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Abstract

The panel data regression models have gained increasing attention in different areas of research including but

not limited to econometrics, environmental sciences, epidemiology, behavioral and social sciences. However,

the presence of outlying observations in panel data may often lead to biased and inefficient estimates of

the model parameters resulting in unreliable inferences when the least squares (LS) method is applied.

We propose extensions of the M-estimation approach with a data-driven selection of tuning parameters to

achieve desirable level of robustness against outliers without loss of estimation efficiency. The consistency

and asymptotic normality of the proposed estimators have also been proved under some mild regularity

conditions. The finite sample properties of the existing and proposed robust estimators have been examined

through an extensive simulation study and an application to macroeconomic data. Our findings reveal that

the proposed methods often exhibits improved estimation and prediction performances in the presence of

outliers and are consistent with the traditional LS method when there is no contamination.
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1. Introduction

Panel data refers to the two-dimensional data in which cross-sectional units are observed over time.

Its grouping structure allows to reflect the nested phenomena so that the characteristics of cross-sectional

units are entrenched over time and vice-versa (see, Bickel (2007)). Over last several years, its increasing

availability, demanding methodology and better ability to model the complexity of human behavior than

a pure cross-section or time series data are the primary reasons behind the excessive growth in its study

(see,Hsiao (2007)). For a comprehensive account of the technical details on linear panel data models, please

refer to Baltagi (2005), Fitzmaurice et al. (2004), Greene (2003), Maddala and Mount (1973), Mundlak (1978),
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Diggle et al. (2002), Hill et al. (2007), Wallace and Hussain (1969), Wooldridge (2002), and the references

therein.

In recent years, the panel data regression models have received increasing attention in the research of

different fields such as econometrics and biostatistics, since these models allow the unobserved individual-

specific heterogeneity to be taken into account (cf. Baltagi (2005) and Hsiao (1985) for more details). The

statistical appeal of panel data models relies on the fact that these focus particularly on explaining within

variations over time and provide controls over individual heterogeneity. The most widely used regression

techniques for making statistical inferences regarding the parameters of linear panel data regression models

are typically based on the LS approaches. However, traditional estimation techniques require a number of

quite restrictive and unrealistic assumptions such as the normality of error distribution, strict exogeneity

with respect to the error terms and homoscedasticity of the error terms (cf. Kutner et al. (2004), Greene

(2017)). Also, the panel data may include various types of outliers such as either vertical, horizontal or

leverage as noted in Rousseeuw and van Zomeren (1990) and Bakar and Midi (2015). Furthermore, the

outlying observations may be concentrated in some blocks such that the fraction of contaminated values

per one cross-sectional unit constitutes at least a half of the observations over time periods (cf. Bramati and

Croux (2007) and Aquaro and Cizek (2013)). Hence, the classical ordinary least squares (OLS) based methods

may considerably be affected in the presence of data contamination and outliers caused by the measurement

error, typing error, transmission/copying error and naturally unusual observations as noted in Rousseeuw

and Leroy (2003), Maronna et al. (2006) and Bakar and Midi (2015). As a result of this, the well-known

estimators, such as within group LS estimators used in panel data models with fixed effects, often lead to

unreliable estimates of the model parameters. In addressing the problem, more robust alternatives to LS

methods having a high breakdown point (BP), such as Least Trimmed Squares (LTS) and S-estimators have

been introduced by Rousseeuw (1984) and Rousseeuw and Yohai (1984) for linear regression models. One of

the various measures characterizing the robustness of the estimator is the breakdown point which measures

the minimum proportion of the data that can significantly change the estimates (cf. Genton and Lucas (2003),

Davies and Gather (2005) and Aquaro and Cizek (2013)). As pointed out by Rousseeuw and Leroy (1987), the

asymptotic breakdown point of the LS estimator is zero in the presence of contaminated data sets. Hence, for

contaminated data sets, the importance using robust and positive breakdown point methods in estimating

model parameters has been emphasized by many authors; see, for instance, Hampel et al. (1986), Simpson

et al. (1992), Wagenvoort and Waldmann (2002), Maronna et al. (2006), Cizek (2008). This is more crucial

for panel data since the outlying data points may be masked and not be directly detectable using standard

outlier diagnostics due to the complex structure of the data.

In spite of the fact that building up the robust methods have been well-studied in estimation of the linear
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regression parameters, the number of available approaches on the robust methods for static panel data

models is fairly limited (cf. Bramati and Croux (2007),Aquaro and Cizek (2013)). A few different approaches

within the robust estimation framework for the fixed effects panel data models have recently been proposed

by Bramati and Croux (2007), Namur and Luneburg (2011), Aquaro and Cizek (2013), Bakar and Midi

(2015), Visek (2015) and Midi and Muhammad (2018). Bramati and Croux (2007) have proposed the robust

alternatives to the within group LS estimator with positive breakdown point by extending well-known

robust regression estimators, such as LTS estimator ofRousseeuw (1984) and a combination of M and S

estimates, namely, MS estimates of Maronna and Yohai (2000). Another robust estimation approach has been

proposed in Aquaro and Cizek (2013) based on two different data transformations (i.e. first-difference and

pairwise-difference transformation) by applying the efficient weighted least squares estimator of Gervini

and Yohai (2002) and the reweighted LTS estimator of Cizek (2010) in the fixed effects linear panel data

framework. Visek (2015) has developed a robust algorithm by weighting down the large order statistics

of squared residuals. Moreover, Bakar and Midi (2015) have considered a robust centering method by

employing the MM-centering procedure to the data. Then, the authors use the within group Generalized M

Estimator (WGM) of Bramati and Croux (2007) to estimate the parameters of fixed effect panel data model.

More recently, a Weighted Least Square (WLS) procedure based on MM-centering method, which is highly

resistant in the presence of leverage points and vertical outliers, has been proposed by Midi and Muhammad

(2018).

In this study, we concentrate on a class of robust estimators, i.e. M-estimators, instead of investigating

different data transformations for fixed effects panel data model. A dispersion function (also called the loss

function), that varies at large values more slowly in comparison to the squared function of the residuals,

is attempted to be minimized in M-estimation approaches. However, the robustness against outliers is

achieved by some efficiency loss when unnecessarily resistance occurs. (e.g., Hampel et al. (1986), Lindsay

(1994), Wang et al. (2007) and Jiang et al. (2019)). Hence, it is critical to choose a dispersion function with an

appropriate resistance level in obtaining efficient estimates of the parameters as noted in Wang et al. (2007).

