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Abstract

Additively manufactured (AM) metallic materials often comprise as-printed dislocation cells
inside grains. These dislocation cells can give rise to substantial microscale internal stresses in
both initial undeformed and plastically deformed samples, thereby affecting the mechanical
properties of AM metallic materials. Here we develop models of microscale internal stresses in
AM stainless steel by focusing on their back stress components. Three sources of microscale back
stresses are considered, including the printing and deformation-induced back stresses associated
with as-printed dislocation cells as well as the deformation-induced back stresses associated with
grain boundaries. We use a three-dimensional discrete dislocation dynamics model to demonstrate
the manifestation of printing-induced back stresses. We adopt a dislocation pile-up model to
evaluate the deformation-induced back stresses associated with as-printed dislocation cells. The
extracted back stress relation from the pile-up model is incorporated into a crystal plasticity model
that accounts for the other two sources of back stresses as well. The crystal plasticity finite element

simulation results agree with the experimentally measured tension-compression asymmetry and
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macroscopic back stress, the latter of which represents the effective resultant of microscale back
stresses of different origins. Our results provide an in-depth understanding of the origins and

evolution of microscale internal stresses in AM metallic materials.
TThese authors contributed equally to this work.
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1. Introduction

Additively manufactured (AM) alloys often exhibit unconventional microstructures compared
to their counterparts produced by traditional metallurgical routes [1-3]. For example, the extreme
processing conditions of additive manufacturing by laser powder bed fusion (LPBF) lead to large
temperature gradients and rapid cooling that can result in highly non-equilibrium microstructures
such as solidification cells inside grains [2, 4]. The chemical composition in cell walls is different
from that in cell interiors. Sometimes cell walls are decorated with oxide nanoprecipitates. As a
result, the cell walls can trap dislocations and serve as a scaffold to form “as-printed dislocation
cells” [5, 6]. Similar as-printed dislocation structures are also observed in AM metals [7, 8] and
alloys without chemical cells [9]. These as-printed dislocation cells and structures hinder
dislocation glide during plastic deformation, thereby affecting the mechanical properties of AM

metallic materials [9, 10].

The mechanics of as-printed dislocation structures has been studied in terms of microscale
internal stresses [9], which refer to the microscopically inhomogeneous stress distribution inside a
material. The internal stress is sometimes called the residual stress in the literature [11]. Here we
use the term “internal stress” instead of “residual stress”, considering that the internal stress not
only arises in as-printed samples without loading, but also evolves with plastic deformation under
loading [12]. Generally, the microscale internal stresses are classified as belonging to two major
types: intergranular and intragranular stresses [13]. The intergranular internal stresses result from
strain incompatibility between grains, and they self-equilibrate over a length scale of multiple
grains. In contrast, the intragranular internal stresses arise from the dislocation structures and

associated geometrically necessary dislocations (GNDs) inside grains. These GNDs produce long-


about:blank

range, directional internal stresses that self-equilibrate over cells via constituent back and forward
stresses, giving rise to the kinematic hardening and Bauschinger effects [14-18]. The internal
stresses can be characterized in terms of their effect on plastic flow and work hardening processes
through a macroscopic back stress, which the effective resultant of various microscale back
stresses stemming from different types of structural heterogeneity [17]. The macroscopic back
stress can be experimentally measured from the unloading branch of the stress-strain curve using

the Dickson’s method [19].

Recently, Chen et al. [9] conducted an experimental study of microscale internal stresses in
AM 316L austenitic stainless steel. The measured 0.2% offset yield strength was around 540 MPa,
which is two to three times that of as-cast/wrought stainless steel. In particular, they measured a
pronounced difference in tensile and compressive yield strengths, and indicated that such a tension-
compression asymmetry was governed by the back stresses associated with printing-induced
dislocation structures. They also measured substantial macroscopic back stresses during loading
and attributed the major source of these back stresses to the deformation-induced dislocation
structures. To enable an in-depth understanding of these experimental results, here we develop
models to account for different sources of microscale back stresses in AM 316L stainless steel.
Our three-dimensional (3D) discrete dislocation dynamics (DDD), dislocation pile-up, and crystal
plasticity finite element (CPFE) simulations capture these microscale internal stresses in the form
of back and forward stresses associated with dislocation structures and grain boundaries. The
CPFE results are compared with the macroscopic back stress and tension-compression asymmetry
from experimental measurements. Our work provides mechanistic insights into the origins and

evolution of microscale internal stresses in AM metallic materials.

