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Abstract  24 

Converging evidence suggests the brain encodes time in dynamic patterns of neural 25 

activity, including neural sequences, ramping activity, and complex dynamics. Most temporal 26 

tasks, however, require more than just encoding time, and can have distinct computational 27 

requirements including the need to exhibit temporal scaling, generalize to novel contexts, or 28 

robustness to noise. It is not known how neural circuits can encode time and satisfy distinct 29 

computational requirements, nor is it known whether similar patterns of neural activity at the 30 

population level can exhibit dramatically different computational or generalization properties. To 31 

begin to answer these questions, we trained RNNs on two timing tasks based on behavioral studies. 32 

The tasks had different input structures but required producing identically timed output patterns. 33 

Using a novel framework we quantified whether RNNs encoded two intervals using either of three 34 

different timing strategies: scaling, absolute, or stimulus-specific dynamics. We found that similar 35 

neural dynamic patterns at the level of single intervals, could exhibit fundamentally different 36 

properties, including, generalization, the connectivity structure of the trained networks, and the 37 

contribution of excitatory and inhibitory neurons. Critically, depending on the task structure RNNs 38 

were better suited for generalization or robustness to noise. Further analysis revealed different 39 

connection patterns underlying the different regimes. Our results predict that apparently similar 40 

neural dynamic patterns at the population level (e.g., neural sequences) can exhibit fundamentally 41 

different computational properties in regards to their ability to generalize to novel stimuli and their 42 

robustness to noise—and that these differences are associated with differences in network 43 

connectivity and distinct contributions of excitatory and inhibitory neurons. We also predict that 44 

the task structure used in different experimental studies accounts for some of the experimentally 45 

observed variability in how networks encode time.  46 



 

 

Author summary 47 

The ability to tell time and anticipate when external events will occur are among the most 48 

fundamental computations the brain performs. Converging evidence suggests the brain encodes 49 

time through changing patterns of neural activity. Different temporal tasks, however, have distinct 50 

computational requirements, such as the need to flexibly scale temporal patterns or generalize to 51 

novel inputs. To understand how networks can encode time and satisfy different computational 52 

requirements we trained recurrent neural networks (RNNs) on two timing tasks that have 53 

previously been used in behavioral studies. Both tasks required producing identically timed output 54 

patterns. Using a novel framework to quantify how networks encode different intervals, we found 55 

that similar patterns of neural activity—neural sequences—were associated with fundamentally 56 

different underlying mechanisms, including the connectivity patterns of the RNNs. Critically, 57 

depending on the task the RNNs were trained on, they were better suited for generalization or 58 

robustness to noise. Our results predict that similar patterns of neural activity can be produced by 59 

distinct RNN configurations, which in turn have fundamentally different computational tradeoffs. 60 

Our results also predict that differences in task structure account for some of the experimentally 61 

observed variability in how networks encode time. 62 

 63 
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Introduction 65 

The ability to predict when external events will occur, and to detect temporal regularities 66 

in the environment, are among the most fundamental computations the brain performs [1-5]. Thus, 67 

the brain must have a rich repertoire of mechanisms to tell time and perform temporal 68 

computations. Indeed, converging experimental and computational evidence indicates that a wide 69 

range of different brain areas encode time through dynamically changing patterns of neural activity 70 

[1, 6-10]. These patterns can take the form of monotonic ramping of the firing rates of neurons, or 71 

so-called population clocks that can take the form of neural sequences or complex patterns of 72 

neural activity [1, 11]. 73 

Experimental and computational analyses of the different neural encoding schemes for the 74 

representation of time have focused primarily on the discrimination and production of isolated 75 

intervals or durations. However, the computational requirements for processing temporal 76 

information go far beyond merely requiring a timer to discriminate or produce a single duration or 77 

interval. Some forms of temporal processing require the ability to smoothly scale a time-varying 78 

motor pattern. For example, the ability to play a song on the piano at different tempos, or catch a 79 

ball thrown at different speeds, requires that the underlying patterns of neural activity unfold at 80 

different speeds [12-15]. Indeed, some tasks in animal studies explicitly require animals to exhibit 81 

temporal scaling: depending on context cues or training blocks animals must temporally scale their 82 

motor response [14, 16-18]. In contrast, other timing tasks are categorical in nature, for example 83 

in the language domain phrasal boundaries are based in part on a categorical boundary of the pause 84 

between phonemes—e.g., great eyes x gray ties [19, 20], similarly, in the motor domain, the 85 

distinction between a double-click and two single clicks of a computer mouse is categorical. 86 

Furthermore, in both the human and animal literature standard temporal bisection tasks require 87 



 

 

subjects to make a two-alternative forced-choice categorical judgment regarding whether a 88 

stimulus was short or long [21, 22].  89 

It remains unclear if different computational requirements, such as the need to exhibit 90 

temporal scaling or categorical timing, rely on similar or fundamentally different underlying neural 91 

mechanisms to encode time. Consider a task in which an animal has to produce two intervals—92 

e.g., in response to two different sensory cues. Generally speaking, three encoding schemes could 93 

allow the same network to produce these two different intervals: absolute timing, temporal scaling, 94 

and stimulus-specific timing. Under absolute timing the neurons would respond at the same 95 

moments in time during both the production of short and long intervals but additional neurons 96 

would be active during the long interval; in a temporal scaling scheme neurons encode the same 97 

relative time during both short and long intervals; and in a stimulus-specific code, there would be 98 

unrelated patterns for each interval (e.g., entirely different neural sequences for the short and long 99 

interval). These different schemes possess specific computational tradeoffs regarding their 100 

suitability for temporal scaling versus categorical timing. 101 

To date, a large diversity of neural signatures for the encoding of time—including scaling, 102 

absolute timing, and stimulus-specific timing—have been observed during tasks that require 103 

animals to discriminate or produce multiple intervals [14, 16-18, 23-30]. Here we propose that 104 

some of this diversity is driven by task structure, and examine whether task structure influences 105 

the way recurrent neural networks may encode time. To address this hypothesis we trained RNNs 106 

on two tasks with identical output motor requirements and characterized how the networks encode 107 

time and generalize to novel stimuli. Our results establish that subtle differences in task structure 108 

lead to neural dynamic regimes that are better suited for temporal scaling or categorical timing.  109 

  110 



 

 

Results  111 

To begin to understand how task structure might shape how time is encoded in neural 112 

networks, we trained recurrent neural network models (RNNs) on one of two tasks inspired by 113 

previous experimental studies[14, 18, 23]. The RNNs were based on firing rate units with distinct 114 

populations of excitatory (80%) and inhibitory (20%) units. We will refer to the tasks as the 2-115 

Context (Fig 1A) and 2-Stimulus (Fig 1B) tasks—critically, the timed motor outputs were identical 116 

117 

Fig 1. RNNs were trained on one of two timing tasks, both of which required producing the same timed 

output patterns. (A) Schematic of the 2-Context task. Each RNN was composed of 200 units—80% excitatory 

units (purple) and 20% inhibitory units (dark red)—and received a go and a context input. The context level 

signals the interval length to be produced: high = long (6 s, blue), low = short (3 s, green). (B) Schematic of the 

2-Stimulus task. The same RNN was used in both tasks, except that the short- and long-interval was cued by two 

different inputs that were transiently activated. (C) Learning curve for the performance of 20 RNNs trained on 

the 2-Context task. Percentage of trials in which the timing of the output unit met criteria (left) and the error 

between the output and target (right). Gray traces represent results of each RNN, red dots denote the end of 

training for a given RNN, and the black trace represents the mean performance. (D) Same as in (C) but for the 

2-Stimulus task. (E) Output traces across ten short (blue) and long (green) trials from an RNN trained on 2-

Context task (left). Mean crossing times for long interval is significantly higher than that for short interval (right, 

n = 20 simulations, paired t test, t19 = 77.70, P < 0.0001). Dashed lines denote the targets and threshold. (F) 

Same as (E) but for 2-Stimulus task (n = 20 simulations, paired t test, t19 = 45.79, P < 0.0001). 



 

 

in both tasks, requiring the production of either a short or long response. In the 2-Context task [e.g., 118 

14, 18], the Go cue (500 ms) indicated the onset of the trial (t=0), and the analog level of a 119 

continuous context input signaled whether a trial is short or long. In the 2-Stimulus task, the short 120 

and long interval trials were cued by two distinct transient inputs [23]. In both cases, the short and 121 

long intervals consisted of a ramp-up of the output unit starting at the interval midpoint—a function 122 

that approximates the behavioral response rate of animals trained to correctly time their 123 

movements [23].  124 

Performance was quantified by the ratio of correctly timed trials (see Methods) and the 125 

error between the actual output and the target. RNNs trained on both tasks learned to produce the 126 

same appropriately timed motor output (Fig 1C-F), although the RNNs trained on the 2-Context 127 

task required fewer training trials to reach the same performance level (n = 20 simulations, two-128 

sample two-sided t-test, t38 = 9.75, P < 0.0001).  129 

 130 

Generalization to novel intervals  131 

Having shown that RNNs can produce the same temporal output patterns when trained on 132 

two similar tasks, we next asked a key question: are there significant functional differences 133 

between how the RNNs trained on the different tasks perform in response to novel input conditions? 134 

To answer this question we examined generalization to untrained input conditions. To test the 135 

generalization in the 2-Context task we varied the amplitude of the context cue between the range 136 

of the trained values (0.75=short; 0.25=long). Interestingly the network exhibited fairly smooth 137 

generalization—i.e., in response to intermediate context levels it produced intermediate motor 138 

intervals (Fig 2A)—a finding consistent with previous computational studies [12, 14]. To test 139 

generalization in the 2-Stimulus task we mixed the ratio of activation of the two stimulus cues—140 



 

 

141 

Fig 2. RNNs trained on the 2-Context task exhibited smooth generalization to novel intervals, while RNNs 

trained on the 2-Stimulus task exhibited categorical timing. (A) Output traces of an RNN trained on the 

2-Context task across different context input levels. Dashed-black lines denote the output threshold used to 

quantify timing. Pink squares denote the trained conditions. (B) Similar to (A) but for the 2-Stimuls task. The blue 

and green squares represent the ratio of activation of the two input units. (C) Plots of the mean crossing time for 

each RNN across input conditions for the 2-Context (top) and 2-Stimulus (bottom) tasks. Insets, examples of the 

sigmoid-function fits for a single RNN (black). (D) Left, mean slope of the sigmoid fits for 2-Stimulus task is 

significantly higher than that for the 2-Context task (n = 20 simulations for each, two-sided t test, t38 = 9.69, P < 

0.0001). Right, correlation coefficient between mean crossing times and input conditions for 2-Context task is 

significantly higher than that for the 2-Stimulus task (n = 20 simulations for each, two-sided t test on Fisher-

transformed values, t38 = 17.39, P < 0.0001). The absolute correlation coefficient values are shown because in the 

2-Context task the correlations are negative. (E) Standard deviations of the crossing times for each RNN in the 2-

Context (top) and 2-Stimulus (bottom) tasks, as a function of input conditions. 