To determine the necessary level of robustness, a tuning parameter (also called the regularization parameter)

in the dispersion function requires to be selected appropriately based on the possible proportion of outliers

(please, see Wang et al. (2007) and Wang et al. (2018) for more details). For some dispersion functions, such

as Tukey’s bisquare and Huber’s functions, a data-driven procedure that automatically chooses the value

of the tuning parameter has been introduced by Wang et al. (2007) and Wang et al. (2018) in the context of

regression models. The main idea behind this method is to achieve desirable level of robustness against

outliers without sacrificing estimation efficiency. Also, a data-dependent procedure to choose the value

of tuning parameter in Exponential loss function has been proposed by Wang et al. (2013) in obtaining
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penalized robust estimators with maximum efficiency and asymptotic breakdown point 1/2. In this paper,

we adapt the M-estimation techniques with automatic selection of tuning parameter introduced by Wang

et al. (2007) and Wang et al. (2013) to fixed effects panel data models to achieve resistant estimation against

outliers as well as improving estimation efficiency. To construct robust alternative procedures based on

Huber’s, Tukey’s bisquare and Exponential loss functions to the within group LS estimator, we use within

group transformation on mean centered data to eliminate the individual effects. Thus, we do not provide

the detailed explanations of the robust methods based on the different data transformations proposed by

Aquaro and Cizek (2013). The asymptotic properties of the proposed M-estimation methods are investigated

by establishing the consistency and asymptotic normality in the context of fixed effects linear panel data

models. Also, to investigate the finite sample performances of the proposed robust estimators, Monte

Carlo experiments are carried out under various contamination schemes and two levels of contamination.

Furthermore, the effects of different types of outliers including vertical outliers and leverage points on the

proposed estimation procedures have been examined. The numerical results demonstrate that the proposed

M-estimators based on data-driven procedures yield more accurate and precise estimates of the model

parameters compared to within group LS estimator and within group MS estimator (WMS) of Bramati

and Croux (2007) for the increasing level of contamination, in general. Moreover, the predictive ability of

the models constructed by estimating coefficients using our proposed methods is better than that of WMS

method.

The remainder of the paper is organized as follows. In Section 2, we present a detailed information on the

fixed effects linear panel data models and within group LS estimator, followed by a discussion on the existing

robust estimation procedures in Section 3. In Section 4, we describe our method to obtain the M-estimators

based on Tukey’s bisquare, Huber’s and Exponential loss functions with a data-dependent tuning in the

context of linear fixed effects panel data models. In Section 5, we present the large sample properties of

the proposed estimators. The finite sample performances of the proposed M-estimators are provided by an

extensive simulation study and the results are compared with the robust WMS and traditional LS methods

in Section 6. In Section 7, we apply proposed robust methods to real macroeconomic data. Finally, Section 8

concludes the work with a few remarks.

2. Fixed Effects Panel Data Models

A linear fixed-effects panel data model with a random sample {(yit, xit, αi) , i = 1, · · · , N, t = 1, · · · , T}
can be represented as

yit = xT
it β + αi + εit,
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where yit denotes the response variable, the K-dimensional random explanatory variables are denoted by

xit’s and β ∈ R
K are the vector of regression parameters. The subscript i denotes the individuals observed

over time periods t. Finally, the αi’s and εit’s respectively represent the unobservable individual specific

effects and the independent and identically distributed (i.i.d.) error terms with E (εit|xi1, · · · , xiT , αi) = 0,

E
(
ε2

it|xi, αi

)
= σ2

ε IT where IT is the identity matrix and E (εitεis|xi, αi) = 0 for t 6= s. For simplifying notation,

the panel data regression model can be expressed in more compact form, by stacking observations over time

and individuals, as in Equation (1) given below.

y = α ⊗ eT + Xβ + ε, (1)

where y = (y1, · · · , yN)
T and X = (x1, · · · , xN)

T , respectively, are an NT × 1 vector with yi = (yi1, · · · , yiT)

and an NT × K matrix of regressors with Xi =
(

xT
i1, · · · , xT

iT

)T
, α is an N × 1 vector consisting of the

individual effects αi for i = 1 · · · N, eT is a T × 1 vector of ones and ⊗ denotes the Kronecker product.

An important advantage of the fixed effects model is the elimination of the individual effects from the

model equation when estimating the parameter vector, β. The within group transformation removes the

fixed effects by using the time averages of yit, xit and εit for each-cross sectional unit: ȳi. = T−1 ∑
T
t=1 yit,

x̄i. = T−1 ∑
T
t=1 xit and ε̄i. = T−1 ∑

T
t=1 εit. Then, the within group transformed model for the mean-centered

data is obtained as follows.

ÿit = ẍT
it β + ε̈it

where ÿit = yit − ȳi., ẍit = xit − x̄i. and ε̈it = εit − ε̄i.. Under the assumptions of fixed effects models, the

within group LS estimator of β, β̂(LS) is obtained by running regression of ÿit on ẍit using OLS method, as

follows.

β̂(LS) =

(
N

∑
i=1

T

∑
t=1

ẍT
it ẍit

)−1( N

∑
i=1

T

∑
t=1

ẍT
it ÿit

)

The within group estimator fulfills three equivariance properties with respect to scale, regression and

affine transformations since it is linear. Suppose R ({xit, yit}) denotes a panel regression estimator as a

function of data.

Definition 2.1. If, for any constant c ∈ R,

R ({xit, cyit}) = cR ({xit, yit})

the estimator R is scale equivariant.
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Definition 2.2. If, for any K × 1 vector of constants ν,

R
(
{xit, yit + xT

itν}
)
= R ({xit, yit}) + ν

it is regression equivariant.

Definition 2.3. If it follows for non-singular A ∈ R
K×K

R
(
{ATxit, yit}

)
= A−1R ({xit, yit})

then, this estimator satisfies the affine equivariance property.

