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The first observation of exotic states with a new quark content cc̄us̄ decaying to the J=ψKþ final state is
reported with high significance from an amplitude analysis of the Bþ → J=ψϕKþ decay. The analysis is
carried out using proton-proton collision data corresponding to a total integrated luminosity of 9 fb−1

collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. The most significant
state, Zcsð4000Þþ, has a mass of 4003� 6þ4

−14 MeV, a width of 131� 15� 26 MeV, and spin parity
JP ¼ 1þ, where the quoted uncertainties are statistical and systematic, respectively. A new 1þ Xð4685Þ
state decaying to the J=ψϕ final state is also observed with high significance. In addition, the four
previously reported J=ψϕ states are confirmed and two more exotic states, Zcsð4220Þþ and Xð4630Þ, are
observed with significance exceeding 5 standard deviations.
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Charged states such as Zcð3900Þþ [1,2] and Zcð4430Þþ
[3–5] provide evidence for exotic states, because light
quarks are required to account for the nonzero electric
charge in addition to the heavy quarkonium. (Charge
conjugation is implied throughout this Letter.)
Previously, only the u or d quarks were observed to
constitute the light quark content of such charged exotic
states, even though the existence of a Zcs state as a
strangeness-flavor partner of the Zþ

c ð3900Þ state had been
predicted [6–10]. Recently, the BESIII experiment reported
a 5.3 standard deviation (σ hereafter) observation of a
threshold structure in the mass distribution of D−

s D�0 þ
D�−

s D0 pairs produced in eþe− annihilation as recoil
against a Kþ meson [11].
In this Letter, the first observation of two charged

Zþ
cs → J=ψKþ states is reported from an updated amplitude

analysis of the Bþ → J=ψϕKþ decay, as well as the
observation of two more X → J=ψϕ states. The analysis
is based on the combined proton-proton (pp) collision data
collected using the LHCb detector in run 1 at center-of-
mass energies

ffiffiffi

s
p

of 7 and 8 TeV, corresponding to a total
integrated luminosity of 3 fb−1, and in run 2 at
ffiffiffi

s
p ¼ 13 TeV, corresponding to an integrated luminosity
of 6 fb−1.
With run 1 data, LHCb performed the first amplitude

analysis of the Bþ → J=ψϕKþ decay, investigating the
J=ψϕ structure [12,13] in addition to the kaon excitations

(hereafter indicated as K�þ). The data were described with
seven K�þ → ϕKþ resonances, four X → J=ψϕ structures,
and nonresonant (NR) ϕKþ and J=ψϕ contributions. Four
X structures, i.e., the Xð4140Þ, Xð4274Þ, Xð4500Þ, and
Xð4700Þ states, were observed [the recent Particle Data
Group (PDG) convention labels these states as χcJ [14] ].
Notably, the Xð4140Þ width was substantially larger than
previously determined [15–17]. Only 3σ evidence for a
Zþ
cs → J=ψKþ contribution was found [12,13].
The LHCb detector is a single-arm forward spectro-

meter covering the pseudorapidity range 2 < η < 5,
described in detail in Refs. [18,19]. Simulation is produced
with software packages described in Refs. [20–23]. The
Bþ → J=ψð→ μþμ−Þϕð→ KþK−ÞKþ signal candidates
are first required to pass an online event selection per-
formed by a trigger [24] dedicated for selecting J=ψ
candidates. The signal decay is reconstructed by combining
the J=ψ candidate with three kaon candidates with a total
charge of one unit. The ϕ candidate is selected by requiring
only one of two KþK− combinations to be consistent with
the known ϕ mass [14] within �15 MeV. (Natural units
with ℏ ¼ c ¼ 1 are used throughout.)

The off-line selection involves a loose preselection,
followed by a multivariate classifier based on a gradient
boosted decision tree (BDTG) [25,26]. The preselection is
similar to that used in Refs. [12,13], but the requirement on
the χ2IP of kaon candidates is loosened, where χ

