
OR I G I N A L A R T I C L E

Adapting conditional simulation using circulant embedding for

irregularly spaced spatial data

Maggie D. Bailey | Soutir Bandyopadhyay | Douglas Nychka

Department of Applied Mathematics and

Statistics, Colorado School of Mines, Golden,

Colorado, 80401, USA

Correspondence

Soutir Bandyopadhyay, Department of Applied

Mathematics and Statistics, Colorado School

of Mines, 1500 Illinois St., Golden, CO 80401,

USA.

Email: sbandyopadhyay@mines.edu

Funding information

Colorado School of Mines Faculty

Development Funds; National Science

Foundation, Grant/Award Number:

DMS-1811384

Computing an ensemble of random fields using conditional simulation is an ideal

method for retrieving accurate estimates of a field conditioned on available data and

for quantifying the uncertainty of these realizations. Methods for generating random

realizations, however, are computationally demanding, especially when the estimates

are conditioned on numerous observed data and for large domains. In this article, a

new, approximate conditional simulation approach is applied that builds on circulant

embedding (CE), a fast method for simulating stationary Gaussian processes. The standard

CE is restricted to simulating stationary Gaussian processes (possibly anisotropic) on reg-

ularly spaced grids. In this work, we explore two possible algorithms, namely, local Kriging

and approximate grid embedding, that extend CE for irregularly spaced data points. We

establish the accuracy of these methods to be suitable for practical inference and the

speedup in computation allows for generating conditional fields close to an interac-

tive time frame. The methods are motivated by the U.S. Geological Survey's soft-

ware ShakeMap, which provides near real-time maps of shaking intensity after the

occurrence of a significant earthquake. An example for the 2019 event in Ridge-

crest, California, is used to illustrate our method.
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1 | INTRODUCTION

An important contribution of spatial statistics is not only being able to make predictions at unobserved locations but to also attach a measure of

uncertainty to these predictions. Conditional simulation is a Monte Carlo-based method that is ideal for quantifying prediction uncertainty at new

locations especially when the predictions comprise a large, fine grid of points representing a surface. Besides providing Monte Carlo estimates of

prediction standard errors, it can also be applied to nonlinear features in a spatial prediction such as the uncertainty in contour lines and level sets.

A major computational bottleneck in conditional simulation, however, is the initial simulation of the unconditional spatial process at a large set of

observed and unobserved locations. Using exact methods limits the analysis on a laptop and in R to a combined number of locations on the order

of tens of thousands. This constraint is easily exceeded for larger spatial data sets and prediction to modest sized spatial grids. Here, we exploit

the circulant embedding (CE) method (Wood & Chan, 1994; Chan & Wood, 1999) because of its efficiency and make some additions for irregular

locations. The focus of our work is on geophysical problems where the conditional simulation is typically required on a fine grid and where com-

puting resources are modest.

The value of CE lies in the fact that it is both a fast and exact method for simulating stationary Gaussian random fields on a regular grid. For

example, on an m � m lattice, CE uses 40 m2 log2 2 m floating point operations (FLOPS) compared to 6 m5 FLOPS using a Cholesky decomposi-

tion. This reduced operation count translates to significant speedup in simulation time and reduction in memory. If observation locations are a

subset of the grid, then generating realizations from the conditional distribution is a straight forward computation by pairing CE unconditional
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simulation with efficient implementation of Kriging predictions. However, a major restriction of CE is that it only simulates the process on a regu-

lar grid of locations. For data sets where the observation locations are irregular and cannot be registered to a prediction grid, it is difficult to simu-

late the process simultaneously at locations both on a grid and at observation locations. This follows because the efficiency of CE cannot be

exploited in this case. We study two simple local algorithms that use CE and extend conditional simulation to irregular, off-grid locations. These

extensions produce accurate simulations of the prediction error and take a small fraction of computational time relative to other parts of the con-

ditional simulation algorithm. Although at its core these are simple modifications, to our knowledge, these algorithms have not been identified in

previous work and implemented in open source data analysis environments such as R.

This work is motivated by a practical problem encountered by the United States Geological Survey (USGS) in using earthquake measure-

ments. Ground motion sensors, used to measure earthquakes, are typically irregularly placed in a spatial domain. Based on these data, estimates

of median ground motion are produced by the USGS software package, ShakeMap (Worden et al., 2020), in conjunction with observed seismic

data (Verros et al., 2017). Generally, ShakeMap-based estimates are then used as input fields in additional models that quantify fatalities and eco-

nomic losses from significant seismic events. The statistical problem is to extrapolate ShakeMap estimates to a fine spatial field to address losses

over a complete spatial region and to quantify the uncertainty in these estimates. In particular, several hundred conditional simulations of the field

are required to compute a Monte Carlo estimate of the prediction standard error.

Throughout this work, the two new methods will be referred to as local Kriging and approximate grid embedding, and we evaluate them by the

accuracy in approximating the exact prediction variances over a range of spatial data models. There are several strategies in the literature related

to this problem. To work with irregular grids, a block circulant embedding method has been proposed (Park & Tretyakov, 2015). This method

focuses specifically on data that have a block circulant structure, however, and is less applicable to the ShakeMap software. A second approach is

currently used in the R package fields and implemented as the function sim.mKrig.approx. Here, linear interpolation uses the four nearest grid

points to simulate an observation (Furrer et al., 2009). While this strategy is very fast, it does not preserve the covariance structure of the spatial

data and does not adjust for interpolation error, and its accuracy is untested.

