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BOUNDEDNESS OF THE NUMBER OF NODAL
DOMAINS FOR EIGENFUNCTIONS OF GENERIC

KALUZA–KLEIN 3-FOLDS

by Junehyuk JUNG & Steve ZELDITCH (*)

Abstract. — This article concerns the number of nodal domains of eigenfunc-
tions of the Laplacian on special Riemannian 3-manifolds, namely nontrivial prin-
cipal S1 bundles P → X over Riemann surfaces equipped with certain S1 invariant
metrics, the Kaluza–Klein metrics. We prove for generic Kaluza–Klein metrics that
any Laplacian eigenfunction has exactly two nodal domains unless it is invariant
under the S1 action.

We also construct an explicit orthonormal eigenbasis on the flat 3-torus T3 for
which every non-constant eigenfunction has two nodal domains.

Résumé. — Cet article concerne le nombre de domaines nodaux des fonctions
propres du Laplacien sur des variétés Riemanniennes Kaluza–Klein en dimension
trois, à savoir des variétés qui sont des fibrés S1-principaux P → X sur des surfaces
de Riemann équipées avec une métrique S1-invariante de type Kaluza–Klein. Pour
des métriques génériques de ce type, on prouve que chaque fonction propre possède
exactement deux domains nodaux, sauf si elle est invariante par l’action de S1.

On construit aussi une base orthonormale de fonctions propres explicites du tore
plat T3 pour que chaque fonction propre non constante possède exactement deux
domaines nodaux.

1. Introduction

This article is concerned with the number of nodal domains of eigenfunc-
tions of the Laplacian on certain 3-dimensional compact smooth Riemann-
ian manifolds (P,G). The manifolds are S1 = SO(2) bundles π : P → X

over a Riemannian surface (X, g), and G is assumed to be a Kaluza–
Klein metric adapted to π, i.e., G is invariant under the free S1 action

Keywords: Eigenfunction of the Laplacian, Principal bundle, Kaluza–Klein metric, Nodal
domain.
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972 Junehyuk JUNG & Steve ZELDITCH

on P and there exists a splitting TP = H(P ) ⊕ V (P ) of TP so that
dπ : Hp(P ) → Tπ(p)X is isometric and so the fibers are geodesics. Thus,
π : P → X is a special kind of Riemannian submersion with totally ge-
odesic fibers in the sense of [3] (see Definition 1.1 and Definition 6.3 of
the present article). The S1 action commutes with the Laplacian ∆G of
the Kaluza–Klein metric G and one may separate variables to obtain an
orthonormal basis of joint eigenfunctions φm,j ,

(1.1) ∆Gφm,j = −λm,jφm,j ,
∂

∂θ
φm,j = imφm,j .

Our focus is on the nodal sets of the real or imaginary parts of

(1.2) φm,j = um,j + ivm,j

and on particularly on the number of their nodal domains. Since ∆G is
a real operator, the real and imaginary parts (1.2) satisfied the modified
eigenvalue system, 

∆Gum,j = −λm,jum,j ,
∆Gvm,j = −λm,jvm,j ,
∂
∂θuj = mvj ,

∂
∂θvj = −muj .

Our main result (Theorem 1.5) is that when 0 is a regular value of φm,j for
all (m, j), then for m 6= 0, the nodal sets of um,j , resp. vm,j , are connected
and there exist exactly 2 corresponding nodal domains. The case m =
0 is special because φ0,j is then real valued and is a pullback from the
base X; in this case, the number of connected components of the nodal set
(and the number of nodal domains) is the same as for the corresponding
eigenfunction on X. Theorem 1.4 shows that it is a generic property of
Kaluza–Klein metrics on S1 bundles over Riemann surfaces that 0 is indeed
a regular value of φm,j for all (m, j). The precise statement requires a
discussion of the geometric data underlying a Kaluza–Klein metric and how
we allow it to vary when defining “genericity”. An introductory discussion
of the Kaluza–Klein metrics of this article is given in Section 1.1 and a more
detailed discussion is given in Section 4 (see Theorem 4.1 and Lemma 4.9).

1.1. Adapted Kaluza–Klein metrics

We now define Kaluza–Klein metrics on a three-dimensional manifold P
which is an S1 bundle over a (usually) compact Riemannian surface X.
In our main results, P is the unit co-circle bundle of an ample complex
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holomorphic line bundle L → X. Thus, P = S3 or P = U(S2) (the unit
tangent bundle) when X = S2, and P = S∗X (the unit conormal bundle)
when the genus g > 2. When g = 1, P can be the unit circle bundle of the
theta line bundle over T2, or it may be the trivial circle bundle S∗T2 (see
Section 9.1). Other examples where X has constant curvature are discussed
in Section 9.
A Kaluza–Klein metric is determined by the following data:
(i) A surface X equipped with a Riemannian metric g and a complex

structure J ,
(ii) A nontrivial complex holomorphic line bundle L → X over a sur-

face,
(iii) A Hermitian metric h on L,
(iv) A complex structure JL on L,
(v) An h-compatible connection ∇ on L.

In this article, we fix J , L and JL and only vary the data (g, h,∇). The
unitary frame bundle for the Hermitian metric h is defined by

Ph = {(z, λ) ∈ L∗ : h∗z(λ) = 1}.

The connection ∇ induces a connection 1-form on Ph and a splitting
TPh = H(Ph) ⊕ V (Ph) into horizontal and vertical spaces; see Section 2
for background.

Definition 1.1. — The Kaluza–Klein metric on Ph is the U(1)-invar-
iant metric G such that the horizontal space Hp := ker dπ is isometric to
Tπ(p)X, so that V = R ∂

∂θ is orthogonal to H and is invariant under the
natural S1 action and so that the orbits of the S1 action are unit speed
vertical geodesics.

The data (g, h,∇) determines a horizontal Laplacian ∆H , a vertical
Laplacian ∂2

∂θ2 , and their sum, the Kaluza–Klein Laplacian (1.1),

(1.3) ∆G = ∆H + ∂2

∂θ2 .

As is well-known, sections s of powers Lm of a complex line bundle L
lift to equivariant functions ŝ : L∗ → C on the dual line bundle by the
formula ŝ(z, λ) = λ(s(z)) where a point of L∗ is denoted by λ ∈ L∗z. Under
this identification, the horizontal Laplacian is equivalent to the Bochner
Laplacians ∇∗m∇m on sections of Lm. Thus, equivariant eigenfunctions of
∆G of weight m on M are lifts of eigensections of ∇∗m∇m. See Section 3
and Lemma 6.6 for details. In proving genericity theorems it is easier to
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974 Junehyuk JUNG & Steve ZELDITCH

work downstairs on X. But the nodal results pertain to the equivariant
eigenfunctions on Ph.

Remark 1.2. — Not all S1 invariant metrics on SX are adapted Kaluza–
Klein metrics (see Section 6.1). Many of the techniques of this paper extend
to general S1-invariant metrics on principal S1 bundles over manifolds of
all dimensions. For simplicity of exposition we restrict to dimension 3.

1.2. Nodal sets

We thus have two versions of the eigenfunctions of the Kaluza–Klein ∆G,
first as scalar complex valued equivariant eigenfunctions on Ph and second
as complex eigensections on X. In each version we have a nodal set, and
we use the base nodal set on X to analyse the nodal set on Ph.
We denote the eigensection corresponding to φm,j as fm,jemL in a local

holomorphic frame. We mainly consider L = KX and then we write the
section as fm,j(z)(dz)m. Let

<fm,j = am,j(z), =fm,j = bm,j(z).

Then,

fm,j(z)e−imθ = (am,j(z) + ibm,j(z))(cosmθ − i sinmθ),

so that with φm,j = um,j + ivm,j ,

(1.4)
{
um,j = am,j cosmθ + bm,j sinmθ,
vm,j = bm,j cosmθ − am,j sinmθ.

See Section 6.2 for more details.
We denote by Zfm,j

the zero set of the eigensection fm,jemL on X:

Zfm,j
= {z ∈ X : fm,j(z) = 0}.

It is easy to see that the zero set Zφm,j of φm,j is the inverse image of Zfm,j

under the natural projection π:

Zφm,j
= π−1Zfm,j

.

Usually we study the nodal sets of the real and imaginary parts of the lift,
not to be confused with the lifts of the real and imaginary parts of the local
expression fm,j of the section (since the frame emL must also be taken into
account). In general, it is not obvious whether or not the zero set of fm,j
is discrete in X.

ANNALES DE L’INSTITUT FOURIER
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We denote the nodal sets of the real, resp. imaginary parts, of the lift by

N<φm,j
{p ∈ Ph : <φm,j(p) = 0}, resp. N=φm,j

= {p ∈ Ph : =φm,j(p) = 0}.

The analysis is the same for real and imaginary parts and we generally work
with the imaginary part, following the tradition for quadratic differentials.
Perhaps the most familiar setting for such Kaluza–Klein metrics and

lifts of m-differentials to equivariant sections is that of hyperbolic surfaces
of finite area. The reader familiar with Maass forms and operators may
want to compare Kaluza–Klein notions with those of SL(2,R)-theory in
Section 9.3.

1.3. Statement of results

Let (X, J, g) be a Riemannian surface with complex structure J . Let
(L, h) be a Hermitian holomorphic line bundle over X, and let Ph ⊂ L∗ →
X be the principal S1 bundle associated to h. Let ∇h be an h compatible
connection on L, and let G = G(g, h,∇h) be the associated Kaluza–Klein
metric on Ph.
As mentioned above, weight 0 (invariant) eigenfunctions are special be-

cause they are real-valued (once they are multiplied by a suitable constant).
We therefore separate the case m = 0 from the remainder of the discussion,
and state the obvious (but interesting)

Proposition 1.3. — For m = 0, invariant eigenfunctions (m = 0) of
∆G are lifts π∗ψj of eigenfunctions ψj of ∆g on the base X, and the nodal
set of π∗ψj is the inverse image under π of the nodal set of ψj . The number
of nodal domains of π∗ψj equals the number of nodal domains of ψj .

Indeed, their nodal sets are inverse images of nodal sets on the base.
Hence the number of nodal domains of “invariant” Kaluza–Klein eigen-
functions is the number for the corresponding eigenfunction on the base.
Henceforth we always assume m 6= 0.

To prepare for our main result when m 6= 0, we first state a result on
generic properties of equivariant Kaluza–Klein eigenfunctions. By “generic”
properties of Kaluza–Klein metrics, we mean properties of residual sets in
a suitable Ck space of the data (g, h,∇), often when only one component
is varied and the others are fixed. The generic properties of concern in
this article hold for many choices of Banach spaces of data, which could
be suitable Ck spaces or a Sobolev spaces Hs. Our basic reference for
genericity properties of eigenvalues/eigenfunctions in [20], and the reader
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976 Junehyuk JUNG & Steve ZELDITCH

is referred there for background. Somewhat surprisingly, generic properties
of eigensections of Bochner–Kodaira operators on complex line bundles do
not seem to have been studied before.
The most general genericity results are stated in Theorem 4.1 in Sec-

tion 4. In these results, we define “admissible data” such as (g, h,∇), and
prove the main genericity properties as different components of the data are
varied. Since the general result requires some definitions from Sections 2–3,
we only state the most elementary result here in the case where L = T ∗X

is the canonical bundle, and where only the metric g on X is varied. But we
also require that the Hermitian metric h on K is induced by g and that the
connection ∇h is the Chern (or equivalently, Riemannian) connection. Of
course, K is not ample when g = 0, 1 but we are considering eigensections
of Bochner–Kodaira Laplacians, not holomorphic sections, so ample-ness is
not particularly relevant. Moreover, the proofs also work for K−1, so that
one could replace T ∗S2 by the ample line bundle TS2 or O(1)→ CP1 and
obtain similar results.

Theorem 1.4. — Let (X, J) be a Riemann surface, and let L = Km.
We consider Riemannian metrics g in the conformal class associated to J .
We assume that h is the Hermitian metric induced by g and that ∇ is the
Levi-Civita connection. Then, for generic metrics g in the class of J on X,

(1) the spectrum of each Bochner Laplacian ∇∗g,h∇ on Ck(X,Lm) is
simple (i.e. of multiplicity 1). Thus, the multiplicity of the eigen-
value λ = λm,j of ∆G is 1 if m = 0, and 2 if m 6= 0.

(2) Every eigenfunction is a joint eigenfunction of ∆G and ∂2

∂θ2 .
(3) all of the eigensections fm,j have isolated zeros and zero is a regular

value. In particular, Zfj,m
is a finite set of points;

(4) If we lift sections to equivariant eigenfunctions φ, then <φ and =φ
have zero as a regular value.

An important consequence of (1)–(2) of Theorem 1.4 is that, for generic
data, all real Kaluza–Klein eigenfunctions are real/imaginary parts of equi-
variant eigenfunctions. Therefore, the results we prove for equivariant eigen-
functions hold for all possible eigenfunctions. Theorem 4.1 states similar
results for three other types of variations of the data.

We can now state our main result. The first statement repeats (1)–(2) of
Theorem 1.4 for the sake of clarity.

Theorem 1.5. — Suppose that the data (g, h,∇) of the Kaluza–Klein
metric satisfies the generic properties of Theorem 1.4. Then,
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(1) The eigenspace of ∆G corresponding to λ = λm,j = λ−m,j
is spanned by φm,j and φ−m,j = φm,j . In particular, any real
eigenfunction with the eigenvalue λm,j is a constant multiple of
Tθ (<φm,j), where Tθ is the S1 action on P parameterized by θ.

(2) For m 6= 0, the nodal sets of <φm,j are connected.
(3) For m 6= 0, the number of nodal domains of <φm,j is 2.

Note from Weyl law that #{λj,0 < Λ} ∼ Λ and that #{λm,j < Λ} ∼
Λ3/2. Therefore as an immediate consequence of Theorem 1.5, we have the
following:

Corollary 1.6. — Let P → X be a non-trivial principal S1 bundle
with a generic Kaluza–Klein metric. For any given orthonormal eigenbasis,
almost all (i.e., along a subsequence of density one) eigenfunctions have
exactly two nodal domains.

The density one subsequence is of course the one with m 6= 0. The-
orem 1.5 furnishes the first example of Riemannian manifolds of dimen-
sion > 2 for which the number of nodal domains and connected compo-
nents of the nodal set have been counted precisely. The results for m 6= 0
may seem rather surprising, since in dimension 2 the only known sequences
of eigenfunctions with a bounded number of nodal domains are those con-
structed in an ingenious way by H. Lewy on the standard S2 [16] and
those of Stern on a flat torus [4, 18]. In those cases, the separation-of-
variables eigenfunctions have connected nodal sets but the complement of
the nodal set has many components, i.e., nodal domains, saturating the
Courant bound that the number of nodal domains of the jth eigenfunc-
tion (in order of increasing eigenvalue) is j. In the Kaluza–Klein case, all
eigenfunctions for generic Kaluza–Klein metrics are separation-of-variables
eigenfunctions and have connected nodal sets. But the connectivity is of a
different kind than in dimension two and by a simple argument it induces
connectivity of nodal domains.