2. Internal stresses in as-printed dislocation cells

Figure 1(a) displays a scanning electron microscopy (SEM) image of an as-printed sample of
316L stainless steel processed using LPBF, which consists of domains of sub-grain chemical cells
with different orientations. The sample was fabricated by a Concept M2 cusing machine, with a
beam size of 54 um, laser power = 150 W, scan speed = 700 mm/s, and build layer thickness = 30
um. Within each domain, the chemical cells are elongated along a <001> direction, with the

corresponding side walls parallel to {100} or {110}. The middle triangle-shaped domain in Fig.



1(a) shows the <100> cross section of chemical cells that are approximately equiaxed. It is seen
from this cross section that the cell size is on the order of ~0.5 um and the cell wall thickness is
~0.1 pm. These chemical cells form because of constitutional supercooling and solute atom
redistribution during cellular solidification [20], resulting in the Mo and Cr-rich cell walls. They
coincide with dislocation cells (Fig. 1(b)), since the Mo and Cr-rich cell walls tend to trap

dislocations and thus serve as a scaffold to the formation of “as-printed dislocation cells”.

(b)

Fig. 1 Coincident chemical cells and dislocation cells in as-printed 316L stainless steel processed
using LPBF. (a) SEM image of domains of chemical cells elongated with different orientations.
The red arrow indicates that the local cells elongate along the in-plane <001> direction. (b) TEM
image of dislocation cells. The red dashed lines indicate that the cell walls are close to {100}nd

(110}.

The as-printed dislocation cells result in a non-uniform distribution of microscale internal
stresses across these cells. In general, the distribution of microscale internal stress in dislocation
cells can be characterized through spatially resolved X-ray micro-diffraction measurement and
DDD simulation. In this work, we use 3D DDD simulations to analyze the internal stress
distribution in as-printed dislocation cells. Based on TEM observations, the simulated dislocation

cell is assumed to form a rectangle box-shaped structure with cell walls parallel to the [100] (x-
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axis), [010] (y-axis) and [001] (z-axis) direction. Periodic boundary conditions are applied along
all three directions. Figure 2(a) and (b) show the 3D and two-dimensional (2D) view of a unit
dislocation cell structure containing two intersecting walls of high-density dislocations,
respectively. The dimensions of the simulation domain are 0.6 um x 0.6 um % 1 um in the x-, y-,
and z-directions, respectively. Initially, rectangular dislocation edge dipolar loops (i.e., all
segments are +3° from the edge orientation) are randomly distributed in the simulation domain
with the following conditions: (1) the dislocation density varies from 10'° to 10'® in the cell walls,
with the dislocation density in the cell interior being 1%-2% of that in the cell walls [4]; (2) the
dipole heights in the walls vary between 2 nm and 6 nm; and (3) the aspect ratio of the loops varies
between 1/15 and 1/10. A 3D DDD simulation is performed to fully relax the dislocation cell

structure without loading.
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Fig. 2 3D DDD simulation results of internal stresses in a periodic volume containing idealized

as-printed dislocation cells. (a) A representative 3D DDD simulation volume for the case with a
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cell wall dislocation density of 2x10'> m™2, with periodic boundary conditions in all directions,
containing two intersecting fully relaxed dislocation cell walls. (b) 2D view of the 3D cell structure
in (a). The red dashed lines in (a) and (b) indicate the boundaries of the high dislocation density
walls, while the blue box in (b) corresponds to the top view of the unit cell shown in (a). The green
square in (b) represents the definition of the Chebyshev distance L to the center of the interior
region. (c) Contour of 62z on the z = 0 plane of the cell structure in (a). (d) Distribution of 62; as a

function of L through the entire 3D simulation cell of the structure in (a).

