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The strength and trajectory of a leading edge vortex (LEV) formed by a pitching-
heaving hydrofoil (chord c¢) is studied. The LEV is identified using the @Q-criterion
method, which is calculated from the 2D velocity field obtained from PIV measure-
ments. The relative angle of attack at mid-stroke, az/4, proves to be an effective
method of combining heave amplitude (ho/c), pitch amplitude (), and reduced
frequency (f*) into a single variable that predicts the maximum value of @ over a
wide range of operating conditions. Once the LEV separates from the foil, it travels
downstream and rapidly weakens and diffuses. The downstream trajectory of the
LEV has two characteristic shapes. At low values of ag/y, it travels straight down-
stream after separating from the foil, while at higher values of az/4, an accompanying
Trailing Edge Vortex (TEV) forms and the induced velocity generates a cross-stream
component to the vortex trajectories. This behavior is accurately predicted using a
potential flow model for the LEV and TEV. Supervised machine learning algorithms,
namely Support Vector Regression and Gaussian Process Regression, are used to cre-
ate regression models that predicts the vortex strength, shape and trajectory during
growth and after separation. The regression model successfully captures the features
of two vortex regimes observed at different values of ar/y. However, the predicted
LEV trajectories are somewhat smoother than observed in the experiments. The
strengths of the vortex is often under-predicted. Both of these shortcomings may be

attributed to the relatively small size of the training data set.



I. INTRODUCTION

The oscillating hydrofoil offers an appealing alternative to conventional rotary turbine
hydrokinetic energy converters (HEC), with lower blade speeds, a low cut-in velocity, and
a geometry favorable for shallow waters such as rivers and tidal estuaries [1]. A typical
configuration of the oscillating hydrofoil is shown in Fig. 1. The hydrofoil heaves upward
with a high angle of attack inducing leading edge stall and the formation of a strong leading-
edge vortex (LEV). The vortex core has an associated low pressure region acting on the
upper surface of the foil which generates a large heaving force. Once the LEV separates
from the leading edge and begins to convect downstream, the lift quickly deteriorates and
the hydrofoil must rotate and heave in the other direction, repeating the energy harvesting
cycle.

The first investigation of power extraction by a flapping foil was carried out by McKinney
and DeLaurier [2], demonstrating the potential to generate power from a steady flowing fluid.
A numerical study by Kinsey and Dumas [3] found that for a heaving amplitude of one chord
length, efficiencies as high as 35% could be obtained at a reduced frequency, f* = fc/Us,
of 0.15 and maximum heaving amplitude of 0.75 chord length. Kim et al. [4] divided the
power generated by the foil into heave and pitch components which had different behaviors.
The heave component of energy harvesting efficiency increased with reduced frequency. In
contrast, the pitch component of efficiency decreased, with the efficiency even changing
signs from positive to negative at times [4]. Numerous field tests have also successfully
demonstrated the energy harvesting capabilities in realistic environments [5-7].

Various studies have investigated methods to increase the energy harvesting efficiency of
oscillating hydrofoils. Simpson et al. [8], for example, showed experimentally that increasing
the aspect ratio improves the efficiency of the foil. This agrees with the airfoil theory where
the detrimental effect of the tip vortices on the lift generation capabilities of a foil weakens
with greater aspect ratio. Kim et al. [4] found that a similar relationship can be applied to
the hydrofoil in heaving motion and observed that the change in efficiency is due to the power
by heaving motion being significantly affected by the aspect ratio. It has been reported that
efficiency increased when a trapezoidal pitching motion with a sinusoidal heaving motion

was used rather than a sinusoidal motion for both heaving and pitching [9-11]. Kinsey and
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Dumas have also found that when end plates are mounted, the total efficiency is improved by
reducing the 3D hydrodynamic losses [12]. In a similar effect to that of increasing the aspect
ratio, the benefits of end plates are usually thought to be the suppression of the tip vortex
effects [4]. However, with the increase in size of the end plate, the additional skin friction
and flow structure interaction may work against this benefit, reducing the hydrodynamic
force on the hydrofoil [4]. Many studies have also explored another approach to improving
energy harvesting efficiency by taking advantage of the wall confinement effect, operating

the foil close to a wall inside a channel [13, 14].

Another practical means to improve the overall power production of an oscillating foil
installation is to pack the foils into closely-spaced arrays. In the case of vertical-axis wind
turbine arrays (VAWTS), arranging two counter-rotating VAWTSs together can prove ad-
vantageous [15] due to the “constructive interference” of the structured vortex wake shed
by the leading turbine, which can improve the efficiency of the trailing turbine. For oscil-
lating hydrofoils, numerous experimental and computational studies have been conducted
analyzing the performance of oscillating hydrofoils in tandem configuration. A 2D Unsteady
Reynolds-Averaged Navier-Stokes (URANS) study by Kinsey and Dumas showed that hav-
ing a counter-clockwise vortex above the trailing foil or a clockwise vortex slightly below
the trailing foil has a favorable impact on power extraction [16]. Simeski and Franck [17]
explored various combinations of vertical and horizontal separation between the foils and
found that staggered configurations result in the efficiency of the trailing foil exceeding that
of the leading hydrofoil. Ribeiro et al. [18] investigated the power extraction and LEV tra-
jectory of an oscillating hydrofoil from large-eddy simulations (LES) and direct numerical
simulations (DNS), where they identified two regimes of efficiency in terms of the relative
angle of attack at mid-upstroke, or ary. They found that for az/s < 22°, the boundary
layer remains attached to the foil with minimal separation and no distinct LEV while for

ar/s > 22°, the LEV becomes more prominent and contributes to high efficiency [18].

