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The ability to predict and prepare for near- and far-future events is among the most fundamental
computations the brain performs. Because of the importance of time for prediction and sensorimotor
processing, the brain has evolved multiple mechanisms to tell and encode time across scales ranging from
microseconds to days and beyond. Converging experimental and computational data indicate that, on the
scale of seconds, timing relies on diverse neural mechanisms distributed across different brain areas. Among
the different encoding mechanisms on the scale of seconds, we distinguish between neural population clocks
and ramping activity as distinct strategies to encode time. One instance of neural population clocks, neural
sequences, represents in some ways an optimal and flexible dynamic regime for the encoding of time.
Specifically, neural sequences comprise a high-dimensional representation that can be used by downstream
areas to flexibly generate arbitrarily simple and complex output patterns using biologically plausible
learning rules. We propose that high-level integration areas may use high-dimensional dynamics such as
neural sequences to encode time, providing downstream areas information to build low-dimensional ramp-
like activity that can drive movements and temporal expectation.

Keywords: striatum, premotor cortex, neural dynamics, computational model, neural basis of timing

The ability to predict changes in one’s environment—for exam-
ple, anticipate the actions of predators or availability of food—
strongly translates into the evolutionary currency of survival and
reproduction. For this reason, anticipating and preparing for near-
and far-future events are among the most fundamental computations
the brain performs. Indeed, the ultimate biological function of
memory is to allow animals to learn from past experiences in order
to better predict and prepare for the future (Buonomano, 2017;
Dudai & Carruthers, 2005; Schacter et al., 2007; Tulving, 2005).
Because prediction requires determining both what and when events
happen, the brain has evolved the ability to tell and represent time
across a large range of time scales from milliseconds to the daily
circadian rhythms. Furthermore, in order to interact with a dynamic
environment, the ability to tell time is necessary to decode sensory
information and generate appropriately timed motor responses.
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Overall, the brain tells time across over 12 orders of magnitude
from microseconds to days and beyond (Figure 1). Across these
scales, timing in the range of hundreds of milliseconds to tens of
seconds has drawn much attention for its fundamental importance in
sensory-motor processing, learning, decision-making, prediction,
and cognition (Buhusi & Meck, 2005; Paton & Buonomano, 2018).
For instance, catching prey in motion, speech discrimination, play-
ing a musical piece at different speeds, anticipating a reward, all rely
on the ability to flexibly tell and encode time on the scale of seconds
(Cannon & Patel, 2021; Fung et al., 2021; Issa et al., 2020; Mauk &
Buonomano, 2004; Merchant et al., 2013). Similarly, many forms of
cognition, such as intertemporal decision-making and temporal
attention also rely on timing on the scale of seconds (J. Coull &
Nobre, 2008; Namboodiri et al., 2014; Nobre & van Ede, 2018; Sosa
et al., 2021).

Given the importance of temporal processing to sensorimotor
processing, learning, and cognition, a critical question is how
neurons and neural circuits implement timers and clocks. A related
question pertains to localization, that is, which brain areas are
responsible for the timing of the scale of seconds? For much of
the 20th century, it was hypothesized that there might be a single
brain area responsible for timing in its many shapes and forms.
However, converging evidence over the past two decades indicates
that timing relies on a diverse set of mechanisms and brain areas
(Figure 1). Specifically, although for any given task, there may be a
few brain areas that critically contribute to timing, the role of any
given area is likely task-dependent—influenced, for example, by
sensory modality, motor requirements, whether the task relies on
simple intervals or requires temporal pattern production, as well as
temporal scale (Paton & Buonomano, 2018). Indeed, depending on
the task, a large number of brain areas have been implicated in
timing including striatum, prefrontal cortex, parietal cortex, tempo-
ral cortex (including the hippocampus and entorhinal cortex), and
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Figure 1
Scales and Mechanisms of Timing
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Note. Humans can tell time and process temporal information over a scale of at least 12 orders
magnitude, ranging from microseconds to circadian rhythms. In contrast to man-made clocks in
which a single device can time across many orders of magnitudes, biological systems have
evolved fundamentally different mechanisms to tell time across scales. For instance, microsec-
ond discrimination, which is used for sound localization relies on axonal conduction delays,
whereas the circadian clock consists of a biochemical oscillator with a period of approximately
24 hr. Timing on the scale of tens of milliseconds to seconds is fundamentally more diverse and
complex as it often involves temporal pattern discrimination rather than timing simple intervals
and durations. Experimental and computational results indicate that two general strategies for
encoding time include neural population clocks and ramping activity. See the online article for

the color version of this figure.

the cerebellum (Buhusi & Meck, 2005; J. T. Coull et al., 2011;
Giovannucci et al., 2017; Issa et al., 2020; Ivry & Schlerf, 2008;
Mauk & Buonomano, 2004; Merchant et al., 2013; Paton &
Buonomano, 2018). Additionally, increasing experimental evidence
not only suggests that timing information is distributed in different
brain areas, but also that it may be the case that temporal information
is in a sense transmitted from one area to another and transformed in
the process—downstream areas reading out and refining the encod-
ing of time for the task at hand (Bakhurin et al., 2017; Emmons et al.,
2017; Zhou et al., 2020).

Because of the diversity and required flexibility of timing on the
scale of seconds, the neural mechanisms of timing on this scale
appear to be more complex than those on the scale of microseconds
and days. Fortunately, technological progress and ongoing research
over the past two decades have significantly advanced our under-
standing of how the brain tells time on the scale of seconds.
Although early theories of timing focused primarily on oscillator
and clock-like mechanisms (Buhusi & Meck, 2005; Creelman,
1962; Gibbon, 1977; Matell & Meck, 2004; Miall, 1989;
Treisman, 1963), accumulating experimental and computational
evidence indicates that on the scale of seconds, the brain often
encodes time through changing patterns of neural activity. Two

broad examples of how neurons encode time include ramping
activity and neural population clocks (Figure 2). Ramping activity
and neural population clocks represent two distinct dynamic re-
gimes, that is, they require different neural mechanisms to generate
them and are characterized by fundamentally different patterns of
time-varying neural activity. Below we explore the experimental
evidence, neural mechanisms, and computational trade-offs for
these two broad timing mechanisms.