An elegant solution to simulating unconditional and conditional Gaussian spatial fields is to use algorithms based on sequentially conditioning

on subsets of the locations, termed Vecchia approximations (VA) (Katzfuss et al., 2020). This is a comprehensive and efficient framework for

approximating Gaussian process computations. Although an alternative for simulation, coding a VA is more complex, and it is fundamentally a

sequential algorithm that can be more difficult to implement in parallel. Under some circumstances, our approach fits into the Vecchia framework.

For our local Kriging method, if the neighbourhoods of grid points do not overlap, then we are following a Vecchia algorithm where the final con-

ditioning set is the entire field on the regular grid generated by CE. When neighbourhoods overlap, our method departs from the standard Vecchia

setup, and we study the impact of this difference. Similar spatial process models exist such as Nearest Neighbour Gaussian Processes (NNPG)

(Datta et al., 2016; Finley et al., 2019). NNPG is also a fast inferential algorithm; however, simulations are done sequentially. While the NNPG

algorithm produces the same conditional distribution regardless of order and utilizes nearest neighbours via directed edges, the local Kriging algo-

rithm proposed here is simpler in that it requires no order specification. In either case, our approach benefits from being able to simulate large and

exact unconditional fields using CE that moderate the effect of computational shortcuts in simulating at the off grid observation locations. Some

timing results for VA and NNGP as a comparison to local Kriging are given in Section 3.6.

Another difference with our work compared to that of using a VA is our focus on conditional simulation and the Monte Carlo approximation

of the prediction standard error. We study how well our methods work in conditional inference for spatial problems and observation densities

similar to the Shakemap application, and we believe this is an important metric for judging our algorithms. As a practical example, we consider sen-

sor observations from an earthquake near Ridgecrest, CA, in 2019 and work with more than 600 spatial locations and a prediction grid of more

than 250 K points. The goal is to handle this size problem in an interactive data analysis environment, such as R, and on a standard laptop com-

puter and generate accurate prediction intervals.

In the next section, we detail the relevant computational algorithms. This is followed in Section 3 with a derivation of the misspecification of

the prediction standard error under our proposed algorithms. Also, numerical results are reported for the approximation error and timing results

for a spatial context relevant to USGS data. Section 4 applies the method to the Ridgecrest, CA, seismic event, and Section 5 closes with some dis-

cussion of future directions.

2 | EXTENDING CIRCULANT EMBEDDING SIMULATION

In this work, we assume a stationary, mean-zero spatial process y(�) with finite variance σ
2 and an associated stationary covariance function, C(�).

For example, y may represent a particular shaking intensity measurement such as log peak ground acceleration. We assume that the spatial pro-

cess is observed with error at n spatial locations fsi , i¼1,…,ng and can be represented as the standard additive geostatistical model:

zi ¼ μðsiÞþyðsiÞþεi , fori¼1,…n:
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In the above equation, zi is the observation at location si, μ(�) is the mean function and εi's are mean zero, Gaussian random variables with variance

ϕ2
i , often referred to as the nugget effect. It is assumed the ε is uncorrelated with y. The mean function typically takes the form of a linear model,

μðsiÞ¼ xðsiÞTβ, where xðsÞ¼ ½x1ðsÞ,…,xnðsÞ�T and the parameters β are estimated using generalized least-squares (see Cressie, 1993). To streamline

the presentation, it is assumed that μ(si) is zero. The extension to include a linear mean function is straight forward and is mentioned in the discus-

sion. Finally, we note that here “measurement error” is a generic component that can include microscale variation in the spatial process or essen-

tially any component of the observation that is not predictable from other spatial locations.

Given z, we are interested in predicting y(s) on the regularly spaced prediction grid Sg ¼fsg1,sg2,…,s
g
Mg. Specifically in two dimensions, for an

m1�m2 grid M¼m1m2. In this work, it will be convenient to use notation yðAÞ¼ fyðℓ Þ : ℓ �Ag to denote the vector of y variables over the set

A¼fℓ 1,…,ℓ kg, and the order in this vector is fixed. Thus, the computational goal is to simulate values for yðSgÞ conditioned on a spatial process

observed with error, z¼ ½z1,…,zn�T . The conditional simulation algorithm has the following steps assuming a Gaussian process for y and normally

distributed error:

1. Compute the spatial prediction of the process at the prediction grid based on the actual spatial data. Denote this by ŷ.

2. Simulate a spatial process y at the union of locations S¼Sg [S.
3. Form the synthetic data z ∗i ¼ yðsiÞþε ∗i , for si �S and ε ∗i are independent Nð0,ϕ2

i Þ.
4. Based on z ∗ ¼fz ∗i : si �Sg, compute the spatial predictions at Sg resulting in ~y.