However, a taxonomy of the trajectory and strength of the LEV shed by the leading tur-
bine in an array has not been completed over any range of operating parameters (frequency,
pitch angle, and heave amplitude), and the lack of this knowledge, coupled with the diffi-
culty in conducting experiments and computations of multi-foil configurations has inhibited
progress in designing oscillating foil farms. We aim to fill this this gap in our knowledge in

this work.



This manuscript combines experimental measurements of oscillating foil turbine wakes
with simple theory and machine learning tools to report on the strength, size, shape and
trajectory of the LEV formed behind an oscillating hydrofoil. Particle Image Velocimetry
(PIV) experiments are performed to obtain the LEV characteristics and position over a wide
range of pitch and heave amplitudes and oscillating frequencies. Qualitative and quantitative
analysis is used to explain the trends observed in the characteristics of the LEV and its wake
trajectory after it is shed from the foil.

The PIV measurements generate vast quantities of data - unsteady velocity fields - and
in order to take advantage of these fields in ways that we cannot intuitively guess, we also
report on the use of machine learning tools to predict the strength, shape and trajectory of
the LEV wakes. These tools, if accurate (and we will demonstrate that they are promising),
provide a unique ability to predict LEV behavior for parameter combinations that we have
not tested and still do not have complete modelling capability. The ML tools, once trained,
will be cheap to use in guiding future design of oscillating flow turbine arrays.

The paper is organized as follows. In the following section we describe the techniques
used in the measurements and review the methods used for vortex identification and machine
learning (ML) training. In Section III, we discuss the experimental results, including the
scaling of the vortex characteristics, as well as the success of a simple potential flow model
used to predict the vortex trajectory after separation. The accuracy and limitations of the
ML modelling is presented and discussed in Section II-C. Some concluding remarks complete

the paper in Section IV.

II. EXPERIMENTAL METHODS

A. Experimental Setup

The experiments were conducted in the free-surface water flume at Brown University,
with a 0.8 m wide and 0.6 m deep test section. The testing configuration is largely the same
as that of Su et al. [19, 20] and Ribeiro et al. [21], and consists of a single vertically-mounted
hydrofoil with an elliptical cross section, with a chord length of 10 cm, and an aspect ratio
of 3.5. End plates are mounted at each end of the foil in order to minimize effects from tip

vortices.



Particle Image Velocimetry (PIV) was performed to obtain the flow field around the
hydrofoil and in the wake. The PIV setup is similar to that described by Su [19, 20]. The
laser sheet was generated by a double-pulse laser (200 mJ Nd:YAG, EverGreen, Quantel
USA, MT) with a wavelength () of 532 nm. The flow was seeded with silver-coated hollow
ceramic spheres (diameter: 100 pm, Potter Industries). Four Imager sCMOS cameras with
35 mm lenses were used to record the flow images at 15 Hz and the flow fields were calculated
using Davis (v10, LaVision). A slightly modified experimental set up was used to obtain
a second set of PIV data, used to verify the machine learning predictions. Fig. 1 shows
the camera configuration for these experiments, which used a single sSCMOS camera (4
MegaPixels), capturing the flow field with the aid of a mirror positioned below the water
flume, angled at 45°.

The hydrofoil can execute computer-controlled heaving and pitching motions. A linear
servo motors (AeroTech) is used for the heaving motion and a stepper motor (Applied Motion
Products) for the pitching motion. The pitch axis of the foil is located at the mid-chord.
The pitching and heaving motions are described by:

O(t) = by sin(2m ft + o) (1)

h(t) = hosin(27 ft) (2)

where 6y and hy are maximum pitching and heaving amplitudes respectively, f is the oscil-
lation frequency, and ¢ is the phase difference between the two motions. A phase difference
of ¢ = m/2 was used for all experiments, the value for the optimal energy harvesting per-
formance [2]. The effective angle-of-attack of the foil at mid-stroke (¢/T" = 0.25), a4 is
defined as

Qar/y = tan~' (=27 ho/c fc/Us) + 6y , (3)

and has been shown [4, 21] to be a useful parameter to describe the overall energy-harvesting
efficiency of the hydrofoil.

Table 1 shows the range of foil kinematics measured with the PIV experiments. They
were conducted at three different reduced frequencies, f* = fc/Uy = 0.08,0.12, and 0.15.
Pitching and heaving amplitudes were varied when f* was fixed at 0.12. The pitching
amplitude, 6y, was varied from 55° to 85° in increments of 10°, while the heaving amplitude,

ho/c, was varied from 0.5 to 1.25 in increments of 0.25. At other frequencies, the pitching and



heaving amplitudes were fixed at 65° and 1.0, respectively. These parameter combinations

resulted in a variation of ar/4 ranging from 0.31 to 0.84.