2
IP is defined

as the difference in the vertex fit χ2 of the event primary pp
collision vertex candidate, reconstructed with and without
the particle considered. The BDTG response is constructed
using eight variables exploring decay topology, particle
momenta components transverse to the beam direction, and
particle identification information (PID). The requirement
on the BDTG response is chosen to maximize the signal
significance multiplied by the purity [27].
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The invariant-mass distribution of the Bþ → J=ψϕKþ
candidates is shown in Fig. 1, fitted with the signal modeled
by a Hypatia function [28] and the combinatorial back-
ground by a second-order polynomial function, yielding
24220� 170 signal candidates with a combinatorial-back-
ground fraction of 4.0% within a �15 MeV signal region.
The region also includes an additional∼2% of non-ϕ Bþ →
J=ψKþK−Kþ background candidates, which are neglected
in the amplitude model but considered in the evaluation of
the systematic uncertainties. The candidates in the signal
region are retained for further amplitude analysis.
Compared to the previous run 1 analysis [12,13], the total
signal yield is ∼6 times larger, owing to a larger dataset and
increase of 15% in signal efficiency due to the inclusion of
PID in the BDTG classifier. The fraction of combinatorial
background is almost a factor of 6 smaller, while that of the
non-ϕ background is unchanged.
Figure 2 shows the Dalitz plots for Bþ → J=ψϕKþ

candidates in the Bþ signal region. The most apparent
features are four bands in the J=ψϕ mass distribution,
corresponding to the previously reported Xð4140Þ,
Xð4274Þ, Xð4500Þ, and Xð4700Þ states. There is also a
distinct band near 16 GeV2 of the J=ψKþ mass squared.

To investigate the resonant structures, a full amplitude fit
is performed using an unbinned maximum-likelihood
method. The likelihood definition and the total probability
density function (PDF), which includes a signal and a
background component, are described in the previous
publication [13]. Resonance line shapes are parametrized
using the Breit-Wigner approximation. The signal
Bþ decay is described in the helicity formalism by
three decay chains: K�þð→ ϕKþÞJ=ψ , Xð→ J=ψϕÞKþ,
and Zþ

csð→ J=ψKþÞϕ. Each chain is fully described by
one mass and five angular observables. For example,
the conventional K�þ chain has the following six observ-
ables Φ≡ ðmϕK; θK� ; θJ=ψ ; θϕ;ΔφK�;J=ψ ;ΔφK�;ϕÞ, where θ
denotes the helicity angles and Δφ the angles between two
decay planes. Because of the nonscalar final-state particles
(μþ and μ−), an azimuthal angle αiμ is required to align the
helicity frames of μþ and μ− between the chain i and the
reference K�þ chain[4,5,29].
The model used in the previous study (run 1 model) is

first tested. Because of the increased sample size, the model
requires improvements (see Fig. 3 bottom row). Additional
K�þ, X, and possible Zþ

cs states are added until no further
state with a significance larger than 5σ improves the overall
fit. In total, nine K�þ, seven X, two Zþ

cs, and one J=ψϕ NR
components are taken as the default model, as listed in
Table I. The nine K�þ states are all those with spin parity
J ≤ 2 and mass below 2 GeV, which are predicted by the
relativistic potential model [30], and kinematically allowed,
including three resonances with poles just below the ϕKþ
mass threshold. All components previously used in the run
1 model are included, but the JP ¼ 1þ NR ϕKþ and the
broad 0− state are replaced by the upper tails of K1ð1400Þ
and Kð1460Þ resonances, respectively. The newly added
components are the upper tail of 1− K�ð1410Þ resonance,
2− Xð4150Þ, 1þ Xð4685Þ, 1− Xð4630Þ, 1þ Zcsð4000Þþ,
and Zcsð4220Þþ states.
Figure 3 shows the invariant-mass distributions for all

pairs of final-state particles of the Bþ → J=ψϕKþ decay
with fit projections from the amplitude analysis overlaid,
for both the default model and the run 1 model. The fit
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FIG. 1. Invariant-mass distribution of selected Bþ → J=ψϕKþ
candidates with the fit overlaid.
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FIG. 2. Dalitz plots for Bþ → J=ψϕKþ candidates in a region �15 MeV around the Bþ mass peak.
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results are summarized in Table I, including mass, width, fit
fraction (FF), and significance of each component. The
masses and widths of the four X states studied using the
LHCb run 1 sample only are consistent with the previous

measurements [12,13]. The significance of each component
is evaluated by assuming that the change of twice the log-
likelihood between the default fit and the fit without this
component follows a χ2 distribution. The corresponding

(4630)X

(4500)X

(4700)X

 NRX

(4140)X

(4274)X

(4685)X

(4150)X

(4000)csZ

(4220)csZ

LHCb

1.5 2

− 0K
+ 1K
− 1K
+ 2K
− 2K

Background

Total fit
-1Data 9 fb

LHCb

LHCb

4.2 4.6 4.8

LHCb

LHCb

3.6 3.8 4 4.2

LHCb

 [GeV]+Kφm  [GeV]φψJ/m
4.4

 [GeV]+KψJ/m

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

C
an

di
da

te
s 

/ (
10

 M
eV

)
C

an
di

da
te

s 
/ (

10
 M

eV
)

FIG. 3. Distributions of ϕKþ (left), J=ψϕ (middle), and J=ψKþ (right) invariant masses for the Bþ → J=ψϕKþ candidates (black data
points) compared with the fit results (red solid lines) of the default model (top row) and the run 1 model (bottom row).

