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Abstract: Gram-positive bacteria are some of the earliest known life forms, diverging from gram-
negative bacteria 2 billion years ago. These organisms utilize sortase enzymes to attach proteins to
their peptidoglycan cell wall, a structural feature that distinguishes the two types of bacteria. The
transpeptidase activity of sortases make them an important tool in protein engineering applications,
e.g., in sortase-mediated ligations or sortagging. However, due to relatively low catalytic efficiency,
there are ongoing efforts to create better sortase variants for these uses. Here, we use bioinformatics
tools, principal component analysis and ancestral sequence reconstruction, in combination with
protein biochemistry, to analyze natural sequence variation in these enzymes. Principal component
analysis on the sortase superfamily distinguishes previously described classes and identifies regions
of relatively high sequence variation in structurally-conserved loops within each sortase family, in-
cluding those near the active site. Using ancestral sequence reconstruction, we determined sequences
of ancestral Staphylococcus and Streptococcus Class A sortase proteins. Enzyme assays revealed that
the ancestral Streptococcus enzyme is relatively active and shares similar sequence variation with
other Class A Streptococcus sortases. Taken together, we highlight how natural sequence variation
can be utilized to investigate this important protein family, arguing that these and similar techniques
may be used to discover or design sortases with increased catalytic efficiency and/or selectivity for
sortase-mediated ligation experiments.

Keywords: sortases; enzymes; protein engineering; principal component analysis; network analysis;
bioinformatics; ancestral sequence reconstruction; evolution

1. Introduction

Gram-positive bacteria accounted for 76% of all bloodstream infections in 2000, up
from 62% in 1995 [1]. Although varied by region and over time, these numbers have
stayed relatively consistent for the past 20 years [2—4]. These organisms are defined in
part by their thick peptidoglycan layer as compared to gram-negative bacteria, which
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they diverged from roughly 2 billion years ago [1,5,6]. Sortase enzymes are critical for the
ability of gram-positive bacteria to attach proteins to the cell exterior, as well as to build
the pili [7-10]. Due to this activity, sortases are a potential therapeutic target for antibiotic
development, and they are actively-used tools for protein engineering [11,12]. Several of
the infections mentioned above are caused by pathogenic Staphylococci and Streptococci,
e.g., Staphylococcus aureus and epidermidis, and Streptocococcus pneumoniae, pyogenes, and
agalactige [1]. Therefore, a greater understanding of proteins from these organisms may
prove valuable in the fight against gram-positive bacterial infection.

There are six main classes of sortase (class A-F); the first-characterized and best-studied
bacterial sortase is the Class A sortase from Staphylococcus aureus (saSrtA) [13]. This enzyme
recognizes the Cell Wall Sorting Signal (CWSS) sequence LPXTG, where X = any amino acid.
Following cleavage of the initial protein target, an acyl-enzyme intermediate is formed. A
secondary substrate then acts as a nucleophile, and a final ligation product is generated [9].
Peptidase activity occurs between the Thr and Gly residues, and positions are defined as
P4 = Leu, P3 = Pro, P2 =X, P1 = Thr, and P1’ = Gly. Other Class A sortases, e.g., Streptococcus
pyogenes SrtA (spySrtA), are predicted to contain a closely related recognition mechanism,
and our group recently showed that recognition of the P1’ residue is partially mediated by
residues in the 34-35 and 37-38 loops, highlighting the importance of these conserved
structural features [14,15].

The catalytic activity of sortases make them an exciting tool in protein engineering,
where sortase-mediated ligation (SML) or sortagging techniques are commonly employed
to create a variety of products, including the recent development of an in vivo assay using
engineered saSrtA to label amyloid-f3 protein in human cerebrospinal fluid and the imple-
mentation of ligation site switching to allow assembly of multiple fragments using a single
sortase enzyme, amongst many others [11,16-18]. Despite their uses, sortagging applica-
tions are hindered by the poor relative enzymatic efficiency of saSrtA and other naturally
occurring sortases studied to date [19-21]. Directed evolution studies performed in 2011
were successful in generating a saSrtA pentamutant (P94R/D160N/D165A /K190E/K196T)
with an overall catalytic efficiency increase >100-fold [21]. Engineering of additional
variants of saSrtA and other Class A sortases is an area of ongoing work. An example
includes the incorporation of two additional mutations to the saSrtA pentamutant at the
calcium-binding site, which led to a calcium-independent saSrtA heptamutant [20,22-24].
Other studies use directed evolution or other engineering techniques to alter the substrate
specificity of saSrtA, e.g., a recent study that reported an saSrtA variant which recognizes
an LMVGG substrate motif in the amyloid-f3 protein [17].

