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Abstract— Epigenetic cell memory (ECM), the inher-
itance of gene expression patterns without changes in
genetic sequence, is a critical property of multi-cellular
organisms. Chromatin state, as dictated by histone covalent
modifications, has recently appeared as a mediator of
ECM. In this paper, we conduct a stochastic analysis of
the histone modification circuit that controls chromatin
state to determine key biological parameters that affect
ECM. Specifically, we derive a one-dimensional Markov
chain model of the circuit and analytically evaluate both
the stationary probability distribution of chromatin state
and the mean time to switch between active and repressed
chromatin states. We then validate our analytical findings
using stochastic simulations of the original higher dimen-
sional circuit reaction model. Our analysis shows that as
the speed of basal decay of histone modifications decreases
compared to the speed of autocatalysis, the stationary
probability distribution becomes bimodal and increasingly
concentrated about the active and repressed chromatin
states. Accordingly, the switching time between active and
repressed chromatin states becomes larger. These results
indicate that time scale separation among key constituent
processes of the histone modification circuit controls ECM.

I. INTRODUCTION

Epigenetic cell memory (ECM), the inheritance of
gene expression patterns without changes in genetic
sequence, is the property according to which cells with
identical genomes can maintain distinct identities for
the life-time of a multi-cellular organism. This enables
co-existence of different cell states that do not sponta-
neously interconvert among each other despite the in-
fluence of noise. The ECM question has been addressed
mostly in the context of gene regulatory network (GRN)
models and by determining topologies and parameters
that allow multi-stability [1]–[6]. More recently, it was
noted that these models do not account for chromatin
state, as determined by covalent modifications to hi-
stones and DNA [7]. Yet, the state of chromatin has
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appeared as a key mediator of long-term memory of
gene states [8].

In this paper, we analyze the dynamics of a ubiq-
uitous circuit motif among histone modifications [9]
and determine how its kinetic parameters affect the
duration of memory of chromatin states. To this end,
we first show that our deterministic model is a singular
singularly perturbed system [10] and apply a proper
reduction method to obtain a one-dimensional reduced
model suitable for analytical investigation. Then, we
analytically evaluate the stationary distribution of the
corresponding one-dimensional Markov chain by apply-
ing detailed balance [11] and determine the parameter
conditions that give a bimodal distribution with peaks at
the active and repressed chromatin states. We then derive
an expression for the time to memory loss, defined as the
mean value of the earliest time the active state reaches
the repressed state and viceversa by first step analy-
sis [12]. We finally validate the analytical findings by
conducting a computational study of the original circuit
reaction model using Gillespie’s Stochastic Simulation
Algorithm (SSA) [13]. Research on the dynamics of
histone modifications conducted in the past decade has
considered bistability as a model property embodying
ECM [9], [14]–[19]. However, there has not been any
investigation on the key determinants of the temporal
duration of memory, which is the question addressed in
this paper.

This paper is organized as follows. In Section II,
we describe the molecular reactions constituting the
histone modification circuit. In Section III, we present
the deterministic model reduction approach to obtain the
one-dimensional reduced model. Then, in Section IV
we analytically investigate the properties of the resulting
one-dimensional Markov chain and in Section V we use
stochastic simulation of the original reaction model to
validate the analytical findings. Concluding remarks are
presented in Section VI.

II. HISTONE MODIFICATION CIRCUIT REACTION
MODEL

In this paper, we focus on the reaction model of
the histone modification circuit shown in Fig. 1(a).
It includes H3K9 methylation and H3K4 methylation/
acetylation and it is developed by exploiting the detailed
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Fig. 1: Histone modification circuit: reactions and diagram. (a) Reaction list of the original histone modification circuit.
A number, referred in the main text, is associated with each reaction. Specifically, reactions 0⃝ and 1⃝ describe de novo
establishment, 2⃝ and 3⃝ describe the autocatalytic process, 4⃝ and 5⃝ represent basal erasure and 6⃝ and 7⃝ represent recruited
erasure. The different colored boxes delimit the sets of reactions associated with the establishment (dark colors) and erasure
(light colors) of DA (green) and DR (red). Here, to model the establishment and erasure of the histone modifications we exploit
the one-step enzymatic reaction models [20]. (b) Diagram of the histone modification circuit, in which each arrow corresponds
to the reaction within the box of the same color in (a).

