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We show that real and imaginary parts of equivariant spherical harmonics on S3

have almost surely a single nodal component. Moreover, if the degree of the spherical

harmonic is N and the equivariance degree ism, then the expected genus is proportional

to m
(
N2−m2

2 + N
)
. Hence, if m

N = c for fixed 0 < c < 1, then the genus has order N3.

1 Introduction and Statements of the Results

In a recent article [8], the authors proved that nodal sets of real or imaginary parts of

equivariant (but non-invariant) eigenfunctions of Laplacians �KK of generic “Kaluza–

Klein” metrics gKK on unit tangent (or cotangent) bundles π : M → X over Riemann

surfaces (X, g) have a single connected component. The generic condition is 0 being a

regular value for the eigenfunctions. The unit sphere S3 ⊂ R4 with its standard metric

and Laplacian has the standard Hopf fibration π : S3 → S2 and is an example of

a Kaluza–Klein metric. It is a double cover S3 → SO(3) � U(S2) of the unit tangent

bundle of S2. Recently, the nodal sets of random wave on 3D Euclidean space have been

the subject of numerical investigations by Barnett et al. [1], which exhibit a surprising

feature: only a small number of nodal components are visible in the computer graphics

(Figure 1).
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8522 J. Jung and S. Zelditch

Fig. 1. Nodal surface ([1]).

Fig. 2. Nodal surface plus one extra component ([1]).

The results of Nazarov–Sodin [10] show that in fact there must be cN3 distinct

nodal components for some (very small) c > 0, but the other components are evidently

too small to be seen in the computer graphics. For this reason, it is conjectured that

with probability one, the random spherical harmonic of fixed degree N on S3 has one

giant component and many much smaller components. In Figure 2, one does see a 2nd

small (red) component.

Sarnak [11] posed the problem of finding its expected genus and has proposed

that the expected genus is of the order of magnitude of N3 [11]. Milnor has proved
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Topology of the Nodal Set 8523

that the maximal genus of the zero set of a polynomial of degree N is of this order of

magnitude, so Sarnak’s proposal is that the nodal sets of random spherical harmonics

on S3 are rather like Harnack curves (real algebraic curves of degree N and of roughly

maximal genus).

The purpose of this note is to link the results of [8] to Sarnak’s proposal. Our

main result is that the proposal is true for real/imaginary parts of random equivariant

spherical harmonics of degree N on S3. Equivariant spherical harmonics are complex-

valued functions on S3, defined as follows: let Hm
N (S3) denote the space of complex-

valued spherical harmonics of degree N, which are equivariant of degreemwith respect

to the S1 action defining the Hopf fibration S3 → S2. To be explicit, any ψm
N ∈ Hm

N (S3)

satisfies

−�
S3ψ

m
N = N(N + 1)ψm

N and

ψm
N ((eiθz1, e

iθz2)) = eimθψm
N ((z1, z2)),

for all θ ∈ [0, 2π ] and for all z1, z2 ∈ C such that |z1|2 + |z2|2 = 1 (see §2.1), where �S3 is

the Laplace–Beltrami operator on S3. In §2.3, we describe Hm
N (S3) in terms of harmonic

homogeneous C-valued polynomials on C2. For short, we say that ψm
N is equivariant

of degree (N,m). Since L2(S3,C) = ⊕∞
N=0 VN ⊗ V∗

N where VN is the Nth irreducible

representation of S3, fixing the weight m of the S1 action is the same as fixing one

line in V∗
N , so that dimCHm

N = dimVN = N + 1 (for details, see Proposition 2.2).

Our main results pertain to the nodal sets of the real, resp. imaginary, parts of

ψm
N = um

N + ivmN . (1.1)

It is very useful to work however with the complex-valued ψm
N . The real, resp. imaginary,

part of an equivariant spherical harmonic ψm
N belongs to a subspace 	Hm

N of the real

vector space RVN of real-valued spherical harmonics on S3 of degree N. The L2 inner

product on RVN with respect to the standard volume form dV of S3 induces a Gaussian

measure, the usual “random spherical harmonics” of [10] (for instance). It restricts to the

space 	Hm
N to define a Gaussian measure 	γm

N on this subspace of RVN . The Hermitian

inner product on Hm
N ⊂ L2(S3,C) induces a complex Gaussian measure γm

N on Hm
N (see

Definition 4.1). The Gaussian measures γm
N and 	γm

N are compatible in the sense that the

real resp. imaginary parts of a complex Gaussian random ψm
N are independent Gaussian

random real spherical harmonics (see Section 4.3 and Lemma 4.2.)
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8524 J. Jung and S. Zelditch

A Gaussian measure is determined by its covariance function. The principal

covariance function of this article is the Schwartz kernel �m
N (x, y) of the orthogonal

projection

�m
N : L2(S3,C) → Hm

N . (1.2)

We denote by g(X) the genus of a surface X, and we define

EN,m g(Zum
N

) (1.3)

to be the expected genus of the nodal set of the real part um
N of an equivariant

eigenfunction of degree (N,m) with respect to 	γm
N .

Theorem 1.1. Let (Hm
N , γm

N ) be the Gaussian space of equivariant spherical harmonics

of degree (N,m). In the following, we assume m 
= 0.

(i) With probability 1 (w.r.t. γm
N or equivalently 	γm

N ), the nodal set Zum
N

of

the real part um
N = 	ψm

N (resp. the nodal set ZvmN
of the imaginary part

vmN = �ψm
N ) of a random equivariant spherical harmonic ψm

N ∈ Hm
N has a

single connected component that partitions S3 into two nodal domains.

(ii) The expected genus of the nodal component is given by

EN,mg(Zum
N

) = 1 + η2

8π
|m|

(
N2 − m2

2
+ N

)
− |m| + 1,

where

η = m/2
N2−m2

2 + N
,

which has modulus less than or equal to 1/2.

It follows that when δ < m
N < 1 − δ for some small fixed δ > 0, the genus of Zum

N

is of order N3.

The 1st statement is almost an application of the main result of [8], where the

“genericity” assumption was only used to prove that each real (resp. imaginary) part of

an equivariant eigenfunction has 0 as a regular value. Thus, to prove Theorem 1.1(i),

it is only necessary to prove the Bertini-type theorem that 0 ∈ C is a regular value of

ψm
N : S3 → C with γm

N -probability 1. This is done in Section 5.4. The 2nd statement has

one topological simple part and one probabilistic part. The topological makes use of the

identification of equivariant functions in Hm
N with sections fmN emL of the complex line
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Topology of the Nodal Set 8525

bundle Lm → S2, where eL denotes a local frame of L over the affine chart (which we

choose to be a holomorphic frame). The line bundle L is the hyperplane line bundle over

S2 = CP1. It is often denoted by O(1) (or, less commonly, O(H)) in algebraic geometry,

and its mth tensor power is denoted by O(m). We refer to Section 2.2 and to [7, pp.

145–166] for background on complex line bundles over Riemann surfaces; Lm is denoted

O(Hm) in [7].

Lemma 1.2. If 0 is a regular value of ψm
N , then the genus of Z	ψm

N
is given by

|m|(#{ fmN = 0} − 2)

2
+ 1, (1.4)

where ψm
N is the lift of the section fmN (z, z̄)emL .