5. Obtain the conditional simulation as v¼ ŷþðyðSgÞ�~yÞ.

The resulting vector v has the correct covariance structure associated with the Kriging prediction uncertainty, and multiple realizations of

v can be interpreted as all being equally plausible representations of yðSgÞ consistent with the observations. In more mathematical terms, v is a

draw from the conditional distribution of yðSgÞ given z under the assumption of a Gaussian process, known covariance and normally distributed

measurement error, and we identify this explicitly in (3). It is worth mentioning that in Step 3, the nugget variance is just τ 2 ( i.e., τ2 �ϕ2
i ) in the

exact implementation of this algorithm. However, in our approximations, this variance will be inflated to reflect the additional variance of the

approximations.

Note that the resulting vector v is a draw from the conditional distribution assuming that all covariance parameters are known but will still

have more variability than just the spatial prediction, that is, the conditional mean.

2.1 | Local Kriging

The method of local Kriging approximates Steps 3 and 4 of the conditional simulation algorithm entailing an unconditional simulation of the spatial pro-

cess at the full set of locations S¼Sg [S. The approximation made by local Kriging starts with an unconditional simulation over the grid Sg using

CE and results in the random vector yðSgÞ of length M. These results are used to generate off-grid observations, S ¼fs1 ,s2,…,sng. Note that if this

operation was done using the full conditional distribution of yðSÞ given yðSgÞ, then this would be exact. The difficulty, of course, is that it becomes

computationally expensive for even moderate size grids. Therefore, the goal is to use a limited subset of yðSgÞ to generate the process at off-grid

locations. We define a grid box as being formed from four adjacent grid points. Denote the order neighbourhood as np where this is the number

of grid boxes containing a particular point in each dimension. This equates to 2np grid points closest to an off-grid observation in one dimension

and (2np)
2 grid points in two dimensions (see Figure 1). With this neighbourhood scheme, it is useful to expand the range of grid points larger than

any observation location by at least np grid units. By adding this margin one avoids edge effects; all neighbourhoods have the same size.

Let Sg
i �Sg be the subset of grid points for the np order neighbourhood surrounding si and yðSg

i Þ be the subvector of the simulated process

on the grid. The off-grid value, y(si), is generated as a draw from the conditional distribution of y(si) given yðSg
i Þ. Two important features figure into

this approximation. The first is that only the nearest neighbouring grid points are used as the conditioning set. We assert that this is not a serious

issue due to the screening effect for spatial prediction. The second assumption is that for any pair of observations i and j, we assume that y(si) and

y(sj) are independent conditional on yðSg
i Þ[yðSg

j Þ. This is a strong assumption but can also be justified by the screening effect combined with a

fine conditioning grid and it separates observation locations into different grid boxes. More discussion about this assumption will be given

Section 3.5. Note that the assumption of conditional independence allows for parallel simulation of the process at the observation locations given

the grid values and is different than a sequential algorithm using Vecchia approximations to the covariance matrices. The simulated observations

with this local Kriging method can still exhibit strong correlations, however, based on the correlations among the conditioning grid values.

To summarize, the local Kriging method proposes the following computations to approximate Steps 2–4 in the conditional simulation

algorithm.

(a) Simulate the process on the regular grid, Sg , using CE.

(b) Using an order neighbourhood of size np, perform univariate sampling of y(si) conditional on yðSg
i Þ.
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(c) Use a nugget variance of ϕ2
i ¼ τ2þ γi in generating synthetic observations, where γi represents the conditional variance in generating synthetic

observations at off-grid locations.

(d) Use τ
2 alone for the nugget variance in the spatial prediction.

This is the algorithm studied in the next section; however, a slightly more complicated version has some practical benefit and little extra com-

putational overhead. If more than one observation location is in a grid box, then the conditional sampling in (b) can be done for the multivariate

vector of observations in the grid box. This is distinct from the method proposed in Stroud et al. (2017), where simulating observations was done

independently regardless of proximity to neighbouring grid boxes with observations. The local Kriging algorithm in this paper does not require that

there is only one point per grid box and therefore does not require the grid to be extremely fine to accommodate this. Additionally, the method

proposed by Stroud et al. (2017) utilizes all grid points from the conditional simulation at Sg to conditionally simulate at the observation locations.

We find that using a limited sized neighbourhood rather than the full simulation suffices due to some screening. Some more details about this are

given in Section 3.6 and can avoid working with very fine grids just to allocate all the observations into separate grid boxes. The conditional sam-

pling for observations in separate grid boxes is still done independently. Finally, step (c) above is important in this proposed algorithm as it pro-

vides necessary variance adjustment to the conditional simulation and avoids potential underestimation of the conditional variance.

2.2 | Approximate grid embedding

A second method to adapt CE for use with off-grid points will be termed approximate grid embedding. In this method, the information in the spatial

observations is shifted to the closest grid locations. In this way, there are no longer any off-grid locations and CE alone can be used in Step 2 of

the conditional simulation process. The simplest way to shift the data is to identify the closest grid point and then just use that as the surrogate

location. We make this operation more robust by a spatial prediction from the full set of observations to the np order neighbourhood for each

observation location. This is illustrated by referring again to Figure 1. In addition, the nugget variance, nominally τ
2, is inflated at each grid point

observation by the error variance from this prediction. The net result is a surrogate spatial data set that attempts to retain the information from

the original, irregular locations but is now registered to locations on a regular grid. This transformation of the data and the locations is only done

once for each choice of spatial model, and then, the standard conditional simulation algorithm listed above can be used without modification.

