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BOUNDEDNESS OF THE NUMBER OF NODAL
DOMAINS FOR EIGENFUNCTIONS OF GENERIC
KALUZA-KLEIN 3-FOLDS

by Junehyuk JUNG & Steve ZELDITCH (*)

ABSTRACT. — This article concerns the number of nodal domains of eigenfunc-
tions of the Laplacian on special Riemannian 3-manifolds, namely nontrivial prin-
cipal S bundles P — X over Riemann surfaces equipped with certain S! invariant
metrics, the Kaluza—Klein metrics. We prove for generic Kaluza—Klein metrics that
any Laplacian eigenfunction has exactly two nodal domains unless it is invariant
under the S action.

We also construct an explicit orthonormal eigenbasis on the flat 3-torus T2 for
which every non-constant eigenfunction has two nodal domains.

RESUME. — Cet article concerne le nombre de domaines nodaux des fonctions
propres du Laplacien sur des variétés Riemanniennes Kaluza—Klein en dimension
trois, & savoir des variétés qui sont des fibrés S1-principaux P — X sur des surfaces
de Riemann équipées avec une métrique Sl-invariante de type Kaluza—Klein. Pour
des métriques génériques de ce type, on prouve que chaque fonction propre possede
exactement deux domains nodaux, sauf si elle est invariante par 'action de S*.

On construit aussi une base orthonormale de fonctions propres explicites du tore
plat T3 pour que chaque fonction propre non constante posséde exactement deux
domaines nodaux.

1. Introduction

This article is concerned with the number of nodal domains of eigenfunc-
tions of the Laplacian on certain 3-dimensional compact smooth Riemann-
ian manifolds (P, G). The manifolds are S' = SO(2) bundles 7 : P — X
over a Riemannian surface (X,g), and G is assumed to be a Kaluza—
Klein metric adapted to 7, i.e., G is invariant under the free S' action
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972 Junehyuk JUNG & Steve ZELDITCH

on P and there exists a splitting TP = H(P) ® V(P) of TP so that
dr : Hy(P) — TrX is isometric and so the fibers are geodesics. Thus,
m: P — X is a special kind of Riemannian submersion with totally ge-
odesic fibers in the sense of [3] (see Definition 1.1 and Definition 6.3 of
the present article). The S action commutes with the Laplacian Ag of
the Kaluza-Klein metric G and one may separate variables to obtain an
orthonormal basis of joint eigenfunctions ¢, ;,

0 .
(1.1) AGPm,j = —AmjPmi>  HgPmi = imPm,;.
Our focus is on the nodal sets of the real or imaginary parts of
(12) ¢m,j = Um,j + ivm,j

and on particularly on the number of their nodal domains. Since Ag is
a real operator, the real and imaginary parts (1.2) satisfied the modified
eigenvalue system,

Agtm,j = =Am,jUm.j;
AGU’UL,j = _/\m,jvm,j7
9, . — 0. .
AL, = MUy, 5a¥; = —Mu;.

Our main result (Theorem 1.5) is that when 0 is a regular value of ¢, ; for
all (m, 7), then for m # 0, the nodal sets of w,, ;, resp. vy, ;, are connected
and there exist exactly 2 corresponding nodal domains. The case m =
0 is special because ¢g ; is then real valued and is a pullback from the
base X; in this case, the number of connected components of the nodal set
(and the number of nodal domains) is the same as for the corresponding
eigenfunction on X. Theorem 1.4 shows that it is a generic property of
Kaluza-Klein metrics on S* bundles over Riemann surfaces that 0 is indeed
a regular value of ¢, ; for all (m,j). The precise statement requires a
discussion of the geometric data underlying a Kaluza—Klein metric and how
we allow it to vary when defining “genericity”. An introductory discussion
of the Kaluza—Klein metrics of this article is given in Section 1.1 and a more
detailed discussion is given in Section 4 (see Theorem 4.1 and Lemma 4.9).

1.1. Adapted Kaluza—Klein metrics

We now define Kaluza—Klein metrics on a three-dimensional manifold P
which is an S! bundle over a (usually) compact Riemannian surface X.
In our main results, P is the unit co-circle bundle of an ample complex
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BOUNDEDNESS OF THE NUMBER OF NODAL DOMAINS 973

holomorphic line bundle L — X. Thus, P = S® or P = U(S?) (the unit
tangent bundle) when X = $?, and P = S*X (the unit conormal bundle)
when the genus g > 2. When g = 1, P can be the unit circle bundle of the
theta line bundle over T2, or it may be the trivial circle bundle S*T? (see
Section 9.1). Other examples where X has constant curvature are discussed
in Section 9.

