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Abstract

We prove the existence of an equilibrium in a model with transaction costs and price

impact where two agents are incentivized to trade towards a target. The two types of

frictions – price impact and transaction costs – lead the agents to two distinct changes in

their optimal investment approach: price impact causes agents to continuously trade in

smaller amounts, while transaction costs cause the agents to cease trading before the end

of the trading period. As the agents lose wealth because of transaction costs, the exchange

makes a profit. We prove the existence of a strictly positive optimal transaction cost from

the exchange’s perspective.
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1 Introduction

We study a financial equilibrium model with frictions stemming from both transaction

costs and price impact. Two agents are incentivized to trade towards a targeted number

of shares throughout the trading period. In equilibrium, the agents seek to maximize their

expected wealth minus a penalty for deviating from their targets. Their wealth is further

reduced by transaction costs and is affected by the perceived price impact on the stock

price from their trades.

Incomplete equilibrium is notoriously difficult to study. When the incompleteness stems

from frictions, this difficulty is exacerbated. This work proposes a tractable model for a

financial equilibrium with two simultaneous frictions. We answer two questions:

(1) How do transaction costs and price impact affect prices and strategies in equilibrium?

(2) What is the optimal level of transaction costs?

The main contribution of this work is to show that the effect of transaction costs in

equilibrium is distinct from that of price impact. Price impact affects the equilibrium

stock price and depresses the rate of trade, whereas transaction costs cause the agents to

cease trading early in the trading period. We also prove the existence of a strictly positive

optimal level of transaction costs, where optimality is determined from the perspective of

the market’s exchange. The exchange collects the transaction fees as the agents trade.

The two frictions that we focus on are transaction costs and price impact. When

studied individually, transaction cost equilibrium models often resort to simplifications in

order to draw conclusions. Our model shares this approach, as it is simple enough to

remain tractable while complex enough to capture differing effects of our two frictions.

Weston [27] proves the existence of a transaction cost equilibrium in a tractable model

with deterministic equilibrium annuity prices. Continuum-of-agent models, where market

clearing is averaged over infinitely many agents, are studied in Vayanos and Vila [25],

Vayanos [23], Huang [17], and Dávila [12]. Herdegen and Muhle-Karbe [16] study equi-

librium with transaction costs where clearing holds approximately, up to a leading order.

For proportional transaction costs, Gonon et. al. [14] study equilibrium with an ergodic

objective. Lo et. al. [20] and Buss et. al. [8] study the numerics behind transaction cost

equilibria without establishing the existence of an equilibrium. In contrast, we prove the

existence of an equilibrium with proportional transaction costs (and price impact) in a

2



standard setting with two agents, market clearing, and consumption at a terminal time.

Price impact and optimal liquidation models for a single agent take the price impact

form as given and allow agents to consider how the size and timing of their trades will

impact the traded asset price and, hence, future wealth. Our equilibrium model endoge-

nizes price impact, which is realized in the stock’s drift in the form proposed in Cuoco and

Cvitanić [11]. We incorporate price impact in our model by modeling it through perceived

off-equilibrium price paths. Perceived off-equilibrium paths describe how prices react to

trading strategies even though a given trading strategy may be suboptimal. The optimal

trading strategy determines the on-equilibrium price path. Both agents’ on-equilibrium

price dynamics must coincide with the equilibrium stock price. In this way, price impact

affects equilibrium prices, even though it is only modeled through each individual agent’s

perceived off-equilibrium price paths.

Other models have endogenized price impact in an equilibrium setting using various

approaches. Kyle [19] uses a game theoretic framework, where the market maker attempts

to filter out private information from the aggregate trades of noise traders and an informed

trader. Vayanos [24] and Sannikov and Skrzypacz [21] use private information to endogenize

price impact. Choi et. al. [10] endogenize price impact by allowing perceived off-equilibrium

price paths to vary in a Cuoco and Cvitanić [11]-sense while also allowing their agents’

trading targets to be private.

Our modeling set-up is most similar to Choi et. al. [10], who study targeted trading in

Nash equilibria with price impact. We introduce transaction costs into a simple form of

their setting in order to compare the effects of both frictions (price impact and transaction

costs) in equilibrium. Our model shares similarities with others in terms of single-agent

models and equilibrium settings. Linear-quadratic models with trading targets are stud-

ied in several works, including Bank et. al. [4], Sannikov and Skrzypacz [21], and Voß [26].

Gonon et. al. [14] use linear-quadratic controls and allow for proportional transaction costs,

rather than a quadratic approximation to transaction costs, as in Brunnermeier and Ped-

ersen [7], Gârleanu and Pedersen [13], and Bouchard et. al. [5].

Similar to the two-agent settings of Weston [27], Herdegen and Muhle-Karbe [16], and

Gonon et. al. [14], our two agents share a filtration, which reveals each of their trading

targets to the other agent. This modeling set-up leads to a fully-revealing equilibrium

since the agents’ aggregate trading target is revealed at the initial time by the initial
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equilibrium stock price. Hence, each agent can infer the other agents’ target.

Every transaction fee paid by the agents is income for the market’s exchange. Higher

transaction costs generate more income for the exchange for every share traded, but lower

transaction costs induce the agents to trade a higher volume of shares. Consequently, we

can prove that there exists a strictly positive level of transaction costs that maximizes

the exchange’s expected profit. Optimal transaction costs have been of interest starting

most notably with the introduction of the Tobin tax in Tobin [22]. Previous equilibrium

approaches consider optimality from a welfare perspective. The continuum of agents in

Dávila [12] differ in their beliefs about the dividend’s distribution. The agents’ belief dif-

ference versus the central planner’s choice of distribution when calculating welfare leads to

a strictly positive optimal transaction tax. In Weston [27], the welfare decreases as trans-

action costs increase, leading to zero as the welfare optimizing transaction cost parameter.

In our model, the agents are identical in their beliefs and differ only in their trading targets.

Nonetheless, we prove the existence of a strictly positive optimal transaction cost from the

exchange’s perspective.