After the dislocation cell structure is fully relaxed (see Fig. 2(a) and (b)), the internal stress
distribution across the dislocation cell is analyzed. Figure 2(c) shows a representative contour plot
of the stress component o:- on the plane of z = 0 for the case with a cell wall dislocation density
2x10" m™. It is observed that the cell walls exhibit higher stresses that vary markedly, whereas
the cell interiors lower stresses that vary gently. To further characterize these internal stresses
along the z-direction of the cell channel, o:: is expressed as a function of the Chebyshev distance.
Namely, the Chebyshev distance of a point, L, is defined as the maximum value of the x-distance
and y-distance to the center of the cell interior. Geometrically, the point (xo, yo, zo) is on a square
at the z = zo plane having an edge length of 2L whose center coincides with that of the cell interior,
as illustrated in Fig. 2(c). Due to the periodicity of the cell structure, we have 0 < L < 0.3 um. The
points with L < 0.25 um are all in the cell interior and those with L > 0.25 pum are in the cell wall,
and oz: as a function of L is plotted in Fig. 2(d). The three horizontal lines in each boxplot (blue
vertical lines) from the bottom to the top display the 25%, 50" (median) and 75" percentiles of o--.
In addition, the grey error bar represents one standard deviation and the solid black line shows the
average values. As such, Fig. 2(d) shows that the cell interior is on average under compression in
the z-direction along the cell channel, while the cell wall is under tension; the corresponding
average values of oz in the cell interior and the cell wall are 5.28 MPa and -12.84 MPa,

respectively.

Additional 3D DDD simulations with different initial dislocation densities and structures were
carried out, while maintaining the same cell structure geometry and dimension. Figure 3 shows the
internal stresses averaged along the z-direction as a function of L in different cases. It is seen that
the cell interiors and walls have an opposite stress state: when the cell interior is under tension, the
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cell wall is under compression, and vice versa. Note that cases with the same cell wall dislocation
density can have opposite internal stress distributions. This can be attributed to the different
eigenstrains induced by different dislocation types used: vacancy dislocation loops (i.e., absence
of a patch of atoms in a loop) usually result in an average tensile stress in the cell walls. In contrast,
interstitial dislocation loops (i.e., addition of an extra patch of atoms in a loop) induce in an average
compressive stress in the cell walls. A systematic study of the relationship between internal stresses

and dislocation distributions will be presented in a follow-up paper.
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Fig. 3 3D DDD simulation results with different initial dislocation densities in cell walls p, ;.

The above 3D DDD results reveal the non-uniform distributions of microscale internal stresses
across dislocation cells without loading, which exhibit several salient features. That is, the average
internal stresses in the cell interiors and walls have opposite signs, as dictated by the self-
equilibrium condition. The magnitudes of the average internal stresses in the cell walls are higher
than those in the cell interiors, because of a typically lower volume fraction of the cell walls [4].
These internal stress characteristics provide support and insight for models of microscale internal
stresses in AM stainless steel in Section 3. We note that the internal stresses are dependent on the
dislocation content in cell walls that is controlled by the complex thermomechanical history
associated with large temperature gradients and rapid cooling during additive manufacturing [5,

6]. In order to enhance the capability of DDD simulations to better predict internal stresses in AM
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alloys, spatially resolved lattice strain measurements and detailed characterizations of dislocation
microstructures are needed to calibrate the dislocation microstructures and internal stresses in

DDD simulations in the future.