A benefit to this approximation is its simplicity, and in the case of very fine grids and a sparse set of observation locations, one would expect

this approach to be very effective. However, in general, artificially increasing the number of observations adds to the computation and grids that

are close to the resolution of the observation spacings may introduce biases. Here, the highlighted grid points can be thought of as new

“observations,” which will be used in place of the original data locations and with some additional error included in the observational model.

Another disadvantage is that the redistribution of the observations to the grid points does not correspond to a specific approximation to the con-

ditional distribution from the off-grid points (Cressie, 1993) and can result in biases.

3 | EVALUATION OF APPROXIMATION OF PREDICTION ERRORS

For the purposes of this work, the exact standard error for Kriging and approximate standard errors for local and approximate grid embedding

have closed forms. These exact expressions avoid the additional complication of a simulation study to assess the accuracy of the approximations.

F IGURE 1 Illustration of the neighbourhood order np ¼1,2,3 used in the local Kriging approximation
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They also give some insight into how the approximations are made and capture the additional prediction variance, that is, step (c) in the local

Kriging algorithm, which ensures a more accurate conditional variance.

The following matrices will be used to derive the explicit formulas in this section. Throughout, the subscripts 1 and 2 will refer, respectively,

to the grid and observation subsets. First we have the full covariances and cross-covariance matrices for the grid points and observations:

K11
ðM�MÞ

¼CovðyðSgÞ,yðSgÞÞ¼CðSg ,SgÞ, K12
ðM�nÞ

¼CovðyðSgÞ,yðSÞÞ¼CðSg ,SÞ, K21
ðn�MÞ

¼KT
12

and K22
ðn�nÞ

¼CovðyðSÞ,yðSÞÞ¼CðS,SÞ:
ð1Þ

Also, the conditional distribution for the multivariate normal follows the well-known expression

½yðSgÞjz� �MNðK12ðK22þ τ2IÞ�1
z,K11�K12ðK22þ τ2IÞ�1

K21Þ,

and the conditional simulation algorithm is an efficient way to sample from this distribution. Moreover, the diagonal elements for the conditional

covariance are the appropriate prediction variances. We study whether these variances are accurately approximated by the local Kriging and

approximate grid embedding methods.

3.1 | Local Kriging approximate conditional variance

To derive the approximate conditional variance for local Kriging, we first identify the weights to predict the spatial process on S based on the

values at Sg . In this approximation, it is helpful to define an n�M incidence matrix, J , of 0 and 1 values such that J jk is 1 for all np order neigh-

bouring grid points of sj and zero otherwise. It is also useful to define subsets of the full covariance matrices based on these neighbourhoods.

Given a specific neighbourhood size, np, let Sg
j be the grid locations comprising the neighbourhood of sj, and we have the covariance (sub)matrices

Ki
22 ¼VarðyðsiÞÞ ; Ki

11 ¼CovðyðSg
i Þ,yðS

g
i ÞÞ; and Ki

21 ¼Covðyi ,yðSg
i ÞÞ:

We have the conditional mean and variances for the j th observation given by

ŷj ¼Ki
21ðKi

11Þ
�1

yðSg
i Þ¼Ki

21ðKi
11Þ

�1J yðSgÞ¼Wi
1yðSgÞ,

where Wi
1 is a vector of weights that map the grid values to the conditional mean for the observation. Also, we have the conditional variance

based on the local values

γi ¼Ki
22�Kj

21ðKi
11Þ

�1ðKi
12Þ

T
:

Given these individual estimates, let W1 denote the n � M matrix resulting from stacking fWi
1g as row vectors and γ a vector representing {γi}.

With this notation, the synthetic observation vector at Step 3 in the conditional algorithm is approximated as

z ∗ ¼ y ∗ þε ∗ ,

where y ∗ ¼W1yðSgÞ and ε
∗ are independent and normally distributed with variance ϕ2

i ¼ γiþ τ2.

The weights for predicting the grid points from these synthetic observations (Step 4) should only incorporate the actual nugget variance for

the original spatial data and can be written as

W2 ¼KT
12ðK22þ τIÞ�1,

where K12 and K22 are defined as in Equation 3. We can now define the composition of these weights in the form of the matrix Λ:

Λ
M�M

¼W2W1:
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Finally, we can define the predicted values on the grid from Step 4 of the conditional simulation as ŷ
S ∗ ¼ΛyðSgÞþW2ε

∗ and ySg ¼ yðSgÞ as the
“true” process from CE. We can write

ŷ
S ∗ �yS

g ¼ΛyðSgÞ�yðSgÞþW2ðεW1
þετÞ¼ ðΛ� IÞyðSgÞþW2ðε ∗ Þ, ð2Þ

and from this, we derive a formula for VarðŷS ∗ �ySgÞ assuming yðSgÞ and ε
∗ are independent. Note that this computation builds in the approxima-

tion that observations in separate grid boxes are assumed to be conditionally independent given the neighbouring grid points.