 

 

during training [1, 0] corresponded to short and [0, 1] to long, during testing an intermediary 50/50 142 

mixed input corresponded to [0.5 0.5]. In contrast to the 2-Context task, the RNNs trained on the 143 

2-Stimulus task did not generalize, but the RNNs did not exhibit catastrophic degradation or 144 

behave randomly. Rather, the RNNs expressed categorical timing: the output intervals clustered 145 

near the short or long intervals (Fig 2B), essentially exhibiting a winner-take-all behavior. 146 

To quantify these generalization patterns we measured the slope of a sigmoid fit between 147 

input levels and output intervals, as well as the correlation between them (Fig 2C, D, see Methods). 148 

The slope of the sigmoid was significantly less in the 2-Context fits—indicating a quasi-linear 149 

relationship between context input level and produced intervals. The sigmoid slope was 150 

significantly higher in the 2-Stimulus task, consistent with the prototypical sigmoidal signature of 151 

categorical discrimination (Fig 2D, left panel). Similarly, the Pearson correlation coefficients 152 

further supported the observation that the input-interval relationship was much more linear in the 153 

2-Context task compared to the 2-Stimulus task (Fig 2D, right panel).  154 

 In addition to the above accuracy measures, we also quantified the precision of timing 155 

across the different generalization conditions, as the standard deviation of the crossing time of 156 

each trial (Fig 2E). The precision for the 2-Context task was high (low standard deviation) for all 157 

the stimulus conditions. In contrast, in the middle range for the 2-Stimulus task precision was very 158 

low. This was mainly due to categorical timing, i.e., in some stimulus conditions, the motor output 159 

would randomly be attracted towards the short or long interval. Taken together, RNNs trained on 160 

the 2-Context task were far superior at generalizing to novel intervals in terms of both timing 161 

accuracy and precision, however, the RNNs trained on the 2-Stimulus task exhibited categorical 162 

timing. 163 



 

 

 By design, the key difference in the tasks is that in the 2-Context task there is a continuous 164 

input signaling the target interval throughout the task, whereas in the 2-Stimulus task two different 165 

input weight vectors signal the desired interval, and each of these inputs is only active for a brief 166 

period. To further determine whether the difference of the generalization patterns is robust to the 167 

input parameters, we manipulated the ‘similarity of the inputs corresponding to the short and long 168 

intervals in both tasks. Specifically, for the 2-Context task, different analog pairs of context level 169 

were used, ranging from (0.95, 0.05) to (0.55,0.45). For the 2-Stimulus task, we gradually 170 

increased the similarity by increasing the overlap ratio between the two inputs—proportions of the 171 

same elements in the two input weights (S1 Fig A, B). In all five conditions, the generalization 172 

performance for the 2-Context task was better than that for the 2-Stimulus task (S1 Fig C, D, and 173 

E). While the tasks were designed to capture features of those used in behavioral experiments [14, 174 

18, 23], in the 2-Context task the onset of the Go and Context stimuli redundantly signal trial onset 175 

(t=0). Thus to understand the influence of the Go stimulus we also performed simulations without 176 

the Go stimulus in the 2-Context task (S2 Fig A). As expected, omitting the Go stimulus left the 177 

generalization performance largely unchanged compared to the standard 2-Context task with Go 178 

stimulus, and still significantly better than that for the 2-Stimulus task (S2 Fig B). Finally, to 179 

confirm that it is the presence of the continuous context input that plays a critical role in the 180 

differential generalization patterns, we performed “2-Context” simulations in which the short and 181 

long intervals were cued by a transient “context” stimulus rather than a persistent context input. 182 

Consistent with our expectations based on previous results[12, 14, 30], in the absence of a 183 

continuous context input the generalization was more consistent with categorical timing (S3 Fig) 184 

 Additional simulations confirmed that the difference of the generalization performance 185 

between the 2-Context task and 2-Stimulus were robust to the change of several hyperparameters 186 



 

 

including the initial gain (S4 Fig A-C) and connection probability (S5 Fig A-C) of the recurrent 187 

weights. 188 

Potential dynamic regimes underlying the encoding of multiple 189 

intervals 190 

Converging experimental and theoretical evidence indicates that a broad range of neural 191 

dynamic regimes encode time. But to date, these different regimes have not been contrasted in 192 

terms of their ability to encode multiple intervals and lead to generalization or categorical timing, 193 

or robustness to noise. Here we examine three broad potential strategies for the encoding of two 194 

intervals: scaling, absolute, and stimulus-specific codes. To illustrate these three strategies we 195 

consider how a network of neurons could encode both a short (3 s) and long (6 s) intervals (Fig 196 

3)—note that while we use neural sequences to contrast the three encoding schemes, the same 197 

classification applies to other codes for time, including ramping activity. In a temporal scaling 198 

strategy (Fig 3A), the dynamics of each unit for the short interval is linearly scaled in time to 199 

produce the long interval (Fig 3B), which at the level of single units leads to two overlapping 200 

curves (Fig 3C). Similarly, when the neural trajectories of the entire population are projected into 201 

a low-dimensional space by principal component analysis the trajectories are also overlapping (Fig 202 

3D). Under an absolute encoding strategy (Fig 3, middle panels) the temporal profile of each unit 203 

during the short interval does not change during the long interval. The long interval simply relies 204 

on recruiting additional neurons that have later temporal fields. Thus in PCA space, the curves for 205 

the short interval matched the first half of that for the long interval. In a stimulus-specific strategy 206 

(Fig 3, right panels), the temporal profile of each neuron is essentially uncorrelated during the 207 

short and long intervals. Thus in PCA space, the trajectories of the neural patterns of activity 208 

produced during the short and long intervals are distinct from one another.  209 



 

 

Importantly, these encoding strategies are not necessarily mutually exclusive within a 210 

population of neurons. A network could use mixed encoding strategies in which different neurons 211 

212 

are best described as scaling from one interval to another, while others encode absolute time. It is 213 

also possible that the dynamics of a given unit exhibit an absolute code early in a trial followed by 214 

Fig 3. Three strategies for the encoding of two intervals by the same group of neurons. (A) Schematic of 

three potential strategies for timing two intervals: scaling, absolute, and stimulus-specific from left to right. (B) 

Prototypical dynamics for each of the encoding schemes for a population of units during production of the short 

(top) and long (bottom) intervals. (C) Activity traces of the units denoted by the red arrows in (B) for short (blue) 

and long (green) intervals. (D) Trajectories of three PCA components for short (cyan-blue) and long (yellow-

green) interval for the corresponding population dynamics. The gradient colors (from the light to the dark) denote 

the flow of time. Circles denote the time points of the 1st, 2nd, 3rd, 4th, 5th, and 6th seconds. 



 

 

scaling later in the trial. Note, however, that it would not make sense to consider a case in which 215 

a unit undergoes scaling early in a trial and then exhibits absolute timing.  216 

We next describe how to quantify these three schemes both at the level of the neural 217 

population and of individual neurons in RNNs trained on either 2-Context or 2-Stimulus tasks.  218 

 219 

Task structure differentially shapes the time encoding strategies at 220 

the population level 221 

In order to visualize the internal dynamics of the RNNs we first plotted the normalized 222 

activity observed during the short and long intervals sorted according to the latency of peak activity 223 

for each unit during the short interval (Fig 4A-B, left panels), and sorted by the long intervals (Fig 224 

4A-B, right panels). Interestingly, although the target output was a ramping pattern, relatively few 225 

RNN units appeared to be ramping. Rather, the global activity patterns in both tasks might be best 226 

conceptualized as neural sequences. Yet, while the self-sorted sequences appeared to be visually 227 

similar for both tasks, the cross-sorted sequences were dramatically different. Specifically, in the 228 

2-Context task it appeared that neurons fired in the same order for both the short and long 229 

intervals—suggestive of a scaling encoding strategy. However, in the 2-Stimulus task the cross-230 

sorted PSTHgrams revealed a more complex relationship between the spatio-temporal patterns of 231 

activity during the short and long intervals—suggestive of a more stimulus-specific encoding 232 

strategy.  233 

To quantify if the neural dynamics observed in the 2-Context and 2-Stimulus tasks were 234 

more consistent with a scaling, absolute, or stimulus-specific code, we first developed as stimulus-235 

specific index (SSIpop) based on previously described geometric approaches [12, 30, 31]. We 236 

started with the cross-Euclidean distance matrix between population dynamics for short and long 237 



 

 

238 

Fig 4. Distinct population dynamics in RNNs trained on the 2-Context and 2-Stimulus task. (A) Population 

activity for short (top) and long (bottom) intervals sorted according to the peak activity latency during short (left) 

and long (right) intervals for RNNs trained on the 2-Context task. (B) Same as A for the 2-Stimulus task. (C), (D), 

(E) Schematic of the calculation of the stimulus-specific index (SSIpop). A prototypical neural sequence that 

undergoes pure temporal scaling from the short (top) to long (bottom) intervals is used as an example (C). The 

vectors of the pairwise time points from the short and long dynamics are used to calculate all pairwise Euclidean 

distances, and these pairwise distances comprise the cross-distance matrix (D), in which a row (e.g., blue rectangle) 

represents the distances between one column vector of short dynamics and all column vectors during the long 

dynamics. The minimal index vector (red vectors in (D) and (E)) represents the indices along the x-axis that 

corresponds to the minimum distances for each row of the cross-distance matrix (red squares). A series of reference 

vectors that vary from pure scaling to pure absolute timing (black vectors) are compared to the minimal index 

vector, and a value min is defined as the  at which the pairwise distance reaches the minimum. Finally, the 

correlation coefficient between the minimal index vector and the absolute-scaling reference vector at min is used 

to calculate SSIpop. (F) Cross distance matrices for an example simulation of the 2-Context (left) and 2-Stimulus 

tasks (right). Red lines denote the indices of the minimum values for each row. (G) SSIpop for RNNs trained on 

the 2-Stimulus task is significantly higher than that for 2-Context task (n = 20 simulations for each, two-sided 

Wilcoxon rank-sum test P < 0.0001). Boxplot: central lines, median; bottom and top edges, lower and upper 

quartiles; bottom and top whiskers: extremes. 
 



