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Observation of New Resonances Decaying to J/wK* and J/y¢
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The first observation of exotic states with a new quark content ccus decaying to the J/w K™ final state is
reported with high significance from an amplitude analysis of the BT — J/w¢K™ decay. The analysis is
carried out using proton-proton collision data corresponding to a total integrated luminosity of 9 fb~!
collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. The most significant
state, Z.,(4000)", has a mass of 4003 + 6‘:‘4 MeV, a width of 131 4 15 426 MeV, and spin parity
JP = 1%, where the quoted uncertainties are statistical and systematic, respectively. A new 17 X(4685)
state decaying to the J/w¢ final state is also observed with high significance. In addition, the four
previously reported J/y¢ states are confirmed and two more exotic states, Z.,(4220)" and X(4630), are
observed with significance exceeding 5 standard deviations.
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Charged states such as Z.(3900)" [1,2] and Z.(4430)"
[3-5] provide evidence for exotic states, because light
quarks are required to account for the nonzero electric
charge in addition to the heavy quarkonium. (Charge
conjugation is implied throughout this Letter.)
Previously, only the u or d quarks were observed to
constitute the light quark content of such charged exotic
states, even though the existence of a Z., state as a
strangeness-flavor partner of the Z; (3900) state had been
predicted [6—10]. Recently, the BESIII experiment reported
a 5.3 standard deviation (¢ hereafter) observation of a
threshold structure in the mass distribution of D;D*0 4
D:~D° pairs produced in e*e~ annihilation as recoil
against a K™ meson [11].

In this Letter, the first observation of two charged
Zt, — J/wK™ states is reported from an updated amplitude
analysis of the BT — J/wy@K™ decay, as well as the
observation of two more X — J/w¢ states. The analysis
is based on the combined proton-proton (p p) collision data
collected using the LHCb detector in run 1 at center-of-
mass energies /s of 7 and 8 TeV, corresponding to a total
integrated luminosity of 3 fb~!, and in run 2 at
/s = 13 TeV, corresponding to an integrated luminosity
of 6 b~

With run 1 data, LHCb performed the first amplitude
analysis of the BT — J/w¢K™ decay, investigating the
J/w¢ structure [12,13] in addition to the kaon excitations
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(hereafter indicated as K*T). The data were described with
seven K*t — @K' resonances, four X — J/y¢ structures,
and nonresonant (NR) ¢K* and J/y¢ contributions. Four
X structures, i.e., the X(4140), X(4274), X(4500), and
X(4700) states, were observed [the recent Particle Data
Group (PDG) convention labels these states as y.; [14]].
Notably, the X(4140) width was substantially larger than
previously determined [15-17]. Only 3¢ evidence for a
75 — J/wK™ contribution was found [12,13].

The LHCb detector is a single-arm forward spectro-
meter covering the pseudorapidity range 2 <n5 <S5,
described in detail in Refs. [18,19]. Simulation is produced
with software packages described in Refs. [20-23]. The
Bt > J/y(—> utu")p(—» KTK7)Kt signal candidates
are first required to pass an online event selection per-
formed by a trigger [24] dedicated for selecting J/y
candidates. The signal decay is reconstructed by combining
the J/w candidate with three kaon candidates with a total
charge of one unit. The ¢ candidate is selected by requiring
only one of two K™K~ combinations to be consistent with
the known ¢ mass [14] within +15 MeV. (Natural units
with 7 = ¢ = 1 are used throughout.)

The off-line selection involves a loose preselection,
followed by a multivariate classifier based on a gradient
boosted decision tree (BDTG) [25,26]. The preselection is
similar to that used in Refs. [12,13], but the requirement on
the y% of kaon candidates is loosened, where y?% is defined
as the difference in the vertex fit y> of the event primary pp
collision vertex candidate, reconstructed with and without
the particle considered. The BDTG response is constructed
using eight variables exploring decay topology, particle
momenta components transverse to the beam direction, and
particle identification information (PID). The requirement
on the BDTG response is chosen to maximize the signal
significance multiplied by the purity [27].

© 2021 CERN, for the LHCb Collaboration
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FIG. 1. Invariant-mass distribution of selected BT — J/yw¢pK™

candidates with the fit overlaid.

