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An amplitude analysis of flavor-untagged B0
s → J=ψpp̄ decays is performed using a sample of 797� 31

decays reconstructed with the LHCb detector. The data, collected in proton-proton collisions between 2011
and 2018, correspond to an integrated luminosity of 9 fb−1. Evidence for a new structure in the J=ψp and
J=ψ p̄ systems with a mass of 4337þ7

−4
þ2
−2 MeV and a width of 29þ26

−12
þ14
−14 MeV is found, where the first

uncertainty is statistical and the second systematic, with a significance in the range of 3.1 to 3.7σ,
depending on the assigned JP hypothesis.
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The observation of pentaquark candidates (Pc) in J=ψp
final states produced inΛ0

b → J=ψpK− decays [1–3] by the
LHCb experiment has stimulated interest in exotic spec-
troscopy. Recently, evidence for a structure in the J=ψΛ
invariant-mass spectrum, consistent with a charmoniumlike
pentaquark with strangeness, was found in Ξ−

b → J=ψΛK−

decays [4]. The mass of these states is just below threshold
for the joint production of a charm baryon and a charm
meson, i.e., the ΣcD̄� and the ΞcD̄� thresholds for the J=ψp
and the J=ψΛ resonances, respectively. The mass separa-
tion from these thresholds might provide useful information
for the phenomenological interpretation for these states.
Proposed interpretation can be grouped into three classes:
QCD-inspired models [5,6], residual hadron-hadron inter-
action models [7], and rescattering effects particle [8].
Additional measurements in different productions and
decay channels are crucial to disentangle the various
models [9].
The B0

s → J=ψpp̄ decay was observed for the first time
by the LHCb experiment in 2019 [10]. This channel may
have sensitivity to the resonant Pc structures [1,2] within
the J=ψp invariant-mass range of ½4034; 4429� MeV.
Additionally, it could proceed via an intermediate glueball
candidate fJð2220Þ decaying to pp̄ [11]. Unlike Λ0

b →
J=ψpK− decays receiving a relatively large contribution
from the intermediate excited Λ resonances, no conven-
tional states are expected to be produced in the B0

s decay,
offering a clean environment to search for new resonant
structures. Baryonic B0

ðsÞ decays also allow for a study of

the dynamics of the baryon-antibaryon system and its
characteristic threshold enhancement, the origin of which
is still to be understood [12].
In this Letter, an amplitude analysis of B0

s → J=ψpp̄
decay is presented, including a search for pentaquark and
glueball states, using proton-proton (pp) collision data at
center-of-mass energies of 7, 8, and 13 TeV, corresponding
to a luminosity of 9 fb−1, collected between 2011 and
2018. The measurement is performed untagged, such that
decays of B0

s and B̄0
s are not distinguished and analyzed

together.
The LHCb detector is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5, described in
detail in Refs. [13–16]. The online event selection is
performed by a trigger [17], comprising a hardware stage
based on information from the muon system which selects
J=ψ → μþμ− decays, followed by a software stage that
applies a full event reconstruction. The software trigger
relies on identifying J=ψ decays into muon pairs consistent
with originating from a B meson decay vertex detached
from the primary pp collision point.
Samples of simulated events are used to study the

properties of the signal and control channels. The pp
collisions are generated using PYTHIA [18] with a specific
LHCb configuration [19]. Decays of hadronic particles and
interactions with the detector material are described by
EvtGen [20], using PHOTOS [21], and by the GEANT4 toolkit
[22,23], respectively. The signal B0

s → J=ψpp̄ decays are
generated from a uniform phase space distribution, while
the B0

s → J=ψϕð→ KþK−Þ control mode is generated
according to the model of Ref. [24].
The event selection follows the same strategy as

Ref. [10]. Signal B0
s candidates are formed from two pairs

of oppositely charged tracks. The first pair is required to be
consistent with muons originating from a J=ψ meson with a
decay vertex significantly displaced from its associated
primary pp vertex (PV). For a given particle, the associated

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 128, 062001 (2022)
Editors' Suggestion

0031-9007=22=128(6)=062001(11) 062001-1 © 2022 CERN, for the LHCb Collaboration

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.062001&domain=pdf&date_stamp=2022-02-07
https://doi.org/10.1103/PhysRevLett.128.062001
https://doi.org/10.1103/PhysRevLett.128.062001
https://doi.org/10.1103/PhysRevLett.128.062001
https://doi.org/10.1103/PhysRevLett.128.062001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


