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Methane and fatty acid metabolism pathways are predictive of Low-

FODMAP diet efficacy for patients with irritable bowel syndrome 

Objective. Identification of microbiota-based biomarkers as predictors of low-

FODMAP diet response and design of a diet recommendation strategy for IBS 

patients. 

Design. We created a compendium of gut microbiome and disease severity data 

before and after a low-FODMAP diet treatment from published studies followed 

by unified data processing, statistical analysis and predictive modeling. We 

employed data-driven methods that solely rely on the compendium data, as well 

as hypothesis-driven methods that focus on methane and short chain fatty acid 

(SCFA) metabolism pathways that were implicated in the disease etiology. 

Results. The patient’s response to a low-FODMAP diet was predictable using 

their pre-diet fecal samples with F1 accuracy scores of 0.750 and 0.875 achieved 

through data-driven and hypothesis-driven predictors, respectively. The fecal 

microbiome of patients with high response had higher abundance of methane and 

SCFA metabolism pathways compared to patients with no response (p-values < 

6´10-3). The genera Ruminococcus 1, Ruminococcaceae UCG-002 and 

Anaerostipes can be used as predictive biomarkers of diet response. Furthermore, 

the low-FODMAP diet followers were identifiable given their microbiome data 

(F1-score of 0.656). 

Conclusion. Our integrated data analysis results argue that there are two types of 

patients, those with high colonic methane and SCFA production, who will 

respond well on a low-FODMAP diet, and all others, who would benefit a dietary 

supplementation containing butyrate and propionate, as well as probiotics with 

SCFA-producing bacteria, such as lactobacillus. This work demonstrates how 

data integration can lead to novel discoveries and paves the way towards 

personalized diet recommendations for IBS. 
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Introduction 

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that is prevalent in 



 

 

approximately 11% of adult population.1 It is associated with abdominal pain and 

changes in stool form and frequency of bowel movements.1,2 One of the emerging 

treatments for IBS is to reduce the amount of fermentable oligosaccharides, 

disaccharides, monosaccharides and polyols (FODMAPs) in the diet, also called the 

low-FODMAP diet, as recommended by the American College of Gastroenterology3 

and the Canadian Association of Gastroenterology.4 The low-FODMAP diet has been 

effective for 50%-80% of IBS patients,5 however the patients who will benefit from this 

diet cannot be accurately identified beforehand. Several studies have attempted to create 

predictors for the efficacy of this diet in IBS using pre-treatment samples,6–8 however 

there is no evidence to show the utility of such a predictor across multiple studies. 

Furthermore, there is no common theory to explain the reason why the low-FODMAP 

diet is only effective for some patients in terms of disease etiology that is supported by 

data form multiple studies. It is believed that a low-FODMAP diet works by reducing 

the amount of carbohydrates that are not digested by the small intestine hence reach the 

colon to be  used in gas producing microbial fermentation.9 

Here, we investigate whether the efficacy of low-FODMAP diets on IBS 

patients can be predicted by analysis of easy to obtain biomarkers. Towards this goal, 

we created a compendium of microbiota metagenomics, by integrating data from 6 

sources and fecal metagenomics samples from 152 unique IBS patients and 37 healthy 

adults. In addition, we investigated whether the amount of FODMAPs in an individual’s 

diet, can be predicted using their gut microbiome data, showcasing the potential utility 

of microbiome data for assessing dietary adherence. 



 

 

Materials and methods 

Data curation 

We searched PubMed for studies that have collected gut microbiome data before and 

after a period of low-FODMAP dietary treatment in humans. We found nine such 

studies and only six of them provided us with both the gut microbiome data as well as 

the corresponding metadata that is needed for this meta-analysis (Table 1). In all 

studies, the microbiome data came from fecal samples, characterized by 16S rRNA, or 

by the GA-map™ microbiome profiling.10 In GA-map™ microbiome profiling, each 

fecal sample is characterized by 54 numbers each representing the signal intensity of a 

DNA probe. The probes were designed for detection of bacterial taxonomies for 

distinguishing between IBS patients and healthy controls given fecal samples. The 16S 

rRNA and GA-map™ were analyzed independently. 

Metadata processing 

In all studies, the severity of IBS was quantified using IBS-SSS (IBS symptom severity 

scale) which is a number between zero and 500 representing the overall severity of IBS 

symptoms in a patient. We evaluated the patient’s response to the diet based on the 

improvement in their IBS-SSS score (DIBS-SSS = IBS-SSSbefore - IBS-SSSafter) after a 

period of following the low-FODMAP and labeled the patient’s response as “High” (i.e. 