3.2 | Grid embedding approximate conditional variance

The first step of this method is to translate the off-grid observations into a surrogate problem with observations at grid locations that are nearest

neighbours to the observation locations. We will assume there are nN total number of surrogate locations. In the case of no overlapping

neighbourhoods and in 2 dimensions nN ¼ nð2npÞ2, the number of observations multiplied by the neighbourhood size. Accordingly, let JN be an

nN �M incidence matrix, consisting of 0 and 1 values that maps the full grid locations into just the surrogate observations on the grid. The weight

function mapping observations to this subset of the grid is given by

WN
1 ¼JNK21ðK11þ τ2IÞ�1

, ð3Þ

and the covariance matrix for the prediction errors associated with this mapping is the submatrix

J N ðK11�K12K
�1
22 K21ÞJ T

N ,

Lastly, let σ2N be the diagonal elements of this matrix. The synthetic observations in Step 3 of the conditional simulation follow

z ∗ ¼J N yðSgÞþε ∗ ,

where ε
∗ is independent and normally distributed with variances σ2N þ τ2.

The uncertainty estimated by Monte Carlo from the approximate conditional simulation is just the conditional variances from the surrogate

model, that is,

K22�K22J N ðKN þ τ2IþΣN Þ�1J T
NK22,

and ΣN is the diagonal matrix with entries σ2N .

3.3 | Analysis of the approximations to the prediction variance

In this work, covariance functions from the Matérn covariance family are considered:

CνðdÞ¼ σ2
21�ν

ΓðνÞ
ffiffiffiffiffi

2ν
p d

θ

� �ν

Kν

ffiffiffiffiffi

2ν
p d

θ

� �

,

where Γ is the gamma function, Kν the modified Bessel function of the second kind, ν the smoothness parameter and θ the range or scale

parameter. Two cases for ν are considered: (i) exponential covariance with ν¼1=2 and (ii) Matérn covariance with ν¼3=2. These ν values have

been chosen for their closed form representation in the Matérn covariance family, as the 1/2 integer cases do not require evaluating a Bessel

function.

It is assumed that the variance of the stochastic process, also known as the “sill” of the process, VarðyðsiÞÞ¼ σ2 ¼1. While the sill is assumed

to be constant, examining various values for τ 2 (or τ) will give a sense for how the method performs according to a diverse set of ratios between

the sill, σ 2, and the nugget variance, τ 2. This relationship is formalized with the parameter λ¼ τ2=σ2 , called the smoothing parameter. Moreover,
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1/λ can be recognized as the more conventional signal-to-noise ratio common in signal processing. We consider three nugget values

τ2 ¼0:12,0:22 ,0:32.

Three range parameters are also considered for each case of smoothness so that θ could be a short, medium or longer range parameter rela-

tive to the domain. Specifically, the range parameters are set so that for a given smoothness, the correlation between two observations falls to

5% at a distance of 20, 45 or 70 units. These values are used for their applicability to earthquake IM ranges, as seen in Loth and Baker (2013).

Thus, the numerical design has three factors comprising 18¼2�3�3 separate cases. We consider a two dimension, square spatial domain with

extent [0, 60]� [0, 60].

The focus of this study is on the accuracy of the prediction standard errors, and we use relative per cent error as a measure of how well the

approximations work against the exact formula. For this reason, a moderate grid size is used so that the exact standard errors can be readily com-

puted. The locations of the observations are chosen so that both the x and y coordinates are uniformly distributed on the interval [0, 60]. One-

hundred different random configurations are used in this experiment to ensure that the relative errors analysed are not due to chance from a sin-

gle configuration. For the numerical analysis in this section, there are 35 observations on a grid size of 61 � 61. The ratio of the number of obser-

vations to the size of the grid reflects the density of observations and grid for the USGS application to ShakeMap data. It is also a case where a

much finer prediction grid is considered relative to the spacing of the observations. Although this is a small number of observations, these results

should be consistent for larger domains with the same relative observation and grid densities.

3.4 | Numerical results

For each combination of the smoothness parameter, range parameters and configuration of observation locations the exact prediction standard

error (SEE(s)), the standard error based on the local approximation (SEL(s)) and the standard error based on the approximate grid embedding

approximation (SEA(s)) are computed for the 612 ¼3721 grid locations, and we find these errors for neighbour sizes np ¼1,2,3,4. In particular, the

relative per cent errors are defined as

ELðsÞ¼100�ðSELðsÞ�SEEðsÞÞ=SEEðsÞ, and,EAðsÞ¼100�ðSEAðsÞ�SEEðsÞÞ=SEEðsÞ:

The results are summarized in Figure 2, by boxplots of the 95th percentile (over the grid locations) of the errors for the 100 configurations of

observations. The dashed red line represents the 1% relative error line. It is clear from this graph that the approximate grid embedding method

F IGURE 2 Relative per cent difference between local Kriging, approximate grid embedding and simple Kriging for ν¼0:5 and θ¼6:68
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does not improve after an order neighbourhood of 3. On the other hand, EL(s) appears to decrease with np but exhibits more variability. Regardless

of these differences, for both methods, the error quantiles tend to remain under 1%.

