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The standard model (SM) of particle physics provides precise 
predictions for the properties and interactions of fundamen-
tal particles, which have been confirmed by numerous experi-

ments since the inception of the model in the 1960s. However, it is 
clear that the model is incomplete. The SM is unable to explain cos-
mological observations of the dominance of matter over antimatter, 
the apparent dark matter content of the Universe, or the patterns 
seen in the interaction strengths of the particles. Particle physicists 
have therefore been searching for ‘new physics’, that is, new particles 
and interactions that can explain the SM’s shortcomings.

One method to search for new physics is to compare measure-
ments of the properties of hadron decays, where hadrons are bound 
states of quarks, with their SM predictions. Measurable quantities 
can be predicted precisely in the decays of a charged beauty hadron,  
B+, into a charged kaon, K+, and two charged leptons, ℓ+ℓ−. The B+ 
hadron contains a beauty antiquark, b , and the K+ a strange anti-
quark, s , such that at the quark level the decay involves a b → s  
transition. Quantum field theory allows such a process to be medi-
ated by virtual particles that can have a physical mass larger than the 
energy available in the interaction. In the SM description of such 
processes, these virtual particles include the electroweak force car-
riers, the γ, W± and Z0 bosons, and the top quark (Fig. 1, left). Such 
decays are highly suppressed1, and the fraction of B+ hadrons that 
decay into this final state (the branching fraction, B) is on the order 
of 106 (ref. 2).

A distinctive feature of the SM is that the different leptons, 
electron (e−), muon (μ−) and tau (τ−), have the same interaction 
strengths. This is known as ‘lepton universality’. The only exception 
to this is due to the Higgs field, since the lepton–Higgs interaction 
strength gives rise to the differing lepton masses mτ > mμ > me. The 
suppression of b → s  transitions is understood in terms of the fun-
damental symmetries on which the SM is built. Conversely, lepton 
universality is an accidental symmetry of the SM, which is not a 
consequence of any axiom of the theory. Extensions to the SM that 
aim to address many of its shortfalls predict new virtual particles 
that could contribute to b → s  transitions (Fig. 1, right) and could 
have non-universal interactions, hence giving branching fractions 
of B+ → K+ℓ+ℓ− decays with different leptons that differ from the 
SM predictions. Whenever a process is specified in this paper, the 
inclusion of the charge-conjugate mode is implied.

Calculation of the SM predictions for the branching fractions 
of B+ → K+μ+μ− and B+ → K+e+e− decays is complicated by the 

strong nuclear force that binds together the quarks into hadrons, as 
described by quantum chromodynamics (QCD). The large interac-
tion strengths preclude predictions of QCD effects with the pertur-
bation techniques used to compute the electroweak force amplitudes, 
and only approximate calculations are currently possible. However, 
the strong force does not couple directly to leptons, hence its effect 
on the B+ → K+μ+μ− and B+ → K+e+e− decays is identical. The ratio 
between the branching fractions of these decays is therefore pre-
dicted with O(1%) precision3–8. Due to the small masses of both 
electrons and muons compared with that of b quarks, this ratio is 
predicted to be close to unity, except where the value of the dilepton 
invariant mass-squared (q2) significantly restricts the phase space 
available to form the two leptons. Similar considerations apply to 
decays with other B hadrons, B → Hμ+μ− and B → He+e−, where  
B= B+, B0, B0

s  or Λ0
b, and H can be, for example, an excited kaon, K*0, 

or a combination of particles such as a proton and charged kaon, 
pK−. The ratio of branching fractions, RH (refs. 9,10), is defined in the 
dilepton mass-squared range q2min < q2 < q2max as

RH ≡

∫ q2max
q2min

dB (B→Hμ+μ−)

dq2 dq2
∫ q2max
q2min

dB (B→He+e−)

dq2 dq2
. (1)

For decays with H = K+ and H = K*0 such ratios, denoted by 
RK and RK*0, respectively, have previously been measured by 
the Large Hadron Collider beauty (LHCb)11,12, Belle13,14 and 
BaBar15 collaborations. For RK the LHCb measurements are in 
the range 1.1 < q2 < 6.0 GeV2 c−4, whereas for RK*0, the ranges are 
0.045 < q2 < 1.1 GeV2 c−4 and 1.1 < q2 < 6.0 GeV2 c−4. These ratios 
have been determined to be 2.1–2.5 standard deviations below their 
respective SM expectations3–7,16–22. The analogous ratio has also been 
measured for Λ0

b decays with H = pK− and is compatible with unity 
at the level of one standard deviation23.

These decays all proceed via the same b → s  quark transition, 
and the results have therefore further increased interest in mea-
surements of angular observables24–34 and branching fractions35–38 
of decays mediated by b → sμ+μ− transitions. Such decays also 
exhibit some tension with the SM predictions but the extent of 
residual QCD effects is still the subject of debate3,21,39–47. A consistent 
model-independent interpretation of all these data is possible via a 
modification of the b → s  coupling strength48–54. Such a modification  
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can be realized in new physics models with an additional heavy 
neutral boson or with leptoquarks. Other explanations of the data 
involve a variety of extensions to the SM, such as supersymmetry, 
extended Higgs–boson sectors and models with extra dimensions. 
References to the extensive literature describing these new physics 
models can be found in the Supplementary Information. Tension 
with the SM is also seen in the combination of several ratios that test 
lepton universality in b → cℓ+νℓ transitions55–63.

In this paper, a measurement of the RK ratio is presented based 
on proton–proton collision data collected with the LHCb detector 
at the CERN’s Large Hadron Collider (Methods). The data were 
recorded during 2011, 2012 and 2015–2018 with centre-of-mass 
energy of the collisions of 7, 8 and 13 TeV and correspond to an 
integrated luminosity of 9 fb−1. Compared with the previous LHCb 
RK result11, the experimental method is essentially identical but the 
analysis uses an additional 4 fb−1 of data collected in 2017 and 2018. 
The results supersede those of the previous LHCb analysis.

