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Abstract 
 

We can easily evaluate similarities between concepts within semantic domains, e.g., doctor and nurse, or violin 

and piano. Here, we show that people are also able to evaluate similarities across domains, e.g., aligning 

doctors with pianos and nurses with violins. We argue that understanding how people do this is important for 

understanding conceptual organization and the ubiquity of metaphorical language. We asked people to 

answer questions of the form "If a nurse were an animal, they would be a(n)…" (Experiment 1 and 2), and asked 

them to explain the basis for their response (Experiment 1). People converged to a surprising degree (e.g., 20% 

answered "cat"). In Experiment 3, we presented people with cross-domain mappings of the form "If a nurse 

were an animal, they would be a cat” and asked them to indicate how good each mapping was. The results 

showed that the targets people chose and their goodness ratings of a given response were predicted by 

similarity along abstract semantic dimensions such as valence, speed, and genderedness. Reliance on such 

dimensions was also the most common explanation for their responses. Altogether, we show that people can 

evaluate similarity between very different domains in predictable ways, suggesting that either seemingly 

concrete concepts are represented along relatively abstract dimensions (e.g., weak-strong) or that they can be 

readily projected onto these dimensions. 

 

Introduction 
 
It is easy—at least for adults—to compare a dog to a cat, or a piano to a violin. In making these comparisons, 

people draw on rich perceptual and functional knowledge: that dogs are more similar to cats than to elephants 

is, for example, well predicted by a greater overlap in semantic features that people list for dogs and cats, than 

those they list for elephants [1–3]. When reasoning about more relational concepts such as doctor and nurse, 

people likewise appear to recruit knowledge about individual items which can be aligned and contrasted. For 

example, people judge a doctor to be more similar to a nurse than to a carpenter because doctors and nurses 

overlap more in the functions they perform and their job knowledge, than do doctors and carpenters. 

 

However, people’s ability to appreciate semantic similarity is not limited to comparing items from the same 

semantic domain. When asked to align concepts from different semantic domains, people sometimes show 

uncanny convergence. For example, when asked “If science were a colour, what colour would it be”, 40% 

respond with “green”. When asked in the same manner, to map philosophy to a beverage, 20% map it to tea. 

When mapping professions to musical instruments, 32% map doctors to pianos while 26% map nurses to 

violins (these two responses are the modal responses and greatly exceed the probability of these instruments 

being mentioned by chance alone) [4]. A main goal of the three experiments we present here is to understand 

the bases for such cross-domain mappings. In what ways are animals and musical instruments, or professions 

and animals similar such that when asked to map between them people prefer some mappings over others? 
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There are two main reasons why studying people’s performance on these—admittedly odd—cross-domain 

mapping tasks is important. The first is that while some consistent cross-domain mappings can be explained 

through simple associations between words or through clear thematic relationships, others are not so obvious 

and require an explanation. For example, when asked to map a cow to a beverage, not surprisingly most 

people (86%) respond with “milk”. When asked to map cities to colours, people’s responses are often mediated 

by sports team colours (e.g., 35 % map Seattle to blue presumably because of the Seahawks. When asked to 

map Boston to a colour, the top two answers are “green” (27%) and “red” (20%) presumably because of the 

Boston Celtics and Red Sox, respectively). Occasionally people even rely on phonological similarity, e.g., when 

asked if a bear were a beverage, it would be a…, 20% responded with “beer”). But it is more puzzling why a 

plurality of respondents map “philosophy” to “tea”, or “cello” to a “cloudy day”. If some kind of alignment 

between the domains is involved [5–8] what exactly is being aligned and along what dimensions of meaning?1 

 

The second reason for examining how people perform cross-domain mappings is that it can help us think 

more clearly about the differences—and similarities—between how people represent concrete and abstract 

concepts [9–15]. Because concrete concepts generally have clearly identifiable perceptual properties [indeed 

that is largely what makes them “concrete” in the first place, 16], it is tempting to assume that mental 

representations of concrete items are constituted by these properties [17,18] with similarity being a function of 

overlap [19–22]. On this account, it is easy to explain why, when asked to map a pilot to an animal, a plurality 

of respondents (22%) respond with “bird”: both have “fly” as a common semantic feature. But as we shall see, 

many mappings people consistently make cannot be explained through shallow feature matching of this sort 

because the items from the two domains do not have any obvious features in common.  

 

An alternative way to make sense of what people do when asked to map between semantic domains is to 

assume that even highly concrete items are constituted not just by their perceptual and motor information, but 

by their placement along more abstract dimensions that cross semantic domains [23,24] and it is similarity 

along these abstract dimensions that explains patterns of cross-domain mappings. One example of such a 

dimension is valence. It is reasonable to talk about positively and negatively valenced animals, jobs, beverages, 

colours [25], etc., and one can imagine that mapping between these domains is informed by how similarly 

valenced the items are. For example, if part of our representation of “rat” is its negative valence, then when we 

are asked “If a rat were a job, what job would it be”, we tend to think of negatively valenced jobs. Further 

informing the alignment may be dimensions related to activity (e.g., passive/active, dull/exciting) potency (e.g., 

weak/strong, silent/loud), and dimensions such as size and weight, which although grounded in concrete 

perceptual qualities, also have readily accessible metaphorical extensions. For example, many people interpret 

a “heavy job” to be a job with many responsibilities and a “low job” as one lacking prestige.  

 

If alignment along these relatively abstract semantic dimensions explains people’s cross-domain mappings it 

suggests that representations of even very concrete items include a considerable amount of rather abstract 

information. If so, then what may distinguish abstract and concrete concepts is not that abstract concepts 

uniquely include certain abstract information that concrete concepts lack. Rather, all concepts—regardless of 

concreteness—can be positioned on these abstract dimensions, but more abstract/relational concepts may 

lack some of the more grounded information that partly constitutes concrete concepts.2 If true, it would also 

 
 
 
 
 
 
1 When the second author was 2.5 years old, his mother recorded him as asking the following question: “What is the 

difference between Pinocchio and a sausage?” It is not clear what the second author was thinking at the time (the 

shape of Pinocchio’s nose?). Our results show that despite the seeming ill-posed nature of this comparison (one can 

hear the exasperated parent say “What?! Nothing!”), people are capable of aligning items from different semantic 

domains in ways that are both predictable and sensible. 

 
2 An alternative is that abstract dimensions like valence and potency are not constitutive of concrete conceptual 

representations, but when tasked with mapping between two different semantic domains, people project the concepts 

into the more abstract space in which items from both domains can be compared. We address this possibility in the 

General Discussion. 



help explain why people so readily arrange colours by, e.g., how exciting, new, or active they are (a task that 

involves placing concrete concepts along these more abstract dimensions) [26,27].  

 

In addition to shared perceptual features and alignment along abstract dimensions, there are other sources of 

information people may be relying on when making cross-domain mappings. One is alignment on 

sensorimotor dimensions. For example, when asked “If thunder were a musical instrument, it would be a…”, 

53% people respond with “drum”. This answer is clearly motivated by sensory similarity: thunder can literally 

sound like a drum. At a more general level,  thunder and drums are both saliently experienced in the auditory 

modality, a relationship captured by, e.g., the Lancaster sensorimotor norms [28] (though this would not 

explain why the majority of participants responded with “drum” in particular).  

