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Abstract

We prove the existence of an equilibrium in a model with transaction costs and price
impact where two agents are incentivized to trade towards a target. The two types of
frictions — price impact and transaction costs — lead the agents to two distinct changes in
their optimal investment approach: price impact causes agents to continuously trade in
smaller amounts, while transaction costs cause the agents to cease trading before the end
of the trading period. As the agents lose wealth because of transaction costs, the exchange
makes a profit. We prove the existence of a strictly positive optimal transaction cost from

the exchange’s perspective.
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1 Introduction

We study a financial equilibrium model with frictions stemming from both transaction
costs and price impact. Two agents are incentivized to trade towards a targeted number
of shares throughout the trading period. In equilibrium, the agents seek to maximize their
expected wealth minus a penalty for deviating from their targets. Their wealth is further
reduced by transaction costs and is affected by the perceived price impact on the stock
price from their trades.

Incomplete equilibrium is notoriously difficult to study. When the incompleteness stems
from frictions, this difficulty is exacerbated. This work proposes a tractable model for a

financial equilibrium with two simultaneous frictions. We answer two questions:
(1) How do transaction costs and price impact affect prices and strategies in equilibrium?
(2) What is the optimal level of transaction costs?

The main contribution of this work is to show that the effect of transaction costs in
equilibrium is distinct from that of price impact. Price impact affects the equilibrium
stock price and depresses the rate of trade, whereas transaction costs cause the agents to
cease trading early in the trading period. We also prove the existence of a strictly positive
optimal level of transaction costs, where optimality is determined from the perspective of
the market’s exchange. The exchange collects the transaction fees as the agents trade.
The two frictions that we focus on are transaction costs and price impact. When
studied individually, transaction cost equilibrium models often resort to simplifications in
order to draw conclusions. Our model shares this approach, as it is simple enough to
remain tractable while complex enough to capture differing effects of our two frictions.
Weston [27] proves the existence of a transaction cost equilibrium in a tractable model
with deterministic equilibrium annuity prices. Continuum-of-agent models, where market
clearing is averaged over infinitely many agents, are studied in Vayanos and Vila [25],
Vayanos [23], Huang [17], and Dévila [12]. Herdegen and Muhle-Karbe [16] study equi-
librium with transaction costs where clearing holds approximately, up to a leading order.
For proportional transaction costs, Gonon et.al. [14] study equilibrium with an ergodic
objective. Lo et.al. [20] and Buss et.al. [8] study the numerics behind transaction cost
equilibria without establishing the existence of an equilibrium. In contrast, we prove the

existence of an equilibrium with proportional transaction costs (and price impact) in a



standard setting with two agents, market clearing, and consumption at a terminal time.

Price impact and optimal liquidation models for a single agent take the price impact
form as given and allow agents to consider how the size and timing of their trades will
impact the traded asset price and, hence, future wealth. Our equilibrium model endoge-
nizes price impact, which is realized in the stock’s drift in the form proposed in Cuoco and
Cvitanié¢ [11]. We incorporate price impact in our model by modeling it through perceived
off-equilibrium price paths. Perceived off-equilibrium paths describe how prices react to
trading strategies even though a given trading strategy may be suboptimal. The optimal
trading strategy determines the on-equilibrium price path. Both agents’ on-equilibrium
price dynamics must coincide with the equilibrium stock price. In this way, price impact
affects equilibrium prices, even though it is only modeled through each individual agent’s
perceived off-equilibrium price paths.

Other models have endogenized price impact in an equilibrium setting using various
approaches. Kyle [19] uses a game theoretic framework, where the market maker attempts
to filter out private information from the aggregate trades of noise traders and an informed
trader. Vayanos [24] and Sannikov and Skrzypacz [21] use private information to endogenize
price impact. Choi et. al. [10] endogenize price impact by allowing perceived off-equilibrium
price paths to vary in a Cuoco and Cvitani¢ [11]-sense while also allowing their agents’
trading targets to be private.

Our modeling set-up is most similar to Choi et. al. [10], who study targeted trading in
Nash equilibria with price impact. We introduce transaction costs into a simple form of
their setting in order to compare the effects of both frictions (price impact and transaction
costs) in equilibrium. Our model shares similarities with others in terms of single-agent
models and equilibrium settings. Linear-quadratic models with trading targets are stud-
ied in several works, including Bank et. al. [4], Sannikov and Skrzypacz [21], and VoS8 [26].
Gonon et. al. [14] use linear-quadratic controls and allow for proportional transaction costs,
rather than a quadratic approximation to transaction costs, as in Brunnermeier and Ped-
ersen [7], Garleanu and Pedersen [13], and Bouchard et. al. [5].

Similar to the two-agent settings of Weston [27], Herdegen and Muhle-Karbe [16], and
Gonon et.al. [14], our two agents share a filtration, which reveals each of their trading
targets to the other agent. This modeling set-up leads to a fully-revealing equilibrium

since the agents’ aggregate trading target is revealed at the initial time by the initial



equilibrium stock price. Hence, each agent can infer the other agents’ target.