Variation in substrate selectivity also naturally exists amongst bacterial sortases. Al-
though saSrtA is selective for the LPXTG target sequence, this is not true of all Class A
sortases. Work from ourselves and others revealed that other Class A sortases can recognize
a variety of amino acids at multiple positions [14,15,25,26]. A complete understanding of
the selectivity determinants of these alternate preferences is not known. Furthermore, there
are six known classes of sortases (A—F). Many of these classes share a similar recognition
motif as Class A sortases, including Classes C-F (Class C: [I/L][P/A]XTG; Class D: LPNTA;
Class E: LAXTG,; Class F: less is known, but it is likely similar to SrtA, LPXTG) [27,28].
However, the recognition motif of Class B sortases is NP[Q/K]JTN [27]. Taken together, we
hypothesize that investigating sequence variation of individual classes of sortases, as well
as the sortase superfamily, may identify sortases with improved catalytic efficiency and/or
unique recognition motifs.

Ancestral sequence reconstruction (ASR) is a powerful technique that combines our
growing knowledge of the proteomes of extant organisms with statistical methods in
order to predict the sequences of ancestral proteins [29]. These ancestral proteins can then
be characterized, providing evolutionary clues to sequence—function relationships in a
growing number of protein systems, including classic models, e.g., recent work on the origin
of cooperativity in hemoglobin [30]. A number of studies suggest that ancestral proteins
are less selective for target ligands and more thermostable than extant sequences [31].
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Therefore, we propose that ASR can be used as a method for identifying improved sortase
sequences for protein engineering.

Here, we used principal component analysis (PCA) and ASR to study the sortase
superfamily and Class A sortase sequence variation, respectively. Using PCA, we show
that the main source of natural variation within sortase families occurs in a number of
structurally-conserved loops near the active site. Using ASR, we characterized ancestral
proteins of the genera Staphylococus and Streptococcus. While our ancestral Staphylococcus
protein revealed lower relative activity than saSrtA, the ancestral Streptococcus enzyme
had the second-highest activity of the four Streptococcus SrtA proteins studied in similar
experiments [14,15]. Interestingly, the ancestral Streptococcus SrtA showed markedly in-
creased activity and P1 promiscuity, as compared to its extant S. pneumoniae relative [14,15].
Although ancestral sortases from nodes that included multiple genera were expressed and
purified, these enzymes were catalytically inactive, due to a number of potential factors.
Overall, our work suggests that the ancestral Streptococcus protein was relatively more
active as compared to its extant relatives and that the ASR technique provides a viable
approach for exploring sequence variation in sortases from the same genera.

2. Results
2.1. Principal Component Analysis (PCA) of Bacterial Sortases

In order to gain a better understanding of global sequence patterns in the sortase
superfamily, we used PCA to group and analyze 39,188 sortase sequences from all classes.
This work builds off of recent studies that utilized a sequence similarity network to classify
sortases [27]. Briefly, we downloaded all sequences annotated as “sortase” from UniProt
and aligned them by MAFFT, followed by PCA [32,33]. The amino acids in each sequence
were then classified by five parameters: hydrophobicity, disorder propensity, molecular
weight, charge, and occupancy (defined as a binary value, where 1 = amino acid and
0 = insertion or deletion (indel) at this position) [34,35]. PCA was then performed on the
resulting matrix. For visualization purposes this data was projected onto the first three
principal components which describe 42.7% of the total variance (Figure S1a). Additionally,
we performed Hierarchical Gaussian Mixture Model clustering of the sortase superfamily,
as described in the Materials and Methods. On the entire principal component space
we hierarchically fit a two Gaussian mixture model to the data until each subcluster
reached a minimum size or the Gaussian mixture modeling process failed to identify two
distinct Gaussians [36]. The resulting tree from this process can accurately distinguish
the known sortase classes, as well as extract small subclusters of sortases and present
them in a readable manner (Figure 1a). We also plotted our PCA using the top three
principal components (Figure S1b). For visualization, we ran PCA on a subset of the
data, including 9427 sequences that were filtered for low numbers of indels and manually
verified (Figure 1b).