A Kaluza—Klein metric is determined by the following data:

(i) A surface X equipped with a Riemannian metric g and a complex
structure J,
(ii) A nontrivial complex holomorphic line bundle L — X over a sur-
face,
(iii) A Hermitian metric h on L,
(iv) A complex structure Jz, on L,
(v) An h-compatible connection V on L.

In this article, we fix J, L and Jy, and only vary the data (g,h, V). The
unitary frame bundle for the Hermitian metric h is defined by

Py={(z,\) € L* : hX(\) = 1}.

The connection V induces a connection 1-form on P, and a splitting
TP, = H(Py) ® V(P,) into horizontal and vertical spaces; see Section 2
for background.

DEFINITION 1.1. — The Kaluza—Klein metric on Py, is the U(1)-invar-
iant metric G such that the horizontal space H, := kerdw is isometric to
Trp)X, so that V. = R% is orthogonal to H and is invariant under the
natural S' action and so that the orbits of the S action are unit speed
vertical geodesics.

The data (g,h,V) determines a horizontal Laplacian Ap, a vertical
Laplacian 68—022, and their sum, the Kaluza—Klein Laplacian (1.1),

82

1.3 Ag=A —.

(1.3) G H+ 902

As is well-known, sections s of powers L™ of a complex line bundle L
lift to equivariant functions § : L* — C on the dual line bundle by the
formula 5(z, A\) = A(s(z)) where a point of L* is denoted by A € L¥. Under
this identification, the horizontal Laplacian is equivalent to the Bochner
Laplacians V} V,, on sections of L. Thus, equivariant eigenfunctions of
Ag of weight m on M are lifts of eigensections of V},V,,. See Section 3
and Lemma 6.6 for details. In proving genericity theorems it is easier to
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974 Junehyuk JUNG & Steve ZELDITCH

work downstairs on X. But the nodal results pertain to the equivariant
eigenfunctions on Pj.

Remark 1.2. — Not all S! invariant metrics on SX are adapted Kaluza—
Klein metrics (see Section 6.1). Many of the techniques of this paper extend
to general S'-invariant metrics on principal S! bundles over manifolds of
all dimensions. For simplicity of exposition we restrict to dimension 3.

1.2. Nodal sets

We thus have two versions of the eigenfunctions of the Kaluza—Klein Ag,
first as scalar complex valued equivariant eigenfunctions on P, and second
as complex eigensections on X. In each version we have a nodal set, and
we use the base nodal set on X to analyse the nodal set on Pj,.

We denote the eigensection corresponding to ¢, ; as fp, je7’ in a local
holomorphic frame. We mainly consider L = Kx and then we write the
section as fy, j(2)(dz)™. Let

§Rfm,j - am,j(z)a Sfm.,j = bm,j(z)~
Then,
fm,j(z)e_””‘9 = (am,j(2) + ibm ;j(2))(cosmb — isinmb),

so that with @, ; = U, j + 1V,

(1.4) {“mu‘ = am,j cosml + b, ; sinmd,

Um,j = b, j cosmb — a,, j sinmb.

See Section 6.2 for more details.
We denote by Zy, . the zero set of the eigensection f,, je7' on X:

me,j = {Z c X : fmJ(z) = 0}

It is easy to see that the zero set Zy, . of ¢y, ; is the inverse image of Zy, .
under the natural projection 7:

-1
Z¢m‘j =T me,_;"

Usually we study the nodal sets of the real and imaginary parts of the lift,
not to be confused with the lifts of the real and imaginary parts of the local
expression fy, ; of the section (since the frame e7* must also be taken into
account). In general, it is not obvious whether or not the zero set of fp, ;
is discrete in X.
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We denote the nodal sets of the real, resp. imaginary parts, of the lift by
Ngg,, ;AP € Ph : R j(p) = 0}, resp. Nag,, , = {p € Pn: S¢m j(p) = 0}.

The analysis is the same for real and imaginary parts and we generally work
with the imaginary part, following the tradition for quadratic differentials.

Perhaps the most familiar setting for such Kaluza—Klein metrics and
lifts of m-differentials to equivariant sections is that of hyperbolic surfaces
of finite area. The reader familiar with Maass forms and operators may
want to compare Kaluza—Klein notions with those of SL(2,R)-theory in
Section 9.3.