The within group LS estimator defined above is known to be highly sensitive to the presence of outliers

and aberrant observations. The motivation of this work is to construct robust estimation procedures which

are less sensitive in the presence of outliers and erroneous observations. In this paper, we propose extensions

of the data-dependent approaches proposed by Wang et al. (2007), Wang et al. (2013) and Wang et al. (2018)

for obtaining robust and more efficient estimates in fixed effects panel data models. This study considers

three approaches: the first one is based on exponential squared loss (ESL) function suggested by Wang

et al. (2013) to improve the robustness of variable selection procedures in context of penalized regression

methods. Also, they propose a class of penalized robust regression estimators based on ESL and a data-

driven procedure, which allows to select a tuning parameter depending on the proportion of outliers in the

data. These procedures yield highly robust and also, efficient estimates by achieving the highest asymptotic

breakdown point of 1/2. In other approaches, we propose to use Huber’s function and Tukey’s bisquare

function with data-dependent regularization parameters to obtain more efficient estimates within the fixed

effects models framework. Wang et al. (2007) and Wang et al. (2018) have proposed a data-driven method for

the automatic selection of a tuning constant that can be applied to the various dispersion functions such

as the Huber, Tukey’s bisquare and ESL functions for regression models. They obtain considerably better

results by improving the efficiency in estimating the regression parameters. Next, we briefly discuss the

existing robust estimators and describe our proposed method to estimate the fixed effects panel data models.

3. Robust Estimation for Fixed Effects Panel Data Models

The existing literature regarding the robustness of estimators for static fixed effect panel data models is

fairly limited. For the purpose of constructing highly robust procedures, Bramati and Croux (2007) propose

the WGM estimator and the WMS estimator, which have asymptotically breakdown point of 1/4. In the
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first approach, Bramati and Croux (2007) suggest robustly centring the variables by using the within group

medians (as described in Equation (2)).

ỹit = yit − median
t

(yit) (2)

x̃it = xit − median
t

(xit)

Next, LTS regression is suggested to employ on the centered data to obtain initial estimates. Finally, a

weighted LS estimation, which uses Tukey’s bisquare function with the fixed tuning parameter c = 4.685

and a multivariate S-estimator for down-weighting of leverage points, is performed to construct the WGM

estimator. Although the WGM estimator can achieve the breakdown point up to 1/4, it has crucial limitations

of not being regression and affine equivariant because of the non-linearity of median transformation.

To construct the WMS estimator, the fixed effects are first estimated by considering them as regression

coefficients. Then, the MS regression estimator of Maronna and Yohai (2000) can be implemented to the panel

data, which uses M-estimators and S-estimators for the discrete explanatory variables and the continuous

ones, respectively. It has been noted that the WMS, which has the advantages of being regression and

affine equivariant, and the WGM procedure yield quite similar efficient estimation asymptotically. Thus, we

compare our proposed procedures with the WMS estimator by considering its superiority over the WGM

estimator.

Recently, Aquaro and Cizek (2013) propose robust estimation procedures based on the pairwise difference

transformations by applying the efficient weighted LS estimator (REWLS) of Gervini and Yohai (2002) and

the reweighted LTS (RLTS) estimator of Cizek (2010). Since the novelty of their approaches is to use different

data transformations, the authors demonstrate the equivariance, robust, and asymptotic properties of the

proposed estimators. The finite sample performances of the WGM and WMS estimators of Bramati and

Croux (2007) and the REWLS and RLTS estimators of Aquaro and Cizek (2013) are similar and they have

equal breakdown points according to a given data transformation, see Aquaro and Cizek (2013). Hence,

the numerical results discussed in Section 5 do not include the results related to the performances of the

methods proposed by Aquaro and Cizek (2013).

4. New Robust Estimators Using Well-Known Loss Functions with Automatic Selection of Tuning Pa-

rameter

A broad class of robust estimation methods is the M-estimation approach which is based on minimizing

dispersion function that more slowly varies at large values compared to the squared function of the residuals

(see Wang et al. (2007) for details). In the M-estimation approach, the robustness is achieved by sacrificing
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some of efficiency in presence of unnecessarily excess resistance (e.g., Hampel et al. (1986), Lindsay (1994),

Wang et al. (2007) and Jiang et al. (2019)). To obtain necessary degree of robustness, a tuning parameter in

the dispersion function requires to be chosen appropriately depending on the possible proportion of outliers,

as noted in Wang et al. (2007) and Wang et al. (2018). To this end, for a specific family of dispersion functions,

a data-driven approach that automatically selects the value of the tuning constant has been introduced by

Wang et al. (2007) in the context of regression models. The main idea underlying this method is to achieve

desirable robustness level in presence of outliers without loss of estimation efficiency. Moreover, Wang

et al. (2018) extend this procedure for linear regression models with autoregressive errors in analysing water

quality data.

In this study, we focus on the robust estimation approaches based on loss functions with automatic

selection of tuning parameter proposed by Wang et al. (2007) and Wang et al. (2013) to achieve resistant

estimation against outliers and improve estimation efficiency in fixed effects panel data models. To construct

alternative procedures to the methods discussed in Section 3, we use within group transformation for mean

centered data to eliminate the individual effects. Thus, we do not provide the numerical results and the

detailed explanations of the robust methods based on the different data transformations proposed by Aquaro

and Cizek (2013).

The M-estimation approach relies on minimization of a loss function, ρ(·), instead of minimizing sum of

squared errors since the LS method is highly sensitive to the distortions caused by outliers (Rousseeuw and

Leroy (2003)). The Huber and Tukey’s bisquare functions, which are the most commonly used loss functions

in robust regression, are defined as in Equations (3)-(4), respectively. (see, Wang et al. (2018))

• Huber’s function

ρ(u) =





u2

2 if |u| 6 c

c|u| − c2

2 if |u| > c
(3)

• Tukey’s bisquare function

ρ(u) =





1 −
{

1 −
(

u
c

)2
}3

if |u| 6 c

1 if |u| > c
(4)

Also, Wang et al. (2013) propose to use ESL function to obtain a class of penalized robust regression estimators

with asymptotic breakdown point of 1/2 for variable selection, and it can be expressed as follows.