B. Vortex Tracking

The oscillating flow turbine is characterized by the formation, growth, separation and
advection of a strong leading-edge vortex (LEV) [3, 4]. A typical velocity field, obtained
from PIV measurements is shown in Fig. 2a. The LEV was detected and tracked using the
Q-criterion [22]. The gradient of the velocity field, Vv(x,t), can be decomposed into the

sum of the rate of vorticity tensor and the rate of strain tensor: Vv = Q + S, where
1 T
Q= E[Vv + (Vv)'], (4)

and

S — %[VV — (V). (5)

Here, T' denotes the transpose of a matrix.

The @-value is defined as

Q = 5ller - |sP) (

and a “vortex” is identified as regions where the norm of the rate of vorticity tensor is greater
than that of the rate of strain tensor, () > 0. For this study, an interrogation window was
drawn manually around the vortex observed from the PIV field data in order to fully capture
the LEV in each frame. The size of the window is dependent on the kinematics of the foil
which affects the size of the LEV. It, however, does not exceed beyond a chord length. This
agrees with the findings of Rival et al., [23], where they discovered that the critical LEV
diameter is one chord length. @)-values were then calculated from the velocity field (eq. 6).
The centroid of the maximum 300 ()-values was then used to define the position of the LEV
core (Fig 2b). For each vortex, an ellipse with the same image moment (i.e. the equivalent
moment ellipse) was fitted. The lengths of the two semi-axes of the ellipse was used to define

the vortex size, shape, and orientation.



C. Machine Learning

The Machine Learning Toolbox (MATLAB, Mathworks, Natick MA) was used to train
machine learning regression models that predict vortex characteristics and behavior. Several
machine learning algorithms were evaluated before settling on Gaussian Process Regression
(GPR) and Support Vector Machines (SVM) for use in this work. These were chosen for
their robustness against outliers and overall flexibility [24]. Gaussian process regression
(GPR) models are nonparametric kernel-based probabilistic models [25]. Gaussian processes
(GPs) develop these kernels adaptively based on the available data, and provide probability
distributions for the respective model parameters. GPs have been used extensively in time-
dependent problems, which makes them appealing for our study of LEV behavior over time.
Furthermore, with a proper choice of kernel function, the prediction capabilities of a GPR
model can be enhanced. As we have observed exponential behavior in the physics of an
LEV (such as vortex strength decay), the exponential kernel function was chosen. However,
it should be noted that GPR can be computationally expensive which could be problematic

with increasing data size [26].

While the exponential GPR is proved to perform well for many of our parameters, it
does not handle discontinuities very well [27]. This is problematic for the vortex trajectory
predictions which exhibit rapid changes in direction when they separate from the hydrofoil
(as discussed in later sections). For this reason, Support Vector Regression (SVR) was
used to predict the x and y position of the LEV. SVR is an extension of Support Vector
Machine (SVM) - a popular machine learning algorithm used for classification [28]. In the
field of fluid mechanics, SVR has been successfully applied to turbulence modeling and
reduced-order modeling [29]. The implementation employed in the current work is the
linear epsilon-insensitive SVM (e-SVM) regression. Here, the value of € defines a margin of
tolerance where no penalty is given to errors. In e-SVM regression, the set of training data
includes the velocity fields as well as several predictor variables and the observed response
values. The training goal is to find a function that deviates from the ground truth, by a
value no greater than a specified tolerance e for each training point z, and at the same
time is as flat as possible and thus less sensitive to perturbations in the features [25]. The
user can tune e against noise through a “loss function”, which balances the various learning

objectives (e.g., accuracy, simplicity, smoothness; etc.) [26]. SVM algorithms use a set



kernel function, which in this case we choose a third-order polynomial (“cubic”). SVM has
the advantage that it is capable of maintaining higher precision in the case of nonlinearity
and small samples [30], thus amenable to the small data set of non-phase-averaged velocity

fields. It is also computationally inexpensive in comparison to the GPR.

1. Training Process

A separate training was performed for each of five different response values: the x and y
position of the vortex, its size (defined by the the lengths of the semi-axes of its equivalent
moment ellispe), orientation, and (-value. For each training performed, a total of 844
experimentally measured velocity fields, each with two components of velocity, (u,v), were
used as the basis of the training data, sampled from the range of parameters identified in
Table I and at different times, ¢/7, during the pitch-heave cycle. A mix of phase-averaged
and instantaneous flow fields were used depending on data availability (see Table I). Each
velocity field in the training set also included the appropriate response value as well as several
other predictor values: the relative angle of attack at mid-stroke, a4, the nondimensional
frequency, f*, the heaving and pitching positions, h(t),6(t), and the nondimensional cycle
time, ¢/T. All values were appropriately normalized by freestream velocity, chord, frequency.
The Q-value was normalized by its maximum value for that specific set of kinematics.

A good supervised machine learning model should be generalizable, providing good pre-
dictions from previously unseen data. In this respect, cross-validating the model prevents
overfitting and prevents the model to fit the training data perfectly at the cost of its general-
izability and real life applications [26]. In this study, the selected scheme of cross-validation
was ten-fold cross-validation. The training data was partitioned so that 30 % of the data
was also used for validation.