As mentioned in [8], the key point of the proof is to show that π : Z	ψm
N

→ X is a

kind of “helicoid cover”. That is, it is an m-fold cover over the complement of the zeros

of fmN , while the inverse image of a zero is an S1 orbit. Thus, it is not a branched cover

in the standard sense; rather π is locally like the projection of a vertical helicoid onto

the horizontal plane. (We thank J. Y. Welschinger for helpful discussions of the local

picture.)

The 2nd part is the following Kac–Rice-type calculation.

Lemma 1.3. With probability 1, fmN has isolated non-degenerate zeros, and

E#{ fmN = 0} = 1 + η2

4π

(
N2 − m2

2
+ N

)
,

where

η = m/2
N2−m2

2 + N
.

To determine the expected number of (complex) zeros of fmN , we use the Kac–

Rice formula for the ensemble (Hm
N , γm

N ), which consists of complex Gaussian random

eigensections of the line bundle Lm. As usual, it gives an integral formula for the

expected number of zeros in terms of the determinant of a matrix formed from

values and derivatives of the covariance (two-point) function of the Gaussian random

function. The covariance kernel is evaluated in Section 4.2 and turns out to be simple

enough to yield the explicit formula of Lemma 1.3. An essential point is that the Euler

characteristic calculation of Lemma 1.2 allows us to reduce the calculation of the

expected Euler characteristic to a quantity that can be handled by the Kac–Rice formula.
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8526 J. Jung and S. Zelditch

We close the introduction with some remarks on the relation of Theorem 1.1

to the conjecture that nodal sets of random real spherical harmonics of degree N on

S3 contain a unique giant component. It is not clear that our methods and results

apply to this conjecture. Rather, they demonstrate that the conjecture is true for the

special spherical harmonics formed by real/imaginary parts of equivariant spherical

harmonics, and indeed, there is just one component. A rather distant hope is to obtain

results on the full space of random spherical harmonics by perturbation of the nodal

sets of equivariant spherical harmonics. As m varies, the latter comprise the union⋃
|m|≤N
2|N−m

	Hm
N of N + 1 real subspaces of dimension N + 1. A random real spherical

harmonic inHN is a random linear combination of components in 	Hm
N . It is tempting to

imagine that, locally, a random spherical harmonic in HN might be a small perturbation

of the real part of an equivariant spherical harmonic in Hm
N , so that its nodal set locally

resembles that of an equivariant one. The genus of the nodal set of um
N = 	ψm

N is so large

that a small perturbation is unlikely to decrease the genus. An independent possibility

is that the geometric analysis of nodal sets of um
N ∈ 	Hm

N has a generalization in some

form to nodal sets of general spherical harmonics of degree N.

2 Proof of Theorem 1.1(i) Modulo Bertini’s Theorem

This section is devoted to the geometric setting of the article. Its main result is the proof

of the 1st statement (i) of Theorem 1.1 modulo Bertini’s theorem. As mentioned in the

introduction, it is basically a corollary of the main results of [8] on eigenfunctions of

Kaluza–Klein Laplacians on general S1 bundles over Riemann surface, which we state

in Theorem 2.3 below. To derive statement (i) from Theorem 2.3, we need to show that

equivariant spherical harmonics ψm
N are Kaluza–Klein eigenfunctions on S3 and can also

be regarded as sections of the complex line bundle Lm → S2. All of the relevant geometric

notions are reviewed in this section. To complete the proof of Theorem 1.1(i), we also

need to prove that almost every ψm
N has 0 as a regular value. We postpone the proof of

the last statement, “Bertini’s theorem”, to Section 5.5.

2.1 Coordinates on S3 and Hopf fibration

We use two coordinate systems on S3:

(z1, z2) 
→

⎛
⎜⎜⎜⎜⎝

	z1
�z1
	z2
�z2

⎞
⎟⎟⎟⎟⎠ ∈ S3 ⊂ R4, (2.1)
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Topology of the Nodal Set 8527

where z1, z2 ∈ C and |z1|2 + |z2|2 = 1 or

(α,ϕ, θ) 
→

⎛
⎜⎜⎜⎜⎝
sinα cos(θ + ϕ)

sinα sin(θ + ϕ)

cosα cos(θ − ϕ)

cosα sin(θ − ϕ)

⎞
⎟⎟⎟⎟⎠ ∈ S3 ⊂ R4, (2.2)

where α ∈ [0,π/2], ϕ ∈ [0, 2π ], and θ ∈ [−π ,π ]. In the 1st coordinate system (2.1), the

action of S1 is given by

rϑ(z1, z2) = (eiϑz1, e
iϑz2) (2.3)

and the Hopf map π : S3 → S2 is given by

π : (z1, z2) 
→
(
2z1z2, |z1|2 − |z2|2

)
∈ C × R. (2.4)

In the 2nd coordinate system, (2.3) is equivalent to

(α,ϕ, θ) 
→ (α,ϕ, θ + ϑ)

and the Hopf map (2.4) is

π : (α,ϕ, θ) 
→

⎛
⎜⎜⎝
sin(2α) cos(2ϕ)

sin(2α) sin(2ϕ)

cos(2α)

⎞
⎟⎟⎠ ∈ S2 ⊂ R3.

2.2 S3 as a Kaluza–Klein 3-fold

The purpose of this section is to explain how S3 (equipped with its standard metric)

is an example of a Kaluza–Klein metric in the sense of [8]. We also review the relation

between equivariant Laplace eigenfunctions on S3 and associated eigensections of line

bundles over S2.

The 3-manifoldsM3 studied in [8] are S1 bundlesM3 → X over Riemann surfaces

X, in particular the unit tangent or cotangent bundles. A Kaluza–Klein metric on M3

is a bundle-metric g defined by a connection ∇ on TM3 and a Riemannian metric h

on X. The circular fibers are geodesics of the metric (in particular have a constant

length), and the metric on the horizontal spaces is the lift of the metric on X. It is

evident that the standard metric on S3 is Kaluza–Klein with respect to the Hopf fibration

π : S3 → S2. A harmonic analysis on spheres and its relation to the Hopf fibration

S3 → S2 is elementary and well known (see e.g. [6]), so we only review two aspects of it:
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8528 J. Jung and S. Zelditch

(1) relating eigensections of the Bochner Laplacians on Lm to equivariant eigenfunctions

of �
S3 ; (2) CR geometry of S3.

Associated to the principal S1 bundle S3 → S2 are the line bundles Lm = S3×χmC

where χ(eiθ ) = eiθ . For m = 1, L = O(1) → CP1 in the notation of algebraic geometry [7];

it is the spin-bundle, i.e., the square root of the anti-canonical bundle, K−1
CP

= (T1,0)
1
2CP1.

When m = −1, L−1 = K
CP1 � T∗1,0CP1, the canonical bundle. In a standard way, we view

S3 ⊂ L∗ as the unit bundle with respect to the Fubini–Study metric. The connection in

this setting is the Chern connection of the Fubini–Study metric; we refer to [7, 8] for

background.

Sections s of Lm → S2 naturally lift to L∗ by

ŝ(z, λ) := λm(s(z)).

Thus, the restriction of the lift of s ∈ C(S2, Lm) to S3 satisfies ŝ(rθx) = eimθ ŝ(x). We refer

to lifts of sections of Lm as “equivariant” functions on S3 and denote the space of such

functions by Hm.