 

Another source of information that can inform semantic relationships between concepts is language itself  

[10,29–33]. By keeping track of the contexts in which words occur (which can be done by simply trying to 

predict what words occur near another word), it is possible to construct semantic spaces (word embeddings) in 

which the distance between words approximates human judgments to a surprising degree [34–37]. Although it 

is people—embodied agents with rich sensory and perceptual experiences—who create language on which 

the word embedding models are trained, a substantial amount of an individual’s semantic knowledge may be 

learned from the distributional patterns produced by the language community to which we are exposed, rather 

than from direct sensorimotor experiences [32,38]. We were interested in whether linguistic information as 

captured by word embeddings derived from large English corpora, and by word-associations produced by 

English speakers can account for cross-domain mappings. For example, is the tendency to map “philosophy” to 

“tea” caused by both words—for one reason or another—occurring in similar contexts and therefore becoming 

linked? 

 

To further illustrate how the different sources of information just reviewed are brought to bear on cross-

domain alignment, consider the mapping “If a rat were an occupation, it would be a thief”. Figure 1 shows a 

schematic that contrasts different, but not mutually exclusive ways of explaining this mapping. In panel A, the 

similarity between “rat” and “thief” is computed simply by taking note of overlap in semantic features—the 

method that works reasonably well for computing similarity within domains, but we suspect would fail here 

owing to a lack of shared features for many mappings we ask people to make. Panel B draws on similarity 

based on the sensorimotor profiles of the two words taken from the Lancaster sensorimotor norms [28]. If 

these are to be useful for predicting people’s cross-domain mappings, sensorimotor similarity between “rat” 

and “thief” should be greater than between “rat” and other (less often selected) occupations. Panels C and D 

show two methods of computing similarity based on people’s word associations. Panel C uses first-order word-

associations: given “rat” how likely are English speakers to produce “thief”. The answer, based on the Small 

World of Words association norms [39], is that none of the tested participants did. We can go beyond first-

order word associations by computing paths between the two words in a network where words are joined by 

attested association links [40]. One path between the two words is rat → snitch → steal → thief. Panel D shows 

a different type of linguistic similarity using a distributional semantic approach. Here, the similarity between 

the two words is computed based on the similarity of the linguistic contexts in which they occur [41,34]. Finally, 

panel E shows similarity as computed by projecting each word into a common space defined by a set of more 

abstract dimensions.  

 

To understand which of these—if any—kinds of similarities are at play in cross-domain mappings, we 

conducted three experiments. Experiment 1 was an open-ended task in which participants were asked to 

complete prompts of the form “If an A were a B it would be a…” where A is a specific item (e.g., “doctor”) and B 

is a category label from a different domain (e.g., “musical instrument”). Participants were asked to explain their 

responses after the open-ended task, and their explanations were coded by two raters into distinct types 

depending on the likely basis of the mapping. In Experiment 2, we predicted the likelihood of producing 

various responses from the various kinds of similarity depicted in Figure 1. Because this analysis was 

necessarily limited to attested responses, it restricted our ability to distinguish between some of the predictors. 

In Experiment 3 we therefore generated specific mappings (e.g., “If a bat were a job, it would be a plumber”) 

and asked people to indicate how good each mapping was. This procedure allowed us to manipulate 

mappings along one type of similarity while holding another constant. Of particular interest was whether 

people’s mappings can be predicted by alignment on relatively abstract dimensions (Fig 1E) even when 



controlling for other sources of similarity. If so, it suggests that concrete concepts like “cat”, “violin”, and “rat” 

may be more abstract than is sometimes appreciated. 

 

Figure 1. Five ways of making sense of people’s tendency to respond with “thief” when asked “If a rat were an occupation, it would be 
a…  A: The two concepts have shared semantic features. B: The two concepts match in their sensorimotor profiles (e.g., as quantified 
by the Lancaster norms [28]. C: The two concepts have common word associations. The image shows the shortest distance between rat 
and thief in the Small World of Words free association norms (rat -- snitch -- snatch – thief) [39,40].). D: The two concepts are close to 
one other in a word embedding space learned by tracking shared linguistic contexts. The actual space is 300-dimensional rather than 
2-dimensionsal as schematized. E: The two concepts have similar profiles when aligned on relatively abstract dimensions that apply to 
many semantic domains. 

Experiment 1: How do people answer questions like “If a nurse were an animal, they 
would be a(n)…? 
 
The main goal of Experiment 1 was to determine the relative use of different kinds of similarity in 

understanding cross-domain mappings by evaluating people’s explanations of their mappings. We began by 

investigating people’s responses when they are asked to map from one semantic domain (e.g., occupations) to 

another (e.g., animals) by prompting them to complete sentences of the form “If an X were a Y, it would be a…” 

We refer to X as the “source domain” and Y as the “target domain”.  

Participants were shown sentence of the form above, asked to provide an answer. They were then shown their 

original answers and asked to provide an explanation for why they answered in the way they did. These 

explanations were then coded according to different types of similarities that the participant seemed to rely 

on.  

 

1) Initial Item Elicitation 
Our first step was to elicit words from which to use for the source items. We recruited 50 participants through 

Amazon’s Mechanical Turk (MTurk) crowdsourcing platform. Each participant was shown 12 superordinate 

terms denoting semantic domains: animals, jobs, sports, vehicles, cities, beverages, colours, branches of 

knowledge, words related to weather, musical instruments, fruit, and supernatural things. For each presented 

domain, participants were asked to provide 5 items. For example, prompted with “jobs”, a participant might list 

[“doctor”, “nurse”, “teacher”, “plumber”, “actor”. In the instructions participants were provided with the 

example: “If asked about insects, you might write down, fly, ant, bee, mosquito, and dragonfly.” These data 

serve two functions. First, they provide a principled list of items for use in Experiments 1-2. Second, they allow 

us to compute baseline probabilities of a person responding with, e.g., “cat”, when asked to list animals, which 

we use as a covariate in Experiment 2. Each participant was prompted with the 12 semantic domains in a 

random order. 

 

2) Cross-domain mapping and explanations 
Participants. 



We recruited an additional 80 participants from MTurk (40 Females, 40 Males,  mean age = 40).  

 
Materials. 

We constructed 32 domain pairs, matching each domain with two or three other domains, e.g., animal → 

job/sports/beverage. We used a subset of all possible combinations of 12 semantic domains (12*11=132) 

because 1) Not all mapping are equally theoretically interesting (e.g., mapping animals to colours leads 

participants to just list colours characteristic of that animal) 2) Including all 132 unique pairs would require 

more data than we could realistically collect. For each unique domain pair, we randomly selected two to three 

statements (except for history → colour mapping, from which we selected six statements) of the form If an X 

[source item] were a Y [target domain] it would be a … [target response]. The source items were randomly 

chosen from the ten most frequent items of each domain during the phase of Initial Item Elicitation. For 

example, the job-animal trials included “If a doctor were an animal, they would be a…”, “If an actor were an 

animal, they would be a …” etc. We ended up with 75 statements and we divided them into four trial lists such 

that each list contained about 19 trials. Each list was responded by a group of 20 participants. 