The prime metric for assessing the performance of the trained model in predicting a

generic quantity, a, is the root-mean-square error:

—~ (d; — a,)?
RMSE, = e 7
; - (7)
where n is the size of the training data set (in this study, 844 fields). d; are the predicted

values of the variable a generated by the machine learning process - for example, the x-



location of the LEV, its normalized )-strength, etc. In contrast, a; are the ground truth

data.

III. RESULTS AND DISCUSSION
A. LEV Behavior

A qualitative view of the vortex core, represented by the Q-value “cloud” (Fig 3), clearly
shows the LEV growing in strength, as the increase in the red area of the LEV from /T =
0.26 to t/T = 0.44 indicates. The LEV then separates from the foil and dissipates in the
wake as it travels downstream. The evolution of the vortex strength was quantified by taking
the average of the highest 50 )-values from the 300 points within the cloud for each frame in
time (Fig 4). The top 50 @-values rather than just one maximum point were chosen because
it reduced some of the frame-to-frame fluctuations among the maximum average ()-values;
increasing the quantity beyond 50 did not yield any noticeable improvement. The LEV is
formed early in the cycle, and retains its high strength, as vorticity is continuously fed into
the vortex from the feeding shear layer that connects the LEV to the leading edge of the
hydrofoil.

At about t/T = 0.44, as the foil nears the pitch reversal point (¢/7° = 0.5), the LEV
separates (indicated by the red marker in Fig 4), and advects downstream. After separation,
the vortex begins to decay exponentially in strength (Fig 4). For the example shown,
Qumaz ~ exp(—18.8t/T).

The evolution of the size of the LEV also follows a characteristic pattern. From the cloud
of @ points, ellipses that have the same position and image moments [31, 32] are fitted.
A typical example of the evolution of the LEV size is shown in Fig. 4. Confirming our
qualitative assessment (Fig 3) we see that the vortex remains as a stronger and compact
structure until the point of separation (marked in red). After LEV separates from the foil,
new vorticity is no longer being fed into the vortex and the vortex strength starts to decay.
At the same time, we see a rapid increase in the area of the equivalent moment ellipse. Both
the amplitude decay and area increase are due to a combination of turbulent dissipation and
3D mixing by the tip vortex.

Although the kinematics are defined by three parameters: the non-dimensional fre-
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quency of oscillation, f*, heaving amplitude, hq/c, and pitching amplitude, 6y, the max-
imum strength of the LEV, as measured by the highest Q... throughout the cycle (i.e.
max(Qmaz)), is well predicted by the relative angle of attack at mid-upstroke, ar/4 (eq. 3),
and shows a monotonic rise over the range of ay/4 considered (Fig 5). A purely empirical
fit of this behavior is given by: max(Qmas) = 377.51log(ar/q) +584.29. Similar results were
found by Ribeiro et al. [21], who found from both PIV measurements and DNS simulations
that, with few exceptions, the strength of the primary leading-edge vortex increases with

increasing relative angle of attack.

B. Behavior of the LEV trajectory in the wake
1. FExperimental observations

Using the Q)-criterion method of vortex detection, we identify the trajectory that the LEV
follows in the PIV field of view - approximately 2 to 2.5 chord lengths downstream from the
foil. Two regimes of trajectories were identified. The LEV trajectories for values of ar4
below ~ 0.5 can be seen in Fig. 6b and will be denoted as the “LEV regime” following the
nomenclature by Ribeiro et al. [21]. In this regime, the LEV initially remains attached to
leading edge as the foil heaves upwards and follows its motion. It detaches from the foil soon
after the foil reaches its maximum heave amplitude, subsequently advecting downstream
with minimal y-displacement, which results in this regime’s characteristic “hockey stick”
trajectory.

At higher values of ay/4 greater than 0.49, the trend in trajectory changes (Fig 6d). This
regime is denoted as “LEV+TEV regime” [21], and is characterized by the presence of an
additional vortex, of opposite sign, in the flow field. Depending on the foil kinematics, this
new vortex is formed either due to separation at the trailing edge which creates a trailing-
edge vortex (TEV), or by the vorticity sheet that forms below the LEV on the upper surface
of the foil consolidating into a vortex at the trailing edge and shed into the wake. In the
LEV+TEV regime, the LEVs share a similar initial trajectory when the foil remains attached
to the leading edge. After separation, however, the vortex exhibits a positive y-velocity and
forms a curved trajectory as it travels downstream.

The straight downstream trajectory of the separated LEV for low values of a7/ are
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simply due to the fact that the vortices travel with the local flow, and the local flow is
predominantly in the z-direction. In contrast, the cause of the positive y-velocity in the
LEV+TEV regime is likely a consequence of the presence of the additional vortex which
interacts with the LEV. The counter-clockwise vortex’s counter-clockwise rotation induces
the upwards motion of the LEV, while the clockwise rotation of the clockwise vortex induces
the same effect on the TEV. The LEV trajectory resultant from this interaction is illustrated
schematically in Fig. 7.