PV is the one with the smallest impact parameter χ2IP,
defined as the difference in the vertex fit χ2 of a given PV
reconstructed with and without the track under consider-
ation. The second pair is required to be consistent with
protons originating from the muon-pair vertex. A kinematic
fit [25] to the B0

s candidate is performed, with the dimuon
mass constrained to the known J=ψ mass [26]. The
selection is optimized using multivariate techniques [27]
trained with simulation and data. Simulated events are
weighted such that the distributions of momentum p,
transverse momentum pT , and number of tracks per event
for B0

s candidates match the B0
s → J=ψϕ control-mode

distributions in data. In simulation the particle identifica-
tion (PID) variables for each charged track are resampled as
a function of its p, pT , and the number of tracks in the event
using Λþ

c → pK−πþ and D�þ → D0ð→ K−πþÞπþ calibra-
tion samples from data [28]. The selection consists of two
boosted decision tree (BDT) classifiers. The first classifier,
BDTsel, is a selection trained on B0

s → J=ψϕ simulation
and sideband data with the J=ψpp̄ invariant mass above
5450 MeV using the p, pT , and χ2IP variables of the B0

s

candidate, the χ2 probability from the kinematic fit of the
candidate, and the impact parameter distances of the two
muons. The second classifier, BDTPID, is trained on B0

s →
J=ψpp̄ simulation and sideband data using proton iden-
tification variables: the hadron PID from the ring-imaging
Cherenkov detectors, the p, pT , and χ2IP of the protons. The
BDTPID output selection criterion is chosen by maximizing
the figure of merit S2=ðS þ BÞ3=2, where S and B are the
signal and background yields in a region of �10 MeV
around the B0

s mass peak. These are determined from a fit to
the J=ψpp̄ invariant-mass distribution in data after the
BDTsel selection, multiplied by the efficiency of the
BDTPID output requirement, obtained from simulation
and from sideband data, respectively.
After applying these selection criteria, a maximum-

likelihood fit is performed to the J=ψpp̄ invariant-mass
distribution, shown in Fig. 1, yielding 797� 31 B0

s signal
decays. The B0

s signal shape is modeled as the sum of two
Crystal Ball [29] functions sharing a common peak
position, with asymmetric tails describing radiative and
misreconstruction effects. The signal-model parameters are
determined from simulation and only the B0

s peak position
is allowed to vary in the fit to data. The combinatorial
background is modeled by a first-order polynomial with
parameters determined from the fit to data. The B0 →
J=ψpp̄ component has the same shape as the B0

s signal.
The combinatorial-background fraction in the B0

s signal
window of 3σ around the mass peak (½5357; 5378� MeV) is
estimated to be ð14.9� 0.6Þ%, where σ ≈ 3.5 MeV is the
resolution of the reconstructed invariant mass. The
mðJ=ψpÞ and mðJ=ψp̄Þ invariant mass distributions of
the reconstructed B0

s candidates in the B0
s signal region are

shown in the bottom row of Fig. 2 (black dots), where hints

of structure in the region around (4.3–4.4) GeVare present.
This Letter investigates the nature of these enhancements,
which are not compatible with the pure phase-space
hypothesis.
An amplitude analysis of the B0

s candidates is performed
under the assumption of CP symmetry conservation; i.e.,
the dynamics is the same in B0

s and B̄0
s decays. Three
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FIG. 1. Invariant-mass distribution mðJ=ψpp̄Þ for recon-
structed signal candidates; the result of the fit described in the
text is overlaid.
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FIG. 2. One-dimensional projections of the angular ðcos θμ;
cos θp;φÞ and invariant-mass distributions ½mðpp̄Þ; mðJ=ψpÞ;
mðJ=ψp̄Þ�, superimposed with the results of the fit from the
baseline model (blue) and the default model (red) comprising a
NR term and the Pc contribution.
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interfering decay sequences are considered in the amplitude
model: B0

s → J=ψXð→ pp̄Þ, B0
s → Pþ

c ð→ J=ψpÞp̄, and
B0
s → P−

c ð→ J=ψp̄Þp, all followed by a J=ψ → μþμ−

decay. These sequences are labelled as the X, Pþ
c , and

P−
c chains, respectively. Since the data sample is not flavor

tagged, the distribution of the candidates in the phase space
is by construction symmetric for J=ψp and J=ψp̄ final
states, and therefore the analysis is sensitive to the sum of
possible contributions from Pþ

