nis93] showed that bounded
two-sided error log-space machines with one-way access to randomness can be simulated by zero-error randomized
log-space machines with two-way access to randomness (BPL ⊆ 2wayZPL).

In the streaming literature, it is common to first design an streaming algorithm assuming access to a random
oracle, then to use pseudorandom generators to remove this assumption, sometimes incurring a blowup in
space complexity. Nisan’s pseudorandom generator [Nis92] offers a generic way to derandomize many streaming
algorithms (e.g., [Ind06]). In our case, it is entirely unclear whether any off-the-shelf pseudorandom generators
(such as [Nis92] or [FK18]) can be directly applied to replace the random oracle, since the queries made to the
random oracle by the cycle detection algorithm are highly adaptive, dependent on the outcomes of previous
queries.

(Pseudo-)random graphs. The Element Distinctness algorithm of Beame et al. [BCM13] (and related
work) uses versions of the following basic fact about random mappings (a.k.a. random 1-out digraphs): starting
from any vertex, the expected number of reachable vertices is Θ(

√
n). The statistical properties (such as cycle

lengths and component sizes) of random mappings have been extensively studied, see e.g., [FK16, Chapter 16]
and the references therein. However, most of these studies crucially assume the random graphs are generated

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1663

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

with full independence, and generally do not imply useful results about pseudorandomly generated graphs. One
exception is the work of Alon and Nussboim [AN08] on k-wise independent Erdős-Rényi graphs, but it is very
different from our setting of 1-out digraphs.

Subset Sum and Related Problems. The best known time complexity for Subset Sum is O∗(2n/2) based
on a meet-in-middle approach, first given by Horowitz and Sahni [HS74] in 1974. The space complexity of
this algorithm was later improved from O∗(2n/2) to O∗(2n/4) by Schroeppel and Shamir [SS81]. Very recently,
Nederlof and Węgrzycki gave an O∗(2n/2)-time O∗(20.249999n)-space algorithm [NW21]. This algorithm (as well as
the O∗(20.86n)-time poly(n)-space algorithm [BGNV18]) used the techniques developed in [AKKN15, AKKN16],
which were inspired by advances on average-case Subset Sum algorithms [HJ10].

The low-space List Disjointness algorithm of [BGNV18] also has implications for average-case k-Sum
algorithms in low space [BGNV18, GLP18]. See also [Wan14, LVWW16].

There is also a long line of research on low-space pseudopolynomial-time algorithms (i.e., with running time
poly(n, t)) for Subset Sum [LN10, EJT10, Kan10, Bri17, JVW21], culminating in an Õ(nt)-time O(log n log log n+
log t)-space algorithm [JVW21].

1.3 Open Questions We conclude by discussing several interesting questions left open by our work.

Time-space Tradeoffs? Beame et al. [BCM13] (and Bansal et al. [BGNV18]) not only gave efficient log-space
algorithms for Element Distinctness (and List Disjointness), but also provided a smooth time-space trade-
off interpolating between the log-space algorithms and the linear-space algorithms. These algorithms, when given
S memory, perform the cycle-finding procedure from S starting vertices, and use a redirection idea (which requires
S space to store the redirected edges) to nicely handle the collisions among all these S walks. Our analysis of the
pseudorandom family only considers the case with a single starting vertex, corresponding to the poly log(n)-space
algorithm. It would be interesting to see whether the analysis can be generalized to the case of multiple starting
vertices, and hence remove the random oracle assumption for these time-space trade-off algorithms as well.

Shorter Seed Length? Our algorithm needs O(log3 n log log n) bits of space to store the “seed”: the description
of the pseudorandom mapping. An interesting question is whether we can reduce this seed length to O(log n).
It seems plausible that our k-wise generators could be replaced by almost k-wise generators (e.g., [AGHP90])
which have shorter seed length. However, to get O(log n) seed length, one might need to significantly modify our
O(log n)-level iterative restriction approach, which already incurs an O(log n) multiplicative factor.

Faster List Disjointness Algorithm? We reiterate the question raised by Bansal et al. [BGNV18]: can List
Disjointness be decided in n2−Ω(1) time and no(1) space, even allowing random oracles? In hard instances for
the current algorithms, there is only one “real” collision between the two arrays, but many “pseudo-collisions”
coming from the same array, and it is not clear how to filter these pseudo-collisions without affecting the real
collision. As to the question of whether List Disjointness does not have such an algorithm, the current lower
bound techniques do not seem to distinguish between Element Distinctness and List Disjointness, and it
is entirely unclear how to prove an n1.5+Ω(1)-time lower bound for no(1)-space algorithms solving such decision
problems (for example, the best known time lower bound for Element Distinctness in the small-space setting
is barely superlinear [Ajt05]).

1.4 Organization In Section 2, we provide an overview of the intuitions behind the proof of Theorem 1.1. In
Section 3 we give useful definitions and notations. In Section 4 we give the construction of our pseudorandom
family, formally state the properties satisfied by the pseudorandom family, and show how to use them to obtain
algorithms for Element Distinctness and List Disjointness. The properties stated in Section 4 are proved
in the full version of this paper [CJWW21].

2 Overview of Techniques
Now we give an informal overview of the techniques behind the proof of Theorem 1.1.

Notation. Let a = (a1, . . . , an) ∈ [m]n be the input array to Element Distinctness. Throughout this
overview, we will assume our instances are NO instances (note the YES case is simply the absence of a collision
pair), and for simplicity we assume our NO instances have at most one collision pair au = av where u ̸= v. (It

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1664

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

turns out that the hardest NO instances are those with exactly one collision pair.) We will always use (u, v) to
denote the unique collision pair in the NO instance that our algorithm needs to find.

Let Hfull be the collection of all functions from [m] to [n], and h ∈R Hfull be a truly random function
(implemented using a random oracle in the BCM algorithm). We define a 1-out digraph (i.e., each node has at
most one outgoing edge) Ga,h on the vertex set [n] with the edge set {(x, h(ax)) | x ∈ [n]} ⊆ [n] × [n]. For a
collision pair (u, v), note that vertices u, v ∈ [n] point to the same vertex h(au) = h(av) since au = av. We also
use f∗

a,h(s) to denote the set of all vertices reachable from s in the digraph Ga,h.
In the following, we often use bold letters (e.g., x and y) to denote random variables.

2.1 Review of the BCM Algorithm It is instructive to first review the O(log n)-space Õ(n1.5)-time BCM
algorithm for Element Distinctness, and understand why it requires a random oracle.

The BCM algorithm. The BCM algorithm first chooses a random vertex s ∈ [n] and performs Floyd’s cycle-
finding algorithm on digraph Ga,h starting from s. This will successfully detect u, v if both u and v are reachable
from s, since u and v point to the same vertex. To bound the running time, the following two properties are
established, using a birthday-paradox-style argument.

E
h∈RHfull,s∈R[n]

[|f∗
a,h(s)|] ≤ O(

√
n),(2.1)

Pr
h∈RHfull,s∈R[n]

[u, v ∈ f∗
a,h(s)] ≥ Ω(1/n).(2.2)

Condition (2.2) says the probability that both u and v are reachable from s is at least Ω(1/n). Thus, running
Õ(n) independent trials of cycle detection (each using a different h) will lead to at least one trial with u and v
reachable, with high probability. Condition (2.1) says we expect O(

√
n) vertices to be reachable from s. Together,

these imply the running time can be bounded by Õ(n1.5). See Section 4 for a more formal description.