• ESL function

ρ(u) = 1 − exp

{
−
(

u2

c

)}
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Then, the robust estimator of β is obtained as the solution of the following estimating functions by minimizing

the loss functions ∑
N
i=1 ∑

T
t=1 ρ

{
(yit−xT

it β−αi)
σ̂

}
for a given estimate of the scale parameter, σ̂

U(β) =
N

∑
i=1

T

∑
t=1

xitψ

{(
yit − xT

it β − αi

)

σ̂

}
= (0)

K×1

where ψ denotes the sub-gradient function of ρ (). It can be expressed as in Equations (5)-(7), for Huber’s,

Tukey’s bisquare and ESL functions, respectively.

• Huber’s function

ψ(u) =





u if |u| 6 c

sign (u) c if |u| > c
(5)

• Tukey’s bisquare

ψ(u) =





u
{

1 −
(

u
c

)2
}2

if |u| 6 c

0 if |u| > c
(6)

• The ESL function

ψ(u) = uexp

{
−
(

u2

c

)}
(7)

Let us consider the residuals eit = ÿit − ẍT
it β̂(LS) when OLS regression is performed on the within group

transformed data. Then, the estimating equation can be rearranged as follows

U(β) =
N

∑
i=1

T

∑
t=1

ẍitψ

{(
ÿit − ẍT

it β
)

σ̂

}
(8)

=
N

∑
i=1

T

∑
t=1

ωit ẍiteit

where ωit = ψ (eit) /eit denote the weights obtained by the weighting function W(e) = ρ′(e)/e and eit =
(
ÿit − ẍT

it β
)

/σ̂. The U defined in Equation (8) has a form of score functions with the weights, ωit. Thus, our

proposed robust estimators can be obtained as follows

β̂M =

(
N

∑
i=1

T

∑
t=1

ẍT
itωit ẍit

)−1( N

∑
i=1

T

∑
t=1

ẍT
itωitÿit

)
.

Since W is a function of β and σ, an iterative procedure has been followed at the k-th iteration based on

the previous β̂(k−1) to determine the weights, ω̂it = ωit|β=β̂(k−1) , . The M-estimation method assumes that
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Eψ (εi) = 0 and Eψ2 (εi) = σ2
ψ. Let’s also suppose that

b =
∂Eψ (εit + δ)

∂δ

∣∣∣∣
δ=0

.

Under the finite variance assumption with some regularity conditions defined in detail in Section 5 and

E|ψ (εi + δ)− ψ (εi)|2 = o(1) as δ → 0, the consistent estimator β̂M is obtained by solving U(β) = 0 and it

follows that
√

N
(

β̂M − β
)
∼ N

(
0, τ−1σ2

ε

[
E
(

ẌT
i Ẍi

)]−1
)

,

where E
(
ẌT

i Ẍi

)
is estimated by N−1 ∑

N
i=1 ẌT

i Ẍi (or N−1 ∑
N
i=1 ∑

T
t=1 ẍT

it ẍit) and τ = b2/σ2
ψ denotes the scalar

efficiency factor. The subgradient function ψ, which has large values of the efficiency factor τ, lead to some

gain in efficiency of the estimator β as noted in Wang et al. (2007). Thus, the loss function ρ (·) with the

largest value of τ should be chosen to obtain more efficient estimates of the parameters.

As noted in Bramati and Croux (2007) and Wang et al. (2007), the choice of constant, c may have a great

impact to achieve a good trade-off between efficiency and robustness degree. For example, in constructing

the WGM estimator proposed by Bramati and Croux (2007), the value of c is chosen as 4.685 where Tukey’s

bisquare function is used. For Huber’s function, its default value in the R package rlm equals to 1.345 to

obtain about 90% efficiency when the data follow Normal distribution, see Wang et al. (2007). In traditional

robust procedures, the value of c for any loss function must be predetermined by taking into account the

desirable level of robustness. However, the efficiency of the estimators varies significantly with the different

choices of c. Therefore, the value of tuning parameter c requires to be chosen depending on the proportion of

the outlying points in the data or distribution of the data to maximize the estimation efficiency. Thus, in this

study, best value of the tuning parameter c is chosen by maximizing the value of τ, and the nonparametric

estimate of τ, proposed by Wang et al. (2018), is calculated by

τ̂ (c) =

{
∑

N
i=1 ∑

T
t=1 ψ′ (êit)

}2

NT ∑
N
i=1 ∑

T
t=1 ψ2 (êit)

where êit =
(ÿit−ẍT

it β̂)
σ̂ , β̂ and σ̂ denote the current estimates of β and σ, respectively.

Based on the above, we present the data-driven procedure introduced by Wang et al. (2007) to obtain

the proposed robust estimators of β in panel data regression models when Huber’s and Tukey’s bisquare

functions are used as loss functions.

Step 1. Compute the within group LS estimate, β̂(LS) of the parameter vector, β for the panel data regression

model.
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Step 2. Calculate the residuals eit = ÿit − ẍT
it β̂(LS) and obtain the initial estimate of σ with the following

equation.

σ̂ = Median
{
|ÿit − ẍT

it β̂(LS)|
}

/0.6745

Step 3. Obtain the c value (within a range of values of 0 to 3 for Huber’s function and 1 to 10 for Tukey’s

bisquare function as suggested by Wang et al. (2018)) which has the largest efficiency factor τ̂ (c).

Step 4. Finally calculate the robust estimator of β by using the Huber’s function and Tukey’s bisquare

function with c = ĉ obtained in the previous step.

Next, the complete algorithm to determine the value of tuning parameter c in the ESL function is provided

by extending the data-driven procedure for penalized regression of Wang et al. (2013) to the linear panel

data models with fixed effects. For more detailed information, please see Wang et al. (2013).

Step 1. Let Z = {ẍit, ÿit}N,T
i=1,t=1 be a random sample that contains m bad points and NT − m good points

denoted by Zm = {Z1, · · · , Zm} and ZNT−m = {Zm+1, · · · , ZNT}, respectively. Then, obtain the

residuals eit(β̂0) = ÿit − ẍT
it β̂0 using the initial high breakdown coefficient β̂0 for i = 1, · · · , N, t =

1, · · · , T and calculate median absolute deviation estimator (MAD), σ̂MAD = 1.4826× median|eit(β̂0)−
m
t

edian(eit(β̂0))|. Then, generate pseudo outlier set Zm = {(ẍit, ÿit) : |eit(β̂0)| ≥ 2.5(σ̂MAD)} where

m = #{1 ≤ i ≤ N, 1 ≤ t ≤ T : |eit(β̂0)| ≥ 2.5(σ̂MAD)} and ZNT−m = Z/Zm.