The invariant-mass distribution of the Bt — J/w¢K*
candidates is shown in Fig. 1, fitted with the signal modeled
by a Hypatia function [28] and the combinatorial back-
ground by a second-order polynomial function, yielding
24220 + 170 signal candidates with a combinatorial-back-
ground fraction of 4.0% within a =15 MeV signal region.
The region also includes an additional ~2% of non-¢) B —
J/wK*™ K~ K™ background candidates, which are neglected
in the amplitude model but considered in the evaluation of
the systematic uncertainties. The candidates in the signal
region are retained for further amplitude analysis.
Compared to the previous run 1 analysis [12,13], the total
signal yield is ~6 times larger, owing to a larger dataset and
increase of 15% in signal efficiency due to the inclusion of
PID in the BDTG classifier. The fraction of combinatorial
background is almost a factor of 6 smaller, while that of the
non-¢ background is unchanged.

Figure 2 shows the Dalitz plots for Bt — J/w¢K*
candidates in the BT signal region. The most apparent
features are four bands in the J/w¢ mass distribution,
corresponding to the previously reported X(4140),
X(4274), X(4500), and X(4700) states. There is also a
distinct band near 16 GeV? of the J/wK™ mass squared.
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To investigate the resonant structures, a full amplitude fit
is performed using an unbinned maximum-likelihood
method. The likelihood definition and the total probability
density function (PDF), which includes a signal and a
background component, are described in the previous
publication [13]. Resonance line shapes are parametrized
using the Breit-Wigner approximation. The signal
Bt decay is described in the helicity formalism by
three decay chains: K**(— ¢K*)J/w, X(— J/wd)K™,
and Z},(— J/wK")¢. Each chain is fully described by
one mass and five angular observables. For example,
the conventional K** chain has the following six observ-
ables ® = (m(,,,(,e,(*,e,/w,e(,,, A@g: gy Ago,(*’(/,), where 6
denotes the helicity angles and A¢ the angles between two
decay planes. Because of the nonscalar final-state particles
(u" and p~), an azimuthal angle o, is required to align the
helicity frames of " and =~ between the chain i and the
reference K** chain[4,5,29].

The model used in the previous study (run 1 model) is
first tested. Because of the increased sample size, the model
requires improvements (see Fig. 3 bottom row). Additional
K*T, X, and possible Z/; states are added until no further
state with a significance larger than 5S¢ improves the overall
fit. In total, nine K**, seven X, two Z;, and one J/y¢ NR
components are taken as the default model, as listed in
Table 1. The nine K** states are all those with spin parity
J <2 and mass below 2 GeV, which are predicted by the
relativistic potential model [30], and kinematically allowed,
including three resonances with poles just below the pK™
mass threshold. All components previously used in the run
1 model are included, but the J® = 17 NR ¢K* and the
broad 0~ state are replaced by the upper tails of K;(1400)
and K(1460) resonances, respectively. The newly added
components are the upper tail of 1= K*(1410) resonance,
27 X(4150), 17 X(4685), 1~ X(4630), 1 Z.,(4000)",
and Z.,(4220)" states.

Figure 3 shows the invariant-mass distributions for all
pairs of final-state particles of the BT — J/w¢K™ decay
with fit projections from the amplitude analysis overlaid,
for both the default model and the run 1 model. The fit
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FIG. 2. Dalitz plots for BT — J/w@K™ candidates in a region +15 MeV around the BT mass peak.
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Distributions of pK (left), J/y¢ (middle), and J/w K™ (right) invariant masses for the BT — J/y @K™ candidates (black data

points) compared with the fit results (red solid lines) of the default model (top row) and the run 1 model (bottom row).

results are summarized in Table I, including mass, width, fit
fraction (FF), and significance of each component. The
masses and widths of the four X states studied using the
LHCD run 1 sample only are consistent with the previous

TABLE L

measurements [12,13]. The significance of each component
is evaluated by assuming that the change of twice the log-
likelihood between the default fit and the fit without this
component follows a y? distribution. The corresponding

Fit results from the default amplitude model. The significances are evaluated accounting for total (statistical) uncertainties.
The listed masses and widths without uncertainties are taken from PDG [14] and are fixed in the fit. The listed world averages of the two
K, and K*(1680) resonances do not contain the contributions from the previous LHCb run 1 results.

