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Abstract—We propose TaintLock, a lightweight dynamic scan
data authentication and encryption scheme that performs per-
pattern authentication and encryption using taint and signature
bits embedded within the test pattern. To prevent IP theft, we
pair TaintLock with truly random logic locking (TRLL) to
ensure resilience against both Oracle-guided and Oracle-free
attacks, including scan deobfuscation attacks. TaintLock uses
a substitution-permutation (SP) network to cryptographically
authenticate each test pattern using embedded taint and signature
bits. It further uses cryptographically generated keys to encrypt
scan data for unauthenticated users dynamically. We show that it
offers a low overhead, non-intrusive secure scan solution without
impacting test coverage or test time while preventing IP theft.

I. INTRODUCTION

The globalization of the integrated circuit (IC) supply chain
poses significant risk to the security of intellectual property (IP).
Of particular concern is the vulnerability to IP theft through
attacks such as netlist reverse-engineering, counterfeiting, and
IC overbuilding [1]. Logic locking offers protection against
these attacks by locking the IP using combinational key-gates
and/or sequential obfuscation states [2]. However, powerful
SAT-based Oracle-guided attacks are capable of rapidly pruning
the key-search space to extract the correct key [2].

Recent work has shown that pairing logic-locking schemes
such as truly random logic locking (TRLL) with a secure
scan chain can not only thwart Oracle-guided attacks but also
achieve resilience against Oracle-free attacks [3]. Existing scan
protection schemes either obfuscate scan data or block scan
access altogether [4]. The strongest scan-obfuscation schemes
achieve dynamic obfuscation, i.e., obfuscating the scan data
dynamically for each pattern, using keys that are generated
from an LFSR. However, such methods do not support scan
authentication, thereby lacking the ability to determine if the
scan chains are being accessed by a trusted user. Moreover, the
use of linear obfuscation (using LFSRs) makes these methods
vulnerable to attacks that remodel the dynamically obfuscated
scan chains as a combinational logic-locked netlist [5], [6].

Pairing per-pattern authentication with dynamic scan obfus-
cation offers the ability to selectively validate the authenticity
of each supplied pattern independently while obfuscating scan
access for unauthorized users. This requires embedding the
authentication information within the test pattern itself. In
this work, we demonstrate the vulnerabilities associated with
prior scan authentication methods under the latest (strongest)
threat models used in the context of logic locking [7], [8]. We
next propose TaintLock, a dynamic scan data authentication
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and encryption scheme that performs dynamic per-pattern
authentication while achieving secure dynamic obfuscation
(through encryption) for unauthorized users using taint bits
embedded in the test pattern. TaintLock employs a challenge-
response authentication mechanism using dynamically changing
keys that are generated cryptographically and on the fly from
taint bits embedded in each test pattern. The keys used for
authentication and encryption change based on the pattern
and on the order in which it is scanned in. As TaintLock is
integrated with a low-overhead high output-corruptibility logic
locking scheme (TRLL), it is resilient against not only Oracle-
guided attacks but also against Oracle-free attacks, including
removal/bypass attacks. In addition, its lightweight non-linear
scan encryption scheme offers resilience against all existing
attacks mounted on obfuscated scan chains, while incurring
less than 0.2% area overhead for large circuits. The main
contributions of this paper are as follows:
• We develop an attack that can extract, directly from test data,

the scan authentication keys used in prior methods [7], [8].
• We present TaintLock, a dynamic scan data authentication

and encryption scheme that uses substitution-permutation
(SP) networks to authenticate each test pattern based on
embedded taint and signature bits.

• We optimally allocate taint and signature locations for any
set of test patterns and integrate it with the parametrized
TaintLock architecture to generate authenticated test patterns.

• We show that TaintLock is adversarially indistinguishable,
resilient against known- and chosen-plaintext attacks and
any form of Oracle-guided attack, and secure against state-
of-the-art scan de-obfuscation attacks.

II. BACKGROUND AND RELATED PRIOR WORK

A. Secure Scan

Early scan-protection methods that rely on flipping scan
bits or scrambling scan data were specifically developed to
protect on-chip crypto cores from side-channel attacks, but not
against IP theft [4]. Thus, these methods remain vulnerable to
structural netlist reverse-engineering [2].