DIBS-SSS ≥ 150), “Low” (i.e. 22 < DIBS-SSS < 150), or  “No” (i.e. DIBS-SSS ≤ 22). The high 

threshold of 150 is reasonable since the reported mean plus standard deviation of DIBS-

SSS for a placebo treatment can range from 124 to 162,11,12 and therefore a “High” 

response is unlikely to be associated with a placebo effect. The low threshold of 22 was 

chosen to create a balance between the “No” and “High” response groups. 



 

 

Preprocessing of 16S rRNA microbiome data 

We analyzed 16s rRNA data separately for each study before integration. We used 

DADA213 version 1.10.1 implemented in R version 3.5.2 following the package’s 

online tutorial (benjjneb.github.io/dada2/bigdata.html). First, primer and adapter 

sequences were removed from each read and quality control was performed by 

removing 16S rRNA reads that were chimeric, shorter than 260 bp, or had at least two 

expected errors. In addition, longer reads were truncated at 260 bp since read qualities 

decreased sharply afterward. For one dataset14, the reverse reads were truncated at 160 

bp instead due to the decrease of read qualities at lower base pairs compared to the 

forward reads. Next, we performed de novo sequence assembly to identify operational 

taxonomic units (OTUs). Then SILVA database15 version 32 was used to identify 

bacterial taxonomies associated with 16S rRNA assembled sequences. Taxa that were 

only observed in a single sample were filtered out. 

Functional profiling from 16S rRNA microbiome data 

We imported OTU read counts of the DADA2 analysis into qiime2, searched against 

Greengenes16 and filtered out OTUs that could not be matched at the 97% identity 

threshold as needed for PICRUSt.17 Samples with no remaining OTUs were removed if 

any, and predictive metagenome profiling and KEGG pathway enrichment analysis (for 

level L3) were performed using PICRUSt. Finally, we converted the read counts to 

relative abundances and transformed using centered log-ratio transform (CLR) to 

account for the compositionality of microbiome data.18 In the case of zero relative 

abundances of a given pathway, we used the minimum amongst CLR transformed 

values of non-zero read counts, subtracted by 10% of their standard deviations. Given 

that reported KEGG pathways from PICRUSt did not include specific pathway for 



 

 

SCFAs, we relied on fatty-acid pathway abundances instead. 

GA-map™ microbiome data processing 

We normalized the signal intensities of 54 probes from each study separately to have 

zero-mean and unit-variance for a given probe before integration. To estimate the 

relative enrichment of methane metabolism in gut microbiome, we used the AG0581	

probe	(designed	for	detection of genus Dorea). The genus Dorea has been shown 

previously to be negatively associated with breath methane levels (See19, Table 3). To 

estimate the enrichment of SCFA metabolism pathways in gut microbiome, we used 

two pairs of probes AG0686,  AG1099 (designed for genus Parabacteroides) and 

AG1225, AG1226 (designed for genus Alistipes) as their corresponding genus have 

been shown to be negatively associated with fecal SCFA levels (See20, Table S5). 

Differential analysis and statistical validation 

We used unpaired non-parametric Wilcoxon rank-sum test for identifying pathways and 

taxa that are differentially abundant between IBS patients with high (n=8), low (n=29), 

or no (n=9) response to low-FODMAP diet where degrees of freedom is equal to the 

number of samples used minus two (e.g. degrees of freedom for high versus no response 

was 8+9-2=15). The calculated p-values were one sided for hypothesis-driven statistical 

validations and two sided for data-driven differential analysis. We also calculate FDR-

corrected p-values (i.e. q-values) in data-driven differential analysis to account for 

multiple hypothesis testing given the number of KEGG pathways (n=237) and genus 

taxa used (n=217), with thresholds of 0.15 or lower. 



 

 

Diet response prediction 

We first integrated data from multiple studies and performed dimensionality 

reduction using sparse principal component analysis21,22 reducing the number of 

microbiome features (microbial taxa, enriched pathways or GA-map probes) to 30% of 

the number of profiles in the dataset. Then for a given pair of classification labels, we 

created random forest (RF) classifier and evaluated using leave-one-out cross-

validation. We also evaluated the classification performance by iterative removal of the 

feature that is identified as least important by the RF classifier until only one feature 

remained. In all cases the areas under the precision-recall (PR) and receiver operating 

characteristic (ROC) curves, as well as the F1 score (the harmonic mean of precision 

and recall) were calculated. 