 

Procedure.  

Each participant was assigned to one of the four trial lists. Before beginning, they were given two example 

cross-domain mappings: a). If the sun was a job, what job would it be? (Example answer: King). B). If a cat were 

a branch of knowledge, what would it be? (Example answers: Philosophy/Psychology/Math).3 After they were 

done with the mapping tasks, they were shown their previous answers, and for each, were asked to briefly 

explain why they responded in the way they did. For example, if to the prompt “If a dog were a sport, what 

sport would it be?” they answered “football”, they would be later be prompted with: “When asked ‘if a dog 

were a sport, what sport would it be?’ you responded ‘football’. Why? “ Participants were instructed to be as 

precise as possible (e.g., avoid answers like “it’s obvious”, or “because it seemed correct). If they had no idea 

why they answered in the way they did, they could write “I was guessing”. 

 

Response Coding. 

Two independent raters coded all responses into one or more of 7 categories using the following criteria:  

1) Phonological association: e.g., if a bear were a beverage, it would be beer. Because they both starts 

with “b”)  

2) Word associations: e.g., If Beijing were a colour, it would be red. Because it reminds me of “red China”  

3) Perceptual similarity: e.g., If rain were a musical instrument, it would be a drum. Because it sounds like 

a drum.  

4) Common mediators: e.g., If a sunny day were a fruit, it would be an apple. Because apples are grown in 

the summer, and summer is sunny.   

5) Abstract alignment on certain dimensions: e.g., if a cloudy day were a fruit it would be a banana. 

Because cloudy days are sad and mushy like a banana when it rots.  

6) Thematic association: e.g., If a dog were a sport, it would be frisbee. Because they love games of fetch 

and frisbee.  

7) Guessing: e.g., I was guessing/I don’t know/It’s the first thing that comes to mind.  

 

If raters thought an explanation did not belong to any category listed above, they coded it as zero. (See also 

supplementary material for coding instruction) 

 

Because multiple categories were possible, we used dummy coding for computing Cohen’s kappa, common 

statistic for inter-rater agreement. [42]. After an initial coding pass, kappa was 0.62 indicating substantial 

agreement. The two raters then discussed disagreements until consensus were reached for all responses.   

 

 
 
 
 
 
 
3 To clarify what we meant by “branches of knowledge”, we used it as part of the example in the instructions to cue people to what 
we mean by this phrase. 



 

Results and Discussion 

 

Figure 2 (left y-axis) shows the number of occurrences of each alignment type and the mean convergence rate 

for each type of explanation. Abstract Alignment was the most common type of for alignment (used for 718 

out of 1520 different responses). It was the most common type of alignment for 26 out of 32 domain mapping.  

 

We next computed convergence rates for all explanations. Convergence was operationalized as the proportion 

of participants who provided identical responses for each source-– target-domain pair. For example, if there 

were 20 total responses to the prompt “if a dog were a job, what job would it be?”, and 5 people responded 

with “doctor”, the convergence rate would be 5/20= 0.25.  

 

Despite how common reliance on (seemingly) abstract dimensions was, these responses had relatively low 

convergence rates (11%), even lower than for explanations for which people said they were just guessing 

(12%). That is, although answers based on abstract alignment were very common, they were more variable 

than answers based on other types of similarity. As shown in Figure 2 (right y-axis), the highest convergence 

was achieved by responses coded as relying on word associations (21%), followed by perceptual similarity 

(18%), common mediator (15%), and thematic association (12%). The supplementary materials contains a 

version of Figure 2 broken down by each of the 32 source-target domain pairs (Figure S5). All the responses 

along with their coded similarity types can be found at https://osf.io/tkc84/). 

 

These results provide initial evidence that when tasked with mapping between disparate semantic domains, 

people frequently rely on similarity along (relatively) abstract dimensions such as valence, size, and speed. The 

overall low convergence rates for these responses suggest that reliance on these dimensions is not as 

constraining compared to when people can use other strategies. For example, when asked to map “Demon” to 

a city, a plurality (6/20; 30%) responded with “Las Vegas” and of these, 4 mentioned that it was because Las 

Vegas is known as “Sin City” – a response coded as being based on word associations. When asked to map 

“Sunny day” to a colour, 50% (10/20) responded with “orange” and of these, 7 wrote that orange is the colour 

of the sun – a response coded as relying on perceptual similarity. So, when available, word associations and 

physical similarity can lead people to map between domains in relatively similar ways. 

 

In the next experiment we sought to further understand the use of dimensional alignment in cross-domain 

mapping. Rather than relying on human coders, in Experiment 2 we predicted convergence rates from 

different, independently collected, similarity measures. This analysis allowed us to determine how semantic 

similarity along abstract dimensions contributes to cross-domain alignment as compared to other kinds of 

semantic similarity. 

 

https://osf.io/tkc84/


Figure 2 Basis for alignment for cross-domain mapping task according to participants’ explanation. Number of explanations for each 
basis are shown in red bars with error bars indicating 95% Binomial Confidence Interval; mean convergence rate are shown in blue 
circles with the standard error of the mean. 

 

Experiment 2: How do different similarities predict convergence rates in questions 
like “If a nurse were an animal, they would be a(n) __”?  
 

Experiment 1 provided qualitative evidence that when people are tasked with aligning different semantic 

domains, they frequently rely on—what looked to our raters to be—alignment based on abstract dimensions 

such as valence, size, and speed. However, people’s explicit explanations do not always reflect the processes 

used to complete a task. In Experiment 2, we address this limitation by quantifying the relative contribution of 

similarity based on abstract dimensions in predicting convergence rates, and comparing this measure to more 

conventional forms of similarity such as those based on perceptual features and word associations. 

 

Experiment 2 consisted of two parts: The first used the same type of cross-domain mapping task as in 

Experiment 1 (though without requiring participants to explain why they responded the way they did).  

1). In the second, we computed a measure of dimensional similarity between the source items (the X in If an X 

were a Y) and a subset of the responses the participants produced in the first part.   

 

This experiment was largely exploratory. We predicted though that participants would rely on dimensional 

similarity when generating their answers in which case higher dimensional similarity should predict greater 

convergence. However, we had no expectations about the predictive power of dimensional similarity compared 

to other forms of similarity, or even whether dimensional similarity would continue to predict convergence 

rates controlling for other, more familiar types of semantic similarity. Experiment 1 showed that abstract 

alignment was one of the most frequent strategies, yet was associated with lower convergence rates. It would 

therefore not be surprising to find that other forms of similarity are better predictors. Yet it may still  be the 

case that people are consistently relying on this type of similarity, especially when other forms of similarity are 

not available.  

 

1) Cross-domain mapping 
Participants. 

