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Abstract

The panel data regression models have gained increasing attention in different areas of research including but
not limited to econometrics, environmental sciences, epidemiology, behavioral and social sciences. However,
the presence of outlying observations in panel data may often lead to biased and inefficient estimates of
the model parameters resulting in unreliable inferences when the least squares (LS) method is applied.
We propose extensions of the M-estimation approach with a data-driven selection of tuning parameters to
achieve desirable level of robustness against outliers without loss of estimation efficiency. The consistency
and asymptotic normality of the proposed estimators have also been proved under some mild regularity
conditions. The finite sample properties of the existing and proposed robust estimators have been examined
through an extensive simulation study and an application to macroeconomic data. Our findings reveal that
the proposed methods often exhibits improved estimation and prediction performances in the presence of
outliers and are consistent with the traditional LS method when there is no contamination.

Keywords: Panel data, Fixed effects, Robust estimation, M-estimation, Least squares

2010 MSC: 62M10, 62F35

1. Introduction

Panel data refers to the two-dimensional data in which cross-sectional units are observed over time.
Its grouping structure allows to reflect the nested phenomena so that the characteristics of cross-sectional
units are entrenched over time and vice-versa (see, Bickel (2007)). Over last several years, its increasing
availability, demanding methodology and better ability to model the complexity of human behavior than
a pure cross-section or time series data are the primary reasons behind the excessive growth in its study
(see,Hsiao (2007)). For a comprehensive account of the technical details on linear panel data models, please

refer to Baltagi (2005), Fitzmaurice et al. (2004), Greene (2003), Maddala and Mount (1973), Mundlak (1978),
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Diggle et al. (2002), Hill et al. (2007), Wallace and Hussain (1969), Wooldridge (2002), and the references
therein.

In recent years, the panel data regression models have received increasing attention in the research of
different fields such as econometrics and biostatistics, since these models allow the unobserved individual-
specific heterogeneity to be taken into account (cf. Baltagi (2005) and Hsiao (1985) for more details). The
statistical appeal of panel data models relies on the fact that these focus particularly on explaining within
variations over time and provide controls over individual heterogeneity. The most widely used regression
techniques for making statistical inferences regarding the parameters of linear panel data regression models
are typically based on the LS approaches. However, traditional estimation techniques require a number of
quite restrictive and unrealistic assumptions such as the normality of error distribution, strict exogeneity
with respect to the error terms and homoscedasticity of the error terms (cf. Kutner et al. (2004), Greene
(2017)). Also, the panel data may include various types of outliers such as either vertical, horizontal or
leverage as noted in Rousseeuw and van Zomeren (1990) and Bakar and Midi (2015). Furthermore, the
outlying observations may be concentrated in some blocks such that the fraction of contaminated values
per one cross-sectional unit constitutes at least a half of the observations over time periods (cf. Bramati and
Croux (2007) and Aquaro and Cizek (2013)). Hence, the classical ordinary least squares (OLS) based methods
may considerably be affected in the presence of data contamination and outliers caused by the measurement
error, typing error, transmission/copying error and naturally unusual observations as noted in Rousseeuw
and Leroy (2003), Maronna et al. (2006) and Bakar and Midi (2015). As a result of this, the well-known
estimators, such as within group LS estimators used in panel data models with fixed effects, often lead to
unreliable estimates of the model parameters. In addressing the problem, more robust alternatives to LS
methods having a high breakdown point (BP), such as Least Trimmed Squares (LTS) and S-estimators have
been introduced by Rousseeuw (1984) and Rousseeuw and Yohai (1984) for linear regression models. One of
the various measures characterizing the robustness of the estimator is the breakdown point which measures
the minimum proportion of the data that can significantly change the estimates (cf. Genton and Lucas (2003),
Davies and Gather (2005) and Aquaro and Cizek (2013)). As pointed out by Rousseeuw and Leroy (1987), the
asymptotic breakdown point of the LS estimator is zero in the presence of contaminated data sets. Hence, for
contaminated data sets, the importance using robust and positive breakdown point methods in estimating
model parameters has been emphasized by many authors; see, for instance, Hampel et al. (1986), Simpson
et al. (1992), Wagenvoort and Waldmann (2002), Maronna et al. (2006), Cizek (2008). This is more crucial
for panel data since the outlying data points may be masked and not be directly detectable using standard
outlier diagnostics due to the complex structure of the data.

In spite of the fact that building up the robust methods have been well-studied in estimation of the linear



regression parameters, the number of available approaches on the robust methods for static panel data
models is fairly limited (cf. Bramati and Croux (2007),Aquaro and Cizek (2013)). A few different approaches
within the robust estimation framework for the fixed effects panel data models have recently been proposed
by Bramati and Croux (2007), Namur and Luneburg (2011), Aquaro and Cizek (2013), Bakar and Midi
(2015), Visek (2015) and Midi and Muhammad (2018). Bramati and Croux (2007) have proposed the robust
alternatives to the within group LS estimator with positive breakdown point by extending well-known
robust regression estimators, such as LTS estimator ofRousseeuw (1984) and a combination of M and S
estimates, namely, MS estimates of Maronna and Yohai (2000). Another robust estimation approach has been
proposed in Aquaro and Cizek (2013) based on two different data transformations (i.e. first-difference and
pairwise-difference transformation) by applying the efficient weighted least squares estimator of Gervini
and Yohai (2002) and the reweighted LTS estimator of Cizek (2010) in the fixed effects linear panel data
framework. Visek (2015) has developed a robust algorithm by weighting down the large order statistics
of squared residuals. Moreover, Bakar and Midi (2015) have considered a robust centering method by
employing the MM-centering procedure to the data. Then, the authors use the within group Generalized M
Estimator (WGM) of Bramati and Croux (2007) to estimate the parameters of fixed effect panel data model.
More recently, a Weighted Least Square (WLS) procedure based on MM-centering method, which is highly
resistant in the presence of leverage points and vertical outliers, has been proposed by Midi and Muhammad
(2018).

