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Abstract.

Background: Machine learning is a promising tool for biomarker-based diagnosis of Alzheimer’s disease (AD). Performing
multimodal feature selection and studying the interaction between biological and clinical AD can help to improve the performance
of the diagnosis models.

Objective: This study aims to formulate a feature ranking metric based on the mutual information index to assess the relevance
and redundancy of regional biomarkers and improve the AD classification accuracy.

Methods: From the AD Neuroimaging Initiative (ADNI), 722 participants with three modalities, including florbetapir-PET,
flortaucipir-PET, and MRI, were studied. The multivariate mutual information metric was utilized to capture the redundancy and
complementarity of the predictorsand develop a feature ranking approach. This was followed by evaluating the capability of single-
modal and multimodal biomarkers in predicting the cognitive stage.

Results: Although amyloid-p deposition is an earlier event in the disease trajectory, tau PET with feature selection yielded a higher
early-stage classification F1-score (65.4%) compared to amyloid-B PET (63.3%) and MRI (63.2%). The SVC multimodal scenario
with feature selection improved the F1-score to 70.0% and 71.8% for the early and late-stage, respectively. When age and risk
factors were included, the scores improved by 2 to 4%. The Amyloid-Tau-Neurodegeneration [AT(N)] framework helped to
interpret the classification results for different biomarker categories.

Conclusion: The results underscore the utility of a novel feature selection approach to reduce the dimensionality of multimodal
datasets and enhancemodel performance. The AT(N) biomarker framework can help to explore the misclassified cases by revealing
the relationship between neuropathological biomarkers and cognition.
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INTRODUCTION suggesting that there will be over 13.8 million people
with dementia by 2050 in the US [1]. A misfolding and

With the aging of society, Alzheimer’s disease (AD)  abnormal deposition of specific proteins in the brain is

is bound to affect more people, with projections  recognized as the pathological cause for the initiationand
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progression of this neurodegenerative disease. AD is
irreversible, causing significant memory and behavioral
issues. Therefore, researchers are keen to identify its
earliest manifestations, even at the pre-symptomatic
stage, to plan for and more effectively take advantage of
emerging early treatment and therapeutic interventions.
Thus, effective diagnosis of AD and its early stage, i.e.,
mild cognitive impairment (MCI), specifically using
computer-aided methods, has attracted extensive
attention inrecent years [2]-[14]

Several well-established biomarkers associated with
the pathology of AD have been identified and studied by
researchers for decades. Magnetic Resonance Imaging
(MRI) as a structural indicator for brain atrophy,
measures of tau and amyloid-f (AB) from Cerebrospinal
Fluid (CSF),and AP accumulation fromregional Positron
Emission Tomography (PET) and hypometabolism from
fluorodeoxyglucose (FDG) PET are among the most
remarkable biomarkers for AD. In recent years, several
tau PET tracerssuchas (11)C-PBB3, (18)F-AV 1451, and
(18)F-THK have been developed, which enable in-vivo
visualization of tau pathology in brain regions. Tau
imaging can help to facilitate disease staging and
diagnosis. Compared to AP, tau is a delayed event and is
more related to cognitive decline [15], [16]. The
interrelatedness of these two biomarkers has been
extensively studied [17]-[21]. Moreover, the temporal
ordering of biomarkers provides added insight into AD
staging. Based on such biomarkers ordering, a disease
progression score has been defined in [22]. Biomarkers
of AP plaque, i.e., amyloid PET and CSF AP, represent
the initiating events of AD that happen during the
cognitively normal stage. On the other hand, biomarkers
of neurodegeneration, including MRI, FDG-PET, and
CSF total tau, arelater events that correlate with cognitive
decline [23]. Besides the pathological biomarkers, there
are other contributing variables in AD diagnosis, such as
risk factors (age, gender, and APOE e4) and protective
factors (cognitive reserve, brain resilience, and
resistance). The variability of the factors, including age,
gender, APOE e4 genotype, and year of education
between AD subtypes, can be used to address the disease
heterogeneity to some extent.

In an effort to present a biological definition of AD,
biomarkers are pathologically grouped into three classes.
This schemeis knownas AT(N) with “A”,“T”,and “(N)”
representing AP, tau, and neurodegeneration biomarker
groups, respectively. Based on this system, each

biomarker class is labeled as positive or negative through
defined cut-points to determine the overall pathology
status [24]. The AT(N) framework attempts to reflect the
interactions between neuropathological changes
(characterized by biomarkers profiles) and the cognitive
stage (determined clinically through symptoms). This
framework can serve as a helpful supplementary tool
when interpreting the results of a computer-aided
diagnosis system.

While each neuroimaging modality provides distinct
features and measures for AD diagnosis, their fusion
consolidates their unique strengths when using effective
machine learning and deep learning models [25]-[29]. In
retrospect, few multimodal studies include tau imaging
for computer-aided diagnosis of AD.

An initial step required for the machine learning-
based diagnosis is the optimal datarepresentation through
a feature extraction procedure. Feature extraction
methods can be categorized as voxel-based, region of
interest (ROI)-based, and patch-based techniques.
Amongthem, ROI-based features are more common due
to their consistency and lower dimensionality [25], [30].
In AD studies, the sample size is typically small, and the
dimensionality of voxel-based and even ROI-based
features is high. This makes it difficult for the machine
learning model to generalize to unseen data while
avoiding overfitting. Therefore, to reduce the model
complexity and enhance its performance, removing
redundant and extraneous features by selecting the most
informative ones is a critical step [31]- [34]. Also, feature
selection can be used to understand the process under
study by identifying disease-proneregions that contribute
best to AD diagnosis and disease progression.

In some feature selection methods, the selection
process is embedded in the learning algorithm, and the
model accuracy or loss is then used to evaluate different
subsets of features. With the use of these methods, an
optimized combination of features can be achieved,;
however, these approaches are subject to the curse of
dimensionality. Anothercategory of techniques known as
filter methods uses a criterion such as Pearson’s
correlation, ANOVA, t-test, chi-square test, and mutual
information, among others, to evaluate the many features
and determine theirrelevance to the target variable [35],
[36]. In [31], the similarity between samples was
computed, and their consistency metrics have been used
for multimodal feature selection. In [37], a feature



selection method was developed based on the Receiver
Operating Characteristic (ROC) curve for each Volumes-
Of-Interest (VOI) where the classification true positive
rate is plotted vs. the false positive rate using only that
specific VOI. In [38], the linear discriminant analysis
(LDA) and locality preserving projection (LPP) learning
methods have been combined with a sparse regression
model to determine discriminative features. Most filter
methods use univariate metrics in which features are
evaluated independently, and the interaction between
them is often overlooked. Also, filter methods focus
mainly on the linear relationship between variables, and
any nonlinear dependencies are neglected. Concerning
the associations between variables, there exist some
research endeavors for incorporating the correlation and
redundancy of the features. However, due to the nature of
the used metrics, these approaches are mainly
unsupervised, and the detected relationships are not
necessarily connected to the target variable and may not
be valuable concerning the classification problem.
Another group of methods uses embedded regularization
for sparse feature learning in which the interaction of all
variables is considered [39]-[41]. However, in these
models, the variable selection is less interpretable,
limiting the flexibility and ability to further explore the
discriminative features.