 

 

intervals (see Methods), which compares the similarity of the activity across all time pairs during 239 

the short and long intervals (Fig 4C-D, example based on a case of perfect scaling of the entire 240 

population). We then extracted the index (time bin of the long interval) corresponding to the 241 

minimum value along each row of the cross-time distance matrix (red square in Fig 4D), which 242 

results in a vector of the time points that in the long-interval that are closest to each of the time 243 

points in the short-interval: the minimal index vector (red row vector in Fig 4D and column vector 244 

in Fig 4E). This minimal index vector was then matched to all possible reference vectors 245 

representing perfect scaling codes to a perfect absolute code (black column vectors in Fig 4E) by 246 

computing the distances dτ between each pair (Fig 4E). The reference vector with the minimum 247 

distance (dτmin) to the minimal index vector denoted the best absolute-scaling vector. The 248 

correlation (cτmin) between the best absolute-scaling vector and the minimal index vector 249 

determines how good the match is: 1.0 reflects perfect scaling, absolute timing, or a perfect mixture 250 

of absolute and scaling code. However, the correlation will be low or even negative in the case of 251 

a stimulus-specific code. Therefore, SSIpop was defined by 1-cτmin (Fig 4E), meaning that both 252 

perfect scaling and absolute timing would result in an SSIpop=0, and the stimulus-specific code 253 

would be proportional to SSIpop. 254 

We calculated SSIpop for all 20 RNNs in both the 2-Context and 2-Stimulus tasks. SSIpop 255 

was significantly higher during the neural dynamics of the 2-Stimulus task compared to the 2-256 

Context task (Fig 4G), indicating that dynamics observed during the 2-Stimulus task reflected a 257 

stimulus-specific encoding strategy more so than the 2-Context task. However, consistent with the 258 

visual inspection of the dynamics and distance matrices (Fig 4A, F), it is clear that the 2-Stimulus 259 

task was not entirely accounted for by a stimulus-specific strategy, suggesting a mixed code. Thus 260 



 

 

we next examined the three encoding strategies from the perspective of the individual units in the 261 

network. 262 

 263 

Task structure shapes timing encoding strategy at the level of single 264 

units 265 

To understand whether the encoding of the short and long intervals was most consistent 266 

with a scaling, absolute, or stimulus-specific code at the level of single units, we used a previously 267 

described measure of absolute-versus-scaling index (ASI) [23], and incorporated a novel stimulus-268 

specific index (SSIunit) into the framework. Much as SSIpop quantifies how different the dynamics 269 

of two neural populations are, SSIunit quantifies how different the firing-rate profiles of a unit are 270 

during a short versus long trial (see Methods). More specifically, for a given unit, a high SSIunit 271 

implies the temporal profiles during two trials are not related to each other through scaling, 272 

absolute timing, or a mixture of both with the absolute part followed by the scaling part. A low 273 

SSIunit implies that the temporal profiles are related through scaling, absolute timing, or a mixture 274 

of both, thus justifying the use of the ASI to further quantify scaling versus absolute timing. To 275 

calculate the SSIunit we first time-warped the temporal profile of a unit during the long interval into 276 

a series of reference absolute-scaling traces spanning from pure scaling to pure absolute timing 277 

with a mixture of both in between (Fig 5A). These reference traces were defined by a “breaking 278 

point”  marking the transition from absolute timing to scaling (=0 reflects perfect scaling and  279 

=Tshort reflect absolute timing). All reference traces were compared with the short dynamics by 280 

computing the Euclidean distance at each  (dτ). The reference trace with the minimum distance 281 

(dτmin) denoted the best match with the actual temporal profile of the unit. Finally, as with SSIpop, 282 

the SSIunit was defined as 1.0 minus the correlation between the temporal profile during the short 283 



 

 

intervals and the reference trace at min (cτmin). For a given unit with a low SSIunit (≤0.5), we went 284 

on to calculate its ASI which is also based on min (see Methods). With the SSIunit and ASI in hand, 285 

we classified a given unit as either a stimulus-specific unit (SSIunit>0.5), a scaling unit (SSIunit≤0.5, 286 

ASI≤0.5), or an absolute unit (SSI≤0.5, ASI>0.5) (Fig 5B).  287 

This approach allowed us to classify each unit of the network and contrast the distribution 288 

of temporal classifications between the 2-Context and 2-Stimulus tasks. These analyses revealed 289 

that RNNs exhibit a mixed encoding strategy, exhibiting a broad range of scaling, absolute, and 290 

stimulus-specific units (Fig 5C). However, there were highly significant differences in the 291 

distributions of temporal classes between the RNNs trained on the 2-Context and 2-Stimulus tasks 292 

(Fig 5D). The 2-Context RNNs were dominated by scaling units, while 2-Stimulus RNNs had 293 

more stimulus-specific units. The results partially explain why 2-Context RNNs were better at 294 

generalizing to novel intervals. Because our RNN structure obeyed Dale’s law it was possible to 295 

contrast the encoding strategies of excitatory and inhibitory neurons. Interestingly the distribution 296 

of scaling, absolute, and stimulus-specific cells appeared similar between excitatory and inhibitory 297 

neurons (Fig 5D). 298 

To establish a causal relationship between the distribution of temporal classes to the 299 

functional properties of the RNNs we selectively deleted units of different classes from the RNNs 300 

trained on both tasks (S6 Fig A). We then investigated how the performance changed in response 301 

to these deletions. Performance and error across six deletion manipulations (stimulus-specific, 302 

scaling, and absolute temporal-classes for the excitatory and inhibitory populations) revealed 303 

inhibitory scaling units more severely impaired RNN function (S6 Fig B, C) for the 2-Context task. 304 

In contrast, no single manipulation condition more severely affected both performance and error 305 

in the 2-Stimulus task (S6 Fig D, E). Somewhat surprisingly these results reveal that in the case of 306 



 

 

the 2-Context task a single subtype of inhibitory neurons—those that were classified as scaling 307 

units—are the most critical for network dynamics and encoding time. Whereas in the 2-stimulus 308 

task the coding strategy can be considered to be truly mixed, in the sense that all temporal classes 309 

and excitatory-inhibitory neurons seem to contribute more or less equally to the underlying 310 

dynamics and the encoding of time.  311 

 312 

Fig 5. Different distribution of stimulus-specific, scaling, and absolute units between the 2-Context and 2-

Stimulus tasks. (A) Schematic of the definitions of the stimulus-specific index (SSIunit) and absolute vs. scaling 

index (ASI) at the single unit level. Consider a hypothetical firing rate profile of a unit during a short (blue, x(t)) 

and long (green, y(t)) trial. As described in Methods, a series of time-warped long dynamics are generated at 

breaking point x: before x the dynamics are the same during both the short and long intervals (absolute timing, 

yabs(t)); after x the dynamics is the scaled version of the corresponding original long dynamics (> x, scaling 

timing, yscale(t’)). Pairwise Euclidean distance between short dynamics and all time-warped long dynamics are 

computed at each x. The point at which the distance is minimal defines min and is used to compute the SSIunit as 

in SSIpop. To compute the ASI, a normalized measure of the distance before and after min is calculated (AbsR) as 

in described in Methods to quantify the weighting factor for the absolute part (before min) and the scaling part 

(after  min). ASI is defined by min and the weighting factor based on AbsR(min). (B) For a given unit, the SSIunit 

is computed first, and if the SSIunit is higher than 0.5, it is classified as stimulus-specific unit. If the SSIunit is lower 

than 0.5, its ASI is computed, and it is classified as scaling unit if its ASI is lower than 0.5, otherwise as an absolute 

unit. (C) Dynamics of five example unit traces for short (blue) and long (green) intervals for the 2-Context (top) 

and 2-Stimulus (bottom) tasks, the corresponding SSI and ASI values are shown on top. Notice that for a given 

unit, ASI is only computed only when its SSIunit is lower than 0.5. (D) For the 2-Context task (left), most units are 

classified as scaling units—for both excitatory and inhibitory units (n = 20 simulations, two-way ANOVA with 

repeated measures, for the unit classification factor: F(2, 38) = 114.4 and P < 0.0001, posthoc Tukey tests P < 

0.0001). For the 2-Stimulus task (right), stimulus-specific units are the most common (n = 20 simulations, two-

way ANOVA with repeated measures, F(2, 38) = 181.5 and P < 0.0001, posthoc Tukey tests P < 0.0001). 
 