Why the BCM algorithm needs a high degree of independence. Let us see why the birthday argument
mentioned above apparently needs the values of h to be fully independent (or close to that). For simplicity, we
consider how one proves that the probability of reaching v from a random starting vertex s is Θ(1/

√
n) (the

probability of reaching both u and v can be analyzed similarly). Let s0 = s, s1, s2, . . . be the vertices on the
walk starting from s. Conditioning on s0 = s0, s1 = s1, . . . , sk = sk, where as0 , as1 , . . . , ask are distinct, the
distribution of the next vertex sk+1 is uniform over [n], due to the full independence of h. Once the elements are
not distinct (a collision has occurred), the walk will follow the formed cycle (which is completely determined by
the walk history) and no new vertices will be reached. From there, a standard birthday argument can be applied,
yielding the desired Θ(1/

√
n) probability bound of reaching v, and Θ(1/n) of reaching both u and v.

Note in the argument above we have to condition on all previous (k+1) random choices, because determining
the value of sk+1 involves the (k+1) compositions of the h function. Since k is typically as large as

√
n, it appears

that one needs at least Ω(
√
n)-wise independence of the values of h.

2.2 Overcoming the Ω(
√
n)-wise Independence Barrier We first show how to overcome the need of

Ω(
√
n)-wise independence with a toy pseudorandom hash function family Htoy based on a simple two-level

iterative restriction. In particular, Htoy is constructed from three Θ̃(n1/4)-wise independent hash functions,
so that h ∈R Htoy can be sampled using Θ̃(n1/4) random bits.

Drawing a sample h from the toy pseudorandom hash function family Htoy

• Set a parameter τ = Θ(n1/4 log n), and independently draw two τ -wise independent uniform hash
functions r1, r2 : [m]→ [n]. Independently draw a τ -wise independent hash function g1 : [m]→ {0, 1}

such that for every x ∈ [m], g1(x) =

{
0 with probability n−1/4,
1 otherwise.

• Finally, h : [m]→ [n] is defined by h(x) =

{
r1(x) when g1(x) = 1,

r2(x) otherwise.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1665

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Now we instantiate the BCM algorithm with the hash function h ∈R Htoy. We can also view f∗
a,h(s) as the

following random walk on the vertex set [n].

The random walk corresponding to f∗
a,h(s) for h ∈R Htoy

f∗
a,h(s) contains the vertices on the following random walk:

• w1 = s.
• For each integer j ≥ 2, set wj = h(awj−1

) if there is no k ∈ {2, . . . , j − 1} satisfying awk−1
= awj−1

;
otherwise the walk is terminated.

Since h ∈R Htoy, the following is an equivalent view of the walk above, in terms of g1, r1 and r2:
• Initially, s0 = s and w is empty.
• For each integer i ≥ 1:

1. We start the i-th subwalk from si−1 following the edges defined by x 7→ r1(ax).
2. Each time we visit a new vertex x (including si−1), suppose there are already j − 1 vertices

in w. We set wj = x if there is no k ∈ {2, . . . , j − 1} satisfying awk−1
= awj−1

; otherwise we
terminate the whole walk.

3. Then we check whether g1(ax) = 0. If this happens (with probability n−1/4), we stop this
subwalk, and let si = r2(ax). Namely, we follow the edge x 7→ r2(ax) for one step. Then we
move to Step (1) to continue with the (i+ 1)-th subwalk, starting from si.

Roughly speaking, when h ∈R Htoy, the random walk generated above alternates between subwalks of typical
length O(n1/4) defined by r1, and single steps defined by r2. In the below, we provide some intuition about
why such a random walk suffices for analyzing the BCM algorithm. For simplicity, we will make a unrealistic
assumption, which we will mark by underlining it. Later, we will explain how to remove the assumption.

Intuition. We first argue that each subwalk has length less than τ/2 with high probability. Fix an integer
i ≥ 1, and si−1 = si−1 for some si−1 ∈ [n]. From si−1, suppose the subwalk has visited t + 1 vertices
x1, x2, . . . , xt+1 before termination. From the definition of our subwalk, we have g1(axk

) = 1 for every
k ∈ [t]. Assuming the walk does not stop before si, the elements ax1

, . . . , axt+1
must be distinct. By the τ -

wise independence of g1, such an event happens with probability at most (1− n−1/4)−min(t,τ). Applying a union
bound over all possible si−1 ∈ [n], we can conclude that all subwalks have length at most τ/2, with at probability
at least

1− n(1− n−1/4)−τ/2 = 1− n−Θ(1).

From now on, we will condition on the event that all subwalks have length at most τ/2.
In each subwalk, we follow the edges defined by r1 for at most τ/2 steps. By the τ -wise independence of r1,

each subwalk has the same distribution as a truly random walk with the same length, as long as its starting point
si−1 is independent of r1. However, we also note that different subwalks are not independent. Therefore, our
analysis has to overcome the following two challenges:

(i) Remove the dependency of si−1 on r1.

(ii) Handle correlations between subwalks.

First, we show how to handle challenge (i). If si−1 is the random starting point s, it is independent of r1.
Otherwise, si−1 is the vertex reached by a subwalk started from si−2 (which depends on r1) together with a
single step defined by r2. We wish to remove this dependency on r1 using the single step following r2.

The key observation is the following. A truly random walk has typical length Θ(
√
n), while

each subwalk has a typical length Θ(n1/4). So to mimic a truly random walk, our analysis only
needs to handle O(n1/4) queries to the hash function r2 (each query represents one step following r2).
Assuming that the walk does not stop before si for all i ∈ [n1/4], these O(n1/4) queries are distinct. Then by
the τ -wise independence of r2 and the fact that n1/4 ≪ τ , each si can indeed be replaced by a truly uniformly
random variable over [n] without changing the distribution of the generated random walk. Therefore, si−1 is
independent of r1 and g1 as desired.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1666

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

To handle challenge (ii) (i.e., the correlation across subwalks), the key idea is that in a standard birthday
paradox argument, we do not require complete independence of all items; in fact, pairwise independence already
suffices. Since each subwalk has length at most τ/2 and r1 is τ -wise independent, such subwalks are also
pairwise independent, which enables us to perform a birthday-paradox-style analysis. Of course, this is an
oversimplification, and our actual analysis framework will be clarified in Section 2.3.

Here we made the (unrealistic) assumption that the walk does not stop before reaching each si. (In reality,
the walk has to stop during some subwalk.) Note that whether the walk stops at the j-th step is equivalent
to whether j is no greater than the length of the walk |w|. Since |w| is a random variable depending on all of
r1, r2, g1, we have to carefully ensure that our analysis does not involve |w|, to keep si−1 and r1 independent.
We will explain how we overcome such difficulty in Section 2.3, and in Section 2.4 we will extend the two-level
structure above into a O(log n)-level tree (using signficantly less randomness in our hash functions).

2.3 An Alternative Analysis of the BCM Algorithm The starting point of our work is a coupling-based
proof of Condition (2.2), based on what we call extended random walks.1 This proof will introduce the key
strategy of our later analysis, when we replace the random oracle by a pseudorandom hash function.

The random walk corresponding to f∗
a,h(s). Note for h ∈R Hfull and s ∈R [n], f∗

a,h(s) can be seen as a
random walk on the vertex set [n] in a straightforward way.

