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a typical ALS sweep. These operators are then reused to approximately perform more ALS sweeps until the changes to
the factor matrices are deemed large, at which point, regular ALS sweeps are performed. Once the updates performed
in these regular sweeps are again small, the pairwise operators are recomputed. Each sweep computed approximately in
this way costs asymptotically less than a regular ALS sweep.

Within CP-ALS, the computational bottleneck of each sweep involves an operation called the matricized tensor-times
Khatri–Rao product (MTTKRP). Similarly, the costliest operation in the ALS-based Tucker decomposition (Tucker-ALS)
method is called the tensor timesmatrix-chain (TTMc) product. For an orderN tensor withmodes of dimension s, approx-
imated computation of ALS sweeps via PP reduces the cost of that sweep from O

(
sNR

)
to O

(
s2R + sR2

)
for a rank-R CP

decomposition and from O
(
sNR

)
to O

(
s2RN−1

)
for a rank-R Tucker decomposition.

To quantify the accuracy of the PP algorithm, in Section 4, we provide an error analysis for both MTTKRP and
TTMc operations. For both operations, we first view the ALS procedure in terms of pairwise updates, pushing updates to
least-squares problems of all factor matrices as soon as any one of them is updated. This reformulation is algebraically
equivalent to the original ALS procedure. If the relative change to each factor matrix since PP operators were constructed
is bounded by O(𝜖), we can bound the absolute error of the way PP propagates updates in MTTKRP/TTMc calculations
due to changes in any one of the other factor matrices. For order three tensors, this absolute error bound yields a relative
error bound that depends on a matrix condition number. For the TTMc operation in Tucker decomposition, we derive a
2-norm relative error bound for the overall TTMc calculations (as opposed to updates thereof) of O

(
𝜖2
)
that holds when

the residual of the Tucker decomposition is somewhat less than the norm of the original tensor. We also derive a Frobe-
nius norm error bound of O

(
𝜖2(s∕R)N∕2

)
for TTMc, which only assumes that higher-order singular value decomposition

(HOSVD)21,22 is performed to initialize Tucker-ALS (which is typical). In addition, in the Appendix, we show that for the
CP decomposition, if the factor matrices have changed by O(𝜖) in norm, the relative error in PP for the overall MTTKRP
calculation is bounded by a term that scales with O

(
𝜖2
)
and a tensor condition number. However, we demonstrate that

in the worst case scenario, for decomposition of any large tensor, this tensor condition number can be infinite.
In order to evaluate the performance benefit of PP, in Section 5, we compare per ALS sweep and full decomposition

performance using aNumPy-based23 sequential implementation. Ourmicrobenchmark results compare the performance
of one CP-ALS sweep with different input tensor sizes. We consider the initialization sweep, in which the PP operators
are calculated, as well as the approximated sweep, in which the operators are not recalculated, of the PP algorithm.
These results show that the approximated PP sweeps are up to 6.3× faster than one ALS sweep with the dimension tree
algorithm18,24-29 for an order three tensor with dimension size 960, and up to 33.0× faster than one ALS sweep for an
order six tensor. We then study the performance and numerical behavior of PP for the decomposition of synthetic tensors
and application datasets. Our experimental results show that PP achieves fitness as high as standard ALS, and achieves
speed-ups of up to 3.1× for CP decomposition and up to 1.13× for Tucker decomposition with respect to state of the art
ALS algorithms.

We also evaluate the performance of PP based on a distributed-memory parallel implementation onmany nodes of an
Intel KNL system (Stampede2) using Cyclops Tensor Framework30 and ScaLAPACK31 libraries. Our experimental results
show that PP achieves fitness as high as standard ALS, and achieves speed-ups of up to 1.75× with respect to a standard
ALS implementation on top of the Cyclops library on Stampede2.

2 BACKGROUND

This section first outlines the notation used throughout this article, then outlines the basic alternating least square
algorithms for both CP and Tucker decomposition.

2.1 Notation and definitions

Our analysis makes use of tensor algebra in both element-wise equations and specialized notation for tensor opera-
tions.1 For vectors, bold lowercase Roman letters are used, for example, x. For matrices, bold uppercase Roman letters
are used, for example, X. For tensors, bold calligraphic fonts are used, for example,  . An order N tensor corresponds to
an N-dimensional array with dimensions s1 × · · · × sN . Elements of vectors, matrices, and tensors are denotes in paren-
theses, for example, x(i) for a vector x, X(i, j) for a matrix X, and  (i, j, k, l) for an order 4 tensor  . Columns of a matrix
X are denoted by xi = X(∶, i). The mode-n matrix product of an order N tensor  ∈ Rs1×···×sN with a matrix A ∈ RJ×sn
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is denoted by  ×n A, with the result having dimensions s1 × · · · × sn−1 × J × sn+1 × · · · × sN . The mode-n vector prod-
uct of  with a vector v ∈ Rsn is denoted by  ×n vT , with the result having dimensions s1 × · · · × sn−1 × sn+1 × · · · × sN .
Matricization is the process of unfolding a tensor into a matrix. Given a tensor  the mode-n matricized version is
denoted by X(n) ∈ Rsn×K where K =

∏N
m=1,m≠nsm. We generalize this notation to define the unfoldings of a tensor  with

dimensions s1 × · · · × sN into an orderM + 1 tensor, (i1,…,iM ) ∈ R
si1×···×siM×K , whereK =

∏
i∈{1,…,N}∖{i1,…,iM}

si, for example,

 (j, k, l,m) =  (1,3) (j, l, k + (m − 1)s2) .Weuse parenthesized superscripts as labels for different tensors, for example,
(1)

and  (2) are generally unrelated tensors.
The Hadamard product of two matrices U,V ∈ RI×J resulting in matrixW ∈ RI×J is denoted byW = U ∗ V, where

W(i, j) = U(i, j)V(i, j). We use ∗ to denote a chain of Hadamard products, for example, ∗n
i=1
A(i) = A(1) ∗ · · · ∗ A(n). The

outer product of K vectors u(1),… ,u(K) of corresponding sizes s1,… , sK is denoted by  = u(1)◦ · · · ◦u(K) where  ∈

Rs1×···×sK is an order K tensor. The Kronecker product of vectors u ∈ RI and v ∈ RJ is denoted by w = u⊗ v where
w ∈ RIJ . For matrices A ∈ RI×K and B ∈ RJ×K , their Khatri–Rao product results in a matrix of size (IJ) × K defined
by A⊙ B = [a1 ⊗ b1,… , aK ⊗ bK] . We use ⊙ to denote a chain of Khatri–Rao products, for example, ⊙n

i=1
A(i) = A(1) ⊙

· · ·⊙A(n).

2.2 CP decomposition with ALS

The CP tensor decomposition32,33 is a higher-order generalization of the matrix singular value decomposition (SVD). The
CP decomposition is denoted by

 ≈
[[
A(1),… ,A(N)

]]
, where A(i) =

[
a(i)1 ,… , a(i)

R

]
,

and serves to approximate a tensor by a sum of R tensor products of vectors,

 ≈

R∑
r=1

a(1)r ◦ · · · ◦a(N)
r .

The CP-ALS method alternates among quadratic optimization problems for each of the factor matrices A(n), resulting in
linear least squares problems for each row,

A(n)
newP

(n)T ≅ X(n),

where the matrix P(n) ∈ RIn×R, where In = s1 × · · · × sn−1 × sn+1 × · · · × sN , is formed by Khatri–Rao products of the other
factor matrices,

P(n) = A(1) ⊙ · · ·⊙A(n−1) ⊙A(n+1) ⊙ · · ·⊙A(N).

These linear least squares problems are often solved via the normal equations.1 We also adopt this strategy here to devise
the PP method. The normal equations for the nth factor matrix are

A(n)
new𝚪

(n) = X(n)P
(n),

where 𝚪 ∈ RR×R can be computed via

𝚪
(n) = S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N), with each S(i) = A(i)TA(i).

These equations also give the nth component of the optimality conditions for the unconstrained minimization of the
nonlinear objective function,

f
(
A(1),… ,A(N)

)
=
1
2
‖‖‖ −

[[
A(1),… ,A(N)

]]‖‖‖
2

F
,
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for which the nth component of the gradient is

𝜕f

𝜕A(n)
= G(n) = A(n)

𝚪
(n) − X(n)P

(n) =
(
A(n) −A(n)

new

)
𝚪
(n).

Algorithm 1 presents the basic ALS method described above, keeping track of the Frobenius norm of the N components
of the overall gradient to ascertain convergence.

Algorithm 1. CP-ALS: ALS procedure for CP decomposition

1: Input: Tensor  ∈ Rs1×···×sN ,stopping criteria Δ
2: Initialize

[[
A(1),… ,A(N)

]]
as uniformly distributed random matrices within [0, 1], initialize G(n)

← A(n), S(n) ←
A(n)TA(n) for n ∈ {1,… ,N}

3: while
∑N

i=1
‖‖G(i)‖‖F > Δ‖‖F do

4: for n ∈ {1,… ,N} do

5: 𝚪
(n)

← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

6: UpdateM(n) based on the dimension tree algorithm shown in Figure 1
7: A(n)

new ← M(n)
𝚪
(n)†

8: G(n)
←

(
A(n) −A(n)

new

)
fb(n)

9: A(n)
← A(n)

new

10: S(n) ← A(n)TA(n)

11: end for

12: end whilereturn
[[
A(1),… ,A(N)

]]

The MTTKRP computation,M(n) = X(n)P
(n), is the main computational bottleneck of CP-ALS.34 The computational

cost of MTTKRP is Θ(sNR) if sn = s for all n ∈ {1,… ,N}. With the dimension tree algorithm, which will be detailed in
Section 2.4, the computational complexity for all the MTTKRP calculations in one ALS sweep is 4sNR to leading order
in s. The normal equations worsen the conditioning, but are advantageous for CP-ALS, since 𝚪(n) can be computed and
inverted in just O(s2R + R3) cost and the MTTKRP can be amortized by dimension trees. If QR is used instead of the
normal equations, the product of Q with the right-hand sides would have the cost 2sNR and would need to be done for
each linear least squares problem, increasing the overall leading order cost by a factor of N∕2.

2.3 Tucker decomposition with ALS

In this section, we review the ALS method for computing a low-rank Tucker decomposition of a tensor.22 Tucker decom-
position approximates a tensor by a core tensor contracted by matrices with orthonormal columns along each mode. The
Tucker decomposition is given by

 ≈
[[
;A(1),… ,A(N)

]]
=  ×1 A

(1) ×2 A
(2) · · · ×N A

(N).

The corresponding element-wise expression is

 (x1,… , xN) ≈
∑

{z1,…,zN}

 (z1,… , zN)
∏

r∈{1,…,N}

A(r) (xr, zr) .

The core tensor  is of order N with dimensions (Tucker ranks) R1 × · · · × RN (throughout error and cost analysis we
assume each Rn = R for n ∈ {1,… ,N}). The matrices A(n) ∈ Rsn×Rn have orthonormal columns.

TheHOSVD21,22 computes the leading left singular vectors of each one-mode unfolding of , providing a good starting
point for the Tucker-ALS algorithm. The classical HOSVD computes the truncated SVD of X(n) ≈ U(n)

𝚺
(n)V(n)T and sets
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A(n) = U(n) for n ∈ {1,… ,N}. The interlaced HOSVD35,36 instead computes the truncated SVD of

Z(n)
(n)

= U(n)
𝚺
(n)V(n)T , where (1) =  and Z(n+1)

(n)
= 𝚺

(n)V(n)T .

The interlaced HOSVD is cheaper, since the size of each (n) is sN−n+1Rn−1.
The ALS method for Tucker decomposition,1,37,38 which is also called the higher-order orthogonal iteration (HOOI),

then proceeds by fixing all except one factor matrix, and computing a low-rank matrix factorization to update that factor
matrix and the core tensor. To update the nth factor matrix, Tucker-ALS factorizes

 (n) =  ×1 A
(1)T · · · ×n−1 A

(n−1)T ×n+1 A
(n+1)T · · · ×N A

(N)T ,

which is called the TTMc, into a product of anmatrix with orthonormal columnsA(n) and the core tensor , so thatY(n)
(n)

≈

A(n)G(n). This factorization can be done by taking A
(n) to be the Rn leading left singular vectors of Y

(n)
(n)
. This Tucker-ALS

procedure is given in Algorithm 2.