characterization of the molecular properties of these
modifications done in the past years [21]–[25]. This
model has the nucleosome with DNA wrapped around
it, D, as basic unit that can be modified either with
H3K4 methylation/acetylation, DA, or H3K9 methyla-
tion, DR. H3K4 methylation/acetylation are associated
with active chromatin state ( [8], Chapter 3 and [23]),
while H3K9 methylation is associated with repressed
chromatin state [26]. Now, let us give a concise summary
of the key molecular mechanisms characterizing the
histone modification circuit. H3K4 methylation/acety-
lation can be de novo established by the action of
writer enzymes (reactions 0 in Fig. 1(a)) and can be
maintained through an autocatalytic process in which
DA can recruit writers of the same modification [8]
(reaction 2 in Fig. 1(a)). With similar processes, H3K9
methylation can be de novo established (reactions 1
in Fig. 1(a)) and maintained (reaction 3 in Fig. 1(a)).
These modifications can both be passively removed
through dilution due to DNA replication or due to non-
specific de-methylation/ de-acetylation ( [8], Chapter 22)
(reactions 4 , 5 in Fig. 1(a)), and actively removed by
the action of eraser enzymes recruited by the opposite
modifications (reactions 6 , 7 in Fig. 1(a)). Then, each
histone modification creates a positive autoregulation
loop and inhibits the other one. The reactions describing
the histone modification circuit are listed in Fig. 1(a) and
the corresponding circuit is represented in Fig. 1(b).

We next derive the associated ordinary differential
equation (ODE) model. In particular, we assume that
Dtot, that is, the number of total modifiable units, is suf-
ficiently large such that the variables nDA , nDR and nD

can be considered real-valued. This allows us to write the
ODEs in terms of the fractions D̄A = nDA/Dtot, D̄R =
nDR/Dtot and D̄ = nD/Dtot. We further introduce the
normalized time τ = tkAMDtot, in which Dtot = Dtot/Ω
and Ω is the reaction volume; the normalized inputs
ūA = uA0 + uA with uA0 = kAW0/(k

A
MDtot) and

uA = kAW /(kAMDtot), ūR = uR0 + uR with uR0 =
kRW0/(k

A
MDtot) and uR = kRW /(kAMDtot), and the non-

dimensional parameter α = kRM/kAM . Furthermore, let
us also introduce

ε =
δ + k̄AE
kAMDtot

, ε′ =
kAE
kAM

, µ =
kRE
kAE

. (1)

and we let (δ + k̄RE)/(δ + k̄AE) = bµ with b = O(1).
This implies that µ quantifies the asymmetry between
the erasure rates of repressive and activating marks.
Furthermore, since (δ + k̄RE)/(k

A
MDtot) = bεµ and

kRE/k
A
M = µε′, it implies that ε is a parameter scaling

the ratio between the basal erasure rate of each histone
modification and the rate at which they are copied and
ε′ is a parameter scaling the ratio between the recruited
erasure rate of each modification and the rate at which
they are copied. Then, the ODEs describing the histone
modification circuit can be written as follows:

dD̄A

dτ
= (ūA + D̄A)D̄ − (ε+ ε′D̄R)D̄A

dD̄R

dτ
= (ūR + αD̄R)D̄ − µ(bε+ ε′D̄A)D̄R (2)

dD̄

dτ
=
(
µ
(
bε+ ε′D̄A

)
D̄R +

(
ε+ ε′D̄R

)
D̄A
)

− (ūR + αD̄R + ūA + D̄A)D̄

with initial conditions such that D̄ + D̄A + D̄R = 1.

III. MODEL REDUCTION

In this section, we reduce the system (2) to a one-
dimensional model by exploiting time scale separation
between reactions. Specifically, we let ε = cε′ with
c = O(1) and consider ε

′
as the small non-dimensional

parameter encapsulating the time scale separation be-
tween autocatalytic reactions (faster) and erasure reac-
tions (slower). This assumption is consistent with recent
experimental data that suggest that the natural erasure of
histone modifications is a slow process [27]. It further
allows us to obtain an ε-dependent one-dimensional
system whose properties as function of ε can be analyt-
ically determined. We then show computationally that



the analytically obtained trends with ε are mirrored by
the original system where this time scale separation may
not hold.