Every transaction fee paid by the agents is income for the market’s exchange. Higher
transaction costs generate more income for the exchange for every share traded, but lower
transaction costs induce the agents to trade a higher volume of shares. Consequently, we
can prove that there exists a strictly positive level of transaction costs that maximizes
the exchange’s expected profit. Optimal transaction costs have been of interest starting
most notably with the introduction of the Tobin tax in Tobin [22]. Previous equilibrium
approaches consider optimality from a welfare perspective. The continuum of agents in
Dévila [12] differ in their beliefs about the dividend’s distribution. The agents’ belief dif-
ference versus the central planner’s choice of distribution when calculating welfare leads to
a strictly positive optimal transaction tax. In Weston [27], the welfare decreases as trans-
action costs increase, leading to zero as the welfare optimizing transaction cost parameter.
In our model, the agents are identical in their beliefs and differ only in their trading targets.
Nonetheless, we prove the existence of a strictly positive optimal transaction cost from the
exchange’s perspective.

The paper is organized as follows. Section 2 describes our model inputs. Section 3
presents our main result, Theorem 3.3, which establishes the existence of a price impact
equilibrium with transaction costs. The choice of an optimal transaction cost from the

perspective of the exchange is presented in Section 4. The proofs are contained in Section 5.

2 The model

Let T > 0 be a fixed time horizon, which we think of as one trading day in length. We
work in a continuous-time setting and let B = {B;};c[o,r] be a Brownian motion on a
probability space (2, F,P). The market consists of two traded securities: a bank account
and a stock. The bank account is a financial asset in zero-net supply with a constant
zero interest rate. The stock is in constant positive net supply with the supply denoted
by n > 0. Since the time horizon is thought to be small, the stock does not pay any
dividends over the period [0,7].2 Instead, the stock has an exogenous volatility denoted

by o. Such models are common in the equilibrium literature; see, for example, Chapter

*Even in the case of a longer time horizon, Hartzmark and Solomon [15], Boudoukh et. al. [6], and Atmaz and
Basak [3] make the case that the non-dividend paying stocks are prevalent in the stock market and potentially
play a prominent role in longer-time horizon asset pricing models.



4 of Karatzas and Shreve [18]. The volatility is progressively measurable with respect to
{o(Bu: 0<u<t)}eq and EfOT o2du < oo. We assume that all prices are denominated
in a single consumption good.

Two investors, ¢ = 1,2, trade in the market. They each seek to maximize expected
wealth yet are subjected to inventory penalties throughout the trading period. Their wealth
is further penalized by transaction costs, which are proportional to the rate of trade at the
rate A > 0. Their wealth is indirectly penalized by perceived price impact from trades.
For every share purchased, the agents perceive that the stock’s drift decreases linearly.

Each agent ¢ has a target number of shares a; she wishes to acquire (or sell off) through-
out the trading period. The random variables a; and ay are assumed to satisfy E[a?] < oo

and be independent of the Brownian motion B. The filtration F = {F;},c[0,1) is given by
Fi:=o0(a,a2, By, : uwe(0,t]), tel0,T].

All market participants have access to the same filtration. All processes are adapted to F.

A trading strategy 0 = {0; }+c|o,7] denotes the number of shares held in stock. We say
that 6 is admissible if it is adapted to F, cadlag, of finite variation on [0, 7] P-a.s.,> and
satisfies E fOT (040,) dt < co. We write A to denote the collection of admissible strategies.
Agent i is endowed at the beginning of the trading period with n/2 shares of stock. We
normalize the shares in the bank account to zero. We allow for 6 to differ from n /2, as the
agents may choose to trade a lump sum immediately. In the absence of transaction costs
or the penalty term given in (2.3) below, the agents’ allocations would be Pareto optimal.
However, the presence of frictions and penalties motivates the agents to deviate from their
initial positions.

Since 6 € A is of finite variation, we can decompose 6 into

9, = g vol —0F, telo,T), (2.1)

where 0T, 8¢ are adapted to F, cadlag, nondecreasing, and

{t €10,T]:d6] >0}N{te[0,T]:do} >0} =0. (2.2)

3We restrict strategies to those with finite variation since strategies with infinite first-order variation would
result in infinite transaction costs.



A change in trading position is possible at time 0, and we allow for 93 >0 or 93 >0 as
long as (2.2) holds.

At the close of the trading period, agents consume their acquired wealth. The agents
are subjected through their optimization problems to inventory penalties throughout the
trading period. For ¢ € {1,2} and a given 6 € A, the penalty term, or loss term, for agent

1 is measured by

Ly = % /0 ) (3 (o = 2) ~ (0 - %))2 dt. (2.3)

The function & : (0,7) — (0,00) describes the intensity of the penalty, while v : [0,T] —
[0, 1] describes the desired intraday trading target trajectory. Both agents share the same
deterministic functions x and y. We assume that v is cadlag, nonnegative, bounded in
absolute value by one, and nondecreasing. Our main example is time-weighted average
price (TWAP), where the intraday trajectory function is yTWAP(¢) := ¢t/T. We assume
that x is measurable and fOT k(t)dt is finite. This penalty term serves to motivate agent i
to trade towards the target a;. Whereas & is a weighting function, « describes how quickly
throughout the trading period the agent is expected to move from the initial n/2 shares
towards a; shares at the period’s end.