The random walk w corresponding to f∗
a,h(s)

• w1 = s.
• For each integer j ≥ 2, set wj = h(awj−1

) if there is no 2 ≤ k ≤ j − 1 such that awj−1
= awk−1

;
otherwise stop the the walk.

Since the walk stops immediately after a collision occurs, one can see that f∗
a,h(s) is exactly the set of

all vertices in the walk w = (w1, . . . ,w|w|).2 Recall (u, v) is the unique collision pair. In order to prove
Condition (2.2), our goal now is to lower bound the probability

Pr[(∃ (i, j) ∈ [|w|]2)[wi = u ∧wj = v]](2.3)

=
∑

(i,j)∈N2

Pr[(i ≤ |w| ∧wi = u) ∧ (j ≤ |w| ∧wj = v)].(2.4)

The equality of (2.3) and (2.4) holds since, by definition, if there is an (i, j) such that (wi = u) ∧ (wj = v), then
the walk would immediately stop at step max(i, j) + 1 (i.e., |w| = max(i, j)). So w contains at most one pair
(i, j) such that (wi,wj) = (u, v), and hence we can decompose (2.3) into (2.4).

Our initial hope is that (2.4) may be simpler to analyze, as it is a sum of many simpler terms, each of which
only depends on two entries wi and wj . However, the condition (i ≤ |w| ∧wi = u) is still difficult to analyze, as
it depends on the length |w|.
Coupling with the basic extended walk. To move forward, we wish to find a way to lower bound (2.3) by a
sum of many simpler probabilities that do not involve |w|. The first idea is to extend the random walk w to an
infinite extended random walk w̄. We stress that the walk w̄ defined below is only used in the analysis, and not
in the algorithm.

Basic extended walk w̄

• Extend the domain of h from [m] to [m]∪{⋆0, ⋆1, . . . } as follows: for each t ∈ N, sample h(⋆t) ∈R [n],
where all samples are independent.

• Perform the random walk w. After w ends, set w̄ = w and for every t ∈ N append h(⋆t) to the end
of w̄.

1Condition (2.1) is easier to establish. We will focus on Condition (2.2) since it is more difficult.
2Note it is possible that for some j ≥ 2, awj−1 is distinct from all awk−1 for k < j, but h(awj−1) has a collision with a previous

h(awk−1). In this case, the walk moves to wj = wk (which was already visited before) and stops at step j + 1.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1667

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Note that w̄ and w are both defined over the joint probability space (h, s) (for the extended h), and w is
always a prefix of w̄. From the definition of w̄, we have the following nice properties:

• All entries of w̄ are i.i.d. samples from [n].(2.5)

• For all i, if aw̄j
̸= aw̄k

for all 1 ≤ j < k < i, then wi = w̄i.(2.6)

Proof strategy: subtracting the overcount. By (2.6), we know that u, v ∈ f∗
a,h(s) if there are i, j ∈ N such

that (1) w̄i = u and w̄j = v, and (2) for all 1 ≤ t < q < max(i, j), aw̄t ̸= aw̄q . In this way, we have reformulated
the success condition u, v ∈ f∗

a,h(s) as a statement that does not involve the length |w| of the original random
walk w, and can be analyzed more easily. Fixing a length parameter L = c

√
n for some small constant c > 0 to

be determined later, we have

Pr[u, v ∈ f∗
a,h(s)] ≥ Pr[∃i, j ∈ [L] s.t. (w̄i, w̄j) = (u, v) and for all 1 ≤ t < q ≤ L, aw̄t

̸= aw̄q
]

=
∑

i,j∈[L]

Pr[(w̄i, w̄j) = (u, v) and for all 1 ≤ t < q ≤ L, aw̄t ̸= aw̄q].(2.7)

The last equality above holds because if for all 1 ≤ t < q ≤ L, we have aw̄t ̸= aw̄q , then there can only be
one pair (i, j) ∈ [L]2 satisfying (w̄i, w̄j) = (u, v).

To further lower bound (2.7), we define the following two quantities:

Etotal =
∑

(i,j)∈[L]2

Pr[w̄i = u ∧ w̄j = v] and Ebad =
∑

(i,j)∈[L]2

1≤t<q≤L

Pr[w̄i = u ∧ w̄j = v ∧ aw̄t
= aw̄q

].

We claim that Pr[u, v ∈ f∗
a,h(s)] ≥ Etotal −Ebad: note that Etotal counts the total expected number of pairs (i, j)

with (w̄i, w̄j) = (u, v), and Etotal − Ebad subtracts all the “bad pairs” from the total count.3
The rest of the analysis is a straightforward calculation using the property (2.5). We can see that

Etotal = Θ(L2/n2) = Θ(c2/n), and Ebad = Θ(L4/n3) = Θ(c4/n). Setting c to be small enough, we have
Etotal − Ebad ≥ Ω(1/n), which concludes the proof.

Remark. Setting

(2.8) Etotal =
∑
i∈[L]

Pr[w̄i = u] and Ebad =
∑
j∈[L]

1≤t<q≤L

Pr[w̄i = u ∧ aw̄t−1 = aw̄q−1],

one can also show Pr[v ∈ f∗
a,h(s)] ≥ Ω(1/

√
n) for all possible vertices v, by showing Etotal −Ebad ≥ Ω(1/

√
n) (for

L = c
√
n and appropriately small c > 0). Later in this overview, we will explain how to get an Ω(1/

√
n) lower

bound for this single-vertex case when we replace the random oracle h by a pseudorandom function, and discuss
additional challenges that arise for the two-vertex case (with u, v).

2.4 Pseudorandom Hash Functions, the Dependency Tree, and the Indexing Scheme Next we
describe our construction of pseudorandom hash functions h based on iterative restrictions. In particular, we use
a small number of independent partial functions defined by random restrictions to form a full hash function. By
considering how the hash values of vertices on the random walk are determined by the iterative restriction, we
can naturally organize these vertices into a hierarchical structure we call the dependency tree, which will play an
crucial role in our later analysis.

Pseudorandom hashing by iterative restrictions. Instead of using full randomness, we will implement the
hash function h : [m] → [n] by the following iterative pseudorandom restriction process, using only poly log(n)
seed length. Initially, all values of h(x) are undefined. The values are defined over ℓ ≤ log n iterations. In

3We call such an (i, j) a “bad pair” because it should not be counted in (2.7), and has to be subtracted from the total count. Also,
we remark that is possible that a bad pair is subtracted more than once in Ebad. This is not an issue for us, as we are trying to lower
bound Pr[u, v ∈ f∗

a,h(s)].

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1668

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

level 1

level 2

level 3

level 4

level 5
(ℓ = 4)

0

1

2

3

4

5

6

7

8

9

10 11

12

Figure 1: An example of a dependency tree T . For example, the index of 7 is (0, 0, 2, 1), since the path
0← 2← 4← 7 has two level-3 nodes (node 4 and node 7), and one level-4 node (node 2).

the i-th iteration, we sample O(log n log log n)-wise random functions gi : [m] → {0, 1}, ri : [m] → [n], and for
every x ∈ [m] such that gi(x) = 1 and h(x) is still undefined, we define h(x) to be ri(x). See Section 4.1 for
details. Informally, in each iteration we independently use O(log n log log n)-wise generators to fix about half of
the remaining undefined values in h: the gi selects which half, and the ri selects the values. (It is possible that a
tiny number of hash values h(x) may still be undefined after log(n) iterations, but this is not a significant issue
for us and we ignore it in this overview.)