In this study, we aimed to implement a multimodal
feature fusion approach for the machine learning-based
diagnosis of AD. A feature selection technique was
proposed based on the Multivariate Mutual Information
(MMI) criterion. We attempted to handle feature
redundancy and complementarity in a supervised manner
where the shared information between features is
evaluated in terms of'its capability in predicting the target
variable. MRI, Amyloid-B PET, and tau PET data from
the ADNI cohort wereused in this multimodal study. The
effect of modalities on the disease staging was evaluated
both individually and combined. Machine learning
models, including Support Vector Machine (SVM),
Random Forest (RF), and eXtreme Gradient Boosting
(XGB), were used forthe classification of different stages
of the disease and the effect of the proposed feature
selection method on the classification performance was
evaluated. Lastly, the AT(N) biomarkers framework was
used to investigate the interconnection between the
biomarkers’ profile and the cognitive stage to assess the
classification performance degradation due to biomarker
insufficiency.

MATERIALS AND METHODS

Participants

The clinical data used for our analysis were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loniusc.edu). ADNI was
launched in 2003 as a public-private partnership, directed
by Principal Investigator Michael W. Weiner, MD. The
primary objective of ADNIhas been to test whether serial
MRI, PET, other biological markers, and clinical and
neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment
and early Alzheimer’s disease. For up-to-date
information, see www.adni-info.org.

In this study, the data were collected from three
modalities in the ADNI 3 cohort, including amyloid PET
(agent: (18)F-AV45), tau PET (agent: (18)F-AV1451),
and MRI. For each participant, all modalities have been
collected from the same visit. The MRI scanis a TI1
weighted image that has gone through preprocessing
steps, including gradient wrapping, scaling, Bl
correction, and inhomogeneity correction. For the
florbetapir and flortaucipir data, four preprocessing steps
have been followed, including co-registered dynamic,
averaged, standardized image and voxel size, and
uniform resolution. T1 MRI scans have been processed
through FreeSurfer for skull-stripping and segmentation
of cortical and subcortical regions. In the next step,
florbetapir and flortaucipir images have been co-
registered to the subject’s MRI from the same visit.
Finally, volume-weighted florbetapir and flortaucipir
average are defined in each cortical and subcortical
region of interest, and regional Standardized Uptake
Value Ratio (SUVR) is then -calculated. More
information about the preprocessing steps and processing
methods can be found atida.loni.usc.edu. The florbetapir
((18)F-AV45) dataset analysis comprises reference
region options of the whole cerebellum, cerebellar grey
matter, and brain stem in addition to cortical and
summary of SUVR measurements. The participant
demographics and Mini-Mental State Examination
(MMSE) score for each group (mean and standard
deviation) are reported in Table 1. Fig. 1. illustrates the
distribution of average SUVRs (among all regions) for
the sample set. Since not all participants have undergone
all tests, the dataset contains multiple instances with
missing values which are dropped in some scenarios
depending on the objective of the analysis.
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Fig. 1. Distribution of the mean value of amyloid-f and tau SUVRs
in each disease group for ADNI3 cohort participants; CN:
Cognitively Normal, MCI: Mild Cognitive Impairment, AD:
Alzheimer’s Disease

In this study, different types of variables, including
cortical thickness and SUVR values, non-tissue SUVR
values,and ADrisk factors, were used as features for the
machine learning algorithm. In the preprocessing stage,
the feature set is normalized to a common scale before
feedingit to the classification model. It is worth noting
that the SUVR values in non-brain areas represent off-
target binding by the ligand and are not related to AD
pathophysiology. Such SUVR values could still be
potentially beneficial for the machine learning-based
classification task despite the fact that they are not
interpretable as biomarkers of AD.

Feature Selection

The high dimensionality of multimodal regional AD
data relative to the sample size can diminish the model
performance. The purpose of feature selection s to find a
feature subset that yields an optimal classification score.
This selection process can also help to enhance the
generalization ability and interpretability of the model.
The objective is to come up with a subset of features with
minimum size and maximum possible information about
the class variable. This can be achieved by preserving the
most relevant features and dismissing the irrelevant and
the redundant ones. Redundant features may not
necessarily damage the system’s performance. However,
to limit the feature space size and complexity, it is
beneficial to remove the redundant features and keep the
complementary ones to maximize the total amount of
relevant information. An approach is thus proposed based
on multivariate mutual information to measure the
relevance and redundancy of the features.

To determine the relevance of a feature, univariate filter-
based feature selection measures can be used. With such
measures, the relationship between each feature and the
target variable is evaluated individually. One of the most

Table 1
Participant demographics and mini-mentalstate examination (MMSE)
score for different diagnosis groups of the ADNI3 cohort. P-value is
reported between MCI-CN and AD-CN populations.

Age(y) Education (y) MMSE
Groups  Subject (f/m) [P-value] [P-value] [P-value]
CN 277(153/124)  71.80+5.70 16.67+2.47 28.63+2.12
MCI 378(155/223)  71.26+7.66 16.25+2.61 26.87+4.20

[0.179] [0.027] [<0.001]
AD 67(26/41) 73.41+8.78 16.43+2.35 22.37+2.39

[0.075] [0.290] [<0.001]

common criteria for this task is the Pearson correlation
coefficient which is a numberbetween [-1,1], with +1, -
1, and 0 representing maximum linear correlation,
maximum inverse linear correlation, and no linear
correlationbetween the two variables, respectively. Other
univariate criteria include mutual information, ANOVA
test, and Chi-squared test, whose performance may vary
depending on the type of the input and output variables
(continuous or categorical variable). Mutual Information
(MI) is a powerful statistical metric that measures
common information between random variables and is
relatively robust to the data type. Unlike the correlation
measure, MI can also detect nonlinear relationships
between variables. Moreover, it can be extended to more
than two variables to determine the redundancy of
multiple variables [34]. In this study, a methodology is
proposed to rank features based on pairwise redundancy
and complementarity of features using Multivariate
Mutual Information (MMI).

MI between two discrete random variables is defined
as:

p(xy)
1
PP M

1(y) = 3 Xyp(x,y).log

where x and y are random variables and p(.) is the
probability of a random variable. Ml is zero when x and
y are independentand is positive when there is common
information between them.