1.3. Statement of results

Let (X, J,g) be a Riemannian surface with complex structure J. Let
(L, h) be a Hermitian holomorphic line bundle over X, and let P, C L* —
X be the principal S' bundle associated to h. Let V;, be an h compatible
connection on L, and let G = G(g, h, V},) be the associated Kaluza—Klein
metric on Py.

As mentioned above, weight 0 (invariant) eigenfunctions are special be-
cause they are real-valued (once they are multiplied by a suitable constant).
We therefore separate the case m = 0 from the remainder of the discussion,
and state the obvious (but interesting)

PROPOSITION 1.3. — For m = 0, invariant eigenfunctions (m = 0) of
Ag are lifts m*1); of eigenfunctions 1; of A, on the base X, and the nodal
set of m*1p; is the inverse image under 7 of the nodal set of 1. The number
of nodal domains of m*1; equals the number of nodal domains of 1);.

Indeed, their nodal sets are inverse images of nodal sets on the base.
Hence the number of nodal domains of “invariant” Kaluza—Klein eigen-
functions is the number for the corresponding eigenfunction on the base.
Henceforth we always assume m # 0.

To prepare for our main result when m # 0, we first state a result on
generic properties of equivariant Kaluza—Klein eigenfunctions. By “generic”
properties of Kaluza—Klein metrics, we mean properties of residual sets in
a suitable C* space of the data (g,h, V), often when only one component
is varied and the others are fixed. The generic properties of concern in
this article hold for many choices of Banach spaces of data, which could
be suitable C* spaces or a Sobolev spaces H®. Our basic reference for
genericity properties of eigenvalues/eigenfunctions in [20], and the reader
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976 Junehyuk JUNG & Steve ZELDITCH

is referred there for background. Somewhat surprisingly, generic properties
of eigensections of Bochner-Kodaira operators on complex line bundles do
not seem to have been studied before.

The most general genericity results are stated in Theorem 4.1 in Sec-
tion 4. In these results, we define “admissible data” such as (g, h, V), and
prove the main genericity properties as different components of the data are
varied. Since the general result requires some definitions from Sections 2—-3,
we only state the most elementary result here in the case where L = T*X
is the canonical bundle, and where only the metric g on X is varied. But we
also require that the Hermitian metric h on K is induced by g and that the
connection Vy, is the Chern (or equivalently, Riemannian) connection. Of
course, K is not ample when g = 0,1 but we are considering eigensections
of Bochner—Kodaira Laplacians, not holomorphic sections, so ample-ness is
not particularly relevant. Moreover, the proofs also work for K !, so that
one could replace 7*S? by the ample line bundle 7'S? or O(1) — CP! and
obtain similar results.

THEOREM 1.4. — Let (X,J) be a Riemann surface, and let L = K™.
We consider Riemannian metrics g in the conformal class associated to J.
We assume that h is the Hermitian metric induced by g and that V is the
Levi-Civita connection. Then, for generic metrics g in the class of J on X,

(1) the spectrum of each Bochner Laplacian V, 'V on Ck(X,L™) is
simple (i.e. of multiplicity 1). Thus, the multiplicity of the eigen-
value A = A\, j of Ag is 1 if m = 0, and 2 if m # 0.

(2) Every eigenfunction is a joint eigenfunction of Ag and 5?722-

(3) all of the eigensections fy, ; have isolated zeros and zero is a regular
value. In particular, Zy,  is a finite set of points;

(4) If we lift sections to equivariant eigenfunctions ¢, then R¢ and IS¢
have zero as a regular value.

An important consequence of (1)—(2) of Theorem 1.4 is that, for generic
data, all real Kaluza—Klein eigenfunctions are real/imaginary parts of equi-
variant eigenfunctions. Therefore, the results we prove for equivariant eigen-
functions hold for all possible eigenfunctions. Theorem 4.1 states similar
results for three other types of variations of the data.

We can now state our main result. The first statement repeats (1)—(2) of
Theorem 1.4 for the sake of clarity.

THEOREM 1.5. — Suppose that the data (g, h, V) of the Kaluza—Klein
metric satisfies the generic properties of Theorem 1.4. Then,
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(1) The eigenspace of Ag corresponding to A = Ap; = A_m
is spanned by ¢, ; and ¢_.,; = ngj In particular, any real
eigenfunction with the eigenvalue A, ; is a constant multiple of
Ty (R, j), where Ty is the S' action on P parameterized by 6.

(2) For m # 0, the nodal sets of R¢.,, ; are connected.

(3) For m # 0, the number of nodal domains of R¢,, ; is 2.