We recruited 165 undergraduate students (104 Females, 59 Males, 2 Other, mean age = 18.6) from the 

University of Wisconsin-Madison psychology participant pool. We excluded four people for failing more than 2 

out of four attention checks. 
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Materials. 

For each of 32 domain pairs, we constructed 10 statements of the form “If an X [source item] were a Y [target 

domain] it would be a … [target response]. “ Source items were the 10 most frequent items for each domain 

elicited in Experiment 1, Initial Item Elicitation. Each included pair also included its inverse, e.g., both animal → 

job and job → animal were included. We did not ask participants about both directions of mapping (e.g., 

answer both animal → job mappings and job → animal mappings) because thinking about one may bias the 

second, e.g., if they mapped dog → doctor, they might also map doctor → dog because of their earlier dog → 

doctor response. We divided the 320 stimuli into four lists such that each list contained 80 trials representing 

16 domain pairs and 5 trials from each unique domain-pair. 

 
Procedure.  

The procedure was identical to the open-ended cross-domain mapping task in Experiment 1, except we didn’t 

ask for explanation in Experiment 2. Each participant was assigned to one of the four 80-item lists. Participants 

were also explicitly told that they should try to provide single-word responses and avoid giving the same 

response multiple times for the same type of question. To further discourage repeated answers (e.g., 

responding with “guitar” whenever asked to map different items to musical instruments), we blocked the 

prompts by cross-domain mappings, i.e., all the trials under the same type of cross-domain mappings, e.g., 

animal → instrument were grouped together. A given participant might see the following trial sequence: "If a 

doctor were a musical instrument…”, “If an actor were a musical instrument…”, “If a nurse were a musical 

instrument…”, etc.  

 

2) Semantic Differential Ratings 
Semantic Differential ratings [23,43] ask people to rate concepts on scales that are anchored by two polar 

adjectives (e.g., “good-evil”, “bright-dark”). The basic idea is that important aspects of a concept’s meaning are 

its location in the space defined by these dimensions. The distance between concepts computed in this 

semantic differential space has been found to be a good measure of semantic similarity, especially in studies of 

metaphor and emotions [44–48].  

 

We sought to obtain semantic differential ratings for the source words (the word in the X position in the “If the 

X were a Y it would be a…” prompt) and for people’s responses. These semantic differential ratings were then 

aligned to obtain a semantic differential alignment score (Fig 1E). The total dataset (including all target words 

and answers that were produced by at least 1 person) comprised 2252 unique responses. Recruiting 10 raters 

per word and collecting 10 words per rater (on 21 dimensions per word) would involve recruiting over 2000 

raters which was not feasible. Initial analysis of the data from the cross-domain mapping task (data and code 

are accessible at https://osf.io/tkc84/) revealed many trials to have high convergence for obvious (and 

uninteresting) reasons (cow→beverage = milk, ghost→colour = white, goblin→colour = green). It was of more 

interest to collect semantic differential ratings for words comprising less obvious cross-domain mappings. 

With this in mind, we focused on subset of trials that included 130 concepts from three semantic domains: 

animals (56 words), jobs (54 words), and musical instruments (28 words).  

 

We elicited semantic differentials by prompting participants with a given word and asking them to position it 

on 21 dimensions anchored by two polar adjectives (e.g., position “dog” on a dimension of “bad (1)-good (7)”. 

Original work on semantic differentials [43] revealed that many semantic dimensions group into three 

dominant factors: An Evaluative factor (represented by scales such as bad-good, unpleasant-pleasant, positive-

negative), a Potency factor (represented by scales such as strong-weak, heavy-light, hard-soft), and an Activity 

factor (represented by scales such as fast-slow, active-passive, and excitable-calm). We selected 15 dimensions 

based on the Evaluative-Potency-Activity (EPA) framework and consulted other studies using semantic 

differentials [49,50] to add 6 dimensions that did not obviously load on only one of these factors, (see Table 1). 

 

 
Table 1 The 21 dimensions used for computing dimensional similarity between source and target in the cross-domain mapping task. 

Evaluation Potency Activity Other 

Bad/good Weak/strong Passive/active Small/large 

Cheap/expensive Soft/hard Lazy/industrious Dry/wet 

Stupid/smart Light/heavy Dull/exciting Masculine/feminine 

https://osf.io/tkc84/


Ugly/beautiful Silent/loud Slow/fast Religious/secular 

Cruel/kind Mild/aggressive  Cold/hot 

Unpleasant/pleasant   Old/young 

 

We collected semantic differentials from 170 participants recruited through Amazon’s MTurk crowdsourcing 

platform. They were directed to a Qualtrics survey, and each participant rated 10 concepts on 21 dimensions 

on a 1-7 scale. Each scale was anchored by two polar adjectives (e.g., 1=Bad, 7=Good). Each concept-

dimension pair (e.g., dog: bad↔good) was rated by at least 10 raters.  

 

After each response, participants were also asked to indicate their confidence level in rating from just guessing 

(1) to very confident (5). These ratings were used to help construct stimuli for Experiment 3. 
 

Outcomes and Predictors 
We sought to predict the likelihood that people answer in a certain way using various measures of similarity 

(e.g., sensorimotor similarity, co-occurrence in context, abstract dimensional alignment, feature similarity) 

between X and the provided answer as a way to understand what kinds of similarities people rely on when 

performing cross-domain mappings. 

 
Outcome Measure.  

As in Experiment 1, we computed convergence rates for each prompt (a source-item – target-domain pair) as 

the proportion of people who provided identical responses.  

 

Predictors.  

Baseline probability:  To the extent that some items are more typical (or salient) of their respective category, 

people are more likely to produce them as a response regardless of the source. For example, to the extent that 

“dog” is a more typical animal than “platypus”, we expect more “dog” than “platypus” responses for “If X were 

an animal, it would be a…”. We therefore need to take into account the baseline likelihood of a person 

producing a given item. We did this by using baseline frequency as one of the predictors, defined as the 

proportion an item was mentioned by participants in the item elicitation task. For example, "dog” comprised  

38 out of 250 animal responses we recorded making its baseline probability 15.2%.  

 

Sensorimotor similarity: Cross-domain concepts could have similar perceptual/sensorimotor profiles (e.g., 

drum and thunder belong to different domains but are strikingly similar in auditory representation). We 

obtained sensorimotor profiles for 713 words in our dataset from the Lancaster Sensorimotor norms [28]. 

These norms contain sensorimotor strength ratings across six perceptual modalities (touch, hearing, smell, 

taste, vision, and interoception) and five action effectors (mouth/throat, hand/arm, foot/leg, head excluding 

mouth/throat, and torso). We computed a similarity score between the source word and each answer by 

computing the cosine-based similarity between the 11-dimensional vectors corresponding to the source words 

and answers. Zero cosine similarity corresponds to words whose sensorimotor profiles are orthogonal while 

larger similarities indicate that the words have related sensorimotor experience.  