In this study, we concentrate on a class of robust estimators, i.e. M-estimators, instead of investigating
different data transformations for fixed effects panel data model. A dispersion function (also called the loss
function), that varies at large values more slowly in comparison to the squared function of the residuals,
is attempted to be minimized in M-estimation approaches. However, the robustness against outliers is
achieved by some efficiency loss when unnecessarily resistance occurs. (e.g., Hampel et al. (1986), Lindsay
(1994), Wang et al. (2007) and Jiang et al. (2019)). Hence, it is critical to choose a dispersion function with an
appropriate resistance level in obtaining efficient estimates of the parameters as noted in Wang et al. (2007).
To determine the necessary level of robustness, a tuning parameter (also called the regularization parameter)
in the dispersion function requires to be selected appropriately based on the possible proportion of outliers
(please, see Wang et al. (2007) and Wang et al. (2018) for more details). For some dispersion functions, such
as Tukey’s bisquare and Huber’s functions, a data-driven procedure that automatically chooses the value
of the tuning parameter has been introduced by Wang et al. (2007) and Wang et al. (2018) in the context of
regression models. The main idea behind this method is to achieve desirable level of robustness against
outliers without sacrificing estimation efficiency. Also, a data-dependent procedure to choose the value

of tuning parameter in Exponential loss function has been proposed by Wang et al. (2013) in obtaining



penalized robust estimators with maximum efficiency and asymptotic breakdown point 1/2. In this paper,
we adapt the M-estimation techniques with automatic selection of tuning parameter introduced by Wang
et al. (2007) and Wang et al. (2013) to fixed effects panel data models to achieve resistant estimation against
outliers as well as improving estimation efficiency. To construct robust alternative procedures based on
Huber’s, Tukey’s bisquare and Exponential loss functions to the within group LS estimator, we use within
group transformation on mean centered data to eliminate the individual effects. Thus, we do not provide
the detailed explanations of the robust methods based on the different data transformations proposed by
Aquaro and Cizek (2013). The asymptotic properties of the proposed M-estimation methods are investigated
by establishing the consistency and asymptotic normality in the context of fixed effects linear panel data
models. Also, to investigate the finite sample performances of the proposed robust estimators, Monte
Carlo experiments are carried out under various contamination schemes and two levels of contamination.
Furthermore, the effects of different types of outliers including vertical outliers and leverage points on the
proposed estimation procedures have been examined. The numerical results demonstrate that the proposed
M-estimators based on data-driven procedures yield more accurate and precise estimates of the model
parameters compared to within group LS estimator and within group MS estimator (WMS) of Bramati
and Croux (2007) for the increasing level of contamination, in general. Moreover, the predictive ability of
the models constructed by estimating coefficients using our proposed methods is better than that of WMS
method.

The remainder of the paper is organized as follows. In Section 2, we present a detailed information on the
fixed effects linear panel data models and within group LS estimator, followed by a discussion on the existing
robust estimation procedures in Section 3. In Section 4, we describe our method to obtain the M-estimators
based on Tukey’s bisquare, Huber’s and Exponential loss functions with a data-dependent tuning in the
context of linear fixed effects panel data models. In Section 5, we present the large sample properties of
the proposed estimators. The finite sample performances of the proposed M-estimators are provided by an
extensive simulation study and the results are compared with the robust WMS and traditional LS methods
in Section 6. In Section 7, we apply proposed robust methods to real macroeconomic data. Finally, Section 8

concludes the work with a few remarks.

2. Fixed Effects Panel Data Models

A linear fixed-effects panel data model with a random sample {(y;, i, «;),i=1,--- ,N,t =1,--- , T}
can be represented as

T
Yie = X+ i + &,



where y;; denotes the response variable, the K-dimensional random explanatory variables are denoted by
x;’s and B € RK are the vector of regression parameters. The subscript i denotes the individuals observed
over time periods t. Finally, the «;’s and ¢;;’s respectively represent the unobservable individual specific
effects and the independent and identically distributed (i.i.d.) error terms with E (e;|x;1,- -+, xi1,&;) = 0,
E (€%|x;, ;) = 02 I where It is the identity matrix and E (g;¢;5|x;, a;) = 0 for t # s. For simplifying notation,
the panel data regression model can be expressed in more compact form, by stacking observations over time

and individuals, as in Equation (1) given below.
y=a®er+Xp+e (1)

wherey = (y1,---,yn)  and X = (x1,- -, xn)7, respectively, are an NT x 1 vector with y; = (yj1, - -, ViT)
and an NT x K matrix of regressors with X; = (xiTl,- . ,xl.TT)T, « is an N x 1 vector consisting of the
individual effects a; fori =1--- N, erisa T x 1 vector of ones and ® denotes the Kronecker product.

An important advantage of the fixed effects model is the elimination of the individual effects from the
model equation when estimating the parameter vector, 8. The within group transformation removes the
fixed effects by using the time averages of y;;, x;; and e;; for each-cross sectional unit: 7; = T 'Y vy,
X =T1 Zthl xjpand & = T~1 Zthl gjt. Then, the within group transformed model for the mean-centered
data is obtained as follows.

.. T ..
Vit = Xt + €t

where ¥j;; = yiy — Ui, £ = x4 — X;. and €;; = g;; — ;.. Under the assumptions of fixed effects models, the
within group LS estimator of j, ﬁ( Ls) is obtained by running regression of jj;; on ¥;; using OLS method, as

follows.

i=1t= i=1t=1

X N T lyNoT .
o= (L5 05 (£ Lot
1

The within group estimator fulfills three equivariance properties with respect to scale, regression and
affine transformations since it is linear. Suppose R ({xj,y;;}) denotes a panel regression estimator as a

function of data.

