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Abstract 

Additively manufactured (AM) metallic materials often comprise as-printed dislocation cells 

inside grains. These dislocation cells can give rise to substantial microscale internal stresses in 

both initial undeformed and plastically deformed samples, thereby affecting the mechanical 

properties of AM metallic materials. Here we develop models of microscale internal stresses in 

AM stainless steel by focusing on their back stress components. Three sources of microscale back 

stresses are considered, including the printing and deformation-induced back stresses associated 

with as-printed dislocation cells as well as the deformation-induced back stresses associated with 

grain boundaries. We use a three-dimensional discrete dislocation dynamics model to demonstrate 

the manifestation of printing-induced back stresses. We adopt a dislocation pile-up model to 

evaluate the deformation-induced back stresses associated with as-printed dislocation cells. The 

extracted back stress relation from the pile-up model is incorporated into a crystal plasticity model 

that accounts for the other two sources of back stresses as well. The crystal plasticity finite element 

simulation results agree with the experimentally measured tension-compression asymmetry and 
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macroscopic back stress, the latter of which represents the effective resultant of microscale back 

stresses of different origins. Our results provide an in-depth understanding of the origins and 

evolution of microscale internal stresses in AM metallic materials.  

These authors contributed equally to this work.  

*Corresponding author email: ting.zhu@me.gatech.edu  

 

1. Introduction 

Additively manufactured (AM) alloys often exhibit unconventional microstructures compared 

to their counterparts produced by traditional metallurgical routes [1-3]. For example, the extreme 

processing conditions of additive manufacturing by laser powder bed fusion (LPBF) lead to large 

temperature gradients and rapid cooling that can result in highly non-equilibrium microstructures 

such as solidification cells inside grains [2, 4]. The chemical composition in cell walls is different 

from that in cell interiors. Sometimes cell walls are decorated with oxide nanoprecipitates. As a 

result, the cell walls can trap dislocations and serve as a scaffold to form “as-printed dislocation 

cells” [5, 6]. Similar as-printed dislocation structures are also observed in AM metals [7, 8] and 

alloys without chemical cells [9]. These as-printed dislocation cells and structures hinder 

dislocation glide during plastic deformation, thereby affecting the mechanical properties of AM 

metallic materials [9, 10].  

The mechanics of as-printed dislocation structures has been studied in terms of microscale 

internal stresses [9], which refer to the microscopically inhomogeneous stress distribution inside a 

material. The internal stress is sometimes called the residual stress in the literature [11]. Here we 

use the term “internal stress” instead of “residual stress”, considering that the internal stress not 

only arises in as-printed samples without loading, but also evolves with plastic deformation under 

loading [12]. Generally, the microscale internal stresses are classified as belonging to two major 

types: intergranular and intragranular stresses [13]. The intergranular internal stresses result from 

strain incompatibility between grains, and they self-equilibrate over a length scale of multiple 

grains. In contrast, the intragranular internal stresses arise from the dislocation structures and 

associated geometrically necessary dislocations (GNDs) inside grains. These GNDs produce long-
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range, directional internal stresses that self-equilibrate over cells via constituent back and forward 

stresses, giving rise to the kinematic hardening and Bauschinger effects [14-18]. The internal 

stresses can be characterized in terms of their effect on plastic flow and work hardening processes 

through a macroscopic back stress, which the effective resultant of various microscale back 

stresses stemming from different types of structural heterogeneity [17]. The macroscopic back 

stress can be experimentally measured from the unloading branch of the stress-strain curve using 

the Dickson’s method [19].  

Recently, Chen et al. [9] conducted an experimental study of microscale internal stresses in 

AM 316L austenitic stainless steel. The measured 0.2% offset yield strength was around 540 MPa, 

which is two to three times that of as-cast/wrought stainless steel. In particular, they measured a 

pronounced difference in tensile and compressive yield strengths, and indicated that such a tension-

compression asymmetry was governed by the back stresses associated with printing-induced 

dislocation structures. They also measured substantial macroscopic back stresses during loading 

and attributed the major source of these back stresses to the deformation-induced dislocation 

structures. To enable an in-depth understanding of these experimental results, here we develop 

models to account for different sources of microscale back stresses in AM 316L stainless steel. 