Another way to score the closeness of the approximations to the exact prediction variances is by quantifying their agreement to a specific

number of significant digits. This comparison is motivated by a prediction confidence interval being computed to a practical accuracy. For exam-

ple, the width is accurate to three digits or about .1% Table 1 shows the per cent of local standard errors that are correct to three significant fig-

ures when compared to the exact prediction standard error for an exponential covariance. Table 2 shows the same but for the approximate grid

embedding method. Note that, even when using a full grid for local Kriging, there is still 1 configuration that is not correct to three significant fig-

ures. Table 2 shows that approximate grid embedding method does not do as well even when a full grid is used.

3.5 | Model misspecification

A key assumption in these approximate methods is that the off-grid observations are simulated separately and the prediction errors added to the

off-grid simulated values are assumed to be independent from one another. This approach is very convenient for parallel computation and in many

cases can be assumed due to the fine resolution of the simulated process on the grid by circulant embedding. In this section, we give some justifi-

cation for assuming independence that we believe is tied to the screening effect for fine grids that separate observations. We consider a grid with

unit spacing, second-order neighbours and two observations that are 1/2 and 1 unit apart. We position these observation pairs to give the largest

conditional correlations, as seen in Figure 3. The conditional covariance is found for the conditional distribution of these two pairs for the Matérn

TABLE 1 Portion of standard errors resulting from local Kriging correct to three significant figures when compared to simple Kriging error for

an exponential covariance function across 50 configurations of the grid

θ τ

np ¼1 np ¼2 np ¼3 Full

Mean Sd Mean Sd Mean Sd Mean Sd

6.68 0.1 0.115 0.034 0.736 0.020 0.974 0.009 0.994 0.009

0.2 0.117 0.035 0.746 0.020 0.974 0.012 0.993 0.012

0.3 0.123 0.037 0.759 0.019 0.974 0.013 0.993 0.013

15.02 0.1 0.066 0.019 0.741 0.018 0.970 0.010 0.994 0.010

0.2 0.070 0.021 0.756 0.018 0.970 0.013 0.993 0.013

0.3 0.074 0.022 0.773 0.019 0.972 0.014 0.993 0.013

23.37 0.1 0.069 0.019 0.777 0.015 0.973 0.01 0.995 0.010

0.2 0.075 0.022 0.791 0.017 0.973 0.013 0.994 0.012

0.3 0.085 0.025 0.812 0.017 0.974 0.014 0.993 0 .013

TABLE 2 Portion of standard errors resulting from approximate grid embedding correct to 3 significant figures when compared to simple

Kriging error for an exponential covariance function across 50 configurations of the grid

θ τ

np ¼1 np ¼2 np ¼3 Full

Mean SD Mean SD Mean SD Mean SD

6.68 0.1 0.228 0.036 0.896 0.003 0.917 0.003 0.918 0.003

0.2 0.215 0.035 0.895 0.003 0.915 0.003 0.918 0.003

0.3 0.211 0.036 0.896 0.004 0.916 0.003 0.919 0.003

15.02 0.1 0.006 0.024 0.840 0.006 0.901 0.003 0.904 0.004

0.2 0.003 0.019 0.830 0.006 0.900 0.004 0.902 0.003

0.3 0.074 0.016 0.773 0.007 0.972 0.004 0.993 0.004

23.37 0.1 0.019 0.015 0.785 0.009 0.889 0.004 0.894 0.004

0.2 0.007 0.009 0.759 0.010 0.884 0.005 0.890 0.005

0.3 0.004 0.006 0.738 0.009 0.882 0.004 0.890 0.004

Note: Values of θ are chosen so that the correlation between two observations falls to 5% at a distance of 20, 45 or 70 units, which has applicability to

earthquake IM ranges, as seen in (Loth & Baker, 2013)
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family of covariances. We vary the range parameter in the interval [0.2, 10] and the smoothness in the interval [0.5, 1.5] to obtain a maximum

conditional correlation of 0.181 for one unit spacing (red circles in Figure 3) and 0.293 for half unit spacing (grey squares in Figure 3). These

results suggest that it is important to have the grid separate observation (off-grid) locations; however, the screening effect greatly reduces the

correlation for locations centred in adjacent grid boxes. As might be expected, these correlations increase somewhat as the smoothness of the

Matérn family is increased.

3.6 | Fast computation

The basic off-grid prediction involves a small linear combination of neighbouring grid values for each off-grid location. This can be easily

converted to a parallel operation by distributing the off-grid computation to multiple cores and tiling the grid locations to avoid passing the entire

gridded field to each core. In this study, however, a serial approach was taken to assess how a simpler coding of the algorithm would perform.

The basic idea is to rephrase the off-grid prediction in terms of a sparse matrix multiplication of the gridded field value and to leverage efficiency

from the spam sparse matrix package in R.

Recall that the off-grid prediction involves a set of weights based on the nearest neighbour grid points. This can be divided up into two matri-

ces. Recall Kj
12 is the cross covariance matrix between the nearest neighbours and the off-grid location sj. We note that for regular grids finding

nearest neighbours and their indices is particularly fast because it is equivalent to finding the nearest integer values to real numbers. Kj
22 is the

covariance matrix for the np order nearest neighbours. Since we are assuming a stationary covariance function, this matrix is the same for every

observation location. By careful indexing, one can populate the rows of a sparse matrix version of W1 using as rows Kj
12ðK

j
22Þ

�1
such that

ŷðSÞ¼W1yðSgÞ:

Here, the off-grid predictions, also the conditional mean values, are obtained by a single sparse matrix multiplication applied to the gridded field

values unrolled as a vector. The advantage of this approach is that it exploits the efficient multiplication and indexing across large vectors.