At first, MI was calculated between each feature and
its target variable. This determines the relevance of each
feature. Next, to incorporate the interaction of features,
MI was calculated between a subset of features and a
target variableas /(S;y), where S is a subset of features
andyis the target. For the caseofa subset of two features
(S={x4,x,}), the relationship between MI of S andy
( I(xy,x5;y) ) and MI of each feature and y
(I(xy;¥),1(x5;)) is defined as follows:



I(x1,%5;9) = 1(x1;y) + 1(x5;y) — 1(x1;x5;Y) (2)

where the three terms on the right side can be calculated
using (1). Based on (2), the amount of information that
(x4,x,) have about y can be defined as the sum of the
common information of x; andy (I(xy; y)) plus that of
x, andy (I(x,; y)) minus the intersection of the first two
terms, which is the common information of all three
variables x;, x, and y (I(x;x,;y)). The last term is
known as the Multivariate Mutual Information (MMI),
which determines the shared information between
multiple variables and is defined as follows:

p(x1%2,) 3)
p(x)p(x)p(¥)

I(xy;x05y) = le sz Zyp(xl!xz'y)-lo.g
When MMI is positive, there is redundancy betweenx,
and x,, and the information of a subset of them is less
than the sumoftheir individual information. On the other
hand, when MMI is negative, x; and x, carry
complementary information about y, and the information
of x; and x, combined is more than the sum of their
individual information. Therefore, in (2), the interaction
of features is considered through the MMI term, which
can be treated as a measure of redundancy and

complementarity.

To rank the features, a metric is defined for each
feature based on the MI between that feature and the
target variable and the redundancy or complementarity
of that feature with every other feature. This new metric
is as defined as follows:

FSi=I(xi;y)—a2'j_l(xi;xj;y) 4)

J#1

where FS; is the score of the i” feature, with « being a
constant. The first term is the MI of the i feature and the
target variable, and the second term represents the
pairwise interaction (redundancy/complementarity) of
the i* feature and all other features, which can consist of
positive and negative elements. When a is zero, the
interaction term is ignored, and the feature scores only
depend on the individual scores. As a increases, a larger
weight is assigned to the redundancy term so that the
overall score of redundant features decreases while that
of complementary ones increases. To select the value of
coefficient o, the classification experiment was
conducted using different values of a, and the optimal
value was determined as the one associated with the
highest classification score. The FS score was then
calculated for all features, and the top features were
determined accordingly. To evaluate different scenarios,

first, the top features were detected for each individual
modality to find the prominent regions based on each
biomarker. Then, the process was repeated for the
multimodal data so that the top regions in terms of all
modalities combined were identified. Also, the
importance of specific regions and biomarkers at various
stages of the disease was evaluated. In the next step, to
prove the effectiveness of the new metric for feature
selection, multiple classification scenarios
implemented.

WCEre

Classification

In recentyears, artificial intelligence has proved to be a
promising tool for diagnosing and predicting the
trajectory of the disease. In this study, machine learning
architectures were used for AD diagnosis at different
stages using single-modality and multimodality data. It
is worth noting that before implementing the
classification task, the feature space was scaled in the
range between zero and one. The scaling estimator was
built solely based on the training data (to avoid data
leakage fromthe testset) and was applied to each feature
individually in both training and test sets so that each
featureis in the [0-1] interval. The models used for the
classification task include Support Vector Classifier
(SVC), Random Forest (RF) of decision trees, and
eXtreme Gradient Boosting (XGB). SVC is a classifier
that attempts to categorize data points based on their
classesin a high-dimensional space by a hyperplane. By
mapping the data points onto a higher-dimensional
space, SVC can classify non-linearly separable data
using nonlinear kernels like polynomial and radial basis
function (RBF). To alter the bias and variance of the
model, the regularization parameters C and gamma of
the SVC can be adjusted. The parameters control the
trade-off between the training accuracy and model
generalization ability for the testing stage. As the next
model, the RF algorithm relies on the key concept of
decision trees and leverages the ensembling and voting
mechanisms to enhance the classification and prediction
accuracy while preventing overfitting. The model
parameters include the number of trees, sample size,
maximum depth of each tree, and the maximum number
of featuresused for each split. XGB, on the other hand,
is a learning technique that consists of an ensemble of
weak learners, such as decision trees, that operate in a
sequence where each subsequent learner attempts to
correctthe errors of the previous learner. The number of
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Fig. 2. Structure of the used data forthe classification process.

trees, the maximum depth of a tree, and the sample size
for each step are among the XGB control parameters. To
avaluate the models and also to optimize the models
parameters, k-fold cross-validation was used. In order to
prevent data leakage between these two tasks, the nested
cross-validation technique was implemented. An inner
S5-fold cross-validation was  performed for
hyperparameter optimization, while an outer 6-fold
cross-validation was used for validation and reporting
the model scores. The structure of the data for the
classification task is shown in Fig. 2. Multiple
singlemodality and multimodality experiments were
performed for binary and multiclass classification. A
similar set of experiments were then implemented after
applying the proposed feature selection approach.
Finally, to include the risk and protective factors in the
analysis, covariates includingage, APOE e4, gender, and
education level were integrated into the feature set, and
the classification process was repeated.

Interconnection _between AD _neuropathology and
cognitive stage

In this study, MRIand PET scans have been used for
automatic classification and prediction of the cognitive
stage. However, the classification task remains
challenging due to the heterogeneity of the disease. A
critical factor that can degrade the model performance is
the lack of sufficient biomarkers that are informative
enough to perfectly determine the cognitive stage. We
tried to explore the available biomarkersto investigate the
performance limitation imposed by the dataset.

Due to biomarker insufficiency, cognitive symptoms
are not perfectly linked to AD neuropathological changes
measured by available biomarkers. Simply put,
symptoms are not specific to AD, nor do abnormal AD
biomarkers guarantee the existence of symptoms.
Neuropathologic changes in Alzheimer’s disease are
determined by postmortem inspections and measured in
vivo through biomarkers. Clinical AD, on the other hand,
is defined based on the cognitive stage and is measured

through the symptoms’ manifestation. A percentage of
individuals with clinical AD do not have postmortem
evidence of AD pathology.

Similarly, some individuals in the cognitively normal
elderly group show signs of AD pathology at autopsy.
This may result in false-negative and false-positive
outcomes in our classification task. To study this effect,
we investigated the available biomarkers and their
corresponding cognitive stage based on the AT(N)
biomarker profile system introduced in [24]. The AT(N)
framework of the National Institute on Aging—
Alzheimer’s Association is an effort toward investigating
the interaction between AD neuropathology and
cognitive status. In this biomarker grouping system, the
biomarkers are classified into three categories based on
their underlying pathologic process. The label “A”
represents amyloid PET and CSF Af as biomarkers of
cortical AP, “T” denotes tau PET and CSF
phosphorylated tau (P-tau) as biomarkers of fibrillar tau,
and neurodegeneration is labeled as “(N)” measured by
CSF total tau (T-tau), FDG PET, and MRL