The paper is organized as follows. Section 2 describes our model inputs. Section 3

presents our main result, Theorem 3.3, which establishes the existence of a price impact

equilibrium with transaction costs. The choice of an optimal transaction cost from the

perspective of the exchange is presented in Section 4. The proofs are contained in Section 5.

2 The model

Let T > 0 be a fixed time horizon, which we think of as one trading day in length. We

work in a continuous-time setting and let B = {Bt}t∈[0,T ] be a Brownian motion on a

probability space (Ω,F ,P). The market consists of two traded securities: a bank account

and a stock. The bank account is a financial asset in zero-net supply with a constant

zero interest rate. The stock is in constant positive net supply with the supply denoted

by n > 0. Since the time horizon is thought to be small, the stock does not pay any

dividends over the period [0, T ].2 Instead, the stock has an exogenous volatility denoted

by σ. Such models are common in the equilibrium literature; see, for example, Chapter

2Even in the case of a longer time horizon, Hartzmark and Solomon [15], Boudoukh et. al. [6], and Atmaz and
Basak [3] make the case that the non-dividend paying stocks are prevalent in the stock market and potentially
play a prominent role in longer-time horizon asset pricing models.
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4 of Karatzas and Shreve [18]. The volatility is progressively measurable with respect to

{σ(Bu : 0 ≤ u ≤ t)}t∈[0,T ] and E
∫ T

0
σ2
udu <∞. We assume that all prices are denominated

in a single consumption good.

Two investors, i = 1, 2, trade in the market. They each seek to maximize expected

wealth yet are subjected to inventory penalties throughout the trading period. Their wealth

is further penalized by transaction costs, which are proportional to the rate of trade at the

rate λ > 0. Their wealth is indirectly penalized by perceived price impact from trades.

For every share purchased, the agents perceive that the stock’s drift decreases linearly.

Each agent i has a target number of shares ai she wishes to acquire (or sell off) through-

out the trading period. The random variables a1 and a2 are assumed to satisfy E[a2
i ] <∞

and be independent of the Brownian motion B. The filtration F = {Ft}t∈[0,T ] is given by

Ft := σ (a1, a2, Bu : u ∈ [0, t]) , t ∈ [0, T ].

All market participants have access to the same filtration. All processes are adapted to F.

A trading strategy θ = {θt}t∈[0,T ] denotes the number of shares held in stock. We say

that θ is admissible if it is adapted to F, càdlàg, of finite variation on [0, T ] P-a.s.,3 and

satisfies E
∫ T

0
(σtθt)

2
dt <∞. We write A to denote the collection of admissible strategies.

Agent i is endowed at the beginning of the trading period with n/2 shares of stock. We

normalize the shares in the bank account to zero. We allow for θ0 to differ from n/2, as the

agents may choose to trade a lump sum immediately. In the absence of transaction costs

or the penalty term given in (2.3) below, the agents’ allocations would be Pareto optimal.

However, the presence of frictions and penalties motivates the agents to deviate from their

initial positions.

Since θ ∈ A is of finite variation, we can decompose θ into

θt =
n

2
+ θ↑t − θ

↓
t , t ∈ [0, T ], (2.1)

where θ↑, θ↓ are adapted to F, càdlàg, nondecreasing, and

{t ∈ [0, T ] : dθ↑t > 0} ∩ {t ∈ [0, T ] : dθ↓t > 0} = ∅. (2.2)

3We restrict strategies to those with finite variation since strategies with infinite first-order variation would
result in infinite transaction costs.
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A change in trading position is possible at time 0, and we allow for θ↑0 > 0 or θ↓0 > 0 as

long as (2.2) holds.

At the close of the trading period, agents consume their acquired wealth. The agents

are subjected through their optimization problems to inventory penalties throughout the

trading period. For i ∈ {1, 2} and a given θ ∈ A, the penalty term, or loss term, for agent

i is measured by

Lθi,T :=
1

2

∫ T

0

κ(t)
(
γ(t)

(
ai −

n

2

)
−
(
θt −

n

2

))2

dt. (2.3)

The function κ : (0, T ) → (0,∞) describes the intensity of the penalty, while γ : [0, T ] →

[0, 1] describes the desired intraday trading target trajectory. Both agents share the same

deterministic functions κ and γ. We assume that γ is càdlàg, nonnegative, bounded in

absolute value by one, and nondecreasing. Our main example is time-weighted average

price (TWAP), where the intraday trajectory function is γTWAP(t) := t/T . We assume

that κ is measurable and
∫ T

0
κ(t)dt is finite. This penalty term serves to motivate agent i

to trade towards the target ai. Whereas κ is a weighting function, γ describes how quickly

throughout the trading period the agent is expected to move from the initial n/2 shares

towards ai shares at the period’s end.

The agents perceive a price impact as the result of their trades. For i = 1, 2 and

a trading strategy θ ∈ A, we model this impact via the perceived off-equilibrium stock

price’s drift by

dSθi,t = κ(t)
(
c0(t, a1 + a2)− c1θt + γ(t)c2

(
ai −

n

2

))
dt+ σt dBt, S0 ∈ F0. (2.4)

The function c0 and constants c1, c2 will be determined in equilibrium and are the same

for both agents. The constant c1 turns out to be a free parameter that determines the

level of price impact in the market. The c1 = 0 case corresponds to an equilibrium without

price impact, where the agents are price-takers.

For fixed constants c0, c1, and c2, the perceived stock price is determined from a

given traded strategy. In equilibrium, we will require each agent’s optimal perceived stock

price to be consistent with the equilibrium stock price. The perceived price varies with

the trading strategy, and so perceived off-equilibrium prices are not forced to agree with

the equilibrium stock price or another agent’s perceptions. Following the work of Choi
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et. al. [10] without transaction costs, we work with perceived off-equilibrium stock prices

whose martingale term
∫
σdB and initial value S0 are independent of θ and i. In particular,

this choice implies that the perceived initial stock prices always agree, but the perceived

terminal stock prices may not agree.