Let H denote the above family of pseudorandom functions. In the following, h will denote the random
variable for a function randomly drawn from H. Analogously to Section 2.3, one can define a random walk w on
the random graph Ga,h.

Tree structure of pseudorandom walks. We now describe a dependency tree T for a walk w on Ga,h. We
use non-negative integers to denote the nodes of T : node 0 is a “dummy” node representing the root, and for
µ ≥ 1, node µ corresponds to the µ-th node of walk w if it exists (i.e., node µ is associated with vertex wµ). We
will use Greek letters α, β, µ, . . . to refer to nodes in the dependency tree T .

The tree T has one “level” for each iteration 1, . . . , ℓ of the process defining h. For each node µ of T , we
define level(µ) (the “level of µ”) to be the smallest integer j such that gj(awµ

) = 1 (note that this j corresponds to
the iteration in which the hash value of awµ

is defined). If no such j exists, then we set level(µ) = ℓ+ 1. We also
set level(0) = ℓ + 1, and define next(µ) = h(awµ

) = rlevel(µ)(awµ
). Informally, next(µ) corresponds to the “next”

vertex on the walk after wµ.

Dependency tree T based on w

• Node 0 is the root of T .
• For each node µ of T , its parent par(µ) is defined as the largest node ν < µ with level at least level(µ).

Observe that the walk w is simply the pre-order traversal of T . Also, observe that every root-to-node path
of T has non-increasing node levels.

Indexing a tree node. Recall ℓ ≤ log n is the number of iterations, which bounds the number of levels of
T . Each node x of T can be assigned a unique “index” in a natural way, via a sequence k⃗ = (k1, k2, . . . , kℓ) of
non-negative integers, where ki specifies the number of level-i nodes on the path from the root to the node x. See
Figure 1 for an illustration of a tree and the index scheme. We will explain why such indexing scheme helps our
analysis at the end of the next subsection.

2.5 A Coupling-based Approach Based on the Dependency Tree We wish to mimic the strategy of the
coupling-based proof in Section 2.3. Instead of proving an Ω(1/n) lower bound for Pr[u, v ∈ f∗

a,h(s)], we will first
consider how to prove an Ω(1/

√
n) lower bound for Pr[u ∈ f∗

a,h(s)], which already contains all the important
ideas. Then, we will briefly discuss additional technical challenges that arise for the analysis of the two-vertex
case (computing Pr[u, v ∈ f∗

a,h(s)]).
As in Section 2.3, our strategy is again to carefully design an extended random walk w̄ which is coupled with

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1669

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

w, so that w is always a prefix of w̄. We will also build a corresponding extended dependency tree (“extended
tree” for short) T̄ on w̄. Note that T would be a subtree of T̄ as w is a prefix of w̄. We will similarly define next
and level values for nodes on extended tree T̄ , and these values would be consistent with T on the corresponding
subtree. We will sometimes use nextT or nextT̄ when there is a chance of confusion on which tree next is referring
to.

We hope to define an extended walk w̄ that maintains Condition (2.6) as before. For notational convenience,
we slightly change Condition (2.6) to

(2.9) For all i, if anextT̄ (α) ̸= anextT̄ (β) for all 0 ≤ α < β < i− 1, then wi = w̄i.

Note that since nextT̄ (α) = h(aw̄α) = w̄α+1, the above is equivalent to (2.6).
For an index k⃗ ∈ Nℓ, we also let µk⃗ denote the node indexed by k⃗ in the dependency tree T̄ . Note that such a

node may not exist in the tree; we use F k⃗ to denote the event that µk⃗ exists in T̄ . To lower bound Pr[u ∈ f∗
a,h(s)],

we define the following two quantities analogous to (2.8):

(2.10) Etotal =
∑
k⃗∈Nℓ

Pr
[
F k⃗ ∧ next(µk⃗) = u

]
,

and

(2.11) Ebad =
∑
k⃗∈Nℓ

k⃗1<k⃗2∈Nℓ

Pr[F k⃗ ∧ next(µk⃗) = u ∧ F k⃗1

∧ F k⃗2

∧ anext(µk⃗1) = anext(µk⃗2)].

Note that our choice of Ebad in (2.11) is a bit different from that in Section 2.3, as we consider a “bad occurrence”
to happen whenever there is a collision in w̄ (while in (2.8) we restricted t, q to the interval [ℓ]). This will not be
a problem if we choose ℓ carefully.

By an argument similar to that of Section 2.3, we have that Pr[u ∈ f∗
a,h(s)] ≥ Etotal − Ebad. Hence, the goal

is to design w̄ and T̄ such that (2.9) holds and the summands in Etotal and Ebad can be bounded.

Quick estimate: a sanity check. To better understand the summands in Etotal and Ebad, let us first calculate
these summands under the unrealistic assumption that all involved events are independent. Note that F k⃗ asserts
the existence of node µk⃗ in the tree T̄ , which requires that there is a tree path starting from the root, and
extending down the levels in a way that is consistent with the vector k⃗, which specifies the number of level-i nodes
on this path for every i ∈ [ℓ]. Observe that, for every node β of level i on this path, we must have gi(awβ

) = 1,
since otherwise β would not have been on level i, and the path would not extend to reach β. Hence, the event
(F k⃗ ∧ next(µk⃗) = u) is equivalent to the conjunction of the two conditions:

(1) Let α = µk⃗. For all the ki level-i nodes β on the path from root to node α, we have gi(awβ
) = 1, and

(2) rlevel(α)(awα
) = u,

where Item (2) directly follows from our definition of next(·). Observe that the event in Item (2) happens with
1/n probability, and for each β the event in Item (1) happens with 1/2 probability. Pretending that all these
events are independent, we would have

(2.12) Pr
[
F k⃗ ∧ next(µk⃗) = u

]
=
(
2|⃗k|1 · n

)−1

,

where |⃗k|1 is the ℓ1-norm of k⃗. Similarly, pretending all events are independent, we would have

(2.13) Pr
[
F k⃗ ∧ next(µk⃗) = u ∧ F k⃗1

∧ F k⃗2

∧ anext(µk⃗1) = anext(µk⃗2)

]
=
(
2|⃗k|1+|⃗k1|1+|⃗k2|1 · n2

)−1

.

Observe that
∑

k⃗∈Nℓ 2
−|⃗k|1 =

∑
k⃗∈Nℓ 2

−k1 · 2−k2 · · · · · 2−kℓ = (
∑

i∈N 2−i)ℓ = 2ℓ. Then, plugging (2.12) and (2.13)
into (2.10) and (2.11), we would have Etotal = Ω(2ℓ/n), and Ebad = O(23ℓ/n2). Setting ℓ = 1

2 · log(n) − c for a
large enough constant c, we would have

(2.14) Etotal − Ebad = Ω

(
1

2c
√
n

)
−O

(
1

23c
√
n

)
≥ Ω(1/

√
n).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1670

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Now we can explain why we chose such an indexing scheme: the existence of µk⃗ and the value of next(µk⃗)

only depends on the ancestors of µk⃗ in the dependency tree. Since typically there are at most poly log(n) many
ancestors, we can use the τ -wise independence of gi and ri to analyze the event F k⃗ ∧ next(µk⃗) = u.