Algorithm 2. Tucker-ALS: ALS procedure for Tucker decomposition

1: Input: Tensor  ∈ Rs1×···×sN ,decomposition ranks {R1,… ,RN},stopping criteria Δ
2: Initialize

[[
;A(1),… ,A(N)

]]
using HOSVD, initialize  ← 

3: while ‖‖F>Δ‖‖F do
4: for n ∈ {1,… ,N} do

5: Update  (n) based on the dimension tree algorithm
6: A(n)

← Rn leading left singular vectors of Y
(n)
(n)

7: end for

8: new ←  (N) ×N A(N)T

9:  ← new − 

10:  ← new
11: end whilereturn

[[
;A(1),… ,A(N)

]]

As in previous work,39,40 our implementation computes these singular vectors by finding the left eigenvectors of the
GrammatrixW = Y(n)

(n)
Y(n)T
(n)

. Computing the Grammatrix sacrifices some numerical stability, but avoids a large SVD and
provides consistency of the signs of the singular vectors across ALS sweeps.

2.4 The dimension tree algorithm

For CP-ALS, the tensor contractions for MTTKRP can be amortized across the linear least squares problems necessary
for a given ALS sweep (for loop iteration in Algorithm 1). Such amortization techniques are referred to as dimension tree
algorithms and a variety of dimension trees have been studied tominimize costs.18,24-29 As our analysis focuses on leading
order cost in s, simple binary dimension trees are an optimal choice. These dimension trees for N = 3, 4 are illustrated in
Figure 1a,b. We define the partially contracted MTTKRP intermediates(i1,i2,…,im) therein as follows,

(i1,i2,…,im) =  (i1,i2,…,im) ⊙
j∈{1,…,N}∖{i1,i2,…,im}

A(j). (1)

Elementwise,

(i1,i2,…,im)(xi1 , xi2 ,… , xim , k) =
∑

{x1,…,xN}∖{xi1 ,xi2 ,…,xim}

 (x1,… , xN)
∏

r∈{1,…,N}∖{i1,i2,…,im}

A(r)(xr, k),
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(a) ALS dimension tree with = 3 (b) ALS dimension tree with = 4

(c) PP dimension tree with = 3 (d) PP dimension tree with = 4

F IGURE 1 Dimension trees for ALS and pairwise perturbation. In (c, d), the solid arrows denote the data dependencies in building

pairwise perturbation operators, and is calculated in the PP initialization step. The dashed lines denote the data dependencies in the PP

approximated step calculations

where(1,…,N) is the input tensor  . The first level contractions (contractions between the input tensor and one factor
matrix) can be done via matrix multiplications between the reshaped input tensor and the factor matrix. These contrac-
tions have a cost of O

(
sNR

)
and are generally the most time-consuming part of ALS. Other contractions (transforming

one intermediate into another intermediate) can be done via batchedmatrix-vector products, and the complexity of an ith
level contraction is O

(
sN+1−iR

)
. Because two first level contractions are necessary for the construction of tree dimension

tree, as is illustrated in Figure 1a,b, to calculate all theM(n) in one ALS sweep, to leading order in s, the computational
complexity is 4sNR.

For Tucker-ALS, the TTMc that computes each  (n) is the main computational bottleneck of Tucker-ALS41 and can
also be amortized by the dimension tree. The intermediates for Tucker dimension tree are the partially contracted TTMc,
 (i1,i2,…,im), defined as follows,

 (i1,i2,…,im) = 
⨉

j∈{1,…,N}∖{i1,i2,…,im}

A(j)T ,

where  is contracted with all the matrices A(j) except A(i1),… ,A(im). Each contraction can be done via matrix multipli-
cations, and the complexity of an ith level contraction is O

(
sN+1−iRi

)
. Similar to CP-ALS, to calculate all the  (n) in one

ALS sweep, to leading order in s, the computational complexity is 4sNR.

3 PP ALGORITHMS

We now introduce a PP algorithm to accelerate the ALS procedure when the iterative optimization steps are approach-
ing a local minimum. We first derive the approximation for order three tensors, then generalize the algorithm to order N
tensors. The key idea of the PP method is to compute PP operators, which correlate a pair of factor matrices. These ten-
sors are then used to repeatedly update the quadratic subproblems for each tensor. As we will show, these updates are
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provably accurate if the factor matrices do not change significantly since their state at the time of formation of the PP
operators.

3.1 PP for order three tensors

3.1.1 CP-ALS

The PP procedure for CP-ALS approximates theMTTKRP outputs. Consider an order three equi-dimensional tensor with
size in each mode s and CP rank R, the first mode MTTKRP can be expressed asM(1) = X(1)

(
A(2) ⊙A(3)

)
. LetA(n)

p denote
the A(n) calculated with regular ALS at some number of sweeps prior to the current one. Then A(n) at the current sweep
can be expressed as

A(n) = A(n)
p + dA(n),

andM(1) can be expressed as

M(1) = X(1)

(
A(2)
p ⊙A(3)

p

)
+ X(1)

(
A(2)
p ⊙ dA(3)

)
+ X(1)

(
dA(2) ⊙A(3)

p

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
U(1)

+ X(1)

(
dA(2) ⊙ dA(3)

)
. (2)

The PP procedure for CP-ALS approximates M(1) with M̃
(1)

= U(1) + V(1), where U(1) is the first three terms in
Equation (2) and V(1) approximates the final term through approximating the input tensor  by its approximate CP
decomposition,

X(1)

(
dA(2) ⊙ dA(3)

)
≈ V(1) =

([[
A(1),A(2),A(3)

]])
(1)

(
dA(2) ⊙ dA(3)

)
= A(1)

((
A(2)TdA(2)

)
∗
(
A(3)TdA(3)

))
,

which can be calculated with the cost of O
(
sR2

)
. The remaining error term is

(
 −

[[
A(1),A(2),A(3)

]])
(1)

(
dA(2) ⊙ dA(3)

)
.

Therefore, the norm of the error scales as O
(
C𝜖2

)
if each ‖‖‖dA

(i)‖‖‖2 ≤ 𝜖 and the decomposition residual norm is bounded

by C.
The approximated MTTKRP, M̃

(1)
, can be rewritten as a function of

(i1,i2,…,im)
p , which is defined in the same way as

(i1,i2,…,im) in Equation (1) except that is contracted withA(j)
p for j ∈ {1,… ,N} ∖ {i1, i2,… , im}, thusM

(1)
p =  (1)(A

(2)
p ⊙

A(3)
p ),M(1,2)

p =  (1,2)A
(3)
p ,M(1,3)

p =  (1,3)A
(2)
p . For each x ∈ {1,… , s} and k ∈ {1,… ,R},

M̃
(1)
(x, k) = M(1)

p (x, k) +

s∑
y=1


(1,2)
p (x, y, k)dA(2)(y, k) +

s∑
y=1


(1,3)
p (x, y, k)dA(3)(y, k) + V(1)(x, k).

PP has two steps: the initialization step, where the termsM(1)
p and PP operators(1,2)

p ,(1,3)
p are calculated, and the

approximated step, where these terms are used in the equation above to calculate M̃
(1)
. Using the dimension tree structure

shown in Figure 1c, the initialization step for all the three modes can be done with the leading order cost of 6s3R, 1.5×
the cost of the ALS dimension tree. Each approximated step for all the modes can be done with the leading order cost of
3
(
4s2R + 6sR2

)
overall.

3.1.2 Tucker-ALS

We derive a similar PP algorithm for order three Tucker-ALS. The first mode of TTMc can be expressed as  (1) =  ×2
A(2)T ×3 A

(3)T . PP approximates  (1) with



8 of 33 MA and SOLOMONIK

̃
(1)

=  ×2 A
(2)T
p ×3 A

(3)T
p +  ×2 A

(2)T
p ×3 dA

(3)T +  ×2 dA
(2)T ×3 A

(3)T
p ,

and the error term is  ×2 dA
(2)T ×3 dA

(3)T . The expression above can be rewritten as a function of 
(i1,i2,…,im)
p , which is

defined in the same way as  (i1,i2,…,im) except that  is contracted with A(j)
p for 

(i1,i2,…,im)
p ,

̃
(1)

= 
(1)
p + 

(1,2)
p ×2 dA

(2)T + 
(1,3)
p ×3 dA

(3)T .

Using the dimension tree structure, the initialization step for all the three modes can be done with the leading order cost
of 6s3R, 1.5× the cost of the ALS dimension tree. Each approximated step for all the modes can be done with the leading
order cost of 12s2R2 overall.

3.2 General PP algorithm

We now generalize PP to order N tensors.

3.2.1 CP-ALS

The MTTKRP in nth mode,M(n), can be expressed as

M(n) = X(n)

N

⊙
i=1,i≠n

(
A(i)
p + dA(i)

)
.

M(n) can be expressed as a function of
(i1,i2,…,im)
p as follows,

M(n)(y, k) = M(n)
p (y, k) +

N∑
i=1,i≠n

si∑
x=1


(i,n)
p (x, y, k)dA(i)(x, k)

+

N∑
i=1,i≠n

N∑
j=i+1,j≠n

si∑
x=1

sj∑
z=1


(i,j,n)
p (x, z, y, k)dA(i)(x, k)dA(j)(z, k) + · · · .

From the above expression, we observe that, except the first two terms, all terms include the contraction between
tensor

(i1,i2,…,im)
p and at least twomatrices dA(i), so that their norm scales quadratically with the norm of the perturbative

updates dA(i). Therefore, their norm scales asO
(
𝜖2
)
if ‖‖‖dA

(i)‖‖‖2 ≤ 𝜖. The PP algorithm obtains an effective approximation

by keeping the first two terms (these terms are illustrated in Figure 1d for an order four tensor), and approximating the
input tensor using its approximate CP decomposition in the third term to lower the error to a greater extent. For each
y ∈ {1,… , sn} and k ∈ {1,… ,R},

M̃
(n)
(y, k) = M(n)

p (y, k) +

N∑
i=1,i≠n

si∑
x=1


(i,n)
p (x, y, k)dA(i)(x, k) +

N∑
i,j=1,i,j≠n,i≠j

V(n,i,j)(y, k), (3)

where M(n)
p = X(n)

N

⊙
i=1,i≠n

A(i)
p , 

(i,n)
p =  (i,n)

N

⊙
j∈{1,…,N}∖{i,n}

A(j)
p ,

and V(n,i,j) = A(n)

((
A(i)TdA(i)

)
∗
(
A(j)TdA(j)

)
∗

N
∗

k=1,k≠i,j,n

(
A(k)TA(k)

))
.