 

Extended word associations using random walks: We obtained word associations from the “small world of 

words” (SWOW) mega-study [39]. Participants in that study were cued with one word and asked to provide up 

to three words the word made them think of. Instead of using the first-order word association based on direct 

associations (i.e., the probability of responding with the target word when given the source word as a cue), we 

examined indirect associations using a decaying random walk process [40]. Compared to direct (first-order) 

word association, extended word associations using random walks can identify both direct associates and 

more distance associations between words that are not directly linked [51]. Consistent with a spreading 

activation mechanism, the random walk considers both immediate neighbours of a word and indirect paths via 

chains of associates. As random walk distance between two nodes increases, the probability that a random 

walk starting at word1 and arriving at word2 decreases. For example, no one produced “hunter” when 

prompted with “tiger” and no one produced “lawyer” when prompted with “violin”. Yet, tiger→hunter has a 

much shorter random walk distance thus higher probability of arrival (0.23) than violin→lawyer (0.004).  

 



Word embedding similarities: Word embeddings allow for computing similarity between any pairs of words 

based on the similarity of the linguistic contexts in which they occur [52,53]. We obtained the semantic 

similarity between source concept (e.g., doctor) and participants’ answers (e.g., “piano” when mapping “doctor” 

to a musical instrument) by computing the cosine distance between embeddings that represent source 

concepts and target concepts derived from applying the fastText algorithm to the Wikipedia corpus [54].  

 

Dimensional similarities: We obtained concepts’ abstract meaning using the semantic differential technique 

described earlier. We computed the average rating of concepts on each dimension, which was used as entries 

for a 21-dimensional vector representing each word’s dimensional profile (e.g., Fig 1E). This allowed us to 

measure dimensional difference between two words by comparing their profiles which we did using cosine 

similarity.  

 

Feature-based similarities: The vast majority of cross-mapping trials included in this analysis had no shared 

semantic features as listed in existing semantic-feature norms [2,3], which meant feature-based similarity was 

mostly zero. We therefore did not use semantic feature-based similarity as a predictor. 

 

Results 
To understand what kinds of similarity people rely on when performing cross-domain mappings, we predicted 

convergence rates (the frequency of a provided response) from baseline convergence, word embedding 

similarity (cosine similarity), extended word association using random walks, sensorimotor-based similarity 

(cosine similarity), and semantic-differential based dimensional similarity. These similarities were entered as 

predictors in mixed-effects linear regression using lme4 package in R [55]. The model included by-participant 

and by-item random intercepts where items were defined as unique source-concept → pairs (e.g., dog → job). 

All predictors were zero-centered. Below, we present results only for trials for which we obtained semantic 

differential ratings. Analyses of all trials using the other five predictors—baseline probability, two-word 

association measures, word-embedding similarity, and sensorimotor similarity—are presented in the 

Supplementary materials (see Figure S1). 

 

The results are shown in Figure 3A. Baseline probability was, unsurprisingly, a strong predictor (𝛽 = 0.40, 𝑠𝑒 =

0.05, t = 7.50, 𝑝 <  .001). For example, dog was the most frequently named animal in the item elicitation task 

(baseline probability = 15.2%), and people frequently mapped things to “dog” (on average, X → dog had an 

8% convergence rate). Sensorimotor similarity was not a significant predictor of convergence (𝛽 = −0.05, 𝑠𝑒 =

0.05, t =  −1.10, 𝑝 = 0.27). This was surprising given that perceptual similarity was associated with the second 

highest convergence rate in Experiment 1. It’s probably due to the nature of such similarity relies on capturing 

perceptual details that are not very likely to be reflected in sensorimotor norms. Convergence was also 

predicted by a word-association-based measure—the length of a random walk from source-to-target: shorter 

distances corresponded to greater convergence (𝛽 = 0.22, 𝑠𝑒 = 0.07, t = 3.11, 𝑝 <  .01). Word embedding 

similarity also did not significantly predict convergence (𝛽 = 0.07, 𝑠𝑒 = 0.05, t = 1.3, 𝑝 = 0.13). It was, however, 

moderately correlated (r=.43) with random-walk based word associations. Excluding random-walk word-

association as a predictor led word-embedding similarity to become a significant predictor (𝛽 = 0.17, 𝑠𝑒 =

0.07, t = 2.43, 𝑝 = .01). Excluding word-embedding similarity as a predictor led random-walk word-association 

to become a stronger predictor (𝛽 = 0.23, 𝑠𝑒 = 0.07, t = 3.45, 𝑝 <  .001). Lastly, dimensional similarity was a 

significant predictor of convergence in free response. This was true both when it was the only predictor other 

than baseline probability (𝛽 = 0.13, 𝑠𝑒 = 0.04, t = 2.39, 𝑝 = .01) , and when it was entered alongside all the 

other predictors (𝛽 = 0.09, 𝑠𝑒 = 0.04, t = 2.12, 𝑝 =  .03) suggesting that people might do dimensional-based 

alignment such that concepts with similar projections on semantic differential dimensions were easier to be 

mapped onto each other.  

 
To summarize, in Experiment 2 we found that cross-domain alignment in a free-response task could be reliably 

predicted by 1) baseline frequencies, concepts with higher convergence without mapping also tend to have 

higher convergence with mapping, e.g., dog has the highest frequency when participants were asked to simply 

name an animal, and it’s also a highly convergent answer for various mappings towards animal. 2) extended 

word association using random walks:  words with higher contextual associations also tended to have better 

alignment, e.g., cow → farmer/lion → king in animal → job mapping. 3) dimensional similarity: people tended 

to align words from different semantic domains based on their similarity along (relatively) abstract dimensions. 

Consistent with Experiment 1, dimensional similarity leads to convergence to some extent by constraining the 



answers which are aligned on certain abstract dimensions. Despite its popularity as a major basis for 

alignment, it does not lead to the most converged answers --- and it probably shouldn’t be. We’ll further 

address this seeming paradox in the discussion.  

 

Experiment 3: How do different similarities predict goodness of statements “If a 
nurse were an animal, they would be a cat.”? 
 

In Experiment 2, we found that when asked to freely map a concept (e.g., dog) to a different semantic domain 

(e.g., job), people readily obliged, producing varied, but partially predictable answers. The design of the task 

limited us to studying cross-domain mappings that were produced by our participants. Another limitation is 

that participants sometimes produced mappings based on their stored knowledge (e.g., cow → milk), which 

weakens the predictive power of abstract alignment. In Experiment 3 we constructed our own statements (e.g., 

“If a dog were a musical instrument, it would be a guitar”) allowing us to parametrically vary the contribution 

of different semantic similarity measures. We then asked participants to indicate for each sentence how good 

they thought the mapping was. The task was similar to the aptness rating task used in [44]. This method 

allowed us to better isolate the contribution of different types of similarity and also allowed us to focus on 

cross-domain mappings that cannot be answered by stored knowledge, and to examine which specific 

dimensions (e.g., bad↔good, small↔large, masculine↔feminine) best predicted people’s endorsements of the 

goodness of each mapping.  For example, do dimensions that are more clearly applicable to a certain domain 

(e.g., animals have literal size) predict alignment more than dimensions whose appropriateness is more 

metaphorical (the size of a job is a more abstract, metaphorical construct).  