Secure scan is integrated with logic obfuscation to either
obfuscate scan data or block scan access after the IP has been
activated using functionally correct keys [9], [10]. Dynamic
obfuscation is achieved by changing the keys dynamically
using onboard pseudo-random number generators. However, as
these methods use linear structures (embedded XOR gates and
LFSRs), attacks such as DynUnlock [5] and ScanSAT [6] can
apply the SAT attack to extract the obfuscation key (LFSR seed).
Scan-obfuscation methods that utilize cryptographic macros
to encrypt scan data suffer from large area overhead and test
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times [11]. Scan-protection schemes that use secure cells and
peripheral logic to block scan access in an activated IP [4]
lack support for in-field functional debug, and they may also
impact the timing profile of functional paths. These obfuscation
schemes do not support per-pattern authentication, thereby
limiting the ability to selectively screen untrusted end-users.
Low-cost secure scan (LCSS) [7] supports static scan-data
authentication by embedding the authentication key in dummy
flip-flops. However, dummy flip-flops lead to increased test
time and tester memory overhead. Another method [8] achieves
dynamic scan data authentication by randomizing the test keys
(SSTKR) that are generated using an on-board LFSR. The test
keys are either embedded in dummy flip-flops or within the
don’t-care bits of each test pattern. However, this approach
does not specify any selection criteria for embedding the test
key across all test patterns.
B. Threat Model and Assumptions

The most pervasive threat model used in logic locking
assumes that both the foundry and end-user are untrusted [2].
Thus, the attacker has access to the following: (1) Locked
Design: An untrusted end-user or foundry can obtain the
reverse-engineered (RE’d) netlist of the locked design (Clock);
(2) Activated Chip: The adversary has access to an activated
chip (Cor) purchased from the open market; (3) In-field Test
Patterns: The untrusted end-user has access to authenticated
test patterns (Pauth) provided by the design house for in-field
functional debug of the activated chip.

While the first two assumptions are common across all
logic-locking techniques [2], the third assumption is relevant
when a scan-authentication mechanism allows an end-user to
apply authenticated test patterns to the activated device. These
patterns may be supplied by the design house for in-field debug.
Based on the above threat model, the attacker first uses the
RE’d netlist to identify the type of security architecture used for
logic and scan obfuscation. As the attacker has no control over
the patterns included in Pauth, these patterns are not sufficient
to mount an Oracle-guided attack. Thus, the attacker is forced
to analyze Pauth to extract the scan authentication key to gain
Oracle access. We do not consider invasive electrical probing
attacks because these methods do not exploit the vulnerability
of the obfuscation method itself, but rely on the shortcomings
of the fabrication technology [1].

C. Reconstructing Authentication Keys from Test Data
We show that the patterns in Pauth are sufficient to

reconstruct the static scan authentication key, kstatic, in
LCSS, and the set of dynamic authentication keys, Kdyn =
{k1, k2, ..., kn}, in SSTKR.

LCSS: Let the attacker choose a pattern P ∈ Pauth, where
Pi denotes the ith bit of P . Let bj denote the bit location of
the jth dummy flip-flop in the scan chain. By analyzing Cloc,
the attacker can generate the set Bloc = bj ∀j ∈ Cloc, i.e., the
set containing the bit locations of all dummy flip-flops in the
design. It follows that kstatic must contain Pi ∀i ∈ Bloc.

SSTKR: Let kseed denote the LFSR seed used to generate
the dynamic key kt ∈ Kdyn. As the output of the LFSR is used

as the authentication key, kseed = k1, i.e., the key used for the
first pattern. The attacker can find all the bits in k1 by analyzing
the first pattern in Pauth along with Bloc as shown in the attack
for LCSS. Given the ith bit of the current authentication key,
kit, the corresponding key-bit in the subsequent sequence, kit+1

can be represented as kit+1 =
⊕λ−1

m=0 cm · kit, where λ is the
degree of the LFSR and cm is the mth feedback tap. The
attacker can analyze Cloc to identify all feedback taps, thereby
evaluating the tap coefficient cm, ∀m such that 0 ≤ m ≤ λ−1.
Given kseed and the LFSR structure, all keys in Kdyn can be
computed by populating all the states of the LFSR.

As the authentication keys are not generated from specified
bits embedded within the test pattern, the attacker needs only a
single authenticated pattern to extract the authentication keys.