Our three-dimensional (3D) discrete dislocation dynamics (DDD), dislocation pile-up, and crystal 

plasticity finite element (CPFE) simulations capture these microscale internal stresses in the form 

of back and forward stresses associated with dislocation structures and grain boundaries. The 

CPFE results are compared with the macroscopic back stress and tension-compression asymmetry 

from experimental measurements. Our work provides mechanistic insights into the origins and 

evolution of microscale internal stresses in AM metallic materials. 

2. Internal stresses in as-printed dislocation cells  

Figure 1(a) displays a scanning electron microscopy (SEM) image of an as-printed sample of 

316L stainless steel processed using LPBF, which consists of domains of sub-grain chemical cells 

with different orientations. The sample was fabricated by a Concept M2 cusing machine, with a 

beam size of 54 µm, laser power = 150 W, scan speed = 700 mm/s, and build layer thickness = 30 

µm. Within each domain, the chemical cells are elongated along a <001> direction, with the 

corresponding side walls parallel to {100} or {110}. The middle triangle-shaped domain in Fig. 
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1(a) shows the <100> cross section of chemical cells that are approximately equiaxed. It is seen 

from this cross section that the cell size is on the order of ~0.5 μm and the cell wall thickness is 

~0.1 μm. These chemical cells form because of constitutional supercooling and solute atom 

redistribution during cellular solidification [20], resulting in the Mo and Cr-rich cell walls. They 

coincide with dislocation cells (Fig. 1(b)), since the Mo and Cr-rich cell walls tend to trap 

dislocations and thus serve as a scaffold to the formation of “as-printed dislocation cells”.  

 

 

Fig. 1 Coincident chemical cells and dislocation cells in as-printed 316L stainless steel processed 

using LPBF. (a) SEM image of domains of chemical cells elongated with different orientations. 

The red arrow indicates that the local cells elongate along the in-plane <001> direction. (b) TEM 

image of dislocation cells. The red dashed lines indicate that the cell walls are close to {100}nd 

{110}. 

 

The as-printed dislocation cells result in a non-uniform distribution of microscale internal 

stresses across these cells. In general, the distribution of microscale internal stress in dislocation 

cells can be characterized through spatially resolved X-ray micro-diffraction measurement  and 

DDD simulation. In this work, we use 3D DDD simulations to analyze the internal stress 

distribution in as-printed dislocation cells. Based on TEM observations, the simulated dislocation 

cell is assumed to form a rectangle box-shaped structure with cell walls parallel to the [100] (x-

2µm
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axis), [010] (y-axis) and [001] (z-axis) direction. Periodic boundary conditions are applied along 

all three directions. Figure 2(a) and (b) show the 3D and two-dimensional (2D) view of a unit 

dislocation cell structure containing two intersecting walls of high-density dislocations, 

respectively. The dimensions of the simulation domain are 0.6 μm × 0.6 μm × 1 μm in the x-, y-, 

and z-directions, respectively. Initially, rectangular dislocation edge dipolar loops (i.e., all 

segments are ±3⸰ from the edge orientation) are randomly distributed in the simulation domain 

with the following conditions: (1) the dislocation density varies from 1015 to 1016 in the cell walls, 

with the dislocation density in the cell interior being 1%-2% of that in the cell walls  [4]; (2) the 

dipole heights in the walls vary between 2 nm and 6 nm; and (3) the aspect ratio of the loops varies 

between 1/15 and 1/10. A 3D DDD simulation is performed to fully relax the dislocation cell 

structure without loading.  

 

Fig. 2 3D DDD simulation results of internal stresses in a periodic volume containing idealized 

as-printed dislocation cells. (a) A representative 3D DDD simulation volume for the case with a 
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cell wall dislocation density of 2×1015 m−2, with periodic boundary conditions in all directions, 

containing two intersecting fully relaxed dislocation cell walls. (b) 2D view of the 3D cell structure 

in (a). The red dashed lines in (a) and (b) indicate the boundaries of the high dislocation density 

walls, while the blue box in (b) corresponds to the top view of the unit cell shown in (a). The green 

square in (b) represents the definition of the Chebyshev distance L  to the center of the interior 

region. (c) Contour of σzz on the z = 0 plane of the cell structure in (a). (d) Distribution of σzz as a 

function of L through the entire 3D simulation cell of the structure in (a).  