The analysis strategy aims to reduce systematic uncertainties 
induced in modelling the markedly different reconstruction of 
decays with muons in the final state, compared with decays with 
electrons. These differences arise due to the significant bremsstrah-
lung radiation emitted by the electrons and the different detector 
subsystems that are used to identify electron and muon candidates 
(Methods). The major challenge of the measurement is then cor-
recting for the efficiency of the selection requirements used to iso-
late signal candidates and reduce background. To avoid unconscious 
bias, the analysis procedure was developed and the cross-checks 
described below performed before the result for RK was examined.

In addition to the process discussed above, the K+ℓ+ℓ− final state 
is produced via a B+

→ XqqK+ decay, where Xqq  is a bound state 
(meson) such as the J/ψ. The J/ψ meson consists of a charm quark 
and antiquark, cc , and is produced resonantly at q2 = 9.59 GeV2c−4. 
This ‘charmonium’ resonance subsequently decays into two leptons, 
J/ψ → ℓ+ℓ−. The B+ → J/ψ( → ℓ+ℓ−)K+ decays are not suppressed and 
hence have a branching fraction orders of magnitude larger than 
that of B+ → K+ℓ+ℓ− decays. These two processes are separated by 
applying a requirement on q2. The 1.1 < q2 < 6.0 GeV2 c−4 region used 
to select B+ → K+ℓ+ℓ− decays is chosen to reduce the pollution from 
the J/ψ resonance and the high-q2 region that contains contributions 
from further excited charmonium resonances, such as the ψ(2S) and 
ψ(3770) states, and from lighter ss  resonances, such as the ϕ(1020) 
meson. In the remainder of this paper, the notation B+ → K+ℓ+ℓ− is 
used to denote only decays with 1.1 < q2 < 6.0 GeV2 c−4, which are 
referred to as non-resonant, whereas B+ → J/ψ( → ℓ+ℓ−)K+ decays 
are denoted resonant.

To help overcome the challenge of modelling precisely the dif-
ferent electron and muon reconstruction efficiencies, the branching 
fractions of B+ → K+ℓ+ℓ− decays are measured relative to those of 

B+ → J/ψK+ decays64. Since the J/ψ → ℓ+ℓ− branching fractions are 
known to respect lepton universality to within 0.4% (refs. 2,65), the 
RK ratio is determined via the double ratio of branching fractions

RK =
B (B+

→ K+μ+μ−)

B (B+
→ J/ψ(→ μ+μ−)K+)

/ B (B+
→ K+e+e−)

B (B+
→ J/ψ(→ e+e−)K+)

.
(2)

In this equation, each branching fraction can be replaced by the 
corresponding event yield divided by the appropriate overall detec-
tion efficiency (Methods), as all other factors needed to determine 
each branching fraction individually cancel out. The efficiency of 
the non-resonant B+ → K+e+e− decay therefore needs to be known 
only relative to that of the resonant B+ → J/ψ( → e+e−)K+ decay, 
rather than relative to the B+ → K+μ+μ− decay. As the detector sig-
nature of each resonant decay is similar to that of its corresponding 
non-resonant decay, systematic uncertainties that would otherwise 
dominate the calculation of these efficiencies are suppressed. The 
yields observed in these four decay modes and the ratios of efficien-
cies determined from simulated events then enable an RK measure-
ment with statistically dominated uncertainties. As detailed below, 
percent-level control of the efficiencies is verified with a direct 
comparison of the B+ → J/ψ( → e+e−)K+ and B+ → J/ψ( → μ+μ−)K+ 
branching fractions in the ratio

rJ/ψ = B (B+
→ J/ψ(→ μ

+
μ
−)K+)/B (B+

→ J/ψ(→ e+e−)K+),

which does not benefit from the same cancellation of systematic 
effects.

Candidate B+ → K+ℓ+ℓ− decays are found by combining the 
reconstructed trajectory (track) of a particle identified as a charged 
kaon, together with the tracks from a pair of well-reconstructed 
oppositely charged particles identified as either electrons or muons. 
The particles are required to originate from a common vertex, 
displaced from the proton–proton interaction point, with good 
vertex-fit quality. The techniques used to identify the different par-
ticles and to form B+ candidates are described in Methods.

The invariant mass of the final state particles, m(K+ℓ+ℓ−), is used 
to discriminate between signal and background contributions, with 
the signal expected to accumulate around the known mass of the 
B+ meson. Background originates from particles selected from mul-
tiple hadron decays, referred to as combinatorial background, and 
from specific decays of B hadrons. The latter also tend to accumulate 
around specific values of m(K+ℓ+ℓ−). For the muon modes, the resid-
ual background is combinatorial and, for the resonant mode, there 
is an additional contribution from B+ → J/ψπ+ decays with a pion 
misidentified as a kaon. For the electron modes, in addition to com-
binatorial background, other specific background decays contribute 
significantly in the signal region. The dominant such background 
for the non-resonant and resonant modes comes from partially 
reconstructed B(0,+) → K+π(−,0)e+e− and B(0,+) → J/ψ( → e+e−)K+π(−,0) 
decays, respectively, where the pion is not included in the B+ can-
didate. Decays of the form B+

→ D0
(→ K+e−νe)e+νe also contri

bute at the level of O(1%) of the B+ → K+e+e− signal; and there is also 
a contribution from B+ → J/ψ( → e+e−)K+ decays, where a photon is 
emitted but not reconstructed. The kinematic correlation between 
m(K+e+e−) and q2 means that, irrespective of misreconstruction 
effects, the latter background can only populate the m(K+e+e−) 
region well below the signal peak.

