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We show that real and imaginary parts of equivariant spherical harmonics on S3
have almost surely a single nodal component. Moreover, if the degree of the spherical
harmonic is N and the equivariance degree is m, then the expected genus is proportional

tom (M ~|—N). Hence, if % = c for fixed 0 < ¢ < 1, then the genus has order N3,

1 Introduction and Statements of the Results

In a recent article [8], the authors proved that nodal sets of real or imaginary parts of
equivariant (but non-invariant) eigenfunctions of Laplacians Agg of generic “Kaluza-
Klein” metrics ggyr on unit tangent (or cotangent) bundles = : M — X over Riemann
surfaces (X, g) have a single connected component. The generic condition is 0 being a
regular value for the eigenfunctions. The unit sphere S® ¢ R* with its standard metric
and Laplacian has the standard Hopf fibration = : S — S? and is an example of
a Kaluza—Klein metric. It is a double cover S® — SO(3) ~ U(S?) of the unit tangent
bundle of S?. Recently, the nodal sets of random wave on 3D Euclidean space have been
the subject of numerical investigations by Barnett et al. [1], which exhibit a surprising
feature: only a small number of nodal components are visible in the computer graphics

(Figure 1).
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8522 J. Jung and S. Zelditch

Fig. 1. Nodal surface ([1]).

N -

Fig. 2. Nodal surface plus one extra component ([1]).

The results of Nazarov-Sodin [10] show that in fact there must be cN® distinct
nodal components for some (very small) ¢ > 0, but the other components are evidently
too small to be seen in the computer graphics. For this reason, it is conjectured that
with probability one, the random spherical harmonic of fixed degree N on S° has one
giant component and many much smaller components. In Figure 2, one does see a 2nd
small (red) component.

Sarnak [11] posed the problem of finding its expected genus and has proposed
that the expected genus is of the order of magnitude of N [11]. Milnor has proved
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Topology of the Nodal Set 8523

that the maximal genus of the zero set of a polynomial of degree IV is of this order of
magnitude, so Sarnak’s proposal is that the nodal sets of random spherical harmonics
on S® are rather like Harnack curves (real algebraic curves of degree N and of roughly
maximal genus).

The purpose of this note is to link the results of [8] to Sarnak’s proposal. Our
main result is that the proposal is true for real/imaginary parts of random equivariant
spherical harmonics of degree N on S°. Equivariant spherical harmonics are complex-
valued functions on S3, defined as follows: let 7—[1’(;(83) denote the space of complex-
valued spherical harmonics of degree IV, which are equivariant of degree m with respect
to the S! action defining the Hopf fibration S® — S?. To be explicit, any ¥’ € H(S?)

satisfies
—Ag¥yt = N(N + 1)y and
Y%z, e92,)) = ™y (21, 2,)),

for all 6 € [0,2r] and for all z;, z, € C such that |z;|2 + |z,2 = 1 (see §2.1), where Ags is
the Laplace-Beltrami operator on S2. In §2.3, we describe ’HI’\’,“(S?’) in terms of harmonic
homogeneous C-valued polynomials on C2. For short, we say that ¥ is equivariant
of degree (N, m). Since L%(S3,C) = @y o Vy ® Vi, where Vy is the Nth irreducible
representation of S?, fixing the weight m of the S! action is the same as fixing one
line in V}, so that dims H}} = dim V), = N + 1 (for details, see Proposition 2.2).

Our main results pertain to the nodal sets of the real, resp. imaginary, parts of
Uy = uy +ivy. (1.1)

It is very useful to work however with the complex-valued y'. The real, resp. imaginary,
part of an equivariant spherical harmonic ¥ belongs to a subspace RH} of the real
vector space RVj, of real-valued spherical harmonics on S® of degree N. The L? inner
product on RVy with respect to the standard volume form dV of S® induces a Gaussian
measure, the usual “random spherical harmonics” of [10] (for instance). It restricts to the
space H} to define a Gaussian measure Ny, on this subspace of RVy. The Hermitian
inner product on H}} C L%(S3,C) induces a complex Gaussian measure Yy' on Hy (see
Definition 4.1). The Gaussian measures y;* and Ry, are compatible in the sense that the
real resp. imaginary parts of a complex Gaussian random /' are independent Gaussian

random real spherical harmonics (see Section 4.3 and Lemma 4.2.)
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8524 J. Jung and S. Zelditch

A Gaussian measure is determined by its covariance function. The principal
covariance function of this article is the Schwartz kernel IT}(x,y) of the orthogonal

projection
I L3(S3,C) — H. (1.2)

We denote by g(X) the genus of a surface X, and we define
Ex m Q(Zug;) (1.3)

to be the expected genus of the nodal set of the real part uy’ of an equivariant

eigenfunction of degree (IV, m) with respect to Ry".

Theorem 1.1. Let (Hy', yy') be the Gaussian space of equivariant spherical harmonics

of degree (IV, m). In the following, we assume m # 0.

(i) With probability 1 (w.r.t. y* or equivalently fRyy'), the nodal set Zuﬁ of
the real part uyl = Ny (resp. the nodal set Zym of the imaginary part
vy = Jy) of a random equivariant spherical harmonic ' € H}' has a
single connected component that partitions S® into two nodal domains.

(ii) The expected genus of the nodal component is given by

14+ )72 NZ _ m2
By mg(Zym) = Y |m| ( 5 +N)—|m|+1,
where

_ m/2

- 2 _m2 !
MmN

which has modulus less than or equal to 1/2.

It follows that when § < % < 1 — 4 for some small fixed § > 0, the genus of Zu}\v;
is of order V3.

The 1st statement is almost an application of the main result of [8], where the
“genericity” assumption was only used to prove that each real (resp. imaginary) part of
an equivariant eigenfunction has 0 as a regular value. Thus, to prove Theorem 1.1(i),
it is only necessary to prove the Bertini-type theorem that 0 € C is a regular value of
Y . S® — C with y;-probability 1. This is done in Section 5.4. The 2nd statement has
one topological simple part and one probabilistic part. The topological makes use of the

identification of equivariant functions in H} with sections f'e]" of the complex line
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Topology of the Nodal Set 8525

bundle L™ — S2, where e; denotes a local frame of L over the affine chart (which we
choose to be a holomorphic frame). The line bundle L is the hyperplane line bundle over
S? = CP!. It is often denoted by O(1) (or, less commonly, O(H)) in algebraic geometry,
and its mth tensor power is denoted by O(m). We refer to Section 2.2 and to [7, pp.
145-166] for background on complex line bundles over Riemann surfaces; L™ is denoted
OH™) in [7].