Remark 1.7. — When P → X is trivial, and P ∼= S1×X is endowed with
the product metric, we have φm,j = ψje

imθ where ψj is an eigenfunction of
∆g on the base X. Hence <φm,j = ψj cosmθ has many nodal domains, and
the last statement in Theorem 1.5 fails. Hence, the “generic” set of metrics
is not the full set of metrics. See Section 9.1 for flat tori for a product
setting where the nodal results above do hold.

TOME 70 (2020), FASCICULE 3
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1.4. Outline of the proof

The nodal set of the lift real and imaginary parts of the lift φm,j of
fm,je

m
L is very different over nodal versus non-nodal points of fm,j . Let

(1.5) Σ := π−1Zfm,j

be the inverse image of the base nodal points. It is a union of fibers and is
a finite union of fibers if and only if fm,j has a finite number of zeros. We
refer to Σ as the “singular fibers” or singular set. We denote by X\Zfm,j

the punctured Riemann surface in which the zero set of fm,j is deleted. A
key statement in the nodal analysis is the following:

Proposition 1.8. — For m 6= 0, the maps

π : N<φm,j
\Σ→ X\Zfm,j

, N=φm,j
\Σ→ X\Zfm,j

is an m-fold covering space.

It follows that the topology of the nodal set is entirely determined by
the combinatorics of gluing the sheets along the singular fibers. In fact, the
gluing is rather simple and easily yields the following

Theorem 1.9. — For all m 6= 0, the nodal set N<φm,j
is connected.

To count nodal domains, we need to make the assumption that there are
just a finite number of zeros of fm,j and that at least one of them is regular.

When the zero set is transverse to the zero section, then the sum of the
indices of the zeros is the first Chern class of Km, and in particular is
non-empty when the genus of X is 6= 0, i.e., when X is not a torus.
For metrics satisfying Theorem 1.4 we prove Theorem 1.5 by using Propo-

sition 1.8 together with some geometric observations on how the sheets fit
together at the singular fibers. This is done using a Bers type local analysis
of the eigensections (Section 5) and some geometric/combinatorial argu-
ments in Section 8.

To put the nodal results into context, it is proved in varying degrees of
generality in [8, 9, 11, 12, 13, 14, 17, 22] that in dimension 2, the number
of nodal domains of an orthonormal basis {uj} of Laplace eigenfunctions
on certain surfaces with ergodic geodesic flow tends to infinity with the
eigenvalue along almost the entire sequence of eigenvalues. By the first
item of Theorem 1.5, the same is true for their lifts to the unit tangent
bundle SX as invariant eigenfunctions of the Kaluza–Klein metric. But for
higher weight eigenfunctions, the situation is virtually the opposite and the
number of nodal domains is bounded.
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Remark 1.10. — Note that the geodesic flow on P with a Kaluza–Klein
metric never is ergodic. To see this, observe that the hypersurface

{(x, v) ∈ SP : v ⊥ ∂θ} ⊂ SP

is invariant under the geodesic flow, and it divides SP into two subsets of
positive measure:

{(x, v) ∈ SP : 〈v, ∂θ〉G > 0} and {(x, v) ∈ SP : 〈v, ∂θ〉G < 0}.

1.4.1. Surfaces of constant curvature

Metrics g of constant curvature with their associated Hermitian metrics
and connections on K → X are not generic. But they are of special inter-
est, so we comment on what we are able to prove about them. Note that
the standard metric on T3 is Kaluza–Klein, as is the standard metric on
S3 or SO(3) = U(S2). The standard metric on the unit tangent bundle
PSL(2,R)/Γ over a hyperbolic surface is Lorentzian, but if one changes the
sign of the vertical Laplacian it is also Kaluza–Klein.
Perhaps surprisingly, the results of Theorem 1.5 are valid for some or-

thonormal bases of eigenfunctions on flat 3-tori.

Theorem 1.11. — On the flat 3 torus T3, one can find an orthonor-
mal eigenbasis for which all nonconstant eigenfunctions have two nodal
domains.

Next we turn to hyperbolic metrics on a surface X of genus g > 2. Then
the total space Ph = PSL(2,R)/Γ and the equivariant eigenfunctions of
the Kaluza–Klein Laplacian ∆ are the same as joint eigenfunctions of the
generator W of K and of the Casimir operator Ω. When the weight m is
fixed, one may separate variables and obtain a Maass Laplacian Dm on
smooth sections of a complex line bundle π : Km → X, namely the bundle
of m-differentials of type (dz)m, and are the usual weight m automorphic
Maass eigendifferentials fm,j(z)(dz)m,

Dmfm,j(z) = s(1− s)fm,j(z),

of the Maass Laplacians

Dm = y2
(
∂2

∂x2 + ∂2

∂y2

)
− 2imy ∂

∂x
.

Unfortunately, we are not able to verify that (any) Maass eigendifferentials
have 0 as a regular value, i.e. the generic conditions needed for Theorem 1.5.
Indeed, we do not know how to prove that (any) eigenfunctions φ0,j of the
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hyperbolic Laplacian have a discrete set of critical points, much less that 0
is a regular value of dφ0,j .

Regarding spherical harmonics on S3 we will be brief, because we study
random equivariant spherical harmonics in detail in a forthcoming arti-
cle [15]. The round metric is a Kaluza–Klein metric, but of course not a
generic one. In Section 9.2 we show that the joint eigenfunctions Y m1,m2

N of
∆ and of two commuting S1 actions have very different nodal sets from the
ones in Theorem 1.5. On the other hand, in [15] we show that “random”
linear combinations of such Y m1,m2

N with m1 fixed do satisfy the results of
Theorem 1.5 and the nodal sets of their real, resp. imaginary parts, have
just one nodal component. We also find their expected Euler characteristic.
These results were motivated by the numerical discovery of Barnett et. al.
that 3D random spherical harmonics on S3 of fixed degree, the nodal set
contains one “giant component” and many small components [2]. We are
fixing the weight m1 and therefore do not work with general random spher-
ical harmonics. But in the N dimensional subspaces where m1 is fixed with
|m1| 6 N, 2|N − m1, the nodal sets of the real and imaginary parts are
connected and divide S3 into just two components. For further discussion
we refer to [15].

2. Geometric background

In this section we discuss the geometric data that goes into the construc-
tion of Kaluza–Klein metrics, which are defined in Definition 1.1. They are
also the data needed to define Bochner Laplacians ∇∗∇ and Kaluza–Klein
Laplacians ∆G. We plan to vary the data and study perturbation theory
of eigenvalues and eigensections in Section 4.

2.1. Riemannian metrics on X and Hermitian metrics on L

Let (X, J, g) denote a Riemann surface with complex structure J and
Riemannian metric g. We write g11̄ = g( ∂∂z ,

∂
∂z ) and g11̄ = g∗(dz, dz),

where g∗ is the dual metric. The complex structure gives a decomposition
of T ∗X ⊗C = T ∗(1,0) ⊕ T ∗(0,1) into (1, 0) resp. (0, 1) parts. We denote the
area form of g by

dAg = ω = ig11̄dz ∧ dz̄,
where the Kähler form ω is the (1, 1) form defined by gJ(X,Y ) = ω(JX, Y ).
Locally there exists a Kähler potential ψ defined up to a constant by
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ddcφ = ω. Here dc = 1
2i (∂− ∂). Then, ωh = i∂∂ log h = ddcφ = ∆gφL(dz),

where L(dz) = idz ∧ dz̄.

2.1.1. The space of isometry classes of metrics on surfaces

It is well-known that the space of Riemannian metric tensors on a mani-
fold X splits as a product Vol(X)×Metµ(X) of volume forms times metrics
with a fixed volume form. Thus, one may separately consider metrics with
a fixed volume form and conformal classes of metrics.
Choice of a complex structure J on X is equivalent to choice of a confor-

mal class Conf(g0) of metrics. The moduli space of conformal classes is the
same as the (3g − 3)-dimensional moduli space Mg of complex structures
on X. In each conformal class, we may pick a background metric g0 and
represent other metrics in the form

Conf(g0) = {e2σg0 : σ ∈ C∞(X)}.

If we fix a complex structure J , then the Riemannian metrics in the cor-
responding conformal class are Kähler metrics, and may be parameterized
by their Kähler potentials φ, where the area form ωφ of the Kähler metric
is related to that of the reference metric by

ωφ = ω0 + i∂∂φ.

We let

Kω : = {ωφ := ω0 + i∂∂φ > 0}

which may be identified with an open set in C∞(X). The Liouville field
and Kähler potential are related by

e2σ = 1− 1
2∆0φ,

where ∆0 is the Laplacian of g0. The only difference in the two parame-
terizations of conformal metrics is that the area of metrics in Kω is fixed
while it may vary in Conf(g0). Thus Conf(g0) ∼= Kω × R.
In the case of Riemann surfaces, the area form is the symplectic form

associated to a Kähler metric. Given a complex structure J , the Kähler
metric gJ can be recovered from its area form ω by the formula gJ(X,Y ) =
ω(X, JY ). Hence isometry classes of Kähler metrics with a fixed area form
are parameterized by Mg.

TOME 70 (2020), FASCICULE 3
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2.2. Complex line bundles L→ X, connections and curvature

If we fix a complex structure J and holomorphic line bundle L → X,
then a Hermitian metric h on L is determined by the length of a local
holomorphic frame eL (i.e., a local holomorphic nonvanishing section) of L
over an open set U ⊂ M) by e−ψ = ‖eL‖2h, where ‖eL‖h = h(eL, eL)1/2

denotes the h-norm of eL.

2.2.1. Connections

In the real setting, a connection on a vector bundle E defines a covariant
derivative

∇ : C∞(X,E)→ C∞(X,E ⊗ T ∗X).
In our complex setting, we assume L is a holomorphic Hermitian line

bundle, i.e., we equip L with a complex structure JL, a connection ∇, and
a Hermitian metric h. In a local frame eL it is defined by ∇eL = α ⊗ eL.
We consider several types of compatibility conditions between this data:

• An h-connection ∇h is one compatible with h. In a unitary frame,
the connection 1-form is iR valued and is denoted by iα. We denote
the space of h-compatible connections by Ah.
• Or a JL-compatible connection. In a holomorphic frame eL the

connection 1-form α is of type (1, 0). We denote the space of JL-
compatible connections by AC.
• The unique Chern connection αJL,h which is compatible with both
JL, h.

This data induces:
• The Hermitian metric h induces the principal bundle of h-unitary
frames Ph = {(z, λ) ∈ L∗ : |λ|h = 1}.

• An h-compatible connection ∇ ∈ Ah induces a real 1-form α on Ph.
• Connections AC determine complex-valued 1-forms on L∗.

The connection 1-form in the frame eL is given by

∇eL = α⊗ eL.

We denote the (1, 0) resp. (0, 1) parts of ∇ by ∇1,0, resp. ∇0,1.
Suppose that ∇ ∈ AC. Then if s = fe with e a local holomorphic frame,{

∇(1,0)(fe) = (∂f + αf)⊗ e,
∇(0,1)(fe) = ∂f ⊗ e.
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The holomorphic line bundle L also has a natural Cauchy–Riemann op-
erator,

∂L : C∞(M,L)→ C∞1 (M,L).
In a local holomorphic frame e, we write a smooth section s = fe and then

∂Ls = ∂f ⊗ e.

It is well-defined since if e′ is another holomorphic frame and e = ge′, then
s = fge′ and ∂Ls = ∂f ⊗ ge′ = ∂f ⊗ e.

The Chern connection ∇ associated to the Hermitian metric h is the
unique metric connection

∇ : C∞(X,L)→ C∞1 (M,X ⊗ T ∗X)

whose connection 1-form in a holomorphic frame eL has type (1, 0). The
connection 1-form is given by ∇eL = α⊗ eL with α = ∂ log |h|.
The metric g∗ is a Hermitian metric on K. Any Hermitian metric h on a

line bundle L induces metrics hm = e−mφ on the tensor powers Lm in the
local frame emL . The Hermitian metric and complex structure determine a
Chern connection ∂ log h whose curvature 2-form Θh is given locally by

Θh = −∂∂ log ‖eL‖2h,

and we say that (L, h) is positive if the (real) 2-form
√
−1
2 Θh is positive.

2.3. Curvature form

Given a connection ∇ on L and a vector field V on X, the covariant
derivative of a section s is defined by ∇V s = 〈∇s, V 〉. The curvature is
the 2-form Ω∇ defined by Ω∇(V,W ) = [∇V ,∇W ]−∇[V,W ]. If eL is a local
frame and ∇eL = α⊗ eL then Ω∇ = dα.

2.4. Examples

• Let F ∗X be the unit co-frame bundle X, consisting of orthonormal
frames of T ∗X. Then SmF ∗X is the bundle of real m-differentials,
i.e., homogeneous polynomials of degree m in dx, dy or dz, dz̄.
• When X is given a complex structure, we may decompose T ∗X ⊗
C = T ∗(1,0) ⊕ T ∗(0,1) into co-vectors fdz of type (1, 0) and gdz̄ of
type (0, 1). The holomorphic co-tangent bundle is usually denoted
by K = KX = T ∗(1,0) and is called the canonical bundle. Its tensor
powers Km are bundles of differentials of type f(dz)m with f(z, z̄)
a smooth function.
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• When the genus is 0, i.e., X = S2, KX is a negative line bundle
and has no holomorphic sections. The associated circle bundle of
frames is SO(3) ∼= RP3 = S3/± 1.
• When the genus is 1, then KX and T ∗X are trivial and Fh ∼=
T2 × S1.

• When the genus is > 1 we may twist L by a flat line bundle. This
is not particularly relevant for this article except that we usually
ignore this additional degree of freedom. There is an ample line
bundle L→ T2 whose holomorphic sections are theta functions. The
associated principal S1 bundle is the reduced Heisenberg group, the
quotient of the simply connected Heisenberg group by the integer
lattice.
• When the genus is > 2 then X = H2/Γ where Γ ⊂ PSL(2,R). The

associated S1 bundle is SL2(R)/Γ. KX is ample and for m large
there are many holomorphic sections of Km

X . This is only significant
in this article when we discuss splitting eigenspaces.

2.5. Canonical bundle and m-differentials

Let K → X denote the canonical bundle T ∗(1,0)X of (1, 0) forms fdz.
Up to twisting by a flat line bundle, it is the unique ample line bundle
on X. Hence there exists a Hermitian metric h on K with curvature form
i∂∂ log h = ω. This should be distinguished from the curvature of g, which
is given by

ddc log g11̄ = Kωh, where K is the scalar curvature.

In terms of the Hermitian metric h = e−φ0 on K, |dz|g = e−φ0 = g11̄. Also,

∂z logω0 = ∂z log(1−∆0φ), ωφ = (ω0 + ddcφ) = ((1−∆0)φ)ω0.

We now regard g(X,Y ) = ω(X, JY ) as a Kähler metric. The co-metric ∗
defines metric coefficients on T ∗X⊗C by extending g∗ by complex linearity
and induces the Hermitian metric,

‖dz‖g∗ = g11̄,

on KX . The curvature (1, 1) form is therefore ∂∂ log g11̄.
The associated (1, 1) form ωh is positive if the genus is > 2 and if g is

a metric of negative curvature K. It is negative if the genus is 0 and the
metric g is of positive curvature. When the genus is 0 there do not exist
Hermitian metrics with strictly positive or negative curvature forms.
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When dimX = 2 we write the area form as dAg = √gdx or as ωg. The
metric g induces metrics g on TX, T ∗X,T ∗(1,0)X = KX and on powers such
asKm. OnKm, the Hermitian metric induced by g is ‖dz‖2g = e−φ = g11̄ so
φ = − log g11̄. The Chern connection on K is the same as the Riemannian
connection.
Consider the complex line vector bundles T 1,0

X and (TX, J). They are
isomorphic under the map

ξ : TX → T 1,0
X , v → 1

2(v − iJv).