Ramping Activity

Experimental research has revealed many instances in which time
is encoded in monotonic increases or decreases of firing rates of
neurons—that is, ramping activity (Figure 2A). Ramping activity
has been observed in a large number of tasks (Brody et al., 2003;
Monosov & Hikosaka, 2013; Schultz et al., 1992; Yang & Shadlen,
2007), including timing tasks (Cueva et al., 2020; Emmons et al.,
2017; Jazayeri & Shadlen, 2015; Kunimatsu et al., 2018; Leon &
Shadlen, 2003; Liu et al., 2019; Narayanan, 2016; Tsao et al., 2018),
and can take the form of approximately linear increases or decreases
in activity, or exponentially changing firing rates. A key difference
between neural population clocks (see below) and ramping activity
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Figure 2
Experimental Observed Ramping Activity and Neural Population Clocks
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Note. (A) Examples of ramping activity consisting of increases (top) and decreases in firing rate (bottom) recorded in medial
prefrontal cortex when an animal expected a reward at either a fixed interval of 3 (FI3) or 12 (FI12) s. Adapted from “Rodent
medial frontal control of temporal processing in the dorsomedial striatum,” by E. B. Emmons, B. J. De Corte, Y. Kim, K. L. Parker,
M. S. Matell, and N. S. Narayanan, 2017. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,
37(36), pp. 8718-8733. https://dx.doi.org/10.1523/INEUROSCI.1376-17.2017. (B) Example of a neuron population clock
implemented as a sparse neural sequence. Sequential activation of neurons in area HVC of songbird (bottom), corresponding to the
timing of song (top). Each row represents a burst of a neuron. Adapted from “Rhythmic continuous-time coding in the songbird
analog of vocal motor cortex,” by G. F. Lynch, T. S. Okubo, A. Hanuschkin, R. H. Hahnloser, and M. S. Fee, 2016. Neuron, 90(4),
pp. 877-892. https://dx.doi.org/10.1016/j.neuron.2016.04.021. (C) Example of a complex neural population clock. Population
activity recorded in orbitofrontal cortex (OFC) sorted by firing rate peak latency in a mouse anticipating a reward to come at 2.5 s
after an olfactory cue at time 0. Adapted from “Differential encoding of time by prefrontal and striatal network dynamics,” by K. I.
Bakhurin, V. Goudar, J. L. Shobe, L. D. Claar, D. V. Buonomano, and S. C. Masmanidis, 2017. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience, 37(4), pp. 854-870. https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016. (D)
Top, schematic of the computation of the sequentiality index (Sql), which depends on two terms: peak entropy (PE) that quantifies
how uniform the distribution of peak latencies across the population is, and temporal sparsity (TS) that quantifies how sparse the
population neural activity is at a given time point. Bottom, population neural activity sorted by peak latency simultaneously
recorded in the secondary motor cortex [M2] (left) and dorsal medial striatum (right) in a mouse performing an anticipatory two-
interval task, with the corresponding Sqls on top of each plot. Adapted from “Neural sequences as an optimal dynamical regime for
the readout of time,” by S. Zhou, S. C. Masmanidis, and D. V. Buonomano, 2020. Neuron, 108(4), pp. 651-658. e5. https://dx.doi
.org/10.1016/j.neuron.2020.08.020. See the online article for the color version of this figure.

is that in a ramping code, a single neuron can, in principle, encode
time across an entire temporal span. For example, the linear change
in the firing rate of a single neuron can potentially provide a simple
and continuous code for elapsed time—in practice, of course, the
precision of this code on a trial-by-trial basis will depend on the
cross-trial variability.

Mechanistically, ramping models of timing have relied on intrin-
sic neuronal properties (Durstewitz, 2003), or network-based me-
chanisms relying on positive and negative feedback (Gavornik et al.,
2009; Lim & Goldman, 2013; Simen et al., 2011). Ramping activity
is often observed in parietal and motor areas during tasks in which
animals must generate a motor response during a simple interval
(Jazayeri & Shadlen, 2015; Merchant & Averbeck, 2017; Murakami
et al., 2014; Narayanan, 2016), but it has also been observed in the
striatum (Emmons et al., 2017) and prefrontal (J. Kim et al., 2013;
Y.-C. Kim et al., 2017) areas.

Critically, ramping activity also provides a potential mechanism
to flexibly scale temporal intervals. For instance, as with standard
drift-diffusion models, in the ramping model of timing, the slope of
the ramp may be controlled by tonic input with different amplitudes,
signaling intervals with different durations (Goldman, 2009; Simen
etal., 2011). Indeed, in some reports, the slope of the firing rate over
time has been shown to increase when a task requires an animal to
shift from a long to a short interval (Emmons et al., 2017; Jazayeri &
Shadlen, 2015; Leon & Shadlen, 2003).

Neural Population Clocks

One of the earliest models of timing not based on oscillators or
integrators was that the dynamically changing population activity of
granule cells in the cerebellum encodes time (Buonomano & Mauk,
1994; Mauk & Donegan, 1997; Medina et al., 2000). A notion that


https://dx.doi.org/10.1523/JNEUROSCI.1376-17.2017
https://dx.doi.org/10.1523/JNEUROSCI.1376-17.2017
https://dx.doi.org/10.1523/JNEUROSCI.1376-17.2017
https://dx.doi.org/10.1523/JNEUROSCI.1376-17.2017
https://dx.doi.org/10.1523/JNEUROSCI.1376-17.2017
https://dx.doi.org/10.1523/JNEUROSCI.1376-17.2017
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1016/j.neuron.2016.04.021
https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016
https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016
https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016
https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016
https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016
https://dx.doi.org/10.1523/JNEUROSCI.1789-16.2016
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020
https://dx.doi.org/10.1016/j.neuron.2020.08.020

gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo

=
2
S
S
=
Q

is not to be diss

)
2
=
=]

ded solely for the persc

»
2
o
E=!
»
=
=

4 ZHOU AND BUONOMANO

came to be referred to as a neural population clock (Buonomano &
Karmarkar, 2002; Buonomano & Laje, 2010; Mauk & Donegan,
1997, Medina et al., 2000; Paton & Buonomano, 2018). The
changing pattern of activity of neurons in a network maps out a
reproducible trajectory in neural space (a high-dimensional coordi-
nate system in which the firing rate of each neuron represents an
axis). Each distinct point along the trajectory is represented by a
vector with elements corresponding to the firing rate of each neuron,
which defines the state of the network at a specific time point. Thus,
there is a one-to-one correspondence between the states in neural
space and a moment in time. Two specific criteria for neural
population clocks include: (a) any given neuron encodes relatively
little information about the passage of time, that is, encoding a span
of time requires a population of neurons and (b) the neural dynamics
is a product of the local recurrent connections rather than some
intrinsic properties or time constant of individual neurons (Paton &
Buonomano, 2018).

Neural population clocks can take the form of many different
dynamic regimes, including neural sequences and complex popula-
tion clocks (Figure 2B, C). Neural sequences are defined as dynamic
regimes in which each neuron is generally only active during a
single period within a trial, and the population as a whole tiles the
entire time span—resulting in an apparent feedforward chain of
neural activity (Figure 2B). In a complex population clock (Figure 2C),
neurons can exhibit widely varying patterns of activity, including
multiple peaks and a mixture of time fields that potentially include
transient ramping.