We first introduce the model reduction method con-
sidered [10], and then we apply it to the histone mod-
ification circuit model (2). In particular, we will show
that, with ε′ as small parameter, the system model in
equations (2) belongs to the class of singular singularly
perturbed problems, which we introduce in the next
section.

A. Model reduction approach

Given a general dynamical system dx
dt = f(x, t) with

x ∈ Rn, let us define a smooth surface S in Rn × R
as integral manifold of the system if any trajectory of
the system that has at least one point in common with
S lies entirely on S [28], [29]. Now, let us consider the
system:

ε′ẋ = f1(x, y2, t, ε
′)

ε′ẏ2 = f2(x, y2, t, ε
′)

(3)

with x ∈ Rm and y2 ∈ Rn and the matrix A(x, y2, t, ε
′)

given by

A(x, y2, t, ε
′) =

(
∂f1
∂x

∂f1
∂y2

∂f2
∂x

∂f2
∂y2

)
=

(
f1x f1y2

f2x f2y2

)
(4)

If A(x, y2, t, 0) is singular on some subspace of
Rm × Rn × R, system (3) is called a singular
singularly perturbed system [10]. Now, let us con-
sider the following conditions [10]:

• C1: f2(x, y2, t, 0) = 0 has a smooth isolated root,
that is y2 = ϕ(x, t) with x ∈ Rm, t ∈ R and
f2(x, ϕ(x, t), t, 0) = 0;

• C2: the matrix A(x, y2=ϕ(x, t), t, ε′=0) has a m-
dimensional kernel and m corresponding linearly
independent eigenvectors, and the matrix

B(x, ϕ(x, t), t, 0) =
∂f2(x, ϕ(x, t), t, 0)

∂y2
(5)

has n eigenvalues λi(x, t) with Reλi(x, t) ≤ −2α,
with α > 0;

• C3: in the domain X = {(x, y2, t, ε′)|x ∈ Rm,
||y2 − ϕ(x, t)|| ≤ ρ, t ∈ R, 0 ≤ ε′ ≤ ε′0}
the functions f1 and f2 and the matrix A are
continuously differentiable (k + 2) times (k ≥ 0)
for some positive ε′0 and ρ.

Furthermore, let us define the new variables y2 = y1 +
ϕ(x, t) and introduce them in (3), obtaining

ε′ẋ = C(x, t)y1 + F1(x, y1, t) + ε′X(x, y1, t, ε
′)

ε′ẏ1 = B(x, t)y1 + F2(x, y1, t) + ε′Y (x, y1, t, ε
′),

(6)

with

C(x, t) = f1y2(x, ϕ(x, t), t, 0),

B(x, t) = f2y2(x, ϕ(x, t), t, 0),

F1(x, y1, t) = f1(x, y1 + ϕ(x, t), t, 0)− C(x, t)y1,

F2(x, y2, t) = f2(x, y1 + ϕ(x, t), t, 0)−B(x, t)y1,

ε′X(x, y1, t, ε
′) = f1(x, y1 + ϕ(x, t), t, ε′) (7)
− f1(x, y1 + ϕ(x, t), t, 0),

ε′Y (x, y1, t, ε
′) = f2(x, y1 + ϕ(x, t), t, ε′)

− f2(x, y1 + ϕ(x, t), t, 0),

with Fi, i = 1, 2, satisfying ||Fi(x, y1, t)|| = O(||y1||2)
and ε

′−1Fi(x, ε
′y, t) continuous in X , with X defined in

condition C3 [10]. At this point we can apply Theorem
7.1 from [10], which claims that if conditions C1 -
C3 are verified, then there exists an ε′1 (0 < ε′1 <
ε′0) such that, for any ε′ ∈ (0, ε′1), system (6) has a
slow integral manifold y1 = ε′h(x, t, ε′) that is unique
and exponentially attractive and the motion along this
manifold is described by the equation:

˙̄x = X1(x̄, t, ε
′) (8)

with X1(x̄, t, ε
′) = C(x̄, t)h(x̄, t, ε′)+X(x̄, ε′h, t, ε′)+

ε
′−1F1(x̄, ε

′h, t) and the function h(x, t, ε′) is contin-
uously differentiable k times with respect to x and t
[10], [30]. Given that for a sufficiently small ε′ the slow
integral manifold is exponentially attractive, then, for
any solution x(t), y1(t) of (6) with initial conditions
x(t0) = x0, y1(t0) = y10 such that |y10−ε′h(x0, t0, ε

′)|
is sufficiently small, we have a solution of (8) such that

x(t) = x̄(t) + ζ1(t), y1(t) = ε′h(x̄(t), t, ε′) + ζ2(t),

with ζi(t) = O(e−(α/ε′)(t−t0)), i = 1, 2, and t ≥ t0
( [10], [31], [32] Chapter 6). This implies that we
can determine the behavior of the trajectories of the
original system near the integral manifold by analyzing
the trajectories of the reduced system (8).