Step 2. Let cN denote the minimizer of det
(
V̂ (c)

)
in the set G = {c : ξ (c) ∈ (0, 1]} where

ξ (cN) =
2m

NT
+

2

NT

T

∑
t=m+1

ρcN

{
eit

(
β̂0

)}
(9)

for i = 1, · · · , N for a contaminated sample Z and det(·) denotes the determinant operator, V̂ (c) =
{

Î
(

β̂0

)}−1
Σ̃
{

Î
(

β̂0

)}−1
, and

Î
(

β̂0

)
=

2

c

{
1

NT

N

∑
i=1

T

∑
t=1

exp

(
− e2

it

(
β̂0

)

c

)(
2e2

it

(
β̂0

)

c
− 1

)}

×
(

1

NT

N

∑
i=1

T

∑
t=1

ẍit ẍ
T
it

)
,

Σ̃ = cov

{
exp

(
− e2

it

(
β̂0

)

c

)
2eit

(
β̂0

)

c
ẍ1t, · · · , exp

(
− e2

it

(
β̂0

)

c

)
2eit

(
β̂0

)

c
ẍNt

}T

t=1

.

Step 3. Update β̂0 based on the selected value of cN in Step 2.
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It should be noted that we use the MM-estimator of Yohai (1987) to obtain the inital estimate β̂0 when

detecting the outliers in Step 1 in the algorithm for ESL function. This provides to compute ξ (cN) by using

Equation (9). Then, the Steps 1-3 are repeated until β̂0 and cN converge. To achieve high efficiency, the tuning

parameter cN is selected by minimizing the determinant of asymptotic covariance matrix as in Step 2 as noted

in Wang et al. (2013). In the last Step, to obtain β̂M, β̂0 is updated in Step 3 and the algorithm is repeated until

convergence. Wang et al. (2013) have emphasized that for the convergence of their computing algorithm, it

is enough to repeat Steps 1-3 once. If the initial estimator β̂0 is robust having asymptotic breakdown point

of 1/2 and cN is chosen such that ξ (cN) ∈ (0, 1], then the breakdown point of β̂M, BP
(

β̂M; ZNT−m, cN

)
is

asymptotically 1/2, see Wang et al. (2013), Theorem 2. This leads us to choose cN to achieve the highest

efficiency.

5. Asymptotic Properties

In this section, we established the asymptotic properties of the regression estimators of under fixed effects

linear panel data models. Before introducing the asymptotic results, we begin with listing some assumptions.

To obtain the consistent estimates of the parameters of fixed effects linear panel data models, the within

group LS method requires to satisfy some assumptions (see Wooldridge (2002)) as listed below:

Assumption 5.1. A1. E (εit|xi, αi) for t = 1, · · · , T implies that the strict exogeneity of {xit : t = 1, · · · , T}
conditional on αi’s.

A2. rank
(

∑
T
t=1 E

(
ẍT

it ẍit

))
= rank

[
E
(
ẌT

i Ẍi

)]
= K where Ẍi is a T × K matrix of predictors.

A3. E
(
εiε

T
i |xi, αi

)
= σ2

ε IT .

The following objective function is required to be minimized in obtaining our proposed estimators β̂Ms

based on M-estimation techniques,

L (β) =
N

∑
i=1

ρτ

(
ÿi − ẌT

i β

SN

)
(10)

where SN denotes a scale parameter, and is a normalized MAD estimator obtained using the residuals

eit = ÿit − ẍT
it β̂0 (cf. Jiang et al. (2019)). It should be noted that the proposed estimators β̂Ms are regression

and scale equivariant since SN has the advantages of being scale equivariant and invariant to the regression.

In fixed effects linear panel data regression models, the regularity conditions required for the consistency

and asymptotic normality of the proposed estimators are as follows:

Assumption 5.2. A1. E
(
ẌT

i Ẍi

)
is positive definite, and E

∥∥∥X3
∥∥∥ < ∞.

12



A2. Eψτ (εi) = 0 and Eψ2
τ (εi) = σ2

ψτ
.

A3. E [ψ′
τ (ε/σ)] > 0 for τ where prime denotes the derivative.

The assumption Eψτ (εi) = 0 is needed to provide Fisher consistent estimating functions U(β) as noted in

Wang et al. (2007).

Theorem 5.1. Let Assumption 5.2 hold. If SN
p−→ σ as N → ∞, then a local minimum of L (β) occurs at β̂M such

that
∥∥∥β̂M − β

∥∥∥ = Op

(
N−1/2

)
where “

p−→” represents the convergence in probability.

Proof 5.1. For any ν > 0, a large constant C exists satisfying

P


 inf∥∥∥u

∥∥∥=C

L
(

β + N−1/2u
)
> L (β)


 > 1 − ν

To prove that the existence of a local minimum of L (β) in the ball
{

β + N−1/2u :
∥∥∥u
∥∥∥ ≤ C

}
with probability at least

1 − ν, under A1 and A3 of Assumption 5.2,

L
(

β + N−1/2u
)
− L (β) =

N

∑
i=1

ρτ




ÿi − ẌT
i

(
β + N−1/2u

)

SN


−

N

∑
i=1

ρτ

(
ÿi − ẌT

i β

SN

)

= − 1√
NSN

N

∑
i=1

ψτ

(
ÿi − ẌT

i β

SN

)
ẌT

i u +
1

2S2
N

uT

[
1

N

N

∑
i=1

ψ′
τ

(
ÿi − ẌT

i β

SN

)
ẌT

i Ẍi + op(1)

]
u

, I1 + I2

where ÿi is a T × 1 vector. Then, by using the fact that SN
p−→ σ, the law of large numbers and central limit theorem,

the proof of Theorem 5.1 direclty follows from Theorem 1 of Jiang et al. (2019).