Results 

Figure 1 illustrates our data analysis methodology. A consistent data processing 

pipeline was applied to the curated metagenomics data enabling downstream analysis 

(hypothesis-driven and data-driven). The hypothesis-driven analysis was informed from 

the illustrated literature-based hypotheses: (a) the methane gas can inhibit intestinal 

motility hence contributing to stool abnormality in the form of constipation or 

bloating,23 (b) methanogenesis requires hydrogen and carbon dioxide that can be 

generated by anaerobic fermentation of undigested carbohydrates in colon,24 and (c) 

short-chain fatty acids (SCFAs) such as formate can also induce methanogenesis 

independently or in tandem with hydrogen.9,25 Therefore, in hypothesis-driven analysis 

we only used methane and fatty acid metabolism pathway abundances as input while in 

data-driven analysis all pathways and taxa (at genus level) were used for differential 

abundance analysis and predictive modelling. 



 

 

Comparison of high/low response to Low-FODMAP diet reveals structural 

differences in the microbiota 

Pre-diet fecal metagenomes of IBS patients were integrated and processed from five 

studies along with disease severity scores (IBS-SSS) ranging from zero to 500 before 

and after following a low-FODMAP for a total of 152 patients (Figure 2A). For 

differential analysis, we focused on the patients with most extreme responses (high 

versus no response) that had 16S rRNA metagenomic profiles (n=17). Top 5 KEGG 

pathways were differentially abundant with q-values < 0.11 with fatty acid metabolism 

being the most differentially expressed. However, there was no differentially abundant 

genus taxa when a q-value significance threshold of 0.15 is used (Figure 2. B-C). Three 

genera (Ruminococcaceae UCG-002, Ruminococcus 1 and Anaerostipes) were 

identified amongst the top 5 to be positively associated with stool SCFA levels based on 

other studies.20,26 Therefore a 3-genus microbiome biomarker was designed by adding 

their CLR-transformed abundances providing higher values for patients with a high 

response versus low response (p-value = 1.0 ´10-10) or no response (p-value = 2.5 ´10-4) 

following the diet (Supplementary Figure S5.) Note that the microbiome profiles of 

patients with low response were never used in the discovery of top five genera reported 

in Figure 2. C. A data-driven predictor of high/no response was built given all KEGG 

pathway abundances providing an F1 score of 0.750, AUROC of 0.708 (baseline: 0.5) 

and AUPR of 0.629 (baseline: 0.471). 

We also created predictor for high versus low or no response for patients with 

16S rRNA metagenome profiles (Figure 3. A, B, D and D). Using pathway abundances 

as input provides an F1 score of 0.625, AUROC of 0.850 (baseline: 0.5) and AUPR of 

0.693 (baseline: 0.174) while with genus taxa abundances as input an F1 score of 0.533, 

AUROC of 0.873 (baseline: 0.5) and AUPR of 0.425 (baseline: 0.174) was achieved. 



 

 

For patients with GA-map data (Figure 3. C and F) an F1 score of 0.581, AUROC of 

0.625 (baseline: 0.5) and AUPR of 0.530 (baseline: 0.462) was achieved. 

 

IBS patients with methanogenic fecal microbiome respond better to Low-

FODMAP diets 

Low intestinal motility of IBS patients has been associated with intestinal production of 

methane23 due to methane producing microbes (methanogens) in the gut,20,27 which use 

undigested carbohydrates for their metabolism.9 Therefore, we hypothesized that 

response to low-FODMAP diet is associated with gut microbiome methane metabolism 

capability. To validate this hypothesis, we performed meta-analysis on 46 patients; 

integrated from three studies14,28,29 that rely on 16S rRNA data. In agreement with our 

hypothesis, the high response group of patients had a significantly higher enrichment in 

methane metabolism pathway of their pre-treatment microbiome samples compared to 

low response (p-value =1.3´10-2) and no response (p-value = 5.6´10-3) groups (Figure 

4A). We then used GA-map microbiome data from a separate study6 with 31 IBS 

patients, using only the probe associated with methane production. The analysis of GA-

map data also supports our hypothesis with high response patients having higher 

abundance in methane production associated taxa when compared to the no response 

patients (p-value = 7.4´10-3) (Supplementary Figure S1). 