3. Modeling of back stresses in AM stainless steel

D ”

L
>

X

Fig. 4 Schematic illustrations of multiple sources of back stresses. (a) Three sources of back
stresses (indicated by colored arrows) acting on a typical dislocation source such as a Frank-Read
(FR) source inside a grain (enclosed by grain boundaries (GBs) represented by black segments)
containing as-printed dislocation cells enclosed by cell walls (blue segments). (b) A dislocation
pile-up against a dislocation cell wall (thick blue line). The distance between the cell wall and the

FR solution (red dot) is L,, and the spacing between neighboring pile-ups on parallel slip planes

is L_.

s

Previous studies in the literature [9, 10] and DDD simulations in Section 2 indicate that the
“as-printed dislocation cells” in AM metallic materials can give rise to substantial microscale
internal stresses in both initial undeformed and plastically deformed samples, thereby affecting the
mechanical properties of these alloys. To gain an in-depth understanding of the mechanics of as-

printed dislocation cells, we develop a crystal plasticity (CP) model that accounts for different
8



sources of microscale internal stresses in AM 316L stainless steel by focusing on their back stress
components. As schematically shown in Fig. 4(a), this CP model accounts for three sources of
back stresses acting on a typical dislocation source such as a Frank-Read source inside a grain.
These back stresses correspond to the long-range, directional stresses arising from GNDs
associated with as-printed dislocation cells and grain boundaries. Specifically, they include (1) the
printing-induced back stresses (indicated by an orange arrow) from the GNDs at dislocation cell
walls before loading, (2) the deformation-induced back stresses (indicated by a red arrow) from
the GNDs (dislocation pile-ups) in as-printed dislocation cells, and (3) the deformation-induced
back stresses (indicated by a pink arrow) from the GNDs at grain boundaries. In Section 3.1, we
adopt a dislocation pile-up model to account for the evolution of deformation-induced back
stresses in as-printed dislocation cells. The extracted back stress relation is incorporated into the
CP model in Section 3.2. This CP model accounts for all three sources of back stresses and is able
to effectively represent the nonlinear evolution of these back stresses that dictates the macroscopic
stress-strain response of AM stainless steel. This is shown by CPFE simulations of the macroscopic

back stress and tension-compression asymmetry of AM 316L stainless steel in Section 4.
3.1 Dislocation pile-up model

We adopt a dislocation pile-up model to account for the evolution of deformation-induced back
stresses in as-printed dislocation cells. We follow Mughrabi’s treatment of the dislocation cells as
a composite material that is made of hard and soft components [21]. Namely, the cell walls and
interiors are the hard and soft components that contain high and low densities of dislocations,
respectively. The generation of directional internal stresses in the two components is considered
to result from dislocation pile-ups due to the operation of dislocation sources such as Frank-Read
sources in the cell interior. As illustrated in Fig. 4(b), a representative dislocation pile-up is under
an applied shear stress and held against a cell wall. The dislocations in the pile-up collectively
exert a back stress on the dislocation source. This back stress opposes the applied stress and thus
lowers the local stress acting on the dislocation source. Meanwhile, the dislocations in the pile-up
collectively exert a forward stress to push against the cell wall. This forward stress aids the applied
stress and thus raises the local stress acting on dislocation sources in the cell wall. To achieve self-

equilibrium, the forward stress in the narrow cell wall is more intense than the back stress in the



wide cell interior. With increasing load, both forward and back stresses rise in a running balance,

thus elevating the microscale internal stresses associated with dislocation cells.

To formulate the dislocation pile-up model in Fig. 4(b), we consider a Frank-Read source
located at a distance L, from the cell wall, which corresponds to half of the dislocation cell size.
The spacing between two neighboring pile-ups on parallel slip planes in a grain is L . This Frank-

Read source has the critical operation stress s . A non-uniform distribution of N, dislocations in

the pile-up collectively produce an internal shear stress at x by

N,
=y M 0
T27(l-v) x—x,

where 4 is the shear modulus, b is the Burgers vector length, 7 is Poisson’s ratio, and x; is the

equilibrium position of the j-th dislocation given by the solution from Eshelby et al. [22]. For a

given N, value, the applied shear stress 7, and the back stress at the Frank-Read source

Ty =1, (x= L,) should satisfy

Cell
T~ Tb’ff =Sy @)

meaning that the back stress acting on the Frank-Read source becomes sufficiently large to inhibit
and eventually shut down its operation. From Egs. (1) and (2), r;f :u can be determined as a function
of N..To incorporate the rf:fu vs. N, relation on a single slip system mto the CP model accounting

for multiple slip systems, we express 7 " as
> bi

N, ub

i

G)