 

 

Task structure differentially shapes the relationship between 313 

recurrent dynamics and input/output space 314 

After quantifying how the different task structures shaped the encoding strategies, we 315 

sought to determine if the differences can be understood in terms of the relationship between RNN 316 

dynamics and the input/output subspaces. Generally, recurrent dynamics is driven by two sources: 317 

the interaction between the inputs and input weights, and between recurrent activity and recurrent 318 

weights. To start to understand how the inputs affected the recurrent dynamics and how the 319 

recurrent dynamics would lead to the output through the output weights, we first performed the 320 

principal component analysis on the concatenated dynamics of both intervals for each task (S7 Fig 321 

A, B)—the first three PCs for the 2-Context task explained more variance than that for the 2-322 

Stimulus task (88.15±0.75% vs 69.72±0.73%, S7 Fig C). We then projected the recurrent 323 

dynamics into the low dimensional space spanned by the first three PCs (S7 Fig A, B). Visually in 324 

PC space, the dynamics of the two intervals for 2-Context task orbited close to each other, while 325 

that for the 2-Stimulus task formed two distinct trajectories—consistent with our findings that 2-326 

Context task tended to use an absolute-scaling strategy while 2-Stimulus, a stimulus-specific 327 

strategy. These observations were further established by plotting the dynamics in response to 328 

generalization conditions (Fig 2). In the 2-Context task the dynamics across different inputs 329 

smoothly transitioned to nearby trajectories, while in the 2-Stimulus task the trajectories clustered 330 

around the two trained (short and long) trajectories (S8 Fig). 331 

To directly compare the relationship between the recurrent dynamics across time and the 332 

input/output weights, we projected the input weights—InputGo and InputContext for the 2-Context 333 

task, InputShort and InputLong for the 2-Stimulus task—and the output weights into the same PC 334 

space. We then computed the pairwise angles between the projected input/output vectors and each 335 



 

 

segment vector of recurrent dynamics across time (see Methods) (S7 Fig A) for both tasks. 336 

Interestingly, for the 2-Context task the dynamics of both intervals first evolved in the InputGo 337 

input direction as revealed by the small angle for the first 2 segments. After that, both trajectories 338 

stayed in a plane almost orthogonal to the Go input till the end of the trial. The dynamics were 339 

almost orthogonal to the InputContext at the beginning (with angles close to 90 degrees) and then the 340 

angle decreased in the middle period and increased again to about 90 degrees at the later period. 341 

Finally, for output weights, the angle stayed close to 90 degrees at the beginning then it decreased 342 

to a low level till the end of the trial indicating that the dynamics followed the output weights 343 

directions in the later period of the trials to better generate the target ramp staring at the middle 344 

point of each trial (S7 Fig D).  345 

For the 2-Stimulus task, the dynamics of short and long intervals started to follow their 346 

corresponding input directions and then went to the opposite directions after input offset and stayed 347 

almost orthogonal thereafter. While for the output weights, the angle started at around 90 degrees 348 

and then decreased around the start point of the target ramp then it increased at the end of the trials 349 

to the opposite direction (S7 Fig E). 350 

 351 

Task structure differentially shapes the learned recurrent synaptic 352 

connectivity 353 

Ultimately the task-specific differences in RNN dynamics must be attributed to differences 354 

in input structure and the recurrent weight matrix. Thus we next characterized the relationship 355 

between the recurrent weight matrices and performance. Since our RNNs respected Dale’s law, 356 

we grouped weights into the four standard subtypes: all excitatory to excitatory unit connections 357 

(E→E), all excitatory to inhibitory unit connections (E→I), all inhibitory to excitatory unit 358 



 

 

connection (I→E), and all inhibitory to inhibitory unit connections (I→I). We then completely 359 

deleted each group of synapses and quantified the change in output performance (Fig 6A). 360 

361 

Fig 6. Differential connectivity patterns in RNNs trained on the 2-Context and 2-Stimulus tasks (A) 

Example of the effects of deleting entire subgroups of synapses on performance in the 2-Context (top) and 2-

Stimulus (bottom) tasks. From left to right, example output traces of the short (blue) and long (green) intervals 

for the control condition, and after deleting all excitatory unit to excitatory unit connections (Delete E→E), all 

excitatory unit to inhibitory unit connections (Delete E→I), all inhibitory to excitatory unit connections (Delete 

I→E), and all inhibitory unit to inhibitory unit connections (Delete I→I). (B) Mean performance (left) and 

error (right) of the outputs corresponding to the conditions in panel A. The performance for the Delete E→E 

condition is significantly lower than the control but significantly higher than the other conditions in 2-Context 

task. For the 2-Stimulus task performance for Delete E→E was not significantly worse than the control, but 

significantly higher than the other conditions (two-way ANOVA with mixed-effect design, F4,152 = 823.9, P < 

0.0001, posthoc Tukey tests P < 0.0001). The error for Delete I→E condition is significantly higher than the 

other conditions in both 2-Context and 2-Stimulus task (two-way ANOVA with mixed-effect design, F4,152 = 

39.8, P < 0.0001, posthoc Tukey tests P < 0.0001). (C) Left, connection probability in the 2-Context task was 

significantly higher than in the 2-Stimulus task(two-way ANOVA with mixed-effect design, F1,38 = 338.3, P < 

0.0001 for the task factor). Probability for the I→E connections is significantly higher than that for the other 

three conditions: E→E, E→I, I→I in both 2-Context and 2-Stimulus task (F3,114 = 2884, P < 0.0001 for the 

connection factor, posthoc Tukey tests P < 0.0001). Right, the mean weight in the 2-Context task is 

significantly lower than that in the 2-Stimulus task (two-way ANOVA with mixed-effect design, F1,38 = 219.1, 

P < 0.0001 for the task factor). Probability for the I→E connection is significantly higher than that for the other 

three conditions: E→E, E→I, I→I in both 2-Context and 2-Stimulus task (F3,114 = 183.7, P < 0.0001 for the 

connection factor, posthoc Tukey tests). ****=P < 0.0001, and **=P = 0.002. 
 



 

 

Interestingly, deleting all E→E connections only slightly affected the performance and error for 362 

both tasks, while deleting all other three groups decreased the performance or increased the error. 363 

Deleting the I→E connections produced the largest change in error (Fig 6B). We next quantified 364 

the connection probability and mean weights of each group (Fig 6C). Consistent with the 365 

performance and error results, I→E connections exhibited the highest connection probability and 366 

mean weights for both tasks. Interestingly, to achieve similar output performance, the two tasks 367 

seemed to rely on different strategies in the structural level: 2-Context task favored higher 368 

connection probability, while 2-Stimulus task preferred higher mean weights (Fig 6C). 369 

 370 

RNNs trained for the 2-Stimulus task are more robust to noise 371 

We have seen that RNNs trained for the 2-Context task are better suited for generalization 372 

to novel intervals and this feature is related to the underlying dynamics being governed by a 373 

absolute-scaling encoding scheme. A question that emerges from these results is whether there is 374 

a computational tradeoff between the distinct dynamic regimes observed in both tasks? For 375 

example, while the RNNs trained on the 2-Context task exhibit better generalization, do they 376 

perform worse on any other measures? As a first step to address this question we analyzed the 377 

robustness of both tasks in response to noise. In the brain, of course, neural networks are 378 

continuously subject to extraneous noise, and thus robustness to noise imposes an important 379 

constraint on biologically functional dynamic regimes [32] 380 

As above we first trained RNNs on either the 2-Context and 2-Stimulus tasks with the 381 

standard settings, namely noise level of 0.45 (σ in Eq. 1), then we tested the networks by applying 382 

different values of σ. Example output traces for the 2-Stimulus task under all noise levels tested 383 

were less scattered than that for the 2-Context (Fig 7A). This was supported by the fact that the 384 



 

 

mean error for the 2-Stimulus task was lower than that for the 2-Context (Fig 7B). For both tasks, 385 

at high noise levels, there were some incorrect trials (< 10% and no significant difference between 386 

the two tasks) in which either the output never crossed the threshold during the trial or crossed the 387 

threshold outside of the acceptance windows We then directly contrasted the temporal precision 388 

of the correct trials and found that the standard deviations for the 2-Stimulus task were lower than 389 

that for the 2-Context task (Fig 7C). Taken together, we conclude that the dynamic regimes 390 

underlying timing in the predominately stimulus-specific dynamics that emerged in the 2-Stimulus 391 

task provided a computational benefit in terms of robustness to noise suggesting computational 392 

tradeoffs between different dynamic regimes for the encoding of time.  393 

 394 

Fig 7. RNNs trained on the 2-Stimulus task were less sensitive to noise perturbations. (A) Output traces for 

short (blue) and long (green) intervals from an example RNN trained on the 2-Context (left) and 2-Stimulus (right) 

across different levels of noise (σ) during testing. (B) Mean error (across 50 trials) for 2-Context task (cyan) is 

higher than that for 2-Stimulus task (orange) (n = 20 simulations, two-way ANOVA with mixed-effect design, 

F1,38 = 9.35, P = 0.004). (C) Mean standard deviation of the time of threshold-crossing across all correct trials for 

2-Context task (cyan) is higher than that for 2-Stimulus task (orange) (F1,38 = 341, P < 0.0001). Data are presented 

as mean ± SEM. 



