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Abstract: The first search for the doubly heavy  baryon and a search for the  baryon are performed using
 collision data collected via the  experiment from 2016 to 2018 at a centre-of-mass energy of , cor-

responding  to  an  integrated  luminosity  of  5.2 .  The  baryons  are  reconstructed  via  their  decays  to  and
. No significant excess is found for invariant masses between 6700 and 7300 , in a rapidity range from

2.0 to 4.5 and a transverse momentum range from 2 to 20 . Upper limits are set on the ratio of the  and
 production cross-section times the branching fraction to  ( ) relative to that of the  ( ) baryon, for

different lifetime hypotheses, at 95% confidence level. The upper limits range from  to  for the
 ( )  decay,  and  from  to  for  the  ( ) decay,  de-
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I.  INTRODUCTION

LHCb
Ξ++cc

Ξ++cc →Λ+c K−π+π+

Ξ++cc
Ξ+c π

+

The  constituent  quark  model  was  initially  proposed
by Murray Gell-Mann [1] and George Zweig [2] for clas-
sification  of  hadrons  formed  from  light  quarks  (u, d, s)
and  understanding  their  quantum  numbers.  It  was  later
extended to  hadrons  containing  heavy c or b quarks  [3].
In  addition  to  baryons  containing  a  single  heavy  quark,
the  theory  also  predicts  baryons  comprising  two  heavy
quarks.  Such  doubly  heavy  baryons  provide  a  unique
probe for quantum chromodynamics, the gauge theory of
strong  interactions.  In  2017,  the  collaboration re-
ported the first observation of the  baryon containing
two  charm  quarks  through  the  decay 
[4].1) The  state  was  later  confirmed  in  the  decay  to

 [5]. Its lifetime, mass and production cross-section
were  subsequently  measured  [6-8].  To  date,  no  baryons
containing one b and one c quark, or two b quarks, have
been observed experimentally. An observation would en-
rich our knowledge of baryon spectroscopy and improve
our understanding of the quark structure inside baryons.

Ω0
bc bcs Ξ0bc bcd Ξ+bc bcu

Ω0
bc Ξ0bc

MeV/c2

The ground-state baryons containing one b and one c
quark, the  ( ),  ( ) and  ( ) states, have
been considered within  various  theoretical  models.  Most
studies predict the masses of the  and  baryons to
be between 6700 and 7200  [9-25].

Ω0
bc

0.22±0.04 ps Ξ0bc
ps
Ξ0bc

pp
√
s =

nb
Ξ0bc η

The  lifetime  of  the  baryon  is  predicted  to  be
 [14],  while  the  lifetime of  is  predicted

to be in the range of 0.09 to 0.28  [14, 23, 26, 27]. The
production cross-section of the  baryon in proton-pro-
ton  ( )  collisions  at  a  centre-of-mass  energy  14
TeV is expected to lie in the range between 19 to 39 ,
derived  from  Ref.  [28],  in  the  pseudorapidity  ( )

1.9 < η < 4.9

pT Ξ0bc
LHCb Ξ0bc

Ξ0bc→D0pK−

range of , depending on the required minim-
um value of the momentum component transverse to the
beam  direction  ( )  of  the  particle.  Recently,  the

 experiment found no significant  baryon signal
in the predicted mass range using the  decay
mode [29].

Ω0
bc

Ξ0bc
Λ+c π

− Λ+c→pK−π+ Ξ+c π
− Ξ+c →pK−π+

LHCb

Ω0
bc→Ξ+c π− Ξ0bc→Λ+c π−

1.6×10−7 3.0×10−7

Ω0
bc Ξ0bc

LHCb
LHCb

This article reports the first search for the  baryon
and  a  new  search  for  the  baryon,  both  via  decay
chains  with  or  with 
in  the  experiment. Examples  of  Feynman  dia-
grams of the four signal decay modes are shown in Fig. 1.
There  are  few  theoretical  predictions  on  the  branching
fractions  of  these  decay  modes.  Ref.  [30]  predicts  the
branching fractions of the  and  de-
cays  to  be  and ,  respectively.
However, uncertainties are not quoted. Inputs from exper-
imental studies  are  necessary  to  deepen  our  understand-
ing  of  the  properties  of  and  baryons,  and  can
provide  valuable  reference  for  future  searches.  Besides,
the distinct experimental signatures of these decays make
it  promising to  search for  them in  the  experiment
considering the high detection efficiency of the  de-
tector.