Definition 2.1. If, for any constant ¢ € R,

R ({xit, cyir}) = eR ({xit, Yir })

the estimator R is scale equivariant.



Definition 2.2. If, for any K x 1 vector of constants v,

R ({xit/yit + xij;V}) = R ({xit, yit}) +v
it is regression equivariant.

Definition 2.3. If it follows for non-singular A € RK*K

R <{ATxit,yit}) = AT'R ({xit, yir})
then, this estimator satisfies the affine equivariance property.

The within group LS estimator defined above is known to be highly sensitive to the presence of outliers
and aberrant observations. The motivation of this work is to construct robust estimation procedures which
are less sensitive in the presence of outliers and erroneous observations. In this paper, we propose extensions
of the data-dependent approaches proposed by Wang et al. (2007), Wang et al. (2013) and Wang et al. (2018)
for obtaining robust and more efficient estimates in fixed effects panel data models. This study considers
three approaches: the first one is based on exponential squared loss (ESL) function suggested by Wang
et al. (2013) to improve the robustness of variable selection procedures in context of penalized regression
methods. Also, they propose a class of penalized robust regression estimators based on ESL and a data-
driven procedure, which allows to select a tuning parameter depending on the proportion of outliers in the
data. These procedures yield highly robust and also, efficient estimates by achieving the highest asymptotic
breakdown point of 1/2. In other approaches, we propose to use Huber’s function and Tukey’s bisquare
function with data-dependent regularization parameters to obtain more efficient estimates within the fixed
effects models framework. Wang et al. (2007) and Wang et al. (2018) have proposed a data-driven method for
the automatic selection of a tuning constant that can be applied to the various dispersion functions such
as the Huber, Tukey’s bisquare and ESL functions for regression models. They obtain considerably better
results by improving the efficiency in estimating the regression parameters. Next, we briefly discuss the

existing robust estimators and describe our proposed method to estimate the fixed effects panel data models.

3. Robust Estimation for Fixed Effects Panel Data Models

The existing literature regarding the robustness of estimators for static fixed effect panel data models is
fairly limited. For the purpose of constructing highly robust procedures, Bramati and Croux (2007) propose

the WGM estimator and the WMS estimator, which have asymptotically breakdown point of 1/4. In the



first approach, Bramati and Croux (2007) suggest robustly centring the variables by using the within group

medians (as described in Equation (2)).

i = Yir—median (yir) 2)

Xip = xit—mectiian(xit)

Next, LTS regression is suggested to employ on the centered data to obtain initial estimates. Finally, a
weighted LS estimation, which uses Tukey’s bisquare function with the fixed tuning parameter c = 4.685
and a multivariate S-estimator for down-weighting of leverage points, is performed to construct the WGM
estimator. Although the WGM estimator can achieve the breakdown point up to 1/4, it has crucial limitations
of not being regression and affine equivariant because of the non-linearity of median transformation.

To construct the WMS estimator, the fixed effects are first estimated by considering them as regression
coefficients. Then, the MS regression estimator of Maronna and Yohai (2000) can be implemented to the panel
data, which uses M-estimators and S-estimators for the discrete explanatory variables and the continuous
ones, respectively. It has been noted that the WMS, which has the advantages of being regression and
affine equivariant, and the WGM procedure yield quite similar efficient estimation asymptotically. Thus, we
compare our proposed procedures with the WMS estimator by considering its superiority over the WGM
estimator.

Recently, Aquaro and Cizek (2013) propose robust estimation procedures based on the pairwise difference
transformations by applying the efficient weighted LS estimator (REWLS) of Gervini and Yohai (2002) and
the reweighted LTS (RLTS) estimator of Cizek (2010). Since the novelty of their approaches is to use different
data transformations, the authors demonstrate the equivariance, robust, and asymptotic properties of the
proposed estimators. The finite sample performances of the WGM and WMS estimators of Bramati and
Croux (2007) and the REWLS and RLTS estimators of Aquaro and Cizek (2013) are similar and they have
equal breakdown points according to a given data transformation, see Aquaro and Cizek (2013). Hence,
the numerical results discussed in Section 5 do not include the results related to the performances of the

methods proposed by Aquaro and Cizek (2013).

4. New Robust Estimators Using Well-Known Loss Functions with Automatic Selection of Tuning Pa-

rameter

A broad class of robust estimation methods is the M-estimation approach which is based on minimizing
dispersion function that more slowly varies at large values compared to the squared function of the residuals

(see Wang et al. (2007) for details). In the M-estimation approach, the robustness is achieved by sacrificing



some of efficiency in presence of unnecessarily excess resistance (e.g., Hampel et al. (1986), Lindsay (1994),
Wang et al. (2007) and Jiang et al. (2019)). To obtain necessary degree of robustness, a tuning parameter in
the dispersion function requires to be chosen appropriately depending on the possible proportion of outliers,
as noted in Wang et al. (2007) and Wang et al. (2018). To this end, for a specific family of dispersion functions,
a data-driven approach that automatically selects the value of the tuning constant has been introduced by
Wang et al. (2007) in the context of regression models. The main idea underlying this method is to achieve
desirable robustness level in presence of outliers without loss of estimation efficiency. Moreover, Wang
et al. (2018) extend this procedure for linear regression models with autoregressive errors in analysing water
quality data.