2. Potential Flow Model

In order to verify this explanation of the vortex trajectories observed in the LEV+TEV
regime, a simple model based on potential flow theory was tested. The LEV and TEV each

induce a velocity on the other: u; = 4%1 where I'; is the circulation and 2d is the distance
between the vortex cores. The circulation is obtained by taking a contour integral of the
velocity field from the PIV measurements.

The circulation of the LEV and TEV were assumed to be constant, established at the time
the vortices separated from the hydrofoil. The position of each vortex, the vortex separation
and the respective induced velocity vectors were updated in time using a MATLAB script
to generate a predicted trajectory for the vortex pair. In order to incorporate the sensitivity
of the trajectory predictions to uncertainties in the initial vortex positions and strengths, a
Monte Carlo method was used, where the position of the contour integral and the vortex
location was varied by up to 0.1c, and a total of 100 trajectories were generated and averaged
to obtain a mean trajectory and uncertainty limit. Viscous decay was ignored in this model.

An example of the result from this simulation is shown in Fig. 8. The predictions based on
potential flow theory agree well with the experimental data, capturing the upward motion of
the LEV that is characteristic of LEV+TEV regime. It should be noted, however, that the
three dimensional effects from tip vortex contribute to the experimental vortex trajectory
which results a decrease in accuracy of the two-vortex potential flow model. However, the
potential flow model was also applied to CFD data of oscillating foils” vortex wake [18] for
which longer downstream evolutions were available. The model also demonstrated excellent

agreement over a range of operating conditions (Fig 9).

In cases where the model prediction was less faithful to the observations, largely two
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types of deviations can be observed. The first is when the predicted initial slope of the
upwards motion was not as steep as the CFD data indicated, (e.g. Fig. 9d). This error
can be attributed to the sensitivity of the model to the vortex circulation. The second
deviation between the model and the observations were increasing errors as the LEV traveled
downstream (e.g. Fig. 9c) shows that the predicted trajectory begins to flatten at x/c = 3
while the vortex predicted by the CFD data travels further down in y-direction. The CFD
data shows additional vortex formations that occur which the potential flow model does not
take into account. The resultant interactions between numerous vortices likely causes these
differences.

In summary, the LEV trajectory characteristics of the LEV+TEV regime is due to the
introduction of a vortex of opposite sign. The direction of the velocity induced by the new
vortex depends on the position of the TEV with respect to the LEV. When the vortex pair
is initially shed from the foil, there is a net positive y-velocity. Because the circulation
of the LEV is greater than that of the TEV, the TEV moves faster and orbits about the
LEV. When the TEV has rotated more than 90 degrees, a net negative velocity is induced.
Therefore, a downward concave curve is observed in the experiments. After the TEV rotates
270 degrees about the LEV, the induced velocity is in the positive y-direction once again
which flattens out the trajectory. This occurs at approximately x/c ~ 3 — 4. Beyond that

point, the same interaction will eventually cause a change in direction within the trajectory.

C. Machine Learning

After the training process outlined in Section 2, the models that provided the optimal
results are outlined in Table II which includes the quantitative errors. The training times
were attained using Intel Core i7-6700HQ CPU and GeForce GTX 960M GPU.

A qualitative assessment of the success of the machine learning process is the “Predicted
vs. Actual” plot [25, 33], the results of which are shown in Fig. 10 for each of the quantities
tested. A high performance model should have points clustered along the 1:1 diagonal, with
small deviations. If any clear patterns, different from the perfect prediction diagonal, are
observed in the plot, it is likely that the model can be improved and different types of models
can be explored to ensure the most optimal results.

Overall, it can be seen that the regression model predictions of the LEV positions (Figs.
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10a, 10b) agree very well with training data, as demonstrated by the points being clustered
around the 1:1 line. Note that the horizontal bands in each of the Predicted-vs-Actual plot
reflect the fact that at each value of ¢/T, the model predicts a single value for the (x,y)
position of the LEV, but uses multiple individual realizations as part of the training data.

The shape of the best-fit ellipse (Figs. 10d, 10e), is also well predicted by the regression,
although not as successfully as the position prediction. The “rounder” appearance of the
point cluster indicates that the predictions are less accurate when the LEV is mid-sized, and
more accurate at the early and late stages of its evolution.

The prediction of the @Q-value (Fig. 10c) exhibits the worst performance, particularly
for high values of () where the ML consistently underpredicts @, particularly for the mid-
range values of ar/4. This weakness corresponds to early in the vortex shedding cycle where
the Q-value is high, but interestingly, the prediction is much better as the vortex weakens,
corresponding to the later times in the cycle. From the perspective of developing a tool to
predict the location and strength of shed vortices for tandem foil vortex interactions, this
is encouraging performance. Although the maximum Q value of the vortex is useful, it is
more important to accurately estimate the position and strength of the shed vortex further
downstream at the point where it will interact with a second foil, or downstream object.

As long as the parameters remain similar to the range of the parameters used in the
training data (Table I), we should be able to use the machine learning results to predict the
trajectory of an LEV formed from a oscillating hydrofoil. To reassure model’s performance,
a test parameter combination within the training data is used and a similar vortex tracking
is observed between measured and predicted (Fig 11).