Ω0
bc Ξ0bc

H0
bc

H0
bc → Λ+c π− (H0

bc→Ξ+c π−)

Λ0b→Λ+c π−(Ξ0b→Ξ+c π−)

6700
7300 MeV/c2 pp

The  and  baryons  are  not  differentiated  and
are  collectively  denoted  as  hereafter, unless  other-
wise stated.  The  production  cross-section  times  branch-
ing  fraction  of   decay is  meas-
ured  relative  to  that  of  the  control  channel

.  This  takes  advantage  of  identical
final-state  particles  and  similar  topology.  The  search  is
performed  in  the  mass  range  between  and

 using  the  collision  data  collected  with

Ω0
bc→Λ

+
c π

− Ω0
bc→Ξ

+
c π

− Ξ0bc→Λ
+
c π

− Ξ0bc→Ξ
+
c π

−Fig. 1.    Examples of Feynman diagrams for the , ,  and  decays.
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LHCb
√
s = 13 TeV
5.2 fb−1 H0

bc

2.0 4.5 pT 2
20 MeV/c

the  experiment  at ,  corresponding  to
an integrated luminosity of . The  baryons are
reconstructed  in  the  fiducial  region  of  rapidity  (y)
between  and  and  with  between  and

. 

II.  DETECTOR AND SIMULATION

LHCb
pseudorapidity 2 < η < 5

pp

4 Tm

MeV/c
pp

(15+29/pT) µm pT MeV/c

ET GeV

pT > 1.6 MeV/c

The  detector  [31, 32]  is  a  single-arm  forward
spectrometer covering the  range ,
designed  for  the  study  of  particles  containing b or c
quarks.  The  detector  includes  a  high-precision  tracking
system consisting  of  a  silicon-strip  vertex  detector  sur-
rounding the  interaction region [33], a large-area silic-
on-strip  detector  located  upstream  of  a  dipole  magnet
with  a  bending  power  of  approximately ,  and  three
stations  of  silicon-strip  detectors  and  straw  drift  tubes
[34] placed downstream of the magnet. The tracking sys-
tem  provides  a  measurement  of  the  momentum, p,  of
charged  particles  with  a  relative  uncertainty  that  varies
from 0.5% at low momentum to 1.0% at 200 . The
minimum  distance  of  a  track  to  a  primary  collision
vertex (PV), the impact parameter (IP), is measured with
a  resolution  of ,  where  is  in .
Different types  of  charged  hadrons  are  distinguished  us-
ing information  from  two  ring-imaging  Cherenkov  de-
tectors  [35]. Photons,  electrons,  and  hadrons  are  identi-
fied  by  a  calorimeter  system  consisting  of  scintillating-
pad and preshower detectors, and an electromagnetic and
a hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire pro-
portional  chambers  [36].  The  online  event  selection  is
performed  by  a  trigger  [37], which  consists  of  a  hard-
ware  stage,  based  on  information  from  the  calorimeter
and  muon  systems,  followed  by  a  software  stage,  which
applies a  full  event  reconstruction.  At  the hardware trig-
ger stage, events are required to have at least one hadron
with  larger  than  3.5 . The  software  trigger  re-
quires a two-, three-, or four-track secondary vertex with
a  significant  displacement  from  any  PV.  At  least  one
charged particle must have  and be incon-
sistent with  originating  from  any  PV.  A  multivariate  al-
gorithm [38, 39] is used for the identification of second-
ary vertices consistent with the decay of a b hadron.

pp
PYTHIA LHCb

GENXICC2.0
H0

bc
H0

bc m(H0
bc) = 6900

MeV/c2 τ(H0
bc) = 0.4 ps

MeV/c2

ps

Simulated samples are produced to model the effects
of the  detector  acceptance  and  the  imposed  selection  re-
quirements.  In  the  simulation,  collisions are  gener-
ated using  [40, 41] with a specific  config-
uration  [42].  A  dedicated  generator, ,  is
used to simulate the  baryon production [43], with the
mass and lifetime of the  baryon set to 

 and .  Simulation  samples  with
different  mass  (6700 –7300 )  and  lifetime
(0.2 –0.4 )  hypotheses  are  obtained  using  a  weighting
technique with the generator level information on signal.