The standard Laplacian �
S3 is a Kaluza–Klein Laplacian, i.e., has the form,

�S3 = �H + ∂2

∂θ2
,

where �H is the horizontal Laplacian. The fact that the fiber Laplacian is ∂2

∂θ2
reflects

the fact that S1 orbits are geodesics isometric to R/2πZ. It is obvious that [�S3 ,
∂2

∂θ2
] = 0.

Since S1 acts isometrically on (S3,G), we may decompose into its weight spaces,

L2(S3,C) =
⊕
m∈Z

Hm,

where Hm = {F : S3 → C : F(rθ .x) = eimθF(x)}. The inner product is always the

standard one (with respect to Haar measure). The weight spaces are �H-invariant, i.e.,

�H : Hm → Hm.

Definition 2.1. We define Hm
N to be the subspace of degree N spherical harmonics in

Hm. We call a function belonging to Hm
N an equivariant spherical harmonic of degree

(N,m).

The lifting map gives a canonical identification Hm
∼= L2(S2, Lm). The Bochner

Laplacian ∇∗
m∇m corresponds to the horizontal Laplacian under this identification, i.e.,

̂∇∗
m∇m( f (dz)m) = �H

̂( f (dz)m).
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Topology of the Nodal Set 8529

Since S3 is a group, L2(S3) = ⊕∞
N=0 VN ⊗ VN where VN is an irreducible

representation of S3 of dimension N + 1. Moreover, �|VN⊗VN
= N(N + 2) = (N + 1)2 − 1.

2.3 CR structure

Another viewpoint is that S3 = ∂B ⊂ C2, i.e., that S3 is the boundary of the unit ball,

a strictly pseudo-convex domain in C2. A defining function for S3 ⊂ C2 is the usual

Euclidean distance r = |Z| from the origin. Here, Z ∈ C2. Let ∂r be the associated (0, 1)

form. The theory of spherical harmonics on S3 has been related to the CR geometry and

the representation theory of SU(2) = S3 in [6].

Spherical harmonics on S3 are restrictions of homogeneous harmonic polynomi-

als on C2. In complex coordinates Z = (z1, z2), the Euclidean Laplacian is

�R4 = 4
2∑

j=1

∂2

∂zj∂ z̄j
.

Let H(p,q)

N denote the space of harmonic homogeneous polynomials of degree N

on C2 which are of degree p in zjs and of degree q in the z̄js; N = p+ q. Then H(p,q) is an

irreducible representation of SU(2) and the space of all spherical harmonics of degree

N admits the decomposition

HN =
⊕

p+q=N

H(p,q)

N . (2.5)

The representation of U(2) on H(p,q)

N is denoted by ρ(q,−p). One has ρ(q,−p)|SU(2) =
ρ(q′,−p′)|SU(2) ⇐⇒ p+q = p′+q′ and dim ρ(q,−p) = p+q+1. Hence, the decomposition

(2.5) is another decomposition of VN ⊗ V∗
N into irreducibles.

The orbits of the Hopf fibration of the action (2.3) define the characteristic

directions of the CR manifold and lie in the null space of ∂r|TS3 . It follows that on

polynomials zp1
1 zp2

2 z̄q11 z̄q22 of type (p,q) (i.e., p1 + p2 = p and q1 + q2 = q), S1 acts by

ei(p−q)θ . Thus, the equivariance degree of ψ
(p,q)

N ∈ H(p,q)

N is m = p − q. Since p + q = N,

m = 2p−N, i.e., the data (p,q) are equivalent to specifying only p or q orm. In particular,

S1 acts by eiNθ on the space HN,0
N of holomorphic polynomials (p,q) = (N, 0).

Proposition 2.2. H(p,q)

N = H2p−N
N . In particular, the dimension of Hm

N is N + 1 if |m| ≤ N

and 2|N − m and 0 otherwise.
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8530 J. Jung and S. Zelditch

2.4 Associated sections of line bundles

It is useful to simultaneously keep in mind the “upstairs” picture of equivariant

eigenfunctions of �
S3 and the “downstairs” picture of sections of complex line bundles,

as described in Section 2.2.

We denote the eigensection corresponding to ψm
N ∈ Hm

N as fmN emL in a local

holomorphic frame eL of L, so that fmN is a locally defined function on CP1, i.e., is a

function on the affine chart C. This is a useful description in analyzing the complex

zeros of ψn
N .

We denote by ZfmN
the zero set of the eigensection fmN emL on S2:

ZfmN
= {z ∈ S2 : fmN (z) = 0}.

It is easy to see that the zero set Zψm
N
of ψm

N is the inverse image of ZfmN
under the natural

projection π :

Zψm
N

= π−1ZfmN
.

We note that c1(L
m) = m (1st Chern number, the integral of the 1st Chern class). By the

Hopf theorem, c1(L
m) is the sum over zeros of a smooth section fmN with non-degenerate

zeros of the index in Z2 of the zero. The index is the degree of the locally defined map
s(z)
|s(z)| from a small circle centered at the zero to C in a local trivialization ([3, Theorem

11.17]–[3, Proposition 12.8].) In particular, if s is a holomorphic section, then the indices

are all equal to 1 and s has precisely m zeros (counted with multiplicity). This only

occurs in the case m = N. Otherwise, the sections in Hm
N are smooth eigensections, and

they have more than m zeros on average, as is shown in the next section. In general, it

is not obvious whether or not the zero set of fmN is discrete in S2.

We now consider real and imaginary parts,

	fmN = am
N (z), �fmN = bmN (z).

Then,

fmN (z)e−imθ = (
am
N (z) + ibmN (z)

)
(cosmθ − i sinmθ),

so that with ψm
N = um

N + ivmN ,

{
um
N = am

N cosmθ + bmN sinmθ ,

vmN = bmN cosmθ − am
N sinmθ .

(2.6)
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Topology of the Nodal Set 8531

We denote the nodal sets of the real, resp. imaginary, parts of the lift by

N	ψm
N

{p ∈ Ph : 	ψm
N (p) = 0}, resp. N�ψm

N
= {p ∈ Ph : �ψm

N (p) = 0}.

The analysis is the same for real and imaginary parts.

Since �
S3 is a real operator, the real and imaginary parts (1.1) satisfied the

modified eigenvalue system,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�Gu
m
N = −λmN um

N ,

�Gv
m
N = −λmN vmN ,

∂
∂θ
uj = mvj,

∂
∂θ
vj = −muj.

2.5 Review of the results of [8]

The main result [8, Theorem 1.5] pertains to nodal sets of real/imaginary parts of

equivariant eigenfunctions of the Kaluza–Klein Laplacian on S1 bundles π : M → X

over Riemannian surfaces X. A Kaluza–Klein metric G is specified by a metric h on X

and a connection ∇ on π : M → X. It is proved in [8] that, for a generic Kaluza–Klein

metric, every equivariant eigenfunction has 0 as a regular value, and the eigenspaces

are of real dimension 2 (corresponding to an equivariant eigenfunction and its complex

conjugate).