As explained in [10], [29], we can determine
h(x, t, ε′) by exploiting the change of variable y = y1/ε

′

that allows us to re-write (6) in the standard singular
perturbation form:

ẋ = X̃(x, y, t, ε′), x ∈ Rm, t ∈ R,
ε′ẏ = Ỹ (x, y, t, ε′), y ∈ Rn,

(9)

with X̃(x, y, t, ε′) = C(x, t)y + ε
′−1F1(x, ε

′y, t) +
X(x, ε′y, t, ε′), Ỹ (x, y, t, ε′) = B(x, t)y +
ε
′−1F2(x, ε

′y, t) + Y (x, ε′y, t, ε′). Since Fi, i = 1, 2,
satisfy ||Fi(x, y1, t)|| = O(||y1||2) in X , then
ε
′−1Fi(x, ε

′y, t) are well defined as ε′ approaches
zero [10]. Then, letting y = h0(x, t) represent
the smooth isolated root of Ỹ (x, y, t, 0) = 0, it
is possible to show that, since conditions C1 -
C3 are verified the eigenvalues λi of the matrix
(∂Ỹ /∂y)(x, h0(x, t), t, 0) satisfy the inequality
Re(λi) ≤ −2α, with α > 0. Then, the integral
manifold y = y1/ε

′ = h(x, t, ε′) can be obtained



as asymptotic expansion in integer powers of ε′,
h(x, t, ε′) = h0(x, t)+ε′h1(x, t)+ ...+ε

′khk(x, t)+ ...,
whose coefficients are smooth function with bounded
norm [29]. These coefficients can be found substituting
the expansion in the second equation of (9), obtaining
[10]

ε′
∂h

∂t
+ ε′

∂h

∂x
X̃(x, h, t, ε′) = Ỹ (x, h, t, ε′). (10)

B. Application to the histone modification circuit

In order to reduce the system (2), let us first rewrite it
by letting ε = cε

′
and introducing the new time variable

τ̄ = τε′:

ε′
dD̄A

dτ̄
= (uA0 + uA + D̄A)D̄ − ε′(c+ D̄R)D̄A

ε′
dD̄R

dτ̄
= (uR0 + uR + αD̄R)D̄ − µ′ε′(cb+ D̄A)D̄R

ε′
dD̄

dτ̄
= ε′[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A] (11)

− (uA0 + uA + D̄A + uR0 + uR + αD̄R)D̄.

Furthermore, let us define x, y, f1 and f2 as follows:

x =

(
D̄A

D̄R

)
, y2 = D̄,

f1 =

(
(uA0 + uA + D̄A)D̄ − ε′(c+ D̄R)D̄A

(uR0 + uR + αD̄R)D̄ − µε′(cb+ D̄A)D̄R

)
,

f2 = ε′[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]

− (uA0 + uA + D̄A + uR0 + uR + αD̄R)D̄,

(12)

Now, it is possible to show that ϕ(x), defined in C1,
is equal to 0 and that the matrix A as defined in (4) with
D̄ = 0 and ε′ = 0 can be written as

0 0 (uA + uA0 + D̄A)
0 0 (uR + uR0 + αD̄R)
0 0 −(uA + uA0 + D̄A + uR + uR0 + αD̄R)

 .

(13)

The matrix is singular, showing that the system (11) is
a singular singularly perturbed system. More precisely,
matrix A has two zero eigenvalues and two associated
linearly independent eigenvectors. Furthermore, matrix
B defined in (5) can be written as

B = −(uA + uA0 + D̄A + uR + uR0 + αD̄R).