 

After the dislocation cell structure is fully relaxed (see Fig. 2(a) and (b)), the internal stress 

distribution across the dislocation cell is analyzed. Figure 2(c) shows a representative contour plot 

of the stress component σzz on the plane of z = 0 for the case with a cell wall dislocation density 

2×1015 m−2. It is observed that the cell walls exhibit higher stresses that vary markedly, whereas 

the cell interiors lower stresses that vary gently. To further characterize these internal stresses 

along the z-direction of the cell channel, σzz is expressed as a function of the Chebyshev distance. 

Namely, the Chebyshev distance of a point, L, is defined as the maximum value of the x-distance 

and y-distance to the center of the cell interior. Geometrically, the point (x0, y0, z0) is on a square 

at the z = z0 plane having an edge length of 2L whose center coincides with that of the cell interior, 

as illustrated in Fig. 2(c). Due to the periodicity of the cell structure, we have 0 ≤ L ≤ 0.3 μm. The 

points with L ≤ 0.25 μm are all in the cell interior and those with L > 0.25 μm are in the cell wall, 

and σzz as a function of L is plotted in Fig. 2(d). The three horizontal lines in each boxplot (blue 

vertical lines) from the bottom to the top display the 25th, 50th (median) and 75th percentiles of σzz. 

In addition, the grey error bar represents one standard deviation and the solid black line shows the 

average values. As such, Fig. 2(d) shows that the cell interior is on average under compression in 

the z-direction along the cell channel, while the cell wall is under tension; the corresponding 

average values of σzz in the cell interior and the cell wall are 5.28 MPa and -12.84 MPa, 

respectively.  

Additional 3D DDD simulations with different initial dislocation densities and structures were 

carried out, while maintaining the same cell structure geometry and dimension. Figure 3 shows the 

internal stresses averaged along the z-direction as a function of L in different cases. It is seen that 

the cell interiors and walls have an opposite stress state: when the cell interior is under tension, the 
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cell wall is under compression, and vice versa. Note that cases with the same cell wall dislocation 

density can have opposite internal stress distributions. This can be attributed to the different 

eigenstrains induced by different dislocation types used: vacancy dislocation loops (i.e., absence 

of a patch of atoms in a loop) usually result in an average tensile stress in the cell walls. In contrast, 

interstitial dislocation loops (i.e., addition of an extra patch of atoms in a loop) induce in an average 

compressive stress in the cell walls. A systematic study of the relationship between internal stresses 

and dislocation distributions will be presented in a follow-up paper. 

 

Fig. 3 3D DDD simulation results with different initial dislocation densities in cell walls wallρ . 

The above 3D DDD results reveal the non-uniform distributions of microscale internal stresses 

across dislocation cells without loading, which exhibit several salient features. That is, the average 

internal stresses in the cell interiors and walls have opposite signs, as dictated by the self-

equilibrium condition. The magnitudes of the average internal stresses in the cell walls are higher 

than those in the cell interiors, because of a typically lower volume fraction of the cell walls [4]. 

These internal stress characteristics provide support and insight for models of microscale internal 

stresses in AM stainless steel in Section 3. We note that the internal stresses are dependent on the 

dislocation content in cell walls that is controlled by the complex thermomechanical history 

associated with large temperature gradients and rapid cooling during additive manufacturing [5, 

6]. In order to enhance the capability of DDD simulations to better predict internal stresses in AM 
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alloys, spatially resolved lattice strain measurements and detailed characterizations of dislocation 

microstructures are needed to calibrate the dislocation microstructures and internal stresses in 

DDD simulations in the future.  

 

3. Modeling of back stresses in AM stainless steel  

Fig. 4 Schematic illustrations of multiple sources of back stresses. (a) Three sources of back 

stresses (indicated by colored arrows) acting on a typical dislocation source such as a Frank-Read 

(FR) source inside a grain (enclosed by grain boundaries (GBs) represented by black segments) 

containing as-printed dislocation cells enclosed by cell walls (blue segments). (b) A dislocation 

pile-up against a dislocation cell wall (thick blue line). The distance between the cell wall and the 

FR solution (red dot) is pL , and the spacing between neighboring pile-ups on parallel slip planes 

is sL .  