The agents perceive a price impact as the result of their trades. For i = 1,2 and
a trading strategy 6 € A, we model this impact via the perceived off-equilibrium stock

price’s drift by
9 n
dS;, = k(t) (co(t, ay + az) — c10; + y(t)ca (ai — 5)) dt +osdB;, Sy € Fo. (2.4)

The function ¢y and constants c¢1, cs will be determined in equilibrium and are the same
for both agents. The constant c¢; turns out to be a free parameter that determines the
level of price impact in the market. The ¢; = 0 case corresponds to an equilibrium without
price impact, where the agents are price-takers.

For fixed constants cg, ¢, and ¢y, the perceived stock price is determined from a
given traded strategy. In equilibrium, we will require each agent’s optimal perceived stock
price to be consistent with the equilibrium stock price. The perceived price varies with
the trading strategy, and so perceived off-equilibrium prices are not forced to agree with

the equilibrium stock price or another agent’s perceptions. Following the work of Choi



et.al. [10] without transaction costs, we work with perceived off-equilibrium stock prices
whose martingale term [ odB and initial value Sy are independent of § and i. In particular,
this choice implies that the perceived initial stock prices always agree, but the perceived
terminal stock prices may not agree.

Price impact in (2.4) is realized through the drift of the stock as in Cuoco and Cvi-
tanié¢ [11]. Larger values for ¢; result in more price impact because the more an agent
buys, the more she drives her perceived future prices down. While traditional price impact
models, such as Almgren and Chriss [1], affect the stock price directly, our version of price
impact affects the future returns of the stock by depressing them when a trader seeks a
larger market share.

For agent 7 € {1,2} and a trading strategy 6 € A, agent ’s perceived wealth process is
given by

X0, = gso + /Ot 0,dS%, — \ (92 + 0#) . telo,T). (2.5)

We recall that the decomposition of @ in (2.1) allows for ) and 65 to differ from zero.
Both frictions — price impact and transaction costs — are at play in the perceived wealth

dynamics. Agent i’s objective is
E (X, — LY | Fo] — max

over 6 € A, where LY, is defined in (2.3) and X/ in (2.5).

3 Equilibrium

In an equilibrium, the stock price is determined so that markets clear when both agents
invest optimally. The equilibrium stock price must agree with both agents’ perceived prices

when the optimal strategies are applied.

Definition 3.1. Let A > 0 be a given transaction cost level. Trading strategies 01,6, € A,
a price process S = {§t}te[O,T], and price impact coefficients cg, ¢1, co form a price impact
equilibrium if

(a) Strategies are optimal: For i = 1,2, we have that

E (X0 — Ll | Fo] = supE (X0 — L | Fo], (3.1)



where Lf,T is defined in (2.3), XZ o in (2.5), and the perceived off-equilibrium price

impact stock dynamics are given in (2.4) with coefficients ¢y, ¢, and ca.
(b) Markets clear: We have 61, + 62, = n for all ¢t € [0,T).

(¢) Prices are consistent: The equilibrium stock price process S is an Ito process, and

for t € {u €[0,T]: d@{u + d@fu > 0}, we have that
Sf,lt = Sg,zt = §t-

The price impact stock dynamics of Sfl and .5'292 are given in (2.4) with coefficients

cp, €1, and cs.

Even though off-equilibrium, the agents perceive a price impact from their trades,
the on-equilibrium stock price must agree with the agents’ perceived prices when their
optimal strategies are applied. Definition 3.1(c) requires the perceived prices to agree with
the realized equilibrium price when trade occurs. (Since there are only two agents in the
model, trade occurs if and only if agent 1 trades.) Therefore, in equilibrium, the two agents
may have different perceived prices at times when they do not trade. This requirement
on perceived prices in equilibrium is similar to employing shadow prices in equilibrium
since an equilibrium stock price can only be uniquely identified when trade occurs; see
Weston [27].

Market clearing in Definition 3.1(b) requires clearing of the stock market, however
Walras’ Law holds in our model in that the other markets (bank account and real goods)
clear as well. For a given strategy 6 € A and equilibrium stock price S , we define the

realized wealth in equilibrium through its self-financing condition (see (2.5)) by
~ n -~ t ~
X! = 250 +/ 0.,dS, — X (92 + 9,%) . telo,T).
0
We define the corresponding holdings in the bank account by
0 .= X0 — 0,5, telo,T) (3.2)

We recall that the interest rate has been taken to be zero, since consumption only occurs
at one point in time.

Lemma 3.2 presents a version of Walras’ Law applied to a price impact equilibrium



with transaction costs. Its proof is presented in Section 5. Lemma 3.2 shows that the
bank account provides the mechanism by which transaction costs exit the economy. The

transaction costs paid in equation (3.3) below go to the exchange.

Lemma 3.2. For a given transaction cost A > 0, let a price impact equilibrium satisfying
Definition 3.1 be given with optimal stock holdings 81, 03 and equilibrium stock price S.
Fori=1,2, we let Hg?t) correspond to the equilibrium bank account holdings at t of agent i

with stock market strategy 0;, as in (3.2). Then the bank clears in the sense that
o0 + 08 = -x (o], + ol + o, +65,), telnT) (3.3)

To begin constructing our equilibrium, for each i € {1,2}, we let

1
as,:=a1 +a; and A; :=a; — 50@.