A diverse set of population clocks has been reported across animals,
brain regions, and tasks, including sparse neural sequences (Hahnloser
et al., 2002; Long et al., 2010; Lynch et al., 2016), dense neural
sequences (Kraus et al., 2013; MacDonald et al., 2011; Mello et al.,
2015; Pastalkova et al., 2008; Shimbo et al., 2021; Taxidis et al., 2020;
Zhou et al., 2020), and complex population clocks (Bakhurin et al.,
2017; Carnevale et al., 2015; Crowe et al., 2014; Jin et al., 2009; Stokes
et al., 2013; Wang et al., 2018; Xu et al., 2014; Zhou et al., 2020).

Sparse neural sequences in which a given cell fires a single spike
or burst during the entire time span represent one extreme of neural
population clocks. Such an extreme code is rare, however, for in
most cases, there is significant overlap between the time fields of
different neurons, and the peak times of the population are not
uniformly distributed across the whole period needed to time.
Researchers have developed measures to quantify the sequentiality
of the activity of a population of neurons (Orhan & Ma, 2019; Zhou
etal., 2020). We have defined a sequentiality index composed of two
factors (Figure 2D): (a) peak entropy, which captures the entropy of
the peak firing times across the whole population—peak entropy is
maximal when the time fields of the neural population uniformly tile
the time span; and (b) temporal sparsity, which reflects the number
of neurons that are firing at any given moment in time (and is
inversely related to the overlap of the time fields). Using this
measure, we have contrasted the sequentiality index of simulta-
neously recorded populations in the secondary motor cortex (M2)
and dorsal lateral striatum (DLS) during a timing task. Although
both areas encoded time equally well (as quantified by decoders), the
sequentiality index was higher in DLS compared to M2 (Figure 2D).
These results confirm the notion that multiple brain areas can encode
time simultaneously and suggest that different areas rely on different
dynamic regimes to encode time.

It is important to note that while in the extreme, neural population
clocks such as neural sequences, and ramping activity comprise two
distinct time encoding regimes, in practice, the two regimes are not
mutually exclusive and can be overlapping. This is in part because
all regimes are quite noisy in some instances. Furthermore, in
principle, it is possible that apparent ramping can emerge from
trial averaging (Latimer et al., 2015; Zoltowski et al., 2019).
Additionally, the quantitative methods used to analyze neural
population data can also strongly bias conclusions in one direction
or another, and many decoding methods are ultimately agnostic to
the nature of the underlying code.

To date, the vast majority of experimental studies have focused on
decoding time from neural activity while animals perform timing
tasks, rather than causally linking the neural activity with behavioral
timing. Nevertheless, a number of pharmacological and optogenetic
experiments have revealed that inhibiting activity in a number of
brain areas, including the striatum and prefrontal cortex impairs (but
generally does not eliminate) timing (Emmons et al., 2017; Mello
et al., 2015; Murakami et al., 2017; Soares et al., 2016; Wang et al.,
2018). More compelling evidence arises from brain cooling experi-
ments, which have shown that cooling specific brain areas can slow
or temporally dilate behavioral timing (Long & Fee, 2008; Monteiro
et al., 2020; Xu et al., 2014).

As with ramping models, population clocks and neural sequences
are also able to account for temporal scaling. Specifically, in
computational models, if the recurrent weights of a recurrent neural
network are tuned appropriately, the same neural trajectory can be
traversed slowly or rapidly depending on the amplitude of a tonic
input (Hardy et al., 2018; Wang et al., 2018; Zhou et al., 2022). And
on the experimental side, similar neural sequences have been
reported to unfold at different speeds during the production of
different intervals (Mello et al., 2015; Shimbo et al., 2021; Wang
et al., 2018; Zhou et al., 2020).

Quantifying and Contrasting Different Neural
Codes for Time

As summarized above, experimental results have revealed a range
of different neural encoding strategies for time, including neural
population clocks and ramping activity. This naturally leads to the
question of what is the computational benefit of using one dynamic
regime or another to encode time.

In order to answer this question, it is important to note that the
information processing in general does not only require the encod-
ing of information, but also the transmission and transformation of
that information from one area to the next, and perhaps most
importantly, the efficient use and readout of that information by
downstream areas. Accumulating evidence has shown that the
encoding of time is distributed in different brain areas, and thus
that temporal information is presumably transmitted from upstream
to downstream areas and transformed or read out in the process. We
propose that although neural sequences and ramping activity can
both, in principle, encode time equally well, neural population
clocks in general and neural sequences in particular, provide a
robust and flexible code for downstream areas to read out time.
Whereas ramping activity may provide a better code to prepare and
generate simple motor responses.

We have previously tested this hypothesis (Zhou et al., 2020) by
comparing the ability of downstream neurons to effectively produce
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timed responses based on the activity of an upstream network
composed of a wide spectrum of different time-varying population
activity. The population dynamics of the upstream area included
different ramps, sparse and dense neural sequences, complex popu-
lation clocks, and oscillators (Figure 3). Mathematically speaking,
all the prototypical regimes in Figure 3 can be used to encode time
perfectly. However, our results showed that when producing com-
plex outputs under biological constraints (e.g., positive weights
from the upstream to downstream output units), activity patterns
with higher sequentiality performed best. Here, we extend these
findings by comparing the ability of two different upstream patterns
of population activity to produce simple and complex output without
any constraint of the readout weights. The network was comprised
of two layers—corresponding to an upstream area that encoded time
and a downstream area that decoded time in order to generate a
temporal pattern (Figure 4). The dynamics in the upstream area was
composed of a population of 100 units that exhibited either a neural
sequence regime as an instance of population clock or ramping
activity composed of a diverse population of “up” and “down”
ramps with different slopes. The goal was to train the feedforward
readout weights on the dynamics of the upstream area to generate the
output (downstream area) to best match two different targets using a
standard least square regression (and allowing positive and negative
weights). One target was composed of a series of timed outputs with

Figure 3

each composed of a Gaussian-shaped firing rate—one can interpret
this target as appropriately timed finger presses on a keyboard. The
second target was a simple ramp composed of a single unit that
linearly ramped from the start to the end of the whole duration—we
can interpret this output as the temporal expectation, or motor
preparation, for a reward. The readout performance was quantified
as the root mean square error (RMSE) between the generated output
and the targets. As shown in Figure 4, although both neural sequence
dynamics and ramping activity can generate an output matching the
ramping target (RMSEs for both being very low), only the neural
sequence can accurately generate a series of time outputs.