The imaging and CSF biomarkers are expressed in
continuous values; however, in certain situations such as
research studies and treatment trials, a binary grouping of
biomarkers (positive/negative) may be preferred. To
achieve such types of positive/negative results,
appropriate cut-points are defined for each biomarker.
For florbetapir (AV45) SUVR cut-points, we adopted the
valuesreported in [42]. Summary SUVR is defined asthe
weighted average of florbetapir uptake in lateral temporal
and parietal, lateral and medial frontal, anterior, and
posterior cingulate normalized by the uptake in the whole
cerebellum. Then, a cut-point of 1.11 is applied to this
summary SUVR, which is equivalent to the 95th
percentile of the biomarker distribution of the young
control normal group. For tau PET SUVRs and MRI
cortical thickness, the cut-points determined in [43] by
Clifford R. Jack Jr. were used. A tau PET summary
SUVR is defined based on the volume-weighted average
of the SUVR in inferior temporal, middle temporal,
entorhinal, amygdala, parahippocampal, and fusiform
ROIs normalized to the cerebellar crus grey. For the tau
PET summary SUVR, cut-points of 1.19 and 1.32 are
defined based on the specificity method (the 95th
percentile of the biomarker distribution of the young
control normal individuals) and the accuracy of impaired
versus age-matched control normal method, respectively.
From MRI, the surface-area weighted average is
determined for the cortical thickness in entorhinal,



Table 2
Interaction between clinically diagnosed cognitive stage and AT(N) biomarkers [24]

Cognitive stage (Clinical diagnosis)

Cognitively normal (CN) Mild Cognitive Impairment (MCI) Dementia

Biomarker Profile

A-T-N- Normal AD biomarkers,and CN Normal AD biomarkers with MCI Normal AD biomarkers with dementia
A+T-N- AD pathologic change, and CN AD pathologic change with MCI AD pathologic change with dementia
A+T+N- Preclinical AD with no cognitive AD biomarkers with MCI AD biomarkers with dementia
A+THN+ impairment

A+T-N+ Alzheimer’s and concomitant suspected Alzheimer’s and concomitant suspected Alzheimer’s and concomitant suspected non-

non-Alzheimer’s pathologic change, and CN non-Alzheimer’s pathologic change with Alzheimer’s pathologic change with
MCI dementia

A-T+N-  non-Alzheimer’s pathologic change,and CN  non-Alzheimer’s pathologic change with MCI ~ non-Alzheimer’s pathologic change with dementia
A-T-N+

A-T+N+

A: Aggregated amyloid-B, T: Aggregated tau, N: Neurodegeneration

+/-: The value of a biomarkersummary measure is higher/lower than the cut-point

inferior temporal, middletemporal,and fusiformregions.
Cortical thickness cut-points of 2.69 and 2.57 mm are
selected respectively based on specificity and accuracy
methods which were alsoused in thetau PET case.
Based on the defined cut-points, various biomarker
profiles can be identified in the AT(N) framework. These
biomarker grouping and their relationship with the
cognitive stages are shown in Table 2. As seen in the
table, the A-T-N- group represents individuals with
normal AD biomarkers. Participants with amyloid

positive but normal tau pathology and neurodegeneration
biomarkers (A+T-N-) are tagged as “Alzheimer’s
pathologic change.” Those with evidence of amyloid
deposition along with tau pathology and regardless of
neurodegeneration condition (A+T+N+/-) are considered
to belongto the “preclinical Alzheimer’s disease” group.
Amyloid negative individuals with abnormal tau or
neurodegeneration biomarkers (A-T-N+, A-T+N-, A-
T+N+) are defined as “suspected non-Alzheimer’s
pathology change”. Finally, the A+T-N+ category
represents simultaneous “Alzheimer’s pathologic
change” and “non-AD neurodegeneration”. Although the
biomarker signature carries some information about the
cognitionstatus, eachbiomarkerprofilecanbelongto any
cognitive stage.

The AT(N) framework combined with the described
cut-points were used to establish the biomarker profile
groups for our dataset. We then identified the sub-groups
that are more susceptible to misclassification and

explored their underlying causes. This is done by
focusing on those groups in which the biological AD
biomarkers cannotbe an informative representation of the
cognitivestage. For instance, individuals withnormal AD
biomarkers but clinical AD diagnosis are likely to be
classified as non-AD class. Also, subjects with abnormal
AD biomarkers but no cognitive impairment might be
identified as AD class by the model. The number of
subjects in each AT(N) group was calculated for our
dataset,and theprobability of occurring false positive and
false negative outcomes is measured, representing the
contribution of biomarker shortage to the classification
error.

RESULTS

Feature Selection Results

Various feature selection approaches were
implemented under multiple classification scenarios. At
first, conventional univariate criteria and methods,
including Correlation coefficient, SelectKBest,
ExtraTreesClassifier, and univariate mutual information
have been implemented. For the amyloid and tau PET
modalities and the three-class classification case
(CN/MCI/AD), the heatmap of the feature scores based
on the abovementioned metrics is shown in Fig. 3. A total
number of 110 features (two features per region for left
and right hemispheres) have been included in this

analysis. As seen, entorhinal, inferior parietal, inferior
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Fig. 3. Regional feature importance scores for amyloid PET SUVRs (AV45) and tau PET SUVRs (AV1451). The feature scores were determined
using four filter-based feature selection measures, namely, SelectKBest (SKB), ExtraTreesClassifier (ETC), correlation coefficient (Corr),
and mutualinformation (MI), as shown in the vertical axis. For eachregion shown in the horizontal axis, one featureis defined for amyloid
SUVR and one for tau SUVR. The value of feature scores is normalized between 0 and 1 and is illustrated by the color intensity of their
corresponding box in the figure. Features with larger scores are more informative for the classification task. Based on the results, amyloid
SUVRs including entorhinal, inferior parietal, inferior temporal,amygdala, and bank ssts and tau SUVRs including frontalpole and accumbens
are amongthe top features.

Regional Tau SUVRs Regional Amyloid SUVRs

ki

a=0

a=0.007

Regional Tau SUVRs

Fig.5. Heatmap of top 30 features based on the FS-scores for
different values of parameter . For « = 0, the redundancy tem
is ignored, and the features are selected solely based on their
relevance. In this case, dark non-diagonal elements of the
heatmap represent more pairwise redundancy between features.
For higher values of a, feature redundancy is decreased, and

bright non-diagonal elements show less pairwise feature
redundancy and more complementarity.

Regional Amyloid SUVRs

Fig. 4. Heatmap of multivariate mutual information (MMI) between and accumbens are more prominent based on amyloid
pairwise amyloid and tau SUVR values given the class variabke PET.
(y), calculated using equation (3). The diagonal elements
represent the amount of information thateach individual feature ~ Next, the proposed MMI-based feature selection method

carries about the target variable. Brighter colors correspond to a was implemented. Using equation (3)’ pairwise MMIwas
higher amount of information. For non-diagonal elements, a o101 1ated for all features, and the results are presented as
positive MMI value is an indication of redundant information L. K
between two features, which corresponds to darker colors in the a heatmap n Flg' 4. Agaln’ the CN/MCVAD case based
heatmap. On the other hand, complementary features have a on the amyloidand tau PET modalitiesis considered here.
negative MMI represented by brighter colors in the heatmap. As In the heatmap, the diagonal elements show the amount
seen, more pairwise redundancy (more dark non-diagonal ¢ 4y formation that each feature has about the target
elements) exists for inside-modality features compared to K .
between-modality features. variable. The brighter the color of a square, the more
relevant is that particular feature. The non-diagonal
temporal, amygdala, and bankssts are among the top elements show the degree of redundancy or
features based on tau PET, while regions like frontal pole complementarity of feature pairs concerning the target
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method. As a supervised approach, the features scoring procedure was performed for four different classification tasks, including
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intensity of their corresponding box in the figure. Features with larger scores are more informative forthe classification task. For tau SUVRs,
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entorhinaland amygdala were amongthe top features forall classification tasks, while pallidum and hippocampus were more in formative for
the CN/MCI case, and inferior parietal, inferior temporal, precuneus, and precentral for the MCI/AD case. On the other hand, for amyloid
SUVRs, top featuresinclude frontalpole forall classification tasks, inferior lateral ventricle for the CN/MCI, and medial orbitofrontal, pars
triangularis, and rostral anterior cingulate for the MCI/AD.