We evaluate the benefit of including the V(n,i,j) correction in Section 5.1. Given
(i,n)
p andM(n)

p , calculation of M̃
(n)
for

n ∈ {1,… ,N} requires 2N2
(
s2R + sR2

)
operations overall. Further, we show in Section 4.1 that the column-wise relative

approximation error of M̃
(n)
with respect toM(n) is small if each ‖‖‖da

(n)

k

‖‖‖2 ∕
‖‖‖a

(n)

k

‖‖‖2 for n ∈ {1,… ,N}, k ∈ {1,… ,R} is

sufficiently small. Algorithm 3 presents the PP-CP-ALS method described above.
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Algorithm 3. PP-CP-ALS: Pairwise perturbation procedure for CP-ALS

1: Input: tensor  ∈ Rs1×···×sN ,stopping criteria Δ, PP tolerance 𝜖 < 1
2: Initialize

[[
A(1),… ,A(N)

]]
as uniformly distributed randommatrices within [0, 1], initialize G(n), dA(n)

← A(n), S(n) ←
A(n)TA(n) for i ∈ {1,… ,N}

3: while
∑N

i=1
‖‖G(i)‖‖F > Δ‖‖F do

4: if ∀ i ∈ {1,… ,N}, ‖‖dA(i)‖‖F < 𝜖‖‖A(i)‖‖F then
5: Compute(i,n)

p ,M(n)
p for i,n ∈ {1,… ,N} via dimension tree in Section 3.2.3

6: for n ∈ {1,… ,N} do

7: A(n)
p ← A(n), dA(n)

← O

8: end for

9: while
∑N

i=1
‖‖G(i)‖‖F > Δ‖‖F and ∀ i ∈ {1,… ,N}, ‖‖dA(i)‖‖F < 𝜖‖‖A(i)‖‖F do

10: for n ∈ {1,… ,N} do

11: 𝚪
(n)

← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

12: Update M̃(n) based on Equation (3)
13: A(n)

new ← M̃(n)
𝚪
(n)†

14: G(n)
←

(
A(n) −A(n)

new

)
𝚪
(n)

15: A(n)
← A(n)

new

16: S(n) ← A(n)TA(n)

17: dA(n) = A(n)
new −A(n)

p

18: end for

19: end while

20: end if

21: Perform regular ALS sweep as in Algorithm 1, taking dA(n)
← A(n)

new −A(n) for each n ∈ {1,… ,N}

22: end whilereturn
[[
A(1),… ,A(N)

]]

3.2.2 Tucker-ALS

We derive a similar PP algorithm for Tucker-ALS. Similar to the expression forM(n) in CP-ALS,  (n) can be expressed
as

 (n) = 

N⨉
i=1,i≠n

(
A(i)
p
T + dA(i)T

)
.

The expression above can be rewritten as a function of 
(i1,i2,…,im)
p ,

 (n) = 
(n)
p +

N∑
i=1,i≠n


(i,n)
p ×i dA

(i)T +

N∑
i=1,i≠n

N∑
j=i+1,j≠n


(i,j,n)
p ×i dA

(i)T ×j dA
(j)T + · · · .

The PP algorithm again takes only the first order terms in dA(i), computing

̃
(n)

= 
(n)
p +

N∑
i=1,i≠n


(i,n)
p ×i dA

(i)T , where 
(n)
p = 

N⨉
l=1,l≠n

A(l)
p
T and 

(i,n)
p = 

⨉
j∈{1,…,N}∖{i,n}

A(j)
p
T .

Given 
(i,n)
p and 

(n)
p , ̃

(n)
for n ∈ {1,… ,N} can be calculated with 2N2s2RN−1 cost overall. In Section 4.2,

we show that the relative Frobenius norm approximation error of ̃
(n)

with respect to  (n) is small, so
long as each ‖‖‖dA

(n)‖‖‖F ∕
‖‖‖A

(n)‖‖‖F is sufficiently small. Algorithm 4 presents the PP-Tucker-ALS method described

above.
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Algorithm 4. PP-Tucker-ALS: Pairwise perturbation procedure for Tucker-ALS

1: Input: tensor  ∈ Rs1×···×sN , decomposition ranks {R1,… ,RN}, stopping criteria Δ, PP tolerance 𝜖
2: Initialize

[[
;A(1),… ,A(N)

]]
using HOSVD,initialize dA(n)

← A(n) for i ∈ {1,… ,N}, initialize  ← 

3: while ‖‖F > Δ‖‖F do
4: if ∀ i ∈ {1,… ,N}, ‖‖dA(i)‖‖F < 𝜖‖‖A(i)‖‖F then
5: Compute  (i,n)

p ,
(n)
p for i,n ∈ {1,… ,N} via dimension tree in Section 3.2.3

6: for n ∈ {1,… ,N} do

7: A(n)
p ← A(n), dA(n)

← O

8: end for

9: while ‖‖F > Δ‖‖F and ‖‖F < 𝜖‖‖F do
10: for n ∈ {1,… ,N} do

11:  (n)
← 

(n)
p +

∑N
i=1,i≠n 

(i,n)
p ×i dA

(i)

12: A(n)
← Rn leading left singular vectors of Y

(n)
(n)

13: dA(n)
← A(n) −A(n)

p

14: end for

15: new ←  (N) ×N A(N)T

16:  ← new − 

17:  ← new
18: end while

19: end if

20: Perform regular ALS sweep as in Algorithm 2, taking dA(n)
← A(n)

new −A(n) for each n ∈ {1,… ,N}

21: new ←  (N) ×N A(N)T

22:  ← new − 

23:  ← new
24: end whilereturn

[[
;A(1),… ,A(N)

]]

3.2.3 Dimension trees for PP operators

Computation of the PP operators 
(i,n)
p and of (n)

p can benefit from amortization of common tensor contraction
(Khatri–Rao product or multilinear multiplication) subexpressions. In the context of ALS, this technique is known as
dimension trees and has been successfully employed to accelerate TTMc and MTTKRP. The same trees can be used for
both CP and Tucker, although the tensor intermediates and contraction operations are different (Khatri–Rao products
for CP and multilinear multiplication for Tucker). We describe the trees for CP decomposition, computing each 

(i,n)
p

and 
(n)
p . Figure 1c,d describes the dimension tree for N = 3, 4. Our tree constructions assume that the tensors are

equidimensional, if this is not the case, the largest dimensions should be contracted first.
The main goal of the dimension tree is to perform a minimal number of contractions to obtain each 

(i,n)
p .

Each matrix 
(n)
p can be simply obtained by a contraction with 

(i,n)
p for any i ≠ n. Each level of the tree

for l = 1,… ,N − 1 should contain intermediate tensors containing N − l + 1 uncontracted modes belonging to the
original tensor (the root is the original tensor  = (1,…,N)). For any pair of the original tensor modes, each
level should contain an intermediate for which these modes are uncontracted. Since the leaves at level l = N −

1 have two uncontracted modes, they will include each 
(i,n)
p for i < n and have

(
N

2

)
tensors overall. At level

l it then suffices to compute
(
l+1

2

)
tensors (i,j,l+2,l+3,…,N),∀i, j ∈ {1,… , l + 1}, i < j. Each (i,j,l+2,l+3,…,N) can be

computed by contraction of (s,t,v,l+2,l+3,…,N) and A(w) where {s, t, v} = {i, j,w} with w = maxw∈{l−1,l,l+1}∖{i,j}(w) and
s < t < v.

The construction of PP operators for CP decomposition costs

2R
N−1∑
l=2

(
l + 1
2

)
sN−l+2 = 6sNR + 12sN−1R + O

(
sN−2R2

)
.
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TABLE 1 Cost comparison between pairwise perturbation algorithm and ALS dimension tree algorithm for CP and Tucker

decompositions

DT ALS PP initialization step PP approximated step

CP 4sNR 6sNR 2N2(s2R + sR2)

Tucker 4sNR 6sNR 2N2s2RN−1

The cost to form PP operators for Tucker decomposition is

2
N−1∑
l=2

(
l + 1
2

)
sN−l+2Rl−1 = 6sNR + 12sN−1R2 + O

(
sN−2R3

)
.

We summarize the leading order computational costs for both algorithms in Table 1. The PP initialization step, which
involves the PP operator construction and does one more first level contraction, is computationally 1.5×more expensive
than the ALS algorithm.

As for the memory footprint, ALS with the best choice of dimension tree requires intermediate tensors of size
O
(
s⌈N∕2⌉R

)
. As an example, for the order four case shown in Figure 1b, the first and second level contractions are com-

bined to save memory, so that(3,4) and(1,2) are stored, both of size O
(
s2R

)
. The PP dimension tree described above

and in Figure 1d needs at least O
(
sN−1R

)
auxiliary memory to store the first level contraction results. The memory

needed for PP can be reduced similar to ALS. For example, when calculating the PP operator (1,3)
p for an order four

tensor, we can bypass the first level contraction and save its memory via directly performing a contraction between the
input tensor and the Khatri–Rao product outputA(1) ⊙A(3). Combining the first l ≤ N − 2 levels of contractions requires
O
(
sN−lR + N2s2R

)
auxiliary memory, but incurs a cost of O

(
l2sN−1R

)
.

4 ERROR ANALYSIS

In this section, we formally bound the approximation error of the PP algorithm relative to ALS. We show that quadratic
optimization problems computed by PP differ only slightly from ALS so long as the factor matrices have not changed
significantly since the construction of the PP operators.

4.1 CP-ALS

To bound the error of PP, we view the ALS procedure for CP decomposition in terms of pairwise updates (Algorithm 5),
pushing updates to least-squares problems of all tensors as soon as any one of them is updated. This reformulation is
algebraically equivalent to Algorithm 1, but makes oracle-like use of (m,n) (Equation 1), recomputing which would
increase the computational cost. We can bound the error of the way PP propagates updates to any right-hand sideM(m)

due to changes in any one of the other factor matrices 𝛿A(n). We define the updateH(m,n) in terms of its columns,

h(m,n)

k
(x) =

sn∑
y=1

(m,n)(x, y, k)𝛿A(n)(y, k), where 𝛿A(n) = A(n)
new −A(n).

Note that 𝛿A(n) denotes the update of nth factor between two neighboring sweeps, which should be distinguished from
dA(n), denoting the perturbation of nth factor in PP. Based on the definition, the update of eachM(m) after an ALS sweep
is the summation ofH(m,n) expressed as 𝛿M(m) =

∑N
n=1,n≠mH

(m,n).

For simplicity, we first perform an error analysis for the case where the second order correction terms V(n,i,j) are not
included in PP. In Theorem 1, we prove that when the column-wise norm of dA(n) = A(n) −A(n)

p relative to the norm of
A(n) for n ∈ {1,… ,N} is small, the absolute error of column-wise results for H(m,n) calculated from PP with respect to
that calculated from exact ALS is also small. Corollary 1 provides a simple relative error bound for third-order tensors.
Overall, these bounds demonstrate that PP should generally compute updates with small relative error with respect to the
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magnitude of the perturbation of the factor matrices since the setup of the pairwise operators. However, this relative error
can be amplified during other steps of ALS, which are ill-conditioned, that is, can suffer from catastrophic cancellation
(the same would hold for round-off error).

Algorithm 5. CP-ALS: Reinterpreted ALS procedure for CP decomposition

1: Input: Tensor  ∈ Rs1×···×sN , stopping criteria Δ
2: Initialize

[[
A(1),… ,A(N)

]]
as uniformly distributed randommatrices within [0, 1], initialize G(n), 𝛿A(n)

← A(n), S(n) ←
A(n)TA(n) for i ∈ {1,… ,N}

3: for n ∈ {1,… ,N} do

4: UpdateM(n) based on the dimension tree algorithm shown in Figure 1
5: end for

6: while
∑N

i=1
‖‖G(i)‖‖F > Δ‖‖F do

7: for n ∈ {1,… ,N} do

8: 𝚪
(n)

← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

9: A(n)
new ← M(n)

𝚪
(n)†

10: 𝛿A(n) = A(n)
new −A(n)

11: G(n)
← −𝛿A(n)fb(n)

12: A(n)
← A(n)

new

13: S(n) ← A(n)TA(n)

14: form ∈ {1,… ,N},m ≠ n do

15: UpdateM(m) asM(m)(x, k) = M(m)(x, k) +
∑sn

y=1
(m,n)(x, y, k)𝛿A(n)(y, k)

16: end for

17: end for

18: end whilereturn
[[
A(1),… ,A(N)

]]

We then perform an error analysis for the case where the second order correction terms V(n,i,j) are included in PP in
Theorem 2. We show that the second order corrections can tighten the leading order error by a factor related to the CP
decomposition accuracy.

Theorem 1. For k ∈ {1,… ,R}, if
‖‖‖da

(l)

k

‖‖‖2 ∕
‖‖‖a

(l)

k

‖‖‖2 ≤ 𝜖 < 1 for all l ∈ {1,… ,N}, the PP algorithm without second order

corrections computes the update H̃
(1,N)

with columnwise error,

‖‖‖h̃
(1,N)

k − h(1,N)

k

‖‖‖2 = O(N𝜖)
‖‖‖̂
‖‖‖2

N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 ,

where H(1,N) is the update to the matrix M(1) due to the change 𝛿A(N) performed by a regular ALS sweep, and ̂ =  ×N
𝛿a(N)T

k
. Analogous bounds hold for H(m,n) for any m,n ∈ {1,… ,N}, m ≠ n.