After the application of the selection requirements, the reso-
nant and non-resonant decays are clearly visible in the mass dis-
tributions (Fig. 2). The yields in the two B+ → K+ℓ+ℓ− and two 
B+ → J/ψ( → ℓ+ℓ−)K+ decay modes are determined by performing 
unbinned extended maximum-likelihood fits to these distributions 
(Methods). For the non-resonant candidates, the m(K+e+e−) and 
m(K+μ+μ−) distributions are fitted with a likelihood function that 
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Fig. 1 | Contributions to B+ → K+ℓ+ℓ− decays in the SM and possible new 
physics models. A B+ meson, consisting of b  and u quarks, decays into 
a K+, containing s  and u quarks, and two charged leptons, ℓ+ℓ−. Left: the 
SM contribution involves the electroweak bosons γ, W+ and Z0, and the 
up-type quarks ū, c̄  and t̄ . Right: a possible new physics contribution to the 
decay with a hypothetical leptoquark (LQ) which, unlike the electroweak 
bosons, could have different interaction strengths with the different types 
of leptons.
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has the B+ → K+μ+μ− yield and RK as fit parameters and the reso-
nant decay mode yields incorporated as Gaussian-constraint terms. 
The resonant yields are determined from separate fits to the mass,  
mJ/Ψ(K+ℓ+ℓ−), formed by kinematically constraining the dilepton 
system to the known J/ψ mass2 and thereby improving the mass 
resolution.

Simulated events are used to derive the two ratios of efficiencies 
needed to form RK using equation (2). Control channels are used to 
calibrate the simulation to correct for the imperfect modelling of 
the B+ production kinematics and various aspects of the detector 
response. The overall effect of these corrections on the measured 
value of RK is a relative shift of (+3 ± 1)%. When compared with the 
20% shift that these corrections induce in the measurement of rJ/ψ, 
this demonstrates the robustness of the double-ratio method in sup-
pressing systematic biases that affect the resonant and non-resonant 
decay modes similarly.

The systematic uncertainty (Methods) from the choice of signal 
and background mass-shape models in the fits is estimated by fitting 
pseudo-experiments with alternative models that still describe the 
data well. The effect on RK is at the 1% level. A comparable uncer-
tainty arises from the limited size of the calibration samples, with 
negligible contributions from the calibration of the B+ production 
kinematics and modelling of the selection and particle-identification 
efficiencies. Systematic uncertainties that affect the ratios of efficien-
cies influence the measured value of RK and are taken into account 
using constraints on the efficiency values. Correlations between dif-
ferent categories of selected events and data-taking periods are taken 
into account in these constraints. The combined statistical and sys-
tematic uncertainty is then determined by scanning the profile likeli-
hood, and the statistical contribution to the uncertainty is isolated 
by repeating the scan with the efficiencies fixed to their fitted values.

The determination of the rJ/ψ ratio requires control of the rela-
tive selection efficiencies for the resonant electron and muon modes 
and does not therefore benefit from the cancellation of systematic 
effects in the double ratio used to measure RK. Given the scale of 
the corrections required, comparison of rJ/ψ with unity is a stringent 
cross-check of the experimental procedure. In addition, if the simu-
lation is correctly calibrated, the measured rJ/ψ value will not depend 
on any variable. The rJ/ψ ratio is therefore also computed as a func-
tion of different kinematic variables. Even though the non-resonant 
and resonant samples are mutually exclusive as a function of q2, 
there is significant overlap between them in the quantities on which 
the efficiency depends, such as the laboratory-frame momenta of 
the final-state particles or the opening angle between the two lep-
tons. This is because a given set of values for the final-state particles’ 
momenta and angles in the B+ rest frame will result in a distribution 
of such values when transformed to the laboratory frame.

The value of rJ/ψ is measured to be 0.981 ± 0.020. This uncertainty 
includes both statistical and systematic effects, where the latter dom-
inate. The consistency of this ratio with unity demonstrates control 
of the efficiencies well in excess of that needed for the determina-
tion of RK. In the measurement of the rJ/ψ ratio, the systematic uncer-
tainty is dominated by the imperfect modelling of the B+ production 
kinematics and the modelling of selection requirements, which have 
a negligible impact on the RK measurement. No significant trend is 
observed in the differential determination of rJ/ψ as a function of 
any considered variable. An example distribution, with rJ/ψ deter-
mined as a function of B+ momentum component transverse to the 
beam direction, pT, is shown in Fig. 3. Assuming that the observed 
rJ/ψ variation in such distributions reflects genuine mis-modelling of 
the efficiencies, rather than statistical fluctuations, and taking into 
account the spectrum of the relevant variables in the non-resonant 
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Fig. 2 | Candidate invariant mass distributions. Distribution of the invariant mass m(J/ψ)(K+ℓ+ℓ−) for candidates with electron (left) and muon (right) 
pairs in the final state for the non-resonant B+ → K+ℓ+ℓ− signal channels (top) and resonant B+ → J/ψ( → ℓ+ℓ−)K+ decays (bottom). The fit projection is 
superimposed, with dotted lines describing the signal contribution and solid areas representing each of the background components described in the text 
and listed in the legend. Part. reco. refers to partially reconstructed B hadron decays. In the resonant-mode distributions, some fit components are too 
small to be visible. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming Poisson-distributed 
entries. The y axis in each panel shows the number of candidates in an interval of the indicated width.
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decay modes, a total shift on RK is computed for each of the vari-
ables examined. The resulting variations are typically at the permille 
level and hence well within the estimated systematic uncertainty on 
RK. Similarly, computations of the rJ/ψ ratio in bins of two kinematic 
variables also do not show any trend and are consistent with the 
systematic uncertainties assigned on the RK measurement.