Cell _
Ty — @
P

where o 1s a fitting parameter that is assumed to depend on s; only, as verified by our numerical
results in Section 4. In addition, the dislocation pile-up also exerts a forward stress 7, ; to the cell

wall, which can be estimated from the stress acting on the leading dislocation by all other N, -1
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dislocations in the pile-up. According to the solution of equilibrium dislocation positions in a pile-

up from Eshelby et al. [22], the forward stress can be expressed as

Tri = (]Vz - I)Ti 4)

3.2 Crystal plasticity model

Based on the back stress model on a single slip system in Section 3.1, we develop a CP model
to account for all three sources of back stresses in AM stainless steel. The CP constitutive equations
are formulated within the rate-dependent, finite-strain framework of elastic-plastic deformation in
crystal grains [23]. The deformation gradient tensor F within each grain is decomposed into the

elastic deformation gradient tensor F¢ and plastic deformation gradient tensor F? by F = F°F”. The

elastic Green strain tensor is given by E° =1/2(F'F¢ —1I), where I is the second-order identity

tensor. The second Piola-Kirchhoff stress T is given by T' = CE°, where C is the fourth-order

stiffness tensor for each grain. The rate of F” is given by
F? =L/F’ (5)

where L7 is the plastic velocity gradient tensor involving the superposition of the plastic shearing

rate on 12 {111}<110> slip systems in a face-centered cubic crystal

12
L= y/'m, ®n, (6)

i=1

where 7/ is the plastic shear strain rate on the i-th slip system, m, and n, are unit vectors of the

associated slip plane normal and slip direction, and ® stands for the outer product of two vectors.

The plastic shearing rate is given by

1

Cell "Tl

GB _ _Pr
T.—T,. —T,. =T,
o i b bi  “bi Cel __GB __Pr
Vi =7 P Sgn(r_rb,i Y _Tb,i) (7

1

where 7, is the resolved shear stress on the i-th slip system that is given approximately by

7,=T :sym(m,®n,), 7, is the reference plastic shearing rate, and m, is the strain rate

11



sensitivity. In Eq. (7), s, is the non-directional slip resistance associated with short-range obstacles
that hinder dislocation glide; it has an identical initial value of s, for all slip systems and evolves
as §, = Zj h, |;}j’.’| and h; =q,h(1-s,/s,,)", where ¢, is the latent hardening matrix and the

sat
diagonal elements are 1.0 while the off-diagonal elements are 1.4. The hardening parameters #,,

a and s, are taken to be identical for all slip systems.

. Cell GB P .
In Eq. (7), three sources of microscale back stresses 7, , 7, and 7, are taken into account

on each slip system. The fbcju term represents the back stress arising from deformation-induced

GNDs associated with as-printed dislocation cells. According to the back stress relation given by

the dislocation pile-up model in Section 3.1, we express Z’,S f” by rewriting Eq. (3) as

Cell

Ty, = appbL (8)

In Eq. (8), p, is the density of GNDs on the i-th slip system, and it is related to N, by
p,=N,/(LL,) . Likewise, we express the forward stress in the cell wall rf’el.” by rewriting Eq.

(4). That is, considering N, is proportional to 7, , we rewrite e

i asasecond-order polynomial

function of N, .

» [ao (pLL,) +b|pLL,|+ co}sgn(piLst) if |p,L,L,|>1
o ©)
if |p,L,L,|<1

where qa,, b, and ¢, are the parameters that are determined by fitting to the numerical result of

r_/gjn as a function N, from the pile-up model in Section 3.1. The fitted forward stress is truncated

at N, =1, below which there are no dislocations in the pile-up to exert the forward stress.