Price impact in (2.4) is realized through the drift of the stock as in Cuoco and Cvi-

tanić [11]. Larger values for c1 result in more price impact because the more an agent

buys, the more she drives her perceived future prices down. While traditional price impact

models, such as Almgren and Chriss [1], affect the stock price directly, our version of price

impact affects the future returns of the stock by depressing them when a trader seeks a

larger market share.

For agent i ∈ {1, 2} and a trading strategy θ ∈ A, agent i’s perceived wealth process is

given by

Xθ
i,t =

n

2
S0 +

∫ t

0

θudS
θ
iu − λ

(
θ↑t + θ↓t

)
, t ∈ [0, T ]. (2.5)

We recall that the decomposition of θ in (2.1) allows for θ↑0 and θ↓0 to differ from zero.

Both frictions – price impact and transaction costs – are at play in the perceived wealth

dynamics. Agent i’s objective is

E
[
Xθ
i,T − Lθi,T | F0

]
−→ max

over θ ∈ A, where Lθi,T is defined in (2.3) and Xθ
i,T in (2.5).

3 Equilibrium

In an equilibrium, the stock price is determined so that markets clear when both agents

invest optimally. The equilibrium stock price must agree with both agents’ perceived prices

when the optimal strategies are applied.

Definition 3.1. Let λ > 0 be a given transaction cost level. Trading strategies θ1, θ2 ∈ A,

a price process Ŝ = {Ŝt}t∈[0,T ], and price impact coefficients c0, c1, c2 form a price impact

equilibrium if

(a) Strategies are optimal: For i = 1, 2, we have that

E
[
Xθi
i,T − L

θi
i,T | F0

]
= sup
θ∈A

E
[
Xθ
i,T − Lθi,T | F0

]
, (3.1)
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where Lθi,T is defined in (2.3), Xθ
i,T in (2.5), and the perceived off-equilibrium price

impact stock dynamics are given in (2.4) with coefficients c0, c1, and c2.

(b) Markets clear: We have θ1,t + θ2,t = n for all t ∈ [0, T ].

(c) Prices are consistent: The equilibrium stock price process Ŝ is an Itô process, and

for t ∈ {u ∈ [0, T ] : dθ↑1,u + dθ↓1,u > 0}, we have that

Sθ11,t = Sθ22,t = Ŝt.

The price impact stock dynamics of Sθ11 and Sθ22 are given in (2.4) with coefficients

c0, c1, and c2.

Even though off-equilibrium, the agents perceive a price impact from their trades,

the on-equilibrium stock price must agree with the agents’ perceived prices when their

optimal strategies are applied. Definition 3.1(c) requires the perceived prices to agree with

the realized equilibrium price when trade occurs. (Since there are only two agents in the

model, trade occurs if and only if agent 1 trades.) Therefore, in equilibrium, the two agents

may have different perceived prices at times when they do not trade. This requirement

on perceived prices in equilibrium is similar to employing shadow prices in equilibrium

since an equilibrium stock price can only be uniquely identified when trade occurs; see

Weston [27].

Market clearing in Definition 3.1(b) requires clearing of the stock market, however

Walras’ Law holds in our model in that the other markets (bank account and real goods)

clear as well. For a given strategy θ ∈ A and equilibrium stock price Ŝ, we define the

realized wealth in equilibrium through its self-financing condition (see (2.5)) by

X̂θ
t :=

n

2
Ŝ0 +

∫ t

0

θudŜu − λ
(
θ↑t + θ↓t

)
, t ∈ [0, T ].

We define the corresponding holdings in the bank account by

θ
(0)
t := X̂θ

t − θtŜt, t ∈ [0, T ]. (3.2)

We recall that the interest rate has been taken to be zero, since consumption only occurs

at one point in time.

Lemma 3.2 presents a version of Walras’ Law applied to a price impact equilibrium
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with transaction costs. Its proof is presented in Section 5. Lemma 3.2 shows that the

bank account provides the mechanism by which transaction costs exit the economy. The

transaction costs paid in equation (3.3) below go to the exchange.

Lemma 3.2. For a given transaction cost λ > 0, let a price impact equilibrium satisfying

Definition 3.1 be given with optimal stock holdings θ1, θ2 and equilibrium stock price Ŝ.

For i = 1, 2, we let θ
(0)
i,t correspond to the equilibrium bank account holdings at t of agent i

with stock market strategy θi, as in (3.2). Then the bank clears in the sense that

θ
(0)
1,t + θ

(0)
2,t = −λ

(
θ↑1,t + θ↓1,t + θ↑2,t + θ↓2,t

)
, t ∈ [0, T ]. (3.3)

To begin constructing our equilibrium, for each i ∈ {1, 2}, we let

aΣ := a1 + a2 and Ai := ai −
1

2
aΣ.

The random variables Ai describe the deviation of the trading targets ai from the aggregate

target aΣ. We note that A1 +A2 = 0.

The presence of transaction costs causes the agents to stop trading before the end of

the trading period. To this end, we define the last trading time τ by

τ := inf

{
t ∈ [0, T ] : |A1|

1 + 2c1
1 + c1

∫ T

t

κ(u)
(
γ(u)− γ(t)

)
du ≤ λ

}
. (3.4)

The time τ is a random variable valued in [0, T ). We provide the motivation and context

for τ ’s definition in Section 5 below. We also define the random variable χ by

χ :=
|A1|(1 + 2c1)

1 + c1

∫ T

0

κ(u)γ(u)du. (3.5)

The magnitude of χ will determine if trade occurs in the model or if the agents are deterred

from trading by prohibitively high transaction costs.

The following theorem is our main result. The proof of Theorem 3.3 can be found in

Section 5.