III. DESCRIPTION OF TAINTLOCK

A. Overview

TaintLock performs two major tasks, authentication and
encryption. As both trusted and untrusted entities may have
scan access, authentication is performed on a per-pattern basis.
Scan responses for unauthenticated test patterns are encrypted.

Authentication: TaintLock employs a challenge-response
mechanism to validate the authenticity of each test pattern. For
each pattern Pi, there exists a corresponding signature value,
Si, computed using taint value, Ti, embedded in it. A Feistel
structure-based substitution permutation (SP) network with a
dynamic key schedule is used to compute Si = Fauth(Ti,Ki),
where Ki is a dynamically changing key generated from a
free-running reconfigurable block, and Fauth is a lightweight
block cipher implemented by the SP-network. The same Pi

can have a different Si, depending on the order in which the
pattern is scanned. Since an authenticated end-user is aware
of the key-schedule, they can compute Si for any Pi.

Encryption: TaintLock utilizes a stream cipher to dynamically
encrypt scan data using XOR gates placed in the scan
chain. The scan encryption key, Kencr, is generated by re-
purposing Fauth as a stream cipher in counter mode [12]. Thus,
Kencr = F (Ti,Ki)⊕ ϕi, where ϕi is a dynamically changing
key, also generated from a free-running reconfigurable block.
The encrypted response is Rencr = Ri ⊕Kencr, where Ri is
the original response.

While taint bits for each pattern are selected from the
specified bits, signature bits are embedded within the test
pattern by replacing carefully selected don’t-care bits (X ′s).
This allows for authentication support without impacting the test
coverage. However, as the X locations used for embedding Si

may change depending on the pattern, we formulate a signature-
bit selection scheme based on integer linear programming (ILP)
that selects the minimum number of Si locations to cover all
ATPG-patterns in the test set. The number of bits used in Ti

and Si is determined by the architecture of Fauth, as discussed
later in this section. Fig. 1 illustrates dynamic authentication
using TaintLock. Note that the locations of the signature-bits
change for each pattern.
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Fig. 1: Dynamic scan authentication using taint bits.

B. System Architecture
TaintLock consists of the following components (Fig. 2a): (1)

Taint and Signature Cells: These are the scan cells that store the
taint and selection bits associated with each pattern. These cells
are identical to regular scan cells; (2) Selection MUXes: Specify
which signature cells contain the signature bits. If there exist r
signature cells, with each signature Si being q-bits wide, then
there will exist at most q such r : 1 MUXes. The MUX select
signals are scanned into a separate register in parallel with the
test pattern; (3) Authentication Block (Fauth): Contains the SP-
network and computes the authentication signature using the
taint bits and a dynamically generated key; (4) Reconfigurable
Block: Responsible for generating the dynamic keys used for
signature computation and scan encryption. It consists of four
LFSRs with reconfigurable feedback. The LFSR seeds and
feedback settings are supplied from tamper-proof memory and
only known to authenticated users; (5) Comparator: Compares
the authentication signature embedded in the test pattern with
the one computed on-board using Fauth; (6) Encryptor: In case
of mismatch between the computed and embedded signatures,
it generates and stores the key, Kencr, used to encrypt the test
response. During an authenticated test access, Pi is scanned in
with the appropriate Si embedded in it, leading to unobfuscated
scan operation. As Si can only be computed by a trusted user
with access to the dynamic keys used for authentication and
encryption, an untrusted user will be able to access only the
encrypted responses for the supplied pattern.

C. Feistel Structure-based SP-Network Design
We design a lightweight authentication/encryption function

based on Shannon’s principles of confusion and diffusion.
Similar to a Feistel structure-based SP-network, our function
consists of five layers (Fig. 2b), alternating between permuta-
tion, key whitening, and non-linear diffusion layers. Although
more such layers can be cascaded, we show (Sections IV–V)
that five appropriately sized layers offer adequate security at
low overhead. Existing crypto-cores used to encrypt scan data
require multiple rounds of encryption at the cost of high area
overhead and test time. Our architecture, being combinational
in nature, offers a lightweight method to implement both
authentication and encryption using dynamic keys without
incurring any additional test time overhead. Our function
supports two rounds of permutation (L1, L4) and key whitening
(L2, L5) while performing one round of non-linear diffusion
(L3) using a dynamic key schedule.