Lemma 2.1. — Let (X, g) be a Kähler manifold. Under the isomorphism
ξ ∈ TX → T 1,0

X , the Chern connectionD on the holomorphic tangent bundle
T 1,0 is the Levi-Civita connection ∇.

2.6. Orthonormal frame bundles and m-differentials

If (X, g) is a Riemannian surface, and F is the SO(2)-bundle of or-
thonormal frames of T ∗X, then g determines a Riemannian connection on
F . Similarly, if we fix a complex structure and define the principal S1 bun-
dle Fh ⊂ TX associated to KX = T ∗(1,0), then g determines a Hermitian
metric on KX . We first discuss the real geometry and then the complex
geometry.

The metric g =
∑2
i,j=1 gijdxi ⊗ dxj on TX induces a co-metric g∗ on

T ∗X, usually denoted by raised indices. It then induces metrics g⊗n on
powers SmT ∗X.

There always exists a basis of basic or horizontal 1-forms at a frame
(µ1, µ2) such that

(ωj)x,µ1,µ2(v) = µj(π∗v).
The Riemannian connection 1-form α is defined by the equations,

〈α, ∂∂θ 〉 = 1,
dω1 = α ∧ ω2,

dω2 = −α ∧ ω1,

dα = Kω1 ∧ ω2,

where K is the scalar curvature. Dually, there exist vector fields ξ1, ξ2 so
that 

[ ∂∂θ , ξ1] = ξ2

[ ∂∂θ , ξ2] = −ξ1,
[ξ1, ξ2] = K ∂

∂θ
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Then define
E± = 1

2(ξ1 ∓ ξ2).

Then, 
[ ∂∂θ , E

+] = E+

[ ∂∂θ , E
−] = −E−,

[E+, E−] = i
2K

∂
∂θ

In the frame {ξ1, ξ2, ∂∂θ} the volume form is ω1∧ω2∧α. The vector fields
ξ1, ξ2 are also of unit length since they are defined to be horizontal lifts of
a unit frame.

2.7. Hilbert spaces of sections

Let (L, h) → X be a Hermitian holomorphic line bundle. We thus have
a pair of metrics, h resp. g (with Kähler form ωφ) on L resp. TX.

To each pair (h, g) of metrics we associate Hilbert space inner products
Hilbm(h, g) on sections s ∈ L2

mψ(X,Lm) of the form

‖s‖2hm :=
∫
X

|s(z)|2hmωg,

where |s(z)|2hm is the pointwise Hermitian norm-squared of the section s in
the metric hm. In a local holomorphic frame eL, we write

‖eL‖2h = e−ψ.

In local coordinates z and the local frame emL of Lm, we may write s = femL
and then

|s(z)|2hm = |f(z)|2e−mψ(z).

Henceforth we write

‖femL ‖2hm :=
∫
X

|f(z)|2e−mψωφ.

In the special case where L = KX , we may use the frame dz in a local
holomorphic coordinate z. In the local frames (dz)m of Km we may write
sections as s = f(dz)m and then |s(z)|2hm = |f(z)|2e−mψ(z) and then,

‖f(dz)m‖2hm :=
∫
X

|f(z)|2e−mψdVg,

where dVg = ωφ is the area form of g.
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3. Bochner Laplacians on line bundles

In this section, we give explicit local formulae for Bochner Laplacians
Bochner Laplacians ∇∗h,g∇ on L2(X,L) equipped with the data

(g, h, J, JL,∇),

where (L, h) → X is a Hermitian holomorphic line bundle, g is a metric
on X, ∇ is a connection on L. In a local frame eL of L, with s = feL, the
inner product Hilb(g, h) on L2(X,L) takes the form,

‖s‖2Hilb(g,h) =
∫
X

|f |2e−ψdVg, (where ‖eL(z)‖2h = e−ψ(z)).

The inner product on L2(X,L⊗ T ∗X) has the form,

‖s⊗ η‖2Hilb(g,h) =
∫
X

|f |2‖η‖2ge−ψdVg, (where ‖eL(z)‖2h = e−ψ(z)).

With no loss of generality, we fix J on X and assume that (g, J, ω) is a Käh-
ler metric with g(X,Y ) = ω(X, JY ). Then g( ∂∂z ,

∂
∂z ) = 0 = g( ∂∂z̄ ,

∂
∂z̄ ) = 0.

There is only one metric coefficient, g11̄ = G(dz, dz̄). It is a Hermitian met-
ric on T 1,0X and is compatible with J . (1) We also denote the Riemannian
volume form by dVg = ω = ddc log g11̄.

Remark 3.1. — Notational remark: We use G rather than g−1 or g∗ for
the dual co-metric on 1-forms, because it is a convenient notation for later
variations.

The Bochner Laplacian is the Laplacian on L2(X,L) determined by the
quadratic form,

(3.1) qg,h,∇(s) =
∫
X

|∇s|2h⊗gdVg = 〈∇∗g,h∇s, s〉Hilb(g,h).

Throughout we assume that g is J-compatible. In a local frame eL of L,
with s = feL, ∇(feL) = (df + fα)⊗ eL and with ‖eL(z)‖2h = e−ψ(x), and
the quadratic form is given by

qg,h,∇(feL) =
∫
X

|df + fα|2ge−ψdVg.

The adjoints are taken with respect to the volume form e−ψdVg.
We give local formulae for ∇∗h,g∇ under several assumptions on ∇ and

in correspondingly adapted frames (equivalently, choosing a gauge for ∇):

(1)Although dim M = 2, we use the notation dVg and the term “volume form” to avoid
clashing with the notation A for connections and area form.
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(i) ∇ is h-compatible (see Section 3.1); in this case, we compute in a
local unitary frame. Fixing h is equivalent to fixing the principal
S1 bundle Ph → X, and varying the connection 1-forms α ∈ Ah on
Ph (with fixed g).

(ii) ∇ ∈ AC is compatible with a fixed complex structure JL on L (see
Section 3.2); in this case we compute in a local holomorphic frame.
In the next section we fix JL and vary h (with fixed g).

(iii) ∇ is compatible with both (h, JL), hence is the Chern connection;
see Section 3.3. The (1, 0)-part of the connection has the form α =
∂ log h and is parameterized by the Hermitian metric h on L; in the
next section we consider its variation with h (with fixed g).

(iv) When L = KX is the canonical line bundle, we let h be the Her-
mitian metric induced by g and let ∇ be the Levi-Civita connec-
tion. This is a special case of an h-compatible connection but is
special because h is induced by g. Moreover, the Riemannian con-
nection w.r.t. g is the Chern connection for the Hermitian metric
g. In a holomorphic frame dz the connection form is ∂ log g11̄ =
∂ logG(dz, dz̄). Also, dVg = g11̄dz ∧ dz̄. In the next section, we
vary this connection by varying g on X.

There exist many formulae for Bochner Laplacians in the literature (see
for instance [5]), but they often make assumptions on the compatibility of
the connection with other data (the Hermitian metric or complex structure)
and we need explicit dependence on the compatibility conditions so that
we can perturb some of the data while holding others fixed. We therefore
go through the calculations with explicit assumptions on the compatibility
of ∇ with the data (g, h,∇, J, JL).

We also recall the general identities, d∗(fα) = −∗d∗(fα) = −∗d(f∗α) =
− ∗ df ∧ ∗α + fd∗α. Note that G(η, ζ)ω = η ∧ ∗ζ. Hence, − ∗ df ∧ ∗α =
− ∗G(df, α)ω = −G(df, α) since ∗ω = 1.

3.1. Calculation in a unitary frame

In this section we assume that ∇ is compatible with h. We recall from
Section 2 that on a Hermitian line bundle (L, h), the set Ah of connections
on L which are compatible with the Hermitian metric is the affine space
{Aα = A0 + α : α ∈ Ω1(X)} where A0 is a fixed background connection
and Ω1(X) are the real 1-forms on X. The Hermitian metric determines the
principal U(1) bundle Ph of unitary frames of L and as before A1 determines
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a connection 1-form α1 on Ph. On the base X, the connection 1-form is
iR-valued in a unitary frame and we write it as iα with a real-valued α.

Proposition 3.2. — Let (X, g) be a Riemannian manifold and let
(L, h) be a Hermitian line bundle with h-compatible connection ∇. Let
∇(feL) = (df + ifα)⊗ eL with α ∈ R in a unitary frame eL. Then,

∇∗∇(feL) =
(
−∆gf − 2iG(df, α) + ifd∗gα+G(α, α)f

)
eL.

where ∆g is the scalar Laplace operator.

Proof. — In a unitary frame, |eL|2h = e−ψ = 1 and this factor drops out.
We leave it in until the last step for purposes of later comparison to other
frames. Since ∇(feL) = df ⊗ eL + ifαeL, and by (3.1),

qg,h,∇(s) =
∫
X

|df + ifα|2ge−ψdVg.

Note that

|df+ifα|2g = G(df+ifα, df + ifα) = |df |2g+2<f̄G(df,−iα)+G(α, α)|f |2

is the Hermitian norm-squared, so

qg,h,∇(s) =
∫
X

(
|df |2g + 2<f̄G(df,−iα) +G(α, α)|f |2

)
e−ψdVg

=
∫
X

(
−2<f̄G(df, iα) +G(α, α)|f |2

)
e−ψdVg −

∫
X

f̄d∗g(e−ψdf)dVg

=
∫
X

(
−2<f̄G(df, iα) +G(α,α)|f |2

)
dVg −

∫
X

f̄(d∗gdf)dVg,

where in the last line we use that ψ = 0 in a unitary frame. Since α is
real-valued,

−2<f̄G(df, iα) = −i(f̄G(df, α)− fG(df̄ , α)).

Recall that d∗g(fα) = −∗d∗(fα) = −G(df, α)+fd∗gα. Replacing iG(df̄ , α)
by −i

(
d∗g(f̄α)− f̄d∗gα

)
and integrating the d∗g by parts gives∫

X

(
−if̄G(df, α)− if̄G(df, α) + i|f |2d∗gα+G(α, α)|f |2

)
dVg

−
∫
X

f̄(d∗gdf)dVg,

Thus, we get

∇∗∇f = −∆gf − 2iG(df, α) + ifd∗gα+G(α, α)f. �
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3.2. Holomorphic line bundles: JL-compatible connections.

In this section we give a local formula for the Bochner Laplacian when
L→ X is a holomorphic line bundle and ∇ is compatible with the complex
structure. Thus, complex structures J on X and JL on L are fixed. In a
holomorphic frame, ‖eL‖ = e−ψ 6= 1 and ∇eL = α⊗ eL, where α is of type
(1, 0). We write ∇ = ∂∇ + ∂

∇ for the decomposition of a connection into
its (1, 0) resp. (0, 1) parts, with ∂∇ = ∇(1,0), ∂

∇ = ∇(0,1).

The Bochner–Kodaira identity relates ∇∗∇ to ∂∗L∂L, where{
∂L(feL) := ∇(1,0)(feL) = (∂f + αf)⊗ eL,
∂L(feL) := ∇(0,1)(feL) = ∂f ⊗ eL.

The analogue of Proposition 3.2 is

Proposition 3.3. — If∇ is compatible with JL with connection 1-form
∇eL = α⊗ eL with α of type (1, 0) in the holomorphic frame eL, then

∇∗∇(feL) = (−∆gf +G(dψ+α, df)− fG(dψ, α) + fd∗α+G(α, ᾱ)f) eL.

Proof. — The proof is similar to that of Proposition 3.2, with two dif-
ferences:

(i) we use a holomorphic frame rather than a unitary frame and |eL|2h =
e−ψ is not equal to 1;

(ii) α is of type (1, 0) rather being iR-valued.
Note that

|df + fα|2g = G(df + fα, df + fα) = |df |2g + 2<f̄G(df, ᾱ) +G(α, ᾱ)|f |2

By (3.1), and integrating by parts the |df |2g term, and with | · |2 denoting
the Hermitian metric, we get

qg,h,∇(s)

=
∫
X

|df + fα|2ge−ψdVg

=
∫
X

(
|df |2g + 2<f̄G(df, ᾱ) +G(α, ᾱ)|f |2

)
e−ψdVg

=
∫
X

(
2<f̄G(df,ᾱ) +G(α, ᾱ)|f |2

)
e−ψdVg−

∫
X

f̄d∗g(e−ψdf)dVg

=
∫
X

(
2<f̄G(df,ᾱ)+G(α, ᾱ)|f |2

)
e−ψdVg−

∫
X

f̄(d∗gdf−G(dψ, df))e−ψdVg

Further,
2<f̄G(df, ᾱ) = f̄G(df, ᾱ) + fG(df̄ , α).
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We simplify the fG(df̄ , α) term using that d∗(f̄α) = − ∗ d ∗ (f̄α) =
−G(df̄ , α) + f̄d∗α so that G(df̄ , α) = −d∗(f̄α) + f̄d∗α. Integrating the
d∗ by parts gives∫

X

(
2<f̄G(df, ᾱ) +G(α, ᾱ)|f |2

)
e−ψdVg

=
∫
X

(
f̄G(df, ᾱ) + fG(df̄ , α) +G(α, ᾱ)|f |2

)
e−ψ

=
∫
X

(
f̄G(df, ᾱ)− fd∗(f̄α) + |f |2d∗α+G(α, ᾱ)|f |2

)
e−ψdVg

=
∫
X

(f̄G(df, ᾱ)− f̄G(df, α)− |f |2(G(dψ, α)

+ |f |2d∗α+G(α, ᾱ)|f |2)e−ψdVg.

Combining with the term −
∫
X
f̄(d∗gdf −G(dψ, df))e−ψdVg, we get

∇∗∇f = −∆gf +G(dψ + ᾱ− α, df)− fG(dψ, α) + fd∗α+G(α, ᾱ)f. �

3.3. Chern connection

In this section we assume ∇ is both h-compatible and JL-compatible,
i.e., that it is the Chern connection with connection 1-form ∂ψ. One can
then compute ∇∗∇ using the relation

(3.2) ∇∗∇ = 2∂∇∗∂∇ + i ∗ dα

between the Kodaira and Bochner Laplacians.
Note that dψ is real and ∂ψ = α, so dψ = α+ ᾱ and G(dψ+α− ᾱ, df) =

G(α, ∂f) above. Also, G(dψ, α) = G(ᾱ, α), so the terms −fG(dψ, α) +
G(α, ᾱ)f cancel and from the preceding Proposition we get

∇∗∇(feL) = −∆gf +G(α, ∂f) + fd∗gα.

We now prove this directly.

Proposition 3.4. — Let ∇ be the Chern connection for (L, h). Then,

∇∗∇(feL) = (−∆gf +G(∂ψ, ∂f) + f(i ∗ Ω∇))eL.