EVTGEN

PHOTOS

GEANT4
Λ0b→Λ+c π− Ξ0b→Ξ+c π−

PYTHIA pp
Λ0b Ξ0b

Decays  of  unstable  particles  are  described  by 
[44],  in  which  final-state  radiation  is  generated  using

 [45]. The interaction of the generated particles
with the detector, and its response, is implemented using
the  toolkit  [46, 47]  as  described  in  Ref.  [48].
For  the  two  control  channels,  and ,

 is used to simulate the  collisions and the pro-
duction of the  and  baryons.
 

III.  RECONSTRUCTION AND SELECTION

H0
bc

Λ+c ,Ξ
+
c →pK−π+

Λ+c Ξ
+
c

MeV/c2

MeV/c2

Λ+c Ξ+c

Λ+c Ξ
+
c

D+

D+s K−π+π+ K−K+π+

ϕπ+ ϕ→K−K+

K−π+π+ K−K+π+ K−K+

D+ D+s ϕ

For both the  signal and the control channels, the
 candidates  are  reconstructed  from  three

charged  particles  identified  as  a  proton,  kaon  and  pion,
respectively. The  tracks  are  required  to  have  good  qual-
ity,  and to  be  inconsistent  with  originating from any PV
in the event. The tracks must also form a common vertex
of good fit quality. The  ( ) candidate is required to
have  an  invariant  mass  in  the  range  2271–2301
(2450 –2488 ),  corresponding  to  approximately
six  times  the  ( ) mass  resolution,  and  to  be  incon-
sistent with originating from any PV. In the sample of se-
lected  ( )  candidates,  there is a sizable background
contamination from decays of other particles, such as 
( )  decays  to  ( )  with  a  charged  pion
(kaon)  misidentified  as  a  proton,  and  background  from

 combinations  where  in  decays  a  kaon  is
misidentified  as  a  proton.  Such  background  candidates
are  rejected  if  the ,  or  invariant
mass  is  consistent  with  the  known ,  or  mass
[49], respectively, when a charged pion (kaon) hypothes-
is is assigned to the proton candidate.

pT MeV/c
Λ+c Ξ

+
c H0

bc H0
bc

ps pT MeV/c
pT

MeV/c H0
bc

mrad

An  additional  charged  particle  identified  as  a  pion
and,  with  greater  than  0.2 ,  is  combined  with
the  ( ) candidate to form an  candidate. The 
candidates must have a vertex with good fit quality, a de-
cay  time larger  than  0.05 ,  a  greater  than  2
and  a  scalar  sum  of  the  of  the  final-state  particles
greater  than  5 .  Furthermore,  the  candidates
are required to be consistent with originating from a PV.
To avoid  contributions  from  duplicate  tracks,  the  selec-
ted candidates are rejected if  the angle between any pair
of the final-state particle tracks with same charge is smal-
ler than 0.5 .

MeV/c2

MeV/c2

H0
bc

A boosted decision tree (BDT) classifier [50, 51] im-
plemented  in  the  TMVA  toolkit  [52, 53] is  used  to  fur-
ther suppress combinatorial background. A simulated sig-
nal  sample  in  the  mass  range  6846–6954  and  a
background  sample  formed  by  candidates  in  an  upper
mass  sideband  region  (7500 –9000 )  are  used  to
train the BDT classifier. Four different categories of vari-
able are  used  as  the  BDT  input.  The  first  category  ex-
ploits  the  non-zero  lifetime  of  baryons and  a  dis-
placement of their vertices from any PV in the event. The
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χ2IP
Λ+c Ξ