The efficacy of Low-FODMAP diet can be accurately predicted by methane and 

short-chain fatty acid metabolic pathways 

 Short-chain fatty acids (SCFAs) are key products of microbial fermentation in human 

intestine and important for health of epithelial cells.30 Therefore, we also analyzed the 

enrichment of fatty-acid metabolism pathway in 16S rRNA fecal microbiome data of 



 

 

IBS patients. Our analysis shows higher enrichment in fatty-acid metabolism for high 

versus no response patients (p-value = 7.8´10-4) (Figure 4B). Next, we created a 

classifier to predict the patient’s response (high versus no response) based on methane 

and fatty acid metabolism in 16s rRNA data. Our random forest (RF) classifier achieved 

0.89 and 0.84 for area under the curve (AUC) of ROC and PR curves, respectively 

(Figure 4C-D). We also performed analysis for GA-map probe data using taxa probes 

that have been associated with SCFA levels in fecal samples, but did not find a 

significant difference between the “High-response” and “Low-response” IBS patients. 

Predicting diets from their effect on the microbiome 

Diet is considered to be an important factor for modulating intestinal microbiota,31 

however it is not clear whether a low-FODMAP diet leads into common changes in gut 

microbiome across different individuals. To investigate this, we used 188 16S rRNA 

fecal microbiome profiles from IBS patients and healthy individuals before (n=95) and 

after (n=93) low-FODMAP dietary intervention. Microbiome samples were 

characterized by their KEGG pathway and genus taxa abundances. We used random 

forest classifier to predict whether the microbiome sample is taken before, or after the 

low-FODMAP dietary intervention (Figure 5. A). When pathway abundances were 

used as input the classifier achieved F1 score of 0.656, AUROC of 0.687 (baseline: 0.5) 

and AUPR of 0.663 (baseline: 0.495) (Figure 5 B). Only three pathways were needed to 

achieve an F1 score of 0.66 (Figure 5 D). Using taxa abundances at genus level for 

classification provided F1 score of 0.602, AUROC of 0.608 (baseline: 0.5) and AUPR 

of 0.597 (baseline: 0.495) (Figure 5. C). 



 

 

Discussion 

While several studies have confirmed the efficacy of low-FODMAP diet for symptom 

management in IBS, between 55%-66% of IBS patients have a response that is similar to 

a placebo treatment (Supplementary Figure S4.). We hypothesized that the patient’s 

response level (high/low/no) to a low-FODMAP diet can be predicted using their fecal 

microbiome samples. Although this hypothesis had been validated to an extent by 

individual studies, there is no predictor that (a) works across multiple studies and (b) 

comes with a mechanistic explanation of the patient’s response based on their 

microbiomes. To this end we integrated data from five distinct studies and performed a 

meta-analysis showing that the patient’s response to low-FODMAP diet is predictable 

given their fecal microbiome. We also formed a literature-based hypothesis supported by 

the integrated data that a high response to low-FODMAP diet is associated with higher 

abundance of methane and SCFA metabolism pathways in gut microbiome. Our 

mechanistic explanation is that a low-FODMAP diet works by lowering the amount of 

colonic methane that is shown to slow down intestinal motility,23 a precursor to 

constipation and/or bloating. Therefore, patients with highest response have a colonic 

microbiome with substantial methane production capability due to (a) methane 

metabolism pathways, and (b) SCFA metabolism pathways that promote methanogenesis, 

both of which rely on microbial digestion of carbohydrates. Gut microbes can also use 

formate or hydrogen to produce acetate,32 an SCFA with anti-inflammatory properties,33 

which may inhibit their availability for methanogenesis and decrease bloating. The 

microbiome SCFA pathways can have positive or negative impact on microbial secretion 

and absorption of gases, which necessitates more in-depth investigation of their role in 

IBS dietary treatments (e.g. low-FODMAP diet and probiotics).  Additionally, we showed 

that gut microbiome data can be used to predict whether a patient is following a low-

FODMAP diet, suggesting that this diet modulates gut microbiome and leaves 



 

 

identifiable traces which can be used for assessing dietary compliance. This work 

showcases the utility of integrated meta-analysis using raw data from individual studies 

with a consistent methodology to arrive at new insights (see Supplementary Figure S6.). 