In addition to B+ → J/ψK+ decays, clear signals are observed from 
B+ → ψ(2S)K+ decays. The double ratio of branching fractions, Rψ(2S), 
defined by

Rψ(2S)

= B (B+→ψ(2S)(→μ+μ−)K+)

B (B+→J/ψ(→μ+μ−)K+)
/B (B+→ψ(2S)(→e+e−)K+)

B (B+→J/ψ(→e+e−)K+)
,

(3)

provides an independent validation of the double-ratio analysis 
procedure and further tests the control of the efficiencies. This 
double ratio is expected to be close to unity2 and is determined to 
be 0.997 ± 0.011, where the uncertainty includes both statistical 
and systematic effects, the former of which dominates. This can be 
interpreted as a world-leading test of lepton flavour universality in 
ψ(2S) → ℓ+ℓ− decays.

The fit projections for the m(K+ℓ+ℓ−) and mJ/Ψ(K+ℓ+ℓ−) distribu-
tions are shown in Fig. 2. The fit is of good quality, and the value of 
RK is measured to be

RK(1.1 < q2 < 6.0GeV2 c−4) = 0.846+0.042+0.013
−0.039−0.012 ,

where the first uncertainty is statistical and the second systematic. 
Combining the uncertainties gives RK = 0.846+ 0.044

− 0.041. This is the 
most precise measurement to date and is consistent with the SM 
expectation, 1.00 ± 0.01 (refs. 3–7), at the level of 0.10% (3.1 standard 
deviations), giving evidence for the violation of lepton universality 
in these decays. The value of RK is found to be consistent in sub-
sets of the data divided on the basis of data-taking period, differ-
ent selection categories and magnet polarity (Methods). The profile 
likelihood is given in Methods. A comparison with previous mea-
surements is shown in Fig. 4.

The 3,850 ± 70 B+ → K+μ+μ− decay candidates that are observed 
are used to compute the B+ → K+μ+μ− branching fraction as a 
function of q2. The results are consistent between the different 
data-taking periods and with previous LHCb measurements37. 
The B+ → K+e+e− branching fraction is determined by combining 
the value of RK with the value of dB (B+

→ K+μ+μ−)/dq2 in the 
region 1.1 < q2 < 6.0 GeV2 c−4 (ref. 37), taking into account correlated 
systematic uncertainties. This gives

dB (B+→K+e+e−)

dq2 (1.1 < q2 < 6.0GeV2c−4)

= (28.6 + 1.5
− 1.4 ± 1.3)× 10−9 c4 GeV−2 .

The 1.9% uncertainty on the B+ → J/ψK+ branching fraction2  
gives rise to the dominant systematic uncertainty. This is the most 
precise measurement of this quantity to date and, given the large 
(O(10%)) theoretical uncertainty on the predictions7,66, is consis-
tent with the SM.

A breaking of lepton universality would require an extension of 
the gauge structure of the SM that gives rise to the known funda-
mental forces. It would therefore constitute a significant evolution 
in our understanding and would challenge an inference based on 
a wealth of experimental data in other processes. Confirmation of 
any effect beyond the SM will clearly require independent evidence 
from a wide range of sources.

Measurements of other RH observables with the full LHCb data-
set will provide further information on the quark-level processes 
measured. In addition to affecting the decay rates, new physics can 
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also alter how the decay products are distributed in phase space. 
An angular analysis of the electron mode, where SM-like behaviour 
might be expected in the light of the present results and those from 
b → sμ+μ− decays, would allow the formation of ratios between 
observable quantities other than branching fractions, enabling fur-
ther precise tests of lepton universality16,18,31,67,68. The hierarchical 
effect needed to explain the existing b → sℓ+ℓ− and b → cℓ+νℓ data, 
with the largest effects observed in tau modes, then muon modes 
and little or no effects in electron modes, suggests that studies of 
b → sτ+τ− transitions are also of great interest69,70. There are excel-
lent prospects for all of the above and further measurements with 
the much larger samples that will be collected with the upgraded 
LHCb detector from 2022 and, in the longer term, with the LHCb 
Upgrade II71. Other experiments should also be able to determine 
RH ratios, with the Belle II experiment in particular expected to have 
competitive sensitivity72. The ATLAS and CMS experiments may 
also be able to contribute73,74.

In summary, in the dilepton mass-squared region 
1.1 < q2 < 6.0 GeV2 c−4, the ratio of branching fractions for 
B+ → K+μ+μ− and B+ → K+e+e− decays is measured to be 
RK = 0.846+ 0.044

− 0.041. This is the most precise measurement of this 
ratio to date and is compatible with the SM prediction with a P 
value of 0.10%. The significance of this discrepancy is 3.1 standard 
deviations, giving evidence for the violation of lepton universality 
in these decays.
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Methods
Experimental setup. The Large Hadron Collider (LHC) is the world’s 
highest-energy particle accelerator and is situated approximately 100 m 
underground, close to Geneva, Switzerland. The collider accelerates two 
counter-rotating beams of protons, guided by superconducting magnets located 
around a 27 km circular tunnel, and brings them into collision at four interaction 
points that house large detectors. The LHCb experiment75,76 is instrumented in 
the region covering the polar angles between 10 and 250 mrad around the proton 
beam axis, in which the products from B hadron decays can be efficiently captured 
and identified. The detector includes a high-precision tracking system with a 
dipole magnet, providing measurements of momentum and impact parameter 
(IP), defined for charged particles as the minimum distance of a track to a primary 
proton–proton interaction vertex (PV). Different types of charged particles are 
distinguished using information from two ring-imaging Cherenkov detectors, a 
calorimeter and a muon system76.

Since the associated data storage and analysis costs would be prohibitive, the 
experiment does not record all collisions. Only potentially interesting events, 
selected using real-time event filters referred to as triggers, are recorded. The LHCb 
trigger system has a hardware stage, based on information from the calorimeter 
and muon systems, followed by a software stage that uses all the information from 
the detector, including the tracking, to make the final selection of events to be 
recorded for subsequent analysis. The trigger selection algorithms are based on 
identifying key characteristics of B hadrons and their decay products, such as high 
pT final-state particles, and a decay vertex that is significantly displaced from any of 
the PVs in the event.