Theorem 3.3. Let λ > 0 and c1 > − 1
2 be given. Suppose that κ : (0, T ) → (0,∞)

is measurable with
∫ T

0
κ(u)du < ∞ and that γ : [0, T ] → [0, 1] is càdlàg, nonnegative,

bounded by one, and nondecreasing. There exists a price impact equilibrium where the
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price impact stock dynamics in (2.4) have coefficients c0 and c2 given in terms of c1 by

c0(t, aΣ) := c1n−
1 + 2c1

2(1 + c1)
γ(t)(aΣ − n) and c2 :=

c1
1 + c1

. (3.6)

For i = 1, 2, the equilibrium holdings θi ∈ A are given for t ∈ [0, T ] by

θi,t :=



n
2 + Ai

1+c1
γ(t), t < τ,

n
2 + 1∫ T

τ
κ(u)du

{∫ T
τ
κ(u)γ(u) Ai

1+c1
du− λsign(Ai)

1+2c1

}
, t ≥ τ and χ > λ,

n
2 , t ≥ τ and χ ≤ λ,

(3.7)

where τ is defined in (3.4), χ is defined in (3.5), and the sign function convention is

sign(0) = 0 so that

sign(x) :=


−1, x < 0,

0, x = 0,

1, x > 0.

We let Ŝ = {Ŝt}t∈[0,T ] be defined by

Ŝt :=

∫ t

0

σudBu +
1

2

∫ T

t

κ(u)
(
γ(u)(aΣ − n)− c1n

)
du. (3.8)

Then, Ŝ, θ1, θ2, c0, c1, and c2 form a price impact equilibrium.

For a given transaction cost parameter λ > 0, Theorem 3.3 shows that equilibrium is

not unique. Indeed, there exists a distinct equilibrium for every choice of price impact

coefficient c1 > − 1
2 . When both λ > 0 and c1 > − 1

2 are fixed, the equilibrium is unique

within the class of models that are fully revealing and have perceived stock price dynamics

as in (2.4). Uniqueness is not immediately obvious because there appears to be ambiguity

in the stock price (and perceived stock prices) when trade does not occur. The argument

follows from the requirement that the equilibrium stock price drift and the resulting last

trading time τ must be chosen symmetrically in both agents in order for their optimization

problems to be satisfied simultaneously.

Remark 3.1 (About assumptions). Our model is simple enough to be tractable but com-

plex enough to say something nontrivial. To strike this balance, we impose a number

of assumptions, some of which are needed for Theorem 3.3, while others are merely con-
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venient. One of our model’s most restrictive assumptions is to constrain the number of

agents to two. This is not an assumption of convenience, nor is it isolated to our model.

Indeed, all continuous time equilibria with (proportional) transaction costs either consist

of 2-agent economies, continuum-of-agent economies, or do not prove an existence result.

In our model, with c1 6= 0 and λ > 0, there is no equilibrium with three or more agents

when the perceived stock price’s drift reacts linearly to the trading strategy. With c1 = 0

and λ > 0, it is possible to include a third agent into the model, but four or more agents

are not possible in equilibrium.4

The initial holdings of the agents are identical, which is not strictly necessary. This

assumption can be relaxed to some extent, but difficulty arises because some initial hold-

ing configurations may make it impossible for the agents’ optimization problems to be

satisfied due to an initial jump in holdings. The problematic configurations are difficult to

characterize in terms of model inputs.

We also assume that a1 and a2 are independent of the Brownian motion B. This

assumption is used to prove admissibility of the optimal trading strategies but could be

relaxed at the expense of a lengthier proof.

3.1 Effects of frictions in equilibrium

Both transaction costs and price impact affect equilibrium, and each friction has its own

distinct modeling characteristics and equilibrium effects. Both frictions penalize the agents

through their wealth reduction. Transaction costs do so by directly subtracting transaction

fees from wealth, while price impact does so indirectly by depressing the stock’s drift with

each increase in the number of shares held.

From a modeling perspective, agents are held accountable for transaction costs in equi-

librium through market clearing, and their wealth decreases as a result. Price impact fric-

tions appear only as perceived changes in perceived off-equilibrium asset prices and wealth

in the individual optimization problems. Price impact is not incorporated explicitly into

the market clearing condition, but the perceived prices must align with the realized prices

in equilibrium by Definition 3.1(c).

Equilibrium effects of the two frictions are similar in that more frictions lead to less

trade. However, each friction has its own mechanism by which it impacts equilibrium

4We would like to thank Jetlir Duraj for discussions on this issue.
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outcomes. First, we consider the effects of price impact, and we suppose that the level of

transaction costs is fixed. Higher (and positive) levels of the price impact coefficient c1

cause the agents to trade less, while also causing a linear decrease in the equilibrium stock

price. The decrease in the perceived stock prices transfers over to the realized equilibrium

stock price Ŝ in (3.8). The case when c1 = 0 corresponds to a price-taking equilibrium, in

which the agents’ perceived stock dynamics are not impacted by trade.

The equilibrium effects from transaction costs are perhaps more subtle. At trading

times, the equilibrium trading strategies are unaffected by transaction costs. However,

transaction costs determine how long agents are willing to trade by affecting τ in (3.4).

Larger values of λ produce smaller values of τ , meaning that agents are not willing to

continue trading if the penalty incurred by transactions costs is sufficiently large. This be-

havior contrasts equilibrium results with quadratic penalties, such as Bouchard et. al. [5],

which exhibit a decrease in trade due to penalties rather than stopping trade. Quadratic

penalties are often viewed as a (more) mathematically tractable approximation to (pro-

portional) transaction costs. Yet the stark qualitative differences shown in Theorem 3.3

make quadratic penalties a poor substitute for transaction costs in equilibrium.

Moreover, the on-equilibrium stock price Ŝ in (3.8) is unaffected by transaction costs.

The apparent lack of an effect for Ŝ occurs because the on-equilibrium stock price can only

be uniquely determined when trade occurs. When trade does not occur, as is the case

at the end of the trading period under transaction costs, Ŝ is consistent with equilibrium

in that the agents will still agree not to trade using the price Ŝ. See Dávila [12] and

Weston [27] for a similar phenomenon in equilibrium models with transaction costs.