c and P−
c pentaquark candi-

dates, denoted as Pc in the following. Because of the small
sample size and since the B0

s or B̄0
s flavor is not identified,

there is no sensitivity to different couplings for the Pþ
c and

P−
c states, which are constrained to be equal, up to a phase

difference. The amplitude model is based on the helicity
formalism of Refs. [30,31], which defines a consistent
framework for propagating spin correlations through rela-
tivistic decay chains. To align the spin of the different
decay chains, the prescription in Ref. [32] is followed.
Details about the amplitude definition are given in the
Supplemental Material [33].
Candidates in the B0

s signal region are used to perform an
amplitude fit in the four-dimensional phase space ðmpp̄;  ΩÞ.
This phase space is defined by the invariant mass mpp̄ of

the pp̄ pair and  Ω ¼ ðθp; θμ;φÞ, where θp, θμ are the two
helicity angles of the p and the μ− in the X and J=ψ rest
frame, respectively, and φ is the azimuthal angle between
the decay planes, of the μ−μþ and the pp̄ pairs. The
distributions of ðmpp̄; cos θμ; cos θp;φÞ, together with the
mðJ=ψpÞ and mðJ=ψp̄Þ invariant-mass projections, are
shown in Fig. 2 for selected candidates.
The amplitude fit minimizes the negative log-likelihood

function,

−2 logLð  ωÞ ¼ −2
X

i

log½ð1 − βÞPsigðmpp̄;i;Ωij  ωÞ

þ βPbkgðmpp̄;i;ΩiÞ�; ð1Þ

where the total probability density function (PDF) calcu-
lated for ith candidate has a signal Psig and a background
Pbkg component, where β is the fraction of background
events observed within the B0

s signal window. The signal
PDF is proportional to the matrix element squared,
jMðmpp̄;i;Ωij  ωÞj2, and depends on the fit parameters  ω,
i.e., the couplings, the masses, and the widths, which define
the contributing resonances:

Psigðmpp̄;i;Ωij  ωÞ

≡ 1

Ið  ωÞ jMðmpp̄;i;Ωij  ωÞj2Φðmpp̄;iÞϵðmpp̄;i;ΩiÞ: ð2Þ

The phase-space element is Φðmpp̄;iÞ ¼ j  pjj  qj, where  p is
the momentum of the X system in the B0

s rest frame and  q is
the proton momentum in the X rest frame. The efficiency,

ϵðmpp̄;i;ΩiÞ, is included in the PDF, and is parametrized by
a Legendre polynomial expansion on the four-dimensional
phase space. The denominator, Ið  ωÞ, normalizes the
probability. The fit fractions of each signal component
are defined as the corresponding PDF integral divided
by Ið  ωÞ. The background contribution Pbkg is parametri-
zed by the product of one-dimensional Legendre poly-
nomials describing candidates in the B0

s sideband region
of ½5420; 5700� MeV.
No well-established resonances are expected either in the

pp̄ or in the J=ψp and J=ψp̄ channels. However, some
resonances could potentially decay into pp̄ [26], e.g., the
fJð2220Þ [34] and the Xð1835Þ [35,36]; thus they have
been included in alternative models. The simplest model
used to fit the data has no resonant contributions in the Pþ

c ,
P−
c , and X decay chains, and is denoted as the baseline

model. This model includes a nonresonant (NR) contribu-
tion in the X decay sequence with spin-parity quantum
numbers equal to JP ¼ 1−, which has S-wave terms in both
its production and decay. Indeed, due to the low Q value of
the decay, the S-wave contribution is expected to be favored
since higher values of orbital momentum are suppressed.
Models including NR contributions with different quantum
numbers (i.e., JP ¼ 0�; 1þ) are excluded because their
−2 logL values are significantly worse than that of the
JP ¼ 1− hypothesis.
Because of the limited sample size, the baseline model is

described by two independent LS couplings for both B0
s →

J=ψX and X → pp̄ decays, where L is the decay orbital
angular momentum and S is the sum of spins of the decay
products. Fixing the two lowest orbital momentum cou-
plings as the normalization choice and three parameters,
which are consistent with zero, reduces the number of free
parameters to three.
The fit results of the baseline model are shown in Fig. 2.