From the results of this simple readout model, neural sequences,
compared to ramping, provide a more flexible and efficient code to
readout time in the sense that they can be flexibly read out by a
downstream area to generate either output pattern. Mathematically,
the readout units can be viewed as using a set of basis functions (the
temporal profile of each upstream unit corresponding to a basis) to
regress to a target through readout weights. A clear advantage of the
neural sequences is that each neuron in the neural sequence is
uncorrelated with the other, providing a high-dimensional set of
nearly orthogonal basis functions. Such high-dimensional and
orthogonal dynamics can be used to regress to any target, including
ramping activity and neural sequences—even when only allowing
positive readout weights. In other words, and not surprisingly, the

Prototypical Dynamical Regimes for Encoding Time
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(“Fourier”). The corresponding sequentiality index (Sql) is displayed on top. The general regimes reflect ramping
(A-C), oscillators (D), complex population clocks (E-H), and dense and sparse neural sequences (I-L). Magenta
squares mark the dynamic regimes used in Figure 4. See the online article for the color version of this figure.
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Figure 4
Performance of Readout Units Trained to Produce Either a Ramp or a Series of Timed “Taps”
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Note. (A) Example of the prototypical ramping (left) and sparse neural sequence dynamics (right, reflecting the
magenta squares in Figure 3). (B) Left, schematic of the readout model trained to produce an output ramp driven by
the ramping or neural sequence upstream network. The model is composed of the time encoding upstream network
and an output layer connected by feedforward positive weights. The output layer is composed of one unit with a
ramping target. The goal is to fit the output response to the output target (ramp), allowing for positive or negative
weights. Performance is quantified by the root mean square error (RMSE) between the fitted output and the target.
Output trace (red) for ramping dynamics (middle) and neural sequence (right) to the ramping target (grey, covered
by the output trace) with RMSE on top. Whether the upstream dynamics was a neural sequence or a ramp, the
output could be trained to produce a ramp. (C) Same as in B but with a desired output pattern comprised of a series
of five timed outputs. Note that the desired output pattern cannot be learned when the upstream activity consists of
a population of ramping units. Color lines denote the generated outputs, and the gray lines denote the targets. Note
that targets are covered by the output lines due to the perfect match for neural sequence (left). See the online article
for the color version of this figure.

high-dimensional neural dynamics of neural sequences allow for
readout neurons to form complex output and high-dimensional
patterns. In contrast, the low-dimensional dynamics of ramping
activity can easily generate low-dimensional outputs (which can be
used to time simple intervals or durations) but cannot be used
(without additional layers) to generate high-dimensional outputs,
such as tapping the keys of a piano without fairly sophisticated
decoding schemes.

Conclusions

Over the past two decades, it has become clear that the brain does
not have a single area or neural mechanism underlying timing in its

many shapes and forms. Converging experimental and computa-
tional studies indicate that the major neural mechanisms underlying
timing include neural population clocks and ramping activity—
although it remains unclear if each relies on dependent or interde-
pendent circuitry. Here, we propose that although both neural
population clocks and ramps coexist with the brain, they have
distinct computational trade-offs and functions.

Ramping activity and neural sequences can, in principle, encode
time equally well. However, neural sequences can provide a high-
dimensional set of basis functions, which allow downstream areas to
decode time and generate both simple and complex spatiotemporal
output patterns using biologically plausible constraints and learning
rules. Ramping activity, in turn, provides a means to flexibly encode
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simple intervals and durations and is well suited for motor prepara-
tion and anticipatory responses. Critically, however, we argue that a
key difference regarding neural population clocks and ramping
codes for time is that the latter are generally ill-suited to account
for the generation of complex temporal patterns such as those that
are used in temporal reproduction tasks or Morse code generation
(Hardy & Buonomano, 2016; Hardy et al., 2018; Slayton et al.,
2020). Thus, we predict that high-level integration areas may use
high-dimensional dynamics such as neural sequences to encode
time, providing downstream areas information to build low-
dimensional ramp-like activity that can drive movements and
temporal expectation.

References

Bakhurin, K. I., Goudar, V., Shobe, J. L., Claar, L. D., Buonomano, D. V., &
Masmanidis, S. C. (2017). Differential encoding of time by prefrontal and
striatal network dynamics. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 37(4), 854-870. https://doi.org/
10.1523/INEUROSCI.1789-16.2016

Brody, C. D., Herndndez, A., Zainos, A., & Romo, R. (2003). Timing and
neural encoding of somatosensory parametric working memory in
macaque prefrontal cortex. Cerebral Cortex (New York, N.Y.), 13(11),
1196-1207. https://doi.org/10.1093/cercor/bhg100

Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and
neural mechanisms of interval timing. Nature Reviews Neuroscience,
6(10), 755-765. https://doi.org/10.1038/nrm 1764

Buonomano, D. V. (2017). Your brain is a time machine: The neuroscience
and physics of time. W. W. Norton.

Buonomano, D. V., & Karmarkar, U. R. (2002). How do we tell time? The
Neuroscientist, 8(1), 42-51. https://doi.org/10.1177/107385840200
800109

Buonomano, D. V., & Laje, R. (2010). Population clocks: Motor timing with
neural dynamics. Trends in Cognitive Sciences, 14(12), 520-527. https://
doi.org/10.1016/j.tics.2010.09.002

Buonomano, D. V., & Mauk, M. D. (1994). Neural network model of the
cerebellum: Temporal discrimination and the timing of motor responses.
Neural Computation, 6(1), 38-55. https://doi.org/10.1162/neco.1994.6
.1.38

Cannon, J. J., & Patel, A. D. (2021). How beat perception co-opts motor
neurophysiology. Trends in Cognitive Sciences, 25(2), 137-150. https:/
doi.org/10.1016/j.tics.2020.11.002

Carnevale, F., de Lafuente, V., Romo, R., Barak, O., & Parga, N. (2015).
Dynamic control of response criterion in premotor cortex during percep-
tual detection under temporal uncertainty. Neuron, 86(4), 1067-1077.
https://doi.org/10.1016/j.neuron.2015.04.014

Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal
expectation with fMRI. Current Opinion in Neurobiology, 18(2), 137—
144. https://doi.org/10.1016/j.conb.2008.07.011

Coull, J. T., Cheng, R.-K., & Meck, W. H. (2011). Neuroanatomical and
neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3—
25. https://doi.org/10.1038/npp.2010.113

Creelman, C. D. (1962). Human discrimination of auditory duration. The
Journal of the Acoustical Society of America, 34(5), 582-593. https:/
doi.org/10.1121/1.1918172

Crowe, D. A., Zarco, W., Bartolo, R., & Merchant, H. (2014). Dynamic
representation of the temporal and sequential structure of rhythmic move-
ments in the primate medial premotor cortex. The Journal of Neuroscience :
The Official Journal of the Society for Neuroscience, 34(36), 11972-11983.
https://doi.org/10.1523/JNEUROSCI.2177-14.2014