In this study, we focus on the robust estimation approaches based on loss functions with automatic
selection of tuning parameter proposed by Wang et al. (2007) and Wang et al. (2013) to achieve resistant
estimation against outliers and improve estimation efficiency in fixed effects panel data models. To construct
alternative procedures to the methods discussed in Section 3, we use within group transformation for mean
centered data to eliminate the individual effects. Thus, we do not provide the numerical results and the
detailed explanations of the robust methods based on the different data transformations proposed by Aquaro
and Cizek (2013).

The M-estimation approach relies on minimization of a loss function, p(-), instead of minimizing sum of
squared errors since the LS method is highly sensitive to the distortions caused by outliers (Rousseeuw and
Leroy (2003)). The Huber and Tukey’s bisquare functions, which are the most commonly used loss functions

in robust regression, are defined as in Equations (3)-(4), respectively. (see, Wang et al. (2018))

e Huber’s function

2

L if lul <c
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¢ Tukey’s bisquare function
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Also, Wang et al. (2013) propose to use ESL function to obtain a class of penalized robust regression estimators

with asymptotic breakdown point of 1/2 for variable selection, and it can be expressed as follows.

o-s-ar{-(2)

e ESL function



Then, the robust estimator of § is obtained as the solution of the following estimating functions by minimizing

TR
the loss functions YN T | p {MM} for a given estimate of the scale parameter, &
N T
=) Z"W {<ylt uf ) } = (0)
i=1t=1 o Kx1

where 1 denotes the sub-gradient function of p (). It can be expressed as in Equations (5)-(7), for Huber’s,

Tukey’s bisquare and ESL functions, respectively.

e Huber’s function

u if lul <c
pu) =4 . ®)

sign (u)c if lu] > ¢

¢ Tukey’s bisquare
22 .

1— (% flul <

py = § 111 @ il <c ©
0 if lu| > ¢

e The ESL function 5
Y(u) = uexp {— (Llc) } @)

Let us consider the residuals e; = §j;; — ¥} ,3( Ls) Wwhen OLS regression is performed on the within group

transformed data. Then, the estimating equation can be rearranged as follows

xlﬂp{ (e~ %4f) } ®

wiXieit
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where w;; = ¥ (¢;;) /¢ denote the weights obtained by the weighting function W(e) = p’(e)/e and ¢;; =
(yit — xZ; [3) /0. The U defined in Equation (8) has a form of score functions with the weights, w;;. Thus, our

proposed robust estimators can be obtained as follows

i=1t=1

X N T /N T
Pm = <Z Zjé?;witfit> <ZZ tthtyzt>

Since W is a function of § and o, an iterative procedure has been followed at the k-th iteration based on

the previous ¥~ to determine the weights, @;; = wy| B=plk-1) - The M-estimation method assumes that



Ey (g;) = 0and Ey? (¢;) = 175,. Let’s also suppose that

OEY (eit +6)

b= EY)

6=0

Under the finite variance assumption with some regularity conditions defined in detail in Section 5 and
Elp (e; +6) — ¢ (¢;)]? = 0(1) as 6 — 0, the consistent estimator 35 is obtained by solving U(B) = 0 and it
follows that

VN (=g ~N (02 [E(XIX)] )

where E (XZTX,) is estimated by N -1 Z XTX (or N™ Z o Zt 1 xltxlt) and T = 1%/ (72 denotes the scalar
efficiency factor. The subgradient function i, which has large values of the efficiency factor 7, lead to some
gain in efficiency of the estimator § as noted in Wang et al. (2007). Thus, the loss function p (-) with the
largest value of T should be chosen to obtain more efficient estimates of the parameters.

As noted in Bramati and Croux (2007) and Wang et al. (2007), the choice of constant, c may have a great
impact to achieve a good trade-off between efficiency and robustness degree. For example, in constructing
the WGM estimator proposed by Bramati and Croux (2007), the value of ¢ is chosen as 4.685 where Tukey’s
bisquare function is used. For Huber’s function, its default value in the R package rlm equals to 1.345 to
obtain about 90% efficiency when the data follow Normal distribution, see Wang et al. (2007). In traditional
robust procedures, the value of ¢ for any loss function must be predetermined by taking into account the
desirable level of robustness. However, the efficiency of the estimators varies significantly with the different
choices of c. Therefore, the value of tuning parameter ¢ requires to be chosen depending on the proportion of
the outlying points in the data or distribution of the data to maximize the estimation efficiency. Thus, in this
study, best value of the tuning parameter c is chosen by maximizing the value of 7, and the nonparametric

estimate of T, proposed by Wang et al. (2018), is calculated by

2
e}
CONTYN, S 92 (6)

where é;; = Uaz

”’3 , B and & denote the current estimates of B and ¢, respectively.
Based on the above, we present the data-driven procedure introduced by Wang et al. (2007) to obtain
the proposed robust estimators of § in panel data regression models when Huber’s and Tukey’s bisquare

functions are used as loss functions.

Step 1. Compute the within group LS estimate, ﬁ( Ls) of the parameter vector, § for the panel data regression

model.

10



Step 2. Calculate the residuals e;; = §j;; — £} B( Ls) and obtain the initial estimate of ¢ with the following
equation.

& = Median { |j — € (vs)| } /0.6745

Step 3. Obtain the c value (within a range of values of 0 to 3 for Huber’s function and 1 to 10 for Tukey’s

bisquare function as suggested by Wang et al. (2018)) which has the largest efficiency factor 7 (c).

Step 4. Finally calculate the robust estimator of B by using the Huber’s function and Tukey’s bisquare

function with ¢ = ¢ obtained in the previous step.

Next, the complete algorithm to determine the value of tuning parameter c in the ESL function is provided
by extending the data-driven procedure for penalized regression of Wang et al. (2013) to the linear panel

data models with fixed effects. For more detailed information, please see Wang et al. (2013).