When external inputs are not applied (uA = uR = 0), B
has always negative real part if uR0+uA0 ≥ l with l >
0. Then, we can apply Theorem 7.1 from [10] to obtain
ε′-dependent the reduced system. Let us first introduce
in (11) the change of variable D̃ = D̄/ε′, obtaining

dD̄A

dτ̄
= (uA0 + uA + D̄A)D̃ − (c+ D̄R)D̄A

dD̄R

dτ̄
= (uR0 + uR + αD̄R)D̃ − µ(cb+ D̄A)D̄R (14)

ε′
dD̃

dτ̄
= [µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]

− (uA0 + uA + D̄A + uR0 + uR + αD̄R)D̃.

To calculate the slow integral manifold from the last
equation of (14), let us first construct the asymptotic
expansion of D̃:

D̃ = h(D̄A, D̄R, ε′)

= h0(D̄
A, D̄R) + ε′h1(D̄

A, D̄R) +O(ε′2).
(15)

Then, substituting (15) in the last ODE of (14), we
obtain

ε′
dh

dτ̄
= ε′(

∂h

∂D̄A

dD̄A

dτ̄
+

∂h

∂D̄R

dD̄R

dτ̄
)

= [µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A] (16)

− (uA0 + uA + D̄A + uR0 + uR + αD̄R)h.

To calculate h0 and h1 we equate the terms on the
left-hand side and right-hand side multiplied by the same
power of ε′, obtaining

h0 =
[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
,

h1 = −
∂h0

∂D̄R ((uR0 + uR + αD̄R)h0 − µ(cb+ D̄A)D̄R)

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
(17)

−
∂h0

∂D̄A ((uA0 + uA + D̄A)h0 − (c+ D̄R)D̄A)

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
.

Given that ∂h0

∂D̄R and ∂h0

∂D̄A are bounded and then
ε′ ∂h0

∂D̄R , ε
′ ∂h0

∂D̄A ≪ 1 for a sufficiently small ε′, if we
substitute (17) into (15) we obtain

D̃ =
[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
. (18)

Substituting (18) into (14) and re-introducing the origi-
nal time variable τ = τ̄ /ε′, we finally obtain the reduced
system as follows:

dD̄A

dτ
=

(
µ(bε+ ε′D̄A)(uA + D̄A)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄R

−
(

(ε+ ε′D̄R)(uR0 + uR + αD̄R)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄A

(19)

dD̄R

dτ
=

(
(ε+ ε′D̄R)(uR0 + uR + αD̄R)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄A

−
(

µ(bε+ ε′D̄A)(uA0 + uA + D̄A)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄R.
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Fig. 2: Trajectories of D̄R and D̄A of the original and
the reduced system become close when ε′ is small. We use
solid lines for the trajectories of D̄R and D̄A of the original
system (2) and dashed lines for the trajectories of D̄R and D̄A

of the reduced system (19). We consider (D̄R(0), D̄A(0)) =
(0.7, 0.3) as initial conditions and three values for ε′ (ε′ =
1, 0.1, 0.01). The values of the other parameters are uA0 =
uR0 = 0.1, uA = uR = 0, α = b = µ = c = 1, ε = cε′.

If we sum the ODEs in (19), we obtain dD̄A

dτ + dD̄R

dτ =
0, that is D̄A + D̄R = constant. In particular, since
D̄A + D̄R + D̄ = 1 and D̄ = ε′D̃ ≈ 0 for ε′ ≪ 1, we
have that D̄A + D̄R ≈ 1 for ε′ ≪ 1. We also validated
via simulation that system (19) is a proper reduction of
the original system (2) when ε′ is sufficiently small by
showing that the trajectories of D̄R and D̄A of the orig-
inal and reduced systems become closer as ε′ decreases
(Fig. 2). Multiplying both sides by Dtot(k

A
EDtot) and

defining k̄AW = kAW0+kAW and k̄RW = kRW0+kRW , system
(19) can be rewritten in a dimensional form:

ḊA =

(
(k̄A

W + kA
MDA)(δ + k̄R

E + kR
ED

A)

(k̄A
W + kA

MDA) + (k̄R
W + kR

MDR)

)
DR

−
(
(k̄R

W + kR
MDR)(δ + k̄A

E + kA
ED

R)

(k̄A
W + kA

MDA) + (k̄R
W + kR

MDR)

)
DA (20)

ḊR =

(
(k̄R

W + kR
MDR)(δ + k̄A

E + kA
ED

R)

(k̄A
W + kA

MDA) + (k̄R
W + kR

MDR)

)
DA

−
(
(k̄A

W + kA
MDA)(δ + k̄R

E + kR
ED

A)

(k̄A
W + kA

MDA) + (k̄R
W + kR

MDR)

)
DR.