For the RK measurement, candidate events are required to have passed a 
hardware trigger algorithm that selects either a high-pT muon, or an electron, 
hadron or photon with high transverse energy deposited in the calorimeters. The 
B+ → K+μ+μ− and B+ → J/ψ( → μ+μ−)K+ candidates must be triggered by one of the 
muons, whereas B+ → K+e+e− and B+ → J/ψ( → e+e−)K+ candidates must be triggered 
in one of three ways: by either one of the electrons, by the kaon from the B+ decay 
or by other particles in the event that are not decay products of the B+ candidate. 
In the software trigger, the tracks of the final-state particles are required to form 
a displaced vertex with good fit quality. A multivariate algorithm is used for the 
identification of displaced vertices consistent with the decay of a B hadron77,78.

Analysis description. The analysis technique used to obtain the results presented 
in this paper is essentially identical to that used to obtain the previous LHCb  
RK measurement, described in ref. 11, and only the main analysis steps are  
reviewed here.

Event selection. Kaon and muon candidates are identified using the output 
of multivariate classifiers that exploit information from the tracking system, 
the ring-imaging Cherenkov detectors, the calorimeters and the muon 
chambers. Electrons are identified by matching tracks to particle showers in the 
electromagnetic calorimeter (ECAL) and using the ratio of the energy detected in 
the ECAL to the momentum measured by the tracking system. An electron that 
emits a bremsstrahlung photon due to interactions with the material of the detector 
downstream of the dipole magnet results in the photon and electron depositing 
their energy in the same ECAL cells and therefore in a correct measurement of the 
original energy of the electron in the ECAL. However, a bremsstrahlung photon 
emitted upstream of the magnet will deposit energy in a different part of the ECAL 
than the electron, which is deflected in the magnetic field. For each electron track, 
a search is therefore made in the ECAL for energy deposits around the extrapolated 
track direction before the magnet that are not associated with any other charged 
tracks. The energy of any such deposit is added to the electron energy that is 
derived from the measurements made in the tracker. Bremsstrahlung photons can 
be added to none, either or both of the final-state e+ and e− candidates.

To suppress background, each final-state particle is required to have sizeable 
pT and to be inconsistent with coming from a PV. The particles are required to 
originate from a common vertex, with good vertex-fit quality, that is displaced 
significantly from all of the PVs in the event. The PVs are reconstructed by 
searching for space points where an accumulation of track trajectories is observed. 
A weighted least-squares method is then employed to find the precise vertex 
position. The B+ momentum vector is required to be aligned with the vector 
connecting one of the PVs in the event (below referred to as the associated PV) and 
the B+ decay vertex. The value of q2 is calculated using only the lepton momenta, 
without imposing any constraint on the m(K+ℓ+ℓ−) mass.

The m(K+ℓ+ℓ−) mass ranges and the q2 regions used to select the different 
decay modes are shown in Extended Data Table 1. The selection requirements 
applied to the non-resonant and resonant decays are otherwise identical. For the 
muon modes, the superior mass resolution allows a fit in a reduced m(K+ℓ+ℓ−) 
mass range compared with the electron modes. For the electron modes, a wider 
mass region is needed to perform an accurate fit, but the range chosen suppresses 
any significant contribution from decays with two or more additional pions that 
are not reconstructed. The residual contribution from such decays is considered as 
a source of systematic uncertainty. Resolution effects similarly motivate the choice 
of non-resonant q2 regions, with a lower limit that excludes contributions from 
ϕ-meson decays and an upper limit that reduces the tail from B+ → J/ψ( → e+e−)K+ 

decays. The proportion of signal candidates that migrate in and out of the q2 region 
of interest is on the order of 10%. This effect is accounted for using simulation 
(Extended Data Figs. 7 and 8).

Cascade background of the form B → Hc(→ K+
ℓ
−νℓX)ℓ+νℓY , where Hc 

is a hadron containing a c quark (D0, D+, D+
s , Λ+

c ), and X, Y are particles that are 
not included in the B+ candidate, are suppressed by requiring that the kaon–lepton 
invariant mass is in the region m(K+ℓ−) > mD0, where mD0 is the known D0 mass2. 
For the electron mode, this requirement is illustrated in Extended Data Fig. 1 
(left). Analogous background sources with a misidentified particle are reduced 
by applying a similar veto, but with the lepton mass hypothesis changed to that 
of a pion (denoted ℓ[→π]). In the muon case, Kμ[→π] combinations with mass 
smaller than mD0 are rejected. In the electron case, a ±40 MeV c−2 window around 
the D0 mass is used to reject candidates where the veto is applied without the 
bremsstrahlung recovery, that is, on the basis of only the measured track momenta. 
The mass distributions are shown in Extended Data Fig. 1. The electron and muon 
veto cuts differ given the relative helicity suppression of π+ → ℓ+νℓ decays. This 
causes misidentification backgrounds to populate a range of Kμ masses but only a 
peak in the Ke mass. The veto requirements retain 97% of B+ → K+μ+μ− and 95% of 
B+ → K+e+e− decays passing all other selection requirements.

Background from other exclusive B-hadron decays requires at least two 
particles to be misidentified. These include the decays B+ → K+π+π−, and 
misreconstructed B+ → J/ψ( → ℓ+ℓ−)K+ and B+ → ψ(2S)( → ℓ+ℓ−)K+ decays. In the 
latter two decays, the kaon is misidentified as a lepton and the lepton (of the same 
electric charge) as a kaon. Such background is reduced to a negligible level by 
particle identification criteria. Background from decays with a photon converted 
into an e+e− pair are also negligible due to the q2 selection.