JP Contribution Significance (o) M,y (MeV) 'y MeV) FF (%)
1+ 2'p, K(17) 4.5 (4.5) 1861 £ 107,° 149 £ 413!
2°P, K'(17%) 4.5 (4.5) 1911 £ 3772 276 £ 501519
1°P, K, (1400) 9.2 (11) 1403 174 15+3%3
2" 1'D, K,(1770) 7.9 (8.0) 1773 186
1°D, K,(1820) 5.8 (5.8) 1816 276
1- 1°D, K*(1680) 4.7 (13) 1717 322 14+£259
233, K*(1410) 7.7 (15) 1414 232 38 4+51]1
2" 2°p, K;(1980) 1.6 (7.4) 1988 £ 22737 318 £ 8213 23405407
0~ 21s, K(1460) 12 (13) 1483 336 10.2 £ 1.2}
2" X(4150) 4.8 (8.7) 4146 + 18 + 33 135 £ 2873 2.0 £0.55)8
1- X(4630) 55(5.7) 4626 + 16118 174 £ 2713 2.6 0572
0" X(4500) 20 (20) 4474 +£3 43 77 +£ 6130 564072
X(4700) 17 (18) 4694 £ 43¢ 87 £ 814° 8.9+ 1.2
NR; /0 4.8 (5.7) 28 + 877
1+ X(4140) 13 (16) 4118 £ 11157 162 + 2115 17 £370°
X(4274) 18 (18) 4294 £ 477 53+£545 2.84+0.570%
X(4685) 15 (15) 4684 £ 7113 126 + 15737 7.2+ 1.0039
1" Z..+(4000) 15 (16) 4003 £ 671, 131 +15+26 9.4+2.1+34
Z,,(4220) 5.9 (8.4) 4216 4+ 24733 233 £ 5227 10 +£4110
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FIG. 4. Projections of the fits with the default model, performed
in the full phase space, onto m, g+ in two slices of m;,, with
and without the 17 Zf; states. The narrow ZJ; state at 4 GeV is
evident.

number of degrees of freedom is equal to the reduction in
the number of free parameters multiplied by a factor of 2
(1) when the mass and width of the component are floated
(fixed) in the fit, which accounts for the look-elsewhere
effect [13,31], as validated by pseudoexperiments. Figure 4
shows the m;,, g+ distributions in two slices of m;/,4,
which demonstrate the need for the narrower Z. (4000)*
state. Including the 1% ZZ, states improves the y?/nbin
from 84 /35 to 43/35 (left slice) and from 79/37 to 32/37
(right slice), where nbin is the number of nonzero bins.

The spin and parity of each exotic state is probed by
testing alternative J” hypotheses and comparing the fit
likelihood values [13]. The J” assignments for the pre-
viously reported four X states are confirmed with high
significance. A 17 assignment is favored for the new
X (4685) state with also high significance, but the quantum
numbers of the X(4150) and X(4630) are less well
determined. The best hypothesis for the X(4630) state is
1~ over 27 at a 3o level. The other hypotheses are ruled out
by more than 5¢. The fit prefers 2~ for the X (4150) state by
more than 46. The narrower Z.,(4000)* state is determined
to be 17 with high significance. The broader Z(4220)*
state could be 17 or 17, with a 2¢ difference in favor of the
first hypothesis. Other spin-parity assignments are ruled out
at 4.9¢ level.