2.6 Designing the Extended Random Walk Finally we explain how to design the extended random walk
w̄, by constructing an extended tree T̄ . We first aim to ensure Condition (2.12) holds, leading to a desired lower
bound on Etotal. Handling Ebad is more challenging; we will discuss that later.

Specifically, we will ensure that (2.12) holds for all “short” vectors k⃗ ∈ [τ/4]ℓ and u ∈ [n], where
τ = O(log n log log n) is the independence parameter of our pseudorandom hash function.4

Establishing (2.12) by induction. To show (2.12), we wish to prove the following claim.

Claim 2.1. Fix an index k⃗ corresponding to a level-i node (k⃗ = (0, . . . , ki, ki+1, . . . , kℓ) and ki > 0). Conditioned
on the event F k⃗, with 1/2 probability µk⃗ has a level-i child ν (i.e., for k⃗′ = (0, . . . , ki+1, ki+1, . . . , kℓ), F k⃗′

holds)
and next(ν) is distributed uniformly in [n].

Assuming that Claim 2.1 holds, then (2.12) follows by a simple induction.5 However, it is not hard to see
that Claim 2.1 does not hold for the original tree T . To understand the issue, let k⃗, k⃗′ be as in Claim 2.1 and
assume µk⃗ exists (i.e., F k⃗ holds). We wish to better understand the conditions under which µk⃗′

exists. Letting
r<i and g<i denote (r1, . . . , ri−1) and (g1, . . . , gi−1) respectively, we additionally fix (r<i, g<i) = (r<i, g<i) (we
use r<i ∧ g<i to denote this event for simplicity).

The existence condition of µk⃗′
in T . Let α be the smallest-numbered node such that α > µk⃗ and the level of

α is greater than i− 1. Then µk⃗′
exists if and only if α exists and level(α) = i. Hence, our goal is to determine α.

By definition, to move from µk⃗ to α in the random walk w, one first move to the node corresponding to vertex
next(µk⃗), and then keep going to the next node, until reaching a node with level at least i. The following algorithm
implements this procedure and returns the simulated random walk, and we observe that it only uses the values
of (r≤i, g≤i). Note that we use (· · ·) to denote a sequence of vertices, and use ◦ to denote the concatenation of
two sequences.

Algorithm 1: Simulating the random walk from s′ until reaching a level greater than i

1 Function sim(s′, i)
2 if i = 0 then
3 return (s′) // stop here since all nodes have levels at least 1

4 s0 ← s′, j ← 0, w ← () // start from s0 = s′

5 repeat
6 w ← w ◦ sim(sj , i− 1) // simulate from sj until hitting a node with level at least i
7 xj+1 ← w|w| // vertex xj+1 corresponds to the next node after sj with level ≥ i
8 if gi(axj+1

) = 1 then
9 sj+1 ← ri(axj+1

) // move to the next node since the node corresponding to xj+1

has level i
10 j ← j + 1

11 until gi(axj
) = 0

12 return xj// stop here since the node corresponding to xj has level > i

13 Function Find(s′, i)
14 return the last vertex in the sequence returned by sim(s′, i)

4This is already enough for lower bounding Etotal, as the contribution of “long” (non-short) k⃗ is negligible. Intuitively this is
true because for a “long” k⃗, we have |⃗k|1 ≥ maxi∈[ℓ] ki > τ/4, the probability that µk⃗ exists in the tree is quite small (2−|k⃗|1)
assuming (2.12).

5One also needs to show that with probability 1/2, µ has a level-j child with a uniformly random next-value, for all j < i. We
ignore this part in the technical overview.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1671

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

One can see that sim(next(µ), i − 1) generates the entire sub-walk after µ until reaching the next node with
level at least i. Now, the hope is to argue that, conditioning on F k⃗ ∧ r<i ∧ g<i, we have

gi(Find(next(µ), i− 1)) = 1

with probability 1/2.

Two issues with the original random walk w. There are two important issues with the argument above:

1. We need to argue gi(Find(next(µ), i− 1)) is independent from the event F k⃗ ∧ r<i ∧ g<i.

2. Even if gi(Find(next(µ), i − 1)) = 1, it could be the case that w stops during the simulation of
sim(next(µ), i− 1) due to a collision, and in that case µk⃗′

also does not exist.6

The second issue is fundamental, as it reveals the “global dependency nature” of the original random walk w:
the event that w stops depends on all entries in w.

A locally simulatable extended random walk. To circumvent the second issue, we wish for our extended
random walk w̄ to be locally simulatable. That is, knowing that node µ exists and knowing the value of next(µ),
together with fixed r<i and g<i, one should be able to simulate the extended random walk w̄ after µ until reaching
a node with level at least i. The second issue above amounts to the fact that sim(µ, i) fails to locally simulate
the walk w, since it does not have enough information to determine whether w has already terminated during its
simulation (it cannot determine whether there is a collision between the encountered node and the nodes before
in w).

Similar to the basic extended random walk in Section 2.3, for each i ∈ [ℓ], we extend the domain of gi and ri
from [m] to [m] ∪ {⋆0, ⋆1, . . . } as follows: for each t ∈ N, we sample gi(⋆t) ∈R {0, 1} and ri(⋆t) ∈R [n], where all
samples are independent.

Since the “local” simulation with respect to node 0, next(0) = s and fixed r≤ℓ and g≤ℓ is just the entire
random walk, we will define our extended random walk by giving its local simulation in Algorithm 2, and we set
w̄ ← walk(s, ℓ, 0).7 Note that walk(s, ℓ, 0) also gives the extended tree T̄ by specifying level and next.

Establishing Claim 2.1 for T̄ . One can inspect that the algorithm walk behaves the same as sim until a
collision occurs at Line 8 (that is, there is a collision in {ax1

, ax2
, . . . , axj+1

}). That is, sim(s, ℓ) and walk(s, ℓ, 0)
behave the same until reaching a collision awj

= awk
for j ̸= k. This implies that (2.9) holds.

To show Claim 2.1 holds for w̄ and T̄ , we still have to argue that gi(ExtFind(next(µ), i − 1)) is independent
from the event F k⃗ ∧ r<i ∧ g<i. Formally proving this requires a delicate induction, but the intuition is that F k⃗

depends on at most ki values in gi and ri, and the procedure walk carefully ensures that gi(ExtFind(next(µ), i−1))
is never one of them. Hence, since ki ≤ τ/4 and gi is τ -wise independent, we have the desired independence.

Handling Ebad and the two-vertex case. We have just established Condition (2.12) which gives a lower bound
for Etotal; now we briefly discuss how to obtain an upper bound on Ebad sufficient for proving the desired lower
bound on Pr[u ∈ f∗

a,h(s)] using (2.14). One can first observe that (2.13) cannot hold for all possible k⃗, k⃗1, k⃗2, as
there could be a collision between these three paths. In fact, let K be the total number of nodes in the union of
the paths corresponding to k⃗, k⃗1, k⃗2. Then a revised estimate for Pr[F k⃗ ∧ next(µk⃗) = u∧F k⃗1 ∧F k⃗2 ∧ anext(µk⃗1) =

anext(µk⃗2)] should be
(
2K · n2

)−1. By a careful calculation, one can show that this revised estimate is still enough
to show Ebad is upper bounded by O(23ℓ/n2), which is good enough for our purposes.