Cueva, C. J., Saez, A., Marcos, E., Genovesio, A., Jazayeri, M., Romo, R.,
Salzman, C. D., Shadlen, M. N., & Fusi, S. (2020). Low-dimensional

dynamics for working memory and time encoding. Proceedings of the
National Academy of Sciences of the United States of America, 117(37),
23021-23032. https://doi.org/10.1073/pnas.1915984117

Dudai, Y., & Carruthers, M. (2005). The Janus face of Mnemosyne. Nature,
434(7033), Article 567. https://doi.org/10.1038/434567a

Durstewitz, D. (2003). Self-organizing neural integrator predicts interval
times through climbing activity. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 23(12), 5342-5353. https://
doi.org/10.1523/INEUROSCIL.23-12-05342.2003

Emmons, E. B., De Corte, B. J., Kim, Y., Parker, K. L., Matell, M. S., &
Narayanan, N. S. (2017). Rodent medial frontal control of temporal
processing in the dorsomedial striatum. The Journal of Neuroscience:
The Official Journal of the Society for Neuroscience, 37(36), 8718-8733.
https://doi.org/10.1523/INEUROSCI.1376-17.2017

Fung, B. J., Sutlief, E., & Hussain Shuler, M. G. (2021). Dopamine and the
interdependency of time perception and reward. Neuroscience and Bio-
behavioral Reviews, 125, 380-391. https://doi.org/10.1016/j.neubiorev
.2021.02.030

Gavornik, J. P., Shuler, M. G. H., Loewenstein, Y., Bear, M. F., & Shouval,
H. Z. (2009). Learning reward timing in cortex through reward dependent
expression of synaptic plasticity. Proceedings of the National Academy of
Sciences of the United States of America, 106(16), 6826-6831. https://
doi.org/10.1073/pnas.0901835106

Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal
timing. Psychological Review, 84(3), 279-325. https://doi.org/10.1037/
0033-295X.84.3.279

Giovannucci, A., Badura, A., Deverett, B., Najafi, F., Pereira, T. D., Gao, Z.,
Ozden, 1., Kloth, A. D., Pnevmatikakis, E., Paninski, L., De Zeeuw, C. L.,
Medina, J. F., & Wang, S. S. H. (2017). Cerebellar granule cells acquire a
widespread predictive feedback signal during motor learning. Nature
Neuroscience, 20(5), 727-734. https://doi.org/10.1038/nn.4531

Goldman, M. S. (2009). Memory without feedback in a neural network.
Neuron, 61(4), 621-634. https://doi.org/10.1016/j.neuron.2008.12.012

Hahnloser, R. H. R., Kozhevnikov, A. A., & Fee, M. S. (2002). An ultra-
sparse code underlies the generation of neural sequences in a songbird.
Nature, 419(6902), 65-70. https://doi.org/10.1038/nature00974

Hardy, N. F., & Buonomano, D. V. (2016). Neurocomputational models of
interval and pattern timing. Current Opinion in Behavioral Sciences, 8,
250-257. https://doi.org/10.1016/j.cobeha.2016.01.012

Hardy, N. F., Goudar, V., Romero-Sosa, J. L., & Buonomano, D. V. (2018).
A model of temporal scaling correctly predicts that motor timing improves
with speed. Nature Communications, 9(1), Article 4732. https://doi.org/10
.1038/s41467-018-07161-6

Issa, J. B., Tocker, G., Hasselmo, M. E., Heys, J. G., & Dombeck, D. A.
(2020). Navigating through time: A spatial navigation perspective on how
the brain may encode time. Annual Review of Neuroscience, 43(1), 73-93.
https://doi.org/10.1146/annurev-neuro-101419-011117

Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time
perception. Trends in Cognitive Sciences, 12(7), 273-280. https://doi.org/
10.1016/j.tics.2008.04.002

Jazayeri, M., & Shadlen, M. N. (2015). A neural mechanism for sensing and
reproducing a time interval. Current Biology, 25(20), 2599-2609. https://
doi.org/10.1016/j.cub.2015.08.038

Jin, D. Z., Fujii, N., & Graybiel, A. M. (2009). Neural representation of time
in cortico-basal ganglia circuits. Proceedings of the National Academy of
Sciences of the United States of America, 106(45), 19156-19161. https://
doi.org/10.1073/pnas.0909881106

Kim, J., Ghim, J.-W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of
interval timing in rodent prefrontal cortex. The Journal of Neuroscience:
The Official Journal of the Society for Neuroscience, 33(34), 13834—
13847. https://doi.org/10.1523/INEUROSCI.1443-13.2013

Kim, Y.-C., Han, S.-W., Alberico, S. L., Ruggiero, R. N., De Corte, B.,
Chen, K.-H., & Narayanan, N. S. (2017). Optogenetic stimulation of