+
c H0

bc
χ2IP

χ2

H0
bc

χ2IP χ2IP
χ2 Λ+c

Ξ+c H0
bc

pT
Λ+c Ξ+c H0

bc
H0

bc

H0
bc

χ2 Λ+c Ξ
+
c H0

bc χ2

H0
bc

variables  comprise  the  of  all  final-state  particles
forming the  ( )  and  candidates  with  respect  to
their  associated  PV,  where  is defined  as  the  differ-
ence in the vertex-fit  of a given PV reconstructed with
and without  the particle  under  consideration,  and the as-
sociated PV is the one with respect to which the  can-
didate has the smallest ; the sum of  of the four fi-
nal-state particles; and  of the flight distance of the 
( ) and  candidates. The second category consists of
kinematic  variables,  including  of  the  final-state
particles  and  the  ( )  and  candidates,  and  the
angle  between  the  momentum vector  and  the  dis-
placement vector  pointing from the associated PV to the

 decay vertex.  The  third  category  comprises  the  ver-
tex-fit  of the  ( ) and  candidates, and  of a
kinematic  fit  [54]  of  the  signal  decay  chain  constraining
the  candidate  to  originate  from  the  associated  PV.
The fourth category consists of identification variables of
the final-state particles.

ε/(
α

2
+
√
B) ε

α = 5

The BDT threshold is chosen to maximize the figure
of  merit,  [55].  Here,  is the  selection  effi-
ciency  of  signal  candidates  determined  from  simulation,
B is  the expected background number in the signal mass
region,  and  is  the  signal  significance.  This
threshold  is  estimated  using  the  signal  sample  simulated

with the  default  mass  and  lifetime  values.  The  same  se-
lection is applied to the control modes. 

IV.  YIELD DETERMINATION

H0
bc

Λ+c π
− Ξ+c π

−

Λ+c Ξ+c
H0

bc

H0
bc m(Λ+c π

−)
m(Ξ+c π

−) H0
bc

MeV/c2 MeV/c2

Λ+c π
− Ξ+c π

−

To improve the resolution of the mass of the  can-
didates,  the  ( )  invariant  mass  is  calculated
after  constraining  the  ( )  mass  to  its  known  value
[49] and requiring the  candidate to be consistent with
originating from  its  associated  PV.  The  obtained  invari-
ant  mass  distributions  of  candidates,  and

, are shown in Fig. 2. To search for the  sig-
nals,  the  mass  distributions  are  fitted  using  an  unbinned
maximum-likelihood  fit.  A  double-sided  Crystal  Ball
function [56] is  used to  model  the  signal,  with  tail  para-
meters  fixed  from simulation,  and  the  peak  position  and
width allowed to vary in the fit. The background shape is
interpolated  from  a  double-exponential  fit  to  a  lower
(6100–6650 ) and an upper (7500–9000 )
sideband  region  of  the  ( )  mass  distribution.
No  significant  excess  is  observed  across  the  searched
mass range.

Λ+c π
− Ξ+c π

−

Λ0b→Λ+c (→ pK−π+)π− Ξ0b→Ξ+c (→
pK−π+)π−

The  and  invariant  mass  distributions  of
the  selected  and 

 candidates are shown in Fig. 3. The yields are
obtained  from  unbinned  maximum-likelihood  fits  to  the

H0
bc→Λ

+
c π

− H0
bc→Ξ

+
c π

−Fig. 2.    (color online) Invariant mass distributions of selected (left)  and (right)  candidates (black points),  to-
gether with results of the background only fit (brown dashed line).

 

Λ0b→Λ
+
c (→ pK−π+)π− Ξ0b→Ξ

+
c (→ pK−π+)π−Fig. 3.    (color online) Invariant mass distributions of (left)  and (right)  candidates with the fit

results overlaid (blue solid line). The black points represent the data, the red dashed line represents the signal contribution, and the gray
dashed line represents the combinatorial background.
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191000±500 5490±80 Λ0b→Λ+c (→ pK−π+)π−

Ξ0b→Ξ+c (→ pK−π+)π−

invariant mass  distributions,  using  the  fit  model  de-
scribed  above.  The  yields  are  determined  to  be

 and  for  and
, respectively.