Proof. The ALS update and approximated update are

h(1,N)

k
= ̂

⨉
i∈{2,…,N−1}

a(i)T
k

and h̃
(1,N)

k = ̂
⨉

i∈{2,…,N−1}

(
a(i)T
k

− da(i)T
k

)
. (4)

We can expand the error as

h̃
(1,N)

k − h(1,N)

k
=

∑
S⊂{2,…,N−1},S≠∅

̂
⨉

i∈{2,…,N−1}

v(i)T
k

, where v(i)
k
=

{
−da(i)

k
∶ i ∈ S,

a(i)
k

∶ i ∉ S.
(5)

Consequently, we can upper-bound the error due to terms with |S| = d by
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(
N − 2
d

)
𝜖d
‖‖‖̂
‖‖‖2

N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 = O(N𝜖)d
‖‖‖̂
‖‖‖2

N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 .

Therefore, the error bound when |S| = d scales as O(N𝜖)d, and the leading order error is O(N𝜖). ▪

Note that this error bound involves ̂ , which is small in norm due to being constructed from contraction
with 𝛿a(N)

k
. Thus, the error norm generally scales as O(𝜖2) relative to the norm of the original tensor  , since

O(N𝜖)
‖‖‖̂
‖‖‖2
∏N−1

j=2
‖‖‖a

(j)

k

‖‖‖2 = O(N𝜖2) ‖‖2∏N−1
j=2

‖‖‖a
(j)

k

‖‖‖2.
Corollary 1. For N = 3, using the bounds from the proof of Theorem 1, under the same assumptions, we obtain the absolute

error bound,

‖‖‖h̃
(1,3)
k − h(1,3)

k

‖‖‖2 ≤
‖‖‖T̂
‖‖‖2
‖‖‖a

(2)
k

‖‖‖2 𝜖,

where T̂ =  ×3 𝛿a
(3)T
k

. Further, since h(1,3)
k

= T̂a(2)
k
, the relative error is bounded by

‖‖‖h̃
(1,3)
k − h(1,3)

k

‖‖‖2
‖‖‖h

(1,3)
k

‖‖‖2
≤ 𝜅(T̂)𝜖.

From Theorem 1, we can conclude that the relative error in computing any column update h(i,j)

k
is O(𝜖) when

𝜖 ≪ 1 and the correct update is sufficiently large, for example, for i = 1 and j = N, ‖‖‖h
(1,N)

k

‖‖‖2 = Ω
(‖‖‖̂

‖‖‖2
∏N−1

i=2
‖‖‖a

(l)

k

‖‖‖2
)
.

When this is the case, we can also bound the error of the update to the columns of the right-hand sides 𝛿M(n)

formed in ALS, so long as the sum of the updates H(n,m) for m ≠ n is not too small in norm relative to each update
matrix.

We now perform analysis for the case where the second order corrections V(n,i,j) are included in PP.

Theorem 2. For k ∈ {1,… ,R}, if
‖‖‖da

(l)

k

‖‖‖2 ∕
‖‖‖a

(l)

k

‖‖‖2 ≤ 𝜖 < 1 for all l ∈ {1,… ,N}, the PP algorithm with second order

correction terms computes the update term H̃
(1,N)

with columnwise error,

‖‖‖h̃
(1,N)

k − h(1,N)

k

‖‖‖2 = O(N𝜖)
‖‖‖̂ − ̂

‖‖‖2
N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 + O
(
(N𝜖)2

) ‖‖‖̂
‖‖‖2

N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 ,

where ̂ =  ×N 𝛿a(N)T

k
, and  denotes the approximate CP decomposition of  ,

[[
A(1),… ,A(N)

]]
. H(1,N) is the update to

the matrixM(1) due to the change 𝛿A(N) performed by a regular ALS sweep, and ̂ =  ×N 𝛿a(N)T

k
. Analogous bounds hold

for H(m,n) for any m,n ∈ {1,… ,N}, m ≠ n.

Proof. The ALS approximated update is

h̃
(1,N)

k = ̂
⨉

i∈{2,…,N−1}

(
a(i)T
k

− da(i)T
k

)
+

∑
i∈{2,…,N−1}

̂ ×i da
(i)T

k

⨉
j∈{2,…,N−1},j≠i

a(j)T
k

. (6)

We can expand the error as

h̃
(1,N)

k − h(1,N)

k
=

∑
S⊂{2,…,N−1},|S|≥2

̂
⨉

i∈{2,…,N−1}

v(i)T
k

+
∑

i∈{2,…,N−1}

(
̂ − ̂

)
×i da

(i)T

k

⨉
j∈{2,…,N−1},j≠i

a(j)T
k

,

where v(i)
k
= −da(i)

k
if i ∈ S and v(i)

k
= a(i)

k
otherwise. By the same analysis as in Theorem 1, the error due to each term

with |S| = d, d ≥ 2 can be bounded as O(N𝜖)d
‖‖‖̂
‖‖‖2
∏N−1

j=2
‖‖‖a

(j)

k

‖‖‖2 .We can then upper-bound the error due to the second
term by
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O(N𝜖)
‖‖‖̂ − ̂

‖‖‖2
N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 , (7)

thus completing the proof. ▪

From Theorem 2, we can conclude that when the approximate CP decomposition is close to  , the term expressed in
Equation (7) will have small magnitude, making the absolute error second order accurate in terms of 𝜖.

In Appendix A.4, we also obtain relative error bounds on MTTKRPs (the right-hand sides in the linear least squares
subproblems). However, this error bound is relative to the condition number of  (defined in Appendix A.1), which is
infinite for sufficiently large tensors.

4.2 Tucker-ALS

For Tucker decomposition, the PP approximation satisfies better bounds than for CP decomposition, due to the orthogo-
nality of the factor matrices. We can not only obtain the similar bound as Theorem 1, but also obtain stronger results in
tensor spectral norm (defined in (8)) assuming that the residual of the Tucker decomposition is bounded (it suffices that
the decomposition achieves one digit of accuracy in residual), and stronger results in Frobenius norm assuming that the
ratio of rank to dimension is not too large.

The spectral norm of any tensor  ∈ Rs1×···sN is

‖‖ ‖‖2 = max
∀i∈{2,…,N},x(i)∈R

si

‖x(2)‖2=···=‖x(N)‖2=1
‖‖‖

⨉
i∈{2,…,N}

x(i)T
‖‖‖2, (8)

where  is contracted with x(i) along its ith mode. The spectral tensor norm corresponds to the magnitude of the largest
tensor singular value.42 Computing the spectral norm is NP-hard,43 but can usually be done in practice by specialized
variants of ALS.44 The spectral norm is invariant under reordering of modes of  . Lemma 1 shows submultiplicativity of
this norm for the multilinear multiplication.

Lemma 1. Given any tensor  ∈ Rs1×···×sN and matrixM ∈ RsN×R, if  =  ×N M
T then ‖‖2 ≤ ‖‖ ‖‖2 ‖M‖2.

Proof. There exist unit vectors x(2),… , x(N) such that

‖‖2 =
‖‖‖‖‖‖


⨉
i∈{2,…,N}

x(i)T
‖‖‖‖‖‖2

=

‖‖‖‖‖‖


⨉
i∈{2,…,N−1}

x(i)T ×N
(
Mx(N)

)T‖‖‖‖‖‖2
.

Let z = Mx(N), so ‖z‖2 ≤ ‖M‖2. If ‖z‖2 = 0, then ‖‖2 = 0, the inequality holds. Otherwise, since

‖‖‖‖‖‖


⨉
i∈{2,…,N−1}

x(i)T ×N z
T

‖‖‖‖‖‖2
≤

‖‖‖‖‖‖


⨉
i∈{2,…,N−1}

x(i)T ×N z
T

‖‖‖‖‖‖2
‖M‖2
‖z‖2 ≤ ‖‖ ‖‖2 ‖M‖2 ,

the inequality still holds. ▪

Using Lemma 1, we prove in Lemma 2 that after contracting a tensor with amatrix with orthonormal columns, whose
row length is higher or equal to the column length, the contracted tensor norm is the same as the original tensor norm.

Lemma 2. Given tensor  ∈ Rr1×···×rN , themode-n product for any n ∈ {1,… ,N}, with amatrix with orthonormal columns

M ∈ Rs×rn , rn ≤ s, satisfies ‖‖2 = ‖ ×n M‖2.

Proof. Based on the submultiplicative property of the tensor norm (Lemma 1),

‖‖2 = ‖‖ ×n (M
TM)‖‖2 = ‖‖ ×n M ×n M

T‖‖2 ≤ ‖ ×n M‖2 ‖‖MT‖‖2 = ‖ ×n M‖2 ,
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and simultaneously, ‖ ×n M‖2 ≤ ‖‖2 ‖M‖2 = ‖‖2 . ▪

Below we demonstrate that

• similar to Algorithm 5 and Theorem 1, whenwe view the ALS procedure for Tucker decomposition of equidimensional
tensors in terms of pairwise updates, we can bound the error of updates to any right-hand side  (m) due to changes in
any one of the other factor matrices 𝛿A(n). We define the update  (m,n) as

 (m,n) =  (m,n) ×n 𝛿A
(n)T , where 𝛿A(n) = A(n)

new −A(n).

The columnwise absolute error bound for MTTKRP holds for  (m,n) when the column-wise 2-norm relative perturba-
tions of the input matrices are bounded by O(𝜖) (Theorem 3),

• the relative error of  (m) form ∈ {1,… ,N} satisfies the bound of O
(
𝜖2
)
, so long as the residual of Tucker decomposi-

tion is small (Theorem 4),

• the relative error of (m) form ∈ {1,… ,N} is bounded in Frobenius norm byO
(
𝜖2
)
for a fixed problem size assuming

that HOSVD is performed to initialize Tucker-ALS (Theorem 5).

Theorem 3. For an order N tensor  with dimension sizes s, if
‖‖‖da

(n)

k

‖‖‖2 ∕
‖‖‖a

(n)

k

‖‖‖2 ≤ 𝜖 < 1 for all n ∈ {1,… ,N}, k ∈

{1,… ,R}, the PP algorithm computes update  (1,N) with error,

‖‖‖j̃
(1,N)

i2,…,iN
− j(1,N)

i2,…,iN

‖‖‖2 = O(N𝜖)
‖‖‖̂
‖‖‖2

N−1∏
j=2

‖‖‖a
(j)

k

‖‖‖2 ,

where ̂ =  ×N 𝛿a(N)T
iN

and j(1,N)

i2,…,iN
(x) =  (1,N)(x, i2,… , iN).

Proof. The proof is similar to that of Theorem 1. The ALS update and approximated update after a change 𝛿A(N)

are

j(1,N)

i2,…,iN
= ̂

N−1⨉
j=2

a(j)T
ij

and j̃
(1,N)

i2,…,iN
= ̂

N−1⨉
j=2

(
a(j)T
ij

− da(j)T
ij

)
.

The error bound proceeds by analogy to the proof of Theorem 1. ▪

Using Lemma 2, we prove in Theorem 4 that when the relative error of the matrices A(n) for n ∈ {1,… ,N} is small
and the residual of the Tucker decomposition is loosely bounded, the relative error bound for the  (n) is independent of
the tensor condition number defined in Section A.

Theorem 4. Given tensor  ∈ Rs1×···×sN , if
‖‖‖dA

(n)‖‖‖2 ≤ 𝜖 ≪ 1 for n ∈ {1,… ,N} and
‖‖‖ −

[[
;A(1),A(2),… ,A(N)

]]‖‖‖2 ≤
1

3
‖‖2, ̃ (n)

is constructed with error,

‖‖‖̃
(n)

−  (n)‖‖‖2
‖‖‖

(n)‖‖‖2
= O

(
𝜖2
)
.

Proof.