The random variables A; describe the deviation of the trading targets a; from the aggregate
target ay. We note that A; + A; = 0.
The presence of transaction costs causes the agents to stop trading before the end of

the trading period. To this end, we define the last trading time 7 by

T
- inf{t € (0,77 |A1\11++20611 /t () ((u) — (1) ) < /\}. (3.4)

The time 7 is a random variable valued in [0,T"). We provide the motivation and context

for 7’s definition in Section 5 below. We also define the random variable x by

C1 T
X = W/o K(u)y(u)du. (3.5)

The magnitude of x will determine if trade occurs in the model or if the agents are deterred
from trading by prohibitively high transaction costs.
The following theorem is our main result. The proof of Theorem 3.3 can be found in

Section 5.

Theorem 3.3. Let A > 0 and ¢; > —31 be given. Suppose that r : (0,T) — (0,00)

is measurable with fOT k(u)du < oo and that v : [0,T] — [0,1] is cadldag, nonnegative,

bounded by one, and nondecreasing. There exists a price impact equilibrium where the



price impact stock dynamics in (2.4) have coefficients co and co given in terms of ¢1 by

142
21+ c1) |

(t)(ag —n) and co:= 1 Jcrlcl' (3.6)

co(t,ax) = cin —

For i = 1,2, the equilibrium holdings 0; € A are given for t € [0,T] by

% + 1121 'y(t), t <,
— n T ; sign(A;
Oi = 5+ I N}u)du {fT K(u)y(u) 1121 du — Aliiz(c?)} , t>T1and x > A, (3.7)

t>71 and x < A,

(ST

where T is defined in (3.4), x is defined in (3.5), and the sign function convention is

sign(0) = 0 so that

We let S = {§t}t€[07T] be defined by

Sy = /Ot oudBy + ;/tT K(u) (7(u)(az —n)— cln) du. (3.8)

Then, S, 01, 02, co, c1, and co form a price impact equilibrium.

For a given transaction cost parameter A > 0, Theorem 3.3 shows that equilibrium is
not unique. Indeed, there exists a distinct equilibrium for every choice of price impact
coefficient ¢; > —%. When both A > 0 and ¢; > —% are fixed, the equilibrium is unique
within the class of models that are fully revealing and have perceived stock price dynamics
as in (2.4). Uniqueness is not immediately obvious because there appears to be ambiguity
in the stock price (and perceived stock prices) when trade does not occur. The argument
follows from the requirement that the equilibrium stock price drift and the resulting last
trading time 7 must be chosen symmetrically in both agents in order for their optimization

problems to be satisfied simultaneously.

Remark 3.1 (About assumptions). Our model is simple enough to be tractable but com-
plex enough to say something nontrivial. To strike this balance, we impose a number

of assumptions, some of which are needed for Theorem 3.3, while others are merely con-

10



venient. One of our model’s most restrictive assumptions is to constrain the number of
agents to two. This is not an assumption of convenience, nor is it isolated to our model.
Indeed, all continuous time equilibria with (proportional) transaction costs either consist
of 2-agent economies, continuum-of-agent economies, or do not prove an existence result.
In our model, with ¢; # 0 and A > 0, there is no equilibrium with three or more agents
when the perceived stock price’s drift reacts linearly to the trading strategy. With ¢; =0
and A > 0, it is possible to include a third agent into the model, but four or more agents
are not possible in equilibrium.*

The initial holdings of the agents are identical, which is not strictly necessary. This
assumption can be relaxed to some extent, but difficulty arises because some initial hold-
ing configurations may make it impossible for the agents’ optimization problems to be
satisfied due to an initial jump in holdings. The problematic configurations are difficult to
characterize in terms of model inputs.

We also assume that a; and as are independent of the Brownian motion B. This
assumption is used to prove admissibility of the optimal trading strategies but could be

relaxed at the expense of a lengthier proof.

3.1 Effects of frictions in equilibrium

Both transaction costs and price impact affect equilibrium, and each friction has its own
distinct modeling characteristics and equilibrium effects. Both frictions penalize the agents
through their wealth reduction. Transaction costs do so by directly subtracting transaction
fees from wealth, while price impact does so indirectly by depressing the stock’s drift with
each increase in the number of shares held.

From a modeling perspective, agents are held accountable for transaction costs in equi-
librium through market clearing, and their wealth decreases as a result. Price impact fric-
tions appear only as perceived changes in perceived off-equilibrium asset prices and wealth
in the individual optimization problems. Price impact is not incorporated explicitly into
the market clearing condition, but the perceived prices must align with the realized prices
in equilibrium by Definition 3.1(c).