Lemma 1.2. If 0 is a regular value of ¥, then the genus of Zm%z is given by

im|#fy' =0} —2) +1

2 ' (1.4)

where ¥ is the lift of the section f'(z, z)e]".

As mentioned in [8], the key point of the proof is to show that = : Zyym —> X is a
kind of “helicoid cover”. That is, it is an m-fold cover over the complement of the zeros
of f*, while the inverse image of a zero is an S! orbit. Thus, it is not a branched cover
in the standard sense; rather 7 is locally like the projection of a vertical helicoid onto
the horizontal plane. (We thank J. Y. Welschinger for helpful discussions of the local
picture.)

The 2nd part is the following Kac-Rice-type calculation.

Lemma 1.3. With probability 1, fi* has isolated non-degenerate zeros, and

1+n2 N2_m2
E#{ft =0} = N,
{fy } yp ( 5 +

where

. m/2

= —szmz n N.

To determine the expected number of (complex) zeros of fy, we use the Kac-
Rice formula for the ensemble (H}}, y5'), which consists of complex Gaussian random
eigensections of the line bundle L'™. As usual, it gives an integral formula for the
expected number of zeros in terms of the determinant of a matrix formed from
values and derivatives of the covariance (two-point) function of the Gaussian random
function. The covariance kernel is evaluated in Section 4.2 and turns out to be simple
enough to yield the explicit formula of Lemma 1.3. An essential point is that the Euler
characteristic calculation of Lemma 1.2 allows us to reduce the calculation of the

expected Euler characteristic to a quantity that can be handled by the Kac-Rice formula.
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8526 J. Jung and S. Zelditch

We close the introduction with some remarks on the relation of Theorem 1.1
to the conjecture that nodal sets of random real spherical harmonics of degree N on
S® contain a unique giant component. It is not clear that our methods and results
apply to this conjecture. Rather, they demonstrate that the conjecture is true for the
special spherical harmonics formed by real/imaginary parts of equivariant spherical
harmonics, and indeed, there is just one component. A rather distant hope is to obtain
results on the full space of random spherical harmonics by perturbation of the nodal
sets of equivariant spherical harmonics. As m varies, the latter comprise the union
U imi<v RHJ} of N + 1 real subspaces of dimension N + 1. A random real spherical
h;glr\i;or?lic in Hy is a random linear combination of components in RH}}. It is tempting to
imagine that, locally, a random spherical harmonic in #,; might be a small perturbation
of the real part of an equivariant spherical harmonic in H}?, so that its nodal set locally
resembles that of an equivariant one. The genus of the nodal set of uy = %y is so large
that a small perturbation is unlikely to decrease the genus. An independent possibility
is that the geometric analysis of nodal sets of uy’ € %K} has a generalization in some

form to nodal sets of general spherical harmonics of degree IV.

2 Proof of Theorem 1.1(i) Modulo Bertini's Theorem

This section is devoted to the geometric setting of the article. Its main result is the proof
of the 1st statement (i) of Theorem 1.1 modulo Bertini's theorem. As mentioned in the
introduction, it is basically a corollary of the main results of [8] on eigenfunctions of
Kaluza—Klein Laplacians on general S! bundles over Riemann surface, which we state
in Theorem 2.3 below. To derive statement (i) from Theorem 2.3, we need to show that
equivariant spherical harmonics ¥ are Kaluza-Klein eigenfunctions on S® and can also
be regarded as sections of the complex line bundle L™ — S?. All of the relevant geometric
notions are reviewed in this section. To complete the proof of Theorem 1.1(i), we also
need to prove that almost every ¥ has 0 as a regular value. We postpone the proof of

the last statement, “Bertini’s theorem”, to Section 5.5.

2.1 Coordinates on S® and Hopf fibration

We use two coordinate systems on S°:

(2,,2,) — e S® c R?, (2.1)
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Topology of the Nodal Set 8527
where z;,z, € C and |z;|? + |z, =1 or

sina cos(@ + ¢)
sin « sin(@

(@, 9,0) — asin@+9¢) | o3 pe, (2.2)
cos o cos(f — ¢)

cosasin(d — @)

where @ € [0,7/2], ¢ € [0,27], and & € [—x,x]. In the 1st coordinate system (2.1), the

action of S! is given by
rs(2,,2,) = (€72, 2,) (2.3)

and the Hopf map 7 : S® — S? is given by
7 (2y,2y) b (2212_2, 12,12 — |z2|2) e C xR. (2.4)

In the 2nd coordinate system, (2.3) is equivalent to
(2, 0,0) — (o, 0,0 + )
and the Hopf map (2.4) is

sin(2«) cos(2¢)
7 (@, 9,0) —~ | sin(2e) sin(2¢) | € $? c R,

cos(2w)

2.2 S3 as a Kaluza-Klein 3-fold

The purpose of this section is to explain how S® (equipped with its standard metric)
is an example of a Kaluza—Klein metric in the sense of [8]. We also review the relation
between equivariant Laplace eigenfunctions on S® and associated eigensections of line
bundles over S2.

The 3-manifolds M2 studied in [8] are S! bundles M3 — X over Riemann surfaces
X, in particular the unit tangent or cotangent bundles. A Kaluza-Klein metric on M3
is a bundle-metric g defined by a connection V on TM?® and a Riemannian metric h
on X. The circular fibers are geodesics of the metric (in particular have a constant
length), and the metric on the horizontal spaces is the lift of the metric on X. It is
evident that the standard metric on S? is Kaluza-Klein with respect to the Hopf fibration
7w : S® — S%. A harmonic analysis on spheres and its relation to the Hopf fibration

S® — §? is elementary and well known (see e.g. [6]), so we only review two aspects of it:
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8528 J. Jung and S. Zelditch

(1) relating eigensections of the Bochner Laplacians on L™ to equivariant eigenfunctions
of Ags; (2) CR geometry of S3.