Multivariate selection. A boosted decision tree (BDT) algorithm79 with gradient 
boosting80 is used to reduce combinatorial background. For the non-resonant 
muon mode and for each of the three different trigger categories of the 
non-resonant electron mode, a single BDT classifier is trained for the 7 and 
8 TeV data, and an additional classifier is trained for the 13 TeV data. The BDT 
output is not strongly correlated with q2, and the same classifiers are used to select 
the respective resonant decays. To train the classifier, simulated non-resonant 
B+ → K+ℓ+ℓ− decays are used as a proxy for the signal and non-resonant K+ℓ+ℓ− 
candidates selected from the data with m(K+ℓ+ℓ−) > 5.4 GeV c−2 are used as a 
background sample. The k-folding technique is used in the training and testing81. 
The classifier includes the following variables: the pT of the B+, K+ and dilepton 
candidates, and the minimum and maximum pT of the leptons; the B+, dilepton 
and K+ χ2

IP with respect to the associated PV, where χ2
IP is defined as the difference 

in the vertex-fit χ2 of the PV reconstructed with and without the considered 
particle; the minimum and maximum χ2

IP of the leptons; the B+ vertex-fit quality; 
the statistical significance of the B+ flight distance; and the angle between the B+ 
candidate momentum vector and the direction between the associated PV and 
the B+ decay vertex. The pT of the final state particles, the vertex-fit χ2 and the 
significance of the flight distance have the most discriminating power. For each 
of the classifiers, a requirement is placed on the output variable to maximize the 
predicted significance of the non-resonant signal yield. For the electron modes that 
dictate the RK precision, this requirement reduces the combinatorial background 
by approximately 99% while retaining 85% of the signal mode. The muon BDT 
classifier has similar performance. In both cases, for both signal and background, 
the efficiency of the BDT selection has negligible dependence on m(K+ℓ+ℓ−) and q2 
in the regions used to determine the event yields.

Calibration of simulation. The simulated data used in this analysis are produced 
using the software described in refs. 82–88. Bremsstrahlung emission in the decay 
of particles is simulated using the PHotos software in the default configuration89, 
which is observed to agree with an independent quantum electrodynamics 
calculation at the level of 1% (ref. 5).

Simulated events are weighted to correct for the imperfect modelling 
using control channels. The B+ production kinematics are corrected using 
B+ → J/ψ( → ℓ+ℓ−)K+ events. The particle identification performance is calibrated 
using data, where the species of particles in the final state can be unambiguously 
determined purely on the basis of the kinematics. The calibration samples consist 
of D*+ → D0( → K−π+)π+, J/ψ → μ+μ− and B+ → J/ψ( → e+e−)K+ decays, from which 
kaons, muons and electrons, respectively, can be selected without applying particle 
identification requirements. The performance of the particle identification 
requirements is then evaluated from the proportion of events in these samples 
which fulfil the particle identification selection criteria. The trigger response is 
corrected using weights applied to simulation as a function of variables relevant 
to the trigger algorithms. The weights are calculated by requiring that simulated 
B+ → J/ψ( → ℓ+ℓ−)K+ events exhibit the same trigger performance as the control 
data. The B+ → J/ψ( → ℓ+ℓ−)K+ events selected from the data have also been used to 
demonstrate control of the electron track reconstruction efficiency at the percent 
level90. Whenever B+ → J/ψ( → ℓ+ℓ−)K+ events are used to correct the simulation, 
the correlations between calibration and measurement samples are taken into 
account in the results and cross-checks presented in this paper. The correlation is 
evaluated using a bootstrapping method to recompute the yields and efficiencies 
many times with different subsets of the data.
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Likelihood fit. An unbinned extended maximum-likelihood fit is made to the 
m(K+e+e−) and m(K+μ+μ−) distributions of non-resonant candidates. The value of 
RK is a fit parameter, which is related to the signal yields and efficiencies according 
to

RK =
N(B+→K+ μ+ μ−)

ε(B+→K+ μ+ μ−)
·

ε(B+→K+e+e−)

N(B+→K+e+e−)

×
ε(B+→J/ψ(→μ+ μ−)K+)

N(B+→J/ψ(→μ+ μ−)K+)
·

N(B+→J/ψ(→e+e−)K+)

ε(B+→J/ψ(→e+e−)K+)
,

(4)

where N(X) indicates the yield of decay mode X and ε(X) is the efficiency for 
selecting decay mode X. The resonant yields are determined from separate fits to 
mJ/Ψ(K+ℓ+ℓ−). In the fit for RK, these yields and the efficiencies are incorporated as 
Gaussian-constraint terms.

To take into account the correlation between the selection efficiencies, the 
m(K+e+e−) and m(K+μ+μ−) distributions of non-resonant candidates in each of the 
different trigger categories and data-taking periods are fitted simultaneously, with a 
common value of RK. The relative fraction of partially reconstructed background in 
each trigger category is also shared across the different data-taking periods.

The mass-shape parameters are derived from the calibrated simulation. The 
four signal modes are modelled by multiple Gaussian functions with power-law 
tails on both sides of the peak91,92, although the differing detector response gives 
different shapes for the electron and muon modes. The signal mass shapes of the 
electron modes are described with the sum of three distributions, which model 
whether the ECAL energy deposit from a bremsstrahlung photon was added to 
both, either or neither of the e± candidates. The expected values from simulated 
events are used to constrain the fraction of signal decays in each of these categories. 
These fractions are observed to agree well with those observed in resonant events 
selected from the data. To take into account residual differences in the signal shape 
between data and simulation, an offset in the peak position and a scaling of the 
resolution are allowed to vary in the fits to the resonant modes. The corresponding 
parameters are then fixed in the fits to the relevant non-resonant modes. This 
resolution scaling changes the migration of candidates into the q2 region of interest 
by less than 1%.