According to Egs. (8) and (9), the evolution of rli “ and T](fi.“ with p, reflects the competing

effects of deformation-induced hardening and softening. These effects are respectively represented

by the increase and decrease of p, according to

12



pi=p —p (10)

In Eq. (10), p; is the rate of increase of dislocations in pile-ups due to the operation of Frank-

Read sources in cell interiors. Following Mecking and Kocks [24], we express this hardening

process by
pr =1t (11)

In Eq. (10), p, is the rate of decrease of dislocations in pile-ups due to plastic relaxation in cell

walls. Such plastic relaxation is driven by the forward stresses in the cell walls, causing forest
cutting and/or annihilation of dislocation dipoles therein [12]. As a result, the leading dislocations
in the pile-ups penetrate into the cell walls, resulting in a decrease of dislocations in the pile-ups.

We represent this softening process by

1
i Z_Ce;ll m,
p; = Cp | 7! [|—fJ Sgn(pi) (12)

w

where s, is the resistance to plastic relaxation in the cell walls, C, and m, are the fitting
parameters.

Equations (8-12) represent the nonlinear evolution of the back stress arising from deformation-
induced GNDs (through dislocation pile-ups) associated with as-printed dislocation cells. During

the early stage of plastic deformation, both the back and forward stresses rise in a running balance.

Since dislocation multiplication in the cell interiors dominates over plastic relaxation in the cell

walls, P, is greater than 0, . As a result, both the back and forward stresses increase strongly with

increasing ©,. During further plastic deformation, the increasing forward stress enhances plastic
relaxation in the cell walls, leading to a stronger increase of p, than P, and eventually giving

rise to a saturated T,S “! at large plastic deformation.
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The TIS ? term in Eq. (7) represents the back stress arising from the deformation-induced GNDs

. . . . .. . . . Cell
associated with grain boundaries. Whereas a similar dislocation pile-up model as the one for 7, ;

can be used to represent the nonlinear evolution of rlf 7, we adopt a simplified form by Armstrong

and Frederick [25]
g =Gyl =Gt |7t (13)
where C, is the hardening coefficient and C, is the recovery coefficient.

The T,f; term in Eq. (7) represents the initial printing-induced back stress associated with

dislocation cells in as-printed samples and thus does not evolve with plastic deformation. It has
been previously shown that the printing-induced back stress is responsible for the tension-
compression asymmetry of AM stainless steel [9]. Hence, it is necessary to include this back stress

term in the CP model. However, it remains challenging to establish a functional relationship
between T,i . on individual slip systems and the complex thermal-mechanical history of a printing

process. Hence, we assign a constant back stress tensor B, for all the grains and calculate TIS ' by

resolving B, onto each slip system as
7, =B, :(m,®n,) (14)

We assume the non-zero diagonal components to B, and fit these components to the experimental

result of tension-compression asymmetry. The above CP model takes account of different sources
of back stresses associated with the printing and deformation-induced microscale internal stresses
in AM stainless steel, and it can be generally applied to a broader range of AM metallic materials.
The model is implemented in the general finite element package ABAQUS/Explicit [26] by writing

a user material subroutine VUMAT.
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4. Results and discussion
4.1. Internal stresses from a dislocation pile-up

To evaluate the back stress given by the dislocation pile-up model in Section 3.1, we consider

a range of applied resolved shear stresses 7, when L, =0.5 um and sy, =110 MPa (giving the
initial value s, for the slip resistance s, in Eq. (7)). Based on Egs. (1-2), we calculate the
equilibrium dislocation positions x; (j=1...,) in the pile-up under a given 7, value, as shown in

Fig. 5(a). Then we calculate the corresponding back stresses qce“ (x=L,) acting on the dislocation

source using Eq. (1). As shown in Fig. 5(b), the calculated back stresses T,S?H (black line) against

1

the number of dislocations N, can be well fitted by the linear relation in Eq. (3) with the fitted

dimensionless coefficient o of 1.455. This result indicates that rbcju increases linearly with N, in

the pile-up. From the pairs of 7, and N,, we also calculate the corresponding forward stress using

Eq. (4), as shown in Fig. 5(b) (red line). The calculated forward stress r;;." against N, can also be

fitted by the nonlinear relation in Eq. (9). The fitted parameters «a,,b, and ¢, are 21.57, 78.93 and

-100.24 respectively.
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Fig. 5 Numerical results of the dislocation pile-up model in Fig. 4(b). (a) Equilibrium dislocation

positions x; (black triangles) for a dislocation pile-up under different applied resolved shear
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stresses 7,. For a given 7,, the number of dislocations N, in the pile-up is determined from Eq. (2)
at the dislocation source (red dot). The dislocation positions X; are normalized by the Burgers

vector length b. (b) Back stress and forward stress are calculated as a function of the number of

dislocations in the pile-up, respectively.