Associated to the principal S! bundle S® — S? are the line bundles L™ = S2 x 4mC
where y(e?’) = €. Form =1, L = O(1) — CP! in the notation of algebraic geometry [7];
it is the spin-bundle, i.e., the square root of the anti-canonical bundle, K&é = (TI'O)%(CIP’l.
When m = —1, L™! = Kgp1 >~ T*19CP!, the canonical bundle. In a standard way, we view
S® ¢ L* as the unit bundle with respect to the Fubini-Study metric. The connection in
this setting is the Chern connection of the Fubini-Study metric; we refer to [7, 8] for
background.

Sections s of L™ — S? naturally lift to L* by

5(z,A) = A"(s(2)).

Thus, the restriction of the lift of s € C(S?,L™) to S® satisfies §(r,x) = €™’§(x). We refer
to lifts of sections of L™ as “equivariant” functions on S® and denote the space of such
functions by H™.

The standard Laplacian Ags is a Kaluza—Klein Laplacian, i.e., has the form,

32
Ag = A —,
where Ay is the horizontal Laplacian. The fact that the fiber Laplacian is (,;’722 reflects

the fact that S! orbits are geodesics isometric to R/27Z. It is obvious that [Aga, %] =0.

Since S! acts isometrically on (S%, G), we may decompose into its weight spaces,

%%, ) = P H™,
meZ
where H™ = {F : S* — C : F(ry.x) = €™ F(x)}. The inner product is always the
standard one (with respect to Haar measure). The weight spaces are Af-invariant, i.e.,
Ayt H™ — H™.

Definition 2.1. We define #} to be the subspace of degree N spherical harmonics in
H™. We call a function belonging to H}' an equivariant spherical harmonic of degree
(N, m).

The lifting map gives a canonical identification H,, = L?(S?,L™). The Bochner

Laplacian V};,V,, corresponds to the horizontal Laplacian under this identification, i.e.,

Vi, Vi (F(d2)™) = Ay (f(d2)™).
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Topology of the Nodal Set 8529

Since S® is a group, L?(S%) = @y_oVy ® Vy where Vy is an irreducible
representation of S of dimension NV + 1. Moreover, Aly, gy, = NV +2) = VW + 1)% — 1.

2.3 CR structure

Another viewpoint is that S® = 8B c C?, i.e., that S® is the boundary of the unit ball,
a strictly pseudo-convex domain in C?. A defining function for S® ¢ C? is the usual
Euclidean distance r = |Z| from the origin. Here, Z € C2. Let dr be the associated (0, 1)
form. The theory of spherical harmonics on S® has been related to the CR geometry and
the representation theory of SU(2) = S® in [6].

Spherical harmonics on S® are restrictions of homogeneous harmonic polynomi-

als on C2. In complex coordinates Z = (z,, z,), the Euclidean Laplacian is

Aps _42 8z 8z

Let Hl(\‘?’Q) denote the space of harmonic homogeneous polynomials of degree N
on C? which are of degree p in z;s and of degree g in the z;s; N = p + g. Then HPD is an
irreducible representation of SU(2) and the space of all spherical harmonics of degree

N admits the decomposition

P #P?. (2.5)

p+q=N

The representation of U(2) on H(Al,"q) is denoted by p(q, —p). One has p(q, —Dlsv@ =
04, —P)syz < p+q=p'+q anddimp(q, —p) = p+q+1. Hence, the decomposition
(2.5) is another decomposition of Vy ® Vy; into irreducibles.

The orbits of the Hopf fibration of the action (2.3) define the characteristic

directions of the CR manifold and lie in the null space of dr|;gs. It follows that on

polynomials zP' 28229z of type (p,q) (i.e., p, + p, = p and q; + g, = @), S! acts by

1//1(\? Q) H]\(? Q)

e'P~9% Thus, the equivariance degree of ism=p—-q.Sincep+q=N

m = 2p—N, i.e., the data (p, q) are equivalent to specifying only p or g or m. In particular,
S? acts by eM? on the space ’H%'O of holomorphic polynomials (p, qg) = (IV, 0).
Proposition 2.2. ’H(p D levp N In particular, the dimension of H}} is N+ 1if jm| <N

and 2|V — m and 0 otherwise.
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8530 J. Jung and S. Zelditch
2.4 Associated sections of line bundles

It is useful to simultaneously keep in mind the “upstairs” picture of equivariant
eigenfunctions of Ag and the “downstairs” picture of sections of complex line bundles,
as described in Section 2.2.

We denote the eigensection corresponding to v € Hy as fi'e]" in a local
holomorphic frame e; of L, so that f* is a locally defined function on CP!, ie., is a
function on the affine chart C. This is a useful description in analyzing the complex
zeros of Y.

We denote by Zf&n the zero set of the eigensection fj'el” on S?:
Zm =z € S?%: fit(z) = 0}.

It is easy to see that the zero set ZI//}\? of ¥ is the inverse image of ijrvn under the natural

projection r:
_ -1

We note that ¢;(L™) = m (1st Chern number, the integral of the 1st Chern class). By the
Hopf theorem, ¢, (L™) is the sum over zeros of a smooth section f}' with non-degenerate

zeros of the index in Z, of the zero. The index is the degree of the locally defined map
s(z)

[s(2)]
11.171-[3, Proposition 12.8].) In particular, if s is a holomorphic section, then the indices

from a small circle centered at the zero to C in a local trivialization ([3, Theorem

are all equal to 1 and s has precisely m zeros (counted with multiplicity). This only
occurs in the case m = N. Otherwise, the sections in H}} are smooth eigensections, and
they have more than m zeros on average, as is shown in the next section. In general, it
is not obvious whether or not the zero set of fi is discrete in S2.