4 Optimal transaction cost

The agents pay transaction costs at a rate λ > 0 proportional to the number of shares

traded. As the agents lose the wealth paid out in transaction costs, an exchange collects

the fees. (See (3.3).) Higher values of λ mean that the exchange will receive more fees with

every share traded. However, higher values of λ cause the agents to stop trading sooner,

resulting in fewer shares traded. Given a distributional estimate on the trading targets

(i.e., priors), the exchange can find a strictly positive optimal transaction cost proportion

that maximizes its expected profit.

This application is intended to serve as an example for how an optimal transaction
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cost level can be calculated in equilibrium outside the spectrum of welfare optimization,

such as in Dávila [12] or Weston [27]. Though one may expect to see several exchanges

competing over their transaction cost levels for traders’ business, here we consider just

one exchange. A single exchange with two price-taking agents could be thought of as a

national healthcare insurance market with the government acting as the exchange and only

two insurance providers. Here, we assume that the exchange sets the transaction cost level

ex ante in the sense that the agents reveal their targets at the beginning of the trading

period.

In this section, we make the dependence on λ explicit in the notation by denoting

θi = θ
(λ)
i and τ = τ(λ). We fix a price impact coefficient c1 > − 1

2 . By Theorem 3.3,

an equilibrium exists, and the total profit received by the exchange in that equilibrium is

given by

Profit(λ) := λ

((
θ

(λ)
1,T

)↑
+
(
θ

(λ)
1,T

)↓
+
(
θ

(λ)
2,T

)↑
+
(
θ

(λ)
2,T

)↓)
.

By market clearing and the monotonicity of the optimal trading strategies, we see that

Profit(λ) = 2λ
∣∣∣θ(λ)

1,T −
n

2

∣∣∣ .
Since the exchange does not have advanced knowledge of the agents’ trading targets when

selecting the transaction cost level, it must estimate the targets by using its ex ante priors.

Proposition 4.1 asserts that a strictly positive optimal transaction cost level exists for

the exchange. The proof of Proposition 4.1 is presented in Section 5.

Proposition 4.1. Let c1 > − 1
2 be given. Suppose that κ : (0, T ) → (0,∞) is measurable

with
∫ T

0
κ(u)du < ∞ and that γ : [0, T ] → [0, 1] is càdlàg, nonnegative, bounded by one,

nondecreasing, and there exists t ∈ [0, T ) so that γ(t) > 0. Also, suppose that 0 < E
[
A2

1

]
<

∞. Then, there exists λ̂ > 0 so that

λ̂ ∈ Argmax {λ > 0 : E [Profit(λ)]} .

Example 4.2. To illustrate the exchange’s choice of optimal transaction cost level, we

consider an example with TWAP traders. We take T := 1, n := 100, κ(t) := 1, γ(t) :=

γTWAP(t) = t, and we allow the price impact coefficient c1 > − 1
2 to be arbitrary. For a

13



Figure 1: The exchange’s expected profit in equilibrium is plotted as a function of the transac-
tion cost λ > 0. Each plot corresponds to a different level of price impact, which is measured
by varying the perceived price impact parameter c1 > −1

2 .

given transaction cost level λ > 0, we have that

Profit(λ) = 2 max

(
0,

λA1

1 + c1
− λ

√
2λA1

(1 + c1)(1 + 2c1)

)
.

Each agent begins trading with 50 shares. The exchange estimates that agent 1 will seek

to obtain a targeted number of shares that is uniformly distributed on (50, 55), while it

believes that agent 2 will target exactly 50 shares. The exchange’s expected profit can be

computed by

E [Profit(λ)] =
8

5

∫ √2.5

0

λy2

1 + c1
max

0, y −

√
2λ(1 + c1)

1 + 2c1

 dy.

Figure 1 plots the exchange’s expected profit as a function of λ. The three plots vary

in the degree of the agents’ perceived price impact, which is measured by the parameter

c1. The case c1 = 0 corresponds to a price-taking equilibrium with no price impact. When

c1 > 0, the agents perceive a non-zero level of price impact.

In this example, the exchange’s choice of optimal transaction cost increases with increas-

ing price impact parameter c1. However, the exchange’s optimal expected profit decreases

as the perceived price impact increases.

14



For λ > 0 and c1 > − 1
2 , equilibrium stock drift is given by

drift
(
Ŝ
)
t

= 50c1 −A1t.

We recall in this example that the random variable A1 is uniformly distributed on (0, 2.5)

and is measurable at time zero with respect to the filtration generated by the equilibrium

stock price. The last trading time is given by

τ = max

(
0, 1−

√
2λ

A1
· 1 + c1

1 + 2c1

)
,

which yields an optimal strategy for agent 1 of θ1,t = 50 + A1

1+c1
(t ∧ τ). We note that the

last trading time and the optimal strategy depend on both λ and c1, while the drift of

the equilibrium stock price depends on c1 but not λ. We plot agent 1’s optimal trading

strategy as a function of time in Figure 2.

To get a ballpark estimate of an appropriate value for the price impact parameter c1, we

link our model to existing empirical studies in the literature. To the best of our knowledge,

empirical work to estimate the price impact in a Cuoco and Cvitanić [11] setting has not

been performed. However, Almgren et. al. [2] empirically estimate a nonlinear price impact

model, while Chen et. al. [9] linearize [2]’s estimates to empirically estimate price impact

in an Almgren and Chriss setting. We bridge the gap from our model to the estimates in

[9]. Almgren and Chriss models realize price impact in the current stock price based on

changes in the trading rate and holdings, whereas our Cuoco and Cvitanić setting realizes

price impact in future prices via the drift dependence on holdings. To relate these two

price impact models, we consider trading rates dθt = θ′ dt for a constant θ′ ∈ R. Applying

our perceived prices in (2.4) with c0 and c2 as in (3.6) to our example (with κ(t) = 1,

γ(t) = t, n = 100, T = 1), we have

Sθi,1 − Sθi,0 =

∫ 1

0

dSθi,u

= −
∫ 1

0

c1θu du+

∫ 1

0

(
100c1 +

1 + 2c1
1 + c1

Aiu− (ai − 50)u

)
du+M1 −M0

= −
∫ 1

0

c1θ
′u du+

∫ 1

0

(
50c1 +

1 + 2c1
1 + c1

Aiu− (ai − 50)u

)
du+M1 −M0

= −c1θ
′

2
+

∫ 1

0

(
50c1 +

1 + 2c1
1 + c1

Aiu− (ai − 50)u

)
du+M1 −M0.
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Figure 2: Agent 1’s optimal trading strategy (minus the initial holdings) is plotted as a function
of time. We fix A1 = 1 and λ = 0.1. Each plot corresponds to a different level of price impact,
which is measured by varying the perceived price impact parameter c1 > −1

2 .