https://doi.org/10.1523/JNEUROSCI.1789-16.2016
https://doi.org/10.1523/JNEUROSCI.1789-16.2016
https://doi.org/10.1523/JNEUROSCI.1789-16.2016
https://doi.org/10.1523/JNEUROSCI.1789-16.2016
https://doi.org/10.1523/JNEUROSCI.1789-16.2016
https://doi.org/10.1093/cercor/bhg100
https://doi.org/10.1093/cercor/bhg100
https://doi.org/10.1038/nrn1764
https://doi.org/10.1038/nrn1764
https://doi.org/10.1177/107385840200800109
https://doi.org/10.1177/107385840200800109
https://doi.org/10.1177/107385840200800109
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1162/neco.1994.6.1.38
https://doi.org/10.1162/neco.1994.6.1.38
https://doi.org/10.1162/neco.1994.6.1.38
https://doi.org/10.1162/neco.1994.6.1.38
https://doi.org/10.1162/neco.1994.6.1.38
https://doi.org/10.1162/neco.1994.6.1.38
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1038/npp.2010.113
https://doi.org/10.1038/npp.2010.113
https://doi.org/10.1038/npp.2010.113
https://doi.org/10.1038/npp.2010.113
https://doi.org/10.1121/1.1918172
https://doi.org/10.1121/1.1918172
https://doi.org/10.1121/1.1918172
https://doi.org/10.1121/1.1918172
https://doi.org/10.1523/JNEUROSCI.2177-14.2014
https://doi.org/10.1523/JNEUROSCI.2177-14.2014
https://doi.org/10.1523/JNEUROSCI.2177-14.2014
https://doi.org/10.1523/JNEUROSCI.2177-14.2014
https://doi.org/10.1073/pnas.1915984117
https://doi.org/10.1073/pnas.1915984117
https://doi.org/10.1073/pnas.1915984117
https://doi.org/10.1038/434567a
https://doi.org/10.1038/434567a
https://doi.org/10.1523/JNEUROSCI.23-12-05342.2003
https://doi.org/10.1523/JNEUROSCI.23-12-05342.2003
https://doi.org/10.1523/JNEUROSCI.23-12-05342.2003
https://doi.org/10.1523/JNEUROSCI.23-12-05342.2003
https://doi.org/10.1523/JNEUROSCI.23-12-05342.2003
https://doi.org/10.1523/JNEUROSCI.1376-17.2017
https://doi.org/10.1523/JNEUROSCI.1376-17.2017
https://doi.org/10.1523/JNEUROSCI.1376-17.2017
https://doi.org/10.1523/JNEUROSCI.1376-17.2017
https://doi.org/10.1016/j.neubiorev.2021.02.030
https://doi.org/10.1016/j.neubiorev.2021.02.030
https://doi.org/10.1016/j.neubiorev.2021.02.030
https://doi.org/10.1016/j.neubiorev.2021.02.030
https://doi.org/10.1016/j.neubiorev.2021.02.030
https://doi.org/10.1016/j.neubiorev.2021.02.030
https://doi.org/10.1073/pnas.0901835106
https://doi.org/10.1073/pnas.0901835106
https://doi.org/10.1073/pnas.0901835106
https://doi.org/10.1073/pnas.0901835106
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.1038/nn.4531
https://doi.org/10.1038/nn.4531
https://doi.org/10.1038/nn.4531
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1038/nature00974
https://doi.org/10.1038/nature00974
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1038/s41467-018-07161-6
https://doi.org/10.1038/s41467-018-07161-6
https://doi.org/10.1146/annurev-neuro-101419-011117
https://doi.org/10.1146/annurev-neuro-101419-011117
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1073/pnas.0909881106
https://doi.org/10.1073/pnas.0909881106
https://doi.org/10.1073/pnas.0909881106
https://doi.org/10.1073/pnas.0909881106
https://doi.org/10.1523/JNEUROSCI.1443-13.2013
https://doi.org/10.1523/JNEUROSCI.1443-13.2013
https://doi.org/10.1523/JNEUROSCI.1443-13.2013
https://doi.org/10.1523/JNEUROSCI.1443-13.2013

publishers.

and is not to be disseminated broadly.

yrighted by the American Psychological Association or one of its allied

This document is cop )
This article is intended solely for the personal use of the individual user

8 ZHOU AND BUONOMANO

frontal D1 neurons compensates for impaired temporal control of action in
dopamine-depleted mice. Current Biology, 27(1), 39—-47. https://doi.org/
10.1016/j.cub.2016.11.029

Kraus, B. J., Robinson, R. J., II, White, J. A., Eichenbaum, H., &
Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus
path integration. Neuron, 78(6), 1090-1101. https://doi.org/10.1016/j
.neuron.2013.04.015

Kunimatsu, J., Suzuki, T. W., Ohmae, S., & Tanaka, M. (2018). Different
contributions of preparatory activity in the basal ganglia and cerebellum
for self-timing. eLife, 7, Article e35676. https://doi.org/10.7554/eLife.3
5676

Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow, J. W.
(2015). NEURONAL MODELING. Single-trial spike trains in parietal
cortex reveal discrete steps during decision-making. Science, 349(6244),
184-187. https://doi.org/10.1126/science.aaa4056

Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in
the posterior parietal cortex of the macaque. Neuron, 38(2), 317-327.
https://doi.org/10.1016/S0896-6273(03)00185-5

Lim, S., & Goldman, M. S. (2013). Balanced cortical microcircuitry for
maintaining information in working memory. Nature Neuroscience, 16(9),
1306-1314. https://doi.org/10.1038/nn.3492

Liu, Y., Tiganj, Z., Hasselmo, M. E., & Howard, M. W. (2019). A neural
microcircuit model for a scalable scale-invariant representation of time.
Hippocampus, 29(3), 260-274. https://doi.org/10.1002/hipo.22994

Long, M. A., & Fee, M. S. (2008). Using temperature to analyse temporal
dynamics in the songbird motor pathway. Nature, 456(7219), 189-194.
https://doi.org/10.1038/nature07448

Long, M. A, Jin, D. Z., & Fee, M. S. (2010). Support for a synaptic chain
model of neuronal sequence generation. Nature, 468(7322), 394-399.
https://doi.org/10.1038/nature095 14

Lynch, G. F., Okubo, T. S., Hanuschkin, A., Hahnloser, R. H., & Fee, M. S.
(2016). Rhythmic continuous-time coding in the songbird analog of vocal
motor cortex. Neuron, 90(4), 877-892. https://doi.org/10.1016/j.neuron
.2016.04.021

MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011).
Hippocampal “time cells” bridge the gap in memory for discontiguous
events. Neuron, 71(4), 737-749. https://doi.org/10.1016/j.neuron.2011
.07.012

Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval
timing: Coincidence detection of oscillatory processes. Cognitive Brain
Research, 21(2), 139-170. https://doi.org/10.1016/j.cogbrainres.2004
.06.012

Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal
processing. Annual Review of Neuroscience, 27, 307-340. https://doi.org/
10.1146/annurev.neuro.27.070203.144247

Mauk, M. D., & Donegan, N. H. (1997). A model of Pavlovian eyelid
conditioning based on the synaptic organization of the cerebellum.
Learning & Memory (Cold Spring Harbor, N.Y.), 4(1), 130-158.
https://doi.org/10.1101/Im.4.1.130

Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D.
(2000). Timing mechanisms in the cerebellum: Testing predictions of a
large-scale computer simulation. The Journal of Neuroscience : The
Official Journal of the Society for Neuroscience, 20(14), 5516-5525.
https://doi.org/10.1523/INEUROSCI.20-14-05516.2000

Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code
for time in the striatum. Current Biology, 25(9), 1113-1122. https:/
doi.org/10.1016/j.cub.2015.02.036

Merchant, H., & Averbeck, B. B. (2017). The computational and neural basis
of rhythmic timing in medial premotor cortex. The Journal of Neurosci-
ence: The Official Journal of the Society for Neuroscience, 37(17), 4552—
4564. https://doi.org/10.1523/INEUROSCIL.0367-17.2017

Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the
perception and estimation of time. Annual Review of Neuroscience, 36(1),
313-336. https://doi.org/10.1146/annurev-neuro-062012-170349

Miall, C. (1989). The storage of time intervals using oscillating neurons.
Neural Computation, 1(3), 359-371. https://doi.org/10.1162/neco.1989.1
.3.359

Monosov, L. E., & Hikosaka, O. (2013). Selective and graded coding of
reward uncertainty by neurons in the primate anterodorsal septal region.
Nature Neuroscience, 16(6), 756-762. https://doi.org/10.1038/nn.3398