 

Participants. We recruited 132 participants from Amazon’s Mechanical Turk (61 Females, 67 Males, 4 Other 

gender, mean age = 36). We planned to exclude those who failed more than 1 (out of 3) catch trials, but none 

met this criterion.  
 

 
Figure 3. Standardized multiple regression coefficients and 95% Confidence Interval  for all predictors used in Experiment 2 (free-
response task) and Experiment 3 (goodness rating task). Positive values indicate that greater similarity predicts that the answer was 
provided by a larger proportion of participants (Experiment 2) or had a high goodness rating (Experiment 3).  

Materials.  

 

Choice of Source words 
We selected 15 words from each of the three domains used in Experiment 2 (animals, jobs, musical 

instruments). For each domain, we chose the 10 words with highest overall confidence ratings in the semantic 



differential task and 5 words with the lowest confidence ratings. For example, when rating various jobs along 

the 21 dimensions listed in Table 1, people were most confident in their ratings of “teacher” and least 

confident in their rating of “banker”. 

 

Choice of Target words 

For each source word, we selected a subset of the target words from those produced by participants in 

Experiment 2, parametrically varying the semantic differential distance between the source and target. For 

example, for statements mapping “dove” to a musical instrument, we selected four targets: “wind chimes” 

(which had the smallest distance, i.e., greatest alignment along the 21 tested dimensions shown in Table 1), 

“bell” (second quartile of semantic distance), “guitar” (third quartile), and “organ” (largest semantic distance).  

 

One shortcoming of this approach is that a short distance between two words can be obtained when 

participants provide intermediate ratings across many dimensions which they tend to do when they are not 

sure of how to respond, e.g., when rating an animal on a religious↔secular dimension. We therefore also 

computed the distance using only the 7 dimensions with the highest confidence for each domain (e.g., for 

animals, these would include small↔large and slow↔fast, but exclude cold↔hot and religious↔secular) and 

added the target word closest to the source word on these high-confidence dimensions if it was not already 

selected. This procedure generated 417 unique statements. 

 

Procedure: Each participant was shown approximately 70 statements of the form “If a(n) X were a Y, it would be 

a y” and asked to indicate “how good is this comparison” on a scale of 1 (terrible) to 7 (excellent). The 

comparisons included six source-to-target mapping pairs: animal ↔ job, animal ↔ instrument, job ↔ 
instrument). Each participant was shown only one type of mapping (e.g., only animal→job).   
 

The instructions included two examples: (1) If a cat were a job, it would be a manager, and (2) If an apple were 

an animal, it would be a giraffe.” The instructions acknowledged the oddness of the task, suggesting that 

despite the oddness, some of the comparisons are better than others: “Although these are both odd 

comparisons, you can probably more easily imagine a cat as a manager than an apple as a giraffe.” In addition 

to the experimental stimuli, three catch trials were interspersed to ensure participants were paying attention, 

e.g., when asked “Please choose the right-most option”, participants should choose the right-most option. 

 

Measures: We used the same predictors as in Experiment 2, with two exceptions. First, unlike Experiment 1 and 

2 which used a free-response measure, Experiment 3 uses fixed materials for all participants obviating the need 

to control for baseline frequency; there’s no theoretical reason to believe a mapping should be rated as better 

just because concepts involved are more frequent or come from small (e.g., colours) vs. larger (e.g., animal) 

domains.  

 

Results: To understand what makes a cross-domain mapping a good one, we predicted people’s goodness 

ratings from semantic differential similarity, word embedding similarity, extended word association using 

random walks, and sensorimotor similarity using an identical analytic framework as in Experiment 2.  

 

The regression coefficients are shown in Figure 3. Extended word associations (random walks in word-

association space) were positively associated with goodness (𝛽 = .13, 𝑠𝑒 = .02, 𝑝 <  .001) as were word 

embedding-based similarities between the source and target words (𝛽 = .09, 𝑠𝑒 = .02, 𝑝 <  .001). Unlike in 

Experiment 2, sensorimotor-based similarity was a significant, albeit weak, predictor (𝛽 =  .05 , 𝑠𝑒 = .02, 𝑝 <

 .01): words with more similar sensorimotor norms were judged to be better matches. Controlling for these 

three types of similarity, dimensional similarity was again a significant predictor of goodness rating (𝛽 =

.21, 𝑠𝑒 = .02, 𝑝 <  .001), with a substantially greater effect size than the other predictors. The effect of source 

and target dimensional similarity on goodness is also shown in Figure 4 which shows mean goodness averages 

for the four trial types that have the same source and target domains but vary the dimensional alignment 

between the source and target concepts. 

 



 
Figure 4. Average goodness rating for cross-domain mappings as a function of semantic differential distance between source and 
target words. As dimensional similarity decreased (from closest to farthest), so did people’s goodness ratings. Error bars correspond 
to standard errors of goodness rating for each quartile. 

The results so far show that pairs of words with more similar profiles on the 21 dimensions shown in Table 1 

are seen as better matches in a cross-domain mapping task. But which dimensions contribute most to this 

mapping? Perhaps it is determined primarily by similar valence. Or perhaps valence is irrelevant and it is the 

relatively more concrete dimensions such as size that are most important. Alternatively, it may be that which 

dimensions are most important depend on the semantic domain such that size is only relevant if mapping 

between domains that have literal size (e.g., animals and musical instruments, but not jobs).  

 

Recall that in addition to including target words that are closest along all 21 dimensions, we also included 

words that were closest only on the 7 dimensions that led to the highest confidence responses. Interestingly, 

statements containing source and targets words closest on all 21 dimensions (e.g., if a priest were a musical 

instrument, he/she would be a harp) were rated as better (M=3.91) than statements containing source and 

target words matched on dimensions with the highest confidence ratings (e.g., if a priest were a musical 

instrument, he/she would be a bass) (M=3.61), (𝑏 =  .3 , 𝑠𝑒 = .07, t = −4.33, 𝑝 <  .001), suggesting that the 

“low-confidence” dimensions may be playing a non-negligible part in cross-domain alignment.  

 

We next examined which dimensions contributed to the various cross-domain mappings. Intuitively, 

dimensions that make more literal sense for a specific domain may play a larger role. For example, it makes 

more sense to people to arrange various animals or instruments on a small ↔ large dimension, compared to a 

cheap ↔ expensive dimension. Is size more important when people map between items that have literal size 

(i.e., animals and musical instruments), or is it also implicated in the musical instrument↔jobs and 

animals↔jobs mappings, cases in which the source or target items do not (it would seem) include size as part 

of their representation. 

 

Rather than relying on confidence ratings from the same participants who generated the semantic differential 

ratings (which introduces some circularity to the analysis), we recruited an additional group of 40 participants 

from Amazon Mechanical Turk and asked them to indicate how meaningful is it to arrange 

“animals”,“jobs”,”musical instruments” on each dimension. The “meaningfulness” ranged from “makes no sense 

at all” (0) to makes a lot of sense (5). The meaningfulness of each dimension as applied to animals, jobs, and 

musical instruments is shown in Figure S 2. 