The system is one-dimensional (DR + DA = Dtot)
and it can be represented with the following simplified
chemical reactions:

DA kAR−−−→ DR, DR kRA−−−→ DA (21)

with reaction rate coefficients defined as

kAR =

(
(k̄RW + kRMDR)(δ + k̄AE + kAED

R)

(k̄AW + kAMDA) + (k̄RW + kRMDR)

)
,

kRA =

(
(k̄AW + kAMDA)(δ + k̄RE + kRED

A)

(k̄AW + kAMDA) + (k̄RW + kRMDR)

)
. (22)

A diagram of the circuit is shown in Fig. 3.

IV. STOCHASTIC ANALYSIS

The reduced chemical reaction system (21) can be
represented by a one-dimensional Markov chain with
state x representing the number of DR, i.e., x = nDR

with x ∈ [0,Dtot]. Furthermore, given a generic state x,

Fig. 3: Reduced histone modification circuit. Diagram of
the circuit reactions in (21). The green arrows correspond to
the first reaction in (21) and the red arrows correspond to the
second reaction in (21). Since the reaction rate coefficients,
defined in (22), increase with the concentration of the reaction
product, we have two autocatalytic loops, highlighted by the
thin arrows.

the rate associated with the transition from x to x + 1,
αx, and the rate associated with the transition from x to
x− 1, γx, can be written as

αx =

 (k̄R
W +

kR
M
Ω

x)(ε+ ε′ x
Dtot

)

(ūA + (Dtot−x)
Dtot

) + (ūR + α x
Dtot

)

 (Dtot − x),

(23)

γx =

 (k̄A
W +

kA
M
Ω

(Dtot − x))µ(bε+ ε′ (Dtot−x)
Dtot

)

(ūA + (Dtot−x)
Dtot

) + (ūR + α x
Dtot

)

x.

Now, we want to determine how the circuit parameters
affect the the memory of chromatin states. Let us first
analytically evaluate the stationary probability distribu-
tion π(x). Given that this Markov chain is irreducible
and reversible, we can obtain an analytical expression for
π(x) by applying detailed balance [11]. In particular, for
our one-dimensional Markov chain, the detailed balance
principle allows us to write the stationary distribution
π(x) as

π(x) =

x∏
i=1

αx−1

γx
π(0) =

∏x
i=1

αx−1

γx(
1 +

∑Dtot
j=1

(∏j
i=1

αx−1

γx

))
(24)

for any x ∈ [1,Dtot]. Since
∏x

i=1
αx−1

γx
= O(ε) for any

x ≥ 1 except for x = Dtot, for ε → 0 the stationary
probability distribution π(x) can be approximated by

lim
ε→0

π(x) = π0(x) =


1

1+P if x = 0

0 if x ̸= 0,Dtot

P
1+P if x = Dtot

(25)

with

P =
(ūA + ūR + α)(ūR)

(ūA + ūR + 1)(ūA)b

Dtot−1∏
i=1

(
ūR + α i

Dtot

ūA + Dtot−i
Dtot

)(
1

µ

)Dtot

,

(26)

in which ūA = uA0 + uA, ūR = uR0 + uR. From (25),
we note that as ε tends to zero, π(x) → 0 for all x
except for x = Dtot (fully repressed chromatin state)
and x = 0 (fully active chromatin state), that is, the
distribution has two modes in correspondence of x = 0
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Fig. 4: Effect of key parameters on the stationary prob-
ability distribution of the histone modification circuit. The
stationary distribution of the circuit related to reactions (21)
obtained analytically, (24). The variable x ∈ [0,Dtot] repre-
sents the number of nucleosomes characterized by repressive
histone marks, nDR , with x = Dtot corresponding to the fully
repressed chromatin state and with x = 0 corresponding to
the fully active chromatin state. In the graphs we show how
the stationary distribution is affected by ε (upper side) and µ
(lower side). The parameter values of each regime are listed
in Table I.

and x = Dtot, and the probability of having the system
in the intermediate states tends to zero (Fig. 4). This
suggests that when ε → 0, a system starting at x = Dtot

or at x = 0 will remain at that state. Qualitatively, this
indicates that ε small allows to keep the memory of the
repressed or active chromatin state for very long time,
suggesting that ε controls ECM.