‖‖‖̃
(n)

−  (n)‖‖‖2
‖‖‖

(n)‖‖‖2
≤

(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p ×i dA

(i)T ×j dA
(j)T‖‖‖2

‖‖‖
(n)‖‖‖2

≤

(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p

‖‖‖2
‖‖‖dA

(i)‖‖‖2
‖‖‖dA

(j)‖‖‖2
‖‖‖

(n)‖‖‖2
.
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Let ̃ =
[[
;A(1),A(2),… ,A(N)

]]
, =  − ̃ . Define the tensors(i,j,n) by contraction ofwith all except three factor

matrices,

(i,j,n) = 
⨉

r∈{1,…,N}∖{i,j,n}

A(r)T .

For ‖‖‖ − ̃
‖‖‖2 = ‖‖2 ≤ 1

3
‖‖2 , we have 2

3
‖‖2 ≤ ‖‖‖̃

‖‖‖2 ≤
4

3
‖‖2 . Based on Lemma 2,

‖‖‖
(n)‖‖‖2 =

‖‖‖ ×n A
(n) +(i,j,n) ×i A

(i)T ×j A
(j)T‖‖‖2 ≥ ‖‖2 − ‖‖‖

(i,j,n)‖‖‖2
‖‖‖A

(i)T‖‖‖2
‖‖‖A

(j)T‖‖‖2 ≥ ‖‖2 − ‖‖2 ≥ 1
3
‖‖2 .

Additionally,

‖‖‖
(i,j,n)‖‖‖2 =

‖‖‖ ×i A
(i) ×j A

(j) ×n A
(n) +(i,j,n)‖‖‖2 ≤ ‖‖2 + ‖‖2 ≤ 5

3
‖‖2 .

Therefore,

‖‖‖̃
(n)

−  (n)‖‖‖2
‖‖‖

(n)‖‖‖2
≤

(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p

‖‖‖2
‖‖‖dA

(i)‖‖‖2
‖‖‖dA

(j)‖‖‖2
‖‖‖

(n)‖‖‖2
≤

(
N

2

) 5

3
‖‖2 𝜖2
1

3
‖‖2

= O
(
𝜖2
)
.

▪

We now derive a Frobenius norm error bound that is independent of residual norm and tensor condition number, and
is based the ratio of the tensor dimensions and the Tucker rank. We arrive at this result (Theorem 5) by obtaining a lower
bound on the residual achieved by the HOSVD (Lemmas 3 and 4).

Lemma 3. Given tensor  ∈ Rs1×···×sN and matrix A ∈ RR×sn , where R < max
{
sn,
∏N

i=1,i≠nsi

}
and A consists of R leading

left singular vectors of X(n). Let  =  ×n A, ‖‖F ≥ ‖‖F ≥

√
R

sn
‖‖F .

Proof. The singular values ofAX(n) are the firstR singular values ofX(n). Since the square of the Frobenius normof amatrix
is the sum of the squares of the singular values, ‖‖2F = ‖‖AX(n)

‖‖2F ≥ (R∕sn) ‖‖X(n)
‖‖2F = (R∕sn) ‖‖2F and ‖‖F ≤ ‖‖F . ▪

Lemma 4. For any equidimensional order N tensor  with size s,
‖‖‖

(n)‖‖‖F ≥

(
R

s

)N∕2 ‖‖F if Tucker-ALS starts from an

interlaced HOSVD.

Proof. In Tucker-ALS, ‖‖F is strictly increasing after each Tucker iteration, where  is  ’s HOSVD core tensor. Since
the interlaced SVD computes eachA(n) from the truncated SVD of the product of and the first n − 1 factor matrices, we
can apply Lemma 3 N times,

‖‖‖ ×1 A
(1)T · · · ×N−1 A

(N−1)T‖‖‖F ≥ ‖‖F ≥

√
R

s
‖‖‖ ×1 A

(1)T · · · ×N−1 A
(N−1)T‖‖‖F ,

⋮

‖‖F ≥ ‖‖F ≥ (R∕s)N∕2 ‖‖F .
▪

Theorem 5. Given any equidimensional order N tensor  with size s, if
‖‖‖dA

(n)‖‖‖F ≤ 𝜖 for n ∈ [1,N], ̃
(n)
is constructed

with error,

‖‖‖̃
(n)

−  (n)‖‖‖F
‖‖‖

(n)‖‖‖F
= O

(
𝜖2
(
s

R

)N∕2)
,

assuming that HOSVD is used to initialize Tucker-ALS and the residual associated with factor matrices A(1),… ,A(n) is no

higher than that attained by HOSVD.
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Proof.
‖‖‖̃

(n)
−  (n)‖‖‖F

‖‖‖
(n)‖‖‖F

≤

(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p ×i dA

(i)T ×j dA
(j)T‖‖‖F

‖‖‖
(n)‖‖‖F

.

From Lemma 4, we have

‖‖‖
(i,j,n)
p ×i dA

(i)T ×j dA
(j)T‖‖‖F

‖‖‖
(n)‖‖‖F

≤

‖‖F ‖‖‖dA
(i)‖‖‖F

‖‖‖dA
(j)‖‖‖F(

R

s

)N∕2

‖‖F
.

Consequently, we can bound the relative error by

‖‖‖̃
(n)

−  (n)‖‖‖F
‖‖‖

(n)‖‖‖F
≤

(
N

2

)
(s∕R)N∕2max

i,j

‖‖‖dA
(i)‖‖‖F

‖‖‖dA
(j)‖‖‖F = O

(
𝜖2
(
s

R

)N∕2)
.

▪

5 EXPERIMENTS

We evaluate the performance of the PP algorithms on both synthetic tensors and application datasets. The synthetic
experiments enable us to test tensors with known factors and tomeasure how effectively the algorithmworks acrossmany
problem instances.We also consider publicly available tensor datasets as well as tensors of interest for quantum chemistry
calculations and demonstrate the effectiveness of our algorithms on practical problems. We focus on the experiments on
CP decomposition, because for many cases in Tucker decomposition, HOOI converges in small number of iterations with
the initialization of HOSVD.

We use the metrics relative residual and fitness to evaluate the convergence of the decomposition. Let ̃ denote the
tensor reconstructed by the factor matrices and the core tensor, the relative residual and fitness are defined as follows,

r =
|| − ̃ ||F
|| ||F , f = 1 − r.

We compare the performance of our own implementations of regular ALS with dimension trees to the PP algorithm.
Both algorithms are implemented in Python with NumPy for sequential calculation and with Cyclops Tensor Framework
(v1.5.5),30 which is a distributed-memory library for matrix/tensor contractions that uses MPI for interprocessor commu-
nication and OpenMP for threading. We also make use of a wrapper Cyclops provides for ScaLAPACK31 routines to solve
symmetric positive definite linear systems of equations and compute the SVD.*

The experimental results are collected on the Stampede2 supercomputer located at the University of Texas at Austin.
We leverage the Knight’s Landing (KNL) nodes exclusively, each of which consists of 68 cores, 96 GB of DDR RAM, and
16 GB of MCDRAM. These nodes are connected via a 100 Gb/s fat-tree Omni-Path interconnect. For both NumPy and
Cyclops implementations, we use Intel compilers and the MKL library for threaded BLAS routines, including batched
BLAS routines, which are efficient for Khatri–Rao products arising in MTTKRP in CP decomposition, and employ the
HPTT library45 for high-performance tensor transposition. All storage and computation assumes the tensors are dense.

5.1 Sequential experimental results

We collect the sequential results on one KNL node on Stampede2, leveraging 64 threads for MKL and HPTT routines.
We compare the per-sweep time of theALS dimension tree to the PP initialization and approximated sweep in Figure 2.

Each initialization sweep constructs the PP operators and updates all the factor matrices, while an approximated sweep
computes approximate updates to all the factormatrices using the PP operators constructed in the last initialization sweep.
We also provide the reference per-sweep time of the ALS implementation from MATLAB Tensor Toolbox.46 As can be
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(a) CPD, = 3 , = (b) CPD, = 960 3∕ , = 50

(c) Tucker, = 3 , = 0 .05 (d) Tucker, = 1200 3∕ , = 5

F IGURE 2 Sequential ALS sweep time comparison for both CP and Tucker decompositions. Results are taken as the mean time across

5 sweeps. The line label of (b) is the same as (a), of (d) is the same as (c). In (a, c), we vary the dimension size and the decomposition rank,

and fix the input tensor order. In (b, d), we vary the input tensor order, and fix the input tensor size and the decomposition rank

seen, bothALS sweep times on top of NumPy andCyclops are comparable to the Tensor Toolbox. For both decompositions
and all the configurations, the time of an PP initialization sweep is 1.5–2.0× the time of a dimension tree basedALS sweep,
while the approximated steps can have up to 6.3× speed-up for an order three tensor and 33.0× speed-up for an order six
tensor for CP, and up to 10.6× speed-up for an order 6 tensor for Tucker. In addition, larger speed-up can be achieved with
the increase of dimension size s and the tensor order N, which is consistent with Table 1.

We use five different tensors to test the sequential performance of PP. Sequential performance results are collected
usingNumPy, asNumPyhas better sequential performance thanCyclops, as shown inFigure 2a,b. For all the experiments,
the PP tolerance is set as 0.1 for CP decomposition, and set as 0.3 for Tucker decomposition.

1. Tensors with random collinearity.20 We create tensors based on known randomly-generated factor matrices A(n). The
factor matrices A(n) ∈ Rs×R are randomly generated so that the columns have collinearity defined based on a scalar C
(selected randomly for the tensor from a given interval [a, b)), so that

⟨
a(n)
i
, a(n)

j

⟩

‖‖‖a
(n)
i

‖‖‖2
‖‖‖a

(n)
j

‖‖‖2
= C, ∀i, j ∈ {1,… ,R}, i ≠ j.

Higher collinearity corresponds to greater overlap between columns within each factor matrix, which makes the
convergence of CP-ALS slower.47

2. Tensorsmade by randommatrices.We create tensors based on known uniformly distributed randomly-generated factor
matrices A(n) ∈ [0, 1]s×R,

 =
[[
A(1),… ,A(N)

]]
.
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In the experiments, we set R to be the same as the decomposition rank.
3. Quantum chemistry tensor. We also test on the density fitting intermediate tensor arising in quantum chemistry, which

is the Cholesky factor of the two-electron integral tensor.8,9 For an order 4 two-electron integral tensor  , its Cholesky
factor is an order 3 tensor, with their relations shown as follows:

 (a, b, c, d) =

P∑
s=1

(a, b, s)(c, d, s),

where P is the third mode dimension size of. CP decomposition can be performed on to provide the compressed
form of the density fitting intermediate and can be used to speed up post Hartree–Fock calculations.48We generate the
density fitting tensor via the PySCF library,49 which represents the compressed restricted Hartree–Fock wave function
of an 8 water molecule chain system with a STO3G basis set. The generated tensor has size 904 × 56 × 56. We set the
CP rank to be 400.

4. COIL dataset. COIL-100 is an image-recognition data set that contains images of objects in different poses50 and has
been used previously as a tensor decomposition benchmark.20,51 There are 100 different object classes, each of which
is imaged from 72 different angles. Each image has 128 × 128 pixels in three color channels. Transferring the data
into tensor format, we have a 128 × 128 × 3 × 7200 tensor. We fix the CP decomposition rank to be 15 and the Tucker
decomposition rank to be 10 × 10 × 3 × 50.

5. Time-Lapse hyperspectral radiance images. We consider the 3D hyperspectral imaging dataset called “Souto wood
pile”.52 The dataset is usually used on the benchmark of nonnegative tensor decomposition.29,53 The hyperspectral data
consists of a tensor with dimensions 1024 × 1344 × 33 × 9. We fix the CP decomposition rank to be 50 and the Tucker
decomposition rank to be 100 × 100 × 3 × 3.