4.2. Shear stress-strain response on a single slip system

To demonstrate the stress-strain response given by the CP model in Section 3.2, we simulate

the shear stress-strain response on a single slip system by including the back stress terms of r,f .

and rbcf ” in Eq. (7), while taking Tzi . as zero. The effect of nonzero T; . will be studied in Section

4.3. This study allows us to track the evolution of the deformation-induced back stresses associated

with both printing-induced dislocation cells and grain boundaries in loading-unloading cycles. The
initial value of the nondirectional slip resistance s, is taken as s.; =110 MPa. Other parameters

of s, TZS “! and rlf > are listed in Table 1. We implement this simplified CP model for a single slip
system by writing a Matlab program. Figure 6 shows the simulated shear stress-strain hysteresis
loops from two strain-controlled load cycles. As observed from Eq. (14), TbG ® saturates when r'lf o
becomes zero. Thus, the ratio of hardening and recovery coefficients C,/C, determines the
saturated value of 7, , which is taken as 74.1 MPa. Since the hardening coefficient C, is taken as

a high value of 126 GPa, 2'1? ® dominates in the early stage of hardening response. On the other

hand, Z'Ii f” represents the extra strengthening effect due to the deformation-induced storage of

GNDs associated with as-printed dislocation cells. The increase of 7, “ is less steep than z",f v,

and its saturation value is 40.3 MPa. Both T}an and r,f? become saturated at a strain level of

~0.5%. Afterwards, the strain hardening response is controlled by the hardening effects of short-

range obstacles to dislocation glide, as represented by a much lower rate of increase of s; rather

. Cell GB
than the rates of increase of 7, and 7, that have become saturated.
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Fig. 6 Simulated shear stress-strain hysteresis loops on a single slip system given by the simplified
CP model that includes the back stress terms of rﬁ “ and 2'2 7 in Eq. (7) by taking r; . as zero. The

total flow stress of 226.8 MPa at the strain of 1% involves the contribution of s,, 7, and 7, by

about 112.4 MPa, 40.3 MPa and 74.1 MPa, respectively.

Table 1 Parameters used in single-slip and CP simulations.

Yo 5o hy Ssat a U m, L
(s (MPa) (MPa) (MPa) (GPa) (um)
0.001 110 320 447 0.7 126 0.02 0.5
LS S, Cp m, b Cl C2 14
(um) (MPa) (um2) (nm) (GPa)
0.5 3000 1.15x10° 0.8 0.284 126 1700 0.3
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4.3 Crystal plasticity finite element results
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Fig. 7 CPFE simulation results. (a) Comparison of stress-strain curves under uniaxial tension and
compression between experiments [9] (solid lines) and CPFE simulations (dashed lines) for as-
printed samples. (b) Determination of simulated back stress from an unloading branch using

Dickson’s method.

We perform CPFE simulations of uniaxial tension and compression of AM stainless steel
using the CP equations in Section 3.2, which accounts for all three sources of back stresses given
in Eq. (7). These CP equations are implemented in ABAQUS/Explicit [26] by writing a user
material subroutine (VUMAT) with the material parameters in Table 1. The finite element
polycrystal model of AM stainless steel is taken as an assembly of 125 grains with random
orientations. Each grain is represented by a brick element with reduced integration (C3D8R). As
shown in our previous work [9], such type of polycrystal model can effectively capture the
experimentally measured stress-strain behavior of AM stainless steel. To capture the tension-

compression asymmetry, we assign the non-zero normal components and zero shear components
of the printing-induced back stress tensor B, . The component along the build direction is 54 MPa
and the components along the loading and transverse directions are -27 MPa. Compared to the