We now consider real and imaginary parts,
NT = a(2), SfF = bR().
Then,
fi(zye™m = (af(2) + ib}}(2)) (cos mb — isinmb),
so that with ¥ ' = up! + ivy},

m __ m m 3

uyl = ay cos mb + by} sinmé, 2.6)
m __ m m :

vy = byl cosmé — aj} sinm6.
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Topology of the Nodal Set 8531

We denote the nodal sets of the real, resp. imaginary, parts of the lift by
Ny D € Py : Ry (p) = 0}, Tesp. Nyym = {p € P, : SYJ(p) = O},

The analysis is the same for real and imaginary parts.
Since Ags is a real operator, the real and imaginary parts (1.1) satisfied the

modified eigenvalue system,

m m.,,m
Aguy = —Ay Uy,

m __ m.,m
AgVy = —AyVy,
Su.=mv;, 2v.=-mu;
a0 — T 907 T 7

2.5 Review of the results of [8]

The main result [8, Theorem 1.5] pertains to nodal sets of real/imaginary parts of
equivariant eigenfunctions of the Kaluza—Klein Laplacian on S! bundles 7 : M — X
over Riemannian surfaces X. A Kaluza—Klein metric G is specified by a metric h on X
and a connection V on 7 : M — X. It is proved in [8] that, for a generic Kaluza—Klein
metric, every equivariant eigenfunction has 0 as a regular value, and the eigenspaces
are of real dimension 2 (corresponding to an equivariant eigenfunction and its complex

conjugate).

Theorem 2.3. Suppose that the data (g, h, V) of the Kaluza-Klein metric satisfy the
condition that every equivariant eigenfunction has 0 as a regular value and that the

eigenspaces are of real dimension 2. Then,

(1) The eigenspace of A, corresponding to A = Amj = *mj is spanned by Prmj
and ¢_,, i = @,,;. In particular, any real eigenfunction with the eigenvalue
Am; is a constant multiple of Ty(Ne,,;), where T, is the S! action on P
parameterized by 6.

(2) For m # 0, the nodal sets of N, ; are connected.

(3) For m # 0, the number of nodal domains of Ny, j is 2.

For the sake of completeness, we briefly review here the proof of (2) and (3) in
the setting of the present paper in order to bridge (i) of Theorem 1.1 and the regularity
of 0 of Y : S® — C. We temporarily assume that 0 is a regular value of almost every

equivariant spherical harmonic v} for every N, m (proved in Section 5.5).
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8532 J. Jung and S. Zelditch

As discussed above, S is Kaluza—Klein with respect to the standard metric on
S? and Riemannian connection.

Fix a sufficiently small open ball U ¢ S? and a local frame giving a trivialization
771U = S! x U where 7 : S — S? is the Hopf map. In this trivialization, one may write

Ut = ei™?f(p) for some function f : U — C. Taking the real part of Y, we obtain

ult = Ry ) = fi(p) cosmb + f,(p) sinmo,

where f = f; — if;. Observe that if f(p) # 0, then there are 2m distinct 6 that make this
expression vanish. This implies that the nodal set of u} in 7 ~!U minus
U =7'p
{p:f (p)=0}

is 2m-covering of U minus the zero set of f. In particular, if there is at least one
p € U such that f(p) = 0, then the nodal set of uj in 771U is connected. By taking
any collection of U that covers S?, one sees that the existence of at least one zero of
Yt implies that the nodal set of uj} being connected. So the 1st part of Theorem 1.1 (i)
follows by observing that v corresponds to a section of L™ — S? (§2.2), which must
vanish at least at a point because L™ — S? is nontrivial.

For the 2nd assertion of Theorem 1.1(i), we need the topological argument from
[8, Section 8], where we proved (1) discreteness of zeros and (2) existence of at least
one zero of y ' imply the number of nodal domains being 2. Therefore, we prove in
Proposition 5.5 that with probability 1, all zeros of v are regular, which will complete

the proof.

3 Genus of the Nodal Set: Proof of Lemma 1.2

In this section, we relate the genus of the nodal set of %y to the number of zeros of
S, under the assumption of all zeros of f}* being regular (Lemma 1.2). We first recall a

few lemmata (see for instance [12, Chapter 4]):

Lemma 3.1. Let X be a topological space and let A, B be topological subspaces whose

interior cover X. Then
x(X) = x(A)+ x(B) — x(ANB),

where x(-) is the Euler characteristic of -.

Lemma 3.2. Let X be a n-covering of M. Then we have

X (X) =nyxM).
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Topology of the Nodal Set 8533

Now we are ready to prove Lemma 1.2, again modulo Bertini's theorem
(Section 5.5).

Proof. To simplify the notation, let ¥ = ¢ and f = fii*. Let {z;};_, 5 _ be the complete
set of zeros of f. We first note that

Zyy — U {(z,0) : 0 €[0,27])
is m-covering of k-punctured sphere. So the Euler characteristic of

Zyy — U {(2,0) : 0 €[0,27])
is m(2 — k) by Lemma 3.2.

Now we apply Lemma 3.1 with X = Zy,,, A = Zy,, — UJ’?ZI{(ZJ,G) : 6 €10,2x]}, and

B equal to a sufficiently small open neighborhood of Ule{(zj,e) : 0 €10,27]} in Zy,,.
Then B is homotopic to UJ’?ZI{(Z]-, 0) : 6 €10,2x]}, which has Euler characteristic equal to
0, and A N B is m-covering of a disjoint union of punctured disks, which also has Euler
characteristic equal to 0. This implies that X = Zy,, has Euler characteristic m(2 — k),

and therefore the conclusion follows. [ |

4 Gaussian Random Equivariant Spherical Harmonics

The space #}} has thus been identified as the complex vector space,

N
HPT = Z cggz"‘éﬂ, cf,’ge(c , 2p—N =m.
le|=p,|Bl=q

The basis elements z%z? are orthogonal on S® but are not of norm 1. To compute the
norms, it is advantageous to relate integrals over S® with Gaussian integrals over C?,
i.e., to use the measure e*‘Z|2dL(Z) where dL is Lebesgue measure. The calculations are

done in [6, p. 98] and one finds that (using multi-index notation z* = z]'z3?),

/ 12%2dV = _2mal
3 (Ja| + 2)!