Step 1. Let Z = {, yit}fi{tzl be a random sample that contains m bad points and NT — m good points
denoted by Z,, = {Z1,---,Zy} and Zn7—yy = {Zy+1,- -, ZNT}, respectively. Then, obtain the
residuals eit(ﬁo) = i — 553;,30 using the initial high breakdown coefficient ,BO fori=1,---,N, t =
1,---, T and calculate median absolute deviation estimator (MAD), op14p = 1.4826 x median|e;;(Bo) —
rtnedian(eit(ﬁo)ﬂ. Then, generate pseudo outlier set Z,, = {(%;1, 7it) : |ei(Bo)| > 2.5(6apap)} where
m=#{1<i<N,1<t<T:ley(fo)l >25(0map)} and ZNr—y = Z/Zy.

Step 2. Let cy denote the minimizer of det(V (c)) in the set G = {c: & (c) € (0,1]} where

2 2 L .
g(en) = Ni; +tNT ) 1PcN {eir (Bo) } )
b=t

fori=1,---,N for a contaminated sample Z and det(-) denotes the determinant operator, V (c) =

{i (,BO) }71 )Y {j (Bo) }71, and

1 N T
X <Z\IT Z Za'c'itjc'l-t ,
i=1t=1
- 2 (3 2¢:, (B 2 (4 e (B T
> = cov {exp (—e” (fo)) Cit C(’BO) 1, exp (_ezt (C,BO)> eit C(ﬁO) th} .
t=1

Step 3. Update By based on the selected value of cy in Step 2.

11



It should be noted that we use the MM-estimator of Yohai (1987) to obtain the inital estimate ﬁo when
detecting the outliers in Step 1 in the algorithm for ESL function. This provides to compute ¢ (cy) by using
Equation (9). Then, the Steps 1-3 are repeated until 8y and ¢y converge. To achieve high efficiency, the tuning
parameter cy is selected by minimizing the determinant of asymptotic covariance matrix as in Step 2 as noted
in Wang et al. (2013). In the last Step, to obtain s, Bo is updated in Step 3 and the algorithm is repeated until
convergence. Wang et al. (2013) have emphasized that for the convergence of their computing algorithm, it
is enough to repeat Steps 1-3 once. If the initial estimator B is robust having asymptotic breakdown point
of 1/2 and cy is chosen such that ¢ (cy) € (0, 1], then the breakdown point of BM, BP (ﬁM; ZNT—m) cN) is
asymptotically 1/2, see Wang et al. (2013), Theorem 2. This leads us to choose cy to achieve the highest

efficiency.

5. Asymptotic Properties

In this section, we established the asymptotic properties of the regression estimators of under fixed effects
linear panel data models. Before introducing the asymptotic results, we begin with listing some assumptions.
To obtain the consistent estimates of the parameters of fixed effects linear panel data models, the within

group LS method requires to satisfy some assumptions (see Wooldridge (2002)) as listed below:

Assumption 5.1. Al. E (ej|x;, ;) for t = 1,---, T implies that the strict exogeneity of {x; : t = 1,---,T}

conditional on «;’s.
A2. rank (Zthl E (xthx,t)) = rank [E (XIX;)] = K where X; is a T x K matrix of predictors.
A3. E (el |x;, ;) = 0?21r.
The following objective function is required to be minimized in obtaining our proposed estimators s

vl
L(B)=Y pe (W) (10)

i=1

based on M-estimation techniques,

where Sy denotes a scale parameter, and is a normalized MAD estimator obtained using the residuals
e = it — xth ,30 (cf. Jiang et al. (2019)). It should be noted that the proposed estimators ,3 MS are regression
and scale equivariant since Sy has the advantages of being scale equivariant and invariant to the regression.

In fixed effects linear panel data regression models, the regularity conditions required for the consistency

and asymptotic normality of the proposed estimators are as follows:

Assumption 5.2. Al. E (XIX;) is positive definite, and EHX3H < co.

12



A2. Eyr (&) = 0and EY3 (&) = 0y, .
A3. E [y~ (¢/0)] > 0 for T where prime denotes the derivative.

The assumption Ey; (¢;) = 0 is needed to provide Fisher consistent estimating functions U() as noted in

Wang et al. (2007).

Theorem 5.1. Let Assumption 5.2 hold. If Sy Ly o as N = oo, then a local minimum of L (B) occurs at By such

that Hﬁ M— [3” =0, (N -1/ 2) where “ 25" —" represents the convergence in probability.

Proof 5.1. Forany v > 0, a large constant C exists satisfying

P| inf L(ﬁ+N‘1/2u)>L(/3) >1-v
uH:C

To prove that the existence of a local minimum of L (B) in the ball {ﬁ +N"V2y . Hu H < C} with probability at least
1 — v, under A1 and A3 of Assumption 5.2,

L (/3+N*1/2u) CL(p) = ipr (yz—XzT <ﬁ+N1/2u>) 3 o ( xTﬁ>

Mz

SN

N T N v. — XTI o
= \/leN ;1#)1' (yz SN ﬁ) XTM+ Eu [ ; <NXZ ‘B> X1TX1 +Op(1)] u

1

£ 11 =+ 12
where ¥; is a T x 1 vector. Then, by using the fact that Sy 2y o, the law of large numbers and central limit theorem,
the proof of Theorem 5.1 direclty follows from Theorem 1 of Jiang et al. (2019).

Remark 1. Theorem 5.1 guarantees the existence of a consistent estimator under some regularity conditions (cf. Jiang
et al. (2019)). It should be noted that the existence of redescending M-estimator is not ensured for the unbounded loss
function. Also, Maronna and Yohai (1981) provide the results for the existence of the redescending M-estimator when

some conditions hold.