 

Previous studies in the literature [9, 10] and DDD simulations in Section 2 indicate that the 

“as-printed dislocation cells” in AM metallic materials can give rise to substantial microscale 

internal stresses in both initial undeformed and plastically deformed samples, thereby affecting the 

mechanical properties of these alloys. To gain an in-depth understanding of the mechanics of as-

printed dislocation cells, we develop a crystal plasticity (CP) model that accounts for different 

GB

cell

pL

sL

x
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sources of microscale internal stresses in AM 316L stainless steel by focusing on their back stress 

components. As schematically shown in Fig. 4(a), this CP model accounts for three sources of 

back stresses acting on a typical dislocation source such as a Frank-Read source inside a grain. 

These back stresses correspond to the long-range, directional stresses arising from GNDs 

associated with as-printed dislocation cells and grain boundaries. Specifically, they include (1) the 

printing-induced back stresses (indicated by an orange arrow) from the GNDs at dislocation cell 

walls before loading, (2) the deformation-induced back stresses (indicated by a red arrow) from 

the GNDs (dislocation pile-ups) in as-printed dislocation cells, and (3) the deformation-induced 

back stresses (indicated by a pink arrow) from the GNDs at grain boundaries. In Section 3.1, we 

adopt a dislocation pile-up model to account for the evolution of deformation-induced back 

stresses in as-printed dislocation cells. The extracted back stress relation is incorporated into the 

CP model in Section 3.2. This CP model accounts for all three sources of back stresses and is able 

to effectively represent the nonlinear evolution of these back stresses that dictates the macroscopic 

stress-strain response of AM stainless steel. This is shown by CPFE simulations of the macroscopic 

back stress and tension-compression asymmetry of AM 316L stainless steel in Section 4.  

3.1 Dislocation pile-up model  

 We adopt a dislocation pile-up model to account for the evolution of deformation-induced back 

stresses in as-printed dislocation cells. We follow Mughrabi’s treatment of the dislocation cells as 

a composite material that is made of hard and soft components [21]. Namely, the cell walls and 

interiors are the hard and soft components that contain high and low densities of dislocations, 

respectively. The generation of directional internal stresses in the two components is considered 

to result from dislocation pile-ups due to the operation of dislocation sources such as Frank-Read 

sources in the cell interior. As illustrated in Fig. 4(b), a representative dislocation pile-up is under 

an applied shear stress and held against a cell wall. The dislocations in the pile-up collectively 

exert a back stress on the dislocation source. This back stress opposes the applied stress and thus 

lowers the local stress acting on the dislocation source. Meanwhile, the dislocations in the pile-up 

collectively exert a forward stress to push against the cell wall. This forward stress aids the applied 

stress and thus raises the local stress acting on dislocation sources in the cell wall. To achieve self-

equilibrium, the forward stress in the narrow cell wall is more intense than the back stress in the 
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dislocations in the pile-up. According to the solution of equilibrium dislocation positions in a pile-

up from Eshelby et al. [22], the forward stress can be expressed as 

  ( ), 1f i i iNτ τ= −  (4) 

3.2 Crystal plasticity model  

Based on the back stress model on a single slip system in Section 3.1, we develop a CP model 

to account for all three sources of back stresses in AM stainless steel. The CP constitutive equations 

are formulated within the rate-dependent, finite-strain framework of elastic-plastic deformation in 

crystal grains [23]. The deformation gradient tensor F within each grain is decomposed into the 

elastic deformation gradient tensor Fe and plastic deformation gradient tensor Fp by F = FeFp. The 

elastic Green strain tensor is given by T1/ 2( )e e e= −E F F I , where I  is the second-order identity 

tensor. The second Piola-Kirchhoff stress *T  is given by * e=T CE , where C  is the fourth-order 

stiffness tensor for each grain. The rate of pF  is given by  

  p p p=F L F  (5) 

where pL  is the plastic velocity gradient tensor involving the superposition of the plastic shearing 

rate on 12 {111}<110> slip systems in a face-centered cubic crystal 
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1
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=

= ⊗∑L m n  (6) 

where p
iγ  is the plastic shear strain rate on the i-th slip system, im  and in  are unit vectors of the 

associated slip plane normal and slip direction, and ⊗  stands for the outer product of two vectors. 