 

 

 Similar to the generalization performance, the difference of the robustness to noise between 395 

the 2-Context and 2-Stimulus tasks was consistent across different input parameters (S1 Fig F), 396 

initial gain (S4 Fig D), and connection probability (S5 Fig D) of the recurrent weights. 397 

 398 

 399 

Discussion  400 

Here we trained supervised RNNs on two simple temporal tasks that required the production of 401 

identical temporal output patterns based on previous behavioral results [14, 18, 23]: a ramping 402 

increase in output firing rate that peaked after either a short (3 s) or long (6 s) interval. The tasks 403 

differed only in how the short and long intervals were cued: either by a continuously presented 404 

context input (2-Context task) or by two distinct brief inputs (2-Stimulus task). In principle the 405 

same dynamic regimes could have emerged and solved both tasks, yet, significantly different 406 

dynamic regimes emerged in the different tasks. Thus depending on the task RNNs encoded time 407 

in different ways, and exhibited fundamentally different computational properties, particularly 408 

regarding how the networks generalized to novel stimuli.  409 

 410 

Neural dynamic regimes of population clocks 411 

A converging body of experimental and computational evidence suggests that neural 412 

circuits encode time in spatiotemporal patterns of neural activity. Two experimentally relevant 413 

neural dynamics regimes by which neurons can encode time include ramping activity and 414 

population clocks. Ramping codes generally refer to monotonically increasing (or decreasing) 415 

firing rates throughout an interval [24, 33-40]—in ramping codes firing rate often peaks at the time 416 

of the target interval, and in principle, a single neuron can encode time throughout the entire 417 



 

 

duration. Population clocks refer to time-varying patterns of activity in which time is encoded in 418 

the population activity of neurons, which generally exhibit nonmonotonic changes in firing rate, 419 

and importantly these dynamics are generated by the recurrent connectivity within a neural circuit 420 

[1, 11, 41, 42]. Population clocks can include simple sparse neural sequences as well as complex 421 

spatiotemporal patterns in which a given neuron can exhibit multiple time fields [28, 43-51].   422 

In the current simulations, the target output patterns were a simple ramping pattern, yet 423 

most of the units in the RNNs were not well described as ramping units—even though it seems 424 

that this would be the simplest and most direct solution to solve the tasks. Rather, the neural 425 

dynamics observed in the RNNs studied here, are most consistent with the notion of population 426 

clocks in general and neural sequences in particular (Fig 4). These results are in line with other 427 

computational models in which neural sequences encode time [52-55]. The reason RNNs trained 428 

with supervised learning rules seem to converge to neural sequences rather than ramping activity 429 

are not well understood, but it has been recently proposed that neural sequences represent a fairly 430 

optimal encoding scheme for downstream neuron (the output unit in our case) to read out time 431 

[23]. 432 

 433 

Absolute, scaling, and stimulus-specific codes 434 

We outlined three general temporal encoding strategies by which a population of neurons 435 

could solve temporal tasks that require producing multiple intervals (Fig 3)—such as the two tasks 436 

examined here. The scaling strategy is perhaps the most intuitive because it essentially exploits 437 

the same neural dynamics to produce both a short or long interval by altering the speed at which 438 

the dynamics unfold. Indeed, such scaling has been observed experimentally [14, 16, 23, 26, 38, 439 

56, 57]. Neurons that exhibit absolute timing have also been experimentally observed, along with 440 



 

 

neurons that categorically detect the midpoint boundary between short and long intervals [14, 23, 441 

26, 27, 56-61]. Stimulus-specific codes in which the same or different intervals can be encoded in 442 

different neural trajectories have also been described [17, 47, 58, 62-64]. To date, however, these 443 

different encoding strategies have not been carefully analyzed or quantified. To this end, we 444 

described two general purpose quantitative measures—the ASI and SSIunit—that can be applied 445 

across a wide range of single-unit data and used to classify neural responses.  446 

These measures revealed a different distribution of unit types across the RNNs trained on 447 

the 2-Context and 2-Stimulus tasks (Fig 5). Specifically, over 50% of the units in the 2-Context 448 

RNNs were classified as scaling units, whereas in the 2-Stimulus RNNs over 50% were classified 449 

as stimulus-specific units—that is, their temporal profiles between the short and long interval were 450 

not consistent with either absolute or scaling coding strategies. This differential distribution is 451 

consistent with the intuition that because in the 2-Context task the context input is active during 452 

both the short and long intervals, and a stimulus-specific encoding strategy is more difficult to 453 

implement compared to the 2-Stimulus task—i.e., the input space of the 2-Context task is smaller. 454 

Put another way, in the 2-Stimulus task RNNs are likely to begin their trajectories at the beginning 455 

of each trial (t=0) in more distant regions of neural state space than in the 2-Stimulus task.  456 

The differential distribution of scaling, absolute, and stimulus-specific neurons accounts in 457 

part for the distinct computational features of both types of networks. Specifically, the 458 

classification of units into different temporal coding strategies allowed us to demonstrate that 459 

selectively deleting some classes impaired RNN performance more than others. Deleting a few 460 

inhibitory scaling units impaired RNN performance in the 2-Context task significantly more than 461 

deleting absolute or stimulus-selective units. In contrast in the 2-Stimulus task, all classes 462 



 

 

contributed to performance with an approximately equal weighting—reflecting a much more 463 

mixed encoding strategy [65, 66]. 464 

 465 

Computational trade-offs between time-encoding dynamic regimes  466 

The 2-Context and 2-Stimulus tasks required producing the same temporal output patterns 467 

but generated dramatically different behaviors when challenged with novel inputs. Of particular 468 

relevance was that in response to novel levels of activation of the inputs, the 2-Context RNN 469 

exhibited a smooth scaling of the temporal profile of the output. In this task, in response to the go 470 

stimulus, RNN’s generated a neural trajectory that resembled a neural sequence. Depending on the 471 

analog value of the context input this trajectory unfolded at either a slow or fast speed to produce 472 

the short or long interval, respectively. Critically, in response to novel levels of activation of the 473 

tonic context input the velocity of the neural trajectory varied smoothly—thus generating smooth 474 

temporal scaling of the output pattern. This same property has been observed in numerous other 475 

models of timing [12, 30, 34, 67-69]. Specifically, a single input or variable is able to modulate 476 

the velocity of the RNN dynamics in an approximately linear fashion.  477 

In contrast to the temporal scaling behavior observed in the RNN trained on the 2-Context 478 

task, when the 2-Stimulus RNNs were tested with inputs they were not trained on (e.g., 50% Input 479 

1 + 50% Input 2) they did not exhibit smooth generalization. Importantly, they also did not exhibit 480 

catastrophic degradation—i.e., the internal dynamics was robust to very different initial states. 481 

Rather they exhibited categorical timing—essentially a winner-take-all competition between two 482 

distinct trajectories. This result is consistent with the notion that RNNs can encode multiple neural 483 

trajectories in regimes that have been referred to as dynamic attractors [31, 70], locally stable 484 

transient trajectories [71, 72], or stable heteroclinic channels [73, 74]. Here, two trajectories 485 



 

 

possess their own basins of attraction (or “rivers-of-attraction”) which lead the activity of the 486 

network into one or the other of the two dynamic attractors. 487 

Both temporal scaling and categorical timing are behaviorally relevant forms of timing. 488 

Specifically, some tasks require smoothly scaling the temporal output patterns, while others 489 

require categorically discriminating or producing one of distinct two intervals [12-15, 21, 22]. 490 

Thus, we have shown that the population clocks that emerge in RNNs can account for both 491 

temporal scaling and categorical timing and that it is possible to distinguish between both regimes 492 

based on the percentage of units that undergo scaling or stimulus-specific timing.  493 

It is also relevant to note that RNNs learned to solve the 2-Context task in fewer training 494 

trials than the 2-Stimulus task. This may be because it is easier to adjust weights to generate a 495 

single trajectory at two different speeds than to generate largely distinct trajectories. Furthermore, 496 

during training the 2-Context task the RNN is always subject to tonic external input which in effect 497 

might facilitate learning by suppressing the potential emergence of chaotic regimes [75, 76]. 498 

 499 

Experimental predictions 500 

As is evident from the behavioral data, a wide range of distinct neural regimes, from 501 

ramping activity to a diverse range of neural population clocks, have been observed experimentally 502 

across different brain areas and behavioral tasks [for reviews see: 1, 6, 7, 10]. Here we show that 503 

the same is true even in RNNs trained on two tasks that require the production of the same temporal 504 

output patterns. Our results thus suggest that much of the experimentally observed variability 505 

might be accounted for by relatively subtle differences in task structure. Furthermore, because 506 

most timing tasks used in laboratories tap into ecologically relevant behaviors, different tasks may 507 

encourage generalization patterns that best approximate their ecological relevance. These distinct 508 



 

 

generalization patterns will, in turn, result in time being encoded in different dynamic regimes—509 

e.g., regimes that are well-suited for temporal scaling or categorical timing.  510 

A number of strong experimental predictions emerge from our results. First, at the 511 

behavioral level, we predict that whether rodents are trained on the 2-Context or 2-Stimulus will 512 

lead to different generalization patterns to novel stimuli. For example, a single odor along with a 513 

tone context stimulus could be used for the 2-Context task, and two brief odors as the stimuli in 514 

the 2-Stimulus task. We predict that changing the loudness of the tone in the 2-Context task will 515 

scale the output pattern, but mixing the odors will result in categorical timing rather than the 516 

production of an intermediary interval. Second, we predict that neural recordings from animals 517 

trained on these tasks will exhibit specific neural dynamic signatures, i.e., in the 2-Context task 518 

more neurons will be categorized as scaling units compared to the 2-Stimulus task. Of course, one 519 

must take into account that results may be dependent on the brain areas being recorded. However, 520 

based on the current literature we expect this prediction to hold in those areas that have been 521 

implicated in timing across many tasks, including the striatum, supplementary/secondary motor 522 

areas, and prefrontal cortical areas. 523 

  524 



 

 

Materials and Methods 525 

Firing-rate RNN model 526 

RNNs were based on firing-rate units that obeyed Dale’s law (N = 200, 80/20% 527 

excitatory/inhibitory). RNN dynamics was described by the following equations:  528 

 529 

𝜏
𝑑𝒙

𝑑𝑡
= −𝒙 + 𝑾𝒓𝒆𝒄 ∗ 𝒓 +𝑾𝒊𝒏 ∗ 𝑰 +  𝜎 ∗ 𝑵(0,1) ∗ √2 ∗ 𝜏          (1) 530 

 531 

𝑜 = 𝑾𝒐𝒖𝒕 ∗ 𝒓          (2)  532 

 533 

𝒓 = min(𝑙𝑛(1 + 𝑒𝑥) , 20)         (3)  534 

 535 

where x ∈ℝN×1 represents the input currents of RNN units, and firing rate vector r is obtained by 536 

applying a Softplus function constrained by an upper bound of 20. The time constant τ was equal 537 

to 100 ms for all units. Win ∈ℝN×2 and I are the input weights and external inputs, which are task-538 

specific as described below. Each unit received independent Gaussian noise N(0,1) with the 539 

standard deviation of σ√2𝜏.  Unless otherwise specified, σ = 0.45. Wrec ∈ ℝN×N is the recurrent 540 

weight matrix. Self-connections were absent in the network. The output (o) of the network is 541 

computed linearly from the output weights Wout and r. RNNs were implemented and trained in 542 

Tensorflow starting from the code of Kim et al [77, 78]. 543 

Training. Networks were trained using adaptive moment estimation stochastic gradient 544 

descent algorithm (Adam) to minimize the error between network output o and target z:  545 