However, even establishing this revised estimate is quite challenging. Recall that F k⃗∧F k⃗1 ∧F k⃗2

is equivalent
to the condition that, for every level-i node β on the paths from root to µk⃗, µk⃗1

or µk⃗2

, it holds that gi(awβ
) = 1.

This amounts to K events and we hope to show they are all independent. However, this is not true in general,
as there can be a collision of awβ

between two different paths among these three paths. We overcome this issue
by showing that for each “bad node” µk⃗, there must exist a “bad” collision pair k⃗1 and k⃗2 on the extended walk
without this issue. In such case one can establish a revised estimate; subtracting all these revised estimates from
Egood would still yield a good lower bound on Pr[u ∈ f∗

a,h(s)].

6Indeed, if the simulation sim(next(µ), i−1) detects a pair of collision (two nodes α, β such that awα = awβ), it would loop forever.
7See the full version of the paper [CJWW21, Section 5.1] for a detailed explanation of Algorithm 2.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1672

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2: Algorithm for extended walk
1 Function walk(s′, i, µ0) (where s′ ∈ [n], 0 ≤ i ≤ ℓ)
2 if i = 0 then return (s′)
3 C0 ← ∅, star← false
4 j ← 0, s0 ← s′, w ← ()
5 repeat
6 w ← w ◦ walk(sj , i− 1, µ0 + |w|)
7 xj+1 ← w|w|

8 y, star←

{
axj+1

, false if axj+1
̸∈ Cj ∧ ¬star

⋆t, true otherwise (where t := min{t ∈ N | ⋆t ̸∈ Cj})
9 µj+1 ← µ0 + |w|

10 if gi(y) = 1 then
11 Cj+1 ← Cj ∪ {y}, sj+1 ← ri(y)
12 level(µj+1)← i, next(µj+1)← ri(y)
13 j ← j + 1

14 until gi(y) = 0
15 return w

16 Function ExtFind(s′, i)
17 return the last vertex in the sequence returned by walk(s′, i, 0)

Our proof for lower-bounding Pr[u, v ∈ f∗
a,h(s)] follows the same template above, while using a more involved

analysis to handle the dependency issues across the paths (we have to consider four paths now: two corresponding
to u and v, and the other two corresponding to the “bad” collision pair).

3 Preliminaries
Let [n] denote {1, 2, . . . , n}. We use N to denote the set of non-negative integers. We use Õ(f) to denote
O(f · poly log f) in the usual way; Ω̃, Θ̃ are defined similarly.

We measure the space complexity of an algorithm by the maximum number of bits in its working memory:
the read-only input is not counted. We measure the time complexity by the number of word operations (with
word length Θ(log n)) in the word RAM model.

For Element Distinctness and List Disjointness, we always assume the input arrays of length n consist
of positive integers bounded from above by m = nc + c, where c is a fixed constant independent of n. (We
often abbrievate this by saying m = poly(n).) For an array a ∈ [m]n, define the second frequency moment
F2(a) =

∑n
i=1

∑n
j=1 1[ai = aj] as the number of colliding pairs (i, j) (including the case where i = j). Note that

n ≤ F2(a) ≤ n2.
We will use the following standard pseudorandomness construction.

Theorem 3.1. (Explicit k-wise independent hash family, [CW79]; see also [Vad12, Corollary 3.34])
For n,m, k, there is a family of k-wise independent functions H ⊆ {h | h : {0, 1}n → {0, 1}m} such that every
function from H can be described in k · max{n,m} random bits, and evaluating a function from H (given its
description, and given an input x ∈ {0, 1}n) takes time poly(n,m, k).

We often use bold font letters (e.g., X) to denote random variables. We also use supp(X) to denote the
support of random variable X.

For a set U , we often use x ∈R U to denote the process of selecting an element x from U uniformly at random.

4 Properties of the Pseudorandom Family and their Implications
We will first define our pseudorandom hash family in Section 4.1, and then give the proofs of our main theorems in
Section 4.2, assuming some key technical lemmas that will be proved in the full version of the paper [CJWW21].

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1673

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4.1 Construction of the Pseudorandom Family We first introduce some handy notation. For two functions
a, b : [m]→ ([n] ∪ {⋆}), we naturally view them as “restrictions” (where ⋆ means “unrestricted”), and define their
composition as

(a • b)(x) :=

{
b(x) b(x) ̸= ⋆,
a(x) otherwise.

Observe that (a • b) • c = a • (b • c).
Let ℓ ≤ log n and τ = O(log n log log n) be two positive integer parameters to be determined later. A sample

h : [m]→ ([n] ∪ {⋆}) from Hℓ,m,n is generated by an ℓ-level iterative restriction process, defined as follows.

Drawing a sample h from the pseudorandom hash function family Hℓ,m,n

1. For each i ∈ [ℓ], independently draw two random functions gi : [m]→ {0, 1} and ri : [m]→ [n] from
τ -wise independent hash families (Theorem 3.1). Define hi : [m]→ [n] ∪ {⋆} to be

hi(x) :=

{
⋆ if gi(x) = 0,
ri(x) if gi(x) = 1.

2. Define h to be hℓ • · · · • h2 • h1.

Intuitively, the functions gi : [m] → {0, 1} control whether the value of h(x) should be restricted at the i-th
level, while the functions ri : [m]→ [n] determine the value that h(x) is restricted to, at the i-th level. Note that
h(x) = ⋆ if g1(x) = · · · = gℓ(x) = 0, and h(x) = rj(x) if g1(x) = · · · = gj−1(x) = 0 and gj(x) = 1.

Since m = poly(n), the seed length for each i ∈ [ℓ] is O(log2 n log log n) bits (Theorem 3.1), and hence the
total seed length for describing the hash function h is O(ℓ log2 n log log n) = O(log3 n log log n). Slightly abusing
notation, we also use h ∈R Hℓ,m,n to denote that h is a hash function generated as above.

Digraph Ga,h and reachable set f∗
a,h(s). Next we set up some notation. Recall that a ∈ [m]n is the input

array. For a hash function h : [m] → [n], we define a mapping fa,h : [n] → ([n] ∪ {⋆}) by fa,h(x) := h(ax). This
mapping naturally defines a n-vertex digraph Ga,h, where each vertex x ∈ [n] has one outgoing edge x 7→ h(ax)
if h(ax) ̸= ⋆, and no outgoing edge if h(ax) = ⋆.

We use f∗
a,h(s) to denote the set of vertices reachable in Ga,h from s. When a and h are clear from context,

we will simply write f∗
a,h(s) as f∗(s). Since each vertex in Ga,h has at most one outgoing edge, note that the

vertices in f∗(s) form either a path or a “rho-shaped” component.

4.2 Proofs of the Main Results Let a = (a1, . . . , an) ∈ [m]n be the read-only input array. The BCM
Element Distinctness algorithm [BCM13] uses the following version of Floyd’s cycle-finding algorithm performed
on the digraph specified by fa,h.

Lemma 4.1. ([BCM13, Theorem 2.1]) Assuming oracle access to fa,h : [n]→ ([n] ∪ {⋆}), there is a determin-
istic algorithm COLLIDE(s) which finds the pair (u, v) ∈ [n]× [n] (if it exists) such that u, v ∈ f∗

a,h(s), u ̸= v and
au = av, in O(|f∗

a,h(s)|) time and O(log n) space.8

In the BCM algorithm, h was chosen from a truly random hash family. Our goal is to show that sampling h
from our pseudorandom hash family Hℓ,m,n also suffices. To do this, we need the following two properties of our
hash family Hℓ,m,n.