However, the power of any machine learning utility is to compare predicted and observed
LEV trajectories for parameter combinations that are not part of the training data. Qual-
itatively, a high performance model should accurately capture the (i) the sharp increase in
the y-position early in the cycle, reflective of the movement of the foil, (ii) the development
of a high @-value during this early stage where the LEV is still attached to the foil, (iii) a
change in behavior after separation, determined by the trajectory regime which is dependent
on ary4, (iv) an increase in vortex size during this stage, reflective of the diffusion of the
vortex, and lastly, (v) a decrease in the Q-value after separation from the foil, reflecting
the vortex decay. Four parameter combinations, detailed in Table III, were used to test the

accuracy of the ML regression. Two cases are at the nondimensional frequency f* = 0.12,
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which was a common frequency in the training data, while the other two cases lie well outside
the training range.

Fig. 12 shows a side-by-side comparison between the measured trajectory obtained from
PIV data analysis (left) and the corresponding machine learning prediction (right). At first
glance, it can be seen that the predicted and true vortex characteristics agree with each
other. The time-dependent traits, such as a decrease in vortex strength, represented by the
colors of the vortices, and the increase in the size of the vortices, represented by the size of
the equivalent ellipses, are accurately captured. The change in the y-velocity of the vortex
between the LEV and the LEV+TEV regime is also reasonably well captured.

The differences between the observed and predicted behavior is instructive. The regres-
sion machine learning models tend to predict trajectories that are smoother, and the abrupt
changes in direction - the “hockey-stick” trajectories observed at low a4 are less pronounced
in the predictions, replaced by smoother paths. An example of this is the trajectory of the
LEVs shown in Figs 12e and 12f. In the PIV data, at approximately z/c = 0.3, the LEV
abruptly changes course once separation from the foil occurs. The machine learning model’s
interpretation of this behavior qualitatively agrees, but is much more gradual, resulting in
a smoother trajectory.

A point to concern when selecting training parameters is the possible coupling between
different input variables which, if present, may reduce the accuracy of the predictions if
not taken into account. For example, in a limited study, a single model was trained to
simultaneously predict both the x— and y—position of the LEV. This model yielded similar,
but at times, poorer, predictions compared to those generated by the independent models.
The lack of improvement may come from the fact the change in the z-position is dominated
by the freestream velocity, which is significantly greater than the induced velocity in the x-
direction from the vortex pair interaction. In contrast, the y-trajectory is strongly affected
by the induced velocity of the second vortex.

Another distinct shortcoming in the machine learning performance is in the prediction of
the LEV amplitude. This is already reflected in the predicted-actual data (Fig. 10c), and is
confirmed here. Observing the development of the maximum normalized ) value through
time in the experimental data in Fig. 12, we see that the LEV strength decays relatively
slowly, retaining a high @-value greater than 0.5 early in the cycle, until the vortex convects

to approximately xz/c = 1. The higher normalized @Q-values are indicative of the LEV
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remaining attached to the leading edge of the foil. It is only after separation that the LEV
begins to decay at significantly higher rate (e.g. Fig 12e). This behavior is not captured
with the same accuracy by the machine learning predictions, which observe a more gradual
decrease in the Q-value (Fig 12f) after separation. The consequence of this is that more
frames are required to achieve the same change in the rapid change in (). In some cases,
the overall decay of the vortex seems delayed, retaining ()-values near 1 until the point of

separation. This issue can likely be resolved with a greater number of training data.

Despite these differences, the machine learning predictions for the LEV trajectories are
remarkably accurate, and a quantitative analysis of the errors is shown in Fig. 13. Most of
the time, the absolute position error (the distance between the actual and predicted LEV
centroid positions) remains below 0.15c. As the trajectory evolves, the error accumulates,
resulting in the highest overall errors at the larger times. The smoothing of the trajectory,
mentioned above, also contributes to the error. In particular, between t/T ~ 0.3 — 0.4, and
the LEV separates from the foil, the experimental trajectory experiences a sharp change
in direction. As the machine learning equivalent smooths out the abrupt shift, the errors
during this time period are larger, confirmed by the bumps observed for all four validation

cases in Fig. 13.

Despite promising performance of the machine learning predictions, it can be seen in
Fig. 13 that the ML prediction errors are higher than those of the potential flow model
predictions, which are based on a physical analysis of the experimental data. However, it
should be noted that the potential flow model is initiated at the point of separation with the
inputs of the LEV-TEV vortex pair’s respective positions and circulations. As such, it starts
with the positional error of 0 at a much later point in the cycle and an accurate measure of
the key vortex circulation. Yet, we see that the rate of increase in the error is roughly similar
to that of the machine learning model, indicating that the ML model performs as well as
the potential flow model with regards to the propagation of the error. This, in addition
to the fact that machine learning model is capable of generating a prediction from just the
foil kinematic, means that the machine learning model could be an attractive alternative.
Furthermore, once it is trained, the machine learning model produces its predictions in a
much shorter time than the potential flow tool for forecasting the wake vortex topology

without extensive measurements or further calculations.
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IV. CONCLUDING REMARKS

The ability to accurately predict the formation, separation and downstream trajectory of
LEVs over a range of operating parameters is of fundamental interest, as well as of practical
utility. Several physical systems rely on an accurate prediction of the strength and location
of LEVs, including understanding the dynamics of fish schooling [34], as well as optimal

placement within arrays of vertical axes wind turbines [15] or oscillating hydrofoils [21].