 

We next predicted participant’s goodness ratings from (1) the alignment on each individual dimension and 

correlated regression coefficients with the meaningfulness of that dimension as it applied to the source 

domain. As shown in Figure 5 the majority of dimensions are predicting cross-domain mappings in the 



expected direction4: the closer participants’ rating of two concepts on a particular dimension are, the better 

two concepts are aligned. Overall, dimensions that are most predictive are also more meaningful (𝛽 =

 .32 , 𝑠𝑒 = .09, t = 3.773, 𝑝 <  .001). For example, slow/fast was one of the most important dimensions for 

predicting animal→job mappings, while also being one of the most meaningful dimensions for animals. 

However, there were many exceptions. For example, cruel↔kind was rated as one of the least meaningful 

dimensions for both jobs and musical instruments, but it was among the most predictive dimensions when 

mapping musical instruments to jobs. We also checked if a dimension was more predictive if it had more 

similar meaningfulness in the source and target domains. For example, is size more predictive when mapping 

between musical instruments and animals given that it is meaningful to both, as compared to when the source 

or target domain includes jobs for which the size dimension is less meaningful. Difference in meaningfulness 

was unrelated to the importance of the dimension (𝛽 =  −.12 , 𝑠𝑒 = .09, t = −1.33, 𝑝 = 0.2). (see Figure S3).   

 

Figure 5. Coefficient plot for 21 dimensions when each dimension is used as an independent predictor (blue triangles) and 
meaningfulness of the source dimension (red circles) as rated by independent raters. Error bars show 95% CI of the coefficient 
estimate.  

 
 
 
 
 
 
4 We observed several cases such that aligning less well on certain dimensions predicted higher goodness ratings. We 

think this is because those dimensions are in “conflict” with other dimensions. For example, weak ↔ strong dimension 

in jobs →musical instrument negatively predicts goodness rating. This is potentially because two concepts that align 

well on weak ↔ strong tend to align worse on many other dimensions. E.g., thief and piano are both rated as 

moderately “strong”, but thief is rated as bad, silent, aggressive, and stupid, while piano is rated as good, loud, mild, 

and smart.  

 



To further examine the relative importance of various dimensions to cross-domain mappings, we predicted the 

goodness rating for each trial from alignment on each dimension simultaneously, allowing us to determine 

their unique contributions. We removed one predictor at a time and calculated the reduced chi-squared 

statistic. To avoid multicollinearity from including highly correlated dimensions, we computed composite 

scores for dimensions with correlations greater than r=0.7. Bad↔good, unpleasant↔pleasant, cruel↔kind, and 

ugly↔beautiful were collapsed into a single valence dimension. Small↔large, and light↔heavy were combined 

into a single magnitude dimension. Within each domain mapping, we ranked dimensions from the least 

meaningful (first quartile) to the most meaningful (fourth quartile). As shown in Figure 6 removing less 

meaningful dimensions reduced model fit to a similar extent as removing more meaningful dimensions. The 

two analyses just described appear to contradict one another. Figure 5 suggests that there’s a moderately 

positive relationship between meaningfulness and “importance” (as judged by standardized coefficient size). 

Figure 6 suggests that both meaningful and meaningless dimensions are roughly equally important. The 

difference between the two analyses is that in the first analysis (shown in Figure 5) each alignment on each 

dimension is entered into the model as a sole predictor. In the second analysis (shown in Figure 6) all 

dimensions are entered into the model simultaneously and so the contribution excludes shared variance. In the 

latter case, removing highly meaningful dimensions reduces model fit to a similar extent as removing less 

meaningful dimensions because the remaining predictors make up for much of the removed variance, 

suggesting that the predictive power of dimensional alignment is quite distributed rather than being 

concentrated in the most meaningful dimensions. 

 

 
Figure 6. The relationship between dimensional meaningfulness (with respect to source domain) and importance of that dimension to 
model fit. X-axis shows quartile of meaningfulness from least meaningful (1) to most meaningful (4). Y-axis shows the extent to which 
removing individual dimensions reduced model fit (chi-square statistic). Each dot represents a unique domain mapping-by-dimension 
combination. Dimensions most important (high Chi-square values) and least important within each quartile are labelled.  

In Experiment 3 we found that when people are asked to evaluate the “goodness” of cross-domain mappings 

rather than generate them de novo, people rate mappings as better if two concepts have 1) higher contextual 

associations (as reflected by larger extended word association using random walk and word embedding cosine 

similarities generated from large corpus) 2) higher sensorimotor similarities (albeit a weak effect) and 3) most 

critically, higher similarities along relatively abstract dimensions. Although more meaningful dimensions (e.g., 

animal size vs. religiosity) accounted for more variance on their own, removing less meaningful dimensions 

from the full model was as detrimental as removing more meaningful dimensions suggesting that these 

seemingly meaningless dimensions contribute to cross-domain alignment. 

 
General Discussion 
We asked people to perform an odd task: map from one domain (e.g. musical instruments) to another (e.g., 

jobs). Despite producing many idiosyncratic answers (e.g., saxophone → web developer, trumpet → works in 

dog training places), people often provided similar, in many cases identical answers. For example, when asked 

“If a flute were a job” 20% of people said “teacher”, a much higher rate than the baseline probability (7%) of 

listing teacher as a job when asked to list jobs. Mappings between some domains are easy to explain. For 

example, when asked to map animals to colours, people predictably list the colour characteristic of that animal, 

treating the task as a type of constrained feature-elicitation task. However, this strategy is ineffective when 



mapping between, e.g., jobs and musical instruments and yet people are able to converge surprisingly often. 

How do they do this and what might it mean for how we represent concepts/word meanings? 

 

In Experiment 1 we found abstract alignment to be the most popular basis for alignment compared to other 

alignment types such as word association, perceptual similarity, common mediator, etc. We then showed 

across two experiments that a consistent predictor of people’s responses when asked to generate (Experiment 

2) or evaluate (Experiment 3) cross-domain mappings, is alignment between source and target concepts in an 

abstract semantic space. This semantic space is not only defined by abstract semantic dimensions such as 

valence (evaluation), activity, and potency—the three general semantic factors originally identified by Osgood 

[43], but also by dimensions such as gender, religiosity, size, and age – even when these do not apply in a 

literal way, e.g., jobs do not have a literal size. Removing these seemingly meaningless dimensions from the 

model reduced model fit to a similar extent as removing the more meaningful dimensions.5 Put another way: 

when asked to indicate their confidence in rating musical instruments along stupid↔smart, people indicate 

that they have low confidence in their answers and that stupid↔smart is not a meaningful dimension for 

musical instruments. However, people’s placements along these ostensibly meaningless dimensions are 

actually somewhat systematic (see Figure S4A). Their answers may be informed by stereotypes about what kind 

of people are likely to play different instruments, or because musical genres that use certain instruments are 

accorded high prestige (e.g., violins, harps, and flutes being used in classical music). Either way, when mapping 

from, e.g., musical instruments to jobs, people were more likely to list jobs that were rated (by other 

participants) as having similar values along the stupid↔smart dimension (Exp. 2) and rated mappings with 

similar values along this dimension as being better (Exp. 3). It is interesting to compare how people rate 

musical instruments along the stupid↔smart dimension to soft↔hard, another dimension they indicate (see 

Figure S3 in supplementary material) to not be very meaningful for musical instruments. People also produce 

systematic ratings, rating bugles and trombones as hard, but moving downward (from hard to soft) one can 

see interesting cases of bimodality (see Figure S4B): some people think flutes are soft; others think they are 

hard; the same goes for cellos and pianos. As confirmed by subsequent investigations, these differences are 

due to some people interpreting the dimension in a more literal sense—the hardness of the material from 

which the instrument is made—while others interpret it in a more abstract, metaphorical sense—the hardness 

of the sound the instrument makes.6 In short: the reason there is signal in seemingly meaningless dimension is 

that they are not, in fact, meaningless. 