Lemma 4.2. (Bounding the visit probability for a single vertex) Suppose ℓ = log n − logF2(a)
2 − 10.9

8The original BCM algorithm works for fa,h : [n] → [n]. But it works equally well when some vertices v may have no outgoing
edges (i.e., fa,h(v) = ⋆).

9We ignore all floors and ceilings for simplicity.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1674

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

For every vertex v ∈ [n], we have

Pr
h∈RHℓ,m,n,s∈R[n]

[v ∈ f∗
a,h(s)] = Θ

(
1√
F2(a)

)
.

Lemma 4.3. (Lower bound for collision probability) Suppose ℓ = log n − logF2(a)
2 − 10. For every

u, v ∈ [n] such that u ̸= v and au = av, we have

Pr
h∈RHℓ,m,n,s∈R[n]

[u, v ∈ f∗
a,h(s)] ≥ Ω

(
1

F2(a)

)
.

Lemma 4.2 and Lemma 4.3 are proved in the full version of this paper [CJWW21].

Remark 4.4. In Lemma 4.2, we obtain both a lower bound and an upper bound for Prh,s[v ∈ f∗
a,h(s)], and

we will see shortly that only the upper bound will be useful in the proof of Theorem 1.1; the lower bound part
of Lemma 4.2 can be seen as a warm-up for the proof of Lemma 4.3, which requires to prove a lower bound for
the more involved two-vertex case (see the full version of the paper [CJWW21, Section 7]).

Since ℓ ≤ log n, each hash function h from our hash family Hℓ,m,n can be described with a seed of
O(log3 n log log n) bits and can be evaluated in poly log(n) time and O(log3 n log log n) space. Armed with the
two lemmas above, we can prove our main theorems.

Reminder of Theorem 1.1. Element Distinctness can be decided by a Monte Carlo algorithm in Õ(n1.5)
time, with O(log3 n log log n) bits of workspace and no random oracle. Moreover, when there is a colliding pair,
the algorithm reports one.

Proof. Given input a ∈ [m]n, we first assume that we know the correct parameter 1 ≤ ℓ ≤ log n required in
Lemma 4.2 and Lemma 4.3, and let H be the pseudorandom hash family Hℓ,m,n. We run O(n log n) trials of the
COLLIDE(s) algorithm (Lemma 4.1) on fa,h, where each trial uses a fresh random h ∈ H. We return YES if no
collisions are found, and return NO otherwise. It is evident that this algorithm only requires one-way access to
randomness, and the description of each h can be stored in low space.

We first analyze the running time of this algorithm. By Lemma 4.1, the running time of each trial is
O(|f∗

a,h(s)|). By Lemma 4.2, the expected running time of each trial is

E
h∈H,s∈[n]

[|f∗
a,h(s)|] · poly log(n) =

∑
v∈[n]

Pr
h∈H,s∈[n]

[v ∈ f∗
a,h(s)] · poly log(n) ≤

n · poly log n√
F2(a)

,

where the poly log(n) factor comes from the time complexity of evaluating h(·). Hence, the expected total running
time of O(n log n) trials is Õ(n2/

√
F2(a)) ≤ Õ(n1.5). By Markov’s inequality, with at least 1− o(1) probability,

the total running time is bounded by Õ(n1.5).
To analyze the success probability, note that in a “NO” instance (i.e., the elements are not distinct) there are

F2(a) − n > 0 pairs of u, v ∈ [n] such that u ̸= v and au = av. By linearity of expectation, Lemma 4.3 implies
that the success probability of each trial is

Ω

(
F2(a)− n

F2(a)

)
≥ Ω (1/n) .

Since the samples of h ∈ H are independent across the trials, the probability of not finding any collisions is at
most (1− Ω(1/n))

n logn ≤ n−Ω(1). The proof then follows from a simple union bound.
Recall at the beginning of the proof, we assumed ℓ was known. To remove this assumption, our actual

algorithm simply tries all possible ℓ ∈ {1, 2, . . . , log n} one by one (and terminates a trial if the running time
is already too long for a specific ℓ), which only increases the overall running time by an O(log n) multiplicative
factor.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1675

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Now we similarly prove the performance of the List Disjointness algorithm.

Reminder of Theorem 1.2. There is a Monte Carlo algorithm for List Disjointness such that, given input
arrays a = (a1, . . . , an), b = (b1, . . . , bn) and an upper bound p ≥ F2(a) + F2(b), runs in Õ(n

√
p) time and uses

O(log3 n log log n) bits of workspace and no random oracle.

Proof. Similar to the proof of Theorem 1.1, we can assume that the correct ℓ required in Lemma 4.2 and Lemma 4.3
is known. Let array c be the concatenation of a and b, which must satisfy F2(c) ≤ 2(F2(a) + F2(b)) ≤ 2p. We
run 2p log n trials of the COLLIDE(s) algorithm (Lemma 4.1) on fc,h, each time using a fresh random h ∈ H. We
return NO if we find a collision in c where the two items come from a and b respectively. We return YES if the
total time spent by the algorithm exceeds Õ(n

√
p) while no such collisions have been found.

To analyze the running time, we focus on the first F2(c) log n trials executed by the algorithm. By a similar
argument in the previous proof, with at least 1−o(1) probability, the total running time of these F2(c) log n trials
is at most

Õ

(
F2(c) ·

n√
F2(c)

)
≤ Õ(n ·

√
F2(c)).

By Lemma 4.3, the success probability of each trial is Ω(1/F2(c)) (note that in the previous proof we had
F2(a)− n pairs of “good” collisions (u, v), while here it is possible that we have only one “good” pair, along with
many “bad” pairs coming from the same input array). Then, the probability of finding a collision during the first
F2(c) log n trials is at least 1− nΩ(1).

By a union bound, we can show that, on a “NO” input, with at least 1− o(1) probability the algorithm will
terminate in one of the first F2(c) log n trials, without exceeding the time limit Õ(n

√
p).

Now we similarly give a low-space algorithm for Set Intersection, with near-optimal time complexity.

Reminder of Theorem 1.4. There is a randomized algorithm that, given input arrays A = (a1, . . . , an), B =
(b1, . . . , bn) where A and B are both YES instances of Element Distinctness, prints all elements in
{a1, . . . , an} ∩ {b1, . . . , bn} in Õ(n1.5) time, with O(log3 n log log n) bits of workspace and no random oracle. The
algorithm prints elements in no particular order, and the same element may be printed multiple times.

Proof. Similar to the proof of Theorem 1.1, we can assume that the correct ℓ required in Lemma 4.2 and Lemma 4.3
is known.

As before, we define c to be the concatenation of a and b. We run n log2 n trials of the COLLIDE(s) algorithm
(Lemma 4.1) on fc,h, each using a fresh random h ∈ H. We print all the collisions found. Note these must be
elements in {a1, . . . , an} ∩ {b1, . . . , bn}, by our assumption on the input: since A and B are YES instances of
Element Distinctness, all colliding pairs must have one element from A and one element from B.