The plastic shearing rate is given by 

  ( )
1

1
Cell GB Pr
, , , Cell GB Pr

, , ,0 sgn
m

i b i b i b i
b i b i b i

i

p
i s

τ τ τ
γ

τ
τ τ τγ τ

 − − −
 = − − −
 
 

   (7) 

where iτ  is the resolved shear stress on the i-th slip system that is given approximately by 

* : sym( )i iiτ = ⊗m nT , 0γ  is the reference plastic shearing rate, and 1m  is the strain rate 
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sensitivity. In Eq. (7), is  is the non-directional slip resistance associated with short-range obstacles 

that hinder dislocation glide; it has an identical initial value of 0s  for all slip systems and evolves 

as p
i ij jj

s h γ=∑   and 0 (1 / )a
ij ij j sath q h s s= − , where ijq  is the latent hardening matrix and the 

diagonal elements are 1.0 while the off-diagonal elements are 1.4. The hardening parameters 0h , 

a  and sats  are taken to be identical for all slip systems.  

 In Eq. (7), three sources of microscale back stresses Cell
,b iτ , GB

,b iτ  and Pr
,b iτ  are taken into account 

on each slip system. The Cell
,b iτ  term represents the back stress arising from deformation-induced 

GNDs associated with as-printed dislocation cells. According to the back stress relation given by 

the dislocation pile-up model in Section 3.1, we express Cell
,b iτ  by rewriting Eq. (3) as  

  Cell
,b i i sbLτ αµρ=  (8) 

In Eq. (8), iρ  is the density of GNDs on the i-th slip system, and it is related to iN  by

/ ( )i i s pN L Lρ = . Likewise, we express the forward stress in the cell wall Cell
,f iτ  by rewriting Eq. 

(4). That is, considering iN  is proportional to iτ , we rewrite Cell
,f iτ  as a second-order polynomial 

function of iN .  

  
( )2

0 0 0

,

sgn( )  if 1

0                                                               if 1

i s p i s p i s p i s pCell
f i

i s p

a L L b L L c L L L L

L L

ρ ρ ρ ρ
τ

ρ

 + + >  = 
 ≤

 (9) 

where 0 0 0,   and a b c  are the parameters that are determined by fitting to the numerical result of 

Cell
,f iτ  as a function iN  from the pile-up model in Section 3.1. The fitted forward stress is truncated 

at 1iN = , below which there are no dislocations in the pile-up to exert the forward stress.  

 According to Eqs. (8) and (9), the evolution of Cell
,b iτ  and Cell

,f iτ  with iρ  reflects the competing 

effects of deformation-induced hardening and softening. These effects are respectively represented 

by the increase and decrease of iρ  according to  
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  i i iρ ρ ρ+ −= −    (10) 

In Eq. (10), iρ
+
  is the rate of increase of dislocations in pile-ups due to the operation of Frank-

Read sources in cell interiors. Following Mecking and Kocks [24], we express this hardening 

process by   

   
s

i
i

p

bL
γρ+ =


  (11) 

In Eq. (10), iρ
−
  is the rate of decrease of dislocations in pile-ups due to plastic relaxation in cell 

walls. Such plastic relaxation is driven by the forward stresses in the cell walls, causing forest 

cutting and/or annihilation of dislocation dipoles therein [12]. As a result, the leading dislocations 

in the pile-ups penetrate into the cell walls, resulting in a decrease of dislocations in the pile-ups. 

We represent this softening process by  

  ( )
2

1
Cell

,| | sgn
m

i f ip
i i i

w

C
sρ

τ τ
ρ γ ρ−

 +
 =
 
 

   (12) 

where ws  is the resistance to plastic relaxation in the cell walls, Cρ  and 2m  are the fitting 

parameters. 