This setup makes a few important assumptions. First, the same neighbourhood structure will be used around each off-grid point regardless of

where the off-grid point is within a grid box. That is, a point that is directly in the middle of a grid box will have the same neighbourhood pattern

as a point that is close to the corner of the grid box. This method also assumes the grid extends several grid points beyond all observations, and

so padding the edge of the grid may be necessary if any observations lay too close to the edge of the domain. Finally, there is the assumption of

stationarity so that the covariance matrix of nearest neighbours (Kj
22) can be inverted once and applied for all off-grid predictions. Although the

nominal dimensions of a sparse W1 can be large, there are only (2np)
2 nonzero entries per row, and so the multiplication is quite fast. Also note

that for generating many realizations of the grid and off-grid points,W1 needs to be created only once and stored. To generate the measurement/

nugget errors, one can phrase this a multiplication of the measurement standard deviations by iid standard normal random variables. In the exten-

sion where a limited number of grid boxes have a small number of observations, this step can also be accomplished as sparse matrix multiplication.

In the case the sparse matrix has diagonal elements ϕi for single observations in a grid box, for multiple observations in a grid box, there are diago-

nal blocks with the Cholesky decomposition of the conditional covariance matrix.

F IGURE 3 Location of grid and pairs of off-grid points for testing. Both sets of points have a second-order neighbourhood plotted where

hollow orange squares correspond to the right red and grey symbols while the dark blue X's to the left red and grey symbols
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This algorithm has been implemented in serial in the fields R package and has surprisingly fast performance. Our timing is done on a Mac-

book Pro laptop with 2.3 GHz Quad-Core Intel Core i5 using R 4.1.0, fields 12.6 and spam 2.7-0. Although we expected the sparse

methods to be efficient, the speedup over a conventional for loop in R was surprising. Creating W1 and VARðSÞ took under 0.15 seconds for a

2,048 � 2,048 grid and for 6,400 off-grid observations, and np ¼4. The simulation step 3 for the off-grid values took under 0.01 s.

To set these results in context, it is also useful to time our proposed conditional simulation algorithm. As above, we use a serial implementa-

tion based on easy to use and high level functions from the fields package, and we break up the timing into several key parts. The results are

reported in Table 3 for np ¼4. Here, M¼m2 is the total grid size, and n is the number of off-grid locations. The off-grid locations are drawn from a

uniform distribution on the spatial domain. For these computations, we used an exponential covariance where the evaluation of the covariance

matrix has been optimized somewhat using a lower level C subroutine called from R. Times are in seconds with CESetup being the time to setup

computations for the circulant embedding, OffSetup setup time for the off-grid predictions, CE time for simulating a single realization on the

grid, OffGrid time to simulate a realization of the off-grid values, predict the time to predict from the off-grid observations onto the regular

grid and, finally, draw the total time to generate a single draw for this algorithm. Thus, generating 100 members from the conditional distribution

on a 128�128 grid and for 400 observations will take on the order of about a minute (100�0:61¼61 s). We did not time the exact computation

because this would involve a Cholesky decomposition of the full covariance matrix of size 16,784 � 16,784. For the largest case, the time for a

100 member ensemble will be substantial, amounting to about 2 h. Note, however, that the time is dominated by how long it takes to compute

the spatial process predictions from n locations to the m�m grid. The time in generating the unconditional field, the subject of this work, is negli-

gible compared to the prediction step.

We compare this algorithm to the existing Vecchia approximation and related algorithms in the two R packages GpGp and spNNGP. The

functions within the GpGp package are quick, accessible methods for conditional simulation of a spatial process. A short simulation study compar-

ing the cond_sim function to our algorithm shows that our algorithm produces a distinct speedup for all grid sizes and the number of observa-

tions considered in Table 3. For example, on a 512 � 512 grid with 400 observations, we saw that a single draw from the conditional distribution

takes 4.63 s while the GpGp function takes 52.85 s. Across all grids and observations considered, there is a median speed up of 3.4. It is important

to note that this draw includes the prediction to the full grid which, as we saw in Table 3, contributes significantly to the total draw time. Timing

results for the spNNGP are impressive, and we observe the conditional simulation for a 512 � 512 grid and 6,400 observations to be under 4 s.

Finally, we note an approximation to our approach that gives significant speedup, comparable to spNNGP. We have identified the prediction

step as the bottleneck and approximate exact linear algebra with covariances restricted to the regular grid. This allows for a fast multiplication

using the fast Fourier transform. We found this approximation is accurate, and for the 512 � 512 grid with 6,400 observations, we find a timing

of 1.5 s for setup and under 0.5 s to generate a realization.