The baseline model does not describe the data distribution,
with a χ2 goodness-of-fit test result of χ2=d:o:f: ¼ 64=38
corresponding to a p value of 4 × 10−5. Therefore, two
resonant contributions from Pþ

c and P−
c are added, with

identical masses, widths, and couplings. First, the Pcð4312Þ
state previously observed by the LHCb experiment in the
Λ0
b → J=ψpK− analysis [2] is included in the model with

mass and width fixed at their known values. The broad Pc
structure with a mass around 4380 MeV, observed in 2015
[1], is not considered in this fit, since the helicity formalism
used in Ref. [37] requires modifications in order to properly
align the half-integer spin particles of different decay
chains and, thus, those results need to be confirmed with
an updated analysis of Λ0

b → J=ψpK− data [38,39]. In this
analysis no evidence for the Pcð4312Þ state is found since
the p value, computed from the−2Δ logL of the alternative
fit with respect to the default model, is measured to be 0.5.
Exploiting the CLs method [40], an upper limit on the
modulus of its coupling is set to 0.043 at 90% of confidence
level, which corresponds to a fit fraction of 2.86%. A model
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with a new P�
c state given a free mass and width is chosen

as the default model. Different spin-parity hypotheses
for the Pc states are investigated, i.e., JP ¼ 1=2� and
JP ¼ 3=2�. Because of a limited sample size, only the
lowest values of L are considered and the same coupling is
assumed for all JP hypotheses, resulting in two free
parameters: the modulus AðPcÞ and the phase ϕðPcÞ of
the coupling. The seven fit parameters  ω contain the
baseline model parameters, see Eq. (2), the coupling
½AðPcÞ;ϕðPcÞ�, the mass, and width of the Pc state.
The fit result for the JP ¼ 1=2þ hypothesis of the Pþ

c

state is shown in Fig. 2. The χ2=d:o:f: is 36.7=36.8, where
the number of degrees of freedom (d.o.f.) is determined
from fits to the χ2 distribution extracted from pseudoexperi-
ments. The statistical significance is estimated from pseu-
doexperiments generated with the baseline model and fitted
with the default model, using amplitude parameters deter-
mined by the fit to data. The mass and width of the Pc states
are not defined in the baseline model, thus multiple fits to
the same pseudodata are performed to account for the look-
elsewhere effect, scanning the initial mass value in intervals
of size 50 MeV. The test statistic t is built as the maximum
of the −2 logL difference between the baseline and the
default model [41] among all the fits obtained by scanning
the initial mass values. The p value is computed using a
frequentist method as the fraction of pseudoexperiments
with t larger than the tdata value from the fits to data. The p
value ranges between 0.02% and 0.2% for different JP

hypotheses, the lowest being associated to 1=2þ and the
highest to 3=2þ, as reported in the Supplemental Material
[33]. These p values correspond to a signal significance in
the range of 3.1 to 3.7σ, providing evidence for a new
pentaquarklike state. Using the CLs method [40], none of
the JP hypotheses considered can be excluded at 95% con-
fidence level.
The hypothesis of a glueball state with mass equal to

2230 MeVand width of around 20 MeV [11] is also tested,
by adding to the default model a resonance in the X decay
chain with fixed mass and width. No evidence of fJð2220Þ
is observed, as the fit with this contribution gives a p value,
computed from the −2Δ logL with respect to the default
model, of 0.75 and an associated complex coupling
of ½−0.04� 0.09;−0.06� 0.16�.
Systematic uncertainties are evaluated for the mass,

width, coupling, and fit fractions of the sum of the P�
c

contributions. For each source of uncertainty, pseudoex-
periments are generated according to the alternative model
with the same sample size as in data. The fit to such
pseudoexperiments is performed using the default model.
The systematic uncertainties, listed in Table I, are assigned
as the mean of the residual distributions between the fitted
and the default parameter results. The main contributions
are due to different NR models for the X decay chain,
alternative JP hypotheses for the Pc state, and possible
mismodeling of the efficiency distribution. The systematic

uncertainty associated to the NR model is obtained includ-
ing, in addition to the NR term with JP ¼ 1− and lowest
values of L allowed, a P-wave resonant contribution with
JP ¼ 0−, modeled with a Breit-Wigner line shape in order
to account for possible resonances, such as the Xð1835Þ
[35,36], decaying to a pp̄ final state. Since none of the JP