 Equations (8-12) represent the nonlinear evolution of the back stress arising from deformation-

induced GNDs (through dislocation pile-ups) associated with as-printed dislocation cells. During 

the early stage of plastic deformation, both the back and forward stresses rise in a running balance. 

Since dislocation multiplication in the cell interiors dominates over plastic relaxation in the cell 

walls, iρ
+
  is greater than iρ

−
 . As a result, both the back and forward stresses increase strongly with 

increasing iρ . During further plastic deformation, the increasing forward stress enhances plastic 

relaxation in the cell walls, leading to a stronger increase of iρ
−
  than iρ

+
  and eventually giving 

rise to a saturated Cell
,b iτ  at large plastic deformation.  
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 The GB
,b iτ  term in Eq. (7) represents the back stress arising from the deformation-induced GNDs 

associated with grain boundaries. Whereas a similar dislocation pile-up model as the one for Cell
,b iτ  

can be used to represent the nonlinear evolution of GB
,b iτ , we adopt a simplified form by Armstrong 

and Frederick [25]  

  GB GB
, 1 2 ,

p p
b i b ii iC Cγ γτ τ= −    (13) 

where 1C  is the hardening coefficient and 2C  is the recovery coefficient.  

 The Pr
,b iτ  term in Eq. (7) represents the initial printing-induced back stress associated with 

dislocation cells in as-printed samples and thus does not evolve with plastic deformation. It has 

been previously shown that the printing-induced back stress is responsible for the tension-

compression asymmetry of AM stainless steel [9]. Hence, it is necessary to include this back stress 

term in the CP model. However, it remains challenging to establish a functional relationship 

between Pr
,b iτ  on individual slip systems and the complex thermal-mechanical history of a printing 

process. Hence, we assign a constant back stress tensor 0B  for all the grains and calculate Cell
,b iτ  by 

resolving 0B  onto each slip system as 

  Pr
, 0 : ( )i ib iτ = ⊗m nB  (14) 

We assume the non-zero diagonal components to 0B  and fit these components to the experimental 

result of tension-compression asymmetry. The above CP model takes account of different sources 

of back stresses associated with the printing and deformation-induced microscale internal stresses 

in AM stainless steel, and it can be generally applied to a broader range of AM  metallic materials. 

The model is implemented in the general finite element package ABAQUS/Explicit [26] by writing 

a user material subroutine VUMAT.   
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4. Results and discussion 

4.1. Internal stresses from a dislocation pile-up  

To evaluate the back stress given by the dislocation pile-up model in Section 3.1, we consider 

a range of applied resolved shear stresses iτ  when 0.5 μmpL =  and FR 110 MPas =  (giving the 

initial value 0s  for the slip resistance is  in Eq. (7)). Based on Eqs. (1-2), we calculate the 

equilibrium dislocation positions jx  ( 1 ... )ij N=  in the pile-up under a given iτ  value, as shown in 

Fig. 5(a). Then we calculate the corresponding back stresses Cell ( )i px Lτ =  acting on the dislocation 

source using Eq. (1). As shown in Fig. 5(b), the calculated back stresses Cell
,b iτ  (black line) against 

the number of dislocations iN  can be well fitted by the linear relation in Eq. (3) with the fitted 

dimensionless coefficient α  of 1.455. This result indicates that Cell
,b iτ  increases linearly with iN  in 

the pile-up. From the pairs of iτ  and iN , we also calculate the corresponding forward stress using 

Eq. (4), as shown in Fig. 5(b) (red line). The calculated forward stress Cell
,f iτ  against iN  can also be 

fitted by the nonlinear relation in Eq. (9). The fitted parameters 0 0 0,  and a b c  are 21.57, 78.93 and 

-100.24 respectively.  

 

Fig. 5 Numerical results of the dislocation pile-up model in Fig. 4(b). (a) Equilibrium dislocation 

positions jx  (black triangles) for a dislocation pile-up under different applied resolved shear 
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stresses iτ . For a given iτ , the number of dislocations iN  in the pile-up is determined from Eq. (2) 

at the dislocation source (red dot). The dislocation positions jx  are normalized by the Burgers 

vector length b. (b) Back stress and forward stress are calculated as a function of the number of 

dislocations in the pile-up, respectively. 