Remark 1. Theorem 5.1 guarantees the existence of a consistent estimator under some regularity conditions (cf. Jiang

et al. (2019)). It should be noted that the existence of redescending M-estimator is not ensured for the unbounded loss

function. Also, Maronna and Yohai (1981) provide the results for the existence of the redescending M-estimator when

some conditions hold.

Theorem 5.2. Under Assumption 5.2 and E|ψτ (εi + δ)− ψτ (εi)|2 = o(1) as δ → 0, if SN
p−→ σ as N → ∞, then,

we obtain
√

N
(

β̂M − β
) d−→ N

(
0,

E
[
ψ2

τ (ε/σ)
]

(E [ψ′
τ (ε/σ)])2

σ2
[

E
(

ẌT
i Ẍi

)]−1
)

where “
d−→” denotes the convergence in distribution.
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Proof 5.2. Let assume

φN (θ) =
1

NSN

N

∑
i=1

ψτ

(
ÿi − ẌT

i θ

SN

)
Ẍi

Then, we have the following by Taylor’s expansion

φN

(
β̂M

)
= φN (β) + φ′

N (β)
(

β̂M − β
)
+

(
β̂M − β

)T
φ
′′
N (β∗)

(
β̂M − β

)

2

where β∗ is a vector that lies between β̂M and β, and also, φ′
N (·) and φ

′′
N (·) represent the first-order and second-order

derivatives of φN (·), respectively. Then, φN

(
β̂M

)
= 0 from Equation 10 (cf. Jiang et al. (2019)). Under A1-A2 of

Assumption 5.2, we obtain

=
SN√

N

N

∑
i=1

ψτ

(
ÿi − ẌT

i β

SN

)
Ẍi =

√
N
(

β̂M − β
) 1

N

N

∑
i=1

ψ′
τ

(
ÿi − ẌT

i β

SN

)
ẌT

i Ẍi + op(1)

by Theorem 5.1. The proof of Theorem 5.2 is completed since SN
p−→ σ as N → ∞.

6. Numerical Results

In this section, we conduct an extensive simulation study to examine the finite-sample properties

of proposed and some existing panel data estimators. To investigate the performances of the proposed

procedures, three scenarios, namely (i) different sample sizes, (ii) different error distributions, and (iii)

various types of outliers, have been considered. The following simulations and all calculations have been

carried out using R 3.6.0. on an IntelCore i7 6700HQ 2.6 GHz PC. (The codes can be obtained from the author

upon request.)

For the data generation process, we consider the following static fixed-effect panel-data model

yit = xT
it β + αi + εit, i = 1, . . . , N, t = 1, . . . , T, (11)

where εit’s are assumed to be iid N(µ = 0, σ2 = 1) and the vector of parameters is chosen as βT = (β1, β2) =

(2.4,−1.2). Similar to experimental design of Aquaro and Cizek (2013), the unobservable individual effects

are generated as follows

αi =
T

∑
t=1

xT
itγ/

√
T + ηi

where γ = (2, 4)T and ηi ∼ U (0, 12) to guarantee homogeneity of the variances of deterministic γ and

random parts ηi of αi. To avoid completely symmetric design as in Aquaro and Cizek (2013), the independent
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variables xitK for K = 1, 2 are generated according to

xitK ∼





χ2
2 − 2 if K=1

N (0, 1) if K=2,

where χ2
2 denote the chi-squared distribution with 2 degrees of freedom.

The performances of the proposed estimators are evaluated based on S = 1000 simulations. In case of

the changing sample sizes and presence of outliers, we compute the mean squared errors (MSE): MSE =

1
S ∑

S
s=1

∥∥∥β̂s − β
∥∥∥

2
, where β̂s, s = 1, · · · , S, represents the estimates obtained from S simulated samples. Also,

we calculated the squared errors (SE): SE =
∥∥∥β̂s − β

∥∥∥
2

to examine the effect of the error distributions on

the estimators. Note that throughout the experiments, all calculations are performed for the finite sample

breakdown points BP = 0.1 and BP = 0.5 for WMS estimator of Bramati and Croux (2007). However, we

present only the results obtained for the choice of BP = 0.1 since WMS procedure with this breakdown point

produced better results.

6.1. Sample sizes

In this subsection, different values of cross-sectional dimension, N = 50, 100, 150, 200, 250 (by keeping

time period fixed at T = 3) and time periods, T = 4, 6, 9, 12, 24 (for a fixed number of cross-sectional units

N = 50) are considered to investigate the influence of panel sizes on our proposed estimators. Figure 1

illustrates calculated MSE values of the estimators when the errors follow standart normal distribution,

εit ∼ N(µ = 0, σ2 = 1). In this figure, the lines representing the performances of the LS and proposed loss

functions (Huber, Tukey, Exponential) based estimators using data-dependent regularization parameters

overlap as N → ∞ and T → ∞ since they have almost same performances under normal errors. However, the

WMS procedure are not consistent for fixed time dimension while it is consistent for increasing values of T as

noted in Aquaro and Cizek (2013). These results also confirm that the proposed methods are asymptotically

equivalent to LS estimator as N and/or T increases.

6.2. Error distributions

The SE values of the estimators are calculated under four different error distributions: N(µ = 0, σ2 = 1),

Student’s t distribution with 5 degrees of freedom (t5), the chi-squared distribution with 4 degrees of freedom

χ2
(4) and standard Cauchy distribution Cauchy(0, 1) to demonstrate the effects of error distributions on

the estimation methods. Also, three pairs of cross-sectional sizes and time periods: (N1, T1) = (30, 20),

(N2, T2) = (75, 8) and (N3, T3) = (200, 3) are considered as in Aquaro and Cizek (2013). The simulation

results are presented in Figure 2. The skewness of SE values of WMS procedure (with BP = 0.1) is greater
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than the other methods for Normal, t5 and χ2
(4) distribution of the errors especially for increasing N or

decreasing T. This means that the variability and mean of SE values obtained for WMS estimator are slightly

higher than the other estimators. All the proposed and LS estimators have similar SE values under all the

error distributions, except for standard Cauchy distribution. Also, the mean and variance of the SE values

for LS method increases more than the other estimators in case of the Cauchy distribution of the error terms

while the proposed robust estimators and WMS of Bramati and Croux (2007) are less affected.