Note from Weyl law that #{\;o < A} ~ A and that #{\,,; < A} ~
A3/2. Therefore as an immediate consequence of Theorem 1.5, we have the
following:

COROLLARY 1.6. — Let P — X be a non-trivial principal S' bundle
with a generic Kaluza—Klein metric. For any given orthonormal eigenbasis,
almost all (i.e., along a subsequence of density one) eigenfunctions have
exactly two nodal domains.

The density one subsequence is of course the one with m # 0. The-
orem 1.5 furnishes the first example of Riemannian manifolds of dimen-
sion > 2 for which the number of nodal domains and connected compo-
nents of the nodal set have been counted precisely. The results for m # 0
may seem rather surprising, since in dimension 2 the only known sequences
of eigenfunctions with a bounded number of nodal domains are those con-
structed in an ingenious way by H. Lewy on the standard S? [16] and
those of Stern on a flat torus [4, 18]. In those cases, the separation-of-
variables eigenfunctions have connected nodal sets but the complement of
the nodal set has many components, i.e., nodal domains, saturating the
Courant bound that the number of nodal domains of the jth eigenfunc-
tion (in order of increasing eigenvalue) is j. In the Kaluza—Klein case, all
eigenfunctions for generic Kaluza—Klein metrics are separation-of-variables
eigenfunctions and have connected nodal sets. But the connectivity is of a
different kind than in dimension two and by a simple argument it induces
connectivity of nodal domains.

Remark 1.7. — When P — X is trivial, and P =2 S' x X is endowed with
the product metric, we have ¢, ; = ; e where 1); is an eigenfunction of
A, on the base X. Hence ¢, ; = 1; cos mf has many nodal domains, and
the last statement in Theorem 1.5 fails. Hence, the “generic” set of metrics
is not the full set of metrics. See Section 9.1 for flat tori for a product
setting where the nodal results above do hold.

TOME 70 (2020), FASCICULE 3
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1.4. Outline of the proof

The nodal set of the lift real and imaginary parts of the lift ¢,, ; of
fm,je7’ is very different over nodal versus non-nodal points of f, ;. Let

(1.5) =12

be the inverse image of the base nodal points. It is a union of fibers and is
a finite union of fibers if and only if f,, ; has a finite number of zeros. We
refer to ¥ as the “singular fibers” or singular set. We denote by X\Zy, .
the punctured Riemann surface in which the zero set of f,, ; is deleted. A
key statement in the nodal analysis is the following:

PrOPOSITION 1.8. — For m # 0, the maps
s :Nﬁqﬁm,j \2 — X\meﬂj, Nggﬁmd \E — X\me,j
is an m-fold covering space.

It follows that the topology of the nodal set is entirely determined by
the combinatorics of gluing the sheets along the singular fibers. In fact, the
gluing is rather simple and easily yields the following

THEOREM 1.9. — For all m # 0, the nodal set Nyg,, ; is connected.

To count nodal domains, we need to make the assumption that there are
just a finite number of zeros of f,, ; and that at least one of them is regular.

When the zero set is transverse to the zero section, then the sum of the
indices of the zeros is the first Chern class of K™, and in particular is
non-empty when the genus of X is # 0, i.e., when X is not a torus.

For metrics satisfying Theorem 1.4 we prove Theorem 1.5 by using Propo-
sition 1.8 together with some geometric observations on how the sheets fit
together at the singular fibers. This is done using a Bers type local analysis
of the eigensections (Section 5) and some geometric/combinatorial argu-
ments in Section 8.

To put the nodal results into context, it is proved in varying degrees of
generality in [8, 9, 11, 12, 13, 14, 17, 22] that in dimension 2, the number
of nodal domains of an orthonormal basis {u;} of Laplace eigenfunctions
on certain surfaces with ergodic geodesic flow tends to infinity with the
eigenvalue along almost the entire sequence of eigenvalues. By the first
item of Theorem 1.5, the same is true for their lifts to the unit tangent
bundle SX as invariant eigenfunctions of the Kaluza—Klein metric. But for
higher weight eigenfunctions, the situation is virtually the opposite and the
number of nodal domains is bounded.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.10. — Note that the geodesic flow on P with a Kaluza—Klein
metric never is ergodic. To see this, observe that the hypersurface

{(z,v) € SP : v 1y} C SP

is invariant under the geodesic flow, and it divides SP into two subsets of
positive measure:

{(z,v) € SP : {v,09)¢ >0} and {(z,v) € SP : (v,09)c < O0}.