. . A .
Henceforth, we denote the orthonormalized monomials by sy , 5 := T3P
Definition 4.1. The Gaussian random equivariant spherical harmonic ¥} € HY =
Hﬁ'q,p — g = m is defined by the series

N

YN @) = D Sy
la|=p,|Bl=q

where the coefficients a, 4z are independent standard complex normal Gaussians.
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8534 J. Jung and S. Zelditch

When p = m = N, these polynomials are known as the SU(2) Gaussian
holomorphic polynomials; for general (p,q), we call them SU(2)P'9 polynomials. They
are sometimes called “poly-analytic” functions. The subspace H?\, consists of invariant
eigenfunction pulled back from S?. They are real valued and so the equivariant nodal

sets are not intersections of two real nodal sets.

4.1 Zero set measures

If f : S® — R is a real-valued function, thenwe denote its zero set by Zr. We also denote

by [Z¢] the positive measure defined by the linear functional
(127, 9) = / gdH?, geC(s®),
Zf

where d#? is the induced surface measure on Zf (i.e., 2D Hausdorff measure). If f is
a random function, then [Z;] is a random measure and the integral ([Z¢],g) is a real
random variable. When f = Ry with N = p + q,m = p — q, we denote by ]Eﬁ'q[Z%n] the

measure whose integral against the test function g € C(S?) is E([Z%’\}’]'Q)'
4.2 Covariance kernel
The covariance kernel of the Gaussian random equivariant spherical harmonics is the

integral kernel of the orthogonal projection, TIF : L%(S®) — H}, given by

1 . ,
Ny (x,y) := e ff exp(—imo, + imby) [y (ry x,7,,y)d0,d0,,

where Iy : L%(S®) — H, is the covariance kernel of the Gaussian random spherical
harmonics.

Explicit calculations to follow are based on the identity
My, y) =Uyx-y), (4.1)
where

: I(N+1)0 —i(N+1)0
sinV + 1)0 e/ +D0 _ =i+ ; ; iNo.

Uy (cos ) = =0 4 g W=20 4 4 e

sin 6 h el — e—10

is the Chebyshev polynomial of the 2nd kind. One may derive (4.1) from [13, Chapter IV.2]
(or [9, Chapter 2.3]) while observing that Gegenbauer polynomial C); 7 (t) withd =3 isa

constant multiple of Uy (t). For completeness, we include our version of the proof:
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Proof of (4.1). We first claim that there exists a homogeneous real polynomial Py (¢) of
degree N so that Iy (x,y) = Py((x, y)) where (x,y) is the inner product.

The oriented isometry group of S® is G := SO(4). Since the Laplacian Ags
commutes with G, we have Iy(gx,gy) = Iy(x,y) for all g € G. Hence, Iy(x,y) =
My (y~'x,I), where I denotes the identity element. Thus, ITy is a convolution operator
on S3. It is well known that any such point-pair invariant kernel on a symmetric space
is a function of the distance r(x, y) between x and y. For x,y € S, r(x,y) is the angle @
defined by (x,y) = cos 6. Hence, Iy (x,y) = Py({x,y) for some function Py. Since Iy (x, y)
is a homogeneous polynomial of degree 2N in (x,y) € R* x R*, which is homogeneous of
degree N in both x, y, it follows that Py is a homogeneous polynomial of degree N.

To complete the proof, we need to show that Py = Uy. To this end, we compute
the character x, of the representation of SU(2) ~ S® on the space H, of spherical
harmonics of degree N. A maximal abelian subgroup is given by diagonal unitary
matrices D(9) := Diag(e’, ") of determinant 1. As is wellknown (cf. [4]), the character

is given by
xy(©) = el 4 W20 4 4 o= — 17 (cos ).

On the other hand,

Xy(©) = TrDO)My = [is My(x, D(O)x)dx

Jss My (D(®), Ddx = My(D@), 1)

= Py(((e?,e7),(1,0,0,0))) = Py(cos¥).

where dx is normalized Haar measure. It follows that Py, = Uy. |

4.3 Real versus complex Gaussian ensembles

The purpose of this section is to show that the real parts of complex Gaussian SU(2)P4
are real Gaussian spherical harmonics in the standard sense employed by Nazarov—

Sodin, Sarnak, etc. Taking the real part defines the map
Ny € HE vy — Ryt € HE + Hy™.

Its image is a real subspace we denote by WH}} C Hy. If we push forward the complex
Gaussian measure y,' on 1y}, then we get a Gaussian measure on ##}'. Our claim is that

this measure coincides with the real Gaussian measure on Hy conditioned on RH}'. We
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denote by Ej the expectation with respect to yy' and Ey ,, the conditional expectation

of yy conditioned on RH.

Lemma 4.2. E}\‘}'q[zﬂw] = Ey [ Zyy ] In fact, for any functional G of Ny, we have
EPUG(Zy m) = Ey . G(Z4,m)
N Ry Nm G (Lyym).
Proof. We assume p+ q = N,p — q = m. The real part of a complex combination

ST a, 585 =D 1A, 5+ iB, glluly’ +ivy’]
le|=p,|Bl=q a,B

equals

Z [Aa'ﬂug,'ﬂ—Ba'ﬂVf\‘,'ﬂ].
lel=p,1Bl=q

Here, A, ,, B, , are independent N(0, 1) random variables. If we condition on B,y =0,
then we get the conditional real Gaussian ensemble.

We consider the measure-valued random variable [Zy,m], as well as the Euler
characteristic of melrvn (or any functional G of Ry ') as a function F(A — B) where A and
B are independent N (0, 1) vectors. That is, the Gaussian measure on the coefficients A
and B is the product dy (A)dy (B). The conditional Gaussian ensemble is dy (4)8,(B). So

the Lemma boils down to proving that

/ / F(A—B)dV(A)dJ/(B)=/ F(A)dy(A).
RN JRV RN

Since y x y = y, the left side equals

/ / F(CO)dy(A)dy(C—A) = / F(O)dy xy(C) = / F(O)dy,
RV JRN RN RN
as claimed. [ |

5 Kac-Rice Formula

In view of Lemma 1.2, the proof of Theorem 1.1 is reduced to the calculation of
Ey m#{(fy° = 0}. To this end, we use the Kac-Rice formula. The Kac-Rice formula in
the setting of random smooth sections of complex line bundles over Kdhler manifolds is

proved in [5]. It makes use of the canonical lift of sections to equivariant functions on
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the associated S! bundle and is therefore well adapted to our setting. We briefly review

the formula and then move on to the calculation of Ey ,,, #{ fy* = 0}.