6.3. Outliers

This subsection presents the robustness performances of the estimation procedures in case of the various

types of outliers. Throughout the simulations, two different levels of cross-sectional sizes and time periods,

namely, N1 = 120, T1 = 2 and N2 = 80, T2 = 3, are considered for the fixed panel size consisting of a total of

240 observations. The proportions of contamination are chosen as 5% and 10% by determining the number

of outliers as m = 12 and m = 24. Two main types of contamination, namely, random contamination and

concentrated (or clustered) contamination as in Bramati and Croux (2007) are used to generate contaminated

datasets. The outlying points are randomly distributed over all observations for random contamination

while the outliers concentrating in some blocks constitute at least a half of the observations within cross-

sectional units for concentrated contamination. For more detailed information on the types of contamination

and graphs of contamination schemes, please see Figure 1 of Bramati and Croux (2007). The considered

contamination schemes depending on the types of outliers are described as follows.

1. To generate random vertical outliers (yr
it), randomly selected original values of the dependent variable

are replaced by the observations from an Uniform distribution yr
it ∼ U (20, 80).

2. At first, randomly chosen values of the dependent variable are contaminated following the same rule

of first scheme. After that, the values of the independent variables corresponding to the observations

contaminated in the dependent variable are replaced by the points coming from a Normal distribution

N(µ = 8, σ2 = 4) to obtain the random leverage points.

3. Concentrated vertical outliers are inserted into the data by substituting the random observations from

an Uniform distribution yc
it ∼ U (79, 80) for the randomly selected blocks of the original values of

dependent variable.

4. Firstly, the contaminated blocks of the dependent variable are obtained by applying the same rule used

in third scheme. In the next step, the concentrated leverage points are inserted into the original blocks

of the independent variables corresponding to the blocks already contaminated in dependent variable

by replacing them by the random values from a Normal distribution N(µ = 8, σ2 = 4).
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The simulation results are summarized in Tables 1-2. At first glance, it is conspicuous from Table 1 that the

LS method leads to obtain distorted estimates of the parameters of interest in the presence of outliers. It can

further be seen that LS estimators can be severely degraded when the data is contaminated by the leverage

points, compared to the case of vertical outliers. Additionally, the MSE values obtained for LS increase as

the level of contamination increases regardless of the types and levels of contaminations and are severely

affected in presence of concentrated contamination. Conversely, the proposed estimators (named according

to the corresponding loss functions: Huber, Tukey, Exponential) and WMS of Bramati and Croux (2007) are

highly resistant to outliers. In particular, the proposed robust estimators are quite less affected by the choice

of contamination level and/or scheme compared to WMS procedure. One of the remarkable results is that

Tukey estimator based on the Tukey’s bisquare function produces best results with smallest MSEs among the

robust estimators under all contamination schemes for (N1, T1) = (120, 2). The performances of the robust

estimators can be sorted based on minimizing MSE values as follows: Tukey, Exponential, Huber estimators

and WMS for T1 = 2. We further see that, the performance of WMS estimator is sensitive to the increasing

level of contamination and concentrated contamination when T1 = 2 as noted in Aquaro and Cizek (2013)

and Bramati and Croux (2007). Although there are no substantial differences between WMS and Exponential

loss function based estimator at 5% contamination for (N2, T2) = (80, 3), the performance of WMS method

is slightly better than the proposed robust estimators. However, Exponential and Tukey’s bisquare functions

based estimators produce more accurate and precise estimates of the parameters for random contamination

and concentrated contamination, respectively when the level of contamination increases. Our results clearly

demonstrate that the all proposed estimators (Huber, Tukey, Exponential) are reasonable competitors that

often exhibit improved performance over the traditional LS method and robust WMS estimator especially

for increasing level of contamination.

To confirm the supremacy over the traditional LS and WMS methods, we also calculate the root mean

squared errors (RMSE) of predicted values. To this end, the simulated samples are divided into the following

two parts: the predictive model is constructed based on training sample to compute the prediction errors

from testing sample with cross-sectional size Ntest. Then, RMSEs of the predicted values are calculated by

RMSE =
1

S

S

∑
s=1

√√√√
Ntest

∑
i=1

T

∑
t=1

(ys
it − ŷs

it)
2/ (Ntest × T) =

1

S

S

∑
s=1

√√√√
Ti

∑
t=1

(ys
it − ŷs

it)
2/Ti (12)

where i = 1, 2, · · · , Ntest, ys
it and ŷs

it, respectively, denote the observed values and predictions obtained from

the predictive model for each of S simulated samples. Throughout simulations, we determine the sizes

of test samples as Ntest × T1 for (N1, T1) = (120, 2) and Ntest × T2 for (N2, T2) = (80, 3) with the choice of
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Ntest = 50. Table 2 displays the RMSEs obtained from the predictive model constructed by the estimated

regression coefficients using all the estimators considered in this study. The results provided by the robust

estimators are similar and also, better than traditional LS method especially for concentrated leverage points.

However, proposed Tukey’s bisquare and Exponential loss functions based estimators have slightly better

performance among the robust estimators, in general.

7. Case Study

In this section, we compare the performances of all the estimators to check the supremacy of proposed

M-estimation procedures based on automatic selection of the tuning parameters via a real macroeconomic

application. The data set consists of a total of 342 (N = 18, T = 19) annual observations covering a cross-section

of 18 OECD countries over the period 1960-1978 (available in the R package plm, please see Croissant and

Millo (2008)). For this panel, the gasoline demand model studied by Baltagi and Griffin (1983) is as follows

ln GCit = αi + β1 ln IPCit + β2 ln GPit + β3 ln CSit + εit

where GC represents the gasoline consumption per car as dependent variable, IPC, GP and CS, respectively,

denote real income per capita, real gasoline price and car stock per capita as independent variables. The

index i = 1, 2, · · · , 18 and t = 1, 2, · · · , 19 denote the OECD countries and years, respectively; see Baltagi and

Griffin (1983) for more detailed description of the data set. Figure 3 shows the scatter plots of the logarithm of

response variable against the logarithms of explanatory variables. From Figure 3, we observe that there exist

outliers in the response and the independent variables. Table 3 reports the estimates of individual coefficients

and standard errors of the estimates. We can see from Table 3 that the robust methods yield more efficient

estimates than the traditional LS method. The WMS estimators produce more precise estimates of individual

coefficients among the robust procedures. However, the proposed methods, especially Exponential loss

function based estimator, provide competitive results in estimating β2 and β3.