Table 3
Top features (amyloid-p and tau SUVRs) based on the proposed feature rankingmethod. The SUVR values were ranked using the calculated
feature scores, and the top amyloid-B and tau SUVR features are presented. Top features are more informative forthe AD diagnosis classification

task.

Left entorhinal Left vessel Third ventricle
,E'T] Left amygdala Left inferior temporal Right entorhinal
!
E Left middle temporal Right amygdala Right inferior temporal
g Left medialorbitofrontal Left rostral anterior cingulate Right medial orbitofrontal
E Left accumbensarea Left hippocampus CC anterior
& Left frontalpole Right accumbens area CC mid anterior
’3 Left lateral ventricle Right lateral ventricle CC posterior
g Left inf lat vent Right frontalpole

variable. The darker the color, the higher is the
redundancy, and the lower is the complementarity.

To select the most relevant and informative features,
both the individual scores (diagonal) and the mutual
scores (non-diagonal) should be considered as described
in the method section. The feature scores (FS) were
calculated using equation (4). As indicated earlier, for
each feature, the summation of the second term of the
equation represents the interaction of that feature with
every other feature. The summation terms are equivalent
to each row or column of the heatmap of Fig. 4. The
heatmap ofthe top 30 features based on the proposed FS-

score is illustrated in Fig. 5 for different values of a. For
o=0,the score of a given feature solely depends on the

feature’s relevance. As seen in Fig. 5, in this case, top
features include highly relevant (brighter diagonal) but
possibly redundant features (darker non-diagonal) at the
same time. For higher values of @, the redundancy term
comes into play so that more redundant features are
removed from the list of the top features. This resultsin
selecting features with brighter non-diagonal elements
(less redundant), as shown in Fig. 5 for higher values of
a. This is a trade-off between feature relevance and
redundancy, which is controlled by adjusting parameter
a. It isworthwhile to add that too large valuesof a should



Table 4
Classification results before feature selection forthree single-modality scenarios including amyloid PET SUVRs (tracer: AV45), tau PET
SUVRs (tracer: AV1451), and MRI (cortical thickness) and two multimodality scenarios including “amyloid PET SUVRs & tau PET SUVRs”
and “amyloid PET SUVRs & tau PET SUVRs & MRI cortical thickness”. Three machine learning models, including SVC, RF, and XGB were
used, and fourscores, including accuracy, precision, recall, and F1 -score are reported.

CN/MCI/AD CN/MCI MCI/AD CN/AD
= 2
[~ 1
E 21 ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC Fl1 ACC PRE REC F1
=i
o » SVC 602 526 497 S04 689 652 616 619 749 662 64 648 886 788 763 774
a 5 RF 586 464 445 445 669 624 601 603 759 676 64 652  89.6 813 769 788
= XGB 635 542 508 514 672 628 604 607 754 667 63 641 883 784 744 761
.. SVC 647 578 485 499 694 659 621 625 754 664 609 62 909 866 759 799
M & RF 629 553 489 504 682 641 61 613 797 744 672 692 906 854 757 794
XGB 631 558 493 509 692 655 628 632 775 704 692 697 90.6 854 757 794
SVC 595 525 502 511 697 674 621 623 754 651 631 639 916 853 799 823
§ RF 633 587 505 521 69 664 614 615 775 681 625 639 925 882  80.5 837
XGB 626 575 502 522 655 611 588 588 782 695 64 655 90.8 835 776  80.1
5 SVC 642 562 499 513 678 637 613 617 765 678 624 637 899 827 749 T8
E = 2 RF 649 565 507 52 718 695 646 652 786 719 652 67 915 873 776 813
£ 3 2 XGB 649 644 535 565 67 628 611 614 807 755 688 708 912 848 79.1 816
SVC 693 63 553 578 738 706 662 672 81 749 654 677 914 835 744 779
Bz RF 69 618 517 541 78 761 717 73 789 699 651 666 926 877 764  80.6
8 5
E3e
E % XGB 688 629 546 57 783 781 705 722 782 685 615 63 91 814 755 78

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease
ACC: Accuracy, PRE: Precision, REC: Recall, F1: F1-score
Amyloid-B PET: SUVR values with AV45 tracer. Tau PET: SUVR valueswith AV1451 tracer. MRI: Cortical thickness
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Fig. 7. Classification F1-score before feature selection for the three machine learning models, SVC, RF, and XGB, for different classification
scenarios including CN/MCI/AD, CN/MCI, MCI/AD, and CN/AD; (a) Single modality; tau PET, (b) Multimodality; tau and amyloid PET,
(c) Multimodality; tau and amyloid PET and MRI

beavoidedsince, in thissituation, valuable features might and tau SUVRs for different stages of the disease are
be dropped only because they have some dependency on represented in Fig, 6.

other features. For the specific case of a=0.005, top

features (amyloid-f and tau SUVRs) are listedin Table 3.

Finally, theresulting scaled feature scores for the amyloid
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Fig. 8. Classification Fl-score before and after feature selection (FS) using two machine learning models, SVC and XGB, for different
classification scenarios including CN/MCI/AD, CN/MCI, MCI/AD, and CN/AD; (a) Single modality; amyloid PET, (b) Multimodality; tau
and amyloid PET, (c) Multimodality; tau and amyloid PET and MRI

Classification Results

After data preprocessing, exploratory data analysis, and
feature selection, classification models (SVC, RF, and
XGB) were implemented for MCI, and AD diagnosis and
their performance were compared. Since the data is
unbalanced, various evaluation metrics, including
precision, recall, and Fl-score, are reported besides
accuracy. Experiments were conducted using different
modalities, both separately and combined. Amyloid PET,
tau PET, and MR1 as single modalities, and combinations
of {amyloid PET & tau PET}, and combinations of
{amyloid PET & tau PET & MRI}, as multimodal
scenarios were investigated, and the results are presented
in Table 4. In terms of machine learning models,
generally, SVC yields slightly less accurate scores
compared to the other two models. The F1-scores of the
three models for various scenarios can be seen in Fig. 7.
Amongsingle modality cases, tau PET has slightly higher
scores for CN/MCI classification (early stages), and tau
PET and MRI have improved results for MCI/AD and
CN/AD cases. Multimodalscenarios resulted in enhanced
performancein thethree-class CN/MCI/AD and CN/MCI
cases while not in the MCI/AD case. This is due to the
fact that the feature selection has not yet been applied,
and thus, in multimodal cases, the feature space is of high
dimensionality, and the model could not handle it
effectively. This issue is reinvestigated in the next
section, where the feature selection is applied before
fitting the models.