1.4.1. Surfaces of constant curvature

Metrics g of constant curvature with their associated Hermitian metrics
and connections on K — X are not generic. But they are of special inter-
est, so we comment on what we are able to prove about them. Note that
the standard metric on T2 is Kaluza—Klein, as is the standard metric on
S3 or SO(3) = U(S?). The standard metric on the unit tangent bundle
PSL(2,R)/T over a hyperbolic surface is Lorentzian, but if one changes the
sign of the vertical Laplacian it is also Kaluza—Klein.

Perhaps surprisingly, the results of Theorem 1.5 are valid for some or-
thonormal bases of eigenfunctions on flat 3-tori.

THEOREM 1.11. — On the flat 3 torus T2, one can find an orthonor-
mal eigenbasis for which all nonconstant eigenfunctions have two nodal
domains.

Next we turn to hyperbolic metrics on a surface X of genus g > 2. Then
the total space P, = PSL(2,R)/T" and the equivariant eigenfunctions of
the Kaluza—Klein Laplacian A are the same as joint eigenfunctions of the
generator W of K and of the Casimir operator 2. When the weight m is
fixed, one may separate variables and obtain a Maass Laplacian D,, on
smooth sections of a complex line bundle 7 : K™ — X, namely the bundle
of m-differentials of type (dz)™, and are the usual weight m automorphic
Maass eigendifferentials fy, ;(z)(dz)™,

Din fm,j(2) = (1 = 8) fm,;(2),
of the Maass Laplacians
0? 0? 0
Dy =y == + =— | — 2imy—.
m=Y (8332 * 0y? P
Unfortunately, we are not able to verify that (any) Maass eigendifferentials

have 0 as a regular value, i.e. the generic conditions needed for Theorem 1.5.
Indeed, we do not know how to prove that (any) eigenfunctions ¢y ; of the
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hyperbolic Laplacian have a discrete set of critical points, much less that 0
is a regular value of d¢y, ;.

Regarding spherical harmonics on S3 we will be brief, because we study
random equivariant spherical harmonics in detail in a forthcoming arti-
cle [15]. The round metric is a Kaluza—Klein metric, but of course not a
generic one. In Section 9.2 we show that the joint eigenfunctions Y™ of
A and of two commuting S! actions have very different nodal sets from the
ones in Theorem 1.5. On the other hand, in [15] we show that “random”
™2 with m, fixed do satisfy the results of
Theorem 1.5 and the nodal sets of their real, resp. imaginary parts, have
just one nodal component. We also find their expected Euler characteristic.
These results were motivated by the numerical discovery of Barnett et. al.
that 3D random spherical harmonics on S® of fixed degree, the nodal set
contains one “giant component” and many small components [2]. We are
fixing the weight m; and therefore do not work with general random spher-
ical harmonics. But in the N dimensional subspaces where m; is fixed with
|mi| < N,2|N — mq, the nodal sets of the real and imaginary parts are

linear combinations of such Y]Gl b

connected and divide S into just two components. For further discussion
we refer to [15].

2. Geometric background

In this section we discuss the geometric data that goes into the construc-
tion of Kaluza—Klein metrics, which are defined in Definition 1.1. They are
also the data needed to define Bochner Laplacians V*V and Kaluza—Klein
Laplacians Ag. We plan to vary the data and study perturbation theory
of eigenvalues and eigensections in Section 4.

2.1. Riemannian metrics on X and Hermitian metrics on L

Let (X,.J,g) denote a Riemann surface with complex structure J and
Riemannian metric g. We write ¢g;3 = g(a%,a%) and g'! = g*(dz,dz),
where g* is the dual metric. The complex structure gives a decomposition
of T*X ® C = T*(:0) @ 701 into (1,0) resp. (0,1) parts. We denote the
area form of g by

dA, = w =ig;7dz A dZ,
where the Kéhler form w is the (1,1) form defined by g;(X,Y) = w(JX,Y).
Locally there exists a Kéhler potential v defined up to a constant by

ANNALES DE L’INSTITUT FOURIER
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dd“¢p = w. Here d° = 2%(8 — ). Then, wy, = i0dlogh = dd°¢ = A, ¢L(dz),
where L(dz) = idz A dZ.

2.1.1. The space of isometry classes of metrics on surfaces

It is well-known that the space of Riemannian metric tensors on a mani-
fold X splits as a product Vol(X) x Met,, (X) of volume forms times metrics
with a fixed volume form. Thus, one may separately consider metrics with
a fixed volume form and conformal classes of metrics.