This analysis verified previous classifications of sortases based on sequence alignment,
network, and phylogenetic tree analyses [27,28,37]. For example, principal component 1
(PC1) separates the sortase F proteins from the rest of the superfamily and PC2 captures
the separation between sortase B and the other sortase families, as well as sortase E and
sortase A. These analyses allowed us to identify the regions of highest variability within
each class based on the parameters defined above. We plotted our data onto previously
determined sortase A structures by taking the distance from the centroid for each position
in the multiple sequence alignment (Figure Slc). Consistent with expectations, we found
that secondary structure elements are highly conserved, including the “sortase fold” f3-
barrel core and class-specific x-helices (Figures 1c,d and S1d). Additionally, PCA revealed
that the highest degree of variability occurs in structurally conserved loops adjacent to the
substrate recognition pocket (Figures 1c,d and S1d).

Given that the 36—p7 loop has been shown to be intimately involved in sortase
substrate recognition in Staphylococcus aureus SrtA (saSrtA), we were intrigued that PCA
revealed similar levels of variability in the 34-35 and 37-38 loops [38]. In the case of 3738,
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the largest amount of variation in the 36—-37 and 37-38 loops (Figure S2) [45,46]. Although
these sequences are less similar than the Staphylococcus proteins, we again observe relatively
few amino acid substitutions in residues that directly interact with the ligand (Figure 5b).
Here, we used the LPATS peptide from spySrtA-LPATS (PDB ID 7540) for reference. We
do observe amino acid variants in the 37-(38 loop residues of ancStrepSrtA as compared
to spSrtA that may explain the increased activity of the ancestral protein. As we have
previously described, an interaction between the 362 (or two residues from the C-terminus
of the 36 strand) R184 and two residues in the spSrtA 37-38 loop, B7-p8* (or 1 residue
C-terminal to the catalytic Cys) E208 and 37-B8 ! (or 1 residue N-terminal to the catalytic
Arg) E214, weakens the overall activity of spSrtA [14]. In contrast, spySrtA does not contain
this interaction and shows much higher relative activity [15]. AncStrepSrtA contains a
B7-p8*! Thr, B7-p8 ! Gln, and B6 2 Val, suggesting that this interaction is also not present
in this protein (Figure 5c). We do, however, observe that ancStrepSrtA likely conserves the
two favorable interactions previously described that are mediated by 37-38 loop residues,
including an intra-loop hydrogen bond between B7-382 Asp and B7-38*° Thr, as well
as a hydrophobic interaction between the 37-B8* Tyr residue and B4-p5*2 Phe (or three
residues C-terminal to the catalytic His) (Figure 5c) [14,15].

2.4. Investigating Ancestral Proteins at Distant Nodes

Finally, we wanted to test the activity of ancestral SrtA proteins at more distant nodes
in our ASR analyses. We chose three sequences with relatively low sequence identity to
ancStaphSrtA and ancStrepSrtA that were also distinct from each other (Figure 2, Table 2).
All protein sequences are in the Supplemental Information. We named the proteins for
their node characterization in the ASR, ancNode-408, ancNode-503, and ancNode-547.

Table 2. Comparative pairwise sequence identities of ancestral proteins in this study.

ancStaph ancStrep ancNode-408  ancNode-503  ancNode-547
ancStaph X
ancStrep 30% (35/117) X
ancNode-408  35% (47/133)  51% (77/151) X
. . 78%
ancNode-503  33% (50/150)  56% (76,/136) (156/200) X
o o 64% 77%
ancNode-547  54% (64/118)  59% (85/145) (147/199) (168/199) X