 

V.  RATIO OF PRODUCTION
CROSS-SECTIONS

R H0
bc

H0
bc→Λ+c π−(H0

bc→Ξ+c π−) Λ0b
Ξ0b

The  ratio  of  the  baryon  production  cross-sec-
tion  multiplied  by  the  branching  fraction  of  the

 decay  relative  to  that  of  the 
( ) baryon can be written as
 

R(Λ+c π−) ≡
σ(pp→H0

bcX) B
(
H0

bc→Λ+c (→ pK−π+)π−
)

σ(pp→Λ0bX) B
(
Λ0b→Λ+c (→ pK−π+)π−

)
=
N(H0

bc→Λ+c π−)
N(Λ0b→Λ+c π−)

·
ε(Λ0b)

ε(H0
bc)
,

(1)
 

R(Ξ+c π−) ≡
σ(pp→H0

bcX) B
(
H0

bc→Ξ+c (→ pK−π+)π−
)

σ(pp→Ξ0bX) B
(
Ξ0b→Ξ+c (→ pK−π+)π−

)
=
N(H0

bc→Ξ+c π−)
N(Ξ0b→Ξ+c π−)

·
ε(Ξ0b)

ε(H0
bc)
,

(2)

ε

R
2 < y < 4.5 2 < pT < 20 MeV/c

where N and  are the signal yield and the efficiency for
the corresponding  decay  modes,  respectively.  The  effi-
ciency  accounts  for  the  geometrical  acceptance,  trigger,
reconstruction,  and event selection.  The  is  determined
in the fiducial region  and .

pT Λ0b Ξ0b

pT
Λ0b Ξ0b

Λ0b Ξ0b pT

sPlot m(Λ+c π
−) m(Ξ+c π

−)

Efficiencies  are  determined  from  the  simulated
samples.  The  distributions  of  and  baryons  are
not well modeled in simulation. To improve the descrip-
tion, a gradient boosted weighting method [57] is used to
apply  a  kinematic  correction  on  the  distributions  of
the  and  decay  products  of  the  simulated  control
samples.  With  this  correction,  a  good  agreement  on  the

 and   distribution  is  seen  between  the  data  and
simulation. The track detection and particle identification
efficiencies are calibrated with the data [58-60]. The im-
perfect  modeling  of  input  variables  used  in  the  BDT
training  can  bias  the  efficiency  estimation.  To  suppress
such effects,  ratios  between  the  BDT  response  distribu-
tion of the background-subtracted data sample and that of
the  simulated  sample  are  calculated  using  the  control
channel.  The  background  subtraction  is  performed using
the  method [61] with  and  as dis-
criminating variables. These ratios are applied as correc-
tion weights  to  the  simulated samples  for  all  reconstruc-
ted decay modes.

ε(Λ0b)/ε(H
0
bc)

3.18±0.05 ε(Ξ0b)/ε(H
0
bc)

3.00±0.02 m(H0
bc) = 6900 MeV/c2 τ(H0

bc) = 0.4 ps

Λ0b Ξ0b

H0
bc

H0
bc

The  total  efficiency  ratio  is  determined
to  be ,  and  is  calculated  to  be

 for  and .
The efficiency is larger for the control mode, mainly due
to the longer lifetime of the  and  baryons. The effi-
ciency  depends  on  the  mass  and  lifetime  hypotheses  of
the  state, and is evaluated from simulation. The kin-
ematic  properties  of  the  fully  simulated  samples  are
weighted to match those of the generator-level sample to
calculate  the  efficiency  for  different  mass and  life-
time assumptions. 