Although there were several differences amongst the low-FODMAP studies that can 

create risks for data analysis (see the “Differences amongst studies” tab under 

Supplementary Data.xlsx), we found no significant change in the amount of 

improvement of IBS-SSS score after following a low-FODMAP diet amongst the studies 

despite their differences (see Supplementary Figure S9.). In addition, when it comes to 

microbiome data processing and analysis, we minimized the impact of such differences 

by applying the same standard pipeline starting from the raw microbiome data of each 

study. We acknowledge that the other differences (e.g. stool sample handling and 

metagenomic sequencing) can also be problematic in revealing any signal, however once 

such pattern is discovered, these differences increase the robustness and reproducibility 

of the analysis, as it becomes less sensitive to the specific details of the techniques used. 

Prior studies show that lower abundance of microorganisms that produce 

butyrate (an important SCFA) is associated with irritable bowel syndrome,34 

Lactobacillus based probiotics promote production of SCFAs in the gut35 and improve 

disease symptoms in IBS.36 Consistent with our meta-analysis results, we suggest a 

biomarker-based diet recommendation system where a low-FODMAP diet is 

recommended to patients with high colonic methane and SCFA production, and a 

probiotic supplementation with SCFA producing microbes is recommended to patients 

with low colonic methane and SCFA production. Such a personalized recommendation 

system will be inline with dietary recommendations from the American College of 

Gastroenterology  and the Canadian Association of Gastroenterology for IBS which 

consider both dietary treatments as beneficial,3,4 while expected to decrease the array of 



 

 

treatments that patients need to try before finding the treatment that works for them. 

Clinical trials will be necessary to identify best biomarkers, probiotic species and 

dosages and evaluate the patient’s response compared to alternative treatments. A 

comprehensive array of tests including gas analysis of breath samples, shotgun 

metagenomics, qPCR with primers that can detect SCFA producing microbiomes and 

methanogenic microorganisms that are archaeal, and gas chromatography–mass 

spectrometry (GC/MS) for detecting SCFA levels from microbiome samples (fecal or 

through colonic biopsy), will be necessary to provide more accurate insight into the 

microbiome pathways discussed. Given the advent of low-cost breath testing and 

accessibility of primer-based qPCR testing of fecal samples, gut microbiome methane 

and SCFA metabolism levels can be readily assessed in the clinic in order to provide 

more effective dietary recommendations for IBS patients. Intestinal bacterial infections 

are commonly diagnosed through low-cost qPCR testing of stool samples for detection 

of known pathogens given target-specific primers.37 Intestinal malabsorption of 

carbohydrates is also diagnosed in the clinic using hydrogen and methane breath testing 

although with variable repeatability.38 Upon development of a qPCR kit for gut 

microbiome SCFA metabolism estimation (e.g. by detection of Ruminococcus 1, 

Ruminococcaceae UCG-002 and Anaerostipes genera levels), a personalized IBS diet 

can be employed in the clinic where SCFA supplementation (prebiotic or postbiotic) is 

recommended when SCFA microbiome metabolism is low, and a low-FODMAP diet is 

recommended when SCFA and methane metabolism of the gut microbiome are above a 

calibrated threshold. We believe that the recent advances in high resolution omics and 

computational methods across diet, microbiome, and health,39 as well as novel ways of 

food representation that rely on artificial intelligence,40,41 will give rise to more 

personalized dietary treatments potentially revolutionizing clinical nutrition. 



 

 

It is important to note that, the analyzed data here included microbiome profiles 

from IBS patients with diarrhea, constipation, or both symptoms, however, we did not 

perform a separate analysis based on the IBS type since multiple studies did not provide 

the IBS type information per patient. Further studies will be necessary to validate the 

hypothesized mode of action for this diet in reducing constipation and bloating 

symptoms of IBS, and to understand the possibly different modes of action in reducing 

diarrhea. 
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Tables 

Table 1. Studies with gut microbiome data involving low-FODMAP dietary treatment. 

Id Reference Microbiome Technology Access 

1 42 16s rRNA N/A 

2 43 16s rRNA N/A 

3 28 16s rRNA Granted 

4 14 16s rRNA Granted 

5 44 16s rRNA N/A 

6 6 GA-map™ Granted 

7 20 16s rRNA Granted 

8 29 16s rRNA Granted 

9 45 GA-map™ Granted 

N/A: Authors did not grant access to metadata and/or raw microbiome data. 