 546 



 

 

𝐸𝑟𝑟𝑜𝑟 =  √∑[𝑜(𝑡) − 𝑧(𝑡)]2
𝑇

𝑡=0

          (4) 547 

 548 

where T is the total length of a given trial. The target and mask are task-dependent as described 549 

below. The learning rate was 0.01, and other TensorFlow default values were used.  550 

Only recurrent weights Wrec and output weights Wout were trained. Unless otherwise 551 

specified, Wrec was initialized as a random sparse matrix with a connection probability of 0.2 from 552 

a normal distribution with zero mean and standard deviation (gain) of 1 and transformed to 553 

absolute values. To begin in an approximately balanced regime the inhibitory weights were 554 

multiplied by 4 for the initialization but not for training. To respect Dale’s law during training a 555 

rectified linear operation was applied on Wrec to clip the weights down to zero and then excitation 556 

and inhibition were implemented by multiplying the clipped Wrec with a diagonal matrix of 1 and 557 

-1 representing excitatory and inhibitory units, respectively [78, 79]. Win was drawn from a 558 

standard normal distribution and was fixed during training.  559 

During training, a discretization step of 20 ms was used. After training, RNNs were ported 560 

to Matlab using the trained parameters and a discretization step of 1ms was used to get the 561 

dynamics for analyses. 562 

Parameters were updated every trial. After every 100 trials of training, the network was 563 

tested for 100 trials to compute the task performance (see below) and mean error. When task 564 

performance was higher than 97% and the mean error is lower than 2, the training was considered 565 

a success and stopped 566 

 567 



 

 

Interval tasks 568 

2-Context task. unless otherwise specified, inspired by the timing task used by previous 569 

works [14, 18] in which context cues indicated the lengths of intervals, we designed a 2-Context 570 

two-interval task. In this task, the output of the RNN needs to generate either a short (3 s) or long 571 

(6 s) interval in each trial. For a given training trial with length T, two external inputs I1
go and 572 

I2
context  were applied at stimonset after a baseline with random durations between 0.2 and 0.6 s. 573 

Specifically, 574 

𝐼𝑔𝑜(𝑡) =  {
1        𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 < 𝑡 ≤ (𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 + 0.5)
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 𝑎𝑛𝑑 𝑙𝑜𝑛𝑔 𝑡𝑟𝑖𝑎𝑙𝑠, 575 

 576 

 𝐼𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑡) = {
0.75 𝑜𝑟 0.25        𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 < 𝑡 ≤ 𝑇,   𝑓𝑜𝑟 𝑠ℎ𝑜𝑟𝑡 𝑜𝑟 𝑙𝑜𝑛𝑔 𝑡𝑟𝑖𝑎𝑙𝑠 𝑟𝑒𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 577 

 578 

The output targets were defined as: 579 

𝑧(𝑡) =  

{
 
 

 
 𝑡 − 𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 − 0.5 ∗ 𝐼𝑛𝑡𝑡𝑎𝑟𝑔𝑒𝑡

0.5 ∗ 𝐼𝑛𝑡𝑡𝑎𝑟𝑔𝑒𝑡
       (𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 + 0.5 ∗ 𝐼𝑛𝑡𝑡𝑎𝑟𝑔𝑒𝑡) < 𝑡 ≤ (𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 + 𝐼𝑛𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

1                                                             (𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 + 𝐼𝑛𝑡𝑡𝑎𝑟𝑔𝑒𝑡) < 𝑡 ≤ (𝑠𝑡𝑖𝑚𝑜𝑛𝑠𝑒𝑡 + 𝐼𝑛𝑡𝑡𝑎𝑟𝑔𝑒𝑡  +  0.2) 

0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  580 

where the target intervals (Inttarget) were 3 and 6 seconds for the short and long trials, respectively. 581 

2-Stimulus task. unless otherwise specified, the 2-Stimulus task was based on a two-582 

interval odor discrimination task [23], which required the production of the identical output 583 

patterns as the 2-Context task. However, the short and long intervals were cued by two different 584 

inputs Ishort and Ilong which like the Igo in the 2-Context task stepped up from 0 to 1 for a brief 0.5 585 

s period.  586 

Task performance. Response time for a given trial was defined as the time when the output 587 

crosses a threshold of 0.6. The correct trials were defined as those in which the output crossed the 588 



 

 

threshold within an acceptance window between stimonset + 0.5 Inttarget and stimonset + Inttarget. Task 589 

performance was defined as the ratio of correct trials among all testing trials. 590 

Unless otherwise specified, the “delay” epoch (stimonset to stimonset + Inttarget ) was used for 591 

analysis. 592 

 593 

Generalization to novel inputs 594 

To test how the RNN trained on the 2-Context task would generalize to novel intervals as 595 

in Fig 2, we first trained the RNN using the normal setting for the 2-Context task, namely Icontext 596 

of 0.75 and 0.25 for the short and long trials, respectively. Then we tested the trained RNNs by 597 

gradually varying the context level from 0.75 to 0.25 with steps of 0.05. Fifty trials of each level 598 

were obtained for analyses. 599 

After training in the 2-Stimulus task generalization to novel inputs was tested by gradually 600 

varying the ratio of Ishort and Ilong with steps of 0.1 so that the sum of both inputs was always 1. 601 

Correlation measure To quantify changes in the temporal profile of the output units across 602 

different inputs during generalization tests we first computed the correlation coefficient between 603 

the mean response times (when the output crosses the threshold) and the generalization conditions 604 

for both the 2-Context and 2-Stimulus tasks (the absolute values of the correlations were used due 605 

to the negative correlation for the 2-Context task). 606 

Sigmoid slope measure. To further quantify generalization to novel inputs in both tasks we 607 

also fitted the mean response times to the input conditions with a sigmoid function as follow: 608 

𝑦 =  𝑏 + 
𝑎 − 𝑏

1 + 𝑒𝑔∗(𝑚−𝑥)
 609 



 

 

Standard nonlinear least square methods implemented in Matlab were used to optimize the fits. 610 

We then compared the slope g for both tasks. Higher g values reflect more categorical 611 

generalization. 612 

 613 

Prototypical dynamical regimes for timing two intervals 614 

To illustrate the possible neural dynamical strategies used for timing two intervals—615 

scaling, absolute, and stimulus-specific, we generated three pairs of prototypical dynamics for the 616 

short (3 s) and long (6 s) intervals composed of 100 units with the time step of 0.001 s (Fig 3). In 617 

such settings, the dynamics for the short and long interval were represented as 100×3000 and 618 

100×6000 matrices respectively, with the row being units and column being time points. 619 

The dynamics for long interval were the same for all three strategies, which was described 620 

as: 621 

𝑥𝑖(𝑡) =  𝑒
− (𝑡−

𝑖
100

∗6)2

2∗0.82  𝑓𝑜𝑟 𝑖 = 1,2, … ,100 622 

where dynamics of all units were Gaussian functions with the same variance but different means 623 

uniformly spanned the whole 6 s. The dynamics for the short interval were different for the three 624 

strategies and were defined as follows:  625 

Scaling. The dynamics for the short interval in the scaling strategy was simply a matrix of 626 

uniform subsampling of the time dimension of the long dynamics. 627 

Absolute. For the absolute strategy, the dynamics of the first 50 units for the short interval 628 

were the same as that for the long interval. 629 

Stimulus-specific. For stimulus-specific example, we first uniformly subsampled the time 630 

dimension of the long dynamics matrix to 3 s. Then we randomized the order of the unit indices. 631 

 632 



 

 

The stimulus-specific index at the population-level (SSIpop) 633 

As in Fig 4, to quantify how well the short and long neural trajectories can be explained by 634 

the stimulus-specific strategy at the population level, we developed a novel stimulus-specific index 635 

in population-level (SSIpop), which is largely based on establishing that the trajectories are not 636 

consistent with temporal scaling or absolute timing. We first obtained the mean population 637 

dynamics (t=1 ms) for two intervals by averaging across 25 trials, which led to two matrices, 638 

Xshort (200×3000) and Xlong (200×6000). We computed the pairwise Euclidean distance between 639 

Xshort and Xlong, which led to the distance matrix D (3000×6000). We then obtained the index of 640 

the minimum values across each row of D, which led to the minimal distance vector Imin (3000×1), 641 

which partially captures the relationship between the population dynamics for the short and long 642 

intervals.  643 

Next Imin was contrasted with a reference matrix R (3000×3000) with τ indexing the 644 

column:  645 

[
 
 
 
 
 
 
 
 
1 1 1 1 . . . 1 1 1
3 2 2 2 . . . 2 2 2
5 4 3 3 . . . 3 3 3
7 6 5 4 . . . 4 4 4
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

5998 5998 5998 5998 . . . 4499 2999 2999
6000 6000 6000 6000 . . . 6000 6000 3000]

 
 
 
 
 
 
 
 

 646 

Specifically, a given column vector corresponding to τ in R is defined as: 647 

[1,2,3, …,τ, 𝜏 + 𝛼, 𝜏 + 2𝛼, 𝜏 + 3𝛼,… , 𝜏 + (3000 − 𝜏)𝛼] 648 

 =
6000 − 𝜏

3000 − 𝜏
 , 𝜏 = 1,2,3,… ,2999 649 



 

 

Each column vector (3000×1) in R represents one absolute-scaling reference profile spanning from 650 

pure scaling (τ = 1) to pure absolute (τ = 3000), with mixed profiles in between in which absolute 651 

timing transitions to scaling at τ with the scaling factor α  varied to keep the length of each vector 652 

the same. We then computed the Euclidian distances between Imin and all the column vectors of R 653 

and extracted the vector with the minimum distance at τmin, which indicates the best reference 654 

vector that can be used to explain the Imin. Note that the construction of the R matrix accounts for 655 

units that fire throughout the entire trial—thus capturing the properties of a neuron that always 656 

fired at the end of the trial (e.g., a potential motor neuron). It is also possible to build R by fixing 657 

the scaling factor at 2 after each point , in which case the last element of each column in R would 658 

progressively change from 6000 to 3000. We have run analyses with this partial scaling approach 659 

as well with qualitatively similar results.  660 

Finally, the SSIpop was defined as: 661 

𝑆𝑆𝐼𝑝𝑜𝑝 = 1 − 𝑐(𝜏𝑚𝑖𝑛). 662 

where the c(τmin) is the correlation between the Imin and the reference vector at τmin. For pure scaling 663 

dynamics for the two intervals as an example, Imin should be the main diagonal of distance matrix 664 