Theorem 2.3. Suppose that the data (g,h,∇) of the Kaluza–Klein metric satisfy the

condition that every equivariant eigenfunction has 0 as a regular value and that the

eigenspaces are of real dimension 2. Then,

(1) The eigenspace of �G corresponding to λ = λm,j = λ−m,j is spanned by ϕm,j

and ϕ−m,j = ϕm,j. In particular, any real eigenfunction with the eigenvalue

λm,j is a constant multiple of Tθ (	ϕm,j), where Tθ is the S1 action on P

parameterized by θ .

(2) For m 
= 0, the nodal sets of 	ϕm,j are connected.

(3) For m 
= 0, the number of nodal domains of 	ϕm,j is 2.

For the sake of completeness, we briefly review here the proof of (2) and (3) in

the setting of the present paper in order to bridge (i) of Theorem 1.1 and the regularity

of 0 of ψm
N : S3 → C. We temporarily assume that 0 is a regular value of almost every

equivariant spherical harmonic ψm
N for every N,m (proved in Section 5.5).
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8532 J. Jung and S. Zelditch

As discussed above, S3 is Kaluza–Klein with respect to the standard metric on

S2 and Riemannian connection.

Fix a sufficiently small open ball U ⊂ S2 and a local frame giving a trivialization

π−1U ∼= S1 × U where π : S3 → S2 is the Hopf map. In this trivialization, one may write

ψm
N = eimθ f (p) for some function f : U → C. Taking the real part of ψm

N , we obtain

um
N = 	(ψm

N ) = f1(p) cosmθ + f2(p) sinmθ ,

where f = f1 − if2. Observe that if f (p) 
= 0, then there are 2m distinct θ that make this

expression vanish. This implies that the nodal set of um
N in π−1U minus⋃

{p:f (p)=0}
π−1p

is 2m-covering of U minus the zero set of f . In particular, if there is at least one

p ∈ U such that f (p) = 0, then the nodal set of um
N in π−1U is connected. By taking

any collection of U that covers S2, one sees that the existence of at least one zero of

ψm
N implies that the nodal set of um

N being connected. So the 1st part of Theorem 1.1 (i)

follows by observing that ψm
N corresponds to a section of Lm → S2 (§2.2), which must

vanish at least at a point because Lm → S2 is nontrivial.

For the 2nd assertion of Theorem 1.1(i), we need the topological argument from

[8, Section 8], where we proved (1) discreteness of zeros and (2) existence of at least

one zero of ψm
N imply the number of nodal domains being 2. Therefore, we prove in

Proposition 5.5 that with probability 1, all zeros of ψm
N are regular, which will complete

the proof.

3 Genus of the Nodal Set: Proof of Lemma 1.2

In this section, we relate the genus of the nodal set of 	ψm
N to the number of zeros of

fmN , under the assumption of all zeros of fmN being regular (Lemma 1.2). We first recall a

few lemmata (see for instance [12, Chapter 4]):

Lemma 3.1. Let X be a topological space and let A,B be topological subspaces whose

interior cover X. Then

χ(X) = χ(A) + χ(B) − χ(A ∩ B),

where χ(·) is the Euler characteristic of ·.

Lemma 3.2. Let X be a n-covering of M. Then we have

χ(X) = nχ(M).
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Now we are ready to prove Lemma 1.2, again modulo Bertini’s theorem

(Section 5.5).

Proof. To simplify the notation, let ψ = ψm
N and f = fmN . Let {zj}j=1,2,...,k be the complete

set of zeros of f . We first note that

Z	ψ − ∪k
j=1{(zj, θ) : θ ∈ [0, 2π ]}

is m-covering of k-punctured sphere. So the Euler characteristic of

Z	ψ − ∪k
j=1{(zj, θ) : θ ∈ [0, 2π ]}

is m(2 − k) by Lemma 3.2.

Now we apply Lemma 3.1 with X = Z	ψ , A = Z	ψ − ∪k
j=1{(zj, θ) : θ ∈ [0, 2π ]}, and

B equal to a sufficiently small open neighborhood of
⋃k

j=1{(zj, θ) : θ ∈ [0, 2π ]} in Z	ψ .

Then B is homotopic to ∪k
j=1{(zj, θ) : θ ∈ [0, 2π ]}, which has Euler characteristic equal to

0, and A ∩ B is m-covering of a disjoint union of punctured disks, which also has Euler

characteristic equal to 0. This implies that X = Z	ψ has Euler characteristic m(2 − k),

and therefore the conclusion follows. �

4 Gaussian Random Equivariant Spherical Harmonics

The space Hm
N has thus been identified as the complex vector space,

Hp,q
N =

⎧⎨
⎩

N∑
|α|=p,|β|=q

c p,q
α,β z

α z̄β , c p,q
α,β ∈ C

⎫⎬
⎭ , 2p − N = m.

The basis elements zα z̄β are orthogonal on S3 but are not of norm 1. To compute the

norms, it is advantageous to relate integrals over S3 with Gaussian integrals over C2,

i.e., to use the measure e−|Z|2dL(Z) where dL is Lebesgue measure. The calculations are

done in [6, p. 98] and one finds that (using multi-index notation zα = zα1
1 zα2

2 ),∫
S3

|zα|2dV = 2πα!

(|α| + 2)!
.

Henceforth, we denote the orthonormalized monomials by ŝN,α,β̄ := zα z̄β

||zα z̄β || .

Definition 4.1. The Gaussian random equivariant spherical harmonic ψm
N ∈ Hm

N =
Hp,q

N ,p − q = m is defined by the series

ψm
N (Z) =

N∑
|α|=p,|β|=q

aα,β ŝN,α,β̄ ,

where the coefficients aα,β are independent standard complex normal Gaussians.
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When p = m = N, these polynomials are known as the SU(2) Gaussian

holomorphic polynomials; for general (p,q), we call them SU(2)p,q polynomials. They

are sometimes called “poly-analytic” functions. The subspace H0
N consists of invariant

eigenfunction pulled back from S2. They are real valued and so the equivariant nodal

sets are not intersections of two real nodal sets.

4.1 Zero set measures

If f : S3 → R is a real-valued function, thenwe denote its zero set by Zf . We also denote

by [Zf ] the positive measure defined by the linear functional

〈[Zf ],g〉 :=
∫
Zf

gdH2, g ∈ C(S3),

where dH2 is the induced surface measure on Zf (i.e., 2D Hausdorff measure). If f is

a random function, then [Zf ] is a random measure and the integral 〈[Zf ],g〉 is a real

random variable. When f = 	ψm
N with N = p + q,m = p − q, we denote by Ep,q

N [Zψm
N
] the

measure whose integral against the test function g ∈ C(S3) is E〈[Zψm
N
],g〉.

4.2 Covariance kernel

The covariance kernel of the Gaussian random equivariant spherical harmonics is the

integral kernel of the orthogonal projection, �m
N : L2(S3) → Hm

N , given by

�m
N (x, y) := 1

4π2

�
exp(−imθ1 + imθ2)�N(rθ1

x, rθ2
y)dθ1dθ2,

where �N : L2(S3) → HN is the covariance kernel of the Gaussian random spherical

harmonics.