The order three tensors are tested to justify the relative error bound shown in Section 4.1. The performance of PP
on higher order CP decompositions is also considered. The input tensors are explicitly given for all cases we considered.
Note that for cases arising in scientific computing where the input tensors are given in the CP decomposition format, the
efficient CP-to-Tucker-to-CP decomposition technique based on reduced HOSVD (RHOSVD) introduced in Reference 54
can be used. We focus on the high rank CP decomposition, because for the cases with rank R < s, Tucker decomposition
or HOSVD can be used to effectively compress the input tensor from dimensions of size s toR, and then CP decomposition
can be performed.55,56

We test the synthetic tensors for CP decomposition. These tensors are all generated based on known factor matrices
whose column sizes are equal to the decomposition rank, so these tensors have exact decompositions. For Tensor 1, we
test on both order three tensors with both dimension sizes s and decomposition rank R equal to 400 and order four tensors
with s = R = 120, and test the performance of PP on tensors with different collinearity for the exact input factor matrices.
For Tensor 2, we test on order three tensors with s = R, and test the performance of PP with different dimension size and
corresponding rank.

We display the speed-ups of PP compared to the dimension tree algorithm for synthetic tensors in Figure 3. Figure 3a,b
shows the speed-up distributionwith different exact factormatrices collinearity.We stop the algorithmwhen the stopping
tolerance (defined as the fitness difference between two neighboring sweeps) is reached. It can be seen that for both
order three and order four tensors, PP achieves up to 2.0× speed-up, and high speed-up is achieved with tighter stopping
tolerance. We find that the stricter stopping tolerance of 10−5 is valuable, as generally it permits about one more digit of
accuracy to be achieved in fitness compared to a tolerance of 10−4. In addition, experiments with a 10−4 stopping tolerance
sometimes stop at transient swamps57 with high decomposition residual, where ALS makes small progress for a period
but the residual norm decreases more rapidly afterwards. In addition, PP tends to have higher speed-ups with relatively
high collinearity. This is because tensors with high collinearity will converge in more sweeps, and more PP approximated
sweeps are activated as can be seen in Table 2. PP starts working early for almost all the experiments, as can be observed
in Figure 3c, where PP starts to have speed-up when the fitness is around 0.975 and the experiment time is less than 20
s, and in Table 2, where almost all the PP initialization steps start within 20 sweeps. In addition, the fitness increases
monotonically in Figure 3c, indicating that PP controls the approximation error well.

Figure 3c also illustrates the importance of the second-order correction term, V(n,i,j), in Equation (3). We set the PP
tolerance to be 0.02 for the PP experiment without corrections, which results in more conservative use of PP approximate
steps than with the 0.1 tolerance we use for PP with the second-order correction. As can be seen, without the correction,
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(a) = 3 , = = 400 (b) = 4 , = = 120

(c) = 3 , = = 400 , collinearity∈ [0.6, 0.8) (d) Random tensors, = 3 , =

F IGURE 3 (a, b) Box plot of the relation between PP speed-up and input collinearity ranges for tensors with specific collinearity. (c)

Fitness-time relation for the decomposition of one tensor with specific collinearity. (d) Box plot of the relation between PP speed-up and size

in each mode for order 3 random tensors. For all the box plots, each box is based on 10 experiments with different random seeds. Each box

shows the 25th–75th quartiles, the median is indicated by a horizontal line inside the box, and outliers are displayed as dots

TABLE 2 Detailed statistics of the results shown in Figure 3

Configuration Num-ALS Num-PP-init Num-PP-approx PP-init-sweep PP-init-fit Final-fit

N = 3, col ∈ [0.0, 0.2) 19.9 2.5 11.4 12.7 0.8203 0.9330

N = 3, col ∈ [0.2, 0.4) 49.1 18.4 35.3 7.7 0.7937 0.9991

N = 3, col ∈ [0.4, 0.6) 60.8 52.9 149.1 8.8 0.9345 0.9999

N = 3, col ∈ [0.6, 0.8) 54.8 50.1 252.1 5.7 0.9751 0.9962

N = 3, col ∈ [0.8, 1.0) 12.8 9.4 51.1 4.3 0.9940 0.9966

N = 4, col ∈ [0.0, 0.2) 20.1 3.3 2.4 13.7 0.6802 0.8235

N = 4, col ∈ [0.2, 0.4) 15.4 1.9 5.6 14.0 0.9525 0.9945

N = 4, col ∈ [0.4, 0.6) 34.0 7.5 13.5 22.6 0.9477 0.9935

N = 4, col ∈ [0.6, 0.8) 46.1 29.3 73.3 9.1 0.9365 0.9990

N = 4, col ∈ [0.8, 1.0) 47.5 26.4 62.4 6.2 0.9831 0.9963

Note: From left to right: The tensor configuration (col stands for collinearity), number of exact ALS sweeps within the PP algorithm, number of PP initialization

sweeps, number of PP approximated sweeps, index of sweep when PP is first initialized (approximation begins), the fitness when PP is first initialized, and the

final fitness of the experiment. All the data are the average statistics from 10 experiments.
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(a) Fitness-time relation (b) Fitness-sweep relation

F IGURE 4 Comparison of PP and the dimension tree algorithm for CP decomposition on the quantum chemistry tensor with different

variants. PP-sym/ALS-sym denotes the decomposition with symmetry constraint. PP-𝜆 = 0.7/ALS-𝜆 = 0.7 denotes the decomposition with

step size chosen to be 0.7. (b) Detailed fitness-sweep relation for part of the sweeps. In (b), squares on the dimension tree lines represent the

results per 20 sweeps (including all PP initialization, PP approximated, and ALS sweeps), and the black circles on pairwise perturbation lines

represent the time when pairwise perturbation reinitializes

TABLE 3 Detailed statistics of different experiments

Tensor Num-ALS Num-PP-init Num-PP-approx Time-ALS Time-PP-init Time-PP-approx

Chemistry (Figure 4) 44 40 1416 0.1116 0.1655 0.0703

Coil (Figure 5a) 31 22 147 2.357 3.660 0.0648

TimeLapse (Figure 5b) 23 16 161 0.4087 0.9236 0.0562

Chemistry (Figure 7) 88 54 1358 5.338 9.608 2.254

Note: From left to right: The tensor type, number of ALS sweeps until PP experiments are finished, number of PP initialization sweeps, number of PP

approximated sweeps, the average time of each ALS sweep, the average time of each PP initialization sweep, and average time of each PP approximated sweep.

PP suffers from more instability and no speed-up is achieved for this experiment. Therefore, for all other experiments,
the correction terms are included as part of PP.

Figure 3d shows the speed-up distribution with different dimension size for order three tensors made by random
factor matrices. It can be seen from the figure than PP achieves up to 3.0× speed-up, and PP has larger speed-ups on larger
tensors, consistent with the cost analysis.

We also test the performance of PP on CP decomposition of the quantum chemistry tensor, as is shown in Figure 4,
with detailed statistics shown in Table 3. In addition to the original ALS algorithm, we consider two other ALS variants
for this problem: the ALS algorithm with different update step size, and the ALS algorithm with a symmetry constraint.8

The algorithm with different update step size updates the factor matrices A(n) based on

A(n)
new = (1 − 𝜆)A(n) + 𝜆M(n)

𝚪
(n)†,

where 𝜆 is the update step size. A good choice of 𝜆 can help achieving better convergence. The symmetry constrained
algorithm considers the input tensor is symmetric in the two equidimensional modes and restricts the two factormatrices
for these two modes to be the same:  = [ [A,B,B] ].We update A the same as the original ALS step, and update B with
the update step size 𝜆 = 0.8 to avoid divergence.

As is shown in Figure 4a, for all the variants of ALS algorithms, PP performs better than the dimension tree algorithm,
achieving 1.25-1.52× speed-up. All the experiments are stopped after 1500 sweeps. It can also be observed in Figure 4b that
PP usually restarts once approximately every 40 sweeps, and for each sweep, the fitness of both ALS and PP are almost
the same, indicating that PP controls the approximation error well.

We test the performance of PP on real image datasetswithNumPy in Figure 5, with detailed statistics shown in Table 3.
We display the fitness and execution time for CP decomposition of the two image datasets in Figure 5a,b. We observe that
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(a) CP decomposition of Coil Dataset (b) CP decomposition of Time-Lapse Dataset

(c) Tucker decomposition of Coil Dataset (d) Tucker decomposition of Time-Lapse Dataset

F IGURE 5 Experimental results on image datasets between pairwise perturbation and ALS for CP and Tucker decompositions. Each

dot on the ALS/PP lines represents the results per 10 sweeps for CP and per sweep for Tucker decomposition (including all PP initialization, PP

approximated, and ALS sweeps), and the black circles on pairwise perturbation lines represent the time when pairwise perturbation restarts

PP achieves a lower execution time for them. The speed-up for the Coil Dataset is 2.72× and for the Time-Lapse Dataset
is 3.1×.

PP is also used to speedupHOOI procedure in Tucker decomposition. However, as noted in other work,58 we observed
that ALS sweeps do not significantly lower the residual beyond what is achieved by the first sweep (HOSVD). We display
the fitness and the execution time for Tucker decomposition of the two real datasets in Figure 5c,d. The speed-up for the
Coil Dataset is 1.05× and for the Time-Lapse Dataset is 1.13×. The reason for no obvious speed-up for the Coil Dataset is
that the tensor is not equidimensional (one dimension is 7200, while others are all smaller or equal to 128). Therefore,
when updating the factormatrix with a dimension of 7200, the number of operations necessary to construct the SVD input
for PP are similar to that for the dimension tree Tucker algorithm. For the Time-Lapse Dataset, the tensor dimensions are
more evenly distributed (two dimensions are greater than 1000), and we observe a greater speed-up.We conclude that the
proposed Tucker PP algorithm performs better when used on the tensors whose dimensions are approximately equal.

5.2 Parallel performance

We perform a parallel scaling analysis to compare the simulation time for one ALS sweep of the dimension tree algorithm
to the initialization and the approximated step of the PP algorithm with Cyclops in Figure 6. Parallelism is used to accel-
erate the tensor contractions via calling Cyclops kernels as well as the linear system solve via calling ScaLAPACK kernels.
TheCyclops library reduces each tensor contraction to amatrixmultiplication. For the PP initialization step, this approach
either keeps the input tensor in place, performs local multiplications, and afterwards performs a reduction on the output
tensorwhen the rankR is small, or performs a general 3D parallelmatrixmultiplicationwhenR is high. For the PP approx-
imated step, this approach parallelizes small-sized batched matrix-vector products and result in over-parallelization. We
direct readers to Reference 59 for a detailed communication cost analysis and a more communication efficient algorithm
for parallel PP.
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(a) Strong scaling of CP decomposition (b)Weak scaling of CP decomposition

F IGURE 6 Benchmark results for ALS sweeps with Cyclops, taken as the mean time across 5 sweeps

We use 8 processes per node and 8 threads per process for the benchmark experiments. The PP initialization step
includes the construction of the PP operators, and is therefore much slower than the approximated steps. For strong
scaling, we consider orderN = 6 tensors with dimension s = 50 and rank R = 6 CP and Tucker decompositions. For weak
scaling, on p processors, we consider order N = 6 tensors with dimension s = ⌊32p1∕6⌋ and rank R = ⌊4p1∕6⌋.

For weak scaling, Figure 6 shows that with the increase of number of nodes, the step time for all three steps increases.
The approximated step time of PP is always much faster (7.8 and 10.5 times faster on 1 node and 256 nodes, respectively,
compared to the dimension tree based ALS step time) than the two other steps, showing the good scalability of PP. For
strong scaling, the figure shows that the approximated step time of PP increases with the number of nodes, while the
two other step times decrease. The PP approximated step is much cheaper computationally and becomes dominated by
communication with increasing node counts, thereby slowing down in step time. For the two other steps, the matrix
calculation time will be decreased a lot with the increase of node number, thereby the step time is decreased. Overall, we
observe that the potential performance benefit of PP is greater for weak scaling.