Choice of a complex structure J on X is equivalent to choice of a confor-
mal class Conf(gg) of metrics. The moduli space of conformal classes is the
same as the (3g — 3)-dimensional moduli space M, of complex structures
on X. In each conformal class, we may pick a background metric gg and
represent other metrics in the form

Conf(go) = {€*7go : 0 € C(X)}.

If we fix a complex structure J, then the Riemannian metrics in the cor-
responding conformal class are Kahler metrics, and may be parameterized
by their Kéhler potentials ¢, where the area form wy of the Kédhler metric
is related to that of the reference metric by

Wy = wo + 185q5
We let

Ko : = {wy := wo + i00¢ > 0}

which may be identified with an open set in C°°(X). The Liouville field
and Kéhler potential are related by

1
2
o —1-Z-A
€ 2 0¢7

where A is the Laplacian of gg. The only difference in the two parame-
terizations of conformal metrics is that the area of metrics in K, is fixed
while it may vary in Conf(gp). Thus Conf(gg) = K, x R.

In the case of Riemann surfaces, the area form is the symplectic form
associated to a Kahler metric. Given a complex structure J, the Kéhler
metric g can be recovered from its area form w by the formula g;(X,Y) =
w(X,JY). Hence isometry classes of Kidhler metrics with a fixed area form
are parameterized by 91,.

TOME 70 (2020), FASCICULE 3
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2.2. Complex line bundles L — X, connections and curvature

If we fix a complex structure J and holomorphic line bundle L — X,
then a Hermitian metric A on L is determined by the length of a local
holomorphic frame ey, (i.e., a local holomorphic nonvanishing section) of L
over an open set U C M) by e™¥ = |ler||?, where |ler||n = h(er,er)/?
denotes the h-norm of ey,.

2.2.1. Connections

In the real setting, a connection on a vector bundle E defines a covariant

derivative
V:C®X,E) > CX,EQT*X).

In our complex setting, we assume L is a holomorphic Hermitian line
bundle, i.e., we equip L with a complex structure Jr,, a connection V, and
a Hermitian metric h. In a local frame ey, it is defined by Ve, = a ® ey,.
We consider several types of compatibility conditions between this data:

e An h-connection Vj, is one compatible with A. In a unitary frame,
the connection 1-form is ‘R valued and is denoted by ic. We denote
the space of h-compatible connections by Aj,.

e Or a Jp-compatible connection. In a holomorphic frame ey the
connection 1-form « is of type (1,0). We denote the space of Jp-
compatible connections by Ac.

e The unique Chern connection oy, » which is compatible with both
Jr, h.

This data induces:

e The Hermitian metric h induces the principal bundle of h-unitary
frames Py, = {(z,\) € L* : |Al, = 1}.

e An h-compatible connection V € Ay, induces a real 1-form « on Pj,.

e Connections Ac¢ determine complex-valued 1-forms on L*.

The connection 1-form in the frame ey, is given by
Ver =a®ey,.

We denote the (1,0) resp. (0,1) parts of V by V9 resp. Vo1,
Suppose that V € A¢. Then if s = fe with e a local holomorphic frame,

VO (fe) = (0f +af) e,
VO (fe) =0f @e.
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BOUNDEDNESS OF THE NUMBER OF NODAL DOMAINS 983

The holomorphic line bundle L also has a natural Cauchy-Riemann op-
erator,
9 : C®(M,L) — C° (M, L).
In a local holomorphic frame e, we write a smooth section s = fe and then

s :5f®e.

It is well-defined since if €’ is another holomorphic frame and e = ge’, then
s=fge' and Ops = 0f @ g’ =0f Qe.

The Chern connection V associated to the Hermitian metric A is the
unique metric connection

V:C®(X,L) = CP(M, X @ T*X)

whose connection 1-form in a holomorphic frame ey, has type (1,0). The
connection 1-form is given by Ver = a ® ey, with a = dlog|hl.

The metric g* is a Hermitian metric on K. Any Hermitian metric A on a
line bundle L induces metrics h™ = e~ ™% on the tensor powers L™ in the
local frame e’}*. The Hermitian metric and complex structure determine a
Chern connection dlog h whose curvature 2-form ©j, is given locally by

0y, = —ddlog|ler|?,
and we say that (L, h) is positive if the (real) 2-form @@h is positive.

2.3. Curvature form

Given a connection V on L and a vector field V' on X, the covariant
derivative of a section s is defined by Vys = (Vs, V). The curvature is
the 2-form QV defined by QV(V,W) = [Vv, Vw] — Viv,wy. If er is a local
frame and Ver = a ® ey, then QY = da.