Equilibrium effects of the two frictions are similar in that more frictions lead to less

trade. However, each friction has its own mechanism by which it impacts equilibrium

“We would like to thank Jetlir Duraj for discussions on this issue.
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outcomes. First, we consider the effects of price impact, and we suppose that the level of
transaction costs is fixed. Higher (and positive) levels of the price impact coefficient ¢,
cause the agents to trade less, while also causing a linear decrease in the equilibrium stock
price. The decrease in the perceived stock prices transfers over to the realized equilibrium
stock price S in (3.8). The case when ¢; = 0 corresponds to a price-taking equilibrium, in
which the agents’ perceived stock dynamics are not impacted by trade.

The equilibrium effects from transaction costs are perhaps more subtle. At trading
times, the equilibrium trading strategies are unaffected by transaction costs. However,
transaction costs determine how long agents are willing to trade by affecting 7 in (3.4).
Larger values of A produce smaller values of 7, meaning that agents are not willing to
continue trading if the penalty incurred by transactions costs is sufficiently large. This be-
havior contrasts equilibrium results with quadratic penalties, such as Bouchard et. al. [5],
which exhibit a decrease in trade due to penalties rather than stopping trade. Quadratic
penalties are often viewed as a (more) mathematically tractable approximation to (pro-
portional) transaction costs. Yet the stark qualitative differences shown in Theorem 3.3
make quadratic penalties a poor substitute for transaction costs in equilibrium.

Moreover, the on-equilibrium stock price S in (3.8) is unaffected by transaction costs.
The apparent lack of an effect for S occurs because the on-equilibrium stock price can only
be uniquely determined when trade occurs. When trade does not occur, as is the case
at the end of the trading period under transaction costs, S is consistent with equilibrium
in that the agents will still agree not to trade using the price S. See Dévila [12] and

Weston [27] for a similar phenomenon in equilibrium models with transaction costs.

4 Optimal transaction cost

The agents pay transaction costs at a rate A > 0 proportional to the number of shares
traded. As the agents lose the wealth paid out in transaction costs, an exchange collects
the fees. (See (3.3).) Higher values of A mean that the exchange will receive more fees with
every share traded. However, higher values of A\ cause the agents to stop trading sooner,
resulting in fewer shares traded. Given a distributional estimate on the trading targets
(i.e., priors), the exchange can find a strictly positive optimal transaction cost proportion
that maximizes its expected profit.

This application is intended to serve as an example for how an optimal transaction

12



cost level can be calculated in equilibrium outside the spectrum of welfare optimization,
such as in Dévila [12] or Weston [27]. Though one may expect to see several exchanges
competing over their transaction cost levels for traders’ business, here we consider just
one exchange. A single exchange with two price-taking agents could be thought of as a
national healthcare insurance market with the government acting as the exchange and only
two insurance providers. Here, we assume that the exchange sets the transaction cost level
ex ante in the sense that the agents reveal their targets at the beginning of the trading
period.

In this section, we make the dependence on A explicit in the notation by denoting
0; = 91(’\) and 7 = 7(A). We fix a price impact coefficient ¢; > —%. By Theorem 3.3,

an equilibrium exists, and the total profit received by the exchange in that equilibrium is

given by
0 { 0 {
Profit(A) = A ((93;) F(000) "+ (600) + (68 ) .
By market clearing and the monotonicity of the optimal trading strategies, we see that

n

Profit() = 22|00} - 2|

Since the exchange does not have advanced knowledge of the agents’ trading targets when
selecting the transaction cost level, it must estimate the targets by using its ex ante priors.
Proposition 4.1 asserts that a strictly positive optimal transaction cost level exists for

the exchange. The proof of Proposition 4.1 is presented in Section 5.

Proposition 4.1. Let ¢; > —% be given. Suppose that k : (0,T) — (0,00) is measurable
with fOT k(u)du < oo and that v : [0,T] — [0,1] is cadlag, nonnegative, bounded by one,
nondecreasing, and there exists t € [0,T) so that y(t) > 0. Also, suppose that 0 < E [A3] <

oco. Then, there exists X >0 so that
Xe Argmaz{X > 0 : E[Profit(\)]}.

Example 4.2. To illustrate the exchange’s choice of optimal transaction cost level, we

consider an example with TWAP traders. We take T := 1, n := 100, s(¢t) := 1, y(¢) :=

TWAP (t)

v = t, and we allow the price impact coefficient ¢; > —% to be arbitrary. For a

13
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Figure 1: The exchange’s expected profit in equilibrium is plotted as a function of the transac-
tion cost A > 0. Each plot corresponds to a different level of price impact, which is measured
by varying the perceived price impact parameter ¢; > —%.

given transaction cost level A > 0, we have that

AA, 204,
Profit(\) = 2 —_— = .
rofit(A) max <O, e /\\/(1 YO 201)>

Each agent begins trading with 50 shares. The exchange estimates that agent 1 will seek

to obtain a targeted number of shares that is uniformly distributed on (50, 55), while it
believes that agent 2 will target exactly 50 shares. The exchange’s expected profit can be

computed by

V2.5 2
8 Ay 221+ ¢1)
E [Profit(\)] = = 0,y — 4/ ————=
[Profit(\)] 5/0 2 [0,y - B0

Figure 1 plots the exchange’s expected profit as a function of A\. The three plots vary
in the degree of the agents’ perceived price impact, which is measured by the parameter
c1. The case ¢; = 0 corresponds to a price-taking equilibrium with no price impact. When
c1 > 0, the agents perceive a non-zero level of price impact.