Theorem 5.2. Under Assumption 5.2 and E|ir (¢; + 6) — 7 (&;)|> = 0(1) as § — 0, if Sy P o as N — oo, then,

we obtain

A E[yZ(e/0)] T 1)
VN (P p) %N<o’ i o (%)

YN e
where “—" denotes the convergence in distribution.
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Proof 5.2. Let assume N oT
1 YZ — Xi 0 ..
N (0) = T ;1# ( i

Then, we have the following by Taylor’s expansion

A

T 1 " _
on (Bm) = on (B) + ¢ (B) (Bm — B) + (Bu—p) ¢ 2(5 ) (Bm — B)

where B* is a vector that lies between By and B, and also, P (+) and (])}i, (+) represent the first-order and second-order
derivatives of gy (-), respectively. Then, on (Bm) = O from Equation 10 (cf. Jiang et al. (2019)). Under A1-A2 of

Assumption 5.2, we obtain

i=1

N Lo Ta\ .
=%Z¢T<Y’S;lﬁ>xi=fﬁm B) N 2%( Xﬁ)XTXw(l)

by Theorem 5.1. The proof of Theorem 5.2 is completed since Sy P ocas N — oo,

6. Numerical Results

In this section, we conduct an extensive simulation study to examine the finite-sample properties
of proposed and some existing panel data estimators. To investigate the performances of the proposed
procedures, three scenarios, namely (i) different sample sizes, (ii) different error distributions, and (iii)
various types of outliers, have been considered. The following simulations and all calculations have been
carried out using R 3.6.0. on an IntelCore i7 6700HQ 2.6 GHz PC. (The codes can be obtained from the author
upon request.)

For the data generation process, we consider the following static fixed-effect panel-data model
yie =xpp+ai+ey, i=1...,N, t=1,..,T, (11)

where ¢;;’s are assumed to be iid N( = 0,02 = 1) and the vector of parameters is chosen as 87 = (81, 82) =
(2.4, —1.2). Similar to experimental design of Aquaro and Cizek (2013), the unobservable individual effects

are generated as follows

T
0= Y xjy/VT +u;
t=1

where v = (2,4)" and 5; ~ U (0,12) to guarantee homogeneity of the variances of deterministic  and

random parts #; of a;. To avoid completely symmetric design as in Aquaro and Cizek (2013), the independent
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variables x;;x for K = 1,2 are generated according to

x5—2 ifK=l
N(0,1) ifK=2,

Xitk ™~

where X3 denote the chi-squared distribution with 2 degrees of freedom.

The performances of the proposed estimators are evaluated based on S = 1000 simulations. In case of
the changing sample sizes and presence of outliers, we compute the mean squared errors (MSE): MSE =
1y, [p-s

we calculated the squared errors (SE): SE = ‘

2 N
,where g°,s =1, ,5, represents the estimates obtained from S simulated samples. Also,

N 2
B’ - ﬁH to examine the effect of the error distributions on

the estimators. Note that throughout the experiments, all calculations are performed for the finite sample
breakdown points BP = 0.1 and BP = 0.5 for WMS estimator of Bramati and Croux (2007). However, we
present only the results obtained for the choice of BP = 0.1 since WMS procedure with this breakdown point

produced better results.

6.1. Sample sizes

In this subsection, different values of cross-sectional dimension, N = 50, 100, 150, 200, 250 (by keeping
time period fixed at T = 3) and time periods, T = 4,6,9, 12,24 (for a fixed number of cross-sectional units
N = 50) are considered to investigate the influence of panel sizes on our proposed estimators. Figure 1
illustrates calculated MSE values of the estimators when the errors follow standart normal distribution,
eit ~ N(u = 0,02 = 1). In this figure, the lines representing the performances of the LS and proposed loss
functions (Huber, Tukey, Exponential) based estimators using data-dependent regularization parameters
overlapas N — oo and T — oo since they have almost same performances under normal errors. However, the
WMS procedure are not consistent for fixed time dimension while it is consistent for increasing values of T as
noted in Aquaro and Cizek (2013). These results also confirm that the proposed methods are asymptotically

equivalent to LS estimator as N and/or T increases.

6.2. Error distributions

The SE values of the estimators are calculated under four different error distributions: N(y = 0,02 = 1),
Student’s t distribution with 5 degrees of freedom (ts), the chi-squared distribution with 4 degrees of freedom
x%4) and standard Cauchy distribution Cauchy(0,1) to demonstrate the effects of error distributions on
the estimation methods. Also, three pairs of cross-sectional sizes and time periods: (N7, T;) = (30,20),
(N2, Tp) = (75,8) and (N3, T3) = (200, 3) are considered as in Aquaro and Cizek (2013). The simulation

results are presented in Figure 2. The skewness of SE values of WMS procedure (with BP = 0.1) is greater
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than the other methods for Normal, t5 and )(%4) distribution of the errors especially for increasing N or
decreasing T. This means that the variability and mean of SE values obtained for WMS estimator are slightly
higher than the other estimators. All the proposed and LS estimators have similar SE values under all the
error distributions, except for standard Cauchy distribution. Also, the mean and variance of the SE values
for LS method increases more than the other estimators in case of the Cauchy distribution of the error terms

while the proposed robust estimators and WMS of Bramati and Croux (2007) are less affected.

6.3. Outliers

This subsection presents the robustness performances of the estimation procedures in case of the various
types of outliers. Throughout the simulations, two different levels of cross-sectional sizes and time periods,
namely, Ny = 120, T; = 2 and N; = 80, T, = 3, are considered for the fixed panel size consisting of a total of
240 observations. The proportions of contamination are chosen as 5% and 10% by determining the number
of outliers as m = 12 and m = 24. Two main types of contamination, namely, random contamination and
concentrated (or clustered) contamination as in Bramati and Croux (2007) are used to generate contaminated
datasets. The outlying points are randomly distributed over all observations for random contamination
while the outliers concentrating in some blocks constitute at least a half of the observations within cross-
sectional units for concentrated contamination. For more detailed information on the types of contamination
and graphs of contamination schemes, please see Figure 1 of Bramati and Croux (2007). The considered

contamination schemes depending on the types of outliers are described as follows.