5.3 Parallel experimental results

We test the parallel performance of PP with Cyclops on a quantum chemistry tensor. Similar to Section 5.1, we generate
the order three density fitting tensor representing the compressed restricted Hartree–Fock wave function of an 40 water
molecule chain system with a STO3G basis set. The generated tensor has size 4520 × 280 × 280. We set the CP rank to
be 1800. We show the parallel performance with Cyclops for the quantum chemistry tensor in Figure 7, with detailed
statistics shown in Table 3. We perform experiments on 4 KNL nodes, leveraging 64 processors on each node. For the
PP experiment, after first level contractions of the PP dimension tree, we redistribute the resulting tensor across all the
processes so that it is partitioned in the rank mode, which makes the PP approximated steps faster. It can be seen that
PP performs better than the dimension tree algorithm, achieving 1.75× speed-up to reach a fitness of 0.933. It can also be
observed in Figure 7b that for most of the sweeps, the fitness of both the dimension tree algorithm and PP are almost the
same, indicating that PP controls the approximation error well.

6 DISCUSSIONS

One disadvantage of the standard CP-ALS algorithm is that it could be slow or has no convergence when a solution
with high resolution is required, which is also called the “swamp” phenomenon.60 Consequently, researchers have been
looking at different alternatives to CP-ALS, including various regularization techniques61,62 and line search.47,63 These
alternatives usually have higher convergence rate compared to the standard CP-ALS. We can combine some of these
algorithms with PP to design algorithms with both faster convergence rate and cheaper per-sweep cost. For example, we
show in Appendix B that PP can be combined with the enhanced line search (ELS-ALS) algorithm,47 which is an effective
line search algorithm on top of the standard ALS for CP decomposition, to accelerate the scheme.
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(a) Fitness-time relation (b) Fitness-sweep relation

F IGURE 7 Comparison of PP and the dimension tree algorithm for CP decomposition on the quantum chemistry tensor with Cyclops.

(b) Detailed fitness-sweep relation for part of the sweeps. In (b), squares on the dimension tree lines represent the results per 20 sweeps

(including all PP initialization, PP approximated, and ALS sweeps), and the black circles on pairwise perturbation lines represent the time

when pairwise perturbation reinitializes

7 CONCLUSION

We have provided the PP algorithm for both CP and Tucker decompositions for dense tensors. The advantage of this
algorithm is that it uses perturbative corrections rather than recomputing the tensor contractions to set up the quadratic
optimization subproblems. Our error analysis demonstrates that it is accurate when the factor matrices change little.
Specifically, our implementation of PP shows speed-ups for CP-ALS of up to 3.1× across all synthetic and application data
with respect to the best known method for exact CP-ALS with the NumPy-based sequential implementation.

We leave analysis and benchmarking of PP with sparse tensors for future work. Since contraction between the input
tensor and the first factor matrix requires fewer operations, there is less likely to be a benefit in using PP. Additionally,
it is likely of interest to investigate more efficient adaptations of PP for non-equidimensional tensors and to experiment
with alternative schemes for switching between regular ALS and PP.
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APPENDIX A. ERROR BOUNDS BASED ON A TENSOR CONDITION NUMBER

We provide relative error bounds for the pairwise perturbation (PP) algorithm for both CP-ALS and Tucker-ALS for ten-
sors that are “well-conditioned,” in a sense that is defined in this appendix. However, results related to the Hurwitz
problem regardingmultiplicative relations of quadratic forms,64 imply that equidimensional order three tensors can have
a bounded condition number only if their dimension is s ∈ {1, 2, 4, 8}. We provide families of tensors with unit condition
number with such dimensions. The results shed further light on the stability of MTTKRP as well as ALS, and yield non-
trivial bounds for small tensors. For factorization of large tensors, the bounds proven in this section are not meaningful,
since their condition number is necessarily infinite for at least one ordering of modes.

A.1 Tensor condition number

Weconsider a notion of tensor condition number that corresponds to a global bound on the conditioning of themultilinear
vector-valued function, g ∶ ⊗N

i=2
Rsi → Rs1 associated with the product of the tensor with vectors along all except the first

mode,

g
(
x(2),… , x(N)

)
= 

⨉
i∈{2,…,N}

x(i)T ,

where  is contracted with x(i) along its ith mode. The norm and condition number are given by extrema of the norm
amplification of g , which are described by the amplification function f ∶ ⊗N

i=2
Rsi → R,

f
(
x(2),… , x(N)

)
=
‖‖g (x(2),… , x(N))‖‖2
‖‖x(2)‖‖2 · · · ‖‖x(N)‖‖2

.

The spectral norm of the tensor corresponds to its supremum,

‖‖ ‖‖2 = sup{f }.

The tensor condition number can be defined as

𝜅( ) = sup{f }∕ inf{f },

which enables quantification of the worst-case relative amplification of error with respect to input for the product of a
tensor with vectors along all except the first mode. In particular, 𝜅( ) provides an upper bound on the relative norm of
the perturbation of g with respect to the relative norm of any perturbation to any input vector.

For a matrix M ∈ Rs1×s2 , if s1 > s2 the above notion of condition number gives 𝜅(M) = 𝜎max(M)∕𝜎min(M) where
𝜎min(M) is the smallest singular value ofM in the reduced SVD, while if s1 < s2, then 𝜅(M) = ∞. When tensor dimensions
are unequal, the condition number is infinite if the first dimension is not the largest, so for some i, si > s1. Aside from this
condition, the ordering of modes of  does not affect the condition number, since for anym > 1, the supremum/infimum
of f over the domain of unit vectors are for some choice of x(2),… , x(m−1), x(m+1),… , x(N) the maximum/minimum
singular values of

K = 
⨉

i∈{2,…,m−1,m+1,…,N}

x(i)T .

A.2 Well-conditioned tensors

We provide two examples of order three tensors that have unit condition number. Other perfectly conditioned tensors
can be obtained by multiplying the above tensors by an orthogonal matrix along any mode (we prove below that such
transformations preserve condition number). The first example has si = 2, and yields a Givens rotation when contracted
with a vector along the last mode. It is composed of two slices:

[
1

1

]
and

[
1

−1

]
.
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The second example has si = 4 and is composed of four slices:

⎡
⎢⎢⎢⎢⎢⎣

1

1

1

−1

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

1

−1

1

1

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

1

1

−1

1

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

−1

1

1

1

⎤
⎥⎥⎥⎥⎥⎦

.

Finally, for si = 8, we provide an example by givingmatricesM andN, so that the tensor has nonzeros  (i, j,M(i, j)) =

N(i, j) for each entry inM,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

−1 1 1 −1 1 −1 −1 1

−1 −1 1 1 1 1 −1 −1

−1 1 −1 1 1 −1 1 −1

−1 −1 −1 −1 1 1 1 1

−1 1 −1 1 −1 1 −1 1

−1 1 1 −1 −1 1 1 −1

−1 −1 1 1 −1 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fact that the latter two tensors have unit condition number can be verified by symbolic algebraic manipulation or
numerical tests.

These tensors provide solutions to special cases of the Hurwitz problem,64 which seeks bilinear forms z1,… , zn in
variables x1,… , xl and y1,… , ym such that

(
x21 + · · · + x2

l

) (
y21 + · · · + y2m

)
= z21 + · · · + z2n.

Consequently, if for  and any vectors x, y,

‖‖ ×2 xT ×3 yT‖‖2
‖x‖2 ‖y‖2 = 1 ⇒ ‖‖ ×2 x

T ×3 y
T‖‖22 = ‖x‖22‖y‖22,

so we can define bilinear forms,

zi =
∑
j

∑
k

 (i, j, k)xjyk,

that provide a solution to the Hurwitz problem. Such equidimensional tensors with unit condition number exist for
dimension s ∈ {1, 2, 4, 8},65 corresponding to the Hurwitz problem with l = m = n = s. However, solutions to the Hur-
witz problem with l = m = n cannot exist for any other dimension. Furthermore, tight bounds exist on the dimension s3
for a tensor of dimensions s × s × s3 to have bounded condition number (inf{f } > 0). This problem is equivalent to find-
ing s3 matrices of dimension s × s, such that any nonzero linear combination thereof is invertible. Factorizing s = 24a+bc,
where b ∈ {0, 1, 2, 3} and c is odd, s3 ≤ 8a + 2b.66,67

A.3 Properties of the tensor condition number

In our analysis, we make use of the following submultiplicativity property of the tensor condition number with respect
to multilinear multiplication (the property also generalizes to pairs of arbitrary order tensors contracted over one mode).

Lemma 5. For any  ∈ Rs1×···×sN and matrixM, if  =  ×N M
T then 𝜅() ≤ 𝜅( )𝜅(M).

Proof. Assume 𝜅() > 𝜅( )𝜅(M), then there exist unit vectors x(2),… , x(N) and y(2),… , y(N) such that
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𝜅( )𝜅(M) < 𝜅() =

‖‖‖
⨉

i∈{2,…,N} x
(i)T‖‖‖2

‖‖‖
⨉

i∈{2,…,N} y
(i)T‖‖‖2

=

‖‖‖
⨉

i∈{2,…,N−1} x
(i)T ×N

(
Mx(N)

)T‖‖‖2
‖‖‖

⨉
i∈{2,…,N−1} y

(i)T ×N
(
My(N)

)T‖‖‖2
.

Let u = Mx(N) and v = My(N), so ‖u‖2 ∕ ‖v‖2 ≤ 𝜅(M), yielding a contradiction,

𝜅() ≤

‖‖‖
⨉

i∈{2,…,N−1} x
(i)T ×N (u∕ ‖u‖2)T‖‖‖2

‖‖‖
⨉

i∈{2,…,N−1} y
(i)T ×N (v∕ ‖v‖2)T‖‖‖2

𝜅(M) ≤ 𝜅( )𝜅(M).

▪

Applying Lemma 5 with a vector, that is, when M ∈ RsN×1 and so has condition number 𝜅(M) = 1, implies
𝜅
(
 ×N M

T
)
≤ 𝜅( ). By an analogous argument to the proof of Lemma 5, we can also conclude that the norm and

infimum of such a product of  with unit vectors are bounded by those of  , giving the following corollary.

Corollary 2. For any  ∈ Rs1×···×sN , vector u ∈ Rsn , and any n ∈ {1,… ,N} such that ∃m ∈ {1,… ,N} with sm ≥ sn and

m ≠ n, if  =  ×n uT , then ‖‖2 ≤ ‖u‖2 ‖‖ ‖‖2, inf{f} ≥ ‖u‖2 inf{f }, and 𝜅() ≤ 𝜅( ).

For an orthogonal matrixM, Lemma 5 can be applied in both directions, namely for  =  ×N M
T and  =  ×N M,

so we observe that 𝜅() = 𝜅( ). Using this fact, we demonstrate in the following theorem that any tensor  can be
transformed by orthogonal matrices along each mode, so that one of its fibers has norm ‖‖ ‖‖2 ∕𝜅( ).

Theorem 6. For any  ∈ Rs1×···×sN , there exist orthogonal matrices Q(2) …Q(N), with Q(i) ∈ Rsi×si , such that  =  ×2
Q(2) · · · ×N Q

(N) satisfies 𝜅() = 𝜅( ), ‖‖2 = ‖‖ ‖‖2, and the first fiber of  , that is, the vector v with v(i) = (i, 0,… , 0),
satisfies ‖v‖2 = ‖‖ ‖‖2 ∕𝜅( ).

Proof. Given a tensor  with infinite condition number, there must exist N − 1 unit vectors x(2),… , x(N), such that‖‖‖
⨉

i∈{2,…,N} x
(i)T‖‖‖2 = ‖‖ ‖‖2 ∕𝜅( ). We define N − 1 orthogonal matrices Q(2),… ,Q(N) such that Q(i)Tx(i) = ei. We can

then contract  with these matrices along the lastN − 1 modes, resulting in  , with the same condition number as  (by
Lemma 5) and the same norm (by a similar argument). Then, we have that the first fiber of  is

v = 
⨉

i∈{2,…,N}

eTi = 
⨉

i∈{2,…,N}

x(i)T ,

and consequently ‖v‖2 = ‖‖ ‖‖2 ∕𝜅( ). ▪

By Theorem 6, the condition number of a tensor is infinity if and only if it can be transformed by products with
orthogonal matrices along the lastN − 1 modes into a tensor with a zero fiber. Further, any tensor  may be perturbed to
have infinite condition number by adding to it some 𝛿 with relative norm ‖‖𝛿 ‖‖2 ∕ ‖‖ ‖‖2 = 1∕𝜅( ).