5.1 Review of the Kac-Rice formula in our setting

We closely follow the exposition in [5, Section 5.4].
To state the Kac-Rice result, we need some notation and background. The

pullback of the Dirac mass §, at 0 € C is given by

8
o(H) X?_:Oldf/\dfl

Here, we use that the Jacobian Jg of f: C — Cis given by Jp = |df A df]|. The equivariant
lift of f to the circle bundle is fe~™%/? where ¢ is the Kahler potential of the Fubini-Study

metric. The pullback of §; under this complex-valued function is

)
50(e—m(ﬂ/2f) — z X em(p Z
Je m«z/Zf f
x:e"Mv/2f=0 x:f=0
since De ™¢/2f = e"™¢/2Df at a zero.
Second, we need to recall the joint probability density D} (x,&; z) of the random
variables
X, () = (@), B, () = dfy' (@)
and in particular the “conditional” density D(0,&; z). The joint probability density is

given by
exp(—A"lv,v) X
Dx,§,2) = ——F———, = ' 5.1
(*x,8:2) 73 det A v £ (5.1)
where A = AJ}(2) is the covariance matrix of (X, E,),
AT B
s = (455,
By® Cy
- 1
m el 1
BW) = E(X,E,) = dmv My (z,0;2,0),
— 1
(C") = E(8,E,) = - V'V'IIl(z,0;2,0).

dr
(5.2)
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Here, V], respectively V2, denotes the differential operator on X x X given by applying
V, to the 1st, respectively 2nd, factor. For notational simplicity, we often drop the super-
and sub-scripts (N, m) in what follows.

As discussed in [5] and as is wellknown, D(0, §; z) is then given by
D(0,§;2) = Z(z)D,(§; 2), (5.3)

where

D, (§2) = exp (—(47'6,4) (5.4

w2 det A
is the Gaussian density with covariance matrix
A=C—-B*A™'B (5.5)

and where

det A _ 1
7detA  mdetA’

2(z) = (5.6)

The formula (5.3) for D(0, §; z) simplifies to

1

—(AT1EE)
—e¢ 5.7
w3 detAdet A 5.7)

D(0,§;2) =

Proposition 5.1. Let s = fe in a local frame and let § = fe~™¢/2. Then, EZ, is the

measure on CP! given by

E(Z,) = [z |6 AE| D(O,€ : x)AL(&),

where dL is Lebesgue measure and where D(x,&; z) is the joint probability density of
(f(2),df (z)), given by (5.7).

Proof. By definition,
E(Z,¥) = E [op ¥(@8(fe ™/2)|d(f(z,2)e"™/?) A d(f(z,2)e"™/?)|

= E oo v@80(f) |d(f(z,2) A d(f(z 2))].

d(f(z,2e"™/%) A d(f(z,2)e"™/?)| is a density (the absolute value of a volume

form). We then replace the §,(f) by the Fourier integral, to get

Here,

BUZ, ) = [ w@E (1 |af A af]) dzco
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In general, if F is a complex Gaussian random field and & is a (possibly nonlinear)

functional, then

E(®(F(z),dF(2))) =/ , D(z,8)D(x,&; z)dzdE.

CxC

, 2@ EHPE) =x, dF(z) =§) = /

CxC
Therefore,
B " |df A df) = / / " ¢ AE| D(x, &; 2)dzdé.
cJc?

Using that | eMXAL(t) = §y(x), we get

B |ag nafhase = [ [e 8| DO, mdL@aL)

It remains to compute D(x,&; z), and we outline the calculation in [5] using the

real linear 1-jet map J := J}, which is locally written in terms of an orthonormal basis

{fi}as
J(@ = x,8) = (Q afi@, > aDfi(2), J,(@ =D a;Df}(2)). (5.8)
J

We may regard J as a map from a € CV into (x,£) € C x C?. The joint probability

density is the push forward of the measure e~1%*/2dg under J},

J.e7%" da = D(x, & 2)dLx)dL(¢) ie. D(x,& 2) = / e”19/2dg,
T 1x8)
where da is the surface Lebesgue measure on the subspace J~!(x,&). This follows from

general principles on pushing forward complex Gaussians under complex linear maps
F:Cd - Cn, whereby

]. *1—1
Fe 9 dq = ., l.e., X, )= —— e (WTTT x5,x86) 5.9
* YFF J(x,8) At T T (5.9)
As in [5], one shows that J.J* = A}} above. Conditioning on x = 0 then gives (5.3). [ |

5.2 Symmetries and application to Lemma 1.3

Note that Ty (®(x), ®(y)) = Iy (x, y) for any isometry ® € SO(4). However, this is not true
for MY} (x,y). To understand the symmetries of T} (x, y), we first identify (z,, z,) € C?in
(2.1) with unit quaternion p = z; + z,j. Then the action r, (2.3) is equivalent to the left

multiplication by e?.
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We recall that the map from SU(2) x SU(2) to SO(4) given by mapping a pair of
unit quaternions (p, q) to the map &, : x — pxq is a surjective homomorphism with
the kernel {(1, 1), (-1, —1)}. Observe that among Cbp'q,

the action ry, by the associativity of multiplication of quaternions. Hence, P14 leaves

¢, , for any fixed g commutes with

I (x,y) invariant because

I'IN(reld)l,q(X),r92d>1'q(y)) = HN(QJLq(rng),CIJLq(r@Zy)) = HN(T'QIX, 7'02)’)-

We also infer that @, , is well defined on the fibers of the Hopf fibration x : S® — §?
and therefore induces SU(2)-action on S%. This induces a surjective homomorphism
SU(2) — SO(3) with the kernel {1,—1}, and it is well known that SO(3) acts doubly
transitively on S?.

Now to prove Lemma 1.3, we need to calculate A} and A in (5.4). Equivalently,

for a local orthonormal frame E = {9y, e,,e,} near x € S8, we need to calculate

N7 (x, x), (e’f My pl,., ey, Y)|X=y)

and

efe]Ny(x,p),_, ey y)l,._,

e)ZKeEIIHﬁ(X’Y”X:y e}deEZIHITVn(X' y)|x=y
We then deduce from <I>1'q-invariance of T} (x,y) and the discussion above that these
quantities do not depend on the choice of x € S® and E = {3,,e;, e,}:

Lemma 5.2. A} and A in (5.4) are constant matrices.