Systematic uncertainties are estimated for the masses,
widths, and fit fractions of all states. To probe the effects
from the neglected B™ — J/wK+tK~K" non-¢ contribu-
tions, the ¢ mass window is changed from +15 to
+7 MeV, and alternatively this background is subtracted
using the sPlot technique[32]. The Blatt-Weisskopf barrier
[13] hadron size is varied between 1.5 and 4.5 GeV~!. The
default NR 0" J/w¢ representation is changed from a
constant to a linear polynomial. Additional 17 or 2 NR
J /w¢ contributions are also included. The smallest allowed
orbital angular momentum in the resonance function is
varied. For the X(4140), which peaks near the J/w¢
threshold, the Flatté model[33] is used instead of the
Breit-Wigner amplitude. A simplified one-channel K-
matrix model [14] is used to describe various K*

resonances instead of the sum of Breit-Wigner amplitudes.
Two-channel K-matrix models have also been tried for the
2'P, and 2°P, K* states with the coupled-channel thresh-
olds opening up near 1.75 GeV, with an insignificant
improvement to the description of the mgg distribution.
To cover the full range of K** resonances predicted in the
allowed @K+ mass range, an extended model is tested by
adding five more K** resonances with mass above 2 GeV
[30]. The presence of an extra X state contribution, with J
from O to 2, to the extended model is also checked. The
difference between the results obtained from assigning 1+
or 17 hypotheses to the Z.,(4220)" is taken as a systematic
uncertainty. The mass-dependent width in the denominator
of the Breit-Wigner function for the K** resonances is
calculated with the lightest allowed channel (zK for natural
spin-parity resonances and wK for others) instead of ¢K.
The maximum deviation among the modeling uncertain-
ties discussed above is summed in quadrature with the
additional sources, including the uncertainties due to the
fixed masses and widths of the known K** resonances,
mismodeling of y%, of the B* candidate, background PDF
model shape and fractions, and the finite size of the
simulation samples. For the Z.,(4000)" state, the largest
systematic contribution is due to the J hypotheses of the
Z.,(4220)" state. The summary of fit results, including the
systematic uncertainties, is listed in Table I. The smallest
significance found when varying each of sources is taken as
the significance accounting for systematic uncertainty.
Further evidence for the resonant character of
Z.,(4000)" is observed in Fig. 5, showing the evolution
of the complex amplitude on the Argand diagram, obtained
with the same method as previously reported for the
Z.(4430)" state [5]. The magnitude and phase have
approximately circular evolution with m;/, g+ in the
counterclockwise direction, as expected for a resonance.
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FIG. 5. Fitted values of the Z.,(4000)" amplitude in eight
my,k+ intervals, shown on an Argand diagram (black points).
The red curve represents the expected Breit-Wigner behavior
between —1.4T; and 1.4T, around the Z.,(4000)" mass.
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The BESII experiment reported observation of a
Z.,(3985)" resonance. Its mass 3982.5)8(stat) &+
2.1(syst) MeV is consistent with the 1% Z.,(4000)" state
observed in this analysis, but with significantly narrower
width 12.8737(stat) + 3.0(syst) MeV. When fixing the
mass and width of this state to the nominal BESIII result
in the amplitude fit to our data, twice the log-likelihood is
worse by 160 units. The narrower width is also not
supported by an alternative Flatté model with parameters
obtained from our data. Therefore, there is no evidence that
the Z,,(4000)" state observed here is the same as the
Z.+(3985)" state observed by BESIIL

In conclusion, an improved full amplitude analysis of the
Bt - J/w$K™ decay is performed using 6 times larger
signal yield than previously analyzed [12]. A relatively
narrow Z..(4000)" state decaying to J/wK™ with mass
4003 + 6(stat) T, (syst) MeV and width 131 + 15(stat) +
26(syst) MeV is observed with large significance. Its spin
parity is determined to be 1T also with high significance. A
quasi-model-independent representation of the Z.,(4000)*
contribution in the fit shows a phase change in the
amplitude consistent with that of a resonance. A broader
1" or 17 Z,(4220)" state is also required at 5.9¢. This is
the first observation of states with hidden charm and
strangeness that decay to the J/wK™ final state. The four
X states decaying to J/y¢ observed in the run 1 analysis
[12] are confirmed with higher significance, together with
their quantum number assignments. An additional
17 X(4685) state is observed with relatively narrow width
(about 125 MeV) with high significance. A new X(4630)
state is observed with a 5.5¢ significance, with preferred 1~
over 2~ spin-parity assignment at 3¢ level, and the other J
hypotheses rejected at So. This constitutes the first obser-
vation of exotic states with a new quark content ccus
decaying to the J/wK™ final state.
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