 

4.2. Shear stress-strain response on a single slip system  

To demonstrate the stress-strain response given by the CP model in Section 3.2, we simulate 

the shear stress-strain response on a single slip system by including the back stress terms of Cell
,b iτ  

and GB
,b iτ  in Eq. (7), while taking Pr

,b iτ  as zero. The effect of nonzero Pr
,b iτ  will be studied in Section 

4.3. This study allows us to track the evolution of the deformation-induced back stresses associated 

with both printing-induced dislocation cells and grain boundaries in loading-unloading cycles. The 

initial value of the nondirectional slip resistance 0s  is taken as FR 110 MPas = . Other parameters 

of is , Cell
,b iτ  and GB

,b iτ  are listed in Table 1. We implement this simplified CP model for a single slip 

system by writing a Matlab program. Figure 6 shows the simulated shear stress-strain hysteresis 

loops from two strain-controlled load cycles. As observed from Eq. (14), GB
bτ  saturates when GB

,b iτ  

becomes zero. Thus, the ratio of hardening and recovery coefficients 1 2/C C  determines the 

saturated value of GB
bτ , which is taken as 74.1 MPa. Since the hardening coefficient 1C  is taken as 

a high value of 126 GPa, GB
bτ  dominates in the early stage of hardening response. On the other 

hand, Cell
,b iτ  represents the extra strengthening effect due to the deformation-induced storage of 

GNDs associated with as-printed dislocation cells. The increase of Cell
,b iτ  is less steep than GB

,b iτ  , 

and its saturation value is 40.3 MPa. Both Cell
,b iτ  and GB

,b iτ  become saturated at a strain level of 

~0.5%. Afterwards, the strain hardening response is controlled by the hardening effects of short-

range obstacles to dislocation glide, as represented by a much lower rate of increase of is  rather 

than the rates of increase of Cell
,b iτ  and GB

,b iτ  that have become saturated.  
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Fig. 6 Simulated shear stress-strain hysteresis loops on a single slip system given by the simplified 

CP model that includes the back stress terms of Cell
,b iτ  and GB

,b iτ  in Eq. (7) by taking Pr
,b iτ  as zero. The 

total flow stress of 226.8 MPa at the strain of 1% involves the contribution of ,  and  by 

about 112.4 MPa, 40.3 MPa and 74.1 MPa, respectively. 

 

is Cell
,b iτ GB

,b iτ

Table 1 Parameters used in single-slip and CP simulations. 

0γ  0s  0h  sats  a  µ  1m  pL  

 (s-1) (MPa) (MPa) (MPa)  (GPa)  (µm) 

0.001 110 320 447 0.7 126 0.02 0.5 

sL  

(µm) 

ws  

(MPa) 

Cρ  

 (µm-2) 

2m  b  

(nm) 

1C  

(GPa) 

2C  ν  

0.5 3000 1.15×105 0.8 0.284 126 1700 0.3 
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4.3 Crystal plasticity finite element results 

 

Fig. 7 CPFE simulation results. (a) Comparison of stress-strain curves under uniaxial tension and 

compression between experiments [9] (solid lines) and CPFE simulations (dashed lines) for as-

printed samples. (b) Determination of simulated back stress from an unloading branch using 

Dickson’s method.  

 

We perform CPFE simulations of uniaxial tension and compression of AM stainless steel 

using the CP equations in Section 3.2, which accounts for all three sources of back stresses given 

in Eq. (7). These CP equations are implemented in ABAQUS/Explicit [26] by writing a user 

material subroutine (VUMAT) with the material parameters in Table 1. The finite element 

polycrystal model of AM stainless steel is taken as an assembly of 125 grains with random 

orientations. Each grain is represented by a brick element with reduced integration (C3D8R). As 

shown in our previous work [9], such type of polycrystal model can effectively capture the 

experimentally measured stress-strain behavior of AM stainless steel. To capture the tension-

compression asymmetry, we assign the non-zero normal components and zero shear components 

of the printing-induced back stress tensor 0B . The component along the build direction is 54 MPa 

and the components along the loading and transverse directions are -27 MPa. Compared to the 