TABLE I. Fit results from the default amplitude model. The significances are evaluated accounting for total (statistical) uncertainties.
The listed masses and widths without uncertainties are taken from PDG [14] and are fixed in the fit. The listed world averages of the two
K2 and K�ð1680Þ resonances do not contain the contributions from the previous LHCb run 1 results.

JP Contribution Significance (σ) M0 (MeV) Γ0 (MeV) FF (%)

1þ 21P1 Kð1þÞ 4.5 (4.5) 1861� 10þ16
−46 149� 41þ231

−23

23P1 K0ð1þÞ 4.5 (4.5) 1911� 37þ124
−48 276� 50þ319

−159

13P1 K1ð1400Þ 9.2 (11) 1403 174 15� 3þ3
−11

2− 11D2 K2ð1770Þ 7.9 (8.0) 1773 186
13D2 K2ð1820Þ 5.8 (5.8) 1816 276

1− 13D1 K�ð1680Þ 4.7 (13) 1717 322 14� 2þ35
−8

23S1 K�ð1410Þ 7.7 (15) 1414 232 38� 5þ11
−17

2− 23P2 K�
2ð1980Þ 1.6 (7.4) 1988� 22þ194

−31 318� 82þ481
−101 2.3� 0.5� 0.7

0− 21S0 Kð1460Þ 12 (13) 1483 336 10.2� 1.2þ1.0
−3.8

2− Xð4150Þ 4.8 (8.7) 4146� 18� 33 135� 28þ59
−30 2.0� 0.5þ0.8

−1.0

1− Xð4630Þ 5.5 (5.7) 4626� 16þ18
−110 174� 27þ134

−73 2.6� 0.5þ2.9
−1.5

0þ Xð4500Þ 20 (20) 4474� 3� 3 77� 6þ10
−8 5.6� 0.7þ2.4

−0.6

Xð4700Þ 17 (18) 4694� 4þ16
−3 87� 8þ16

−6 8.9� 1.2þ4.9
−1.4

NRJ=ψϕ 4.8 (5.7) 28� 8þ19
−11

1þ Xð4140Þ 13 (16) 4118� 11þ19
−36 162� 21þ24

−49 17� 3þ19
−6

Xð4274Þ 18 (18) 4294� 4þ3
−6 53� 5� 5 2.8� 0.5þ0.8

−0.4

Xð4685Þ 15 (15) 4684� 7þ13
−16 126� 15þ37

−41 7.2� 1.0þ4.0
−2.0

1þ Zcsð4000Þ 15 (16) 4003� 6þ4
−14 131� 15� 26 9.4� 2.1� 3.4

Zcsð4220Þ 5.9 (8.4) 4216� 24þ43
−30 233� 52þ97

−73 10� 4þ10
−7
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number of degrees of freedom is equal to the reduction in
the number of free parameters multiplied by a factor of 2
(1) when the mass and width of the component are floated
(fixed) in the fit, which accounts for the look-elsewhere
effect [13,31], as validated by pseudoexperiments. Figure 4
shows the mJ=ψKþ distributions in two slices of mJ=ψϕ,
which demonstrate the need for the narrower Zcsð4000Þþ
state. Including the 1þ Zþ

cs states improves the χ2=nbin
from 84=35 to 43=35 (left slice) and from 79=37 to 32=37
(right slice), where nbin is the number of nonzero bins.
The spin and parity of each exotic state is probed by

testing alternative JP hypotheses and comparing the fit
likelihood values [13]. The JP assignments for the pre-
viously reported four X states are confirmed with high
significance. A 1þ assignment is favored for the new
Xð4685Þ state with also high significance, but the quantum
numbers of the Xð4150Þ and Xð4630Þ are less well
determined. The best hypothesis for the Xð4630Þ state is
1− over 2− at a 3σ level. The other hypotheses are ruled out
by more than 5σ. The fit prefers 2− for the Xð4150Þ state by
more than 4σ. The narrower Zcsð4000Þþ state is determined
to be 1þ with high significance. The broader Zcsð4220Þþ
state could be 1þ or 1−, with a 2σ difference in favor of the
first hypothesis. Other spin-parity assignments are ruled out
at 4.9σ level.
Systematic uncertainties are estimated for the masses,