Proof. — Using (3.2) and ∂∇(feL) = (∂f ⊗ eL), we have

〈∂∗L∂Ls, s〉h := 〈∂Ls, ∂Ls〉h⊗g.

TOME 70 (2020), FASCICULE 3



992 Junehyuk JUNG & Steve ZELDITCH

We rewrite G(∂f, ∂f) term using that d∗(f̄∂f) = − ∗ d ∗ (f̄∂f) =
−G(df̄ , ∂f) + f̄d∗∂f so that G(∂f, ∂f) = −d∗(f̄∂f) + f̄d∗∂f. Integrat-
ing the d∗ by parts gives∫

X

G(∂f, ∂f)e−ψωg =
∫
X

(−d∗(f̄∂f) + f̄d∗∂f)e−ψωg

=
∫
X

(G(∂f, dψ)−∆f)) f̄ e−ψωg.

Adding the curvature term adds f(i ∗ Ω∇). �

Remark 3.5. — Proposition 3.4 and (3.2) are consistent by the following
calculation: If α = ∂ψ is a Chern connection 1-form, then

(d∗gα)ωg = Ω∇ = i∂∂ψ = (∆gψ)ωg, d∗gα = ∆gψ.

Indeed, in terms of the Hermitian inner product,

〈d∗gα, f〉L2 = 〈α, df〉L2 = 〈α, ∂f〉L2 =
∫
X

∂α · ∂f̄ωg = i

∫
X

∂ψ

∂z

∂f

∂z
dzdz̄

= −i
∫
X

∂2ψ

∂z∂z̄
fdzdz̄

= −〈∆ψ, f〉L2 .

3.4. Canonical bundle: L = K and ∇ is the Riemannian
connection

Let z be a local holomorphic coordinate and let dz be the associated
section of K. Differentials of type (dz)m are sections of Km, the m-th
power of the canonical bundle. The Riemannian metric on X induces a
Hermitian metric hm on Km, namely |dz|h = |dz|g where g is the co-
metric. dz = dx+ idy and at x+ iy, |dz| = y.
The metric g on TX endows a Hermitian metric g∗ on K and the as-

sociated Riemannian connection ∇g is the Chern connection with connec-
tion 1-form α = −∂ log g11̄ in the frame dz. For simplicity of notation we
write φ = − log g11̄. It induces connections and Hermitian metrics on Km

with connection 1-forms mα. The associated Bochner Laplacian ∇∗m,g∇m,g
on Km corresponds to the quadratic form

qm,g(s) =
∫
X

|∇m,gs|2m,gωg =
∫
X

|df +mf∂φ|2‖(dz)m‖2gmωg

=
∫
X

|df +mf∂φ|2e−mφωg.
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Note that ωg = i
2g11̄dz ∧ dz̄ and the Laplacian on scalar functions is given

by ∆0f = g11̄ ∂2f
∂z∂z̄ .

Proposition 3.6. — Let ∇m be the Chern connection for (Km, g∗m).
Then,

∇∗m∇m(f(dz)m) = (−∆gf +mG(∂φ, ∂f) +mKf)(dz)m.

Proof. — This follows from Proposition 3.4. We give a direct proof. By
the Bochner–Kodaira formula (3.2), it suffices to prove

(3.3) ∂
∗
m∂m(f(dz)m) =

(
g11̄ ∂

2f

∂z∂z̄
−m

(
∂f

∂z̄
g11̄
)
∂φ

∂z

)
(dz)m,

where φ(z) = − log |dz|g = − log g1,1̄.

As above, we calculate the adjoint to be

∂
∗
m(f(dz)m ⊗ dz̄) =

(
emφω−1

h

∂

∂z

(
f(z)g11̄e−mφωh

))
= g11̄ ∂f

∂z
−mf(z)g11̄ ∂φ

∂z
.

It follows that

∂
∗
m∂m(f(dz)m)

= ∂
∗
m

(
∂f

∂z̄
(dz)m ⊗ (dz̄)

)
=
(
emφω−1

g

∂

∂z

(
∂f

∂z̄
g11̄e−mφωg

))
= g11̄ ∂

2f

∂z∂z̄
−m

(
∂f

∂z̄
g11̄
)
∂φ

∂z
+ ∂f

∂z̄
g11̄ ∂ log g11̄

∂z
+
(
∂f

∂z̄
g11̄
)
∂ logωg
∂z

= g11̄ ∂
2f

∂z∂z̄
−m

(
∂f

∂z̄
g11̄
)
∂φ

∂z
,

where we used ∂ log g11̄

∂z + ∂ logωh

∂z = 0. �

4. Perturbation theory and genericity

In this section we prove generic properties of the eigenvalues and eigen-
sections of Bochner Laplacians ∇∗g,h∇ on complex holomorphic Hermitian
line bundles (L, h)→ X. Our ultimate goal is to deduce generic properties
of Kaluza–Klein Laplacians on the principal U(1) frame bundles Ph → X

associated to h. First we discuss generic properties of Bochner Laplacians

TOME 70 (2020), FASCICULE 3



994 Junehyuk JUNG & Steve ZELDITCH

on the line bundles and then we draw conclusions for the Kaluza–Klein
Laplacians. We prove that for generic data (g, h,∇) (with fixed (JL, J)),
eigenvalues of Bochner Laplacians ∇∗g,h∇ are simple (multiplicity one) and
all eigensections intersect the zero section transversally (i.e., have 0 as a
regular value). This immediately implies that for the associated Kaluza–
Klein Laplacians ∆G on Ph, all joint eigenfunctions of the U(1) action and
∆G have simple joint spectrum and have 0 as a regular value. In Section 4.6,
we discuss the multiplicity of the spectrum of ∆G, hence proving a part of
Theorem 1.5.
The main result of this section is:

Theorem 4.1. — For generic “admissible data” described below, and
for everym, the spectrum of each Bochner Laplacians ∇∗g,h∇ on Ck(X,Lm)
is simple and all of its eigensections have zero as a regular value. Moreover,
if we lift sections to equivariant eigenfunctions φ, then <φ and =φ have
zero as a regular value.
The generic admissible data is of the following kinds:
(1) We fix h, g and vary the connection ∇ in Ah. Fixing h is equiva-

lent to fixing the principal U(1) bundle Ph → X, and varying the
connection 1-forms.

(2) We fix (J, JL, g) and vary both h and ∇, assuming that ∇ ∈ AC is
compatible with JL on L but not necessarily with h.

(3) We fix (g, JL, J) and vary (h,∇) assuming that ∇ is compatible
with both (h, JL), hence is the Chern connection of (L, JL, h).

(4) We fix L = Km and also fix J and vary g in the conformal class
associated to J . We assume that h is the Hermitian metric induced
by g and that ∇ is the Levi-Civita connection.

The proofs in each of the cases are given in separate sections.
Note that the functions relevant to this article are smooth sections of a

complex line bundle L, and may locally be represented as complex valued
functions u. We will prove that u : M → C has zero as a regular value, i.e.,
that dup = d<u+id=u is surjective. It follows that <u,=u are independent
and nowhere vanishing on their zero sets, and that each has zero as a regular
value

4.1. The Uhlenbeck framework

To study generic properties of the spectrum, we follow [20] and work
with Cr spaces of metrics and connections. We use the following notation:
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• We denote by Gr(X) the Banach space of Cr metrics on X. Since
X is a surface and we usually fix the complex structure J , we only
work with Cr metrics in the associated conformal class Conf(J)
and represent them in the usual Weyl gauge g = eρg0 relative to
a fixed background metric g0 ∈ Conf(J). Thus, we may identify
Gr(X) ∼= Cr(X). We may also fix the area of the metrics with
no loss of generality and then Conf(J) may be identified with the
space Kω of Kähler metrics on X in a fixed cohomology class. This
is simply a different choice of gauge in which we write the Kähler
forms as ωφ = ω0 + i∂∂φ and use the potentials φ rather than the
Weyl gauge u to parameterize metrics.

• We denote by Hr(L) the Banach space of Cr Hermitian metrics on
L. Once we fix a local frame eL we may identify h ∈ Hr(L) with
the function ψ such that ‖eL(z)‖2h = e−ψ(z), and Hr(L) is then
equivalent to Cr(X) except of course that the identification is frame
dependent and the frame is only local (defined on the complement
of a smooth closed curve in X, e.g.).
• We denote by Ar(L) the space of connections with Cr connection

forms. As before, we also denote by Arh, resp. ArC, the h-compatible
(resp. JL-compatible) Cr connections.
• We denote by Cr(X,L) the Cr sections of L. We also denote by
Hs(X,L) the Sobolev space of sections with s derivatives in L2.

We define

ΦL : Gr(X)×Hr(L)×Ar(L)×H2(X,L)× C→ L2(X,L),

by
ΦL(g, h,∇, s, λ) = (∇∗g,h∇− λ)s.

Here, the eigenvalue parameter λ in the domain is allowed to be complex
even though at zeros of ΦL it is always real. This does not change the
arguments in [20] but is needed so that λs spans the eigenspace when s

is an eigensection. In [20] the eigenfunctions were real-valued, so this issue
did not arise.
Recall that a linear map between Banach spaces is Fredholm if it has

closed image and finite dimensional kernel and cokernel. The index of a
Fredholm operator is the difference of the dimensions of its kernel and
cokernel. A nonlinear map Φ : N → Y of Banach manifolds is Fredholm if
its derivative DΦn is Fredholm for every n ∈ N .

Our first goal, roughly speaking, is to prove that Φ is a Fredholm map
of index 0, i.e., to prove surjectivity of the differentials D2Φ from tangent
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spaces of
Q = {(g, h,∇, s, λ) : ΦL(g, h,∇, λ) = 0}

to L2(X,L). It is sufficient to pick the relevant types of frames and calculate
the Bochner Laplacians in the frame as in Section 3.
Regarding the surjectivity, we need to prove density of the image and

that the image is closed. Some care needs to be taken because sections of
complex line bundles are “vector-valued”, i.e., have two real components. As
explained in [6], there are pitfalls to avoid when generalizing the arguments
of [20] to the vector-valued case. But sections of line bundles are locally
complex-valued functions and are essentially scalar functions, albeit with
scalars in C.

4.2. Uhlenbeck’s argument

We briefly review Uhlenbeck’s proof that for generic metrics on compact
CrRiemannian manifolds, all eigenvalues are simple and all eigenfunctions
have 0 as a regular value.

Her framework is quite general and therefore uses the notation B for the
relevant space of metrics or other geometric data, and Lb for the Laplacian
associated to b. The relevant functions are denoted by u and the space of
such functions on a manifold M is denoted by Ck(M), even though they
could be sections of a bundle over M . Then define

Φ(u, λ, b) = (Lb + λ)u,

and put
• Q := {(u, λ, g) ∈ Ck(X)× R+ ×B : Φ(u, λ, b) = 0}.
• α : Q×M → C : α(u, λ, b, x) = u(x).
• β : Q×M → T ∗M : β(u, λ, b, x) = ∇u(x).

Then,

Tu,λ,bQ =

(v, η, s) ∈ H1,0(X)× C× TbB :

∫
X

uvdVg = 0,

(Lb + λ)v + ηu+D2φs = 0

.
We often write

v = u̇, η = λ̇, D2(Φ)s = λ∆̇u, (∆ + λ)u̇+ (∆̇ + λ̇)u = 0.

Further, let D1α denote the derivative of α along Q. Then,

D(u,λ,b)α(v, 0, c, 0) = v(x) = u̇(x).
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Also define J to be the image of D2Φ,

J = ImD2Φ(u,λ,b) = {∆̇u : ∆̇ is a variation of ∆ along a curve of metrics}.

We use the following “abstract genericity” result of [20, Theorem 1]
and [20, Lemmas 2.7–2.8].

Theorem 4.2. — Assume that Φ is Ck and has zero as a regular value.
Then the eigenspaces of Lb are one-dimensional. If additionally, α : Q ×
M → C has zero as a regular value, then additionally

{b ∈ B : the eigenfunctions of Lb have 0 as a regular value}

is residual in B.

The key proposition is the following procedure for verifying the first
hypothesis of Theorem 4.2. (see [20, Proposition 2.10]).

Proposition 4.3. — Let J = imD2Φ and assume that forW ∈ L1(M)
and W ∈ C2(M − {y}), the property

∫
M
W (x)j(x)dµx = 0 for all j ∈ J

implies W = 0. Then φ is Ck and has zero as a regular value.

For the sake of completeness, we briefly review the main steps in proving
Theorem 4.2: The main input are two transversality theorems. The first is:
Let φ : H×B → E be a Ck map where H,B,E are Banach manifolds. If 0
is a regular value of φ and φb( · ) := φ( · , b) is a Fredholm map of index < k,
then the set {b ∈ B : 0 is a regular value of φb} is residual in B.

The second statement follows from [20, Lemma 2.7]: Let π : Q → B be
a Ck Fredholm map of index 0. Then if f : Q × X → Y is a Ck map
for k sufficiently large and if f is transverse to Y ′ then {b ∈ B : fb :=
f |π−1(b) is transverse to Y ′} is residual in B. Let

α : f−1(Y ′)→ B be α : f−1(Y ′) ⊂ Q→ B.

Lemma 4.4. — The eigenfunctions of Lb have zero as a regular value if
b is a regular value of π and if 0 is a regular value of α|π−1(b) ×M := αb.

Eigenfunctions and eigenvalues move continuously under perturbations
of the operator. So it is easy to show that the set of metrics with for which
the jth eigenvalue is simple is open. The difficulty is to prove that this set
is dense.

To prove the first statement in Theorem 4.1 we need to verify the hy-
potheses of Theorem 4.2 and therefore need to prove Proposition 4.3, i.e.,
to determine the range of D2φ.

Proposition 4.5. — For each of the admissible types of perturbation,
D2Φm is surjective from T(u,λ,φ)Qm → Ck−2.
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4.3. Base metric variations

In this section we fix (h,∇, J, JL) and vary only g = eρ. Equivalently,
we consider Kaluza–Klein metrics on a fixed U(1) bundlePh → M with a
fixed connection α and vary the base metric g.

Proposition 4.6. — Suppose that (L, h, J)→ X is a Hermitian holo-
morphic line bundle with h-compatible connection ∇. Let ∇(feL) = (df +
ifα) ⊗ eL with α ∈ R in a unitary frame eL. Then for generic Riemann-
ian metrics g = eρg0 in the conformal class of J , all of the eigenvalues of
∇∗g,h∇h are simple and all of the eigensections have 0 as a regular value.

Proof. — By Proposition 3.2,

∇∗∇(feL) =
(
−∆gf − 2iG(df, α) + ifd∗gα+G(α, α)f

)
eL.

where ∆gf is the scalar Laplace operator, where g = eρ.
Taking the variation δ with respect to ρ (and designating the variation

with a dot),

δ∇∗∇(feL) =
(
−∆̇gf − 2iĠ(df, α) + if ḋ∗gα+ Ġ(α, α)f

)
eL.

But each term is conformal to that of g with conformal factor e−ρ. Hence

δ∇∗∇(feL) = −1
2ρ∆f(x)− 2iρG(df, α) +

(
iρd∗gα+ ρG(θ, θ)

)
feL

= ρ∇∗∇(feL).