Layer Architecture and Key Sizes: The sizes of L1–L5 and
k1–k4 are determined based on the number of signature bits (q
bits per pattern) and the size of MUXes used in the permutation
layers (2α:1 MUX). Given q and α, the parametric values of the
layer and key sizes are shown in Fig. 2. The permutation layers

(L1, L4) use a network of 2:1 MUXes (α = 1) to selectively
propagate half the incoming bits to the next layer. Thus, each
incoming bit has an equal probability of selection based on
the dynamic key used to drive its corresponding MUX select
line. The key whitening layers (L2, L5) are used to encrypt
intermediate data and increase the size of the key space. The
diffusion layer (L3) uses several 6× 4 combinational S-Boxes
to perform non-linear mapping between input and output. The
number of S-Boxes is given by q × 2α−2. As α = 1 and we
can only have an integer number of S-Boxes, q must be an
even value. Finally, for α = 1, the number of taint bits, t = 6q.

Key Schedule: The keys (k1, k2, k3, k4) driving the permu-
tation and key-whitening layers are generated from on-chip
LFSRs with reconfigurable feedback (RB). The key schedule
is determined by the feedback configuration and seed of each
RB. An RB of size λ consists of λ− 1 MUXes in its feedback
path. The size of the seed for such an RB is 2λ− 1. The key
update frequency is determined by the clock signal of the RB.
The clock input to the RB is driven by the scan en signal,
thereby updating the LFSR state, and consequently the keys,
dynamically for each pattern (Fig. 2c). As the initialization
seed of each RB can be changed for each IC/device, TaintLock
supports a unique key sequence per device.

Scan Authentication & Encryption: Let k1, k2, k3, and k4
represent the dynamic keys used in different layers, pi(ki, t) rep-
resent the output of the ith permutation layer, and s(t) represent
the output of the substitution block. Then, the authentication
signature is expressed as s = k4 ⊕ p2(k3, s(k2 ⊕ p1(k1, t))).
Scan responses are encrypted through XOR gates distributed
uniformly across the scan chain. The encryption key is
generated by re-purposing the block cipher to a stream cipher
in counter mode, so that kencr = k1 ⊕ k3 ⊕ s. The keys k1
and k3 are truncated to match s. If q is the size of encryption
key, then the jth bit of the encrypted response is encrypted
with all the key bits following it, i.e., rencrj = rj

⊕q
i=j k

encr
j .

A working example is presented in [?].

D. Taint and Signature Cell Allocation

We next formulate an ILP model that minimizes the number
of signature cells, r, while covering all patterns in the test set.
Let us consider a pattern set with n patterns, each being m
bits wide. Without loss of generality, we assume a single scan
chain. We use a binary decision variable xij such that xij = 1
if the jth bit of the ith pattern is selected, and xij = 0 if vice-
versa. We next pre-compute the X-location matrix coefficients
from the patterns in the test set, where cij = 1 if the jth

bit of the ith pattern is an X and cij = 0 otherwise. The
reward score is also computed for each bit position j, where
dj =

∑n
i=1 cj ∀1 ≤ j ≤ m. Larger the number of X’s in a

bit location, more likely is the selection of that location as a
signature cell. We also determine χ, which is the minimum
number of X’s present among all patterns in the test set, also
referred to as the X-budget. We impose the constraint that
we must select exactly q X’s, i.e., q signature bits per pattern,
where q ≤ χ. Note that n such constraints exist, one for
each pattern,

∑m
j=1 xij = q ∀1 ≤ i ≤ n. Our objective is

 

Authorized licensed use limited to: Duke University. Downloaded on August 15,2022 at 17:35:27 UTC from IEEE Xplore.  Restrictions apply. 