A.4 PP-CP-ALS error bound using tensor condition number

For CP decomposition, we obtain condition-number-dependent column-wise error bounds onM(n) (the right-hand sides
in the linear least squares subproblems), based on the magnitude of the relative perturbation to A(n) since the formation
of the PP operators.

Theorem 7. If
‖‖‖da

(n)

k

‖‖‖2‖‖‖a
(n)

k

‖‖‖2
≤ 𝜖 ≪ 1 for n ∈ {1,… ,N}, k ∈ {1,… ,R} and sm ≤ sn for any m ∈ {1,… ,N}, the PP algorithm

without second order corrections computes M̃
(n)
with column-wise error,

‖‖‖m̃
(n)

k
−m(n)

k

‖‖‖2
‖‖‖m

(n)

k

‖‖‖2
= O

(
𝜖2𝜅( )

)
,

whereM(n) is the matrix given by a regular ALS sweep.
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Proof. We bound the error due to second order perturbations in dA(1),… , dA(n), by similar analysis, higher-order per-
turbations would lead to errors smaller by a factor of O(poly(N)𝜖) and are consequently negligible if 𝜖 ≪ 1. Consider the
order four tensors (i,j,n) (Equation 1) based on the current factor matrices A(1),… ,A(N) and the PP operators (i,j,n)

p

based on past factor matrices A(1)
p ,… ,A(N)

p . The contribution of second order terms to the error is

m̃(n)

k
(x) −m(n)

k
(x) ≈

∑
i,j∈{1,…,n−1,n+1,…,N}

i≠j

s∑
y=1

s∑
z=1


(i,j,n)
p (x, y, z, k)da(i)

k
(y)da(j)

k
(z).

This absolute error has magnitude,

‖‖‖m̃
(n)

k
−m(n)

k

‖‖‖2 ≤
(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p (∶, ∶, ∶, k)

‖‖‖2
‖‖‖da

(i)

k

‖‖‖2
‖‖‖da

(j)

k

‖‖‖2 .

Using the fact that for any i, j we can expressm(n)

k
as

m(n)

k
(x) =

s∑
y=1

s∑
z=1

(i,j,n)(x, y, z, k)a(i)
k
(y)a(j)

k
(z),

we can lower bound the magnitude of the answer with respect to any(i,j,n),

‖‖‖m
(n)

k

‖‖‖2 ≥ inf
{‖‖‖f(i,j,n)(∶,∶,∶,k)

‖‖‖2
}‖‖‖a

(i)

k

‖‖‖2
‖‖‖a

(j)

k

‖‖‖2 .

Combining the upper bound on the absolute error with the lower bound on norm,

‖‖‖m̃
(n)

k
−m(n)

k

‖‖‖2
‖‖‖m

(n)

k

‖‖‖2
≤

(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p (∶, ∶, ∶, k)

‖‖‖2
‖‖‖da

(i)

k

‖‖‖2
‖‖‖da

(j)

k

‖‖‖2
inf

{‖‖‖f(i,j,n)(∶,∶,∶,k)
‖‖‖2
}‖‖‖a

(i)

k

‖‖‖2
‖‖‖a

(j)

k

‖‖‖2
.

Lemma 5 implies that for any i, j, k,

‖‖‖
(i,j,n)
p (∶, ∶, ∶, k)

‖‖‖2 ≤ ‖‖2
∏

l∈{1,…,N}∖{i,j,n}

‖‖‖A
(l)
p (∶, k)

‖‖‖2

and that

inf
{‖‖‖f(i,j,n)(∶,∶,∶,k)

‖‖‖2
}
≥ inf

{‖‖f‖‖2
} ∏
l∈{1,…,N}∖{i,j,n}

‖‖‖A
(l)(∶, k)

‖‖‖2 .

Since, ‖‖‖A
(l)
p (∶, k)

‖‖‖2 ≤ (1 + 𝜖)
‖‖‖A

(l)(∶, k)
‖‖‖2, we obtain the bound,

‖‖‖m̃
(n)

k
−m(n)

k

‖‖‖2
‖‖‖m

(n)

k

‖‖‖2
≤

(
N

2

)
𝜅( )(1 + 𝜖)N−3𝜖2 ≈

(
N

2

)
𝜅( )𝜖2.

▪

This error bound is relative to the condition number of , which means the bound is sensitive to the input tensor and
that the error may be unbounded if  has an exact CP decomposition of rank at most mini si.

A.5 PP-Tucker-ALS error bound using tensor condition number

For Tucker decomposition, we again obtain bounds based on the perturbation to A(n), this time for  (n) (the tensors on
whose matricizations a truncated SVD is performed). Using Lemma 5, we prove in Theorem 8 that when the tensor has
same length in each mode and the relative error of the matrices A(n) for n ∈ {1,… ,N} is small, the relative error for the

̃
(n)
is also small.
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Algorithm 6. ELS-ALS: Enhanced line search for CP decomposition

1: Input: Tensor  ∈ Rs1×···sN

2: Initialize
[[
A(1),… ,A(N)

]]
as uniformly distributed random matrices within [0, 1]

3: while not converge do
4: Update A(n)

new based on Line 7 in Algorithm 1 for n ∈ {1,… ,N}

5: Get the ELS step size 𝛼ELS based on Equation (B1)

6: A(n)
← A(n) + 𝛼ELS

(
A(n)
new −A(n)

)
for n ∈ {1,… ,N}

7: end whilereturn
[[
A(1),… ,A(N)

]]

Theorem 8. Given an order N equidimensional tensor  with size s, if
‖‖‖dA

(n)‖‖‖2 ≤ 𝜖 ≪ 1 for n ∈ {1,… ,N}, the PP

algorithm computes ̃
(n)
with error,

‖‖‖̃
(n)

−  (n)‖‖‖2
‖‖‖

(n)‖‖‖2
= O

(
𝜖2𝜅( )

)
.

Proof. As in Theorem 7, we bound the error due to second-order terms,

‖‖‖̃
(n)

−  (n)‖‖‖2
‖‖‖

(n)‖‖‖2
=
(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p ×i dA

(i)T ×j dA
(j)T‖‖‖2

‖‖‖
(i,j,n) ×i A

(i)T ×j A
(j)T‖‖‖2

.

From Lemma 5, we have

‖‖‖
(i,j,n)
p ×i dA

(i)T ×j dA
(j)T‖‖‖2

‖‖‖
(i,j,n) ×i A

(i)T ×j A
(j)T‖‖‖2

≤

‖‖‖
(i,j,n)
p

‖‖‖2
‖‖‖dA

(i)‖‖‖2
‖‖‖dA

(j)‖‖‖2
inf

{‖‖‖f (i,j,n)
‖‖‖2
}‖‖‖A

(i)‖‖‖2
‖‖‖A

(j)‖‖‖2
.

Since A(i) and A(j) are both matrices with orthonormal columns,

‖‖‖̃
(n)

−  (n)‖‖‖2
‖‖‖

(n)‖‖‖2
≤

(
N

2

)
max
i,j

‖‖‖
(i,j,n)
p

‖‖‖2
‖‖‖dA

(i)‖‖‖2
‖‖‖dA

(j)‖‖‖2
inf

{‖‖‖f (i,j,n)
‖‖‖2
} = O

(
𝜖2𝜅( )

)
.

▪

APPENDIX B. COMBINING PAIRWISE PERTURBATION WITH ENHANCED LINE SEARCH

In this section, we compare the enhanced line search (ELS-ALS)47 algorithm with an algorithm that combines pairwise
perturbation with ELS (ELS-PP) for CP decomposition.

The ELS-ALS algorithm is presented in Algorithm 6. For an orderN input tensor , the step size 𝛼ELS is chosen based
on

𝛼ELS = argmin
𝛼

‖‖‖‖‖
X(1) −

[
A(1) + 𝛼

(
A(1)
new −A(1)

)] [ N

⊙
i=2
A(i) + 𝛼

(
A(i)
new −A(i)

)]T‖‖‖‖‖

2

F

, (B1)

which minimizes an order 2N polynomial. When N = 3, Equation (B1) can be simplified to

𝛼ELS = argmin
𝛼

‖‖‖‖X(1) −
[
A(1) + 𝛼

(
A(1)
new −A(1)

)]{[
A(2) + 𝛼

(
A(2)
new −A(2)

)]
⊙
[
A(3) + 𝛼

(
A(3)
new −A(3)

)]}T‖‖‖‖
2

F

.
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Algorithm 7. PP-CP-ALS: Pairwise perturbation procedure for CP-ALS

1: Input: tensor  ∈ Rs1×···×sN , PP tolerance 𝜖 < 1
2: Initialize

[[
A(1),… ,A(N)

]]
as uniformly distributed random matrices within [0, 1], initialize dA(n)

← A(n)

3: while not converge do
4: if ∀ i ∈ {1,… ,N}, ‖‖dA(i)‖‖F < 𝜖‖‖A(i)‖‖F then

5: A(n)
p ← A(n), dA(n)

← O for n ∈ {1,… ,N}

6: while not converge and ∀ i ∈ {1,… ,N}, ‖‖dA(i)‖‖F < 𝜖‖‖A(i)‖‖F do
7: Update A(n)

new based on Line 13 in Algorithm 3 for n ∈ {1,… ,N}

8: dA(n) = A(n)
new −A(n)

p for n ∈ {1,… ,N}

9: Get the ELS step size 𝛼 based on Equation (B2)
10: A(n)

← A(n)
p + 𝛼ELS

(
dA(n)

)
for n ∈ {1,… ,N}

11: end while

12: end if

13: Perform an ELS-ALS sweep as in Algorithm∼6, taking dA(n)
← 𝛼ELS

(
A(n)
new −A(n)

)
for each n ∈ {1,… ,N}

14: end whilereturn
[[
A(1),… ,A(N)

]]

(a) = 3 , = = 400 , collinearity∈ [0.6, 0.8) (b) = 3 , = = 400 , collinearity∈ [0.6, 0.8)

(c) = 3 , = = 400

F IGURE B1 (a) Fitness-sweep relation for the decomposition of one tensor with specific collinearity. (b) Fitness-time relation for the

decomposition of one tensor with specific collinearity. (c) Box plot showing the speed-up of ELS-PP compared to ELS-ALS. Each box shows

the 25th–75th quartiles, the median is indicated by a horizontal line inside the box, and outliers are displayed as dots
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We direct readers to the reference47 for an a detailed computational cost analysis of Equation (B1).
The ALS-PP algorithm is presented in Algorithm 7. When the algorithm is in the PP phase (satisfying the if condition

in Line 4), the step size is chosen based on

𝛼ELS = argmin
𝛼

‖‖‖‖‖
X(1) −

[
A(1)
p + 𝛼

(
A(1)
new −A(1)

p

)] [ N

⊙
i=2
A(i)
p + 𝛼

(
A(i)
new −A(i)

p

)]T‖‖‖‖‖

2

F

. (B2)

Note that the search directions are
(
A(i)
new −A(i)

p

)
for i ∈ {1,… ,N} and w.r.t.A(i)

p rather thanA(i), which is different from

Equation (B1). Forming the explicit polynomial expression in Equation (B2) can leverage pre-computed PP operators and
is cheaper.

We display the speed-ups of ELS-PP compared to ELS-ALS for synthetic tensors in Figure B1. Figure B1c shows the
speed-up distribution with different exact factor matrices collinearity. We stop the algorithmwhen the stopping tolerance
(defined as the fitness difference between two neighboring sweeps) is reached. It can be seen that ELS-PP achieves up to
1.8× speed-up, and high speed-up is achieved with tighter stopping tolerance.

Figure B1a shows that both ELS-PP and ELS-ALS have faster convergence rate compared to PP and ALS algorithms.
In addition, ELS-PP converges a bit faster than ELS-ALS. Figure B1b shows that ELS-PP takes less time than ELS-ALS to
reach the same final accuracy. Note that both ELS-PP and ELS-ALS take longer time compared to the standard ALS. This
is consistent with the findings in Reference 47, where forming the line search polynomial could take a relatively long time.
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