5.3 Chebyshev calculations

In this section, we compute A} and A in (5.4) explicitly. Firstly, from Lemma 5.2, it is
sufficient to compute the matrix at x = («,¢,0) = (7/4,0,0) in the coordinate system
(2.2).

Note that I (x,y) = 0, if 2 { N — m or if |m| > N, by Proposition 2.2. So we

assume that 2|N — m and |m| < N in this section.

Lemma 5.3. Let Uy(x) be the Chebyshev polynomial of the 2nd kind. Assume that

m € Z and N € N satisfies |m| < N.
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Then we have

1 if2IN—-m

1
— [ cos(mB)U,(cosH)do =
277/ v {0 otherwise.

1 Mom? LN if 2N —m
2—/cos(m9)Ul/\,(cos 0) cos6do = { 2
T

0 otherwise.
Proof. Recall that
Sin(N + 1) @ +DF _ o=iti+1)0 o N2 _ive
Uy (cos ) = ; = y , = N0 | gtN=2)0 o | o=INO
w( ) sin® el — e—10
Therefore, the 1st integral is 1 if m is equal to one of N,N — 2,...,—N and 0 otherwise.

To compute the 2nd integral, we first differentiate the above equation to get

— Up(cos0) sin@ = iNe™? +i(V — 2)e'™ =20 4 4 i(—N)e N0

— iN(eN0 _ =0y 4 (7 — 2) (V=20 _ pmitN=208y |

and therefore

Uy (cos§) = 2N (e W10 4 gW=30 1 | g=iV=1)F)

+ 2(V — 2) (W30 4 lN=50 4 4 o iW=3)0y 4

Because the 2nd integral does not depend on the sign of m, we assume without loss of

generality that m > 0. Since cos(mf) cos = % (cos((m + 1)0) + cos((m — 1)0)), we have

1
DI’V”:[N+(N—2)+...+(m+2)]+[N+(N—2)+...+m]:E(Nz—mz)—kN
when 2|N — m and 0 otherwise. |

Theorem 5.4. We have

=
3o

m 1

vEN |0 T2
0

_im N2

2

|

SN
+
=

|
3, '\’l

+N

N
N
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and

Proof. Firstly, we have
i ! ) s do,d
My (x,x) = 2 exp(—imb, +imb,) Iy (ry X, 1y, x)d6,; do,
1 . .
=z // exp(—imé, + imb,) Uy (cos(9; — 0,))do;do,
T
1 /e (—=im0O)Uy(cosH)do
= — X —
27 P N
_ ! (mB) Uy ( 0)doe =1
= 5— | cos(mf)Uy(cos =1,
by Lemma 5.3. For v = « or ¢, we have

1 . .
Bv(y) My (x, y)|X=y = mav(y) // exp(—imo; + imby)y(ry x, rezy)d91d92|X:Y

1 . .
=172 //exp(—zmél + imé,) Uy (cos(0; — 02))9,,(y) (T, X - rgzy)|X:yd81 do,.
If we write

g, X = (sina(x) cos(p(x) + 0;), sina(x) sin(p(x) + 6;), cos a(x) cos(; — ¢(x)),

cos a(x) sin(9; — ¢(x)))
and

o, Y = (sina(y) cos(p(y) + 0,), sina(y) sin(e(y) + 6,), cos a(y) cos(6y — ¢(¥)),

cos a(y) sin(@, — o(¥))),

then

(T, X T, V) |X=y=(a,<p,0) =sina cos a cos(p+6;) cos(p+0,)+sina cos a sin(p+0;) sin(¢+6,)

—sina cosa cos(f; — ¢) cos(f, — ¢) — sinw cos a sin(f; — ¢) sin(@, — @),
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which is 0, and

dy(p) (To, XT3, ¥) |X:y:(o(,(p,0) = —sin? a cos(¢ +6,) sin(¢p +6,) + sin? a sin(p +6,) cos (g +6,)

2

+cos?a cos(#; — ¢) sin(f, — ¢) — cos” a sin(f; — ¢) cos(B, — @),

which simplifies to
cos(2a) sin(fy — 6;).

Therefore,

aﬁt(y)nﬁ(x’ y”x:y =0

_cos(2a)

42 // exp(—im0, + imb,)Uy(cos(6; — 0,)) sin(9; — 6,)do,; db,

Ay My (%, y)|X=Y -
2
_ _%(a) / exp(—im0)Uy(cos0) sinodo
T
im cos(2a) .
D —— exp(—imo@)Uy(cos 6)de

= —imcos(2x),

by Lemma 5.3. Likewise,

1 .
8,8, Iy X, ¥)|,_, = 2z / / exp(—im(6; — 6,))
X (Up(cos(0;=0,))d,,,(Tg, X-Tg,¥)8,,(Tg, X T, ¥) |yt Uy (COS (01 —0)),, 3, (g, X1, ¥) | )46, A6,

and we have

0000y T, X * Tg, V) sy, p,0) = €OS(01 — 62)
B0 (70, X * To, V)| 4y 0) = COS @ Sin e SIN(E) — )
3y 0(y) (0, X * To, V)| 4y 0y = — COS @ Sinar sin(@y — )

By 0p(p) 0, X " T0,Y) |y y— 0 .0) = €OS(01 — 6.
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Therefore,

2 2

m 1 , N —m
O () O () Ty (X, Y)|X=y=(a,(p,0) =2 cos(m8)Uy(cos ) cos 6do = B — +N

aa(x) a(p(y) H;\In(XI Y) |X=Y=(Dt,(/),0) =imcosasinw

30 e () Ty (X, Y)|X:Y:(a%0) = —imcosasina.