The classification scores with feature selection are
shown in Table 5. The SVC results have improved in
most cases, while the RF and XGB results have not
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changed significantly since these two algorithms have an
embedded feature selection process and are not affected
substantially by external feature selection. Fig. 8 shows
the feature selection effect on SVC and XGB F1 -scores
for three scenarios. In most cases, SVC with feature
selection yields the highest scores, which proves the
effectiveness of the proposed feature selection approach.
Next, Fig. 9 compares the individual modality and
multimodality results. In the single modality
classification, tau PET has higher scores, specifically in
the CN vs. MCl case. This proves the effectiveness of tau
PET compared to amyloid PET and MRI in mild
cognitive impairment diagnosis, which conforms with
previous studies [21]. Generally, multimodal data
enhances the scores, which is more notable when feature
selection is applied.

Toinvestigate theeffectofage, gender, APOE e4,and
education on the classification performance, we added
themto the model variables and repeated the experiments
using the best-performing model and top regional
features. Fig. 10 presents the classification scores with
and without the covariates age, gender, APOE4, and
education. In most cases, the classification scores
increased. The binary classification cases, MCI/AD and
CN/AD  experienced the highest performance
improvement which can be due to the higher interclass
variance of covariates such as age for these classes. On
the other hand, the scores for thethree-class classification
case, CN/MCI/AD, remained almost unchanged, which
canbe due to the lowerinterclass variance of age between
the CN and MCI classes and also the more complex
nature of the multiclass classification task.
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Table 5
Classification results after feature selection for three single-modality scenariosincluding amyloid PET SUVRs (tracer: AV45), tau PET SUVRs
(tracer: AV1451), and MRI (cortical thickness) and two multimodality scenarios including “amyloid PET SUVRs & tau PET SUVRs” and
“amyloid PET SUVRs & tau PET SUVRs & MRI cortical thickness”. Three machine learmning models, including SVC, RF, and XGB were used,
and fourscores, including accuracy, precision, recall, and F1-score are reported.

2 CA CN/MCI/AD CN/MCI MCI/AD CN/AD
g F
E—; % ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1
o
o o B SvC 62.4 57.9 52.1 53.9 69.7 66.2 62.8 63.3 78.1 71 682 693 90.9 84.6 78.5 81.1
E _g 5_ RF 61.3 52.4 49.6 50.1 68.7 64.8 61.4 61.7 78.1 71.4 65.5 67.1 89.6 81.6 76 78.4
° XGB 61.1 52.5 50.7 51.2 65.7 61 59.4 59.7 75.9 67.7 64.7  65.7 89 80.5 73.9 76.6
o - SvC 65.3 559 53 53.9 71.9 69.6 64.7 65.4 77.5 70.2 66.5 67.8 89 80.9 73.1 76.1
:J g RF 64.9 57.9 50.4 52.1 68.7 64.8 61.9 62.3 79.1 72.9 68.2 69.8 922 89.2 79.2 83.1
XGB 64.2 57 52 532 68.4 64.5 62.2 62.6 75.9 68.1 66.8 67.3 89.9 83.1 75.4 78.4
SvC 59.5 52.5 50.2 51.1 68.2 64.8 62.8 63.2 76.4 66.8 64.8 65.6 92.1 86.3 80.8 83.2
E RF 63.3 56.8 49 50.5 69.2 66.4 62.2 62.4 80.3 73.3 674 693 92.7 87.6 82.4 84.7
- XGB 62 56.8 49.2 51 68.7 65.4 62.8 63.2 79.2 71.2 67.7 69 91 84.6 77.1 80.2
SvC 67.1 61.7 54.8 56.5 73.8 73.8 65.6 66.4 71 68.8 649  66.1 92.5 89.4 79.9 83.6
g - g RF 64.9 59.1 51.6 53.6 723 70.2 65.1 65.9 71 68.8 63.4  64.8 91.2 87.7 75.6 80
25
E _;‘ XGB 64.2 56.4 51.5 52.7 70 66.7 63.7 64.3 75.9 67.1 64.1 65.1 90.6 84.4 76.1 79.4
SvC 71.5 66.5 58.5 61.2 75.9 73.6 68.7 70.0 82.4 76.6 69.5 71.8 93.3 88.9 79.4 83.2
§ ~ g RF 70.7 64.3 51.2 53.6 71.7 76.6 70.3 71.8 81.7 76.9 659 684 90.6 80.5 74 76.7
e oz
E - i XGB 69.9 62.9 55 57.3 75.6 73.1 68.5 69.7 80.3 73 65 67 91.8 86.4 733 77.9

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease

ACC: Accuracy, PRE: Precision, REC: Recall, F1: F1-score

Amyloid-B PET: SUVR values with AV45 tracer. Tau PET: SUVR values with AV1451 tracer. MRI: Cortical thickness

Biomarker Profile Grouping

The merit of using the National Institute on Aging—
Alzheimer’s Association AT(N) framework was
examined to address the challenge in ascertaining
discrepancies between cognitive stage (determined
clinically) and biological AD (determined by the
classification model using biomarkers). Biomarker

profiles were  thus defined based on
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amyloid/tau/neurodegeneration (A/T/N) positivity and
negativity, as summarized in Table 2. The study
participants were categorized according to their
biomarker signature and cognitive stage. The total
numberofsubjects fallingunder each category is reported
in Table 6. The numbers are reported for two sets of cut-
points; {1.11, 1.32, 2.57} and {1.11, 1.19, 2.69} for
{amyloid SUVRs, tau SUVRs, and MRI cortical
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Fig. 10. Classification scores with and without the covariates age, gender, APOE4, and education using the SVC model and top selected features,
for classification tasks (a) CN/MCI/AD, (b) CN/MCI, (c) MCI/AD, (d) CN/AD.

Table 6
Grouping the study participantsinto AT(N) biomarkers categories and their corresponding clinically diagnosed cognitive stage (CN, MCI, and
AD). The AT(N) groups are defined using two different cut-points foreach biomarker. Confident cut-points {1.11,1.32,2.57} and conservative cut-
points {1.11, 1.19,2.69} were used for amyloid SUVRs, tau SUVRs, and MRI cortical thickness, respectively. The distribution of subjects shows
that in each biomarker profile specifically for the preclinical AD group (A+T+N- and A+T+N+), subjects can belong to any of the three cognitive
stages, which is due to the heterogeneity of the disease. This results in a more challenging classification of the cognitive stage. For the confident cut-
points, more subjects are categorized in the A-T-N- and A+T-N- groups, while forthe conservative cut-points, groups with more positive biomarkers

include a larger numberof subjects. This is expected as the confident cut-point case hasa larger threshold fortau SUVR and a smaller threshold for

cortical thickness compared to the conservative cut-point case.