case of vanishing 0B , the compressive yield strength is raised by 27 MPa, while the tensile yield 

strength is reduced by 27 MPa. As a result, the printing-induced back stress 0B  gives an 
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asymmetry of tensile and compressive yield strength by 54 MPa. Figure 7(a) shows the CPFE 

results of uniaxial tensile and compressive stress-strain curves, which closely match the 

experimental results beyond the transient initial yield point region, including the tension-

compression asymmetry. However, there exists a certain difference around the yield points in the 

tensile and compressive stress-strain curves between experiments and CPFE simulations, due to 

the limited nonlinearity of Eq. (13). This initial yielding region can be improved by enhancing the 

simplified form of the nonlinear evolution of GB
,b iτ  in Eq. (13), if desired. The 0B  values used are 

the fitting results for matching the experimental measurement and model prediction of the amount 

of asymmetry in tensile and compressive yield strengths. The physical origin of these back stresses 

associated with printing-induced dislocation structures in initial undeformed samples warrants 

further study in the future [27]. 

 Figure 7(b) shows the magnified tensile loading-unloading curve around the tensile strain of 

3%. From the unloading branch, the macroscopic back stress of the polycrystalline sample is 

determined as follows. The macroscopic back stress, bσ , is given by 0( ) / 2b uσ σ σ= + , where 0σ  

is the flow stress prior to unloading, uσ  is the stress at the onset of reverse yielding, and the 

effective stress is 0eff bσ σ σ= −  . The bσ  value is determined as 420 MPa, given 0 690 MPaσ =  and 

150 MPauσ =  which are consistent with the experimental values [9].  

 Altogether, Fig. 7 demonstrates that our CP model can effectively account for different sources 

of back stresses and give predictions that closely match the macroscopic stress-strain behavior of 

AM stainless steel, including the macroscopic back stress and tension-compression asymmetry. 

Moreover, the CP model is informed by a dislocation pile-up model and thereby provides an in-

depth understanding of how the deformation-induced back and forward stresses associated with 

as-printed dislocation cells affect the nonlinear stress-strain response of AM stainless steel at the 

macroscopic scale.  

4. Concluding remarks 

AM metallic materials often exhibit highly heterogeneous microstructures such as as-printed 

dislocation cells inside grains. In general, strong structural heterogeneity in a material gives rise 

to complex mechanical heterogeneity [12, 28, 29], which is manifested as multiple sources of 
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microscale internal stresses. In this work, we develop models of microscale internal stresses 

originated from highly heterogeneous microstructures in AM stainless steel, and focus on their 

back stress components. These models connect the microscale internal stresses to the overall 

stress-strain response as well as the unique deformation characteristics such as the substantial 

macroscopic back stress and tension-compression of AM stainless steel. The necessity to include 

multiple sources of microscale back stresses for the constitutive modeling of AM metallic 

materials is underscored, and it is in line with a broad class of plasticity models that include 

multiple back stress terms [14-18]. In addition, the DDD simulation is used to demonstrate the 

manifestation of heterogeneous internal stresses in dislocation cell structures. It provides support 

and insight for the CPFE model that accounts for heterogeneous internal stresses in dislocation 

cell structures. Further studies are needed to bridge DDD and CPFE simulations through passing 

of quantitative information in the future. 

 Given the great potential of AM metallic materials for engineering applications, the mechanics 

of heterogeneous microstructures including as-printed dislocation structures warrant further 

studies in the future. For example, a combined experimental and modeling study is needed to 

characterize the relative contributions of different sources of microscale internal stresses to the 

macroscopic stress-strain response, including the macroscopic back stress. Furthermore, it is 

essential to correlate different sources of microscale back stresses with underlying dislocation 

microstructures. To this end, we note that recent years have witnessed rapid development of in situ 

characterization approaches through advanced X-ray microscopy [30, 31], transmission electron 

microscopy [17], electron backscattered diffraction [8], etc. They enable high-resolution 

characterizations of the spatial-temporal evolution of dislocation distributions, lattice strains and 

orientations, etc. The integration between advanced in situ characterizations and constitutive 

models can open many opportunities to understand the effects of highly heterogeneous 

microstructures on the mechanical behavior of AM metals and alloys.  
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