4 | APPLICATION TO RIDGECREST, CA, EARTHQUAKE

Earthquakes are one of the most devastating natural disasters and are the motivation for this work. After any significant earthquake, economic

and fatality loss estimates are extremely important for local government officials to coordinate aid. Pinpointing the local variation in damage and

loss in a timely manner is important. Therefore, to help prepare local governments, first responders, or utility companies, near real-time estimates

for the intensity of shaking at specific locations are essential. Most of the seismic loss problems typically depend on the regional distribution of

intensity measures (IM), rather than intensity only at a single site.

Quantifying ground-motion over a spatially distributed region requires information on the correlation between the ground-motion intensities

at different sites during a single event (Loth & Baker, 2013). To this end, several correlation models have been developed to describe the decay in

TABLE 3 Timing results for the complete conditional simulation algorithm

m n CESetup OffSetup CE OffGrid predict total

128 400 0.02 0.01 0.02 0.00 0.24 0.61

128 1,600 0.01 0.03 0.02 0.00 0.93 1.46

128 6,400 0.02 0.14 0.02 0.00 3.67 4.79

256 400 0.07 0.01 0.07 0.00 0.95 1.53

256 1,600 0.07 0.03 0.07 0.00 3.70 4.86

256 6,400 0.07 0.12 0.07 0.00 14.52 17.97

512 400 0.39 0.01 0.53 0.00 3.73 5.40

512 1,600 0.49 0.06 0.40 0.00 14.76 18.67

512 6,400 0.44 0.12 0.48 0.01 58.65 71.13
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correlation from intensities at one site to another with increasing separation distance. However, for a large-scale application of ShakeMap, com-

puting the spatially correlated field using classical spatial methods is generally memory intensive and computationally expensive. Therefore, it is

necessary to improve the speed and accuracy of simulating IMs across an area affected by an earthquake.

To demonstrate local Kriging with observed shaking data, the algorithm is implemented using IMs observed during the 2019 Ridgecrest, CA

earthquake. Here, the Ridgecrest earthquake is considered for the higher availability of station data. Observed peak ground acceleration (PGA) is

normalized based on the ShakeMap Manual (Worden et al. 2018, 2020). In total, 637 observed values for PGA from 633 stations are used. For

stations where there are multiple recordings of PGA, the mean across the observed values is taken resulting in 633 total observed values for the

event. In order for the local Kriging to be fully implemented in this example, several updates to the simulation grid had to be made. The resolution

of the grid was increased fourfold, and any stations that still remained in the same box after increasing the resolution were averaged over the

same grid box resulting in a single observation per grid box. The final observation count was 623, and the final prediction grid has 275,394 loca-

tions. The observations are distributed throughout southern California as seen by the white circles in Figure 4. The left map in Figure 4 shows the

final mean estimate across an ensemble of 50 realizations of the field, and the right map shows the estimated standard error of the realizations.

The standard error is lowest near the observation values and increases as the distance to observations increases, as expected.

Timing of this algorithm was done on a MacBook Pro with 2.6 GHz 6-Core Intel Core i7 with 16GB of memory. Because of the increased res-

olution of the simulation grid, setting up the circulant matrix for simulation took a majority of the simulation time—approximately 42 s. However,

within each run of the simulation, the unconditional simulation step took a median value of 28.6 s, while the off-grid prediction step only took .03

s. Finally, the prediction to the grid took approximately 6 s. Thus, it is clear that for larger grids where an increased resolution for the simulation

grid is needed, the time for the circulant embedding setup may increase substantially. However, the off-grid prediction step remains an extremely

efficient calculation due to the use of sparse linear algebra.

5 | DISCUSSION

We have established an approximate method for conditional simulation based on local Kriging that is accurate for data and conditional variance

analysis and also fast enough to fit into an interactive data analysis session. A serial implementation is straightforward and easily incorporated into

existing R packages for spatial data analysis. Moreover, faster prediction methods, including Vecchia-type approximations, can significantly

speedup these computations. Based on the numerical results and timing, it is recommended that a fourth-order neighbourhood be used for local

Kriging for both an exponential and Matérn with ν¼1:5. Additionally, while both methods provide relative errors compared to exact Kriging that

are within 1%, it is recommended that the local Kriging method be used. Sparse matrix methods provide significant speedup for the local Kriging

method, and it is suggested that this be used over previous methods for generating ensemble members. A significant portion of time for the entire

conditional simulation algorithm is dedicated to grid prediction. However, the methods developed here address reducing time for the uncondi-

tional simulation and prediction to the off-grid points, which was successful. Future work could focus on implementing fast grid-prediction

methods to further improve the conditional simulation. For example, covariance functions such as the Wendland family have compact support

that can be exploited for faster prediction. Some other approaches are to use fixed rank Kriging type predictions or develop approximations to

the large covariance matrices needed for prediction using hierarchical matrix decompositions.

F IGURE 4 The mean field (left) across an ensemble of 50 for the Ridgecrest, CA earthquake using an order neighbourhood of 3. The standard

error (right) shows lower error around observed values and increased error as distance from an observation increases
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Future work could be to implement this method in three dimensions for use in atmospheric or subsurface modelling. A second area of further

research is to extend this analysis to an anisotropic covariance function as CE can be used for anisotropic simulation. In particular, anisotropic pro-

cesses could improve estimation where earthquake wave propagation is not uniform.
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