We apply [9]’s estimate for the transient price impact coefficient, 0.002 = c1
2 . Therefore,

we estimate that c1 = 0.004 is a ballpark estimate for c1.

5 Proofs

We begin with a proof of Lemma 3.2, which provides a version of Walras’ Law in our

setting.

Proof of Lemma 3.2. Let λ > 0 be given, and let θ1, θ2, and Ŝ be parameters in a price

impact equilibrium satisfying Definition 3.1. The bank account clears for all times t ∈ [0, T ]

by

θ
(0)
1,t + θ

(0)
2,t

= 2 · n
2
Ŝ0 +

∫ t

0

(θ1,u + θ2,u) dŜu − λ
(
θ↑1,t + θ↓1,t + θ↑2,t + θ↓2,t

)
− (θ1,t + θ2,t) Ŝt

= nŜ0 +

∫ t

0

ndŜu − nŜt − λ
(
θ↑1,t + θ↓1,t + θ↑2,t + θ↓2,t

)
= −λ

(
θ↑1,t + θ↓1,t + θ↑2,t + θ↓2,t

)
.
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Next, we motivate the proof of our main result, Theorem 3.3. To solve for an equilib-

rium, each agent must solve a convex optimization problem subject to market consistency

requirements (namely, clearing conditions and agreement of the perceived prices at trade

times). For i = 1, 2, the first-order condition for agent i’s optimization problem requires

her to seek θ ∈ A so that

Y θi,t := E

[∫ T

t

κ(u)
(
c0(u, aΣ) +

n

2
+ γ(u)(1 + c2)

(
ai −

n

2

)
− (1 + 2c1)θu

)
du | Ft

]
(5.1)

satisfies −λ ≤ Y θi,t ≤ λ for all t ∈ [0, T ] and

∫ T

0

(
λ− Y θi,t

)
dθ↑t =

∫ T

0

(
λ+ Y θi,t

)
dθ↓t = 0. (5.2)

Using the clearing and consistency definitions from equilibrium in Definition 3.1 and

the form of the first-order condition in (5.1), we deduce the forms of c0 and c2 in (3.6).

Those calculations yield

Y θi,t = E

[∫ T

t

κ(u)(1 + 2c1)

(
n

2
+
γ(u)Ai
1 + c1

− θu
)
du | Ft

]
. (5.3)

By observing that Y θi,T = 0 and selecting a right-continuous version of the conditional

expectation in (5.1), the reflection condition (5.2) shows that the optimal strategy will not

allow for trade at T . Since the agents’ perceived prices are only required to agree with the

equilibrium stock price at trade times, the perceived prices may differ from the prescribed

dividend payment at T .

Coupling the terminal condition Y θi,T = 0 with the fact that

t 7→ n

2
+
γ(t)|Ai|
1 + c1

is increasing and F0-measurable for all t ∈ [0, T ] tells us that a solution θi ∈ A to the

first-order condition is to trade early in the period with

θi,· =
n

2
+
γ(·)Ai
1 + c1

17



then stop trade at time τ < T when the remaining integral
∫ T
τ
κ(1+2c1)

(
n
2 + γAi

1+c1
− θi,τ

)
becomes sufficiently small so that −λ ≤ Y θii,· ≤ λ will hold after τ . These observations

motivate the definition of τ in (3.4).

The first-order condition’s reflection condition (5.2) and bounds −λ ≤ Y θi,· ≤ λ ensure

that the agents will trade less (by stopping or pausing trade) with increases in λ. In our

model, the agents will stop trade strictly before T and will not resume again. However, any

model where agents face a linear-quadratic control problem with proportional transaction

costs will also see agents taking breaks from trade when trading optimally. In particular,

any potential generalization of this model or the ergodic control problem of Gonon et.

al. [14] will exhibit this behavior.

Proof of Theorem 3.3. We break the proof up into steps.

Step 1: Admissibility. We show for i = 1, 2, that θi defined in (3.7) is admissible; that is,

θi ∈ A. The function γ is càdlàg and nondecreasing, while Ai
1+c1

and τ are F0-measurable.

To verify integrability, we use the square-integrability of Ai and σ as well as their inde-

pendence to ensure that for some constant C > 0, we have

E
∫ T

0

(σuθi,u)
2
du ≤ C E

∫ T

0

σ2
u

(
1 +A2

i

)
du

= C E
[
1 +A2

i

]
E
∫ T

0

σ2
udu

<∞.

Thus, θi ∈ A.

Step 2: Optimality. Next, we check that θi ∈ A is optimal in (3.1). For an arbitrary θ ∈ A,

we define Vi(θ) by

Vi(θ) := E
[
Xθ
i,T − Lθi,T | F0

]
, (5.4)

where Lθi,T is defined in (2.3), Xθ
i,T in (2.5), and the perceived off-equilibrium price dynam-

ics in (2.4) have initial stock price and martingale parts given by the proposed equilibrium

stock price Ŝ in (3.8).