Authentication
Block

Reconfigurable
Block

Ta
m

pe
r-P

ro
of

M
em

or
y

Seeds and
Feedback Taps Comparator

Selection
MUXes

Taint Cells

Encryptor

scan_en

S-BoxS-BoxS-Box

bits

bits

bits

bits

bits

bits

Layer & Key Sizes

(L1, L4): Permutation Layer

MUX size,

(L2, L5): Key-whitening Layer
Signature size,

(b)


L3: Non-Linear Diffusion Layer




Reconfigurable Block


Tamper-Proof
Memory

Seed

scan_en

Authentication
Block

Reconfigurable
Block

Ta
m

pe
r-P

ro
of

M
em

or
y

Seeds and
Feedback Taps

D
ec

om
pr

es
so

r

Comparator

Signature Cells

Selection
MUXes

C
om

pa
ct

or

Taint Cells

Encryptor

scan_en

C
om

pa
ct

or

D
ec

om
pr

es
so

r

Signature Cells

Scan Clock

Scan Enable

Functional Clock

Comparator

Scan Out

Timing Diagram

Authenticated
Response

Encrypted
Response

Test
PatternsIP

ATPG Security
Requirements


: X-budget
: Signature bits

per pattern

Parameters: Signature
Cells

Taint
Cells

Taint
Selection




Authenticated 

Patterns

Embedding

SignaturesTaintLock


Architecture
 ILP




(a)


(d)


(c)


Authenticated  Unauthenticated 

Fig. 2: (a) TaintLock system architecture. (b) SP-network used in authentication block (Fauth). (c) Timing diagram for authentication and
encryption using Taintlock. (d) Methodology to integrate TaintLock with a generic IP and generate authenticated test patterns.

TABLE I: Evaluating the number of signature cells required to
support different TaintLock versions across CEP benchmarks.

IP Pattern Pattern Test χ r (from ILP)
Count Length Coverage (%) q=12 q=16

FIR 160 448 98.77 66 20 25
IIR 183 672 86.94 219 160 197

SHA256 306 1040 99.86 267 27 32
AES192 598 6854 98.97 4504 20 25

RocketCore 2183 43140 95.53 39856 23 23

q: # of signature bits, r: # of signature cells, t: # of taint cells, t = 6q, thus t = 72
and 96 for 12 and 16 bit signatures, respectively, χ: X-budget.

to maximize the reward function
∑m

j=1 dj ·
∑n

i=1 xijcij . This
objective function ensures that bit locations with larger number
of X’s per pattern are given priority. It also ensures that all
X-bits in a column are selected during scoring.

After the r signature cells are allocated, the remaining
(m− r) cells associated with the specified bits in the test
pattern are considered for taint cell allocation. The number
of taint locations (t) is fixed for all patterns in the test set. It
is also ensured that (m − r) ≥ t, where t = 6q. For each
remaining scan cell location, k, let ak and bk denote the
number of 0’s and 1’s occurring at that location across all
test patterns, respectively. As taint bits are used as inputs to
the authentication block, we select taint cells that have similar
numbers of 1’s and 0’s. This ensures that the input to the
authentication block is balanced. Thus, for each k, we evaluate
∆k = |ak − bk| and µk = (ak + bk)/2. Subsequently, we
choose k with the highest µk and lowest ∆k, thereby ensuring
a balanced selection of taint bits, leading to better authentication
performance for the block cipher. Fig. 2d shows the overall
methodology. We evaluate the ILP model on several IPs from
the Common Evaluation Platform (CEP) [1] protected using
different configurations of Fauth. We compute the number of
signature cells for IPs containing Fauth with q = 12 bits and
q = 16 bits, respectively. These results are shown in Table I.

IV. SECURITY AND TESTABILITY ANALYSIS

A. Encryption Quality and Adversarial Indistinguishability
As TaintLock supports dynamic per-pattern authentication

and encryption, the same pattern can have different signatures
and encrypted responses based on the dynamic key schedule.
If a test set contains n patterns, each pattern will have at least
n different signatures and encrypted responses, respectively.

For a given signature size and key schedule, we evaluate
the authentication quality of a pattern Pi by analyzing the
distribution of 1’s and 0’s associated with each signature bit
location j (1 ≤ j ≤ q) across all n signatures. For each Pi, let
the pair (µj

i,1, µ
j
i,0) denote the average fraction of 1s and 0s

associated with the jth signature bit across all n signatures. We
next evaluate the mean (µsign

i,1 , µsign
i,0 ) and standard deviation

(σsign
i,1 , σsign

i,0 ) of these j ordered pairs. Here, µsign
i,1 is the

average fraction of 1’s in all the signature bits for all n
signatures. Similarly, σsign

i,1 is the standard deviation in the
average fraction of 1’s across the j signature bits for all n
signatures. Note that because µsign