For the modelling of non-resonant and resonant partially reconstructed 
backgrounds, data are used to correct the simulated Kπ mass spectrum for 
B(0,+) → K+π(−,0)e+e− and B(0,+) → J/ψ( → e+e−)K+π(−,0) decays93. The calibrated 
simulation is used subsequently to obtain the m(K+ℓ+ℓ−) mass shape and 
relative fractions of these background components. To accommodate possible 
lepton universality violation in these partially reconstructed processes, which 
are underpinned by the same b → s  quark-level transitions as those of interest, 
the overall yield of such decays is left to vary freely in the fit. The shape of the 
B+ → J/ψπ+ background contribution is taken from simulation, but the size with 
respect to the B+ → J/ψK+ mode is constrained using the known ratio of the 
relevant branching fractions2,94 and efficiencies.

In the fits to non-resonant B+ → K+e+e− candidates, the mass shape of the 
background from B+ → J/ψ( → e+e−)K+ decays with an emitted photon that is not 
reconstructed is also taken from simulation and, adjusting for the relevant selection 
efficiency, its yield is constrained to the value from the fit to the resonant mode 
within its uncertainty. In all fits, the combinatorial background is modelled with  
an exponential function with a freely varying yield and shape.

The fits to the non-resonant (resonant) decay modes in different data-taking 
periods and trigger categories are shown in Extended Data Fig. 2 (Extended 
Data Fig. 3). For the resonant modes, the results from independent fits to 
each period/category are shown. Conversely, the non-resonant distributions 
show the projections from the simultaneous fit across data-taking periods and 
trigger categories that is used to obtain RK. The fitted yields for the resonant and 
non-resonant decays are given in Extended Data Table 2.

The profile likelihood for the fit to the non-resonant decays is shown in 
Extended Data Fig. 4. The likelihood is non-Gaussian in the region RK > 0.95 due 
to the comparatively low yield of B+ → K+e+e− events. Following the procedure 
described in refs. 11,12, the P value is computed by integrating the posterior 
probability density function for RK, having folded in the theory uncertainty on the 
SM prediction, for RK values larger than the SM expectation. The corresponding 
significance in terms of standard deviations is computed using the inverse 
Gaussian cumulative distribution function for a one-sided conversion.

A test statistic is constructed that is based on the likelihood ratio between 
two hypotheses with common (null) or different (test) RK values for the part of 
the sample analysed previously (7, 8 and part of the 13 TeV data) and for the 
new portion of the 13 TeV data. Using pseudo-experiments based on the null 
hypothesis, the data suggest that the RK value from the new portion of the data 
is compatible with that from the previous sample with a P value of 95%. Further 
tests give good compatibility for subsamples of the data corresponding to different 
trigger categories and magnet polarities.

The departure of the profile likelihood shown in Extended Data Fig. 4 from a 
normal distribution stems from the definition of RK. In particular, in the RK ratio, 
the denominator is affected by larger statistical uncertainties than the numerator, 
owing to the larger number of non-resonant muonic signal candidates. However, 
the intervals of the likelihood distribution are found to be the same when estimated 
with 1/RK as the fit parameter.

Additional cross-checks. The rJ/ψ single ratio is used to perform a number of 
additional cross-checks. The distribution of this ratio as a function of the angle 
between the leptons and the minimum pT of the leptons is shown in Extended 
Data Fig. 5, together with the spectra expected for the resonant and non-resonant 
decays. No significant trend is observed in either rJ/ψ distribution. Assuming that 
the deviations observed are genuine mis-modelling of the efficiencies, rather than 
statistical fluctuations, a total shift of RK at a level less than 0.001 would be expected 
due to these effects. This estimate takes into account the spectrum of the relevant 
variables in the non-resonant decay modes of interest and is compatible with the 
estimated systematic uncertainties on RK. Similarly, the variations seen in rJ/ψ as a 
function of all other reconstructed quantities examined are compatible with the 
systematic uncertainties assigned. In addition, rJ/ψ is computed in two-dimensional 
intervals of reconstructed quantities (Extended Data Fig. 6). Again, no significant 
trend is seen.

Systematic uncertainties. The majority of the sources of systematic uncertainty 
affect the relative efficiencies between non-resonant and resonant decays. These are 
included in the fit to RK by allowing the relative efficiency to vary within Gaussian 
constraints. The width of the constraint is determined by adding the contributions 
from the different sources in quadrature. Correlations in the systematic 
uncertainties between different trigger categories and run periods are taken into 
account. Systematic uncertainties affecting the determination of the signal yield 
are assessed using pseudo-experiments generated with variations of the fit model. 
Pseudo-experiments are also used to assess the degree of bias originating from the 
fitting procedure. The bias is found to be 1% of the statistical precision and thus 
negligible with respect to other sources of systematic uncertainty.

For the non-resonant B+ → K+e+e− decays, the systematic uncertainties are 
dominated by the modelling of the signal and background components used 
in the fit. The effect on RK is at the 1% level. A significant proportion (0.7%) 
of this uncertainty comes from the limited knowledge of the Kπ spectrum in 
B(0,+) → K+π(−,0)e+e− decays. In addition, a 0.2% systematic uncertainty is assigned 
for the potential contribution from partially reconstructed decays with two 
additional pions. An uncertainty comparable to that from the modelling of the 
signal and background components is induced by the limited sizes of calibration 
samples. Other sources of systematic uncertainty, such as the calibration of B+ 
production kinematics, the trigger calibration and the determination of the 
particle identification efficiencies, contribute at the few-permille or permille level, 
depending strongly on the data-taking period and the trigger category.

The uncertainties on parameters used in the simulation model of the signal 
decays affect the q2 distribution and hence the selection efficiency. These 
uncertainties are propagated to an uncertainty on RK using predictions from 
the FLAVIO software package7 but give rise to a negligible effect. Similarly, the 
differing q2 resolution between data and simulation, which alters estimates of the q2 
migration, has negligible impact on the result.