We expressed and purified these proteins as described in the Materials and Methods.
Notably, only fractions corresponding to the monomeric peak were retained following size
exclusion chromatography, and based on their migration, these proteins are not aggregated
and retain a similar radius of gyration as the wild-type proteins (Figure S3). Unfortunately,
when evaluated using our FRET-based assay, all three proteins were catalytically inactive
for sequences containing P1’ Ala, Gly, and Ser residues. Multiple sequence alignment of the
ancestral proteins in this study suggests why these proteins may be catalytically inactive
(Figure 6). Specifically, the manual refinement of the multiple sequence alignment used
for ASR aimed to reduce numbers of gaps in the overall alignment, thereby optimizing
alignments in areas of conserved secondary structure elements, e.g., the eight-stranded
[3-barrel structure conserved in the characterized sortase fold [9,14]. In doing so, we predict
this introduced gaps in the structurally-conserved loops near the active site, e.g., the 34-35
and 7-f38 loops previously mentioned here (Figure 6). The 36—37 loop appears largely
conserved in length, perhaps indicative of a higher degree of length conservation in this
structural feature, as well as the 33—34 loop, which, while spatially more distant from the
active site, contains residues previously implicated in ligand recognition (Figure 6) [44].
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While ancestral proteins at deep nodes that included multiple genera as descendants
were found to be inactive, the fact that they were able to be expressed and purified using
the same methods as those used for extant proteins suggested that the central sortase fold
remained intact. Future work to repeat the ASR with careful attention to loop lengths,
as well as introduction of extant 34-f35 and 3637 loops into ancestral proteins, could
provide a means for restoring activity to these enzymes, and may elucidate additional
molecular characteristics of the contribution of these individual regions to the activity and
selectivity of sortases. Such information would be very useful in future design efforts for
sortase enzymes with improved catalytic efficiency or altered specificity. It would also be
interesting to perform structural studies on these ancestral proteins, providing insights into
potential differences compared to extant proteins with respect to the stereochemistry of
target recognition.

There are a number of potential tools that can be used to examine sequence vari-
ation in bacterial sortases. Here, we utilized network and evolutionary approaches to
investigate natural sequence variation. We argue that with the existence of thousands of
sortase enzymes in multiple classes, there is still much to be discovered in extant sortase
sequences [27,48]. In addition, directed evolution has proved to be an exciting technique
to engineer sortase variation in vitro [17,21,49]. Both approaches, investigating natural
sequences, as well as introducing new variation, will allow for a deeper understanding of
the sequence determinants of activity and target selectivity, and can profoundly impact the
study of the sortase enzyme family, both in protein engineering and for therapeutic uses.

4. Materials and Methods

Principal component analysis (PCA). Initial sequences were obtained from UniProt and
an alignment was generated by MAFFT [32,33]. Initially, each sequence was given a score
for the number of gaps present for each residue and the filtered alignment was realigned
by MAFFT version 7. Subsequent analysis included all sequences without taking gaps into
consideration (Figure 2b vs. Figures 2a and S2c). The sortase multiple sequence alignment
(MSA) was converted to a tensor of sequences, characterized by MSA position and chemical
property of each amino acid. Each amino acid was associated with 4 biochemical traits
and a binary trait occupancy, as described. Each trait was normalized to the range from
zero to one. In addition, gaps were given the average value of the matrix column with
the exception of occupancy so that they would not contribute to variance of the column.
Gapped positions were given an occupancy score of zero (for the other chemical properties
gapped positions received the average score). After translating the MSA, the resulting
tensor was flattened to matrix stacking of the chemical properties and was re-centered
so that the matrix had a column-wise mean of zero. Principal component analysis was
performed on the matrix by the singular value decomposition algorithm provided in
the scikit learn Python package [50]. Clustering was performed by a Gaussian mixture
model provided in the scikit-learn 1.1 Python package [50]. Optimal cluster numbers
were scored by Bayesian information criterion. Visualization was performed using a script
written in Python with matplotlib. Programs were run using default parameters, unless
otherwise noted.

Ancestral Sequence Reconstruction. Nonredundant sortase sequences were sourced
from the NCBI protein database [51]. Cluster Database at High Intensity with Tolerance
program (CD-HIT) was used to filter out highly similar (>95%) identical sequences sourced
from NCBI [52,53]. An all-vs-all basic local alignment search tool (BLAST) was used on
the remaining sortase sequences, producing a sortase network which informed the as-
signment of sortase class groups (A-F) by using labeled sortase sequences to assign a
class to each grouping [54]. Proteins surrounding the class A group were selected and
an additional round of filtering was performed, where all highly similar proteins (>90%)
were filtered out via CD-HIT. The remaining pool of sortase sequences was then sub-
jected to alignment by MUItiple Sequence Comparison by Log-Expectation (MUSCLE),
and then manually curated to remove any outlying sequences [55]. Seven Class B sortase
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sequences (from Streptococcus suis, Streptococcus oralis, Streptococcus pneumoniae, Staphy-
lococcus aureus, Bacillus anthracis, Listeria monocytogenes, and Enterococcus faecalis) were
added to anchor the resulting phylogenetic tree. The final alignment contained a total of
400 sequences. SrtA structures sourced from the PDB database were structurally aligned
and sequence similarity between structural sequences (via PDB) and sortase sequences
from the multi-sequence alignment (MSA) (via ASR) then informed the true alignment of
the MSA. A phylogenetic tree was constructed from the MSA via phyml 3.0 and ancestral
sequences were then generated at each node via multi-channel access XML (maxml) [56].
These latter steps were run using a python script. The aLRT values for proteins char-
acterized were ancStaphSrtA = 15.6525, ancStrepSrtA = 13.0091, ancNode-408 = 17.7893,
ancNode-503 = 28.8809, and ancNode-547 = 17.5286. Programs were run using default pa-
rameters, unless otherwise noted.