hypotheses investigated for the P�
c state can be excluded,

an additional systematic uncertainty is assigned as the
difference between the least and the most significant
hypotheses. Finally, the uncertainty associated with the
efficiency parametrization is evaluated by summing two
contributions. The first is obtained by replacing the default
efficiency map with one determined from simulation of
different data-taking conditions, and the second by using a
parametrization given by the product of one-dimensional
functions of the considered fit variables. Other systematic
uncertainties include alternative parametrization of the
background shape and the uncertainty in the background
normalization, which is varied within its statistical uncer-
tainty. The background is parametrized using data in a
sideband region around the B0

s invariant-mass peak
with mðJ=ψpp̄Þ ∈ ½5300; 5350� MeV and mðJ=ψpp̄Þ ∈
½5420; 5460� MeV, to account for variations of the back-
ground as a function of the invariant mass. The default
value of the hadron radius size for the Blatt-Weisskopf
coefficients [42], equal to 3 GeV−1, is replaced by two
alternate values, 1.5 and 5 GeV−1. Fit biases in the para-
meters estimation are extracted from the residual distribu-
tion of the generated and fitted parameters of pseudoexperi-
ments based on the default model. Systematic uncertainties
from orbital momentum for the NR, Pc contributions, and
invariant-mass resolution are found to be negligible. More
details about systematic uncertainties can be found in the
Supplemental Material [33]. The final significance includ-
ing systematic uncertainties is equal to 3.1σ, which is the
minimal value among the different sources of systematic
uncertainty, as reported in Table I.

The mass and width of this new pentaquarklike state are
measured to be

TABLE I. Systematic uncertainties associated to the mass MPc

(in MeV), width ΓPc
(in MeV), modulus of coupling AðPcÞ, fit

fractions fðPcÞ (in %), p values, and associated significance (σ)
of the P�

c state.

Source MPc
ΓPc

AðPcÞ fðPcÞ p (%) σ

NR(X) model 0.1 1.4 0.013 6.4 0.003 4.2
JPðPcÞ assignment 2 12 0.100 5.5 0.2 3.1
Efficiency 0.2 4 0.012 0.4 0.001 4.4
Background 0.1 2 0.001 0.7 0.001 4.3
Hadron radius 0.7 4 0.034 1.7 0.02 3.7
Fit bias þ0.2

−0.1
þ5
−2

þ0.040
−0.040 � � � � � � � � �

Total 2 14 0.11 8.6 � � � 3.1
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MPc
¼ 4337þ7

−4
þ2
−2 MeV;

ΓPc
¼ 29þ26

−12
þ14
−14 MeV; ð3Þ

where the first uncertainty is statistical and the second
systematic. The analysis of flavor-untagged B0

s decays is
not sensitive to the Pþ

c and P−
c contributions separately;

therefore, a single coupling is determined, which has
modulus AðPcÞ ¼ 0.19þ0.19

−0.08
þ0.11
−0.11 and phase ϕðPcÞ consis-

tent with zero, corresponding to a fit fraction of ð22.0þ8.5
−4.0 �

8.6Þ% for the Pc states. Because of the limited sample size,
it is not possible to distinguish among different JP quantum
numbers. A state compatible with this Pc state is predicted
in Ref. [43] with JP ¼ 1=2þ.
In conclusion, an amplitude analysis of B0

s → J=ψpp̄
decays is presented, using data collected with the LHCb
detector between 2011 and 2018, and corresponding to an
integrated luminosity of 9 fb−1. No evidence is seen for
either a Pc state at a mass of 4312 MeV [2] or the glueball
state fJð2220Þ predicted in Ref. [11]. Unlike in other B
decays [44–47], no threshold enhancement is observed in
the pp̄ invariant-mass spectrum, which is well modeled by
a nonresonant contribution. Evidence for a Breit-Wigner
shaped resonance in the J=ψp and J=ψ p̄ invariant masses
is obtained with a statistical significance in the range of 3.1
to 3.7σ, depending on the assigned JP hypothesis.
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dAlso at Università di Milano Bicocca, Milano, Italy.
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xAlso at Università della Basilicata, Potenza, Italy.
yAlso at Università di Urbino, Urbino, Italy.

PHYSICAL REVIEW LETTERS 128, 062001 (2022)

062001-11