Data availability
LHCb data used in this analysis will be released according to the LHCb external 
data access policy, which can be downloaded from http://opendata.cern.ch/
record/410/files/LHCb-Data-Policy.pdf. The raw data in all of the figures of this 
paper, and additional supplementary material, can be downloaded from https://
cds.cern.ch/record/2758740, where no access codes are required. In addition, the 
likelihood profile shown in Extended Data Fig. 4 has been added to the HEPData 
platform at https://www.hepdata.net/record/ins1852846?version=1.

Code availability
LHCb software used to process the data analysed in this paper is available at https://
gitlab.cern.ch/lhcb.
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Extended Data Fig. 1 | Simulated K+e− mass distributions for signal and various cascade background samples. The signal is represented by the orange 
shaded region and the various cascade background contributions by red, dark blue and light blue shaded regions. The distributions are all normalised to 
unity. (Left, with log y-scale) the bremsstrahlung correction to the momentum of the electron is applied, resulting in a tail to the right. The region to the left 
of the vertical dashed line is rejected. (Right, with linear y-scale) the mass is computed only from the track information. The notation π−

[→e−]
 (e−

[→π−]
) is 

used to denote an pion (electron) that is reconstructed as an electron (pion). The region between the dashed vertical lines is rejected.
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Extended Data Fig. 2 | Nonresonant candidates invariant mass distributions. Distribution of the invariant mass m(K+ℓ+ℓ−) for nonresonant candidates in 
the (left) sample previously analysed11 and (right) the new data sample. The top row shows the fit to the muon modes and the subsequent rows the fits to 
the electron modes triggered by (second row) one of the electrons, (third row) the kaon and (last row) by other particles in the event. The fit projections 
are superimposed, with dotted lines describing the signal contribution and solid areas representing each of the background components described 
in the text and listed in the legend. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming 
Poisson-distributed entries. The y-axis in each figure shows the number of candidates in an interval of the indicated width.
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Extended Data Fig. 3 | Resonant candidates invariant mass distributions. Distribution of the invariant mass mJ/ψ(K+ℓ+ℓ−) for resonant candidates in the 
(left) sample previously analysed11 and (right) the new data sample. The top row shows the fit to the muon modes and the subsequent rows the fits to the 
electron modes triggered by (second row) one of the electrons, (third row) the kaon and (last row) by other particles in the event. The fit projections are 
superimposed, with dotted lines describing the signal contribution and solid areas representing each of the background components described in the text 
and listed in the legend. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming Poisson-distributed 
entries. The y-axis in each figure shows the number of candidates in an interval of the indicated width.
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Extended Data Fig. 4 | Likelihood function from the fit to the nonresonant B+ → K+ℓ+ℓ− candidates. Ratio between the likelihood value (L) and that found 
by the fit (Lmax) as a function of RK. The extent of the dark, medium and light blue regions shows the values allowed for RK at 1σ, 3σ and 5σ levels. The red 
line indicates the prediction from the SM.
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Extended Data Fig. 5 | Differential rJ/ψ measurement. (Top) distributions of the reconstructed spectra of (left) the angle between the leptons, α(ℓ+, ℓ−), 
and (right) the minimum pT of the leptons for B+ → K+ℓ+ℓ− and B+ → J/ψ( → ℓ+ℓ−)K+ decays. (Bottom) the single ratio rJ/ψ relative to its average value 
< rJ/ψ > as a function of these variables. In the electron minimum pT spectra, the structure at 2800 MeV/c is related to the trigger threshold. Uncertainties 
on the data points are statistical only and represent one standard deviation.
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Extended Data Fig. 6 | Double differential rJ/ψ measurement. (Left) the value of rJ/ψ, relative to the average value of rJ/ψ, measured in two-dimensional bins 
of the maximum lepton momentum, p(ℓ), and the opening angle between the two leptons, α(ℓ+, ℓ−). (Right) the bin definition in this two-dimensional 
space together with the distribution for B+ → K+e+e− (B+ → J/ψ( → e+e−)K+) decays depicted as red (blue) contours. Uncertainties on the data points are 
statistical only and represent one standard deviation.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Distribution of m(K+e+e−) in simulated B+ → K+e+e− decays. Distribution of m(K+e+e−) in simulated B+ → K+e+e− decays. The 
orange shaded area corresponds to B+ → K+e+e− candidates with true q2 (q2true) outside the [1.1, 6.0] GeV 2/c4 interval. The green and purple components 
correspond to candidates with q2true > 6.0 GeV 2/c4 and q2true < 1.1 GeV 2/c4, respectively. Linear (top) and logarithmic (bottom) scales are shown.
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Extended Data Fig. 8 | Candidate invariant mass distributions. Distribution of the invariant mass m(K+e+e−) for B+ → K+e+e− candidates. The fit projection 
is superimposed, with a black dotted line describing the signal contribution and solid areas representing each of the background components described 
in the text and listed in the legend. For illustration, the expected distribution of signal candidates with true q2 outside the interval [1.1, 6.0]GeV2/c4 is 
shown as a grey dashed and dotted line. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming 
Poisson-distributed entries. The y-axis in each figure shows the number of candidates in an interval of the indicated width.
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Extended Data Table 1 | Nonresonant and resonant mode q2 and m(K+ℓ+ℓ−) ranges. The variables m(K+ℓ+ℓ−) and mJ/ψ(K+ℓ+ℓ−) are used for nonresonant 
and resonant decays, respectively.
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Extended Data Table 2 | Yields of the nonresonant and resonant decay modes. Yields of the nonresonant and resonant decay modes obtained from the 
fits to the data. The quoted uncertainty is the combination of statistical and systematic effects.
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