By a similar argument as in the proof of Theorem 1.1, with 1 − o(1) probability the total running time is
bounded by Õ(n1.5). And for every element in the intersection, the probability that it is never printed is at most(

1− Ω

(
1

F2(c)

))n log2 n

≤ n−ω(1),

where we used F2(c) = Θ(n) implied by the input assumption. The proof then follows from a simple union bound.

References

[Abr87] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.
[Abr91] Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general sequential machines. J. Comput.

Syst. Sci., 43(2):269–289, 1991.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1676

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[AGHP90] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost k-wise
independent random variables. In 31st Annual Symposium on Foundations of Computer Science, pages 544–553,
1990.

[Ajt02] Miklós Ajtai. Determinism versus nondeterminism for linear time RAMs with memory restrictions. J. Comput.
Syst. Sci., 65(1):2–37, 2002.

[Ajt05] Miklós Ajtai. A non-linear time lower bound for boolean branching programs. Theory Comput., 1(1):149–176,
2005.

[AKKN15] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in the absence of concentration.
In 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, pages 48–61, 2015.

[AKKN16] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense Subset Sum may be the hardest. In
Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS), pages 13:1–13:14, 2016.

[Amb07] Andris Ambainis. Quantum walk algorithm for Element Distinctness. SIAM Journal on Computing, 37(1):210–
239, 2007.

[AN08] Noga Alon and Asaf Nussboim. k-wise independent random graphs. In 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, pages 813–822. IEEE Computer Society, 2008.

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness problems.
J. ACM, 51(4):595–605, 2004.

[BC82] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential model of
computation. SIAM J. Comput., 11(2):287–297, 1982.

[BCM13] Paul Beame, Raphaël Clifford, and Widad Machmouchi. Element distinctness, frequency moments, and sliding
windows. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 290–299. IEEE, 2013.

[Bea91] Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J. Comput., 20(2):270–
277, 1991.

[BFM+87] Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal, and Avi Wigderson. A time-space
tradeoff for Element Distinctness. SIAM J. Comput., 16(1):97–99, 1987.

[BGNV18] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient algorithms for Subset
Sum, k-Sum, and related problems. SIAM J. Comput., 47(5):1755–1777, 2018.

[Bri17] Karl Bringmann. A near-linear pseudopolynomial time algorithm for Subset Sum. In Proceedings of the 28th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1073–1084, 2017.

[BSSV03] Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower bounds for randomized
computation of decision problems. J. ACM, 50(2):154–195, 2003.

[BV02] Paul Beame and Erik Vee. Time-space tradeoffs, multiparty communication complexity, and nearest-neighbor
problems. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, pages 688–697. ACM, 2002.

[BW15] Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs for time-space lower bounds. Comput.
Complex., 24(3):533–600, 2015.

[CJWW21] Lijie Chen, Ce Jin, R. Ryan Williams, and Hongxun Wu. Truly low-space element distinctness and subset
sum via pseudorandom hash functions. CoRR, abs/2111.01759, 2021.

[Cob66] Alan Cobham. The recognition problem for the set of perfect squares. In 7th Annual Symposium on Switching
and Automata Theory, pages 78–87. IEEE Computer Society, 1966.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and System
Sciences, 18(2):143–154, 1979.

[Din20] Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs and their applications. In Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 405–434. Springer, 2020.

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of Bodlaender and
Courcelle. In Proceedings of the 51st IEEE Symposium on Foundations of Computer Scienc (FOCS), pages 143–152,
2010.

[FK16] Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University Press, 2016.
[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching programs, in any order.

In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 946–955. IEEE Computer
Society, 2018.

[FLvMV05] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space lower bounds
for satisfiability. J. ACM, 52(6):835–865, 2005.

[GLP18] Isaac Goldstein, Moshe Lewenstein, and Ely Porat. Improved space-time tradeoffs for kSUM. In 26th Annual
European Symposium on Algorithms, ESA 2018, pages 37:1–37:14, 2018.

[HJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic
Techniques Proceedings, pages 235–256. Springer, 2010.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1677

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[HM21] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for finding multiple collision pairs. In 16th
Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2021, pages 1:1–1:21,
2021.

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack problem. Journal of the
ACM, 21(2):277–292, 1974.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM,
53(3):307–323, 2006.

[JVW21] Ce Jin, Nikhil Vyas, and Ryan Williams. Fast low-space algorithms for Subset Sum. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1757–1776. SIAM, 2021.

[Kan10] Daniel M. Kane. Unary subset-sum is in logspace. CoRR, 2010.
[Kar86] Mauricio Karchmer. Two time-space tradeoffs for element distinctness. Theor. Comput. Sci., 47(3):237–246, 1986.
[Knu69] Donald E. Knuth. The art of computer programming, vol. 2: Seminumerical algorithms, 1969.
[LN10] Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of the 42nd ACM

Symposium on Theory of Computing (STOC), pages 321–330, 2010.
[LVWW16] Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deterministic time-

space trade-offs for k-SUM. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, pages 58:1–58:14, 2016.

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal hashing. Theor.
Comput. Sci., 107(1):121–133, 1993.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theor. Comput. Sci., pages 315–323,
1980.

[MW19] Dylan M. McKay and Richard Ryan Williams. Quadratic time-space lower bounds for computing natural functions
with a random oracle. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, pages 56:1–56:20,
2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461, 1992.
[Nis93] Noam Nisan. On read-once vs. multiple access to randomness in logspace. Theor. Comput. Sci., 107(1):135–144,

1993.
[NW21] Jesper Nederlof and Karol Wegrzycki. Improving schroeppel and shamir’s algorithm for subset sum via orthogonal

vectors. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1670–1683. ACM,
2021.

[Pol75] John M. Pollard. A Monte Carlo method for factorization. BIT, 15:331–334, 1975.
[PP93] Boaz Patt-Shamir and David Peleg. Time-space tradeoffs for set operations. Theor. Comput. Sci., 110(1):99–129,

1993.
[PR98] Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In 39th Annual Symposium on

Foundations of Computer Science, FOCS ’98, pages 264–268. IEEE Computer Society, 1998.
[SS81] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems.

SIAM Journal on Computing, 10(3):456–464, 1981.
[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications. J.

Cryptol., 12(1):1–28, 1999.
[Wan14] Joshua R. Wang. Space-efficient randomized algorithms for K-SUM. In Algorithms - ESA 2014 - 22th Annual

European Symposium, pages 810–829. Springer, 2014.
[Wil08] R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Comput. Complex., 17(2):179–

219, 2008.
[Yao88] Andrew Chi-Chih Yao. Near-optimal time-space tradeoff for Element Distinctness. In 29th Annual Symposium

on Foundations of Computer Science, pages 91–97. IEEE Computer Society, 1988.
[Yes84] Yaacov Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on any general

sequential random-access computer. J. Comput. Syst. Sci., 29(2):183–197, 1984.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1678

D
ow

nl
oa

de
d

08
/1

5/
22

 to
 2

4.
14

7.
18

9.
71

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Our Results
	Related Work
	Open Questions
	Organization

	Overview of Techniques
	Review of the BCM Algorithm
	Overcoming the (n)-wise Independence Barrier
	An Alternative Analysis of the BCM Algorithm
	Pseudorandom Hash Functions, the Dependency Tree, and the Indexing Scheme
	A Coupling-based Approach Based on the Dependency Tree
	Designing the Extended Random Walk

	Preliminaries
	Properties of the Pseudorandom Family and their Implications
	Construction of the Pseudorandom Family
	Proofs of the Main Results