  



 

 

Figure captions 

Figure 1. Overview of low-FODMAP diet response prediction for irritable bowel 

syndrome (IBS): The response of IBS patients to a low-FODMAP diet and their pre-diet 

fecal metagenomes were integrated and analyzed from five independent studies. 

Consistent data processing pipeline was applied on raw metagenome data to infer the 

relative pathway and taxa (at genus level) abundances for individual gut microbiomes. 

In a data-driven analysis, differentially abundant taxa and pathways were identified for 

patients with high versus no response to the low-FODMAP die. Diet response predictors 

were built to identify whether an IBS patient will benefit from a low-FODMAP diet 

given their pre-diet fecal metagenome. Furthermore a hypothesis-driven analysis was 

performed given the hypothesized relationships between FODMAPs, methane 

metabolism, fatty acid metabolism and illustrated colon functions base on literature. 

Although similar to the data-driven analysis, only the pathway abundances relating to 

methane and fatty acid metabolism were used for statistical validation, model training 

and the final diet response predictor. 

Figure 2. Pre-diet microbial differential abundances for IBS patients with high versus no 

response to the low-FODMAP diet: (A) IBS patient records from five studies are sorted 

into three groups based on their response to the low-FODMAP diet (High/Low/No) 

given the amount of improvement in IBS symptom severity after following the diet. (B) 

Top 5 pre-diet gut microbiome KEGG pathways that are differentially abundant 

(following a clr-transformation of their relative abundances) amongst High versus No 

response patient groups (q-values < 0.11; Fatty acid metabolism p-value = 1.5´10-3; 

Nucleotide excision repair p-value = 3.7´10-3; Phenylalanine, tyrosine and tryptophan 

biosynthesis p-value = 3.7´10-3; RNA polymerase p-value = 3.7´10-3; Thiamine 

metabolism p-value = 3.7´10-3). (C) Similar to (B) for differentially abundant genus 



 

 

taxa (genus related q-values are not significant using a threshold of 0.15; 

Ruminococcaceae UCG-002 p-value = 3.1´10-3; Ruminococcus 1 p-value = 1.3´10-2; 

Victivallis p-value = 2.3´10-2; Anaerostipes p-value = 3.0´10-2; Turicibacter p-value = 

6.0´10-2). 

Figure 3. Prediction of response to low-FODMAP diet given pre-diet microbiome data: 

(A-C) ROC and PR curves for prediction of response to low-FODMAP diet using 

pathway abundances, genus taxa abundances and GA-map probe signals of pre-diet gut 

microbiome. The star relates to the threshold used for calculating the F1 scores. (D-F) 

The F1 scores relating to predictive models when the least important feature (pathway, 

taxa or GA-map probe) is incrementally removed until only a single feature remains in 

the predictive model. The stars highlight the best F1 score achieved and each 

corresponds to a pair of ROC and PR pair curves on the top (i.e. A&D, B&E and C&F 

correspond respectively). 

Figure 4. Prediction of response to low-FODMAP diet given pre-diet microbial 

abundances for methane and fatty acid metabolism pathways. (A&B) Methane and fatty 

acid metabolism pathway enrichment of pre-treatment gut microbiome for patients with 

High, Low or No response to low-FODMAP diet. (C&D) ROC and PR curves for 

predicting High vs. No response to low-FODMAP diet using methane and fatty acid 

metabolism pathway abundances (CLR-transformed) in gut microbiome. (E&F) ROC 

and PR curves for predicting High vs. Low or No response to low-FODMAP diet using 

methane and fatty acid metabolism pathway abundances (CLR-transformed) in gut 

microbiome. 

Figure 5. Prediction of diet (low-FODMAP vs. other) given microbiome data: (A) Fecal 

metagenomes were integrated from four studies along with the dietary regimen that was 



 

 

followed prior to sampling. Consistent data processing pipeline was applied on raw 

metagenome data to infer the relative pathway and taxa (at genus level) abundances for 

each sample. Diet predictors were built to identify the individual’s diet given their fecal 

metagenome. (B &C) ROC and PR curves for diet prediction using pathway and genus 

taxa abundances in gut microbiome. The star relates to the threshold used for 

calculating the F1 scores. (D-E) The F1 scores relating to predictive models when the 

least important feature (pathway or taxa) is incrementally removed until only a single 

feature remains in the predictive model. The stars highlight the best F1 score achieved 

and each corresponds to a pair of ROC and PR pair curves on the top (i.e. B&D and 

C&E correspond respectively). 