 

Dimensional similarity was found to be a type of similarity that predict convergence rates in Experiment 2, and 

the best predictor of goodness ratings in Experiment 3. At the same time, explanations relying on dimensional 

similarity offered in Experiment 1, despite being very frequent, had relatively low convergence, i.e., there was a 

larger variety of such responses. Is there a paradox here? We think not. What is likely happening is that some 

types of similarities are more constraining than others. For example, constraining answers to “If a cat were a 

musical instrument, it would be a___” to musical instruments having the largest word association to “cat”, 

might generate high convergence (i.e., similar responses). Constraining answers to this prompt to musical 

instruments having the largest dimensional similarity to “cat” might lead to lower mean convergence insofar as 

 
 
 
 
 
 
5 Explaining cross-domain mapping using semantic differentials is reminiscent of an theory of metaphor known as 

domain-interaction theory which proposed that the dimension-structure of the source domain is mapped onto the 

dimensional structure of the target. [44–47]. For example, in a wolf is a shark among fish, wolf is close to shark in a two-

dimensional factor space (a prestige factor, and a power-aggression factor), implying that both are high in aggression 

and strength. Our findings can be thought of as a larger-scale test of this idea, establishing the specific role of 

dimensional alignment (while controlling for other measures of similarity), and investigating the contribution of 

dimensions that are seemingly irrelevant for the mapping. 
6 We observed similar bimodality when asking people to rate jobs on a low↔high dimension: some people rated it 

according to a metaphorical interpretation (low vs. high prestige) while others rated it according to whether the job is 

literally high (e.g., pilot) vs. low (e.g., miner). 
 



there are different musical instruments may have equally high dimensional similarity, albeit on different 

dimensions.  

 

Beyond demonstrating that people are able to map between different semantic dimensions with apparent 

ease, and that people’s mappings are partially predictable, our results suggest that concrete concepts/word 

meanings like “piano” and “giraffe” are readily placed along relatively abstract dimensions even when they 

seem quite meaningless, such as placing musical instruments along stupid↔smart or animals along 

religious↔secular. One interpretation is that the representational space within which these concepts reside 

contains task-independent information corresponding to these dimensions. Alternatively, the smartness of an 

instrument or the religiosity of an animal may only be defined when people are asked to make an explicit 

dimension rating as they were when indicating where the words fall along various semantic dimensions. It may 

also emerge as a consequence of people projecting conceptual representations into a common semantic 

space for the purposes of mapping between disparate domains. We cannot distinguish between these 

possibilities with our current data. 

 

A final question is where does information allowing people to project, e.g., musical instruments onto the 

stupid↔smart dimension come from? We speculated earlier that it may reflect social stereotypes, but this just 

pushes the question up a level: how do people learn those stereotypes? We were curious whether some of the 

information may be encoded directly in the statistics of language such that, e.g., “elephant” is more likely to 

occur in shared contexts with words like “large” than words like “small” or, as shown previously, different jobs 

are differentially associated with masculine and feminine contexts [56]. 

 

To find out if people’s projections of words onto the 21 dimensions listed in Table 1 were learnable purely 

from language, we used the method described in [57] [see also 56, and 58 for earlier, but more limited uses of 

this technique] to project words onto the dimension formed by the anchor labels. For example, to project 

“elephant” onto the small↔large dimension, we compute the cosine similarity between the vector representing 

“elephant” and the size vector obtained by subtracting “large” from “small”. The correlations between each 

word’s place along the 21 dimensions as rated by people and estimated from language statistics are shown in 

Table 2. The largely positive correlations suggest that distributional patterns in language contain information 

that people could, in principle, use to learn where various words fall on these dimensions (Table S1 shows the 

correlations broken down by jobs, animals, and musical instruments).  

 

The existence of these positive correlations does not mean that people learn this information from language. 

For information readily accessible from vision (e.g., one’s knowledge that elephants are large animals), 

resorting to learning from language seems unnecessary. For other features, however, such as the gender of 

jobs (or, for that matter, the stereotypical gender of animals; people rate dinosaurs as predominantly male and 

hummingbirds as predominantly female), exposure to linguistic contexts may be playing an important role. 

Even when the information is, in principle, readily available through perception, exposure to language statistics 

may be playing an important role in aligning people’s conceptual representations in the face of varied 

perceptual experiences, helping to explain why blind people’s knowledge of visual information is surprisingly 

similar to sighted people’s [59–61]. 

 
Table 2. Correlations between embedding-simulated dimensions and human-rated dimensions. 

Dimension 

Correlation between word-

embedding-based semantic 

differentials and human 

ratings p value 

Masculine/feminine 0.52 <.001 

Silent/loud 0.50 <.001 

Mild/aggressive 0.46 <.001 

Lazy/industrious 0.46 <.001 

Ugly/beautiful 0.39 <.001 

Unpleasant/pleasant 0.39 <.001 

Small/large 0.37 <.001 

Bad/good 0.37 <.001 

Dull/exciting 0.36 <.001 

Stupid/smart 0.33 <.001 



 

 

Conclusion 
How do people project concrete concepts between semantic domains? Using two free-response tasks and a 

goodness-rating task, we show that people do cross-domain mappings between relatively concrete concepts 

by aligning on abstract dimensions. Cross-domain mappings that have been studied in the context of 

metaphors have emphasized the importance of mapping between a more concrete source domain onto a 

more abstract target domain so that the abstract concept can be understood as an entailment of a more 

concrete concept [62]. Our results show that people tend to converge in how they map between concrete 

domains and that they do so by either making use of abstract information encoded as part of the concrete 

concepts that are being mapped, or by actively projecting these concepts into a more abstract semantic space 

so that they can be aligned.  
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Young/old 0.29 <.001 

Slow/fast 0.28 <.001 

Cheap/expensive 0.28 <.001 

Dry/wet 0.26 <.001 

Weak/strong 0.25 .01 

Light/heavy 0.25 .01 

Cold/hot 0.15 .11 

Passive/active 0.15 .12 

Cruel/kind 0.14 .42 

Soft/hard 0.07 .48 

Religious/secular -0.25 .01 
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