1. To generate random vertical outliers (y},), randomly selected original values of the dependent variable

are replaced by the observations from an Uniform distribution y/, ~ U (20, 80).

2. At first, randomly chosen values of the dependent variable are contaminated following the same rule
of first scheme. After that, the values of the independent variables corresponding to the observations
contaminated in the dependent variable are replaced by the points coming from a Normal distribution

N(u = 8,02 = 4) to obtain the random leverage points.

3. Concentrated vertical outliers are inserted into the data by substituting the random observations from
an Uniform distribution y§, ~ U (79,80) for the randomly selected blocks of the original values of

dependent variable.

4. Firstly, the contaminated blocks of the dependent variable are obtained by applying the same rule used
in third scheme. In the next step, the concentrated leverage points are inserted into the original blocks
of the independent variables corresponding to the blocks already contaminated in dependent variable

by replacing them by the random values from a Normal distribution N(y = 8, 0% = 4).
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The simulation results are summarized in Tables 1-2. At first glance, it is conspicuous from Table 1 that the
LS method leads to obtain distorted estimates of the parameters of interest in the presence of outliers. It can
further be seen that LS estimators can be severely degraded when the data is contaminated by the leverage
points, compared to the case of vertical outliers. Additionally, the MSE values obtained for LS increase as
the level of contamination increases regardless of the types and levels of contaminations and are severely
affected in presence of concentrated contamination. Conversely, the proposed estimators (named according
to the corresponding loss functions: Huber, Tukey, Exponential) and WMS of Bramati and Croux (2007) are
highly resistant to outliers. In particular, the proposed robust estimators are quite less affected by the choice
of contamination level and/or scheme compared to WMS procedure. One of the remarkable results is that
Tukey estimator based on the Tukey’s bisquare function produces best results with smallest MSEs among the
robust estimators under all contamination schemes for (N, T;) = (120, 2). The performances of the robust
estimators can be sorted based on minimizing MSE values as follows: Tukey, Exponential, Huber estimators
and WMS for T; = 2. We further see that, the performance of WMS estimator is sensitive to the increasing
level of contamination and concentrated contamination when T7 = 2 as noted in Aquaro and Cizek (2013)
and Bramati and Croux (2007). Although there are no substantial differences between WMS and Exponential
loss function based estimator at 5% contamination for (N, T) = (80, 3), the performance of WMS method
is slightly better than the proposed robust estimators. However, Exponential and Tukey’s bisquare functions
based estimators produce more accurate and precise estimates of the parameters for random contamination
and concentrated contamination, respectively when the level of contamination increases. Our results clearly
demonstrate that the all proposed estimators (Huber, Tukey, Exponential) are reasonable competitors that
often exhibit improved performance over the traditional LS method and robust WMS estimator especially
for increasing level of contamination.

To confirm the supremacy over the traditional LS and WMS methods, we also calculate the root mean
squared errors (RMSE) of predicted values. To this end, the simulated samples are divided into the following
two parts: the predictive model is constructed based on training sample to compute the prediction errors

from testing sample with cross-sectional size N5;. Then, RMSEs of the predicted values are calculated by

Nfest T

13 i
RMSE = g Z Z 2 yzt yzt NtESt X T
s=1 i=1 t=1

S
=g L\ LU 7T (12)

t=1

(n\»—\

wherei =1,2,- -+, Ngst, Y3, and 73, respectively, denote the observed values and predictions obtained from
the predictive model for each of S simulated samples. Throughout simulations, we determine the sizes

of test samples as Nyst X Ty for (N7, T1) = (120,2) and Niest x T for (Np, T) = (80, 3) with the choice of
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Niest = 50. Table 2 displays the RMSEs obtained from the predictive model constructed by the estimated
regression coefficients using all the estimators considered in this study. The results provided by the robust
estimators are similar and also, better than traditional LS method especially for concentrated leverage points.
However, proposed Tukey’s bisquare and Exponential loss functions based estimators have slightly better

performance among the robust estimators, in general.

7. Case Study

In this section, we compare the performances of all the estimators to check the supremacy of proposed
M-estimation procedures based on automatic selection of the tuning parameters via a real macroeconomic
application. The data set consists of a total of 342 (N = 18, T = 19) annual observations covering a cross-section
of 18 OECD countries over the period 1960-1978 (available in the R package plm, please see Croissant and
Millo (2008)). For this panel, the gasoline demand model studied by Baltagi and Griffin (1983) is as follows

InGCjy = a; + B1InIPCjy + BoIn GPyy + B3 InCSjy + €4

where GC represents the gasoline consumption per car as dependent variable, IPC, GP and CS, respectively,
denote real income per capita, real gasoline price and car stock per capita as independent variables. The
indexi=1,2,---,18and t = 1,2, - - ,19 denote the OECD countries and years, respectively; see Baltagi and
Griffin (1983) for more detailed description of the data set. Figure 3 shows the scatter plots of the logarithm of
response variable against the logarithms of explanatory variables. From Figure 3, we observe that there exist
outliers in the response and the independent variables. Table 3 reports the estimates of individual coefficients
and standard errors of the estimates. We can see from Table 3 that the robust methods yield more efficient
estimates than the traditional LS method. The WMS estimators produce more precise estimates of individual
coefficients among the robust procedures. However, the proposed methods, especially Exponential loss
function based estimator, provide competitive results in estimating 8, and S3.