To investigate the predictive performances of the LS, WMS and proposed robust methods further, the

RMSE of predicted and observed values of the logarithms of the gasoline consumption are calculated by

dividing the dataset into the two parts as mentioned in Section 6.3. For this purpose, the randomly selected

15 countries (N − Ntest = 15) are used to build a predictive model, and the logarithms of the gasoline

consumption of remaining 3 countries (Ntest = 3) are predicted by using the estimated model coefficients.

This process is performed S = 100 times, and for each time, RMSEs are obtained by using the Equation (12).

The results are presented in Figure 4. This figure demonstrates that all the robust methods have better

predictive ability compared to the traditional LS method. Furthermore, our proposed robust methods yield
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considerably better predictions than WMS method.

8. Conclusions

In this paper, we propose robust and efficient estimators based on minimizing loss functions in estimating

the parameters of fixed effects panel data models. The proposed procedures uses a data-driven approach for

selection of regularization parameters, which is important to determine the necessary level of robustness

without sacrificing estimation efficiency in the presence outlying observations and/or blocks. The asymptotic

properties of the proposed estimators are investigated in the context of fixed effects linear panel data models.

The finite sample performances of the proposed methods are illustrated via extensive simulation studies

and an empirical application, and we compare the results of our methods with those for existing WMS

estimator of Bramati and Croux (2007) and traditional LS method. Our thorough study demonstrates that

the proposed estimators produce more accurate and efficient parameter estimates with better predictions

compared to WMS and traditional LS methods under data contamination, and consistent results with the LS

method when no outliers are present in the data and sample size increases.
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Table 1: The MSEs for (N1, T1) = (120, 2), (N2, T2) = (80, 3) in the presence of 5% and 10% random and
concentrated contamination by setting the number of outliers as m = 12, 24

(N1, T1) = (120, 2) Random contamination Concentrated contamination

Method Vertical outliers Leverage points Vertical outliers Leverage points
5% 10% 5% 10% 5% 10% 5% 10%

LS 1.651 2.579 7.688 9.116 2.985 5.916 25.231 30.581
Huber 0.710 0.941 0.678 0.942 0.746 0.987 0.771 0.963
Tukey 0.609 0.842 0.614 0.828 0.577 0.642 0.569 0.630
Exponential 0.637 0.848 0.618 0.823 0.595 0.668 0.602 0.673
WMS 0.762 1.571 0.727 1.547 1.009 3.951 1.102 3.644
(N2, T2) = (80, 3)

LS 1.172 1.982 7.464 8.830 2.467 4.150 25.422 30.490
Huber 0.575 0.806 0.606 0.824 0.599 0.902 0.652 0.922
Tukey 0.522 0.713 0.559 0.719 0.467 0.649 0.530 0.642
Exponential 0.517 0.706 0.558 0.709 0.477 0.695 0.542 0.704
WMS 0.510 0.755 0.522 0.773 0.460 0.926 0.485 0.947

Table 2: The RMSEs of predicted values for (N1, T1) = (120, 2), (N2, T2) = (80, 3) in the presence of 5% and 10%
random and concentrated contamination by setting the number of outliers as m = 12, 24

(N1, T1) = (120, 2) Random contamination Concentrated contamination

Method Vertical outliers Leverage points Vertical outliers Leverage points
5% 10% 5% 10% 5% 10% 5% 10%

LS 4.815 4.918 5.134 5.227 4.923 5.128 6.078 6.332
Huber 4.744 4.788 4.722 4.753 4.738 4.764 4.702 4.761
Tukey 4.739 4.782 4.718 4.744 4.722 4.734 4.687 4.730
Exponential 4.740 4.784 4.718 4.742 4.724 4.736 4.690 4.734
WMS 4.748 4.838 4.727 4.801 4.766 4.992 4.732 4.968
(N2, T2) = (80, 3)

LS 5.560 5.645 6.014 6.081 5.650 5.815 7.008 7.325
Huber 5.508 5.529 5.531 5.540 5.480 5.533 5.482 5.507
Tukey 5.503 5.518 5.526 5.529 5.468 5.510 5.471 5.483
Exponential 5.503 5.518 5.526 5.528 5.469 5.515 5.472 5.489
WMS 5.503 5.524 5.523 5.536 5.470 5.547 5.466 5.522
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Figure 1: The MSEs of all estimators when T = 4, 6, 9, 12, 24 for fixed cross-sectional dimension N = 50 and
N = 50, 100, 150, 200, 250 for fixed time dimension T = 3 and εit ∼ N(µ = 0, σ2 = 1)
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Figure 2: The boxplots of the SEs of all estimators under different error distributions when (N1, T1) = (30, 20),
(N2, T2) = (75, 8) and (N3, T3) = (200, 3). First row: N(0, 1) distribution, second row: t5 distribution,
third row: χ2

(4) distribution and fourth row: Cauchy(0, 1) distribution.
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Figure 3: Scatter plots of the logarithm of gasoline consumption (ln GC) against the logarithms of real income (ln IPC),
real gasoline price (ln GP) and car stock (ln CS) for 18 OECD countries.
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Figure 4: The boxplots of the RMSEs of predicted and observed values of the logarithm of the gasoline consumption for
3 OECD countries.
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Table 3: Estimates of individual coefficients (upper rows) and standard errors of the estimates (lower rows) for gasoline
consumption data of 18 OECD countries over the period 1960-1978

Method β1 β2 β3

LS -1.043 -0.264 0.113
(0.054) (0.066) (0.021)

Huber 0.579 -0.317 -0.559
(0.048) (0.029) (0.019)

Tukey 0.479 -0.302 -0.451
(0.040) (0.024) (0.016)

Exponential 0.482 -0.307 -0.452
(0.027) (0.018) (0.012)

WMS 0.902 -0.356 -0.651
(0.017) (0.014) (0.011)
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