i,1 = 1 − µsign
i,0 , it follows

that σsign
i,1 = σsign

i,0 . A value of µsign
i,∗ close to 0.5 and a very

low value of σsign
i,∗ are indicative of a balanced authentication

function. Next, we use the Hamming distance between a scan
response Ri, and its encrypted counterpart Rencr,i, to evaluate
encryption quality. Given Ri, let Rj

i,encr represent its jth

encrypted response such that 1 ≤ j ≤ n. Then, µHD
i represents

the average Hamming distance between the true response and
all other n encrypted responses. A Hamming distance of 0.5 is
indicative of a balanced encryption function. The authentication
quality (µsign

i,∗ , σsign
i,∗ ) and encryption quality (µHD

i ) values are
averaged across all patterns in the test set and presented for
IPs in Table II. We observe that TaintLock performs balanced
authentication and encryption.

Using Table II, we show that TaintLock is adversarially indis-
tinguishable, i.e., an adversary can learn no partial information
about the plaintext, Ri, given the encrypted ciphertext, Ri,encr.
For a given private-key encryption scheme Π, consider an
experiment PrivKA,Π in which a probabilistic polynomial time
(PPT) adversary A outputs two messages m0,m1 out of which
one of them is encrypted at random. We define PrivKA,Π as
follows: (1) An adversary A is given an input 1n and generates
a pair of output messages m0,m1 with |m0| = |m1|. (2) A
key is generated at random by running Gen(1n), and either
message m0 or m1 is chosen at random depending on a uniform
bit b ∈ {0, 1}. The challenge ciphertext c ← Enck(mb) is
generated. (3) PrivKA,Π = 1 if A identifies correct mb for
given c. We next introduce the following definitions [13].
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TABLE II: Evaluating the authentication and obfuscation quality
for 12- and 16-bit TaintLock versions across CEP benchmark IPs.

IP 12-bit 16-bit
µsign
avg,1 σsign

avg,1 µHD
avg µsign

avg,1 σsign
avg,1 µHD

avg

FIR 0.506 0.030 0.485 0.497 0.036 0.509
IIR 0.494 0.049 0.480 0.505 0.032 0.492

SHA256 0.501 0.026 0.486 0.501 0.033 0.487
AES192 0.502 0.022 0.488 0.503 0.018 0.496

RocketCore 0.501 0.010 0.495 0.495 0.012 0.495

Definition 1. A function f from the natural numbers to
non-negative real numbers is negligible if for every positive
polynomial p, there is an N such that ∀ n > N ; f(n) < 1

p(n) .

Definition 2. A given private-key encryption scheme Π is con-
sidered adversarially indistinguishable if for a PPT adversary
A, there is a negligible function negl such that for all n,
P [PrivKA,Π = 1] ≤ 1

2 + negl(n).

Based on the above definitions, we note that µHD
avg,1 is an

indirect measure of the adversarial indistinguishability of an
encryption scheme. From Table II, we observe that µHD

avg,1 ≈ 0.5
for all the IPs . This implies that a scan response bit has an
equal probability of being encrypted or not, thereby indicating
that TaintLock is adversarially indistinguishable.

B. Security Analysis

TaintLock offers a decentralized and non-intrusive method
for cryptographically authenticating and encrypting scan access,
thereby preventing Oracle access for untrusted users. We pair
it with truly random logic-locking (TRLL), promising low
overhead and high output corruptibility while being immune to
existing netlist analysis-based removal attacks [3]. We quantify
the resilience of TaintLock and demonstrate that it is secure
against cryptanalysis attacks, Oracle-guided attacks, and Oracle-
free attacks including state-of-the-art scan deobfuscation attacks.

1) Brute-force Resilience

Given q signature bits per pattern, an attacker can attempt to
guess Si for a given Pi. The probability of success P (Si|Pi)
for the attacker is 1/2q . However, due to dynamic per-pattern
authentication, Si will change not only based on the pattern
itself but also based on the order of patterns in the test set.
For n patterns, the attacker must try all n × 2q signature
combinations to find the correct Si for each Pi. Furthermore,
this does not unlock the IP as the attacker will be forced to
repeat this process in case of a new pattern set. Thus, the
attacker is forced to guess the seed used to generate the correct
keys, (k1, k2, k3, k4), to unlock the IP. If λi is the size of the
ith key, then the size of the RB seed used to generate that key
is 2λi − 1. Brute-force attack resilience is quantified by the
number of attempts required by the attacker to uncover the
correct key. For TaintLock, this is given by tbf = 2λsum , where
λsum = 2(λ1 + λ2 + λ3 + λ4)− 4 is the total seed size. The
attack effort is prohibitively high for the different brute-force
approaches discussed above (For e.g., tbf = 3.92 × 1056 for
q = 12).