case of vanishing B, the compressive yield strength is raised by 27 MPa, while the tensile yield

strength is reduced by 27 MPa. As a result, the printing-induced back stress B, gives an
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asymmetry of tensile and compressive yield strength by 54 MPa. Figure 7(a) shows the CPFE
results of uniaxial tensile and compressive stress-strain curves, which closely match the
experimental results beyond the transient initial yield point region, including the tension-
compression asymmetry. However, there exists a certain difference around the yield points in the
tensile and compressive stress-strain curves between experiments and CPFE simulations, due to

the limited nonlinearity of Eq. (13). This initial yielding region can be improved by enhancing the

simplified form of the nonlinear evolution of r,f? in Eq. (13), if desired. The B, values used are

the fitting results for matching the experimental measurement and model prediction of the amount
of asymmetry in tensile and compressive yield strengths. The physical origin of these back stresses
associated with printing-induced dislocation structures in initial undeformed samples warrants

further study in the future [27].

Figure 7(b) shows the magnified tensile loading-unloading curve around the tensile strain of
3%. From the unloading branch, the macroscopic back stress of the polycrystalline sample is

determined as follows. The macroscopic back stress, o, , is given by o, = (o, +0,)/2, where o,

is the flow stress prior to unloading, o

u

is the stress at the onset of reverse yielding, and the
effective stress is 0,; =0, —0, . The 0, value is determined as 420 MPa, given o, =690 MPa and

o, =150 MPa which are consistent with the experimental values [9].

Altogether, Fig. 7 demonstrates that our CP model can effectively account for different sources
of back stresses and give predictions that closely match the macroscopic stress-strain behavior of
AM stainless steel, including the macroscopic back stress and tension-compression asymmetry.
Moreover, the CP model is informed by a dislocation pile-up model and thereby provides an in-
depth understanding of how the deformation-induced back and forward stresses associated with
as-printed dislocation cells affect the nonlinear stress-strain response of AM stainless steel at the

macroscopic scale.
4. Concluding remarks

AM metallic materials often exhibit highly heterogeneous microstructures such as as-printed
dislocation cells inside grains. In general, strong structural heterogeneity in a material gives rise

to complex mechanical heterogeneity [12, 28, 29], which is manifested as multiple sources of
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microscale internal stresses. In this work, we develop models of microscale internal stresses
originated from highly heterogeneous microstructures in AM stainless steel, and focus on their
back stress components. These models connect the microscale internal stresses to the overall
stress-strain response as well as the unique deformation characteristics such as the substantial
macroscopic back stress and tension-compression of AM stainless steel. The necessity to include
multiple sources of microscale back stresses for the constitutive modeling of AM metallic
materials is underscored, and it is in line with a broad class of plasticity models that include
multiple back stress terms [14-18]. In addition, the DDD simulation is used to demonstrate the
manifestation of heterogeneous internal stresses in dislocation cell structures. It provides support
and insight for the CPFE model that accounts for heterogeneous internal stresses in dislocation
cell structures. Further studies are needed to bridge DDD and CPFE simulations through passing

of quantitative information in the future.

Given the great potential of AM metallic materials for engineering applications, the mechanics
of heterogeneous microstructures including as-printed dislocation structures warrant further
studies in the future. For example, a combined experimental and modeling study is needed to
characterize the relative contributions of different sources of microscale internal stresses to the
macroscopic stress-strain response, including the macroscopic back stress. Furthermore, it is
essential to correlate different sources of microscale back stresses with underlying dislocation
microstructures. To this end, we note that recent years have witnessed rapid development of in situ
characterization approaches through advanced X-ray microscopy [30, 31], transmission electron
microscopy [17], electron backscattered diffraction [8], etc. They enable high-resolution
characterizations of the spatial-temporal evolution of dislocation distributions, lattice strains and
orientations, etc. The integration between advanced in situ characterizations and constitutive
models can open many opportunities to understand the effects of highly heterogeneous

microstructures on the mechanical behavior of AM metals and alloys.
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