Clinically diagnosed cognitive stage

Confident cut-points

Conservative cut-points

CN MCI AD CN MCI AD
A- T- N- 82 38 2 56 23 1
A+ T-N- 41 15 5 23 9 2
A+ T+ N-
A+ T NS 9 14 12 22 21 16
A+ T-N+ 2 3 2 7 2 1
A- T+ N-
A-T- N+ 4 9 0 30 24 1
A- T+ N+

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease

A: Aggregated amyloid-f, T: Aggregated tau,N: Neurodegeneration

thickness}, respectively. The former set has a larger cut-
point for tau and a smaller cut-point for MRI (confident
scenario, resulting in less positive cases) compared to the
second set (conservative scenario, with more positive
cases). Based on this table, the inconsistencies between
the neuropathologic biomarkers and clinical diagnosis
can be investigated specifically in challenging categories
such asnormal AD biomarkers witha dementia diagnosis
and preclinical AD with cognitively unimpaired
diagnosis. In the studied cohort, the “normal AD
biomarker (A-T-N-) with an AD diagnosis” group
includes 2 and 1 individuals based on the confident and
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conservative cut-points, respectively. Although this
inconsistency between the biomarkers and clinical
diagnosis might be partially caused by inaccurate binary
biomarker grouping, it can potentially be one of the
contributors to misclassification. Another controversial
case is related to individuals with “preclinical
Alzheimer’s disease biomarkers” (A+T+N- and
A+T+N+). As seen in Table 6, this group has a
considerable number of subjects in all three cognitive
stages making the classification task even more
challenging.



Table7

Grouping the study participantsinto AT(N) biomarkers categories
and their corresponding clinical and predicted cognitive stage (CN,
MCI, and AD). The AT(N) groups are defined using confident cut-
points {1.11, 1.32, 2.57} for amyloid SUVRs, tau SUVRs, and MRI
corticalthickness, respectively. For the normalbiomarker profile (A-T-
N-), more subjects were predicted as the CN class (compared to the
clinical diagnosis) due to the dominance of CN subjects in this specific
AT(N) group. The Alzheimer’s pathological change group (A+T-N-)
experienced a similar but less severe situation than the previous group.
In the preclinical AD group (A+T+N- and A+T+N+), all three cognitive
classes include a significant portion of subjects for both clinical and
predicted cases.

Table 8
Classification confusion matrix forthe AT(N) preclinical AD
group (biomarkerprofiles A+T+N- and A+T+N+). For the CN class
(true label), a significant portion of subjects (6 out of 13) was
classified (predicted label) as MCI and AD, which canberelated to
those preclinical AD individualsthathavenot yetadvanced to AD. On
the otherhand, a considerable numberof AD subjects (true label) were
classified (predicted label) as MCI and CN, which could belong to
those AD subtypes with a different pattern and less severe biomarker
levels. Overall, the classification scores forthis preclinical AD
category are: accuracy=56.4% , precision=57.3% , recall=56.4%, f1-
score=55.5%.

Clinical cognitive stage Predicted cognitive stage True/Pred CN MCI AD

CN M AD CN MCI AD CN 7 4 2
A-T-N- 137 52 4 160 33 0 MCI 7 14 3
A+T-N- 66 20 8 71 17 6 AD 1 7 10
A+ T+N-
AFTENE O 4 8 B 2 " The objective of this research was to determine the
A+ T-N+ 2 4 3 3 2 4 cognitive stage using neuroimaging biomarkers and
A-T+N- analyzethe dependencies between biomarker profiles and
A-T- N+ 5 9 0 6 8 0 the cognitive stage. For the model variables, including
A- T+ N+ amyloid and tau PET SUVR values and cortical

CN: Cognitively normal, MCI: Mild cognitive impairment, AD:
Alzheimer’s disease

A: Aggregated amyloid-f, T: Aggregated tau,N: Neurodegeneration

To further investigate this scenario, we reconstructed the
AT(N) biomarker-cognition table for the predicted
cognitive stage aside from the clinically diagnosed
cognitive stage. Table 7 represents the results for the
clinical and predicted diagnosis side by side. It should
benoted that here we used a different case study than
Table 6. As can be seen from the results, for the normal
biomarker group (A-T-N-), all dementia subjects and
some of the MCI subjects were misclassified as the CN
group (false negative). A less severe outcome is seen for
the AD pathological change group (A+T-N-), where
some AD and MCl subjects weremisclassified as CN. As
for the challenging preclinical AD group (A+T+N- and
A+T+N+), a clear conclusion cannot be drawn solely
from Table 7. Thus, a classification confusion matrix was
constructed for the specific case of preclinical AD, as
shown in Table 8. From this table, it is clear that many
CN subjects were misclassified as MCIL, and a large
number of AD subjects were misclassified as MCI.

DISCUSSION
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thickness, a trade-off was made between variables
relevance and redundancy using an information theory-
based metric. The advantage of the proposed approach is
to incorporate the effect of features complementarity and
redundancy to maximize the total amount of information
in the feature set. It is important to note that the
redundancy part should not be overweighted since highly
relevant features can also be partially redundant. This
situation is seen in Fig. 5 for larger values of the
coefficient @, where feature relevance is sacrificed for
even a minor redundancy. By incorporating a moderate
redundancy coefficient into the equations, for tau
SUVRs, entorhinal and amygdala were among the top
regions for all stages of AD, with amygdala being most
informative for the CN/MCI case. Abnormal tau
deposition in these regions is known as a biomarker for
preclinical AD by previous studies [18],[20], [44]. Tt is
reported in the literature that amygdala shows early
atrophy independent of amyloid deposition, and it might
be related to neurofibrillary tangles instead [45], [46].
Other prominent regions include pallidum and
hippocampus based on tau PET for CN/MCI case, and
inferior parietal, inferior temporal, precuneus, and
precentral for the MCI/AD case. It is stated in [47]-[49]
that tau burden in these specific ROIs is correlated with
cognitive decline. On the other hand, for amyloid PET
SUVRs, frontal pole for all stages, and inferior lateral
ventricle for the CN/MCI case, and medial orbitofrontal,



pars triangularis, and rostral anterior cingulate for the
MCVAD case are among the more prominent variables.
These findings are consistent with previous studies [50]-
[52].

By incorporating the effect of redundancy and
synergy, some features experienced a score change. For
instance, the score of frontal pole amyloid SUVR (but not
tau SUVR) for the early stage increased significantly, so
that this region is considered a complementary variable
for the classification task. This is in agreement with the
literature [45],[53], where it is reported that the frontal
pole shows early amyloid deposition while atrophy and
tau deposition are later events. Some amyloid and tau
SUVR values that experienced a boost in their score
include the hippocampus, inferior lateral ventricle, and
lateral ventricle, which are known to be critical for AD
diagnosis in previous studies. On the other hand, a score
drop was seen in some of the tau SUVRs, including
fusiform, inferior parietal, inferior temporal, isthmus
cingulate, orbitofrontal, middle temporal, precuneus, and
bankssts. A lower score does notnecessarily disqualify a
feature. Instead, the model tries to replace the most
redundant features with a possibly less relevant but
complementary one so that additional information is
addedto the analysis.