If ∇∗∇(feL)u = −λu then

δg∇∗∇(feL)u(x) = −λρu.

To prove that the image of D2ΦL is dense we argue by contradiction and
suppose that there exists W ∈ L2(X,L) such that∫

X

δg∇∗∇h(feL,W (z))hdVg = 0

for all ρ. But this implies that
∫
X
ρ(feL,W )hdVg = 0 for all ρ, thenW = 0.

Write W = FeL so that the integral becomes,
∫
X
ρfF̄ e−ψdVg = 0 for all

ρ. This is only possible if fF̄ e−ψ = 0. But f and e−ψ can only vanish on
a set of measure zero, so F ≡ 0 almost everywhere. The image is closed
because ∇∗∇ is a Fredholm operator. �
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4.4. Varying the Hermitian connection

In this section we fix g, h and vary ∇ ∈ Ah. In the application to Kaluza–
Klein metrics, Ph is fixed and the base and vertical metrics are fixed and
only the splitting into horizontal and vertical is varied.
We recall from Section 2 that some of the variations are “trivial”, i.e., are

within a gauge equivalence class. Bochner Laplacians with gauge-equivalent
connections are unitary equivalent by a gauge transformation, i.e., they
have the same spectrum and their eigensections are related by a gauge
transformations. Viewed in terms of line bundles over X, gauge equivalent
connection forms are connection forms of a single connection in two different
unitary frames, hence differ by a gauge transformation eiθ ∈ Map(X,S1)
taking eL → eiθeL. The connection 1-form then changes by idθ ∈ Ω1(X,R).
A unique representative of a gauge equivalence class is defined by the
Coulomb gauge d∗a = 0.

Proposition 4.7. — Suppose that (L, h, J)→ X is a Hermitian holo-
morphic line bundle and let ∇ ∈ Ah be given by ∇(feL) = (df + ifα)⊗eL
with α ∈ R in a unitary frame eL. Suppose that L is non-flat, or if it is flat,
that dα 6= 0. Then for generic gauge equivalence classes α ∈ Ah ∼= Ω1(X),
all of the eigenvalues of ∇∗g,h∇h are simple and all of the eigensections have
0 as a regular value.

Proof. — Again by Proposition 3.2,

∇∗∇(feL) =
(
−∆gf − 2iG(df, α) + ifd∗gα+G(α, α)f

)
eL,

where ∆gf is the scalar Laplace operator. Taking the variation with respect
to α gives,

δ∇∗∇(feL) =
(
−2iG(df, α̇) + ifd∗gα̇+ 2G(α̇, α)f

)
eL.

If the image is not dense, there exists W = FeL so that∫
X

(
−2iG(df, α̇) + ifd∗gα̇+ 2G(α̇, α)f

)
F̄ e−ψdVg = 0,

for all α̇ ∈ Ω1(X). We integrate d∗g by parts to get,∫
X

(
(−2iG(df, α̇) + 2G(α̇, α)f)F̄ + iG(α̇, d(fF̄ ))

)
e−ψdVg = 0.

We may assume that the frame eL is unitary so that ψ = 0. If β ∈ Ω1(M,C)
and

∫
X
G(β, ν)dVg = 0 for all ν ∈ Ω1(M,R), then β = 0. Indeed, we may

consider ν of the types ν = ν1dx, ν2dy separately to get orthogonality of
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the components βj with νj . This reduces matters to the fact that if u, v are
complex-valued and

∫
uvdVg = 0 for all v, then u ≡ 0. We conclude that

(−2idf + 2αf)F̄ + id(fF̄ ) = 0 ⇐⇒ (−idf + 2αf)F̄ + ifdF̄ = 0.

On any open set U where f, F 6= 0 we may divide by ifF̄ and write the
solution as,

dF̄
F̄

= −
(
−df
f

+ 2iα
)
.

This implies that

d log F̄
f

= −2iα =⇒ dα = 0

on a dense open set and since α ∈ C∞, it is everywhere closed and hence
the curvature of (L, h) is zero. This is impossible unless L is a topologically
trivial line bundle, and the contradiction implies that F ≡ 0 except when
dα = 0. �

4.5. Proof of Theorem 4.1

As mentioned in the previous section, eigenfunctions move continuously
under perturbations of the operator. So it is easy to show that the set of
metrics with for which the jth eigenvalue is simple is open. The difficulty
is to prove that this set is dense.
To prove the first statement in Theorem 4.1 we need to verify the hy-

potheses of Theorem 4.2 and therefore need to prove Proposition 4.3, i.e.,
to determine the range J of D2φ.
To complete the proof of Theorem 4.1 it suffices to prove:

Proposition 4.8. — For each m, D1αm is surjective to C.

Proof. — Let Gm,λ(z, w) be the kernel of the Green’s function Gm,λ :
[ker(Dm + λ)]⊥ → [ker(Dm + λ)]⊥ for Dm(g) + λ for a given background
metric g. As above, one may use the Hermitian metric h on K or the
associated Kähler metric g = ωJ as the parameter space of metrics.

We need to show that for each x ∈M ,

αm : Q× {x} → C : α(u, λ, g, x) = u(x)

has 0 ∈ C as a regular value, i.e., that

D1α( · , x) : Tu,λ,b(Q)→ C, D1α( · , x)(u,λ,g)(δu(x), 0, c, 0) = δu(x)

is surjective to C, where D1 is the differential along Q with x ∈ M held
fixed. Since x is fixed we may use a local coordinate z and frame (dz)m
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as above and identify local sections of Km with complex-valued functions
u : U → C, where U is an open set containing x.
The constraint equation for (v, 0, c, 0) ∈ T ∗(u,λ,b)Q is

(Dm(g) + λ)v + (Ḋm(g) + λ̇)u = 0,

and we can solve for v⊥ ker(Dm(g) + λ) as

v(x) = −
∫
M

Gm,λ(x, y)Π⊥λ [(Ḋm + λ̇)u](y)dV (y).

By Proposition 4.5, the range of D2Φ, i.e., the set of functions [(Ḋm+ λ̇)u],
spans L2

0. Therefore, the image Π⊥λ [(Ḋm + λ̇)u] spans [ker(Dm + λ)]⊥. It
follows that the possible values of v are all functions of the form,

v(x) =
∫
M

Gm,λ(x, y)f(y)dV (y),

where f⊥ ker(Dm(g) + λ). Thus, D1α is surjective to C unless for all
j⊥ ker(Dm(g) + λ), either the real or imaginary parts of

Gm,λ(j)(x) =
∫
M

Gm,λ(x, y)j(y)dV (y)

vanish (or both) for every such j.
Since j = [Dm(g)+λ]f where

∫
f = 0 we would get the absurd conclusion

that
f(x) = 0, ∀ f⊥ ker(Dm(g) + λ).

Equivalently,
Gm,λ(x, y) + uλ(x) = 0.

This is not possible and the contradiction ends the proof. �

4.6. Multiplicity of the spectrum of ∆g

We begin by observing that λm,j = λ−m,j and that φ−m,j = φm,j . Then
any real eigenfunction which is a linear combination of φm,j and φ−m,j is

<
(
eiθ0φm,j

)
for some constant θ0. In local coordinates, φm,j is φ̃(z)eimθ, and therefore
we see that

<
(
eiθ0φm,j

)
= < (Tθ0φm,j) = Tθ0< (φm,j) .

For m1 and m2 such that |m1| 6= |m2|, we argue that λm1,j1 6= λm2,j2 is
satisfied for an open dense subset of metric G. This immediately implies
the first, third, and the fourth statement of Theorem 1.5. Note that the
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eigenvalue moves continuously with respect to G. So it is sufficient to prove
that

Lemma 4.9. — Let P → X be a non-trivial principal S1 bundle. Fix
integers m1 and m2 such that |m1| 6= |m2|. Among all S1-invariant metric
G on P , G satisfying λm1,j1 6= λm2,j2 is dense.

Proof. — The deformation of the base of the Kaluza–Klein metric does
not touch the vertical operator ∂

∂θ and therefore the first order perturbation
equations for infinitesimal deformations of the base metric g gives,

(4.1) (∆̇H + λ̇m,j)φm,j = (∆H + λm,j +m2)φ̇m,j

Taking the inner product with φm,j gives

(4.2) − λ̇m,j = 〈∆̇Hφm,j , φm,j〉.

If there exist weights m1 6= m2 for which we cannot split the eigenvalue
λm1,j1 = λm2,j2 then for all infinitesimal base perturbations ρ we get

(4.3) λ̇m1,j1 = λ̇m2,j2 ⇐⇒ 〈∆̇Hφm1,j1 , φm1,j1〉 = 〈∆̇Hφm2,j2 , φm2,j2〉.

Write φm,j = fm,j(dz)m. Differentiation of the eigenvalue equation there-
fore gives the well-known formula

〈Ḋm1fm1,j1 , fm1,j1〉 = 〈Ḋm2gm2,j2 , gm2,j2〉

for every variation of g, where the inner product is that of g0.
Recall from previous section that ∆̇H = ρ∆H . Because −∆Hφm,j =

(λm,j −m2)φm,j we have for any ρ ∈ C∞(X),

(λm1,j1 −m2
1)
∫
X

ρ|fm1,j1 |2e−m1φdA0

= (λm2,j2 −m2
2)
∫
X

ρ|fm2,j2 |2e−m2φdA0.

Thus,

(λm1,j1 −m2
1)|fm1,j1 |2e−m1φ = (λm2,j2 −m2

2)|fm2,j2 |2e−m2φ.

Integrating both sides against dVg and using that both eigenfunctions
are L2 normalized gives

(λm1,j1 −m2
1) = (λm2,j2 −m2

2), i.e., |m1| = |m2|. �
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5. Local structure of eigensections at zeros

To study the nodal sets of real and imaginary parts of Kaluza–Klein
Laplacians, we first study the zeros of the associated sections of the line
bundles. For simplicity of exposition, we assume that L = K and describe
the zero sets of eigen-m-differentials. Essentially the same discussion is valid
for other line bundles.
We follow the notation and terminology in the theory of holomorphic

quadratic differentials, even though our eigendifferentials are C∞, usually
not holomorphic and of general weight m. Following a standard terminol-
ogy for quadratic differentials, we call a point z such that fm,rj

(z) 6= 0
a “regular point” and a point where fm,rj (z) = 0 a “critical point” or a
“singular point”.
After the first version of this article was written, we located some recent

articles generalizing the geometric properties of quadratic differentials on
Riemann surfaces to C∞ higher order differentials [7, 1] and to other line
bundles. We now use the terminology and results of these articles but have
retained some from our first version since it is important for us to lift to Ph.

5.1. Trajectories of eigen-differentials.

The real and imaginary parts of the eigendifferentials ωm,j=fm,j(z)(dz)m
are called binary differentials of degree m and the equation for the zero
set of =ωm,j is called a binary differential equation of degree m [7]. It
is traditional to consider the nodal set =fm,j(z)(dz)m = 0. If there exist
exactlym solutions at a regular point where ωm,j(z) 6= 0 then ωm,j is called
totally real in [7]. Ourm-differentials are of a special type since they are real
and imaginary parts of fm,j(z)(dz)m and therefore only have terms of the
form (dz)m or (dz̄)m. The following is the key input into Proposition 1.8.

Lemma 5.1. — =fm,j(dz)m is a totally real m-differential. At a regular
point z, there exist m distinct solutions v of =fm,j(dz)m(v) = 0 in TzX.

Proof. — It f v = (cosφ, sinφ), then in the notation of (1.4), the equa-
tion is

(am,jcm − bm,jsm) (cos θ, sin θ) = 0.
Here cm = <(cos θ + i sin θ)m = cosmθ, and the equation is

am,j(z) cosmθ − bm,j(z) sinmθ = 0 ⇐⇒ tanmθ = am,j
bm,j

,
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where am,j , bm,j ∈ R and where we assume with no loss of generality that
bm,j 6= 0. Since the principal branch of tan−1 : R → (−π/2, π/2) is one-
to-one, there exists precisely one solution θ0 of tanmθ = am,j

bm,j
with mθ ∈

(−π/2, π/2), namely the principal branch of tan−1( 1
m
am,j

bm,j
). Since tan θ is

π-periodic, tanmθ is π
m -periodic, and the full set of solutions is θ0 + k πm

with k = 0, . . . ,m− 1. �

The kernel of =fm,j(dz)m defines a smooth m-valued distribution on
X with singularities where ωm,j = fm,j(dz)m = 0. The m line fields de-
fines a web of m transverse singular foliations, whose leaves are called the
trajectories:

Definition 5.2. — The trajectories of the m differential fm,j(dz)m are
the integral curves of the kernel of =fm,j(dz)m, i.e. the trajectories are the
(smooth) curves γ(t) in X along which =φm,j(γ(t), γ′(t)) = 0.

Remark 5.3. — A trajectory in this sense of this article is called a “hor-
izontal trajectory” in [19, Definition 5.5.3]. They are illustrated in [19,
Section 7] for holomorphic quadratic differentials. Illustrations of webs for
higher order real differentials can be found in [7].

Trajectories downstairs on X lift to Ph by their tangent vectors. A tra-
jectory γz0,θ0(t) downstairs is a smooth curve along which

=(φm,j(γz0,θ0(t), γ̇z0,θ0(t)) = 0.

It lifts to a smooth curve (γz0,θ0(t), γ̇z0,θ0(t)) in the nodal set upstairs. Since
dπ is an isomorphism, the trajectories are special curves on the nodal set
=φm,j = 0.

5.2. Non-degenerate singular points

The structure of the trajectories through a singular (zero) may be com-
plicated in general if no conditions are placed on the degeneracy of the
zeros. The purpose of Theorem 4.1 is to allow us to assume that the zeros
are of first order, so that they are isolated and non-degenerate.

The structure of the trajectories of a totally real m-differential near an
isolated singular point is discussed in [7]. As with vector fields, the key
topological invariant of the singular point is its index.

Definition 5.4. — The index of a singular point z0 where

fm,j(z0)(dz)m = 0
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is related to the degree of the circle map defined by

δ(t) = z0 + reit → fm,j(δ(t))
|fm,j(δ(t))|

on a small circle around z0 to S1 by

ind(z0) = ±1
m

deg fm,j(δ(t))
|fm,j(δ(t))|

.

Equivalently, in a small circle C around z0, choose a unit vector X(0) ∈
ker=fm,j(dz)m|C(0) where C(t) : [0, 2π] → X is a constant speed param-
etrization of C and let ` = L(C) be its length. Let X(t) be a smooth
extension of X(0) along C(t). After a complete turn, X(2π) must be one
of the 2m solutions of ω(X) = 0. After 2m turns X(2m`) = 0. Let θ(t)
be a smooth determination of the angle between the tangent line to C and
X(t). Then θ(2m`) and θ(0) differ by an integer multiple of 2π. The index
of z0 is defined by

ind(ω, z0) = θ(2πm`)− θ(0)
4πm .

Thus, the index has the form s
2m with s ∈ Z. The following Lemma shows

that singular points must exist when the genus of X is non-zero.

Lemma 5.5. — If fm,j(dz)m has isolated non-degenerate zeros, then the
sum of the indices of the zeros is the Chern class of Km

X .