By the definition of Ŝ in (3.8), the martingale part of Ŝ, Sθ1 , and Sθ2 is given by the

martingale
∫ ·

0
σdB. Since θ ∈ A is adapted and E

∫ T
0

(σuθu)
2
du < ∞, we have that{∫ t

0
σuθudBu

}
t∈[0,T ]

is a square-integrable martingale with respect to F. We use this

property in the calculation of Vi(θ) below.
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For c0 and c2 given in (3.6) and the initial stock price given by Ŝ0 in (3.8), we have

Vi(θ) = E
[
Xθ
i,T − Lθi,T | F0

]
=
n

2
Ŝ0 − λE

[
θ↑T + θ↓T | F0

]
+ E

[∫ T

0

κ(t)

((
c0(t) + γ(t)c2

(
ai −

n

2

))
θt − c1θ2

t −
1

2

(
θt −

n

2
− γ(t)

(
ai −

n

2

))2
)
dt | F0

]

=
n

2
Ŝ0 − λE

[
θ↑T + θ↓T | F0

]
− 1

2
E

[∫ T

0

κ(t)
(n

2
+ γ(t)

(
ai −

n

2

))2

dt | F0

]

+ E

[∫ T

0

κ(t)

(((
c1 +

1

2

)
n+ γ(t)

(1 + 2c1)Ai
1 + c1

)
θt −

(
c1 +

1

2

)
θ2
t

)
dt | F0

]
.

The above calculation reveals that when optimizing over θ in (5.4), the second-order con-

dition requires that c1 > − 1
2 .

For notational convenience, we define

α(t) :=

(
c1 +

1

2

)
n+ γ(t)

(1 + 2c1)Ai
1 + c1

and β := c1 +
1

2
,

so that

Vi(θ) =
n

2
Ŝ0 − λE

[
θ↑T + θ↓T | F0

]
− 1

2

∫ T

0

κ(t)
(n

2
+ γ(t)

(
ai −

n

2

))2

dt+ E

[∫ T

0

κ(t)
(
α(t)θt − βθ2

t

)
dt | F0

]
.

In order to help us with computations, we define γ̃ for t ∈ [0, T ] by

γ̃t :=


γ(t), t < τ,∫ T
τ
κ(u)γ(u)du− λ(1+c1)

|A1(1+2c1)|∫ T
τ
κ(u)du

, t ≥ τ and χ > λ,

0, t ≥ τ and χ ≤ λ.

(5.5)

The definition of γ̃ in comparison with θi in (3.7) shows that θi,t = n
2 + Ai

1+c1
γ̃t. Since

A1 = 0 implies that χ = 0 and since τ < T , we have that γ̃ is well-defined in the t ≥ τ

and χ > λ case.

We now proceed to verify the first-order condition outlined above for our proposed
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optimal strategy θi. By algebraic manipulation and applying (5.7),

Vi(θ)− Vi(θi)

= E

[
λ
(
θ↑i,T + θ↓i,T − θ

↑
T − θ

↓
T

)
+

∫ T

0

κ(u) (α(u)(θu − θi,u)− β(θu − θi,u)(θu + θi,u)) du | F0

]

= E

[
λ
(
θ↑i,T + θ↓i,T − θ

↑
T − θ

↓
T

)
+

∫ T

0

κ(u)
(
(α(u)− 2βθi,u)(θu − θi,u)− β(θu − θi,u)2

)
du | F0

]

≤ E

[
λ
(
θ↑i,T + θ↓i,T − θ

↑
T − θ

↓
T

)
+

∫ T

0

κ(u)(α(u)− 2βθi,u)(θu − θi,u)du | F0

]

= E

[
λ
(
θ↑i,T + θ↓i,T − θ

↑
T − θ

↓
T

)
+
Ai(1 + 2c1)

1 + c1

∫ T

0

κ(u) (γ(u)− γ̃u) (θu − θi,u)du | F0

]
.

We define Yi = {Yi,t}t∈[0,T ] by

Yi,t = Ai
1 + 2c1
1 + c1

∫ T

t

κ(u) (γ(u)− γ̃u) du.

By the definition of τ in (3.4) and χ in (3.5), we have that Yi,t = λ signAi for t ≤ τ and

χ ≥ λ, while Yi,t ∈ signAi[0, λ] for all t ∈ [0, T ] and all values of χ. Since θi is constant

after τ , we see that ∫ T

0−
Yi,udθi,u = λ

(
θ↑i,T + θ↓i,T

)
. (5.6)

For any θ ∈ A,

Ai(1 + 2c1)

1 + c1

∫ T

0

κ(u) (γ(u)− γ̃u) (θu − θi,u) du− λ
(
θ↑T + θ↓T

)
=

∫ T

0−
Yi,ud (θ − θi)u−Yi,T (θT − θi,T ) +Yi,0

(n
2
− n

2

)
− λ

(
θ↑T + θ↓T

)
by integration by parts

=

∫ T

0−
Yi,ud (θ − θi)u − λ

(
θ↑T + θ↓T

)
since Yi,T = 0

=

∫ T

0−
Yi,udθu − λ

(
θ↑i,T + θ↓i,T

)
− λ

(
θ↑T + θ↓T

)
by (5.6)

=

∫ T

0−
(Yi,u − λ)︸ ︷︷ ︸
≤0

dθ↑u −
∫ T

0−
(λ+ Yi,u)︸ ︷︷ ︸
≥0

dθ↓u − λ
(
θ↑i,T + θ↓i,T

)

≤ −λ
(
θ↑i,T + θ↓i,T

)
. (5.7)
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Finally, we see that

Vi(θ)− Vi(θi)

≤ E
[
λ
(
θ↑i,T + θ↓i,T

)
− λ

(
θ↑i,T + θ↓i,T

)
| F0

]
by (5.7)

≤ 0.

Thus, θi is optimal for agent i.

Step 3: Markets clear. The stock market clears since for all t ∈ [0, T ], we have θ1,t + θ2,t =

n+ γ̃t
1+c1

(A1 +A2) = n.

Step 4: Equilibrium prices are consistent. We verify that for t ∈ {u ∈ [0, T ] : dθ↑1,u+dθ↓1,u >

0}, we have that

Sθ11,t = Sθ22,t = Ŝt. (5.8)

Since t ∈ {u ∈ [0, T ] : dθ↑1,u + dθ↓1,u > 0} ⊆ [0, τ ], it is sufficient to verify that (5.8) holds

for t ∈ [0, τ ].