2.4. Examples

e Let F*X be the unit co-frame bundle X, consisting of orthonormal
frames of 7% X. Then S™F*X is the bundle of real m-differentials,
i.e., homogeneous polynomials of degree m in dx,dy or dz,dz.

e When X is given a complex structure, we may decompose T*X ®
C = 7*10 @ 7*O1) into co-vectors fdz of type (1,0) and gdz of
type (0,1). The holomorphic co-tangent bundle is usually denoted
by K = Kx = T*1:9 and is called the canonical bundle. Its tensor
powers K™ are bundles of differentials of type f(dz)™ with f(z, z)
a smooth function.
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e When the genus is 0, i.e., X = 52, Kx is a negative line bundle
and has no holomorphic sections. The associated circle bundle of
frames is SO(3) X RP? = S3/ + 1.

e When the genus is 1, then Kx and T*X are trivial and Fj, =
T2 x St

e When the genus is > 1 we may twist L by a flat line bundle. This
is not particularly relevant for this article except that we usually
ignore this additional degree of freedom. There is an ample line
bundle L — T2 whose holomorphic sections are theta functions. The
associated principal S* bundle is the reduced Heisenberg group, the
quotient of the simply connected Heisenberg group by the integer
lattice.

e When the genus is > 2 then X = H?/T" where I' C PSL(2,R). The
associated S* bundle is SLy(R)/I. Kx is ample and for m large
there are many holomorphic sections of K'§*. This is only significant
in this article when we discuss splitting eigenspaces.

2.5. Canonical bundle and m-differentials

Let K — X denote the canonical bundle T*19 X of (1,0) forms fdz.
Up to twisting by a flat line bundle, it is the unique ample line bundle
on X. Hence there exists a Hermitian metric h on K with curvature form
i00log h = w. This should be distinguished from the curvature of g, which
is given by

dd®log g1i = Kwy, where K is the scalar curvature.
In terms of the Hermitian metric h = e=%° on K, |dz|, = e=% = g'L. Also,
0. logwy = 0. log(1 — Ap9), wey = (wo +dd¢) = ((1 — Ag)P)wo.

We now regard g(X,Y) = w(X, JY) as a Kahler metric. The co-metric *
defines metric coefficients on T* X ® C by extending ¢g* by complex linearity
and induces the Hermitian metric,

ldzlg- = g™,

on Kx. The curvature (1,1) form is therefore 90 log gt

The associated (1,1) form wy, is positive if the genus is > 2 and if g is
a metric of negative curvature K. It is negative if the genus is 0 and the
metric g is of positive curvature. When the genus is 0 there do not exist
Hermitian metrics with strictly positive or negative curvature forms.
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When dim X = 2 we write the area form as d4, = \/gdz or as w,. The
metric g induces metrics g on TX, T* X, T*(1:9 X = Ky and on powers such
as K™. On K™, the Hermitian metric induced by g s [|dz[|2 = e™¢ = g1 so
¢ = —log gﬂ. The Chern connection on K is the same as the Riemannian
connection.

Consider the complex line vector bundles T5° and (T'X,.J). They are
isomorphic under the map

1
E:Tx =Ty, v— 5w —iJv).

LEMMA 2.1. — Let (X, g) be a Kdhler manifold. Under the isomorphism
EeTx — T)l(’o, the Chern connection D on the holomorphic tangent bundle
T is the Levi-Civita connection V.

2.6. Orthonormal frame bundles and m-differentials

If (X,g) is a Riemannian surface, and F is the SO(2)-bundle of or-
thonormal frames of 7% X, then g determines a Riemannian connection on
F. Similarly, if we fix a complex structure and define the principal S* bun-
dle F, ¢ TX associated to Kx = T*(19 | then g determines a Hermitian
metric on Kx. We first discuss the real geometry and then the complex
geometry.

The metric g = Z?,j:l gijdz; ® dz; on TX induces a co-metric g* on
T*X, usually denoted by raised indices. It then induces metrics ¢®" on
powers S™T*X.

There always exists a basis of basic or horizontal 1-forms at a frame
(11, o) such that

(Wj)m,p,l,p,z (U) = :uj (71'*’[]).

The Riemannian connection 1-form « is defined by the equations,

(o, 550 =1,

dw = a A ws,
dws = —aAwi,
da = Kwi Awa,

where K is the scalar curvature. Dually, there exist vector fields &1, &> so
that

[%151] 252
[, 6] = —¢&1,
[51752} :K%
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Then define
E* = %(51 F &2).
Then,
(55, EY] = E*
(5. E7] =-E",

1 _ i D
[E*,E7| = 5Kz
In the frame {£1, &2, %} the volume form is wy Aws A . The vector fields

&1, & are also of unit length since they are defined to be horizontal lifts of
a unit frame.