Explicit calculations to follow are based on the identity

�N(x, y) = UN(x · y), (4.1)

where

UN(cos θ) = sin(N + 1)θ

sin θ
= ei(N+1)θ − e−i(N+1)θ

eiθ − e−iθ
= eiNθ + ei(N−2)θ + . . . + e−iNθ .

is the Chebyshev polynomial of the 2nd kind. One may derive (4.1) from [13, Chapter IV.2]

(or [9, Chapter 2.3]) while observing that Gegenbauer polynomial C
d−1
2

N (t) with d = 3 is a

constant multiple of UN(t). For completeness, we include our version of the proof:
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Proof of (4.1). We first claim that there exists a homogeneous real polynomial PN(t) of

degree N so that �N(x, y) = PN(〈x, y〉) where 〈x, y〉 is the inner product.

The oriented isometry group of S3 is G := SO(4). Since the Laplacian �S3

commutes with G, we have �N(gx, gy) = �N(x, y) for all g ∈ G. Hence, �N(x, y) =
�N(y−1x, I), where I denotes the identity element. Thus, �N is a convolution operator

on S3. It is well known that any such point-pair invariant kernel on a symmetric space

is a function of the distance r(x, y) between x and y. For x, y ∈ S3, r(x, y) is the angle θ

defined by 〈x, y〉 = cos θ . Hence, �N(x, y) = PN(〈x, y〉 for some function PN . Since �N(x, y)

is a homogeneous polynomial of degree 2N in (x, y) ∈ R4 ×R4, which is homogeneous of

degree N in both x, y, it follows that PN is a homogeneous polynomial of degree N.

To complete the proof, we need to show that PN = UN . To this end, we compute

the character χN of the representation of SU(2) � S3 on the space HN of spherical

harmonics of degree N. A maximal abelian subgroup is given by diagonal unitary

matrices D(θ) := Diag(eiθ , e−iθ ) of determinant 1. As is wellknown (cf. [4]), the character

is given by

χN(θ) = eiNθ + ei(N−2)θ + . . . + e−iNθ = UN(cos θ).

On the other hand,

χN(θ) = TrD(θ)�N = ∫
S3

�N(x,D(θ)x)dx

= ∫
S3

�N(D(θ), I)dx = �N(D(θ), I)

= PN(〈(eiθ , e−iθ ), (1, 0, 0, 0)〉) = PN(cos θ).

where dx is normalized Haar measure. It follows that PN = UN . �

4.3 Real versus complex Gaussian ensembles

The purpose of this section is to show that the real parts of complex Gaussian SU(2)p,q

are real Gaussian spherical harmonics in the standard sense employed by Nazarov–

Sodin, Sarnak, etc. Taking the real part defines the map

	 : ψm
N ∈ (Hm

N , γm
N ) → 	ψm

N ∈ Hm
N + H−m

N .

Its image is a real subspace we denote by 	Hm
N ⊂ HN . If we push forward the complex

Gaussian measure γm
N onHm

N , then we get a Gaussian measure on 	Hm
N . Our claim is that

this measure coincides with the real Gaussian measure on HN conditioned on 	Hm
N . We
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denote by Em
N the expectation with respect to γm

N and EN,m the conditional expectation

of γN conditioned on 	Hm
N .

Lemma 4.2. Ep,q
N [Z	ψm

N
] = EN,m[Z	ψm

N
]. In fact, for any functional G of 	ψm

N , we have

Ep,q
N G(Z	ψm

N
) = EN,mG(Z	ψm

N
).

Proof. We assume p + q = N,p − q = m. The real part of a complex combination

∑
|α|=p,|β|=q

aα,β ŝ
α,β
N =

∑
α,β

[Aα,β + iBα,β ][u
α,β
N + ivα,β

N ]

equals ∑
|α|=p,|β|=q

[Aα,βu
α,β
N − Bα,βv

α,β
N ].

Here, Ap,q,Bp,q are independent N(0, 1) random variables. If we condition on Bα,β = 0,

then we get the conditional real Gaussian ensemble.

We consider the measure-valued random variable [Z	ψm
N
], as well as the Euler

characteristic of Z	ψm
N

(or any functional G of 	ψm
N ) as a function F(A− B) where A and

B are independent N(0, 1) vectors. That is, the Gaussian measure on the coefficients A

and B is the product dγ (A)dγ (B). The conditional Gaussian ensemble is dγ (A)δ0(B). So

the Lemma boils down to proving that

∫
RN

∫
RN

F(A − B)dγ (A)dγ (B) =
∫
RN

F(A)dγ (A).

Since γ ∗ γ = γ , the left side equals

∫
RN

∫
RN

F(C)dγ (A)dγ (C − A) =
∫
RN

F(C)dγ ∗ γ (C) =
∫
RN

F(C)dγ ,

as claimed. �

5 Kac–Rice Formula

In view of Lemma 1.2, the proof of Theorem 1.1 is reduced to the calculation of

EN,m#{ fmN = 0}. To this end, we use the Kac–Rice formula. The Kac–Rice formula in

the setting of random smooth sections of complex line bundles over Kähler manifolds is

proved in [5]. It makes use of the canonical lift of sections to equivariant functions on
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the associated S1 bundle and is therefore well adapted to our setting. We briefly review

the formula and then move on to the calculation of EN,m#{ fmN = 0}.

5.1 Review of the Kac–Rice formula in our setting

We closely follow the exposition in [5, Section 5.4].

To state the Kac–Rice result, we need some notation and background. The

pullback of the Dirac mass δ0 at 0 ∈ C is given by

δ0( f ) =
∑
x:f=0

δx

|df ∧ df̄ | .

Here, we use that the Jacobian Jf of f : C → C is given by Jf = |df ∧df̄ |. The equivariant

lift of f to the circle bundle is fe−mϕ/2 where ϕ is the Kähler potential of the Fubini–Study

metric. The pullback of δ0 under this complex-valued function is

δ0(e
−mϕ/2f ) =

∑
x:e−mϕ/2f=0

δx

Je−mϕ/2f
= emϕ

∑
x:f=0

δx

Jf
,

since De−mϕ/2f = e−mϕ/2Df at a zero.

Second, we need to recall the joint probability density Dm
N (x, ξ ; z) of the random

variables

Xz( f
m
N ) := fmN (z),�z( f

N
m) := dfmN (z)

and in particular the “conditional” density D(0, ξ ; z). The joint probability density is

given by

D(x, ξ ; z) = exp〈−�−1v, v〉
π3 det�

, v =
(
x

ξ

)
, (5.1)

where � = �m
N (z) is the covariance matrix of (Xz,�z),

�m
N (z) =

(
Am
N Bm

N

Bm∗
N Cm

N

)
,

(
Am
N

) = E
(
XzX̄z

) = 1

dm
N

�m
N (z, 0; z, 0) ,

(
Bm
N

) = E
(
Xz�z

) = 1

dm
N

∇2
�m

N (z, 0; z, 0) ,

(
CN) = E

(
�z�z

) = 1

dm
N

∇1∇2
�m

N (z, 0; z, 0) .

(5.2)
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Here, ∇1
z , respectively ∇2

z , denotes the differential operator on X × X given by applying

∇z to the 1st, respectively 2nd, factor. For notational simplicity, we often drop the super-

and sub-scripts (N,m) in what follows.