widths, and fit fractions of all states. To probe the effects
from the neglected Bþ → J=ψKþK−Kþ non-ϕ contribu-
tions, the ϕ mass window is changed from �15 to
�7 MeV, and alternatively this background is subtracted
using the sPlot technique[32]. The Blatt-Weisskopf barrier
[13] hadron size is varied between 1.5 and 4.5 GeV−1. The
default NR 0þ J=ψϕ representation is changed from a
constant to a linear polynomial. Additional 1þ or 2þ NR
J=ψϕ contributions are also included. The smallest allowed
orbital angular momentum in the resonance function is
varied. For the Xð4140Þ, which peaks near the J=ψϕ
threshold, the Flatté model[33] is used instead of the
Breit-Wigner amplitude. A simplified one-channel K-
matrix model [14] is used to describe various K�

resonances instead of the sum of Breit-Wigner amplitudes.
Two-channel K-matrix models have also been tried for the
21P1 and 23P1 K� states with the coupled-channel thresh-
olds opening up near 1.75 GeV, with an insignificant
improvement to the description of the mϕK distribution.
To cover the full range of K�þ resonances predicted in the
allowed ϕKþ mass range, an extended model is tested by
adding five more K�þ resonances with mass above 2 GeV
[30]. The presence of an extra X state contribution, with J
from 0 to 2, to the extended model is also checked. The
difference between the results obtained from assigning 1þ
or 1− hypotheses to the Zcsð4220Þþ is taken as a systematic
uncertainty. The mass-dependent width in the denominator
of the Breit-Wigner function for the K�þ resonances is
calculated with the lightest allowed channel (πK for natural
spin-parity resonances and ωK for others) instead of ϕK.
The maximum deviation among the modeling uncertain-

ties discussed above is summed in quadrature with the
additional sources, including the uncertainties due to the
fixed masses and widths of the known K�þ resonances,
mismodeling of χ2IP of the Bþ candidate, background PDF
model shape and fractions, and the finite size of the
simulation samples. For the Zcsð4000Þþ state, the largest
systematic contribution is due to the JP hypotheses of the
Zcsð4220Þþ state. The summary of fit results, including the
systematic uncertainties, is listed in Table I. The smallest
significance found when varying each of sources is taken as
the significance accounting for systematic uncertainty.
Further evidence for the resonant character of

Zcsð4000Þþ is observed in Fig. 5, showing the evolution
of the complex amplitude on the Argand diagram, obtained
with the same method as previously reported for the
Zcð4430Þ− state [5]. The magnitude and phase have
approximately circular evolution with mJ=ψKþ in the
counterclockwise direction, as expected for a resonance.
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The BESIII experiment reported observation of a
Zcsð3985Þ− resonance. Its mass 3982.5þ1.8

−2.6ðstatÞ �
2.1ðsystÞ MeV is consistent with the 1þ Zcsð4000Þþ state
observed in this analysis, but with significantly narrower
width 12.8þ5.3

−4.4ðstatÞ � 3.0ðsystÞ MeV. When fixing the
mass and width of this state to the nominal BESIII result
in the amplitude fit to our data, twice the log-likelihood is
worse by 160 units. The narrower width is also not
supported by an alternative Flatté model with parameters
obtained from our data. Therefore, there is no evidence that
the Zcsð4000Þþ state observed here is the same as the
Zcsð3985Þ− state observed by BESIII.
In conclusion, an improved full amplitude analysis of the

Bþ → J=ψϕKþ decay is performed using 6 times larger
signal yield than previously analyzed [12]. A relatively
narrow Zcsð4000Þþ state decaying to J=ψKþ with mass
4003� 6ðstatÞþ4

−14ðsystÞ MeV and width 131� 15ðstatÞ �
26ðsystÞ MeV is observed with large significance. Its spin
parity is determined to be 1þ also with high significance. A
quasi-model-independent representation of the Zcsð4000Þþ
contribution in the fit shows a phase change in the
amplitude consistent with that of a resonance. A broader
1þ or 1− Zcsð4220Þþ state is also required at 5.9σ. This is
the first observation of states with hidden charm and
strangeness that decay to the J=ψKþ final state. The four
X states decaying to J=ψϕ observed in the run 1 analysis
[12] are confirmed with higher significance, together with
their quantum number assignments. An additional
1þ Xð4685Þ state is observed with relatively narrow width
(about 125 MeV) with high significance. A new Xð4630Þ
state is observed with a 5.5σ significance, with preferred 1−

over 2− spin-parity assignment at 3σ level, and the other JP

hypotheses rejected at 5σ. This constitutes the first obser-
vation of exotic states with a new quark content cc̄us̄
decaying to the J=ψKþ final state.
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