To investigate the predictive performances of the LS, WMS and proposed robust methods further, the
RMSE of predicted and observed values of the logarithms of the gasoline consumption are calculated by
dividing the dataset into the two parts as mentioned in Section 6.3. For this purpose, the randomly selected
15 countries (N — Niest = 15) are used to build a predictive model, and the logarithms of the gasoline
consumption of remaining 3 countries (N;.s; = 3) are predicted by using the estimated model coefficients.
This process is performed S = 100 times, and for each time, RMSEs are obtained by using the Equation (12).
The results are presented in Figure 4. This figure demonstrates that all the robust methods have better

predictive ability compared to the traditional LS method. Furthermore, our proposed robust methods yield
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considerably better predictions than WMS method.

8. Conclusions

In this paper, we propose robust and efficient estimators based on minimizing loss functions in estimating
the parameters of fixed effects panel data models. The proposed procedures uses a data-driven approach for
selection of regularization parameters, which is important to determine the necessary level of robustness
without sacrificing estimation efficiency in the presence outlying observations and /or blocks. The asymptotic
properties of the proposed estimators are investigated in the context of fixed effects linear panel data models.
The finite sample performances of the proposed methods are illustrated via extensive simulation studies
and an empirical application, and we compare the results of our methods with those for existing WMS
estimator of Bramati and Croux (2007) and traditional LS method. Our thorough study demonstrates that
the proposed estimators produce more accurate and efficient parameter estimates with better predictions
compared to WMS and traditional LS methods under data contamination, and consistent results with the LS

method when no outliers are present in the data and sample size increases.
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Table 1: The MSEs for (N1, T1) = (120,2), (Np,T2) = (80,3) in the presence of 5% and 10% random and
concentrated contamination by setting the number of outliers as m = 12,24

(N1, Th) = (120, 2)

Method Vertical outliers

Random contamination

Concentrated contamination

Leverage points ~ Vertical outliers ~ Leverage points
5% 10% 5% 10% 5% 10% 5% 10%

LS 1.651 2.579 7.688 9.116 2.985 5916 25231  30.581
Huber 0.710 0.941 0.678 0.942 0.746 0.987 0.771 0.963
Tukey 0.609 0.842 0.614 0.828 0577  0.642 0.569 0.630
Exponential 0.637  0.848 0.618 0.823 0.595 0.668 0.602 0.673
WMS 0.762 1571 0.727 1.547 1.009 3.951 1.102 3.644
(N2, T2) = (80, 3)
LS 1172 1.982 7.464 8.830 2467  4.150 25422 30.490
Huber 0.575 0.806 0.606 0.824 0.599 0.902 0.652 0.922
Tukey 0.522 0.713 0.559 0.719 0467  0.649 0.530 0.642
Exponential 0517  0.706 0.558 0.709 0477  0.695 0.542 0.704
WMS 0.510 0.755 0.522 0.773 0.460 0.926 0.485 0.947

Table 2: The RMSEs of predicted values for (N1, T1) = (120,2), (Na, Tz) = (80, 3) in the presence of 5% and 10%
random and concentrated contamination by setting the number of outliers as m = 12,24

(N1, Tr) = (120, 2)

Method Vertical outliers

Random contamination

Concentrated contamination

Leverage points ~ Vertical outliers ~ Leverage points
5% 10% 5% 10% 5% 10% 5% 10%
LS 4.815 4918 5134 5.227 4.923 5.128 6.078 6.332
Huber 4.744 4.788 4.722 4.753 4.738 4.764 4.702 4.761
Tukey 4.739 4.782 4.718 4.744 4.722 4.734 4.687 4.730
Exponential 4.740 4.784 4.718 4.742 4.724 4.736 4.690 4.734
WMS 4.748 4.838 4.727 4.801 4.766 4.992 4.732 4.968
(N2, T2) = (80, 3)
LS 5.560 5.645 6.014 6.081 5.650 5.815 7.008 7.325
Huber 5.508 5.529 5.531 5.540 5.480 5.533 5.482 5.507
Tukey 5.503 5.518 5.526 5.529 5.468 5.510 5471 5.483
Exponential 5.503 5.518 5.526 5.528 5.469 5.515 5.472 5.489
WMS 5.503 5.524 5.523 5.536 5.470 5.547 5.466 5.522
0.41 0.6
0.5
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Figure 1: The MSEs of all estimators when T = 4,6,9,12,24 for fixed cross-sectional dimension N = 50 and
N = 50,100, 150, 200, 250 for fixed time dimension T = 3 and ey ~ N(u = 0,02 = 1)
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Figure 2: The boxplots of the SEs of all estimators under different error distributions when (N1, T;) = (30,20),
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Figure 3: Scatter plots of the logarithm of gasoline consumption (In GC) against the logarithms of real income (In IPC),
real gasoline price (In GP) and car stock (In CS) for 18 OECD countries.
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Figure 4: The boxplots of the RMSEs of predicted and observed values of the logarithm of the gasoline consumption for
3 OECD countries.
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Table 3: Estimates of individual coefficients (upper rows) and standard errors of the estimates (lower rows) for gasoline
consumption data of 18 OECD countries over the period 1960-1978

Method ,31 B2 ﬂ3
LS -1.043 -0.264 0.113
(0.054) (0.066) (0.021)
Huber 0.579 -0.317 -0.559
(0.048) (0.029) (0.019)
Tukey 0.479 -0.302 -0.451

(0.040)  (0.024)  (0.016)
Exponential 0.482 -0.307 -0.452
(0.027)  (0.018)  (0.012)
WMS 0.902 -0.356  -0.651
(0.017)  (0.014)  (0.011)
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