As discussed in [5] and as is wellknown, D(0, ξ ; z) is then given by

D(0, ξ ; z) = Z(z)D�(ξ ; z), (5.3)

where

D�(ξ ; z) = 1

π2 det�
exp

(
−〈�−1ξ , ξ 〉

)
(5.4)

is the Gaussian density with covariance matrix

� = C − B∗A−1B (5.5)

and where

Z(z) = det�

π det�
= 1

π detA
. (5.6)

The formula (5.3) for D(0, ξ ; z) simplifies to

D(0, ξ ; z) = 1

π3 detAdet�
e−〈�−1ξ ,ξ〉. (5.7)

Proposition 5.1. Let s = fe in a local frame and let ŝ = fe−mϕ/2. Then, EZs is the

measure on CP1 given by

E(Zs) = ∫
C2

∣∣ξ ∧ ξ
∣∣ D(0, ξ : x)dL(ξ),

where dL is Lebesgue measure and where D(x, ξ ; z) is the joint probability density of

( f (z),df (z)), given by (5.7).

Proof. By definition,

E(〈Zs,ψ〉) = E
∫
CP1

ψ(z)δ0( fe
−mϕ/2)

∣∣d( f (z, z̄)e−mϕ/2) ∧ d(̄ f (z, z̄)e−mϕ/2)
∣∣

= E
∫
CP1

ψ(z)δ0( f )
∣∣d( f (z, z̄)) ∧ d(̄ f (z, z̄))

∣∣ .
Here,

∣∣d( f (z, z̄)e−nϕ/2) ∧ d(̄ f (z, z̄)e−nϕ/2)
∣∣ is a density (the absolute value of a volume

form). We then replace the δ0( f ) by the Fourier integral, to get

E(〈Zs,ψ〉) =
∫
C

ψ(z)E
(
ei	f (z)t

∣∣∣df ∧ df̄
∣∣∣)dL(t).
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In general, if F is a complex Gaussian random field and � is a (possibly nonlinear)

functional, then

E(�(F(z),dF(z))) =
∫
C×C2

�(z, ξ)P(F(z) = x, dF(z) = ξ) =
∫
C×C2

�(z, ξ)D(x, ξ ; z)dzdξ .

Therefore,

E(ei	f (z)t
∣∣∣df ∧ df̄

∣∣∣) =
∫
C

∫
C2

ei	xt̄
∣∣ξ ∧ ξ

∣∣D(x, ξ ; z)dzdξ .

Using that
∫
C
ei	xt̄dL(t) = δ0(x), we get

∫
C

E(ei	f (z)t
∣∣∣df ∧ df̄

∣∣∣)dL(t) =
∫
C2

∣∣ξ ∧ ξ
∣∣ D(0, ξ ; z)dL(z)dL(ξ).

It remains to compute D(x, ξ ; z), and we outline the calculation in [5] using the

real linear 1-jet map J := J1z , which is locally written in terms of an orthonormal basis

{ fj} as

J (a) = (x, ξ) := (
∑
j

ajfj(z),
∑

ajDfj(z)), Jz(a) =
∑

ajDfj(z)). (5.8)

We may regard J as a map from a ∈ CN into (x, ξ) ∈ C×C2. The joint probability

density is the push forward of the measure e−|a|2/2da under J1z ,

J∗e−|a|2da = D(x, ξ ; z)dL(x)dL(ξ) i.e., D(x, ξ ; z) =
∫
J −1(x,ξ)

e−|a|2/2dȧ,

where dȧ is the surface Lebesgue measure on the subspace J −1(x, ξ). This follows from

general principles on pushing forward complex Gaussians under complex linear maps

F : Cd → Cn, whereby

F∗e−|a|2da = γFF∗ , i.e., J (x, ξ) = 1

detJJ ∗ e
−〈[JJ ∗]−1(x,ξ),(x,ξ)〉. (5.9)

As in [5], one shows that JJ ∗ = �m
N above. Conditioning on x = 0 then gives (5.3). �

5.2 Symmetries and application to Lemma 1.3

Note that �N(�(x),�(y)) = �N(x, y) for any isometry � ∈ SO(4). However, this is not true

for �m
N (x, y). To understand the symmetries of �m

N (x, y), we first identify (z1, z2) ∈ C2 in

(2.1) with unit quaternion p = z1 + z2j. Then the action rθ (2.3) is equivalent to the left

multiplication by eiθ .
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We recall that the map from SU(2) × SU(2) to SO(4) given by mapping a pair of

unit quaternions (p,q) to the map �p,q : x 
→ p̄xq is a surjective homomorphism with

the kernel {(1, 1), (−1,−1)}. Observe that among �p,q, �1,q for any fixed q commutes with

the action rθ , by the associativity of multiplication of quaternions. Hence, �1,q leaves

�m
N (x, y) invariant because

�N(rθ1
�1,q(x), rθ2

�1,q(y)) = �N(�1,q(rθ1
x),�1,q(rθ2

y)) = �N(rθ1
x, rθ2

y).

We also infer that �1,q is well defined on the fibers of the Hopf fibration π : S3 → S2

and therefore induces SU(2)-action on S2. This induces a surjective homomorphism

SU(2) → SO(3) with the kernel {1,−1}, and it is well known that SO(3) acts doubly

transitively on S2.

Now to prove Lemma 1.3, we need to calculate �m
N and � in (5.4). Equivalently,

for a local orthonormal frame E = {∂θ , e1, e2} near x ∈ S3, we need to calculate

�m
N (x, x),

(
ey1�

m
N (x, y)

∣∣
x=y ey2�

m
N (x, y)

∣∣
x=y

)

and ⎛
⎝ex1e

y
1�

m
N (x, y)

∣∣
x=y ex1e

y
2�

m
N (x, y)

∣∣
x=y

ex2e
y
1�

m
N (x, y)

∣∣
x=y ex2e

y
2�

m
N (x, y)

∣∣
x=y

⎞
⎠ .

We then deduce from �1,q-invariance of �m
N (x, y) and the discussion above that these

quantities do not depend on the choice of x ∈ S3 and E = {∂θ , e1, e2}:

Lemma 5.2. �m
N and � in (5.4) are constant matrices.

5.3 Chebyshev calculations

In this section, we compute �m
N and � in (5.4) explicitly. Firstly, from Lemma 5.2, it is

sufficient to compute the matrix at x = (α,ϕ, θ) = (π/4, 0, 0) in the coordinate system

(2.2).

Note that �m
N (x, y) = 0, if 2 � N − m or if |m| > N, by Proposition 2.2. So we

assume that 2|N − m and |m| ≤ N in this section.

Lemma 5.3. Let UN(x) be the Chebyshev polynomial of the 2nd kind. Assume that

m ∈ Z and N ∈ N satisfies |m| ≤ N.
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Then we have

1

2π

∫
cos(mθ)UN(cos θ)dθ =

{
1 if 2|N − m

0 otherwise.

1

2π

∫
cos(mθ)U ′

N(cos θ) cos θdθ =
{

N2−m2

2 + N if 2|N − m

0 otherwise.

Proof. Recall that

UN(cos θ) = sin(N + 1)θ

sin θ
= ei(N+1)θ − e−i(N+1)θ

eiθ − e−iθ
= eiNθ + ei(N−2)θ + . . . + e−iNθ .

Therefore, the 1st integral is 1 if m is equal to one of N,N − 2, . . . ,−N and 0 otherwise.