Lemma 5.6. — If z0 is a non-degenerate singular point (zero of order 1)
of fm,j(dz)m, then ind(ωm,j , z0) = ±1

m .

Proof. — This follows from the fact that fm,j is linear in this case and
hence the degree of the associated circle map is ±1. �

Proposition 5.7. — For a generic Riemannian metric g on X, all sin-
gular points of all eigendifferentials of ∇∗∇ on Km have index ±1

m for all
m 6= 0.

Proof. — It is part of Theorem 4.1, all singular points are non-degen-
erate. To prove this it suffices to show that the coefficients fm,j are lin-
ear near each singular point. This follows from the Bers local formula for
eigensections around a zero. We use Proposition 3.3 to Taylor expand the
operator

Dm = ∇∗m∇m = 2g11̄ ∂2

∂z∂z̄
f − 2m

[
∂f

∂z̄
g11̄
]
∂φ

∂z
+Kf,

around a nodal point.
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Let p be a nodal point of fm,j . We Taylor expand the coefficients in
Kähler normal coordinates for (J, g) in a disc z ∈ D(p, r) to get

• g11̄ = 1 +K(p)|z|2 + · · · ;
• ∂φ

∂z = ∂φ
∂z (p) + ωpz̄ + · · · = z̄ + · · · .

Thus, the osculating constant coefficient operator is

Dp
mf = 2 ∂2

∂z∂z̄
f +K(p)f.

Let Pk denote homogeneous polynomials of degree k in z, z̄. It is better
to arrange the terms of the Taylor expansion of Dm at p into terms

Dm = L−2 + L−1 + L0 + L1 + · · ·

where Lj : Pk → Pk+j .

Thus, L−2 = ∂2

∂zz̄ , L−1 = 0, L0 = K[2]
∂2

∂zz̄ − 2m[∂f∂z̄ ]z̄ + K(p) etc. Note
that L−1 = 0 because dg11̄(p) = 0 and ∂φ(p) = 0, so neither the second or
first derivative terms contribute at this order.
Also expand

f(z) = f1(p)z + f1̄(p)z̄ + f11(p)z2 + f11̄(p)|z|2 + f1̄1̄(z̄)2 + · · ·+ f[k] + · · · ,

where f[k] ∈ Pk is homogeneous of order k.
The following is the generalization of the Bers local expansion theorem

to complex line bundles.

Lemma 5.8. — Let z0 be a zero of fm,j(dz)m. The first non-zero ho-
mogeneous term f[n] of the Taylor expansion of an eigenfunction is a har-
monic homogeneous polynomial. If the order of vanishing is n, f[n](z) =
a<zn + ib=zn. In particular, at a non-degenerate zero, the first homoge-
neous term is fm,j = a<z + ib=z.

Proof. — It is evident that L−2 = ∂2

∂z∂z̄ : Pk → Pk−2. If f[k] is the
term of lowest degree in the expansion of f then ∂2

∂z∂z̄ f[k] = 0, i.e., f[k] is
a homogeneous harmonic polynomial. In real dimension 2 the only possi-
bilities are linear combinations of the real and imaginary parts of zk. By
a well-known argument, the nodal set of the real and imaginary parts of
f are topologically equivalent to those of the leading order homogeneous
term. �

This completes the proof of the Proposition 5.7. �
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6. Adapted Kaluza–Klein metrics

All of the Kaluza–Klein metrics are Riemannian metrics on principal
S1 bundles Ph → X associated to C∞ complex Hermitian line bundles
L→ X. Given Ph we recover L as an associated line bundle. Let (X, g) be
any Riemannian surface. We denote the genus of X by g. Let (L, h) → X

be any complex line bundle with Hermitian metric h. Associated to L is the
U(1) bundle Ph of orthonormal frames. Let T = ∂

∂θ generate the S1 ∼= U(1)
action. We endow Ph with a connection α, that is, an S1 invariant 1-form
on Ph such that α(T ) = 1.
The connection defines a splitting

TpPh = Hp ⊕ Vp

into horizontal and vertical spaces. The vertical space is given by orbits
of the S1 action. The horizontal space is defined by Hp = kerα and is
isomorphic under dπp to TzX where π(p) = z.

Definition 6.1. — The Kaluza–Klein metric on Ph is the S1-invariant
metricG such that the horizontal spaceHp := ker dα is isometric to Tπ(p)X,
so that V = R ∂

∂θ is orthogonal to H and is invariant under the natural S1

action and so that the fiber is a unit speed geodesic.

A Kaluza–Klein metric on the principal S1 bundle Ph is thus determined
by the pair (g, α) where g is a metric on X and where α is a connection 1-
form on F . In general, the metric and connection are chosen independently.
In Section 2.6 we discuss the orthonormal frame bundle, where α is the
Riemannian connection of g.
Given Ph and any character χm = eimθ of S1 we obtain associated line

bundles (resp, real rank 2 bundles) by

Lm = Ph ×χm C.

For purposes of this paper it may be assumed that m > 0.
We often assume that X is equipped with a complex structure J and

that L is a holomorphic line bundle. Let D∗h ⊂ L∗ be the unit co-disc
bundle with respect to h and let Ph = ∂D∗h be its boundary, an S1 bundle
π : Ph → X.

Remark 6.2. — Not all S1 invariant metrics on Ph are adapted Kaluza–
Klein metrics. It would be interesting to consider more general S1-invariant
metrics on SX or on other manifolds (of all dimensions), as well as invariant
metrics under more general compact Lie groups.
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6.1. Geometry and analysis of Kaluza–Klein metrics

We use the term Kaluza–Klein metric or Kaluza–Klein metric in the
sense of Definition 6.1 to denote metrics G on the unit tangent bundles
π : Ph = SX → X over surfaces for which the vertical and horizontal
spaces are orthogonal and which is invariant under the free S1 = SO(2)
action(2) . They are special cases of Riemannian submersions with totally
geodesic fibers isometric to R/2πZ.

Definition 6.3. — If H is a compact Lie group, and if π : M → B

is a principal H-bundle with fiber F , then one says that a connection θ

is an H-connection for π if the H action preserves the horizontal spaces
and preserves the connection 1-form. One says that a metric G is adapted
to H if the fibers π−1(b) are totally geodesic and isometric to F and such
that the horizontal distribution of θ is the orthogonal complement to the
vertical.

The following Lemma gives details on the equivalences of the various
conditions and is implicitly contained in [3, Example 2.1] and is proved
in [21, Theorem 3.5]. Hence we only sketch the proof.

Lemma 6.4. — Suppose that S1 acts freely on M and that G is an
S1 invariant metric for which all orbits are geodesics isometric to R/2πZ.
Then G is a Kaluza–Klein metric and π : M → M/S1 is a Riemannian
submersion with totally geodesic fibers isometric to R/2πZ.

Proof. — Under the freeness assumption, we have an S1 bundle π : M →
X := M/S1. Let V = R ∂

∂θ be the vertical space, i.e., the tangent space to
the orbits. Let Hx = V ⊥x . The metric G determines a quotient Riemannian
metric on X using the isomorphisms dπx : Hx → Tπ(x)X. By assumption,
| ∂∂θ |G = 1 if we identify S1 = R/(2πZ. The only non-trivial statement is
that the orbits are geodesics. Let α(t) denote the orbit of a point x under the
S1 action. Let v(0) be a horizontal vector at α(0). Let σ(t, s) be the parallel
translation of α(t) along a curve in X with initial tangent vector dπ(v(0)).
Then ∂

∂sσ(t, 0) is a horizontal vector field along α(t). The arclength of the
curve t → σ(s, t) is constant in s. The first variation formula implies that
α(t) is geodesic. �

These adapted metrics are special cases of invariant metrics on an S1-
manifold M . For instance, in the case of the non-free action of S1 on the
standard S2 by rotations around the x3-axis, | ∂∂θ |g0 varies with the orbit,

(2)A free action is one for which all isotropy groups are trivial.
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and almost no orbits are geodesics. It would be interesting to consider
generalizations to all S1 invariant metrics.
Sections ofKm, i.e., differentials of type (dz)m, lift to the dual line bundle

K∗ = T (1,0) as equivariant scalar functions F : K∗ → C transforming by
eimθ under the S1 action of rotating a frame. Using the metric g we form
the unit tangent bundle π : SX → X. In this section, we review the
relevant formulae for lifted operators and review the fact that the Bochner
Laplacians are Fourier components of the horizontal Laplacian on SX.

6.2. Lifts to Ph

The natural inner product on L2(Ph, dVG) is given by

〈f, f〉 =
∫
Ph

|f |2dVG.

Sections s of Lm naturally lift to L∗ and Fh by

ŝ(z, λ) := λ(s(z)).

It is straightforward to check that the lift of s ∈ C(X,Lm) satisfies ŝ(rθx) =
eimθ ŝ(x) and that ∫

Fh

|ŝ(x)|2dVG =
∫
X

‖s(z)‖2hmdVg.

Indeed, if x = rθ
eL∗ (z)
‖eL∗ (z)‖ then ŝ(x) = eimθ‖eL(z)‖mhm .

In the case of L = KX , the lift has the form,
̂f(dz)m(Y ) = f(dz(Y ))m.

We define a orthonormal frame of T ∗X by ω1 = e−φdz := dz
|dz|h as above,

and let ‖ ∂∂z‖
−1 ∂

∂z = eφ ∂
∂z be the dual frame. In local coordinates z, z̄

on X and in this local frame we define local coordinates (z, z̄, θ) on SX

corresponding to the point eiθeφ ∂
∂z .

Then (dz)m lifts to the function,

em(z, z̄, θ) = (̂dz)m
(
eiθeφ

∂

∂z

)
= eimθemφ(z).

Consequently, the eigendifferential fm,j(dz)m lifts to

φm,j(z, z̄, θ) = fm,j(z)eimθemφ(z).

In (1.2) we decomposed the lift into real and imaginary parts. We now
relate them to the real and imaginary parts of fm,j .
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If we take the inner product of um,j and vm,j just along the fiber and
use orthogonality of cosmθ, sinmθ and that

∫ 2π
0 (cos2mθ− sin2mθ)dθ = 0,

and then integrate in dA(z) we get

Lemma 6.5. — 〈um,j , vm,j〉 = 0.

6.3. Eigenspace decompositions

The Kaluza–Klein Laplacian has the form

∆G = ∆H + ∂2

∂θ2 , where ∆H = ξ2
1 + ξ2

2

is the horizontal Laplacian. The fact that the fiber Laplacian is ∂2

∂θ2 reflects
the fact that S1 orbits are geodesics isometric to R/2πZ.
The weight spaces are ∆H -invariant, i.e., as an unbounded self-adjoint

operator,
∆H : Hm → Hm.

Under the canonical identification

Hm ∼= L2(X,Lm)

using the lifting map and ∆H |Hm
∼= Dm −m2I under the lifting map.

We then consider joint eigenfunctions φm,j of the Kaluza–Klein Laplacian
∆G and of ∂

∂θ . The commutation relations show that [∆G,
∂2

∂θ2 ] = 0.

Lemma 6.6. — TheBochnerLaplacian agrees with the horizontal Lapla-
cian ∆H . In the above local coordinates and frame,

̂∇∗m∇m(f(dz)m) = ∆H
̂(f(dz)m).

Note that except for the last identity, these statements are true for any
isometric S1 action, not just for adapted Kaluza–Klein metrics.

6.4. Equivariant decomposition

Since S1 acts isometrically on (M,G) we may decompose into its weight
spaces,

L2(M, dVG) =
⊕
m∈Z
Hm,

where
Hm = {f : M → C : f(eiθx) = eimθf(x)}.
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The weight spaces are ∆H -invariant, i.e., as an unbounded self-adjoint op-
erator,

∆H : Hm → Hm.
The lifting map gives a canonical identification

Hm ∼= L2(X,Lm).

7. Connectivity of nodal sets of Kaluza–Klein
eigenfunctions

Given the preparations in Section 5, it is now a simple matter to prove
Theorem 1.9. The following is an immediate consequence of Lemma 5.1:

Lemma 7.1. — If 0 is a regular value, then Num,j
⊂ SX is a singu-

lar 2m-fold cover of X with blow-down singularities over points where
fm,j(z)(dz)m = 0.

Indeed, the 2m zeros of =ωm,j(v) = 0 in SzX give 2m points on the fiber
π−1(z) in Ph. Since locally there exist 2m smooth determinations of the
zeros, the nodal set is a covering map away from the singular points.
We have separated Lemma 7.1 from further geometric results on the map

π : Num,j
→ X in the next section since it was stated separately from those

results in Theorem 1.9.

Remark 7.2. — In the literature, π : Num,j
→ X is sometimes called a

branched cover [1, Section 4], but as J. Y. Welschinger explained to us,
the terminology is misleading since smooth branched covers are supposed
to have z1/m singularities over the branch points, just as for holomorphic
branched covers, while the inverse image of a zero of fm,j is an S1 orbit and
the singularity is blown up. In some sense, π is locally like the projection
of a vertical helicoid onto the horizontal plane.

8. Nodal domains of real and imaginary parts

We now give a sketch of the proof of Theorem 1.5. By Proposition 1.8
(and (1.5)), N=φm,j\(N=φm,j ∩Σ)→ X\Zfm,j is a 2m-sheeted cover. More-
over, Ph\Σ→ X is an S1 bundle and

i(Ph\Σ)\N=φm,j
→ X
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is a fiber bundle whose fibers consist of the punctured fibers π−1(z)\N=φm,j
.

The connected components of each punctured fiber consist of “arcs” along
which =φm,j has a constant sign. We therefore express it as

(Ph\Σ)\N=φm,j
= P+

⋃
P−

where sign=φm,j = ± in P±. Each π : P± → X is a fiber bundle whose
fiber consists of m arcs of the fibers of π : Ph → X. Since the number of
zeros in each regular fiber is 2m, the number of connected components of
P± is 6 m. When we take the closure of these sets (i.e., add in the singular
fibers, on which =φm.j = 0, the connected components of the closure are
the nodal domains. It follows that there are 6 2m nodal domains. We now
argue that the closure of P± is connected, so that there exist exactly 2
nodal domains.
We now use the local analysis in Section 5 of eigendifferentials of generic

Bochner Laplacians around their zeros to determine how the sheets are
connected at the singular fibers Cj = π−1(zj), corresponding to singular
points (i.e., zeros) of fm,j(dz)m i.e., we consider the maximal components
P±,j of

P±\
m⋃
j=1
Cj =

m⋃
j=1
P±,j ,

in which =φm,j has a single sign. When we union the left side with
⋃m
j=1 Cj

we glue together some of these domains along intervals of the singular fibers.
The gluing rule for the nodal domains is determined by the gluing rule

for the nodal set, since the boundary of the each nodal domain is the nodal
set. From the downstairs point of view, the gluing rule is the monodromy
of the cover Nujm,j

→ X\Z(ωm,j) If we fix a singular point z0, then we get
a monodromy representation

ρ : π1(X\Z(ωm,j))→ Aut(π−1(z0)),

determining how the sheets of the nodal set are changed as the point circles
around z0.