In order to make this statement mathematically pre-
cise, we evaluate how the system parameters affect the
temporal duration of the memory of the fully repressed
(x = Dtot) and fully active (x = 0) chromatin states.
More precisely, defining the hitting time of x = j
starting from x = i as tji := [ inf{t ≥ 0 : x(t) = j,
x(0) = i} with i, j ∈ [0,Dtot]], the time to memory loss
of the fully repressed chromatin state can be defined as
τ0Dtot

= E(t0Dtot
). Similarly, we can define the time to

memory loss of the active state as the expected value of
the first time at which x = Dtot, starting from x = 0,
that is τDtot

0 = E(tDtot
0 ). In order to compute τ0Dtot

and τ0Dtot
we use first step analysis [12]. Given the

definition of αx and γx in (23), the time to memory loss
of the repressed chromatin state, τ0Dtot

, can be written
as follows:

τ0Dtot
=

rDtot−1

γDtot

(
1 +

Dtot−1∑
x=1

1

rx

)
+

1

γ1

+

Dtot−1∑
x=2

rx−1

γx

1 +

x−1∑
j=1

1

rj

 ,

(27)

with rx = α1α2...αx

γ1γ2...γx
. Assuming ε′ ̸= 0, the dominant

term of τ0Dtot
for ε ≪ 1 is the first addend in (27). Then,

by normalizing the time to memory loss with respect to
kA
MDtot

Ω (τ̄0Dtot
= τ0Dtot

kA
MDtot

Ω ), the normalized τ0Dtot
in

the regime ε ≪ 1 can be approximated as

τ̄0Dtot
≈ KR

µε

(
1 +

Dtot−1∑
x=1

Kx
R

hx
1(µ)

)
, (28)

with hx
1 an increasing function, hx

1(0) = 0 and KR and
Kx

R functions independent of ε and µ. In a similar way,
we can determine the time to memory loss of the active
gene state, τDtot

0 , that can be written as

τDtot
0 =

r̃Dtot−1

α0

(
1 +

Dtot−1∑
x=1

1

r̃x

)
+

1

αDtot−1

+

Dtot−1∑
x=2

 r̃x−1

αDtot−x

1 +

x−1∑
j=1

1

r̃j

 ,

(29)

with r̃x =
γDtot−1γDtot−2...γDtot−x

αDtot−1αDtot−2...αDtot−x
. Also in this case,

assuming that ε′ ̸= 0, the dominant term of τDtot
0 for

ε ≪ 1 is the first addend in (29). Then, by normalizing
the time to memory loss with respect to kA

MDtot

Ω (τ̄Dtot
0 =

τDtot
0

kA
MDtot

Ω ), the normalized τDtot
0 in the regime ε ≪ 1

can be approximated as follows:

τ̄Dtot
0 ≈ KA

ε

(
1 +

Dtot−1∑
x=1

hx
2(µ)

Kx
A

)
, (30)

with hx
2 an increasing function, hx

2(0) = 0 and KA and
Kx

A functions independent of ε and µ. In the limiting
condition ε → 0, we have that both τ̄0Dtot

and τ̄Dtot
0

tend to infinity. Therefore, a lower ε is the driver of
longer lasting memory of both the active and repressed
chromatin states.

Now, let us also determine how µ, the non-
dimensional parameter quantifying the asymmmetry be-
tween the erasure rates of repressive and activating
modifications, affects the ECM. From the expression
of the stationary distribution in (25), it is possible to
notice that if µ is decreased, π0(Dtot) increases to the
detriment of π0(0), that is the stationary distribution is
biased towards the repressed state (Fig. 4). Viceversa if
µ is increased. In accordance with this result, a lower µ
leads to higher τ̄0Dtot

but to lower τ̄Dtot
0 .