Here, a heaving-pitching hydrofoil is used to generate LEVs of varying strength, and in
analysing PIV measurements over a wide range of parameters, we have found that, although
there are three parameters needed to fully describe its motion - pitching, heaving amplitude
and frequency - the effective angle of attack at midstroke, ar/4, is a convenient quantity
that collapses all three parameters and serves as an accurate predictor of subsequent LEV

characteristics.

The strength of the LEV, measured by the maximum @-value, increases with az/4. In
agreement with other results [18], the trajectory that the LEV follows after separation can
be loosely divided into two regimes: LEV and LEV+TEV regimes, where the transition
occurs at approximately ar/, = 0.49. In both cases, the LEV follows the motion of the
hydrofoil until separation. For the LEV regime, the LEV simply convects downstream with
minimal y-displacement. In contrast, in the LEV4+TEV regime, an additional vortex with
an opposite-signed strength is formed near the trailing edge. The presence of a vortex-pair
results in a self-induced motion in the positive y-direction - a motion very well described by
a simple potential flow model that relies only on the knowledge of the vortex strengths and

positions as they separate from the hydrofoil.

After gaining an understanding of the physics behind LEV trajectory, a machine learning
approach was used to create a reduced-order modelling tool to capture trends that were
found. Supervised regression machine learning was found to accurately predict numerous
LEV characteristics over a wide range of foil kinematic parameters. The trained model was
successful in capturing the two vortex trajectory regimes, as well as the progression of the
vortex size and strength, particularly after the initial phase of vortex separation. Verification
of the regression model, using additional PIV data, indicates that the error in the predicted

trajectory is small, usually limited to 0.15 chord lengths.

Although there is no substitute for a detailed understanding the physics of LEV forma-
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tion, separation, and advection, the machine learning (ML) tools provide the capability to
generate useful predictions of the wake structure from just the foil kinematics without the
need for time-consuming experiments or high-fidelity numerical simulations. The efficiency
of the ML prediction is ideal for exploring a large parameter space required in optimization
problems, and has the potential to be an attractive tool to rapidly reduce the size of the
search space required to design arrays of oscillating hydrofoils that can harvest the energy
from the LEV shed from upstream devices [15, 18]. Of course the ML results have clear
limitations. In the present study we have trained the predictions at a single Reynolds num-
ber, and with a limited set of kinematics that only considers sinusoidal motion. Reynolds
number effects on single foil performance have been shown to be very modest [18], although
there is no data on Re-effects on the wake behavior. In addition, extrapolation of the model
for parameters that stray far from the training data would be of questionable reliability.
As such, more complex kinematics may well prove attractive [35, 36] but at this stage, it
is not yet clear whether ar/4 will remain a good predictor of the leading foil performance
[21] and how the ML predictions will fare as the kinematic space grows. These are clearly
subjects for future study. Lastly, although these results show excellent promise, other deep
learning techniques, such as convolutional neural networks [37] may prove to be an attractive

alternative that might demonstrate better performance than is observed in this initial study.
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TABLE I. The kinematic parameters of an oscillating hydrofoil explored in this study, the corre-
sponding number of velocity field frames used for machine learning training matrix, and whether
they were phase-averaged data. The kinematics are arranged in ascending order of ag/y, the

relative angle of attack at mid-stroke.

f* 0o (deg) ho/c ar;y # Frames Phase Avg.

0.12 55 1 031 187
0.12 65 1.25 0.38 20
0.15 65 1 0.38 20
0.12 65 1 0.49 187
012 65 0.75 0.62 22
0.12 75 1 0.66 185
0.08 65 1 0.67 13
0.12 65 0.5 0.77 186

“ O XK O X O X X O

0.12 85 1 0.84 24

TABLE II. Summary of models used for each feature predicting algorithm with their training times

and root-mean-square errors (eq. 7).

Predicted feature Model Time (s) RMSE
X position Cubic SVM 12.50  0.11
Y position Cubic SVM 17.49  0.072

Qmaz/ max(Qmaz) Exponential GPR  29.19  0.16
Ellipse major axis Exponential GPR 23.52  (0.058

Ellipse minor axis Exponential GPR 46.14  0.038
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TABLE III. The kinematic parameters of an oscillating hydrofoil used for machine learning verifi-

cation.

Case f* 0o (deg) ho/c ary

i 012
it 0.10
iii  0.12

iv. 0.10

80
75
70
55

0.75
0.75
0.58
0.40
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FIG. 1. Left: The motion of a single oscillating hydrofoil for a half-cycle from a top-down view. At
the start of the cycle, /T = 0, the foil is positioned at the negative peak amplitude and is angled
at 0°. The foil follows a sinusoidal heaving and pitching motion with a phase difference of /2.