Monteiro, T., Rodrigues, F. S., Pexirra, M., Cruz, B. F., Gongalves, A. I,
Rueda-Orozco, P. E., & Paton, J. J. (2020). Using temperature to analyse
the neural basis of a latent temporal decision. bioRxiv. https://doi.org/10
.1101/2020.08.24.251827

Murakami, M., Shteingart, H., Loewenstein, Y., & Mainen, Z. F. (2017).
Distinct sources of deterministic and stochastic components of action
timing decisions in rodent frontal cortex. Neuron, 94(4), 908-919. e7.
https://doi.org/10.1016/j.neuron.2017.04.040

Murakami, M., Vicente, M. 1., Costa, G. M., & Mainen, Z. F. (2014). Neural
antecedents of self-initiated actions in secondary motor cortex. Nature
Neuroscience, 17(11), 1574-1582. https://doi.org/10.1038/nn.3826

Namboodiri, V. M., Mihalas, S., Marton, T. M., & Hussain Shuler, M. G.
(2014). A general theory of intertemporal decision-making and the
perception of time. Frontiers in Behavioral Neuroscience, 8, Article
61. https://doi.org/10.3389/fnbeh.2014.00061

Narayanan, N. S. (2016). Ramping activity is a cortical mechanism of
temporal control of action. Current Opinion in Behavioral Sciences, 8,
226-230. https://doi.org/10.1016/j.cobeha.2016.02.017

Nobre, A. C., & van Ede, F. (2018). Anticipated moments: Temporal
structure in attention. Nature Reviews Neuroscience, 19(1), 34-48.
https://doi.org/10.1038/nrn.2017.141

Orhan, A. E., & Ma, W.J. (2019). A diverse range of factors affect the nature
of neural representations underlying short-term memory. Nature Neuro-
science, 22(2), 275-283. https://doi.org/10.1038/s41593-018-0314-y

Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsdki, G. (2008).
Internally generated cell assembly sequences in the rat hippocampus.
Science, 321(5894), 1322-1327. https://doi.org/10.1126/science.1159775

Paton, J. J., & Buonomano, D. V. (2018). The neural basis of timing:
Distributed mechanisms for diverse functions. Neuron, 98(4), 687-705.
https://doi.org/10.1016/j.neuron.2018.03.045

Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the
past to imagine the future: the prospective brain. Nature Reviews Neuro-
science, 8(9), 657-661. https://doi.org/10.1016/10.1038/nrn2213

Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal
activity in monkey ventral striatum related to the expectation of reward.
The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 12(12), 4595-4610. https://doi.org/10.1523/JNEUROSCI
.12-12-04595.1992

Shimbo, A., Izawa, E.-I., & Fujisawa, S. (2021). Scalable representation of
time in the hippocampus. Science Advances, 7(6), Article eabd7013.
https://doi.org/10.1126/sciadv.abd7013

Simen, P., Balci, F., de Souza, L., Cohen, J. D., & Holmes, P. (2011). A
model of interval timing by neural integration. The Journal of Neurosci-
ence: The Official Journal of the Society for Neuroscience, 31(25), 9238—
9253. https://doi.org/10.1523/INEUROSCL.3121-10.2011

Slayton, M. A., Romero-Sosa, J. L., Shore, K., Buonomano, D. V., &
Viskontas, I. V. (2020). Musical expertise generalizes to superior temporal
scaling in a Morse code tapping task. PLOS ONE, 15(1), Article
€0221000. https://doi.org/10.1371/journal.pone.0221000

Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons
control judgment of time. Science, 354(6317), 1273—1277. https://doi.org/
10.1126/science.aah5234

Sosa, J. L. R., Buonomano, D., & Izquierdo, A. (2021). The orbitofrontal
cortex in temporal cognition. Behavioral Neuroscience, 135(2), 154-164.
https://doi.org/10.1037/bne0000430

Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J.
(2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron,
78(2), 364-375. https://doi.org/10.1016/j.neuron.2013.01.039


https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.cub.2016.11.029
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.7554/eLife.35676
https://doi.org/10.7554/eLife.35676
https://doi.org/10.7554/eLife.35676
https://doi.org/10.7554/eLife.35676
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1016/S0896-6273(03)00185-5
https://doi.org/10.1016/S0896-6273(03)00185-5
https://doi.org/10.1038/nn.3492
https://doi.org/10.1038/nn.3492
https://doi.org/10.1038/nn.3492
https://doi.org/10.1002/hipo.22994
https://doi.org/10.1002/hipo.22994
https://doi.org/10.1002/hipo.22994
https://doi.org/10.1038/nature07448
https://doi.org/10.1038/nature07448
https://doi.org/10.1038/nature09514
https://doi.org/10.1038/nature09514
https://doi.org/10.1016/j.neuron.2016.04.021
https://doi.org/10.1016/j.neuron.2016.04.021
https://doi.org/10.1016/j.neuron.2016.04.021
https://doi.org/10.1016/j.neuron.2016.04.021
https://doi.org/10.1016/j.neuron.2016.04.021
https://doi.org/10.1016/j.neuron.2016.04.021
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1101/lm.4.1.130
https://doi.org/10.1101/lm.4.1.130
https://doi.org/10.1101/lm.4.1.130
https://doi.org/10.1101/lm.4.1.130
https://doi.org/10.1101/lm.4.1.130
https://doi.org/10.1523/JNEUROSCI.20-14-05516.2000
https://doi.org/10.1523/JNEUROSCI.20-14-05516.2000
https://doi.org/10.1523/JNEUROSCI.20-14-05516.2000
https://doi.org/10.1523/JNEUROSCI.20-14-05516.2000
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1523/JNEUROSCI.0367-17.2017
https://doi.org/10.1523/JNEUROSCI.0367-17.2017
https://doi.org/10.1523/JNEUROSCI.0367-17.2017
https://doi.org/10.1523/JNEUROSCI.0367-17.2017
https://doi.org/10.1146/annurev-neuro-062012-170349
https://doi.org/10.1146/annurev-neuro-062012-170349
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1038/nn.3398
https://doi.org/10.1038/nn.3398
https://doi.org/10.1038/nn.3398
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1016/j.neuron.2017.04.040
https://doi.org/10.1016/j.neuron.2017.04.040
https://doi.org/10.1016/j.neuron.2017.04.040
https://doi.org/10.1016/j.neuron.2017.04.040
https://doi.org/10.1016/j.neuron.2017.04.040
https://doi.org/10.1016/j.neuron.2017.04.040
https://doi.org/10.1038/nn.3826
https://doi.org/10.1038/nn.3826
https://doi.org/10.1038/nn.3826
https://doi.org/10.3389/fnbeh.2014.00061
https://doi.org/10.3389/fnbeh.2014.00061
https://doi.org/10.3389/fnbeh.2014.00061
https://doi.org/10.3389/fnbeh.2014.00061
https://doi.org/10.1016/j.cobeha.2016.02.017
https://doi.org/10.1016/j.cobeha.2016.02.017
https://doi.org/10.1016/j.cobeha.2016.02.017
https://doi.org/10.1016/j.cobeha.2016.02.017
https://doi.org/10.1016/j.cobeha.2016.02.017
https://doi.org/10.1016/j.cobeha.2016.02.017
https://doi.org/10.1038/nrn.2017.141
https://doi.org/10.1038/nrn.2017.141
https://doi.org/10.1038/nrn.2017.141
https://doi.org/10.1038/nrn.2017.141
https://doi.org/10.1038/s41593-018-0314-y
https://doi.org/10.1038/s41593-018-0314-y
https://doi.org/10.1126/science.1159775
https://doi.org/10.1126/science.1159775
https://doi.org/10.1126/science.1159775
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1016/10.1038/nrn2213
https://doi.org/10.1016/10.1038/nrn2213
https://doi.org/10.1016/10.1038/nrn2213
https://doi.org/10.1523/JNEUROSCI.12-12-04595.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04595.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04595.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04595.1992
https://doi.org/10.1126/sciadv.abd7013
https://doi.org/10.1126/sciadv.abd7013
https://doi.org/10.1126/sciadv.abd7013
https://doi.org/10.1523/JNEUROSCI.3121-10.2011
https://doi.org/10.1523/JNEUROSCI.3121-10.2011
https://doi.org/10.1523/JNEUROSCI.3121-10.2011
https://doi.org/10.1523/JNEUROSCI.3121-10.2011
https://doi.org/10.1371/journal.pone.0221000
https://doi.org/10.1371/journal.pone.0221000
https://doi.org/10.1371/journal.pone.0221000
https://doi.org/10.1371/journal.pone.0221000
https://doi.org/10.1126/science.aah5234
https://doi.org/10.1126/science.aah5234
https://doi.org/10.1126/science.aah5234
https://doi.org/10.1126/science.aah5234
https://doi.org/10.1037/bne0000430
https://doi.org/10.1037/bne0000430
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1016/j.neuron.2013.01.039