2) Cryptographic Attacks

Given access to authenticated debug patterns, Pauth, the

attacker may apply known-plaintext attacks [14]. However,
TaintLock is resilient to both known-plaintext (KPA) and
chosen-plaintext attacks (CPA). If the attacker can collect
2m plaintext-ciphertext pairs, i.e., the number of patterns in
Pauth is 2m, the resilience of the system will be reduced
to tplaintext = 2λsum−m, where ϵ = λsum − m. However,
given the small size of Pauth, m << λsum. This makes such
attacks infeasible in practice. Additionally, given that TaintLock
obscures the circuit test responses, the attacker does not have
control over the original patterns being scanned out of the
design, making chosen-plaintext attacks also infeasible.

3) Oracle-guided and Oracle-free Attacks

We show in [15] that a dysfunctional IP guarantees resilience
against all forms of Oracle-guided attacks. As TaintLock
encrypts test response data thereby making TaintLock resilient
against these attacks.

A recent class of Oracle-free attacks called scan deobfusca-
tion attacks, such as DynUnlock and ScanSAT, aim to extract
the LFSR seed used for dynamic scan obfuscation. These
attacks are successful because: (1) the attacker knows the LFSR
feedback polynomial from the RE’d netlist, thereby allowing
them to model the pattern transformation as a function of
the LFSR seed; (2) the absence of non-linear blocks in the
obfuscation logic that lack a combinational logic equivalent.
TaintLock addresses both these weaknesses. The use of LFSRs
with reconfigurable feedback (RBs) makes it impossible for
the attacker to extract the correct feedback polynomial used
for key generation from the RE’d netlist. Moreover, the attacks
described above cannot model the encryption blocks used
in the SP-network (permutation layers and S-boxes) into a
combinational design logic-locked using the RB seed due
to their non-linear nature [5], [6]. Finally, resetting the IP
clears data in scan cells including signature values, triggering
encryption.

C. Implications on Testability

Manufacturing Test: TaintLock supports scan-based manu-
facturing testing in an untrusted setting using dummy keys
(deactivated IP without tamper-proof memory loaded). As taint
bits are extracted directly from ATPG patterns and signature bits
are embedded among the X ′s in the pattern, there is no impact
on test coverage. Since the scan chains remain unmodified, there
is no impact on test time. Moreover, TaintLock supports for
two-pattern delay tests such as launch-on-shift (LOS)/launch-
on-capture(LOC) in encrypted mode. For these tests, the first
pattern is applied with the embedded signature. However, the
second pattern is obtained either from the circuit’s response
(LOC), or by shifting a single bit (LOS). Due to the lack of
control over the bits in the second pattern, it is unlikely that
the correct signature will be embedded for that pattern. Thus,
the scan responses for LOC/LOS will be encrypted. However,
because TaintLock uses a symmetric cryptographic scheme, a
trusted user can decrypt the scan responses using the encryption
key. Furthermore, the use of unique keys per pattern ensures
that the encrypted response can be uniquely mapped to the
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expected response. This allows the user to pre-compute the
expected fault-free encrypted responses for LOC/LOS tests.

IP Activation: After manufacturing test, the IP is shipped to
a trusted site for activation. During activation, the design house
may also apply other tests to ascertain the integrity of the IP.
The objective of this step is to identify tampering within the
IP, including scan chains, control logic, or hardware Trojans.

Test Compression: Unlike scan obfuscation methods that
require bypassing of test compression [9], TaintLock is
compatible with test compression. Although it fills carefully
selected don’t-care bits in the test pattern, it is clear from
the results in Section III-C that even after the signature bits
are embedded, many don’t-care bits remain in each pattern to
support compression. We were able to compress test patterns
with embedded signature bits using Embedded Deterministic
Test (EDT) [16].