In this example, the exchange’s choice of optimal transaction cost increases with increas-
ing price impact parameter ¢;. However, the exchange’s optimal expected profit decreases

as the perceived price impact increases.

14



For A > 0 and ¢; > —%, equilibrium stock drift is given by

drift (§)t — 50¢; — Ayt

We recall in this example that the random variable A; is uniformly distributed on (0, 2.5)
and is measurable at time zero with respect to the filtration generated by the equilibrium

stock price. The last trading time is given by

0.1 22 14
T = Imax — _
’ A1 1+261 ’

which yields an optimal strategy for agent 1 of ; ; = 50 + 113:1 (t A 7). We note that the

last trading time and the optimal strategy depend on both A and c¢;, while the drift of
the equilibrium stock price depends on ¢; but not A\. We plot agent 1’s optimal trading
strategy as a function of time in Figure 2.

To get a ballpark estimate of an appropriate value for the price impact parameter c¢;, we
link our model to existing empirical studies in the literature. To the best of our knowledge,
empirical work to estimate the price impact in a Cuoco and Cvitanié [11] setting has not
been performed. However, Almgren et. al. [2] empirically estimate a nonlinear price impact
model, while Chen et. al. [9] linearize [2]’s estimates to empirically estimate price impact
in an Almgren and Chriss setting. We bridge the gap from our model to the estimates in
[9]. Almgren and Chriss models realize price impact in the current stock price based on
changes in the trading rate and holdings, whereas our Cuoco and Cvitanié¢ setting realizes
price impact in future prices via the drift dependence on holdings. To relate these two
price impact models, we consider trading rates df; = 6’ dt for a constant 6’ € R. Applying
our perceived prices in (2.4) with ¢p and ¢z as in (3.6) to our example (with x(t) = 1,

~v(t) =t, n =100, T = 1), we have

1
Sﬁl—-SzO::J/ sy,
0

! ! 142¢
:—/ cleudu—i—/ 100¢; + Aju— (a; — 50)u | du + My — My
0 0 1+a

vt ! 142
= - c10'udu + 50c; + Aju— (a; — 50)u | du + My — My
0 0 14+ ¢

019/ ! 1+ 201
=+ + A — (a; — du + My — M.
B) /0 (5061 1+ u (a 50) u) U 1 0
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Figure 2: Agent 1’s optimal trading strategy (minus the initial holdings) is plotted as a function
of time. We fix A; =1 and A = 0.1. Each plot corresponds to a different level of price impact,
which is measured by varying the perceived price impact parameter c¢; > —%.

We apply [9]’s estimate for the transient price impact coefficient, 0.002 =

. Therefore,

we estimate that ¢; = 0.004 is a ballpark estimate for c;.

5 Proofs

We begin with a proof of Lemma 3.2, which provides a version of Walras’ Law in our

setting.

Proof of Lemma 3.2. Let A > 0 be given, and let 0, 05, and S be parameters in a price
impact equilibrium satisfying Definition 3.1. The bank account clears for all times ¢ € [0, T]
by
0 0
o) + 65
t
n -~ ~ ~
=228+ / (01, + 02.0) S — A (01, + 0L, + 00, +0%,) — (01,0 +620) 5,
0
t
=nS, + / ndS, —nS, — A (eit + 6}, 465, + 9;25)
0

Y (GI,t 0L, 05, + Q;t) .
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O

Next, we motivate the proof of our main result, Theorem 3.3. To solve for an equilib-
rium, each agent must solve a convex optimization problem subject to market consistency
requirements (namely, clearing conditions and agreement of the perceived prices at trade
times). For ¢ = 1,2, the first-order condition for agent i’s optimization problem requires

her to seek 0 € A so that

0 T n n
Y8 =B || k) (co(u,ag) + 2 w1+ ) (ai - f) 1+ QCl)eu) du|F| (5.1)
: ] 2 2
satisfies —\ < Yi?t < Afor all t € [0,T] and
T T
/ (A —Y7,) do] = / (A +Y7) doy =o. (5.2)
0 0

Using the clearing and consistency definitions from equilibrium in Definition 3.1 and
the form of the first-order condition in (5.1), we deduce the forms of ¢y and ¢z in (3.6).

Those calculations yield

3

Y =R
’ 2 1+

/tT k()1 + 201) (” 424 ou> du| ]-"t] . (5.3)

By observing that YfT = 0 and selecting a right-continuous version of the conditional
expectation in (5.1), the reflection condition (5.2) shows that the optimal strategy will not
allow for trade at T'. Since the agents’ perceived prices are only required to agree with the
equilibrium stock price at trade times, the perceived prices may differ from the prescribed

dividend payment at T

Coupling the terminal condition YfT = 0 with the fact that

n y(t)|Ail
s — 4 2
2 + 1+ C1
is increasing and Fp-measurable for all ¢ € [0,7] tells us that a solution 6; € A to the

first-order condition is to trade early in the period with
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then stop trade at time 7 < T" when the remaining integral f;‘r Kk(142¢) (% + ffc"l — 9i77>
becomes sufficiently small so that —\ < Yf < X\ will hold after 7. These observations
motivate the definition of 7 in (3.4).