VI.  SYSTEMATIC UNCERTAINTIES

R

H0
bc

H0
bc→Λ+c π− H0

bc→Ξ+c π−

Various sources  of  systematic  uncertainties  on  are
estimated and combined in quadrature. The effect of im-
perfect  description of  the mass distributions on the yield
estimates is  studied  using  alternative  signal  and  back-
ground  models.  For  the  signal  model,  the  Hypatia  [62]
function  is  used  instead  of  the  nominal  double-sided
Crystal  Ball  function.  For  the  background  model  of  the
control  modes,  the  nominal  double-exponential  function
is  replaced  by  a  first-order  polynomial  function.  As  the
background  model  for  the  decay modes  is  interpol-
ated  from  the  sidebands,  its  uncertainty  is  evaluated  by
both  replacing  the  nominal  function  with  an  exponential
function  and  varying  the  sideband  regions.  The  largest
deviation with respect to the nominal result is taken as the
corresponding uncertainty.  In  total,  the  associated  sys-
tematic uncertainty is estimated to be 0.1% and 0.9% for

 and  decays, respectively.
R

R(Λ+c π−) R(Ξ+c π−)

H0
bc→Λ+c π−

H0
bc→Ξ+c π−

In  the  ratios,  systematic  uncertainties  arising from
the track detection efficiency largely cancel,  and the un-
certainty due to limited size of simulation samples is de-
termined to be 1.6% (0.7%) on  ( ).  The
particle  identification  efficiency is  determined in  bins  of
particle momentum,  pseudorapidity,  and  track  multipli-
city  using  control  channels  in  the  data  [60].  As  the
particle  identification  variables  have  large  dependencies
on  the  momentum  of  the  final-state  particles,  there  are
sizeable differences in these efficiencies between the con-
trol and signal channels, which do not cancel in the ratio
measurement.  Systematic  effects  arising from the  choice
of binning scheme are evaluated by varying the bin sizes
and  reevaluating  the  efficiency.  The  largest  deviations
from the nominal result,  1.7% and 2.1%, are assigned as
the  systematic  uncertainty  for  the  and

 decays, respectively.
Λ+c Ξ+c

H0
bc→Ξ+c π−

H0
bc→Λ+c π−

The  ( )  mass  resolution  shows  a  difference
between data  and simulation,  which affects  the  selection
efficiency.  It  results  in  a  0.2%  systematic  uncertainty
contribution for the  decay, while the contribu-
tion for the  decay is below 0.1%. This systema-
tic  uncertainty  is  negligible  compared  to  other  sources.

Ω0
bc Ξ0bc Λ+c π
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H0
bc→Λ+c π− H0

bc→Ξ+c π−
Ξ0bc pT

The  imperfect  simulation  of  the  signal  and  control
modes are considered by applying corrections to the BDT
response and  kinematic  properties  of  the  simulated  con-
trol  mode  samples.  To  assess  the  systematic  uncertainty
in  these  corrections,  the  correcting  weights  are  varied
within their  uncertainties.  The largest  deviation from the
nominal  result  is  taken  as  the  systematic  uncertainty.
Combining the uncertainties from the BDT response cor-
rection and the kinematic modeling of the simulated con-
trol  samples  gives  an  uncertainty  of  1.6%  for  the

 channel,  and  3.0%  for  the  chan-
nel.  The  analysis  relies  on  the   model implemen-
ted  in  simulation.  No  systematic  uncertainty  is  assigned
to this model.

χ2IP

Ξ0bc
χ2IP

The  algorithm  used  to  compute  the  was  updated
during data collection, which causes a mismatch between
data  and  simulation  and  introduces  systematic  effects  in
the  efficiency  estimation.  The  corresponding  uncertainty
was  found  to  be  5%  in  the  previous  search  [29].
Checks by varying the -related requirements show that
the uncertainty  well  covers  the  change  of  result.  There-
fore, a 5% systematic uncertainty is assigned.

H0
bc→Λ+c π−

H0
bc→Ξ+c π− H0

bc MeV/c2

ps

The systematic uncertainties are summarized in Table 1.
The  total  systematic  uncertainty  is  5.7%  for 
and 6.3% for , for a  mass of 6900
and lifetime of 0.4 . These values of systematic uncer-
tainties are also used for other assumed lifetime and mass
hypotheses. 