Right: The PIV experimental set up in the flume used for verification PIV data.
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FIG. 2. An example of Q-criterion used to detect and track LEV from the velocity field and its
corresponding vorticity field. The foil’s operating kinematics are: f* = 0.12,60y = 65°, ho/c = 0.5
at t/T = 0.30. a) Nondimensionalized vorticity field for a typical case during mid-stroke from the
PIV measurements. b) The corresponding “cloud” of @-values of the flow field. The black marker

indicates the location of the LEV centroid.
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FIG. 3. An example of the evolution of the leading-edge vortex (LEV), as a function of time
as indicated by the movement of clouds of Q-values. The largest 300 @)-values for each time are
plotted. The tracking begins at ¢/T = 0.26 and ends at ¢/T = 0.64, while the clouds of Q-values
are captured every 0.06 t/T. The growth, separation and advection of the LEV is typical over
almost all parameter combinations. In this case, the kinematics are: f* = 0.12,60y = 85°, ho/c =1,

OtT/4 = 0.84.
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FIG. 4. An example of the evolution of the vortex strength, Q..q. (left), and area (right), as a
function of time. The red marker indicates the point of separation of the LEV from the leading
edge, determined by a visual assessment of the vorticity plot. The foil’s operating kinematics are:

£*=0.12,600 = 85°, ho/c = 1, ar), = 0.84.
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FIG. 5. Strength of the highest Q4 throughout the cycle, or max(Qaz), for various values of

ar/4. The best fit line follows the equation 377.51log(az/4) + 584.29.
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FIG. 6. a) Snapshots at different points in time of a typical PIV vorticity plot of a LEV developing

under the LEV regime. The tracked positions of the LEV centroid are indicated by green crosses.

The foil kinematics for this example are: f* = 0.12, 6y = 55°, ho/c = 1.

b) Trajectories of

4 different kinematics in LEV regime. The vortices follow a steep upwards motion early in the

trajectory. After separation, LEVs convect downstream with relatively small y-displacements. c)

Snapshots at different points in time of a typical PIV vorticity plot of a vortex pair developing

under the LEV+TEV regime. Only the LEV is tracked. The foil kinematics for this example is:

f*=0.12, 6g = 85°, hg/c = 1. d) Trajectories of 5 different kinematics in the LEV4+TEV regime.

The initial steep upwards motion is still seen. After separation, however, LEVs continue to retain

positive y-velocity.
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FIG. 7. The interaction between the LEV and the TEV and the resultant trajectory characteristic
to LEV4+TEV regime. The circles represent the two vortices with the colors indicating the sign of

circulation. The arrow indicates the direction of induced velocity.
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FIG. 8. An example of the comparison between a trajectory predicted from the potential flow
model and a trajectory obtained experimentally. The error bars represent the standard deviation
of Monte Carlo simulation of the potential flow model. The kinematics of the foil a) f* = 0.12,

B0 = 85°, ho/c = 1.
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FIG. 9. Four examples of the comparison between a trajectory predicted from the potential flow

model and a trajectory obtained from the vortex formations in the CFD data. The error bars
Red cross indicates the point of

represent the standard deviation of Monte Carlo simulation.
separation of the LEV from the leading edge. The kinematics of the foil are: a) f* = 0.10,
= 65° ho/c = 1. ¢) f* = 0.12, 8y = 65°, ho/c = 1. d)

90 = 650, ho/c = 1. b) f* = 0.11, 90

F*=0.15, g = 75°, ho/c = 1.
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FIG. 10. The machine learning performance per predicted variable as demonstrated by the “Pre-
dicted vs Actual” plot. The black diagonal line represents a perfect prediction, while the plot
markers represent the actual true response of the machine learning algorithm for each PIV frame
used in the training. Due to the non-phase-averaged nature of the training data, multiple actual
values exist for each kinematics resulting in a horizontal “line” in the plots. The length of this
line represents the range of the actual value within the training data. The predicted values are:

a) centroid x-coordinate, b) centroid y-coordinate, ¢) Q/ max(Qmaz), d) major axis of equivalent



33

2.5 1 2.5 1
e] e]
2 08 ¢ 2 08 ¢
> >
E E
15 06 % 1.5 06 %
Q E O E
> ° > o
1 04 & 1 04 &
S S
£ £
0.5 023 0.5 028

0 0 0 0

0 1 2 0 1 2
x/c x/c
(a) Measured (b) Predicted

FIG. 11. A comparison between the measured LEV trajectory (a) and the equivalent predicted
trajectory (b) at foil kinematics f* = 0.12,0y = 85°, hg/c = 1. Dark crosses and circles represent
the centroids of the LEV. The ellipse represents the LEV’s equivalent moment ellipses while their
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are normalized by the highest value that occurs in the cycle.
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FIG. 12. Comparison between predicted and actual LEV trajectory. Left: PIV data; right: ML
prediction. Dark crosses/circles represent the centroids of LEVs for PIV and ML, respectively. The
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by the maximum @-value over the entire cycle. Refer to Table III for foil kinematics.
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FIG. 13. The position error, defined by the equation \/(z¢ — )2 + (yo — y)2, of the LEV trajectory
predicted by machine learning and potential flow models compared to the measured trajectory. The
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thus zero. xg,yo are the predicted x,y positions of the LEV centroids while x,y are the measured

X, y positions. Refer to Table III for foil kinematics.