The first-order condition’s reflection condition (5.2) and bounds —\ < Yze < ) ensure
that the agents will trade less (by stopping or pausing trade) with increases in A. In our
model, the agents will stop trade strictly before T' and will not resume again. However, any
model where agents face a linear-quadratic control problem with proportional transaction
costs will also see agents taking breaks from trade when trading optimally. In particular,
any potential generalization of this model or the ergodic control problem of Gonon et.

al. [14] will exhibit this behavior.

Proof of Theorem 3.3. We break the proof up into steps.
Step 1: Admissibility. We show for ¢ = 1,2, that ; defined in (3.7) is admissible; that is,

A

0; € A. The function v is cadlag and nondecreasing, while 7 i

and 7 are JFy-measurable.
To verify integrability, we use the square-integrability of A; and o as well as their inde-

pendence to ensure that for some constant C' > 0, we have

T T
E/ (0ubin)’ du < CE/ oo (1+ A7) du
0 0
T
— CE[1+ 4] lE/ oadu
0

< 00.

Thus, 0; € A.
Step 2: Optimality. Next, we check that 6; € A is optimal in (3.1). For an arbitrary 6 € A,
we define V;(6) by

Vi(0) :=E [X{O,T - L?,T | -7:0] ) (5.4)

where L?,T is defined in (2.3), X Z 7 in (2.5), and the perceived off-equilibrium price dynam-
ics in (2.4) have initial stock price and martingale parts given by the proposed equilibrium
stock price S in (3.8).

By the definition of S in (3.8), the martingale part of §, 8¢, and SY is given by the
martingale [ odB. Since § € A is adapted and EfOT (0u9u)2 du < oo, we have that
{ fg auﬂudBu} is a square-integrable martingale with respect to F. We use this

t€[0,T]
property in the calculation of V;(8) below.
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For ¢y and ¢y given in (3.6) and the initial stock price given by §0 in (3.8), we have

Vi(0) =E [Xf,T - L?,T | Fo]

= 28— AE [0 + 0} | Fo|

70 (o0 0 o= )yt = 3 00 00 (- ) a5
[0 (o0 (o 3)) a1

[ oo (((or ) a0 302 o (o) )i

The above calculation reveals that when optimizing over 8 in (5.4), the second-order con-

+E

_ng T g _1
= 280 = AE [0} + 03 | Fo| — 5E

+E

dition requires that ¢; > —%.

For notational convenience, we define

14 2¢1)A; 1
7( +2¢1) and f[:=c + -,

a(t) = (cl + ;) nt+yO . 2

so that

Vi(6) = 5.8 — AE [6]. + 0} | 7]
2 [ R0 (G0 (- p)) ar

In order to help us with computations, we define % for ¢ € [0, 7] by

T
/ k(t) (a(t)0; — ) dt | o

0

V(t)v t< T

~ T o (u)y(u)du— 23te)

,.yt — fr ( )’Y‘;T)H(u);zl(l+201)\ , t Z T and X > >\’ (55)
0, t>7and y <A\

The definition of 4 in comparison with 6; in (3.7) shows that 0;; = § + 1f21 ¢. Since

A; = 0 implies that y = 0 and since 7 < T, we have that ¥ is well-defined in the t > 7

and y > A case.

We now proceed to verify the first-order condition outlined above for our proposed
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optimal strategy 6;. By algebraic manipulation and applying (5.7),

T
=E (X0l p+0 7 — 0% —0%) + / k() () (O — 05.) — B(Ou — 0i2) (O +oi,u>>du|fo]
0

!

<E|MO]7 4607, —07—05) + | w(u)(a(u) —280;.,) (0, —ei,u)du|fo]

o

)

01+ 0ty — 07— 01) + / " ) (alu) — 286,006 ) — (6, — 6,0°) du fo]
)
)

‘ T
+ 7)/ k(u) (V(w) = u) (Ou — Oiu)du | ]:0] :
0

We define Y; = {Y; ¢ }1e(0,77 by

.1+261
¢ 1+

T
Yo, = A / (1) (Y(w) — 7u) ds.

By the definition of 7 in (3.4) and x in (3.5), we have that ¥; ;, = AsignA; for ¢t < 7 and
X > A, while Y;; € signA,;[0, ] for all ¢ € [0,7] and all values of x. Since 6; is constant
after 7, we see that

T
/ Viudfiw =M (0] +0%r). (5.6)
o ; ;
For any 6 € A,

. c T )
141(11-‘,-7? /O k(w) (y(u) = Fu) (0 — 0i7u) du — \ (0; + 9%)

= /(: Yiud (0 —0;), =Yir (0r — 0i7) +Yio (g - g) —A (9; + 9%)

by integration by parts

T
— / Yiud (0 — Qi)u - (9} + 0%) since Y; 7 =0
0—
! Tt T ot
_ /O Yiadou =X (0], +05) 2 (0h+04) by (56)

T T
_ / (Vi — ) O], — / (A Vi) o — A (07 + 0} )
0— ~—n— 0— ~—n—
<0 >0

<A (91T - 9iT> : (5.7)
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Finally, we see that

Vi(0) — Vi(6:)
<EM(0lp+08r) =2 (010 +000) 17| by (57)

<0.