VII.  RESULTS

Ω0
bc Ξ0bc

R(Λ+c π−) R(Ξ+c π−)
Ω0

bc
Ξ0bc CLs

ROOSTATS

Ω0
bc Ξ0bc

MeV/c2 MeV/c2

ps ps ps

H0
bc
Ω0

bc Ξ0bc

No evidence for a  or a  baryon is observed in
the  inspected  mass  range.  Upper  limits  are  set  at  95%
confidence level  on the ratios  and  un-
der  different  mass  and  lifetime  hypotheses  for  the 
and  baryons,  using  the  asymptotic  method im-
plemented in the  framework [63, 64] consid-
ering  the  systematic  uncertainties.  The  assumed  masses
of  the  and  baryons  are  varied  from  6700  to
7300  with a step size of 4 , and the life-
time  values  of  0.2 ,  0.3 ,  and  0.4  are  considered.
The calculated upper limits are shown in Fig. 4, as a func-
tion  of  the  mass.  These  results  are  obtained  for  the
sum of  the  and  production and as  such hold for
the two individually. 

VIII.  CONCLUSIONS

Ω0
bc

Ξ0bc
MeV/c2 pp√

s = 13 TeV
LHCb

fb−1 Ω0
bc Ξ

0
bc

Λ+c π
− Ξ+c π

−

Ω0
bc Ξ

0
bc

Λ0b Ξ
0
b

The first search for the doubly heavy baryon  and
a new search for  the  baryon in  the  mass  range from
6700  to  7300  are  presented,  using  collision
data  collected  at  a  centre-of-mass  energy 
with  the  experiment.  The  data  set  corresponds  to
an integrated luminosity of 5.2 . The  ( ) bary-
on is  reconstructed in  the  and  decay modes.
No  evidence  of  a  signal  is  found.  Upper  limits  at  95%
confidence level on the ratio of the  ( ) production
cross-section  times  its  branching  fraction  relative  to  that
of the  ( ) baryon are calculated in the rapidity range

H0
bc MeV/c2 ps

Table 1.    Sources  of  systematic  uncertainty obtained for  an
 mass  of  6900  and lifetime of  0.4 .  The total  is

the quadratic sum of the individual systematic uncertainties.

H0
bc→Λ

+
c π

− H0
bc→Ξ

+
c π

−

Fit model 0.1% 0.9%

Size of simulated samples 1.6% 0.7%

Particle identification efficiency 1.7% 2.1%

Mass resolution <0.1% 0.2%

Simulation model 1.6% 3.0%

χ2IP  simulation 5.0% 5.0%

Total 5.7% 6.3%

Ω0
bc Ξ0bc Λ+c π

−

Ξ+c π
− Λ0b→Λ

+
c π

− Ξ0b→Ξ
+
c π

−

Ω0
bc(Ξ

0
bc)

Fig. 4.    (color online) Upper limits (dotted lines) on the ratio of production cross-section for  and  via decays to (left)  and
(right)  to that of control channels  and . The dotted (dashed) colored lines represent the observed (expected)
upper limits. The assumed lifetime hypotheses for the  are 0.2 ps (red filled circles), 0.3 ps (blue triangles), and 0.4 ps (magenta
open circles).
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2.0 < y < 4.5
2 < pT < 20 MeV/c Ω0

bc Ξ0bc

0.5×10−4 2.5×10−4 Ω0
bc→Λ+c π−(Ξ0bc→Λ+c π−)

1.4×10−3 6.9×10−3

Ω0
bc→Ξ+c π−(Ξ0bc→Ξ+c π−)

Ω0
bc

 and  transverse  momentum  range
 under  different  ( )  mass  and

lifetime  hypotheses.  The  upper  limits  range  from
 to  for the  de-

cay,  and  from  to  for  the
 decay, for  the  considered  life-

time  and  mass  hypotheses.  These  results  constitute  the
first  limit  on  the  production  of  the  baryon.  Further

LHCb
measurements  will  be  possible  with  the  larger  data
samples expected at the upgraded  experiments [65]
and with additional decay modes. 
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