D, [1, 3, 5, 7, …, 6000], which makes τmin= 1, corresponding to the pure scaling reference vector. 665 

Consequently, the c(τmin) is 1 and SSIpop is 0. That indicates that the pure scaling dynamics can not 666 

be explained by stimulus-specific strategy but by absolute-scaling strategies, in which the 667 

dynamics of the short and long interval relate to each other in a way of absolute or scaling or mixed 668 

of both (see below for the absolute-scaling index at the single-unit level) 669 

 670 

Stimulus-specific index and absolute-scaling index (ASI) for single 671 

units 672 



 

 

We extended a previous description of an absolute vs. scaling index (ASI) for single units 673 

[23], by including a novel measure of the stimulus-specific profile: the stimulus-specific index at 674 

the single-cell level (SSIunit as in Fig 5A). As described previously we searched for the best 675 

transformation of dynamics for the long interval (y(t)) to that for the short interval (x(t)), by 676 

concatenating an absolute portion of the long response (yabs(t)) and a temporally scaled portion of 677 

the long response scaled by a factor α (yscale(t’)). More specifically, we searched for a breakpoint 678 

 to divide y(t) into an absolute and scaled segment, that best matches x(t), as measured by the 679 

Euclidean distance (Dist()). Specifically, 680 

 =  (𝑇𝑙𝑜𝑛𝑔  − 𝜏)/(𝑇𝑠ℎ𝑜𝑟𝑡  − 𝜏)   681 

𝐷𝑖𝑠𝑡(𝜏) =  √∑(𝑥(𝑡) −  𝑦(𝑡))2
𝜏

𝑡=0

+ ∑ (𝑥(𝑡) −  𝑦(𝜏 + (𝑡 − 𝜏))2

𝑇𝑠ℎ𝑜𝑟𝑡 

𝑡=𝜏

 682 

𝜏𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜏(𝐷𝑖𝑠𝑡(𝜏)) 683 

𝐶𝑜𝑟𝑟(𝜏𝑚𝑖𝑛)684 

= 
∑ (𝑥(𝑡) − 𝑥)( 𝑦(𝑡) − 𝑦) + ∑ (𝑥(𝑡) − 𝑥)[𝑦(𝜏𝑚𝑖𝑛 + (𝑡 − 𝜏𝑚𝑖𝑛))  −  𝑦]

𝑇𝑠ℎ𝑜𝑟𝑡
𝑡=𝜏𝑚𝑖𝑛

𝜏𝑚𝑖𝑛
𝑡=0

√∑ (𝑥(𝑡) − 𝑥)2
𝑇𝑠ℎ𝑜𝑟𝑡
𝑡=0 √∑ (𝑦(𝑡) − 𝑦)2 + ∑ (𝑦(𝜏𝑚𝑖𝑛 + (𝑡 − 𝜏𝑚𝑖𝑛)) − 𝑦)2 

𝑇𝑠ℎ𝑜𝑟𝑡
𝑡=𝜏𝑚𝑖𝑛

𝜏𝑚𝑖𝑛
𝑡=0

 685 

𝑆𝑆𝐼𝑢𝑛𝑖𝑡 = 1 − 𝐶𝑜𝑟𝑟(𝜏𝑚𝑖𝑛). 686 

 𝑊𝑎𝑏𝑠(𝜏𝑚𝑖𝑛) =  1/𝑁1:𝜏𝑚𝑖𝑛 ∑ |[𝑥(𝑡) −  𝑥(0)][𝑦(𝑡) −  𝑦(0)]|

𝜏𝑚𝑖𝑛

𝑡=0

 687 

 𝑊𝑠𝑐𝑎𝑙𝑒(𝜏𝑚𝑖𝑛) = 1/𝑁𝜏𝑚𝑖𝑛:𝑇𝑠ℎ𝑜𝑟𝑡  ∑ |[𝑥(𝑡) −  𝑥(𝜏𝑚𝑖𝑛)][𝑦(𝜏𝑚𝑖𝑛 + (𝑡 − 𝜏𝑚𝑖𝑛)) −  𝑦(𝜏𝑚𝑖𝑛)]|

𝑇𝑠ℎ𝑜𝑟𝑡

𝑡=𝜏𝑚𝑖𝑛

 688 

 𝐴𝑏𝑠𝑅(𝜏𝑚𝑖𝑛) =  
𝑊𝑎𝑏𝑠(𝜏𝑚𝑖𝑛)

𝑊𝑠𝑐𝑎𝑙𝑒(𝜏𝑚𝑖𝑛) + 𝑊𝑎𝑏𝑠(𝜏𝑚𝑖𝑛)
 689 

 690 



 

 

𝐴𝑆𝐼 = (
𝜏𝑚𝑖𝑛
𝑇𝑠ℎ𝑜𝑟𝑡

+  𝐴𝑏𝑠𝑅(𝜏𝑚𝑖𝑛))/2 691 

 spans all possible breakpoints from 0 to Tshort (for the short interval and Tlong for the long interval). 692 

The segment before  denotes the absolute period and the period after  denotes the segment scaled 693 

by  for the long response. min corresponds to the breakpoint with the minimal Euclidian distance 694 

Dist(min). Different from previous work [23], we also computed the correlation coefficient 695 

between x(t) and transformed y(t), Corr (min). Then the SSIunit is defined as that 1 minus Corr(min). 696 

In the following steps, the absolute and scaling weights are calculated between dynamics for the 697 

short interval and the time-warped dynamics for the long interval at min with Na:b being the number 698 

of time points between a and b, and absolute ratio AbsR(min) was also calculated. The absolute 699 

temporal factor corresponds to min /Tshort, and ASI was defined as the average of the absolute 700 

temporal factor and the AbsR (min).  701 

To classify each unit as a stimulus-specific, scaling, or absolute unit we first calculated 702 

SSIunit for each unit. We then classified a unit as stimulus-specific if SSIunit was > 0.5; if the SSIunit 703 

was ≤ 0.5 then looked at its ASI and classified it as an absolute unit if ASI > 0.5, or as a scaling 704 

unit if ASI ≤ 0.5. 705 

 706 

Unit-deletion and weight deletions experiments 707 

Based on the classification of units being stimulus-specific, scaling, or absolute, we ran 708 

deletion experiments to start to understand the causal role of each type of unit (S6 Fig). For a given 709 

unit to be deleted, we removed all the connections attached to that unit in connection matrix Wrec 710 

as in Eq. 1 and then ran the RNN with the rest parameters fixed. We tested various numbers of 711 

deleted units in each type. For a given condition, we randomly selected the deleted cells from the 712 



 

 

pool 10 times and repeated each deletion experiment for 20 trials for each interval. Then 713 

performance and error were averaged across all selections and trials. 714 

To quantify how much each class of connection types— E→E, E→I, I→E and I→I 715 

connections—contributed to the recurrent dynamics and output performance, we performed 716 

synapse deletion experiments. Similar to the unit deletions, for a specific class of connections, we 717 

set all the weights of that group to be zeros while leaving the other weights unchanged. 718 

Performance and error were then computed for each condition (Fig 6). 719 

 720 

Pairwise angle analysis 721 

To understand the relationships between the RNNs trained on 2-Context and 2-Stimulus 722 

task and the input/output subspace (S7 Fig) defined by the inputs weights and output weights, we 723 

first performed principal component analysis (PCA) on the concatenated mean dynamics for the 724 

short and long intervals. We then projected the original dynamics into the first three PCs. We then 725 

binned the projected dynamics into segments of 250 ms. For a given segment, a vector was 726 

obtained by subtracting its start point from its end point. Finally, we computed the pairwise angles 727 

between all such segment vectors across time and projections of the input/output weight vectors 728 

in the same PC space.  729 

 730 

Noise perturbation experiments 731 

As in Fig 7, to test the robustness of the outputs of the RNN trained on the 2-Context and 732 

2-Stimulus tasks, we first trained the two tasks with noise level σ = 0.45 as in equation (1). We 733 

then tested the trained RNNs with various levels σ from 0.1 to 0.8 for 50 trials for each interval. 734 

We then compared the error between the outputs and targets for all trials and the standard deviation 735 



 

 

of the crossing times for the correct trials. Note that for all conditions tested, the incorrect trials 736 

were less than 10% for both tasks, and there was no significant difference for that between the two 737 

tasks. 738 

 739 

Statistical analyses 740 

Statistical analyses were carried out with standard functions in MATLAB (MathWorks) 741 

and Prism (GraphPad Software). The sample size, type of test, P values, and the F values for 742 

ANOVA are indicated in the figure legends. All data and error bars represent the mean and SEM 743 

except for the boxplot in Fig 4, where median and quartiles were presented. In all figures, the 744 

convention is *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001. 745 

  746 
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Supporting information:  959 