Thus, 6; is optimal for agent 3.
Step 8: Markets clear. The stock market clears since for all ¢ € [0, T, we have 614+ 6, =

n —+ lztcl (A1 + Ag) =nNn.

Step 4: Equilibrium prices are consistent. We verify that for ¢t € {u € [0,T] : d@;u—i-dﬁiu >
0}, we have that
ST = 533 = S (5.8)

Since t € {u € [0,T] : d@iu + dﬁfu > 0} C [0, 7], it is sufficient to verify that (5.8) holds
for t € [0, 7].

We use the optimal trading strategy formula (3.7), the equilibrium price impact coeffi-
cient formulas (3.6), and the conjectured price impact drift formula (2.4) to calculate the

equilibrium drift. For ¢ € {1,2} and ¢ € (0, 7), the drift of Sft is given by

(oW
=
=.
=g
—
el
-
I
X
—
~
N
—~
%)
o
—~
\.(‘F
Q
™
N—
|
9}
A
>
N
-
+
2
=~
-
SN—
Q
V)
—
S
|
|3
~
~

which agrees with the drift of Sin (3.8). As per the conjectured price impact drift in (2.4),
the martingale components and initial values of S , 8¢, and S§ do not depend on the choice
of i=1,2 or § € A. Thus, we conclude that (5.8) holds for all ¢ € [0, 7], as desired.

O

Next, we prove Proposition 4.1, which establishes the existence of an optimal transac-

tion cost, x> 0.

Proof of Proposition 4.1. Theorem 3.3 establishes the existence of an equilibrium with
optimal trading strategies 0?‘) € A given in (3.7) for every A > 0.

As in the proof of Theorem 3.3, we introduce the process ¥ as a function of ¢ € [0, 7]
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and A > 0 by

v(t), t<7(A),

T du— A(14cy)
Jron "‘(“);T((:‘))K’(Lu)(\izl<4l+2c1>\ , t>7(\) and x > A,

Ye(A) =

0, t>7(A) and x < A\

Here, y is defined in (3.5), and we make 4’s dependence on A explicit. For any A > 0, we

use the definition of 4 above to deduce that

CSIERCINeY n_ A
e —5 =000~ 27 1+¢ T r(A)-

We first seek to show that A + 7.(5)(A) is continuous, from which we will conclude that
A — Profit()) is continuous. On {A4; = 0}, x = 0 so that x < A for all A > 0, and thus,
A = a0 (A) is continuous in this case.

We let A > 0 be given. On {A; # 0}, we consider 0 < A < A\ < Ag. Then, 7(A2) <

T7(A1) < 7(A) < T. For notational simplicity, we define C' := and 7 = 7(A1),

\Al\(1+12(' )
7o := 7(A2). We have that

AMC = (’Y — A (A1) )du
/ () (7(w) = 3, (01) )du
. /T r(u — Yy ()\2))du + /TT K(u) ('772 (A2) = Any ()\1))du
=X\,C

T

= [ 80 (e, ) = 50 )+ 2 + (3 00) = 5y ) [

2 T2

Using that 7 is nondecreasing, we see that 9., (A2) < y(u) for all u € (72, 71). By rearrang-

ing terms, we arrive at

o
N

< (Am (M) - %(Az)) /T/@(u)du

T2

= C0w =2+ [ w0 (5 () = 2 (0)

2

< Cu =20+ (30, 0) =3 00)) [ sl

T2
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Therefore, on {A4; # 0}, we have that

0 <m0~ n () € o= M) € (o= A1), (5.9)
rvr, Bw)du fT(A) k(u)du

from which we conclude that A — 7 /\)()\) is continuous for A > A. Since A > 0 is arbitrary,

we have that A +— §,(x)(}) is continuous for A > 0. Thus, A 08) — 5 and A — Profit(\)

are continuous for A > 0. Since E[a?] < oo, we also have that A — E[Profit()\)] is continuous
for A > 0.

Finally, we show that A\ — E[Profit()A)] achieves a maximum for A > 0. The assumption

that E[A%] > 0 and that there exists ¢ € [0,T) for which ~(t) > 0 ensures that there exists

A > 0 such that E[Profit(A)] > 0. Since ¥ is bounded by one, we have that

A
0 < limE [Profit(\)] <lim2>\E[ |44] } -0
AL0 20 1+

We define the random variable A™2* := 2| A, | fOT k(u)du. For A > A™@* we have that xy < A,

n

where x is defined in (3.5). In this case, trade does not occur, and ‘9&)(’\) — 21 =0. For

any A > 0, we bound Profit(\) by

2| A4
1+Cl
2)\max‘A1|
<22 A
1+
T
A2 4, fi(u)du.
- 1 1+Cl

Profit(\) <

’Y(T)]I{)\S)\max}

Since E[A?] < oo, we apply the dominated convergence theorem to obtain that

lim E[Profit(\)] = 0.

A—00

Thus, A — E[Profit())] achieves a maximum for A > 0.
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