In the classification part, tau PET modality produced
more accurate results than amyloid PET and MRI
modalities, specifically in CN/MCI classification (early
stage). On the other hand, multimodal scenarios have
achieved the highest F1-scores in most cases, especially
in the early stages of the disease. Feature selection was
most effective in the SVC case, making SVC achieve
higher scores compared to RF and XGB in many cases.
This was expected as RF and XGB have internal feature
selection, with less room for improvement. In retrospect,
these findings suggest that the classification of high-
dimensional multimodal datasets would be most accurate
when feature selection is carried out most effectively,
with the relevance of each feature quantified through a
rankingscoremetricas proposed inthisstudy. When such
measures are taken, reducing the dimensionality of the
feature space canbe accomplished whilestill maintaining
high accuracy in the classification results. More
specifically, Fig. 9(d) shows that the F1-score of the
multimodal case with feature selection is up to 5% higher
than other scenarios.

One of the major challenges in the AD diagnosis is
the heterogeneity of the disease related to the AD
subtypes (hippocampal-sparing, limbic-predominant,
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typical AD). It is shown that the AD risk factors and
protective factors have a meaningful variance among the
AD subtypes [54]. As seen in the result section, the
inclusion of these covariates into the model variables
could improve the classification scores. This can be
explained through the characteristics of different
subtypes and the variation of risk factors among them.
Typical AD subtype cases experience more severe
pathology compared to other subtypes, while limbic-
predominant cases have more typical biomarkers than
hippocampal-sparing subjects. Since typical AD is more
prevalent than other subtypes, if the classification model
only relies on biomarkers, it might be biased toward this
group and yields false-negative results for other AD
subtypes as they have less severe biomarkers and are less
prevalent. Therefore, these other categories of subjects
with minimal atrophy and non-typical biomarkers might
bemisclassifiedas CNand MClclasses. Atthis stage, the
risk and protective factors can complement the
biomarkers and help to correctly classify these subtypes
as the AD group and thus alleviate the heterogeneity
issue. Concerning the risk factors, subjects with typical
and limbic-predominant AD tend to be older than those
with hippocampal-sparing AD. On the other hand, the
hippocampal-sparing category includes fewer APOE4
carriers and highly educated individuals compared to
other groups. In terms of gender, females are more
frequent in the limbic-predominant group.

As described in this study, another challenge in the
classification problems is biomarker insufficiency. This
may result in a disconnection between biomarkers and
clinical diagnosis to some extent. Studies revealed that
almost 30% of clinically unimpaired elderly participants
have AD in postmortem examinations or have abnormal
amyloid deposition [24], [43]. In our study, in one ofthe
scenarios (Table 6), 6.5%-16% (9-22 individuals) of the
CN group have preclinical AD with abnormal amyloid
and tau pathology forthe two cut-point levels, as seen in
Table 6. It is anticipated that the classification model
classifies some of these individuals as MClor AD groups
since both AD-specific biomarkers (amyloid and tau) are
abnormal in this case (falsepositive). This was confirmed
in Table 8, where almost half of the CN subjects were
misclassified as MCI and AD. Moreover, for the same
preclinical AD group, a large number of AD subjects
were misclassified. This can be explained by the
heterogeneity of AD, where some AD subjects with less
severe biomarkers are predicted by the model as non-AD
and vice versa. The results proved the preclinical AD



subjects to be one of the most challenging groups for the
model, with a classification accuracy of 56%, which is
lower than the overall accuracy 0f 65% for all subjects of
the scenario presented in Table 7. These outcomes were
expected since the preclinical biomarker profile includes
subjectsin all three cognitive stages whichis due to the
heterogeneity of the disease and the lack of sufficient
biomarkers required for a more accurate delineation of
the classes. Similarly, the “normal AD biomarker” (A-T-
N-) and “non-Alzheimer’s pathologic change” (A-)
groups are also susceptible to misclassification as they
have non-AD-specific biomarkers, but some are labeled
as MCI (AD prodromal stage) and AD in the ADNI
dataset. It has been shown in other studies that 10% to
30% of clinically diagnosed AD cases donot have AD at
autopsy or have normal AD biomarkers [24], [43]. In the
ADNI cohortused in our study, 10-20% of subjects were
detected with the described condition. In the
classification process, the normal biomarkers arelikely to
predict a cognitively normal stage ratherthan AD (false
negative). Theseresults can be explained by the fact that
the clinical diagnosis and cognitive labeling practices are
generally based on symptoms and are independent of the
biomarkers. The outcomes reveal the insufficiency of the
available biomarkers in making an accurate prediction of
the clinically defined cognitive stage.

Since the biomarkers mightnot be accessible in many
situations, clinical diagnosis is made solely based on
symptoms as ascertained through cognitive tests. The
AT(N) biomarker framework establishes a biomarker-
based definition of AD and emphasizes the independence
ofthe biological and clinical definitionsof AD, yet it tries
to clarify the interaction between the two. This can be
valuable for in-depth research purposes as well as
personalized medicine. The AT(N) framework shows that
the cognitivestage cannot be entirely determined through
the AT(N) biomarkers since any particular biomarker
profile can belong to any cognitive stage. The fact that a
wide range of biomarker profiles can define a specific
cognitive stage is due to the heterogeneity of the disease,
which can be explained by the subtypes of AD
(hippocampal-sparing, limbic-predominant, typical AD).
Different subtypes have similar amyloid loads; however,
tau and neurodegeneration pathology and also
concomitant non-AD pathologies vary across subtypes.
Also, other contributing factors to differentiate between
AD subtypes include risk factors (age, gender, education,
and APOE) and protective factors (cognitive reserve,

16

brain resilience, and brain resistance). Incorporation of
these factors in the context of the AT(N) system canbe a
step toward a more in-depth analysis of the computer-
aided diagnosis of AD and augmenting the research
prospects for more effectual personalized medicine.

One of the limiting factors for our analysis was the
considerable amount of missing data, specifically for the
tau PET modality. This issue is more critical when we are
interested in subjects with all modalities available, which
is a requirement for having a fair comparison between
single modality scenarios. Also, the study could be more
valuable if longitudinal data were available so that the
effect of biomarker change through time could be
considered. Longitudinal tau PET data is very limited in
the ADNI dataset since tau PET is a relatively new
technology, and its longitudinal data collection and
processingis stillin progress. Also, the missingdata issue
is even more severe for the longitudinal data. Moreover,
in the data collection process, a time difference may exist
between capturing the MRI and PET scans for some
participants. This time lag between modalities is
inevitable in many situations in practice. While small
time-lags might be neglected in some studies, more
significant delays can be included in the analysis with
appropriate considerations. In our study, we have not
integrated this variable in our analysis due to the lack of
such information for some of the participants, which
would result in additional missing values for the dataset.
In this study, we conducted a cross-sectional study and
handled the missing values by mean-value imputation
and by making use of models that are more robust to
missing values. Moreover, using the AT(N) analysis, the
intra-class biomarker variance was studied so that the
contribution of biomarker shortage on the classification
performance was determined.
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