S1 Fig. Generalization difference between the 2-Context and 2-Stimulus tasks are robust across different input 960 
parameters. (A) Training on the 2-Context task with different analog context level pairs to signal the short (blue) and 961 
long (green) intervals (top), produced similarly timed short (blue) and long (green) intervals (bottom). Dashed lines 962 
denote the threshold used to measure the crossing time. (B) Training on 2-Stimulus task across different levels of 963 
overlap between the two input weight vectors (overlap ratio), quantified by the angle between the two weight vectors 964 
(top), and the corresponding learned output traces for short (blue) and long (green) intervals (bottom). (C) The mean 965 
(top) and standard deviations (bottom) of the crossing times across 10 simulations for the generalization experiments 966 
corresponding to the five conditions as in (A). (D) same as (C) but for 2-Stimulus task. (E) The sigmoid fit slopes of 967 
the generalization experiments in the five conditions of 2-Context task (cyan, as in A) were significantly lower than 968 
that for 2-Stimulus task (orange, as in B): two-way ANOVA, F1,90 = 123.1, P < 0.0001 (Left). The absolute correlation 969 
coefficients of the generalization experiments in the five conditions for 2-Context task (cyan, as in A) were 970 
significantly higher than that of the 2-Stimulus task (orange, as in B): two-way ANOVA on the Fisher-transformed 971 
data, F1,90 = 374.2, P < 0.0001 (right). (F) The mean error across all tested levels of the noise perturbation experiments 972 
in the five conditions for 2-Context task (cyan, as in A) is significantly higher than that for 2-Stimulus task (orange, 973 
as in B): two-way ANOVA, F1,90 = 106.1, P < 0.0001 (Left). Right, the same as the left but for standard deviations of 974 
the crossing times: two-way ANOVA, F1,90 = 625.7, P < 0.0001. 975 
 976 
S2 Fig. Superior generalization in the RNNs trained on the 2-Context task is maintained in the absence of a Go 977 
stimulus (A) Schematic of the 2-Context task without the Go stimulus. (B) Left, the sigmoid fit slopes in the 978 
generalization experiments for the 2-Context task without Go stimulus are not significantly different from the original 979 
2-Context task, and still significantly lower than that for the standard 2-Stimulus task (one-way ANOVA with posthoc 980 
Tukey test, F2,27 = 53.4,  ns: P = 0.669, ****: P < 0.0001). Right, the absolute correlation coefficients in the 981 
generalization experiments for the 2-Context task without Go stimulus not significantly different from the 2-Context 982 
task but significantly higher than that for the standard 2-Stimulus task (one-way ANOVA  on the Fisher-transformed 983 
data with posthoc Tukey test, F2,27 = 112.9,  ns: P = 0.957, ****: P < 0.0001). 984 
 985 
S3 Fig. Generalization in the 2-Context task relies on continuous input. (A) Schematic of the standard 2-Cotnext 986 
task with persistent context input. (B) Schematic of a task in which the two intervals are signaled by the same brief 987 
input, but with different analog values. (C) Plots of the mean crossing time for each RNN across input conditions for 988 
the persistent (top) and transient (bottom) tasks. (D) Left, mean slope of the sigmoid fits for transient input task is 989 
significantly higher than that for the persistent 2-Context task (n = 10 simulations for each, two-sided t test, t18 = 9.98, 990 
P < 0.0001). Right, correlation coefficient between mean crossing times and input conditions for transient 2-Context 991 
is significantly lower than that for the persistent 2-Context task (n = 10 simulations for each, two-sided t test on Fisher-992 
transformed values, t18 = 7.52, P < 0.0001). (E) Standard deviations of the crossing times for each RNN in the 993 
persistent 2-Context (top) and transient 2-Context (bottom) tasks, as a function of input conditions. 994 
 995 
S4 Fig. Changing the initial gain of the recurrent weight matrix to 1.5 does not alter the generalization and 996 
robustness to noise differences between the 2-Context and 2-Stimulus tasks. (A) Plots of the mean crossing time 997 
for each RNN across input conditions for the 2-Context (top) and 2-Stimulus (bottom) tasks. Insets, examples of the 998 
sigmoid-function fits for a single RNN (black). (B) Left, mean slope of the sigmoid fits for 2-Stimulus task is 999 
significantly higher than that for the 2-Context task (n = 20 simulations for each, two-sided t test, t18 = 6.91, P < 1000 
0.0001). Right, correlation coefficient between mean crossing times and input conditions for 2-Context task is 1001 
significantly higher than that for the 2-Stimulus task (n = 20 simulations for each, two-sided t test on Fisher-1002 
transformed values, t18 = 16.56, P < 0.0001). (C) Standard deviations of the crossing times for each RNN in the 2-1003 
Context (top) and 2-Stimulus (bottom) tasks, as a function of input conditions. . (D) Left, mean error (across 50 trials) 1004 
for 2-Context task (cyan) is higher than that for 2-Stimulus task (orange) (n = 10 simulations, two-way ANOVA with 1005 
mixed-effect design, F1,18 = 32.48, P < 0.0001). Right, mean standard deviation of the time of threshold-crossing 1006 
across all correct trials for 2-Context task (cyan) is higher than that for 2-Stimulus task (orange) (F1,18 = 128.50, P < 1007 
0.0001). Data are presented as mean ± SEM. 1008 
 1009 



 

 

S5 Fig. Full initial connectivity of the weight matrix does not alter the generalization and robustness to noise 1010 
differences between the 2-Context and 2-Stimulus tasks.  (A) Plots of the mean crossing time for each RNN across 1011 
input conditions for the 2-Context (top) and 2-Stimulus (bottom) tasks. Insets, examples of the sigmoid-function fits 1012 
for a single RNN (black). (B) Left, mean slope of the sigmoid fits for 2-Stimulus task is significantly higher than that 1013 
for the 2-Context task (n = 20 simulations for each, two-sided t test, t18 = 4.35, P = 0.00039). Right, correlation 1014 
coefficient between mean crossing times and input conditions for 2-Context task is significantly higher than that for 1015 
the 2-Stimulus task (n = 20 simulations for each, two-sided t test on Fisher-transformed values, t18 = 6.48, P < 0.0001). 1016 
(C) Standard deviations of the crossing times for each RNN in the 2-Context (top) and 2-Stimulus (bottom) tasks, as 1017 
a function of input conditions. (D) Left, mean error (across 50 trials) for 2-Context task (cyan) is higher than that for 1018 
2-Stimulus task (orange) (n = 10 simulations, two-way ANOVA with mixed-effect design, F1,18 = 5.78, P = 0.027). 1019 
Right, mean standard deviation of the time of threshold-crossing across all correct trials for 2-Context task (cyan) is 1020 
higher than that for 2-Stimulus task (orange) (F1,18 = 86.03, P < 0.0001). Data are presented as mean ± SEM. 1021 
 1022 
S6 Fig. Differential functional effects of deleting specific classes of units. (A) Schematic of the deletion 1023 
experiments. To delete a given unit denoted by the red arrow (bottom), all in and out weights of the recurrent weight 1024 
matrix of that units were set to zero. (B) Performance of RNNs trained on the 2-Context task after progressively 1025 
deleting units from specific temporal classes: stimulus-specific, scaling, and absolute temporal classes for both 1026 
excitatory (left) and inhibitory (right) units. For each data point, units were randomly selected 10 times, and 10 test 1027 
trials were obtained. A three-way ANOVA revealed highly significant effects of main temporal-class (F2,619 = 31, P < 1028 
10-12) and Ex-Inh (F2,619 = 390, P < 10-66) factors. Additionally, there was a highly significant interaction between 1029 
temporal-class and Ex-Inh class (F2,619 = 27, P < 10-10) and multi-comparison analyses showed that performance for 1030 
inhibitory scaling cells was significantly lower than all other 5 deletion manipulations (P < 0.0001 for all comparisons). 1031 
(C) Similar to (B) but for error. As in (B), there were highly significant main effects (F2,619 = 34, P < 10-14, and F2,619 1032 
= 118, P < 10-24, for temporal-class and Ex-Inh, respectively), as well as a significant interaction between temporal-1033 
class and Ex-Inh (F2,619 = 46, P < 10-18). And again the inhibitory scaling cells increased the error more than all other 1034 
deletion manipulations (P < 0.0001 for all comparisons). (D-E) There were no main effects of temporal-class or Ex-1035 
Inh that were consistently significant for both the performance and error measure. The interaction between temporal-1036 
class and Ex-Inh was either trending (F2,619 = 2.5, P =0.08) or mildly significant (F2,619 = 3.6, P = 0.027) for the 1037 
performance and error analyses, respectively. Data are presented as performance mean ± SEM across 20 RNNs. Notice 1038 
that the performance of stimulus-specific units in (D) and (E) (magenta) are very similar to, and mostly obscured by 1039 
the absolute traces (red). (F) Mean output traces across 20 simulations when deleting 6 excitatory (left) and inhibitory 1040 
(right) units of the three types: stimulus-specific, scaling, and absolute for 2-Context task. (G) Same as F but for 2-1041 
Stimulus task. 1042 
 1043 
S7 Fig. Differential subspace dynamics for RNNs trained on 2-Context and 2-Stimulus tasks. (A) For the 2-1044 
Context task, recurrent unit dynamics for the short (blue) and long (green) intervals were projected into the first three 1045 
PC spaces. Asterisks denote the onset of inputs (t=0), arrows denote the corresponding weights vectors (InputGo, black; 1046 
InputContext, cyan; and Output, red) projected onto the same PC space. Color dots denote the 250 ms intervals along 1047 
each trajectory. Inset, schematic of angles between segments of the approximate RNN trajectory (orange) and the 1048 
three weight vectors. These vectors were used to compute the pairwise angles to the InputGo, InputContext and Output 1049 
vectors. (B) Similar to (A) but for 2-Stimulus task, but here the two input vectors represented the InputShort (blue) and 1050 
InputLong (green) weight vectors. (C) Same number of PCs explained more variance for 2-Context task than that for 2-1051 
Stimulus task (Two-way ANOVA, F(1, 38) = 255.6 and P < 0.0001). (D) Average pairwise angles between segments of 1052 
short (top)/long (bottom) dynamics and inputs/output vectors as in (A) for 2-Context task (20 simulations, data 1053 
presents as Mean ± SEM). Shaded area donted the duration of the transient InputGo (E) Same as in (D) but for 2-1054 
Stimulus task. The shaded area denotes the duration of the transient InputShort and InputLong. 1055 
 1056 
 1057 
S8 Fig. PCA plots of the recurrent dynamics for generalization to novel intervals (A) Recurrent dynamics 1058 
corresponding to different context levels (denoted by the color ) as in Fig. 2 were projected into the first three PCs in 1059 
20 RNNS trained on 2-Context task. The arrows denoted the directions of InputGo (black), InputContext (cyan), and 1060 
Output (red) weights projected into the same PC space. (B) similar as in (A) but for the 2-Stimulus task. 1061 
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