V. SIMULATION RESULTS

In the previous section we exploited a deterministic
quasi-steady state approximation [33] to derive the re-
duced chemical reaction system (21). In general there
is no proof that a reduced reaction system obtained by
using a deterministic quasi-steady state approximation
is a good approximation of the original reaction system.
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Fig. 5: Stochastic simulations of the histone modification circuit in Fig. 1(a) using SSA. (a) The stationary distribution
for the histone modification circuit whose reactions are listed in Fig. 1(a). The parameter values are in Table II. In particular,
in the left-side plots ε = 0.18, 0.1, µ = 1, 0.8 and ε′ = 0.4 and in the right-side plots ε = 0.23, 0.1, µ = 1, 0.8 and ε′ = 1.
In all plots nDA and nDR represent the number of nucleosomes with activating histone marks and repressive histone marks,
respectively. (b) Time trajectories of nDA and nDR starting from the fully active state nDA = 50, nDR = 0 for different values
of ε and ε′. The time is normalized (τ = t

kA
M
Ω

Dtot, with Ω the reaction volume) and the parameter values are in Table II.

However, it can provide reliable indications on the
trends with which the key parameters affect the system
behavior. To verify that the analytically derived trends
are mirrored by the original system, we perform a
computational study of the original histone modification
circuit model, whose reactions are listed in Fig. 1(a),
by using the Stochastic Simulation Algorithm (SSA)
[13] (Fig. 5). The trend with which ε and µ affect
the stationary distribution is in accordance with what
we determined by studying the analytical expressions of
π(x) (24) (Fig. 5(a)). Furthermore, the time trajectories
in Fig. 5(b) show less frequent transitions between the
active and repressed chromatin states for lower values
of ε, in agreement with the mathematical expressions of
the time to memory loss (28),(30).

VI. CONCLUSION

In this work, a ubiquitous circuit motif among his-
tone modifications [9] has been considered. In order to
study the extent of memory of the active and repressed
chromatin states, a time scale separation between erasure
reactions and autocatalytic reactions has been exploited
to obtain a one-dimensional reduced model suitable for
analytical investigation. The advantage of this model
reduction approach was that it allowed us to analyze
in a simplified, but rigorous way, the trends with which
the circuit parameters affect the stochastic behavior of
the system. Concerning the stationary distribution, for a
sufficiently small ε the analysis shows two concentrated
peaks in the active and repressed chromatin states. More
precisely, the smaller ε, the more concentrated the peaks
until, for ε → 0, π(x) ̸= 0 only in correspondence of
the fully active state (nDA = Dtot) and fully repressed

Param. Value Value Param. Value Value
upper plot lower plot upper plot lower plot

uA0 0.1 0.1 ε 1.5,0.15,0.015 0.1
uA 0 0 ε′ 0.1 0.1
uR0 0.1 0.1 b 1 1
uR 0 0 µ 1 1, 0.8, 0.1
α 1 1 Dtot 50 50

TABLE I: Parameter values relative to the plots in Fig.4.

Param. Value (h−1) Value (h−1) Value (h−1) Value (h−1)
Fig.5(a) Fig.5(a) Fig.5(b) Fig.5(b)
left plots right plots upper plots lower plots

kAw0 5 5 5 5
kA 0 0 0 0
kRw0 5 5 5 5
kRw 0 0 0 0
kAM/Ω 1 1 1 1
δ 4.3,2.5 5.7,2.5 4.3,2.5 5.7,2.5
k̄AE 4.3,2.5 5.7,2.5 4.3,2.5 5.7,2.5
kAE/Ω 0.4 1 0.4 1
kRM/Ω 1 1 1 1
k̄RE 4.3,2.5 (up. plots) 5.7,2.5 (up.plots) 4.3,2.5 5.7,2.5

3.44,2(low. plots) 4.56,2(low. plots)
kRE/Ω 0.4,0.32 1,0.8 0.4 1

TABLE II: Parameter values relative to the plots in Fig.5.

state (nDR = Dtot). Furthermore, the height of the
peaks depends on the value of µ. Specifically, high µ
shifts the distribution towards the active state to the
detriment of the repressed state (viceversa for low µ).
These results are consistent with the analysis of the
time to memory loss, that shows longer memory of
the active and repressed states for smaller values of ε.
Furthermore, a lower value of µ increases the memory
of the repressed state, while decreases the memory of
the active state. These results are in agreement with the
simulations conducted for the original reaction system



(Fig. 1(a)) with the SSA. Future work will investigate
the stochastic behavior of the chromatin modification
circuit that includes also DNA methylation.
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