For the last case,

m
aso(x> a<p(y) My x,y) |X=y=(a,w,0)

1 2 1/ =2 1 /
== cos(m@) cos*(2a) Uy (cos 0) sin“ 6do + o cos(m@)Uy(cos ) cos 6do
4 T

_ cos*(2a)

1
5 /(cos(m@) sin®)’ Uy (cos 6)do + 2—/cos(m9)U1’V(cos 0) cos9do
T T

1 + cos? 2«
27

2 2 2
m*“ cos“(2 1+ cos“2
=¢/UN(cose)cos(m9)d9+M
2 2

22
=_ W/ Uy (cos 6) sin(m6) sin6do + /cos(m@)UI’V(cos 0) cos9dg
T

/ cos(mo) Uy (cos 6) cos Hd6

NZ_mZ )
—F +NJ).

=m? cosz(Za) + (1 + cos?(2a)) ( 2

Finally, recall that

where

A =T} (x,x),B= (e’lll'[ﬁ(x, y)}Xzy el 17 (x, y)|X=y)
and

XY T m XaY m
elelnN(le)|X:y elean(le)|X=y

eje Iy (. V)|, elelyxiyl,.,
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where {0y, €;,e,} is a local orthonormal frame. (So A, B,and Care 1 x 1,1 x 2, and 2 x 2

complex matrices.) Above computation with (e, e,) = (3, imply that

8</?)|(oz,(p):(7r/4-,0)

1 0 —im cos(2x)
1
Aﬁ:m M—FN imcosasina |(n/40)
imcos(2e) —imcosa sina m? cos?(2a)+(1+cos2(2a)) (Nzgmz + N)

) 0 0

N%2—m im

— N im

N+1 ° 2 lm+ szmzz

0 -3 7 — +N

||

Proof of Lemma 1.3. From Proposition 5.1 and Theorem 5.4, we see that

m_ _ - N+1 Al
E@#{ fy' =0} _/CZ & AEl G a EXP(—(A §,8))dL()

_ o N+1 o A—1/24 A—1/2
= [t B exp(—(A 12, A2 dLce)

where

2 2 :
N+1 —im vi-m? | N

By change of variables A~1/2¢ = ¢, we have

N+1 _—
E# fy =0) = ;3 /(sz”zqAA1/2;|exp<—|¢|2>dL<;>.

Now let
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1 1
andletv, = ( ) and v, = ( ) Observe that Av; = (u+v)v; and Av, = (u — v)v, with
i —i

2 2 .
M= 5t (N = +N) and v = gy In particular, we have

e 1 1 1 1
|AY2e A AV2E] = oy (1) 7vy + @ (i = v)2V5) A (g (1t + )2V + ap(n — 1) 21y
=M%Fm+vwﬂna+mﬂ%u—m%Avj

=u vy A vyl

oy [2(1 + —) — Jory|2(1 — —
1 012|( )
w w

’

= 2 [loy (1 4 m) — o 21 = )

where

m/2

n= N2_m?2 +N'

Therefore,

NZ_mZ

E#fy' =0} = ( 2

1
+N) ?Xcz oy 21+ ) = g (1 = )| exp(~2lar/)dL(c0),
and we evaluate the integral as follows:

1
;/C [len 21+ 1) — oy (1 = )| exp(—2a2)dL(@)

4 .
=— /2 riry ‘r%(l +n) —r2(1 — n)‘ exp(—2(r? 4+ r3))dr,;dr, change of variables o = rjewf
Y RZ

4 /2 poo
:—/ / r3 cos 6 sin 6 ‘rz cos?6(1 +n) —r?sin?6(1 —n) exp(—2r2)drd9
T Jo 0
change of variables (r|,r,) = (rcos 8, rsin6)
4 0o /2
=—/ rd exp(—2r2)dr/ cos 6 sin® |n + cos(26)| do
T Jo 0

1 1 1 + n?
= t|dt = :
yp _1|n+ I yp

In the last equality, we used the fact that |p| < % to evaluate the integral. |
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5.4 Bertini theorem

We need the following Bertini-type theorem to employ the Kac-Rice formalism and to

prove Theorem 1.1:

Proposition 5.5. For all m # 0, 0 is almost surely a regular value of the random

equivariant eigenfunction ¥ : S® — C.

Proof. We need to show that the derivative d, ¥ : T,S® — C is surjective at each point
x where y'(x) = 0 for almost any . It is sufficient to prove that #} has the “1-jet

spanning property” that the 1-jet evaluation map,
TS xHE - TNS%,0), Ty = yvy = Wy ), dy g (),

is surjective.

The 1-jet spanning property implies that at each point, {dZy'(x) : ¥ € H}}
spans the horizontal tangent space H,S®. Since the ensemble is SU(2) invariant, it
suffices to prove the spanning property at a single point. Moreover, since SU(2) acts
transitively on the unit tangent bundle of S? (or on the horizontal spaces of S?), failure
to span is equivalent to the existence of x such that dZy ' (x) = 0 for all ¢ such that
Yt (x) = 0. This is false, since Jacobi polynomials have simple zeros, as can for instance
be seen from the Darboux formula.

As explained in [2, Section 4.1], the 1-jet spanning property implies that the
incidence set I := {(x, ¥ ") € S3 x HY : Y (x) = 0} is a smooth submanifold, and hence

m

by Sard'’s theorem applied to the projection I — Hj#, the zero set
Zym = {x € S Y i(x) = 0}
is a smooth 1D submanifold of S® for almost all (348 |

6 Résumé of the Proof Theorem 1.1

Having established all of the ingredients of the proof of Theorem 1.1 outlined in the
Introduction, we only review how to assemble the ingredients into a proof. We resume
the discussion begun in Section 2.5. To prove (i) of Theorem 1.1, we use the proof of the
same statement as Theorem 2.3 ([8, Theorem 1.5]) for general Kaluza-Klein Laplacians
on circle bundles. The only point we need to establish to apply the proof is that 0 is

almost surely a regular value of the equivariant eigenfunctions, and this is proved in
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Theorem 5.5. The main new result is therefore (ii) of Theorem 1.1. It is based on a simple
formula of Lemma 1.2 relating the genus of the nodal set with the number of zeros of
fy'; this makes use of the special structure of nodal set of real parts of equivariant
eigenfunctions as “helicoid covers” of S2. In Section 5, we use the Kac—Rice to calculate
the expected number of zeros of the random f' and prove Lemma 1.3, concluding the

proof of Theorem 1.1.
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