By Proposition 5.7, the index of the singular points z0 is ±1
m . In terms

of the monodromy, this means precisely that each turn around a circle
C enclosing z0 lifts to an arc from one vector in the fiber to its nearest
neighbor with the same sign of <φm,j (i.e., skipping the neighboring vector
of the opposite sign).
It follows that both the + region and − region is connected in Ph. Hence

there are just two nodal domains.
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8.1. Counting the number of nodal domains

We now give a more detailed presentation.
Let D be an open disc. We first study connectivity of a certain graph

that arise from a pair of partitions of D.
Let P and Q be partitions of D, i.e., P (resp. Q) is a collection of

disjoint open-sets ΩP (1), . . . ,ΩP (nP ) ⊆ D (resp. ΩQ(1), . . . ,ΩQ(nQ) ⊆ D)
such that

∪nP

k=1ΩP (k) = D (resp. ∪nQ

k=1ΩQ(k) = D).

Let cP : P → {0, 1} and cQ : P → {0, 1} be colorings of P and Q, and
define the inversions of cP and cQ by c′P = 1− cP and c′Q = 1− cQ.

We now define a graph Gm(P,Q, cP , cQ) as follows:
The vertex set is 

v1,1, v1,2, · · · v1,nP
,

v2,1, v2,2, · · · v2,nQ
,

v3,1, v3,2, · · · v3,nP
,

v4,1, v4,2, · · · v4,nQ
,

...
v4m,1, v4m,2, · · · v4m,nQ


and edges are

{v4j,a, v4j+1,b} such thatΩQ(a) ∩ ΩP (b) 6=∅, and c′Q(ΩQ(a))=cP (ΩP (b)),
{v4j+1,a, v4j+2,b} such thatΩP (a) ∩ ΩQ(b) 6=∅, and cP (ΩP (a))=cQ(ΩQ(b)),
{v4j+2,a, v4j+3,b} such thatΩQ(a) ∩ ΩP (b) 6=∅, and cQ(ΩQ(a))=c′P (ΩP (b)),
{v4j+3,a, v4j+4,b} such thatΩP (a) ∩ ΩQ(b) 6=∅, and c′P (ΩP (a))=c′Q(ΩQ(b))

for j = 0, 1, . . . ,m− 1 with the identification v0,a = v4m,a.

Definition 8.1. — We say a pair of partitions (P,Q) generic, if

D −
(
∪nP

k=1ΩP (k) ∪ ∪nQ

k=1ΩQ(k)
)

does not contain a closed curve.

Lemma 8.2. — For a generic pair of partitions (P,Q) with any given
colorings cP and cQ, any connected component of Gm(P,Q, cP , cQ) contains
at least one of the following 2m vertices:

v1,1, v3,1, . . . , v4m−3, v4m−1.

In particular, Gm(P,Q, cP , cQ) has at most 2m connected components.
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Proof. — We first consider the casem = 1. To claim G1(P,Q, cP , cQ) has
only 2 connected components, it is sufficient to prove that if cP (ΩP (a1)) =
cP (ΩP (a2)), then v1,a1 and v1,a2 are path-connected.
Because (P,Q) is a generic pair, one can find a chain of open-sets

ΩP (a1) = ΩP (c1), ΩQ(b1), ΩP (c2), ΩQ(b2), . . . ,ΩP (ck) = ΩP (a2)

such that two adjacent open-sets have non-trivial intersection.
Observe that if ΩP (c) ∩ ΩQ(b) 6= ∅, then either

{v1,c, v2,b}, or {v1,c, v4,b}

is an edge, and likewise either

{v3,c, v2,b}, or {v3,c, v4,b}

is an edge.
Therefore the above chain of open-sets corresponds to a path connecting

v1,a1 with either v1,a2 or v3,a2 . However, from the assumption cP (ΩP (a1)) =
cP (ΩP (a2)), and from the construction of G1(P,Q, cP , cQ), v1,a1 cannot be
connected to v3,a2 , hence is connected to v1,a2 .
Now for the rest, note that Gm is an m-covering of G1, and because

v1,1 and v1,3 belongs to the different connected components of G1, any
connected components of Gm must contain at least one vertex of the fiber
of v1,1 or v1,3. �

For a large class of colorings, we can deduce a much stronger result.

Lemma 8.3. — Let (P,Q) be a generic pair of partitions. Assume that
we are given with a pair of colorings cP and cQ:
There exist four open sets ΩP (a1),ΩP (a2),ΩQ(b1),ΩQ(b2) such that

ΩP (ai) ∩ ΩQ(bj) 6= ∅

for i = 1, 2 and j = 1, 2, and that

cP (ΩP (a1)) + cP (ΩP (a2)) = cQ(ΩQ(b1)) + cQ(ΩQ(b2)) = 1.

Then the graph Gm(P,Q, cP , cQ) has 2 connected components.

Proof. — Note that any connected component of Gm must contain either
one of v4j,a1 or one of v4j,a2 with j = 1, . . . ,m, because G1 has only two
connected components.
Without loss of generality, assume that

cP (ΩP (a1)) = cQ(ΩQ(b1)).
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Then from the construction of the graph and from the assumption of the
lemma

{v4j,a1 , v4j+1,b1}, {v4j+1,b1 , v4j+2,a2},
{v4j+2,a2 , v4j+3,b2}, and {v4j+3,b2 , v4j+4,a1}

are edges, hence v4j,a1 and v4j+4,a1 are connected. Likewise, v4j,a2 and
v4j+4,a2 are connected. Therefore any connected component of Gm must
contain either v4,a1 or v4,a2 . �

8.2. The number of nodal domains of generic eigenfunctions

Let P be a principal S1 bundle over a connected smooth compact Rie-
mannian surface X with the covering map π : P → X. Let m be a fixed
integer, and assume that φ ∈ C1(M) satisfies the following conditions:

Condition 8.4. — For any small open U ⊂ X such that π−1U ∼= U ×
S1, there exists a local coordinate (x, θ) of π−1U such that

(1) φ(x, θ) = f(x)eimθ,
(2) the zero set of <f (resp. =f) gives rise to a partition P = PU (resp.

Q = QU ) of U , and
(3) (PU , QU ) is a generic pair of partitions of U .

In this section, we prove the following theorem.

Theorem 8.5. — Fix any point x ∈ X such that φ(x, θ) 6= 0. Then any
nodal domain of <φ has a nonempty intersection with π−1x. In particular,
the number of nodal domains of <φ is 6 2m. Assume further that φ has a
regular zero. Then the number of nodal domains of <φ is 2.

We begin with few observations in terms of fixed U and a local coordinate
(x, θ) of π−1U .

Proposition 8.6. — If <φ is positive on two open sets U1 ⊂ π−1U ∩
{θ = kπ

2m} and U2 ⊂ π−1U ∩ {θ = (k+1)π
2m } for some integer k, and if

πU1 ∩ πU2 6= ∅, then U1 and U2 are contained in the same nodal domain
of <φ.

Proof. — Let x0 be a point in the intersection πU1∩πU2. Then from the
equation

<φ(x0, θ) = <f(x0) cos(mθ) + =f(x0) sin(mθ),
we see that <φ is positive along the curve{

(x0, θ) : kπ2m 6 θ 6
(k + 1)π

2m

}
,
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which connects U1 and U2. Therefore U1 and U2 are contained in the same
nodal domain. �

Proposition 8.7. — Any nodal domain of <φ|π−1U must intersect
π−1U ∩ {θ = kπ

2m} nontrivially for some integer k ∈ Z.

Proof. — Assume for contradiction that Ω is a nodal domain of <φ|π−1U

that is contained in

π−1U ∩
{
kπ

2m < θ <
(k + 1)π

2m

}
.

From the equation

<φ(x, θ) = <f(x) cos(mθ) + =f(x) sin(mθ),

we see that for each fixed x, <φ(x, θ) either vanishes identically or has at
most one sign change along the curve{

(x, θ) : kπ2m < θ <
(k + 1)π

2m

}
.

This implies that if x ∈ πΩ, then

<φ
(
x,
kπ

2m

)
= <φ

(
x,

(k + 1)π
2m

)
= 0,

which contradicts the assumption that the zero set of <f gives rise to a
partition of U . �

From these two propositions, we see that the nodal domains of <φ|π−1U

can be understood from the nodal domains of the restrictions of <φ|π−1U

to the 4m-hypersurfaces

π−1U ∩
{
θ = kπ

2m

}
, k = 0, 1, 2, . . . , 4m− 1.

In particular, if we define cPU
and cQU

in terms of the sign of <f and
=f , then the number of connected components of Gm(PU , QU , cPU

, cQU
) is

equal to the number of nodal domains of <φ|π−1U .
Proof of Theorem 8.5. — Let x ∈ X be a point where φ(x, θ) 6= 0, and

let U be a sufficiently small neighborhood of x. We may assume without
loss of generality that the vertices

v1,1, v3,1, . . . , v4m−3, v4m−1

of Gm(PU , QU , cPU
, cQU

) correspond to the nodal domains of the restric-
tions of <φ|π−1U to the hypersurfaces

π−1U ∩
{
θ = kπ

2m

}
, k = 1, 3, . . . , 4m− 3, 4m− 1,
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that intersect the fiber π−1x. Then Lemma 8.2 implies that any nodal
domain of <φ|π−1U must intersect π−1x.
Now assume that x′ is another point in U . Then we may restate this as

“any nodal domain of <φ|π−1U that intersect π−1x′ must intersect π−1x”,
and equivalently, “any nodal domain of <φ that intersect π−1x′ must in-
tersect π−1x”. Because we assumed that X is connected, by the freedom of
choice of the pair of points x and x′, any nodal domain of <φ must intersect
π−1x. This proves the first part of the theorem.

For the latter part of the theorem, let p be a regular zero of φ, i.e.,

dφ : TpP → C

is a surjection. Choose a sufficiently small neighborhood U ⊂ X of πp, and
let f be the function that satisfies

φ(x, θ) = f(x)eimθ

= <f cos(mθ) + =f sin(mθ) + i(=f cos(mθ)−<f sin(mθ))
= <φ+ i=φ.

If d<f and d=f are linearly dependent, then a straightforward computa-
tion implies that dφ has rank6 1, so d<f and d=f are linearly independent.

This implies that πp is a regular zero of both <f and =f . Also, linear
independency implies that locally around πp, <f = 0 and =f = 0 define
two curves intersecting transversally at πp. From this, we may find four
open sets near p that are required for Lemma 8.3, and we infer that the
number of nodal domains of <φ|π−1U is two.

Now because any nodal domain of <φ must intersect with π−1x for some
x ∈ U , any nodal domain of <φ must contain one of the nodal domains of
<φ|π−1U , from which we conclude that <φ has only two nodal domains. �
We are ready to prove our main theorem, Theorem 1.5.
Proof. — It is sufficient to verify the assumptions in Theorem 8.5 is

satisfied. The first condition is trivial to verify. For the other conditions,
note from the assumption that P → X is non-trivial, Zfm,j

is non-empty,
and Theorem 4.1 implies that it is discrete and consists only of regular
zeros. �

Remark 8.8. — If Zfm,j
contains a closed curve that divides X into two

connected components, then the number of nodal domain can be large. For
instance, if fm,j vanishes on the boundary of small open disc U ⊂ X, and
if it does not vanish on U , then <φm,j vanish identically on ∂

(
π−1U

)
, and

therein, <φm,j has 2m-distinct nodal domains. In particular, Theorem 8.5
fails even if fm,j has a regular zero elsewhere.
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9. Surfaces of constant curvature

In this section, we illustrate the geometry of Kaluza–Klein metrics and
the Kaluza–Klein eigenvalue problem on unit tangent bundles of surfaces
of constant curvature.

9.1. Flat tori

Let T2 = R2/Z2. We use coordinates z = x1 + ix2. Its unit tangent
bundle is ST2 = T2 × S1. The connection is flat and ∆H = ∆ is simply
the Laplacian of T2. The Kaluza–Klein Laplacian is that ∆G = ∆ + ∂2

∂θ2 on
T2 × S1. The Kaluza–Klein eigenfunctions are linear combinations of the
product eigenfunctions,

φm,~k(x1, x2, θ) = ei〈
~k,~x〉eimθ, ∆Gφm,~k = −(|~k|2 +m2)φm,~k.

The multiplicity of the eigenvalue with fixed m is the number of ways of
representing |~k|2 as a sum of two squares. They correspond to eigendiffer-
entials

fm,~k(z)(dz)m = ei〈
~k,~x〉(dz)m.

In the notation (1.2),{
<φm,~k(x1, x2, θ) = um,~k(x1, x2, θ) = cos(〈~k, ~x〉+mθ),
=φm,~k(x1, x2, θ) = vm,~k(x1, x2, θ) = sin(〈~k, ~x〉+mθ).

The nodal sets of the imaginary part are given by,

Zv
m,~k

= {(x1, x2, θ) : 〈~k, ~x〉+mθ ∈ πZ}.

Zv
m,~k

contains the set

{(x1, x2, θ) : 〈~k, ~x〉 ∈ πZ, θ = `
π

m
, ` = 1, . . . ,m}.

Note that φm,~k(x1, x2, θ) has no zeros on T2 × S1 and fm,~k(z)(dz)m has
no zeros as an m-differential on T2.

If we change the lattice to a general lattice L ⊂ R2, the eigenfunctions
of T2 change to e~λ(~x) = e2πi〈~λ,~x where ~λ ∈ Λ = L∗, the dual lattice.
For generic L, the eigenvalues have multiplicity 2 and the eigenspaces are
spanned by the real and imaginary parts of e~λ or equivalently by e~λ and its
complex conjugate e−~λ. The same is true of the Kaluza–Klein eigenfunc-
tions φm,~λ = e2πi〈~λ,~x〉eimθ. Again, φm,~λ has no zeros. Using the bifurcation
of nodal sets of eigenfunctions under generic paths of metrics of [20], one
can show that
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Conjecture 9.1. — for generic Kaluza–Klein metrics on ST2, the joint
eigenfunctions φm,j have no zeros.

We now give an explicit orthonormal eigenbasis of T3 such that all of
them have exactly two nodal domains, hence proving Theorem 1.11.
To begin with, let f1(x) = cos(2πx) and f0(x) = sin(2πx). Then

{fj1(m1x1)fj2(m2x2)fj3(m3x3) : jk = 0 or 1, mk ∈ Z>0}

is an orthogonal eigenbasis of T3. We consider four cases.
Case 1: m1m2m3 > 0. — We first have

〈{fj1(m1x1)fj2(m2x2)fj3(m3x3), f1−j1(m1x1)f1−j2(m2x2)f1−j3(m3x3)}〉
=〈{fj1(m1x1)fj2(m2x2)fj3(m3x3)±f1−j1(m1x1)f1−j2(m2x2)f1−j3(m3x3)}〉

Assume without loss of generality that j1 = 0. Then

{fj1(m1x1)fj2(m2x2)fj3(m3x3)± f1−j1(m1x1)f1−j2(m2x2)f1−j3(m3x3)

= <
(
(fj2(m2x2)fj3(m3x3)± if1−j2(m2x2)f1−j3(m3x3)) e2πim1x1

)
,

has two nodal domains by Theorem 8.5, because

fj2(m2x2)fj3(m3x3)± if1−j2(m2x2)f1−j3(m3x3)

has a regular zero.
Case 2: exactly one mk is zero, and the other two are different. — From

the same reasoning, each eigenfunction in the new basis in the following
has two nodal domains:

〈{fj1(m1x1)fj2(m2x2), fj1(m1x1)fj3(m2x3) : jk = 0 or 1}〉
= 〈{fj1(m1x1)fj2(m2x2)± f1−j1(m1x1)fj3(m2x3) : jk = 0 or 1}〉,

〈{fj2(m1x2)fj1(m2x1), fj2(m1x2)fj3(m2x3) : jk = 0 or 1}〉
= 〈{fj2(m1x2)fj1(m2x1)± f1−j2(m1x2)fj3(m2x3) : jk = 0 or 1}〉,

and

〈{fj3(m1x3)fj1(m2x1), fj3(m1x3)fj2(m2x2) : jk = 0 or 1}〉
= 〈{fj3(m1x3)fj1(m2x1)± f1−j3(m1x3)fj2(m2x2) : jk = 0 or 1}〉.