V. OVERHEAD ANALYSIS

We evaluate the power, performance, and area (PPA) over-
head of TaintLock integrated with different IPs in the CEP
benchmark. We consider the 12-bit and 16-bit signature versions
of TaintLock as they offer adequate security against known
attacks. This is integrated with a 128-bit TRLL logic-locked
netlist. All the benchmarks are synthesized at 500 MHz with
Synopsys Design Compiler using the Nangate 45 nm standard
cell library. We then run the place-and-route flow, together with
parasitic extraction, using Cadence Innovus to generate the
final design layout. We evaluate the impact on circuit timing
and power consumption using Cadence Tempus.

The PPA results for five benchmark circuits (Table III) show
that the area and timing impact of TaintLock are negligible,
and the purely combinational authentication function does
not impact the scan frequency and hence supports at-speed
testing. As the TaintLock architecture has a fixed area for the
given security configuration, both the area and power overhead
decrease with an increase in the size of the circuit. Table IV
compares TaintLock with related methods.

We also compare TaintLock with a lightweight cryptographic
encryption scheme that may be re-purposed for scan authentica-
tion (PRESENT) [17]. Unlike PRESENT, TaintLock provides
security against not only known- and chosen-plaintext attacks,
but also against Oracle-guided attacks. Moreover, it does so
at over 3× lower area overhead; see Table III. In addition,
PRESENT requires multiple rounds of encryption that take
up significant time, thereby adversely impacting the scan shift
frequency. PRESENT also has a fixed block size, thereby is not
parameterizable and hence not useful for small IP. Our results
show that a lightweight scan authentication scheme using taint
bits, such as TaintLock, can successfully offer security against
state-of-the-art attacks.

VI. CONCLUSION

We have presented the vulnerabilities associated with existing
scan data authentication techniques. We have proposed Taint-
Lock, a low overhead method that uses taint and signature bits
embedded within the test pattern for scan data authentication

TABLE III: PPA overheads associated with TaintLock and PRESENT.

IP Security Cell area Wirelength Power consumption ∆crit

configuration (µm2) (µm) (mW) (ns)

FIR
Baseline 6010.5 28103.1 2.88 1.98

∆prsnt (%) 30.64 29.03 17.69 0.71
∆12 (%) 6.38 10.47 3.13 0.22
∆16 (%) 7.5 14.65 3.94 0.72

IIR
Baseline 9864.6 46255.5 7.02 1.98

∆prsnt (%) 18.66 17.64 7.26 8.78
∆12 (%) 4.19 6.07 3.52 0.27
∆16 (%) 4.83 11.78 4.24 0.42

SHA256
Baseline 15077.6 114915.1 7.26 1.98

∆prsnt (%) 12.21 7.1 7.02 0.05
∆12 (%) 2.64 5.42 2.16 0.12
∆16 (%) 3.57 7 4.4 0.05

AES192
Baseline 267278.4 3794342.7 71.91 1.99

∆prsnt (%) 0.69 0.21 0.71 0.45
∆12 (%) 0.13 1.66 0.04 0.6
∆16 (%) 0.16 2.61 0.54 0.13

RocketCore
Baseline 375386.6 2979859.8 71.1 1.68

∆prsnt (%) 0.49 0.28 0.72 0.45
∆12 (%) 0.11 2.05 0.06 0.85
∆16 (%) 0.13 2.03 0.54 0.42

∆prsnt: percentage overhead associated with the insertion of PRESENT; ∆12(∆16):
percentage overhead associated with the insertion of 12-bit (16-bit) signature version of
TaintLock; ∆crit: critical path delay.

TABLE IV: Comparing prior secure scan methods with TaintLock.
Metrics LCSS [7] SSTKR [8] SEBC [11] DOSC [9] TaintLock

Scan deobfuscation ✗ ✗ ✓ ✗ ✓attacks [5], [6]
Removal Attacks [2] ✗ ✗ ✗ ✗ ✓

Dynamic Per-pattern Authentication ✗ ✓ ✗ ✗ ✓
Support Response Encryption ✗ ✗ ✓ ✗ ✓

Support LOC/LOS ✗ ✗ ✓ ✓ ✓
Support Test Compression ✗ ✗ ✓ ✗ ✓

Total Test-time Overhead (cycles) p × d p × d 4N None None
p: Pattern count; d: # of dummy flops; N : Round register size in [11].

and encryption. We have shown the resilience of TaintLock
against Oracle-guided attacks, Oracle-free attacks, and scan
deobfuscation attacks.
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