Protein expression and purification. Recombinant ancestral proteins (ancStaphSrtA, anc-
StrepSrtA, ancNode-408, ancNode-503, and ancNode-547) were expressed using Escherichia
coli BL21 (DE3) cells in the pET28a(+) vector (Genscript), as previously described [14,15].
Transformed cells were grown at 37 °C in LB media to an ODgg 0.6-0.8, followed by
induction using 0.15 mM IPTG for 18-20 h at 18 °C. The cells were harvested in lysis buffer
[0.05M Tris pH 7.5, 0.15 M NaCl, 0.5 mM ethylenediaminetetraacetic acid (EDTA)] and
whole cell lysate was clarified using centrifugation, followed by filtration of the supernatant.
The supernatant was initially purified using a 5 mL HisTrap HP column (Cytiva), with
wash [0.05 M Tris pH 7.5, 0.15 M NaCl, 0.02 M imidazole, 0.001 M TCEP] and elution [wash
buffer with 0.3 M imidazole] buffers.

Following immobilized metal affinity chromatography, the protein was concentrated
using an Amicon Ultra-15 Centrifugal Filter Unit (10,000 NWML) followed by size exclusion
chromatography (SEC) using a HiLoad 16/600 Superdex 75 column (Cytiva), with SEC
running buffer [0.05 M Tris pH 7.5, 0.15 M NaCl, 0.001 M TCEP]. Purified protein fractions
corresponding to the monomeric peak were pooled and concentrated. Purity was assessed
using SDS-PAGE. Protein concentrations were determined using theoretical extinction
coefficients calculated using ExXPASy ProtParam [57]. Protein not immediately used was
flash-frozen in SEC running buffer and stored at —80 °C.

Fluorescence Assay for Sortase Activity. Model peptide substrates with the general
structure Abz-LPATXG-K(Dnp) (Abz = 2-aminobenzoyl, Dnp = 2,4-dinitrophenyl) were
synthesized and purified as previously described [14]. Reactions were analyzed using a
Biotek Synergy H1 plate reader as previously described [14,15]. Briefly, reactions were
performed a 100 pL reaction volume consisting of 5 uM sortase, 50 uM peptide substrate,
5 mM hydroxylamine nucleophile, and 10% (v/v) 10 x sortase reaction buffer (500 mM Tris
pH 7.5, 1500 mM NaCl, and 100 mM CaCly). The reactions were performed in triplicate
and the fluorescence intensity of each well was measured at 2-min time intervals over a
2-h period at room temperature (Aex = 320 nm, Aepy = 420 nm, and detector gain = 75). For
each substrate sequence, the background fluorescence of the intact peptide in the absence
of enzyme was subtracted from the observed experimental data. Background-corrected
fluorescence data was then normalized to the fluorescence intensity of a benchmark reaction
between wild-type saSrtA and Abz-LPATGG-K(Dnp), as previously described [14,15].

Structural analyses. Alignments were visualized using AliView [58]. Phylogenetic trees
were visualized with FigTree v1.4.3 [59]. Homology modeling was performed using the
SwissModel web interface [41,43]. Structural analyses and figure rendering were done
using PyMOL. Enzyme assay graphs were prepared using Kaleidagraph. The Streptococcus
pneumoniae SrtA structure was downloaded from the AlphaFold Protein Structure Database
(entry number Q8DPM3) [45,46].

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/bacterial020011/s1, Figure S1: Principal Component Analysis
(PCA) of sortase superfamily; Figure S2: Structures of spSrtA from the AlphaFold database and ho-
mology modeling; Figure S3: Size exclusion chromatography of ancestral SrtA proteins; Recombinant
protein sequences used in this study [14,25].
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