publishers.

0

y the American Psychological Association or one of its allied

ghted b

This document is copyri
This article is intended solely for the t

personal use of the individual user and is not to be disseminated broadly.

NEURAL POPULATION CLOCKS 9

Taxidis, J., Pnevmatikakis, E. A., Dorian, C. C., Mylavarapu, A. L., Arora,
J.S., Samadian, K. D., Hoffberg, E. A., & Golshani, P. (2020). Differential
emergence and stability of sensory and temporal representations in
context-specific hippocampal sequences. Neuron, 108(5), 984-998. e9.
https://doi.org/10.1016/j.neuron.2020.08.028

Treisman, M. (1963). Temporal discrimination and the indifference interval.
Implications for a model of the “internal clock”. Psychological Mono-
graphs, 77(13), 1-31. https://doi.org/10.1037/h0093864

Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., & Moser,
E. L. (2018). Integrating time from experience in the lateral entorhinal
cortex. Nature, 561(7721), 57-62. https://doi.org/10.1038/s41586-018-
0459-6

Tulving, E. (Ed.). (2005). Episodic memory and autonoesis: Uniquely
human? Oxford University Press.

Wang, J., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible timing
by temporal scaling of cortical responses. Nature Neuroscience, 21(1),
102-110. https://doi.org/10.1038/s41593-017-0028-6

Xu, M., Zhang, S. Y., Dan, Y., & Poo, M. M. (2014). Representation of
interval timing by temporally scalable firing patterns in rat prefrontal
cortex. Proceedings of the National Academy of Sciences of the United

States of America, 111(1),
1321314111

Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons.
Nature, 447(7148), 1075-1080. https://doi.org/10.1038/nature05852

Zhou, S., Masmanidis, S. C., & Buonomano, D. V. (2020). Neural sequences
as an optimal dynamical regime for the readout of time. Neuron, 108(4),
651-658. e5. https://doi.org/10.1016/j.neuron.2020.08.020

Zhou, S., Masmanidis, S. C., & Buonomano, D. V. (2022). Encoding time in
neural dynamic regimes with distinct computational tradeoffs. PLOS
Computational Biology, 18(3), Article €1009271. https://doi.org/10
.1371/journal.pcbi. 1009271

Zoltowski, D. M., Latimer, K. W., Yates, J. L., Huk, A. C., & Pillow, J. W.
(2019). Discrete stepping and nonlinear ramping dynamics underlie
spiking responses of LIP neurons during decision-making. Neuron,
102(6), 1249-1258. el0. https://doi.org/10.1016/j.neuron.2019.04.031

480-485. https://doi.org/10.1073/pnas

Received October 27, 2021
Revision received March 2, 2022
Accepted March 14, 2022 =


https://doi.org/10.1016/j.neuron.2020.08.028
https://doi.org/10.1016/j.neuron.2020.08.028
https://doi.org/10.1016/j.neuron.2020.08.028
https://doi.org/10.1016/j.neuron.2020.08.028
https://doi.org/10.1016/j.neuron.2020.08.028
https://doi.org/10.1016/j.neuron.2020.08.028
https://doi.org/10.1037/h0093864
https://doi.org/10.1037/h0093864
https://doi.org/10.1038/s41586-018-0459-6
https://doi.org/10.1038/s41586-018-0459-6
https://doi.org/10.1038/s41586-018-0459-6
https://doi.org/10.1038/s41593-017-0028-6
https://doi.org/10.1038/s41593-017-0028-6
https://doi.org/10.1073/pnas.1321314111
https://doi.org/10.1073/pnas.1321314111
https://doi.org/10.1073/pnas.1321314111
https://doi.org/10.1038/nature05852
https://doi.org/10.1038/nature05852
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1371/journal.pcbi.1009271
https://doi.org/10.1371/journal.pcbi.1009271
https://doi.org/10.1371/journal.pcbi.1009271
https://doi.org/10.1371/journal.pcbi.1009271
https://doi.org/10.1016/j.neuron.2019.04.031
https://doi.org/10.1016/j.neuron.2019.04.031
https://doi.org/10.1016/j.neuron.2019.04.031
https://doi.org/10.1016/j.neuron.2019.04.031
https://doi.org/10.1016/j.neuron.2019.04.031
https://doi.org/10.1016/j.neuron.2019.04.031

	Neural Population Clocks: Encoding Time in Dynamic Patterns of Neural Activity
	Ramping Activity
	Neural Population Clocks
	Quantifying and Contrasting Different Neural Codes for Time
	Conclusions
	References