Case 3: exactly one mk is zero, and the other two are equal. — Again
by the same reasoning, each of the following

f0(mx1)f0(mx2)±f1(mx1)f0(mx3), f0(mx2)f0(mx3)±f1(mx2)f0(mx1),
f0(mx3)f0(mx1)±f1(mx3)f0(mx2), f1(mx1)f1(mx2)±f1(mx3)f0(mx1),
f1(mx2)f1(mx3)±f1(mx1)f0(mx2), f1(mx3)f1(mx1)±f1(mx2)f0(mx3)
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has two nodal domains, and these are the basis of

〈{fj1(mx1)fj2(mx2), fj1(mx1)fj3(mx3), fj2(mx2)fj3(mx3) : jk = 0 or 1}〉.

Case 4: exactly one mk is nonzero. — In this case, we consider orthog-
onal eigenfunctions

f0(mx1) + f0(mx2)− 1
2f0(mx3), f0(mx1) + f0(mx3)− 1

2f0(mx2),

f0(mx2) + f0(mx3)− 1
2f0(mx1), f1(mx1) + f1(mx2)− 1

2f1(mx3),

f1(mx1) + f1(mx3)− 1
2f1(mx2), f1(mx2) + f1(mx3)− 1

2f1(mx1),

which span

〈{fj(mx1), fj(mx2), fj(mx3) : j = 0 or 1}〉.

Each of these has only two nodal domains from the following lemma.

Lemma 9.2. — Let m be a positive integer. Then

cos(mx1) + cos(mx2)− 1
2 cos(mx3)

has only two nodal domains.

Proof. — Let x1 − x2 = a, x1 − x3 = b, and x2 + x3 = c. Then

e2πimx1 + e2πimx2 − 1
2e

2πimx3

=
(
eπimaeπimb + e−πimaeπimb − 1

2e
πimae−πimb

)
e2πimc,

and from Theorem 8.5, it is sufficient to prove that

eπimaeπimb + e−πimaeπimb − 1
2e

πimae−πimb

has a regular zero. Let πm(a + b) = x and πm(a − b) = y, then this is
equivalent to

cosx+ 1
2 cos y + i

(
sin x− 3

2 sin y
)

having a regular zero. Since cosx+ 1
2 cos y and sin x− 3

2 sin y do not have
singular points, it is sufficient to check if these two functions have a common
zero, in other words, if

cosx+ 1
2 cos y + i

(
sin x− 3

2 sin y
)

= 0

has a solution. Note that this is equivalent to

(9.1) eix = −1
2 cos y + i

3
2 sin y.
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Because ∣∣∣∣−1
2 cos y + i

3
2 sin y

∣∣∣∣ = 1
4 + 2 sin2 y,

for y such that 1
4 +2 sin2 y = 1, there is x satisfying (9.1), and this completes

the proof. �

9.2. Kaluza–Klein metrics on S3

Let (S2, g0) be the 2-sphere with its standard metric of curvature 1.
Then its unit tangent SS2 = SO(3) = RP3 = S3/ ± 1 and the Kaluza–
Klein metric is the standard metric of constant sectional curvature 1 on
S3 (divided by the antipodal group Z2). The Kaluza–Klein Laplacian is
therefore the standard Laplacian ∆S3 on Z2-invariant functions.

Since S3 is a group, L2(S3) =
⊕∞

N=0 VN⊗VN where VN is an irreducible
representation of S3 of dimension N+1. Alternatively, the eigenfunctions of
S3 are harmonic homogeneous polynomials on R3. Moreover, ∆|VN⊗VN

=
N(N + 2) = (N + 1)2 − 1. The eigenfunctions of RP3 are those where N is
even.
We need explicit separation of variables expressions for equivariant spher-

ical harmonics, and therefore need to introduce coordinate systems. We use
“axis - angle” Hopf coordinates (α, θ, φ) on S3 ⊂ R4 defined by

~x =


x1
x2
x3
x4

 = r


sinα cosφ
sinα sinφ
cosα cos θ
cosα sin θ

 .

Here 0 6 α 6 π/2, 0 6 θ, φ 6 2π. This corresponds to writing

z1 = eiφ sinα, z2 = eiθ cosα, ((z1, z2) ∈ C2 ' R4)).

There exist two commuting isometric S1 actions generated by the Killing
vector fields

X = ∂

∂φ
+ ∂

∂θ
, Y = ∂

∂φ
− ∂

∂θ
.

The metric is (dα)2 + (cosαdθ)2 + (sinαdφ)2. In these coordinates one
has an orthogonal basis of eigenfunctions given by

Φm+,m−
N (α, φ, θ) = C

m+,m−
N ei(m++m−)φei(m+−m−)θ

· (1− cos 2α)
m++m−

2 (1 + cos 2α)
m+−m−

2 P
m++m−,m+−m−
N
2 −m+

(cos 2α),
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where P (a,b)
N is a Jacobi polynomial and where

|m±| 6
N

2 ,
N

2 −m± ∈ N.

Here, weight m in our sense means that the eigenfunctions transform by
eim−(φ−θ). Φm+,m−

N are also known as “Wigner D-functions” on SU(2).
Another expression is

Tm1,m2
N

= Cm1,m2
N (cosαeiθ)m1+m2(sinαeiφ)m2−m1P

(m2−m1,m2+m1)
N/2−m2

(cos(2α)).

Here m1 = m in our notation. These are manifestly joint eigenfunctions of
∆S3 and of ∂

∂θ ,
∂
∂φ .

Lemma 9.3. — The nodal sets of the equivariant eigenfunctions Φm+,m−
N

(or equivalently Tm1,m2
N ) have real dimension 2.

Proof. — The only factors with zeros are the α-functions. These have
roughly m discrete zeros in α. Hence, the complex nodal set is a union

{(θ, φ, α) : (cosα)m1+m2(sinα)m2−m1P
(m2−m1,m2+m1)
N/2−m2

(cos(2α)) = 0},

and thus has real dimension 2. �

As a result, these eigenfunctions do not satisfy the conditions of the
generic Kaluza–Klein metrics to which our results apply, and their nodal
sets are quite different.

As mentioned in the introduction, the numerical experiments of A. Bar-
nett et al. [2] show that random spherical harmonics of degree N on S3 also
have different types of nodal sets than our generic eigenfunctions. Namely,
the expected number of nodal domains has the asymptotics cN3 for a cer-
tain c > 0. As proved in [15], the nodal sets of real/imaginary parts of
random equivariant eigenfunctions with fixed m (a subspace isomorphic to
VN ) have connected nodal sets. The difference is due to the fact that our
random equivariant spherical harmonics are a thin subset of the random
spherical harmonics of degree N on S3.

Remark 9.4. — In [15], we compute the expected genus of the single
component of the nodal sets of real/imaginary parts of random equivariant
spherical harmonics of degree (N,m) where |m| 6 N, 2|(N −m). The ex-
pected Euler characteristic is of the form m(N2 −m2) + N modulo lower
order terms.
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9.3. Hyperbolic surfaces H2

Although it differs from our prior discussion in the compact case, let us
consider a finite area hyperbolic real Riemann surface of constant negative
curvature −1. Then X = S∗gM = Γ\G where G = PSL(2,R). The total
space X carries a Lorentz Cartan–Killing metric with indefinite Laplacian
the Casimir operator Ω. It is well known that Ω = H2 +V 2−W 2. We now
change the sign of the third term to get the Kaluza–Klein Laplacian ∆X =
H2 + V 2 + W 2. The associated metric defines a Riemannian submersion
π : X → M with fibers given by K-orbits. They are necessarily totally
geodesic. It follows that the horizontal Laplacian H2 + V 2 commutes with
the vertical Laplacian W 2. This is obvious because 0 = [Ω,W 2] = [H2 +
V 2,W 2] = 0.
The joint eigenfunctions of Ω,W are denoted by φm,j . When m = 0 they

are pullbacks of eigenfunctions of M = Γ\G/K.
In particular the number of nodal domains of φj,0 on X is the same

as the number of nodal domains of φj on M . The former nodal sets are
K-invariant and in the case of regular nodal components are 2-tori over
circles.
The lift of weight m of an m-differential f(dz)m is given by

Φ(x, y, θ) = ym/2f(x+ iy)e−imθ.

Here, the Kähler potential is φ = log y, dφ = dy
y , ∆φ = y2(log y)′′ = −1.

Also, ‖dφ‖2 = y2‖dy
y ‖

2 = 1 and ∗dφ = ∗(φxdx+φydy) = (−φxdy+φydx)y.
The Maass operator is

Dm = y2
(
∂2

∂x2 + ∂2

∂y2

)
− 2imy ∂

∂x

and
Dmfm,j = s(1− s)fm,j .

Breaking up into real and imaginary parts gives the system,{
∆<fm,j + 2my ∂

∂x=fm,j = s(1− s)<fm,j ,
∆=fm,j − 2my ∂

∂x<fm,j = s(1− s)=fm,j .

The raising/lowering operators are the Maass operators defined by{
Kk = (z − z̄) ∂∂z + k = 2iy1−k ∂

∂z y
k,

Lk = (z − z̄) ∂∂z − k = −2iy1+k ∂
∂z̄ y
−k = K−k.

Then,
Kk : Hk → Hk+1, Lk : Hk → Hk−1,
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and
Dk+1Kk = KkDk, DkLk+1 = Lk+1Dk,

and
Dk = Lk+1Kk + k(k + 1) = Kk−1Lk + k(k − 1).

9.3.1. Automorphic forms on the full modular group

Now we consider the case Γ = PSL2(Z). Note that the quotient Γ\G is
non-compact in this case. Nevertheless, it is known that −∆G has infinitely
many discrete spectrum, where corresponding L2 integrable eigenfunctions
can be chosen so that they are in one-to-one correspondence with Maass–
Hecke cusp forms or holomorphic Hecke cusp forms. We refer the readers
to [10] for detailed background.

Theorem 9.5. — Let X = PSL2(Z)\H, and let φm,ir be a weight m
Maass–Hecke cusp form on

PSL2(Z)\PSL2(R).

Assume that the zeros of φm,ir are isolated. Then <φm,ir has only two
nodal domains.

Proof. — The first statement of Condition 8.4 follows from the definition
of Maass–Hecke cusp form, and the second statement follow from the fact
that φm,ir : X → C can not be scaled to a real-valued function, and that
φm,ir is analytic. The third statement follows from the assumption.
Now, because the first Hecke eigenvalue is 1, the first Fourier coefficient

of φm,ir at the cusp does not vanish, meaning that i∞ is a regular zero of
φm,ir. We conclude the proof by applying Theorem 8.5. �

Remark 9.6. — It is not hard to see that in the constant curvature case,
the nodal set of φ2,ir consists of the fibers over the critical point set Cφir

of φir. At this time, it does not seem to be known whether Cφir
is nec-

essarily a discrete set of points in the case of hyperbolic surfaces. This
cannot be proved by a purely local calculation, since the critical point set
of rotationally invariant Dirichlet/Neumann eigenfunctions on a compact
rotationally invariant submanifold CR of a hyperbolic cylinder H2/〈γ0〉 con-
sists of a union of S1 orbits. Here, γ0 is a hyperbolic element and 〈γ0〉 is
the cyclic group it generates. Thus, negative curvature does not rule out
codimension 1 critical point sets. One can put any negatively curved S1

invariant metric on CR and obtain the same result, so it is not an effect
of constant curvature. We conjecture that for compact hyperbolic surfaces
without boundary, Cφir

is a finite set for every eigenfunction.
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When we have holomorphicity of φ, we may remove the assumption that
the zeros of φ being isolated. For instance, we have:

Theorem 9.7. — Let X = PSL2(Z)\H, and let φm,0 be a Laplacian
eigenfunction on PSL2(Z)\PSL2(R) corresponding to a holomorphic Hecke
cusp form F of weight m. Then <φm,0 has only two nodal domains.

Proof. — We first note that φm,0(z, θ) = ym/2F (z)e−imθ, and F is holo-
morphic. Therefore Condition 8.4 is satisfied.
Because we assumed that F is a Hecke cusp form, the first Hecke eigen-

value is 1. Therefore i∞ is a regular zero of φm,0, and now the theorem
follows from Theorem 8.5. �

Corollary 9.8. — There exist eigenfunctions on PSL2(Z)\PSL2(R)
that have only two nodal domains but with arbitrarily large eigenvalues.

We remark here that Theorem 9.7 is false, without the assumption that
F is a Hecke cusp form. To construct a counter example, let ∆(z) be the
discriminant modular form given by

∆(z) =
∞∑
n=1

τ(n)qn

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + . . . ,

where q = e2πiz. This is a weight 12 modular form on PSL2(Z)\H. Thus
∆(z)2 is a modular form of weight 24 on PSL2(Z)\H, and

Φ = <(y12∆(z)2e−24iθ)

is a Laplacian eigenfunction on PSL2(Z)\PSL2(R) of weight 24. To count
the number of nodal domains of this eigenfunction, we let

F =
{
x+ iy : |x| 6 1

2 , x
2 + y2 > 1

}
⊂ H

be the fundamental domain of PSL2(Z)\H, and let M0 = F × {θ : 0 6
θ < 2π}.
We then consider the restrictions of Φ to the top θ = 2π, side x = −1/2,

and front x2 + y2 = 1 of the solid M0.
It can be shown that the nodal set of Φ on the side is that of cos(24θ) = 0,

and on the front is that of cos(12(ϕ + 2θ)) = 0, where we define ϕ =
arccos(x). We compute the nodal set of the restriction to the top numeri-
cally using Mathematica.
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The nodal set of Φ on the front, the side, and the top of the solid M0.
Note that we may obtain PSL2(Z)\PSL2(R) fromM0 by gluing the sides

via (x, y, θ) = (x+1, y, θ) (corresponding to ( 1 1
0 1 )), the top and the bottom

via (x, y, θ) = (x, y, θ + 2π) (corresponding to k(θ) = k(θ + 2π)), and then
the front with itself via (ϕ, θ) = (π − ϕ, θ + ϕ) and (ϕ, θ) = (ϕ, θ + 2π)
(corresponding to ( 0 −1

1 0 ) and k(θ) = k(θ + 2π)).
From these, one can verify that Φ has exactly four nodal domains, where

in the pictures above, two positive nodal domains are colored differently
with red and orange.
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