To compute the 2nd integral, we first differentiate the above equation to get

− U ′
N(cos θ) sin θ = iNeiNθ + i(N − 2)ei(N−2)θ + . . . + i(−N)e−iNθ

= iN(eiNθ − e−iNθ ) + i(N − 2)(ei(N−2)θ − e−i(N−2)θ ) + . . .

and therefore

U ′
N(cos θ) = 2N(ei(N−1)θ + ei(N−3)θ + . . . + e−i(N−1)θ )

+ 2(N − 2)(ei(N−3)θ + ei(N−5)θ + . . . + e−i(N−3)θ ) + . . . .

Because the 2nd integral does not depend on the sign of m, we assume without loss of

generality that m ≥ 0. Since cos(mθ) cos θ = 1
2 (cos((m + 1)θ) + cos((m − 1)θ)), we have

Dm
N = [N + (N − 2) + . . . + (m + 2)] + [N + (N − 2) + . . . + m] = 1

2
(N2 − m2) + N

when 2|N − m and 0 otherwise. �

Theorem 5.4. We have

�m
N = 1

N + 1

⎛
⎜⎜⎝
1 0 0

0 N2−m2

2 + N im
2

0 − im
2

N2−m2

2 + N

⎞
⎟⎟⎠
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and

� = 1

N + 1

(
N2−m2

2 + N im
2

− im
2

N2−m2

2 + N

)
.

Proof. Firstly, we have

�m
N (x, x) = 1

4π2

∫∫
exp(−imθ1 + imθ2)�N(rθ1

x, rθ2
x)dθ1dθ2

= 1

4π2

∫∫
exp(−imθ1 + imθ2)UN(cos(θ1 − θ2))dθ1dθ2

= 1

2π

∫
exp(−imθ)UN(cos θ)dθ

= 1

2π

∫
cos(mθ)UN(cos θ)dθ = 1,

by Lemma 5.3. For ν = α or ϕ, we have

∂ν(y)�
m
N (x, y)

∣∣
x=y = 1

4π2 ∂ν(y)

∫∫
exp(−imθ1 + imθ2)�N(rθ1

x, rθ2
y)dθ1dθ2

∣∣
x=y

= 1

4π2

∫∫
exp(−imθ1 + imθ2)U

′
N(cos(θ1 − θ2))∂ν(y)(rθ1

x · rθ2
y)
∣∣
x=ydθ1dθ2.

If we write

rθ1
x = (sinα(x) cos(ϕ(x) + θ1), sinα(x) sin(ϕ(x) + θ1), cosα(x) cos(θ1 − ϕ(x)),

cosα(x) sin(θ1 − ϕ(x)))

and

rθ2
y = (sinα(y) cos(ϕ(y) + θ2), sinα(y) sin(ϕ(y) + θ2), cosα(y) cos(θ2 − ϕ(y)),

cosα(y) sin(θ2 − ϕ(y))),

then

∂α(y)(rθ1
x·rθ2

y)
∣∣
x=y=(α,ϕ,0)

=sinα cosα cos(ϕ+θ1) cos(ϕ+θ2)+sinα cosα sin(ϕ+θ1) sin(ϕ+θ2)

− sinα cosα cos(θ1 − ϕ) cos(θ2 − ϕ) − sinα cosα sin(θ1 − ϕ) sin(θ2 − ϕ),
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which is 0, and

∂ϕ(y)(rθ1
x ·rθ2

y)
∣∣
x=y=(α,ϕ,0)

= − sin2 α cos(ϕ +θ1) sin(ϕ +θ2)+sin2 α sin(ϕ +θ1) cos(ϕ +θ2)

+ cos2 α cos(θ1 − ϕ) sin(θ2 − ϕ) − cos2 α sin(θ1 − ϕ) cos(θ2 − ϕ),

which simplifies to

cos(2α) sin(θ2 − θ1).

Therefore,

∂α(y)�
m
N (x, y)

∣∣
x=y = 0

∂ϕ(y)�
m
N (x, y)

∣∣
x=y = −cos(2α)

4π2

∫∫
exp(−imθ1 + imθ2)U

′
N(cos(θ1 − θ2)) sin(θ1 − θ2)dθ1dθ2

= −cos(2α)

2π

∫
exp(−imθ)U ′

N(cos θ) sin θdθ

= − im cos(2α)

2π

∫
exp(−imθ)UN(cos θ)dθ

= −im cos(2α),

by Lemma 5.3. Likewise,

∂ν1
∂ν2

�m
N (x, y)

∣∣
x=y = 1

4π2

∫∫
exp(−im(θ1 − θ2))

×(U ′′
N(cos(θ1−θ2))∂ν1

(rθ1
x·rθ2

y)∂ν2
(rθ1

x·rθ2
y)|x=y+U ′

N(cos(θ1−θ2))∂ν1
∂ν2

(rθ1
x·rθ2

y)|x=y)dθ1dθ2,

and we have

∂α(x)∂α(y)(rθ1
x · rθ2

y)
∣∣
x=y=(α,ϕ,0)

= cos(θ1 − θ2)

∂α(x)∂ϕ(y)(rθ1
x · rθ2

y)
∣∣
x=y=(α,ϕ,0)

= cosα sinα sin(θ1 − θ2)

∂ϕ(x)∂α(y)(rθ1
x · rθ2

y)
∣∣
x=y=(α,ϕ,0)

= − cosα sinα sin(θ1 − θ2)

∂ϕ(x)∂ϕ(y)(rθ1
x · rθ2

y)
∣∣
x=y=(α,ϕ,0)

= cos(θ1 − θ2).
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Therefore,

∂α(x)∂α(y)�
m
N (x, y)

∣∣
x=y=(α,ϕ,0)

= 1

2π

∫
cos(mθ)U ′

N(cos θ) cos θdθ = N2 − m2

2
+ N

∂α(x)∂ϕ(y)�
m
N (x, y)

∣∣
x=y=(α,ϕ,0)

= im cosα sinα

∂ϕ(x)∂α(y)�
m
N (x, y)

∣∣
x=y=(α,ϕ,0)

= −im cosα sinα.

For the last case,

∂ϕ(x)∂ϕ(y)�
m
N (x, y)

∣∣
x=y=(α,ϕ,0)

= 1

2π

∫
cos(mθ) cos2(2α)U ′′

N(cos θ) sin2 θdθ + 1

2π

∫
cos(mθ)U ′

N(cos θ) cos θdθ

=cos2(2α)

2π

∫
(cos(mθ) sin θ)′ U ′

N(cos θ)dθ + 1

2π

∫
cos(mθ)U ′

N(cos θ) cos θdθ

= − m cos2(2α)

2π

∫
U ′
N(cos θ) sin(mθ) sin θdθ + 1 + cos2 2α

2π

∫
cos(mθ)U ′

N(cos θ) cos θdθ

=m2 cos2(2α)

2π

∫
UN(cos θ) cos(mθ)dθ + 1 + cos2 2α

2π

∫
cos(mθ)U ′

N(cos θ) cos θdθ

=m2 cos2(2α) + (1 + cos2(2α))

(
N2 − m2

2
+ N

)
.