We use the optimal trading strategy formula (3.7), the equilibrium price impact coeffi-

cient formulas (3.6), and the conjectured price impact drift formula (2.4) to calculate the

equilibrium drift. For i ∈ {1, 2} and t ∈ (0, τ), the drift of Sθii,t is given by

drift
(
Sθii,·

)
t

= κ(t)
(
c0(t, aΣ)− c1θi,t + γ(t)c2

(
ai −

n

2

))
= κ(t)

(
c1n

2
− 1

2
γ(t) (aΣ − n)

)
,

which agrees with the drift of Ŝ in (3.8). As per the conjectured price impact drift in (2.4),

the martingale components and initial values of Ŝ, Sθ1 , and Sθ2 do not depend on the choice

of i = 1, 2 or θ ∈ A. Thus, we conclude that (5.8) holds for all t ∈ [0, τ ], as desired.

Next, we prove Proposition 4.1, which establishes the existence of an optimal transac-

tion cost, λ̂ > 0.

Proof of Proposition 4.1. Theorem 3.3 establishes the existence of an equilibrium with

optimal trading strategies θ
(λ)
i ∈ A given in (3.7) for every λ > 0.

As in the proof of Theorem 3.3, we introduce the process γ̃ as a function of t ∈ [0, T ]
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and λ > 0 by

γ̃t(λ) :=


γ(t), t < τ(λ),∫ T
τ(λ)

κ(u)γ(u)du− λ(1+c1)

|A1(1+2c1)|∫ T
τ(λ)

κ(u)du
, t ≥ τ(λ) and χ > λ,

0, t ≥ τ(λ) and χ ≤ λ.

Here, χ is defined in (3.5), and we make γ̃’s dependence on λ explicit. For any λ > 0, we

use the definition of γ̃ above to deduce that

θ
(λ)
1,T −

n

2
= θ

(λ)
1,τ(λ) −

n

2
=

A1

1 + c1
γ̃τ(λ)(λ).

We first seek to show that λ 7→ γ̃τ(λ)(λ) is continuous, from which we will conclude that

λ 7→ Profit(λ) is continuous. On {A1 = 0}, χ = 0 so that χ < λ for all λ > 0, and thus,

λ 7→ γ̃τ(λ)(λ) is continuous in this case.

We let λ > 0 be given. On {A1 6= 0}, we consider 0 < λ ≤ λ1 < λ2. Then, τ(λ2) ≤

τ(λ1) ≤ τ(λ) < T . For notational simplicity, we define C := 1+c1
|A1|(1+2c1) and τ1 := τ(λ1),

τ2 := τ(λ2). We have that

λ1C =

∫ T

τ1

κ(u)
(
γ(u)− γ̃τ1(λ1)

)
du

=

∫ τ2

τ1

κ(u)
(
γ(u)− γ̃τ1(λ1)

)
du

+

∫ T

τ2

κ(u)
(
γ(u)− γ̃τ2(λ2)

)
du︸ ︷︷ ︸

=λ2C

+

∫ T

τ2

κ(u)
(
γ̃τ2(λ2)− γ̃τ1(λ1)

)
du

=

∫ τ1

τ2

κ(u)
(
γ̃τ1(λ1)− γ(u)

)
du+ λ2C +

(
γ̃τ2(λ2)− γ̃τ1(λ1)

)∫ T

τ2

κ(u)du.

Using that γ is nondecreasing, we see that γ̃τ2(λ2) ≤ γ(u) for all u ∈ (τ2, τ1). By rearrang-

ing terms, we arrive at

0 ≤
(
γ̃τ1(λ1)− γ̃τ2(λ2)

)∫ T

τ2

κ(u)du

= C(λ2 − λ1) +

∫ τ1

τ2

κ(u)
(
γ̃τ1(λ1)− γ(u)

)
du

≤ C(λ2 − λ1) +
(
γ̃τ1(λ1)− γ̃τ2(λ2)

)∫ τ1

τ2

κ(u)du.
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Therefore, on {A1 6= 0}, we have that

0 ≤ γ̃τ1(λ1)− γ̃τ2(λ2) ≤ C∫ T
τ1∨τ2 κ(u)du

(λ2 − λ1) ≤ C∫ T
τ(λ)

κ(u)du
(λ2 − λ1), (5.9)

from which we conclude that λ 7→ γ̃τ(λ)(λ) is continuous for λ > λ. Since λ > 0 is arbitrary,

we have that λ 7→ γ̃τ(λ)(λ) is continuous for λ > 0. Thus, λ 7→ θ
(λ)
1,T −

n
2 and λ 7→ Profit(λ)

are continuous for λ > 0. Since E[a2
i ] <∞, we also have that λ 7→ E[Profit(λ)] is continuous

for λ > 0.

Finally, we show that λ 7→ E[Profit(λ)] achieves a maximum for λ > 0. The assumption

that E[A2
1] > 0 and that there exists t ∈ [0, T ) for which γ(t) > 0 ensures that there exists

λ > 0 such that E[Profit(λ)] > 0. Since γ̃ is bounded by one, we have that

0 ≤ lim
λ↓0

E [Profit(λ)] ≤ lim
λ↓0

2λ E
[
|A1|

1 + c1

]
= 0.

We define the random variable λmax := 2|A1|
∫ T

0
κ(u)du. For λ ≥ λmax, we have that χ < λ,

where χ is defined in (3.5). In this case, trade does not occur, and
∣∣∣θ(λ)

1,τ(λ) −
n
2

∣∣∣ = 0. For

any λ > 0, we bound Profit(λ) by

Profit(λ) ≤ 2λ|A1|
1 + c1

γ(T )I{λ≤λmax}

≤ 2λmax|A1|
1 + c1

≤ A2
1 ·

4
∫ T

0
κ(u)du

1 + c1
.

Since E[A2
1] <∞, we apply the dominated convergence theorem to obtain that

lim
λ→∞

E[Profit(λ)] = 0.

Thus, λ 7→ E[Profit(λ)] achieves a maximum for λ > 0.
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