Finally, recall that

�m
N = 1

N + 1

(
A B

B∗ C

)
,

where

A = �m
N (x, x),B =

(
ey1�

m
N (x, y)

∣∣
x=y ey2�

m
N (x, y)

∣∣
x=y

)

and

C =
⎛
⎝ex1e

y
1�

m
N (x, y)

∣∣
x=y ex1e

y
2�

m
N (x, y)

∣∣
x=y

ex2e
y
1�

m
N (x, y)

∣∣
x=y ex2e

y
2�

m
N (x, y)

∣∣
x=y

⎞
⎠
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where {∂θ , e1, e2} is a local orthonormal frame. (So A, B, and C are 1 × 1, 1 × 2, and 2 × 2

complex matrices.) Above computation with (e1, e2) = (∂θ , ∂ϕ)
∣∣
(α,ϕ)=(π/4,0)

imply that

�m
N = 1

N + 1

⎛
⎜⎜⎝

1 0 −im cos(2α)

0 N2−m2

2 + N im cosα sinα

im cos(2α) −im cosα sinα m2 cos2(2α)+(1+cos2(2α))
(
N2−m2

2 + N
)
⎞
⎟⎟⎠∣∣(π/4,0)

= 1

N + 1

⎛
⎜⎜⎝
1 0 0

0 N2−m2

2 + N im
2

0 − im
2

N2−m2

2 + N

⎞
⎟⎟⎠ .

�

Proof of Lemma 1.3. From Proposition 5.1 and Theorem 5.4, we see that

E(#{ fmN = 0}) =
∫
C2

|ξ ∧ ξ̄ |N + 1

det�
exp(−〈�−1ξ , ξ 〉)dL(ξ)

=
∫
C2

|ξ ∧ ξ̄ |N + 1

det�
exp(−〈�−1/2ξ ,�−1/2ξ 〉)dL(ξ),

where

� = 1

N + 1

(
N2−m2

2 + N im
2

− im
2

N2−m2

2 + N

)
.

By change of variables �−1/2ξ = ζ , we have

E(#{ fmN = 0}) = N + 1

π3

∫
C2

|�1/2ζ ∧ �1/2ζ | exp(−|ζ |2)dL(ζ ).

Now let

ζ =
(
1 1

i −i

)(
α1

α2

)
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and let v1 =
(
1

i

)
and v2 =

(
1

−i

)
. Observe that �v1 = (μ + ν)v1 and �v2 = (μ − ν)v2 with

μ = 1
N+1

(
N2−m2

2 + N
)
and ν = m

2(N+1)
. In particular, we have

|�1/2ζ ∧ �1/2ζ | = |(α1(μ + ν)
1
2 v1 + α2(μ − ν)

1
2 v2) ∧ (α1(μ + ν)

1
2 v1 + α2(μ − ν)

1
2 v2)|

=
∣∣∣|α1|2(μ + ν)v1 ∧ v1 + |α2|2(μ − ν)v2 ∧ v2

∣∣∣
= μ

∣∣∣∣|α1|2(1 + ν

μ
) − |α2|2(1 − ν

μ
)

∣∣∣∣ |v1 ∧ v2|

= 2μ

∣∣∣|α1|2(1 + η) − |α2|2(1 − η)

∣∣∣ ,

where

η = m/2
N2−m2

2 + N
.

Therefore,

E(#{ fmN = 0}) =
(
N2 − m2

2
+ N

)
1

π3

∫
C2

∣∣∣|α1|2(1 + η) − |α2|2(1 − η)

∣∣∣ exp(−2|α|2)dL(α),

and we evaluate the integral as follows:

1

π3

∫
C2

∣∣∣|α1|2(1 + η) − |α2|2(1 − η)

∣∣∣ exp(−2|α|2)dL(α)

= 4

π

∫
R
2+
r1r2

∣∣∣r21(1 + η) − r22(1 − η)

∣∣∣ exp(−2(r21 + r22))dr1dr2 change of variables αj = rje
iθj

= 4

π

∫ π/2

0

∫ ∞

0
r3 cos θ sin θ

∣∣∣r2 cos2 θ(1 + η) − r2 sin2 θ(1 − η)

∣∣∣ exp(−2r2)drdθ

change of variables (r1, r2) = (r cos θ , r sin θ)

= 4

π

∫ ∞

0
r5 exp(−2r2)dr

∫ π/2

0
cos θ sin θ |η + cos(2θ)|dθ

= 1

4π

∫ 1

−1
|η + t|dt = 1 + η2

4π
.

In the last equality, we used the fact that |η| ≤ 1
2 to evaluate the integral. �
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5.4 Bertini theorem

We need the following Bertini-type theorem to employ the Kac–Rice formalism and to

prove Theorem 1.1:

Proposition 5.5. For all m 
= 0, 0 is almost surely a regular value of the random

equivariant eigenfunction ψm
N : S3 → C.

Proof. We need to show that the derivative dxψ
m
N : TxS

3 → C is surjective at each point

x where ψm
N (x) = 0 for almost any ψm

N . It is sufficient to prove that Hm
N has the “1-jet

spanning property” that the 1-jet evaluation map,

J : S3 × Hm
N → J1(S3,C), J (x,ψm

N ) = J1xψm
N = (ψm

N (x),dH
x ψm

N (x)),

is surjective.

The 1-jet spanning property implies that at each point, {dH
x ψm

N (x) : ψm
N ∈ Hm

N }
spans the horizontal tangent space HxS

3. Since the ensemble is SU(2) invariant, it

suffices to prove the spanning property at a single point. Moreover, since SU(2) acts

transitively on the unit tangent bundle of S2 (or on the horizontal spaces of S3), failure

to span is equivalent to the existence of x such that dH
x ψm

N (x) = 0 for all ψm
N such that

ψm
N (x) = 0. This is false, since Jacobi polynomials have simple zeros, as can for instance

be seen from the Darboux formula.

As explained in [2, Section 4.1], the 1-jet spanning property implies that the

incidence set I := {(x,ψm
N ) ∈ S3 × Hm

N : ψm
N (x) = 0} is a smooth submanifold, and hence

by Sard’s theorem applied to the projection I → Hm
N , the zero set

Zψm
N

= {x ∈ S3 : ψm
N (x) = 0}

is a smooth 1D submanifold of S3 for almost all ψm
N . �

6 Résumé of the Proof Theorem 1.1

Having established all of the ingredients of the proof of Theorem 1.1 outlined in the

Introduction, we only review how to assemble the ingredients into a proof. We resume

the discussion begun in Section 2.5. To prove (i) of Theorem 1.1, we use the proof of the

same statement as Theorem 2.3 ([8, Theorem 1.5]) for general Kaluza–Klein Laplacians

on circle bundles. The only point we need to establish to apply the proof is that 0 is

almost surely a regular value of the equivariant eigenfunctions, and this is proved in
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8548 J. Jung and S. Zelditch

Theorem 5.5. The main new result is therefore (ii) of Theorem 1.1. It is based on a simple

formula of Lemma 1.2 relating the genus of the nodal set with the number of zeros of

fmN ; this makes use of the special structure of nodal set of real parts of equivariant

eigenfunctions as “helicoid covers” of S2. In Section 5, we use the Kac–Rice to calculate

the expected number of zeros of the random fmN and prove Lemma 1.3, concluding the

proof of Theorem 1.1.
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