2.7. Hilbert spaces of sections

Let (L,h) — X be a Hermitian holomorphic line bundle. We thus have
a pair of metrics, h resp. g (with Kéhler form wg) on L resp. TX.

To each pair (h,g) of metrics we associate Hilbert space inner products
Hilb,, (h, g) on sections s € L2, (X, L™) of the form

Isl2n = /X 15(2) By,

where |s(2)|2,. is the pointwise Hermitian norm-squared of the section s in
the metric A™. In a local holomorphic frame ey, we write

ezl =€

In local coordinates z and the local frame e} of L, we may write s = fe’’

and then
= () e,

[s(2)

Henceforth we write

Ifer']

- ::/ |£(2)]%e ™ w.
p's

In the special case where L = Kx, we may use the frame dz in a local
holomorphic coordinate z. In the local frames (dz)™ of K™ we may write
sections as s = f(dz)™ and then |s(2)[2,. = |f(2)|?e”™%(*) and then,

1 F(d2)™ 2 = / ()2 av,
X

where dV; = wy is the area form of g.
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3. Bochner Laplacians on line bundles

In this section, we give explicit local formulae for Bochner Laplacians
Bochner Laplacians Vj, 'V on L?(X, L) equipped with the data

(ga h7 J) JL,V),

where (L,h) — X is a Hermitian holomorphic line bundle, g is a metric
on X, V is a connection on L. In a local frame ey, of L, with s = fer, the
inner product Hilb(g, h) on L?(X, L) takes the form,

I3 Eitng,n) = /X |[f[Pem¥dVy, (where [ler(2)]; = e ¥©).
The inner product on L?(X, L ® T*X) has the form,

s @ e g,y = /X [P lnl5eaVy, (where [ler(2)]; = e~ ).

With no loss of generality, we fix J on X and assume that (g, J,w) is a Kéh-
ler metric with g(X,Y) = w(X, JY). Then g(%, %) =0= g(%, %) =0.
There is only one metric coefficient, gﬁ = (G(dz,dz). It is a Hermitian met-
ric on T1°X and is compatible with J. () We also denote the Riemannian
volume form by dV, = w = dd®log g'!.

Lor g* for

Remark 3.1. — Notational remark: We use G rather than g~
the dual co-metric on 1-forms, because it is a convenient notation for later

variations.

The Bochner Laplacian is the Laplacian on L?(X, L) determined by the
quadratic form,

(3.1) dg.h,v(s) = /X |Vs|i®gdvg = <v;7hv5,8>Hilb(g7h).

Throughout we assume that g is J-compatible. In a local frame ey of L,
with s = fer, V(fer) = (df + fa) ® er, and with |ler(2)]|? = e ¥, and
the quadratic form is given by

qg.n,v(fer) :/ |df + falle™dV,.
X

The adjoints are taken with respect to the volume form e_¢d1/g.
We give local formulae for Vi, ¢V under several assumptions on V and
in correspondingly adapted frames (equivalently, choosing a gauge for V):

) Although dim M = 2, we use the notation dVj; and the term “volume form” to avoid
clashing with the notation A for connections and area form.
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(i) V is h-compatible (see Section 3.1); in this case, we compute in a
local unitary frame. Fixing h is equivalent to fixing the principal
S! bundle P, — X, and varying the connection 1-forms o € A, on
Py, (with fixed g).

(ii) V € Ac is compatible with a fixed complex structure Jy, on L (see
Section 3.2); in this case we compute in a local holomorphic frame.
In the next section we fix Jy, and vary h (with fixed g).

(iii) V is compatible with both (h, Jr), hence is the Chern connection;
see Section 3.3. The (1, 0)-part of the connection has the form o =
0log h and is parameterized by the Hermitian metric - on L; in the
next section we consider its variation with h (with fixed g).

(iv) When L = Kx is the canonical line bundle, we let i be the Her-
mitian metric induced by g and let V be the Levi-Civita connec-
tion. This is a special case of an h-compatible connection but is
special because h is induced by g. Moreover, the Riemannian con-
nection w.r.t. g is the Chern connection for the Hermitian metric
g. In a holomorphic frame dz the connection form is dlog g1i =
Olog G(dz,dz). Also, dV, = g'ldz A dz. In the next section, we
vary this connection by varying g on X.

There exist many formulae for Bochner Laplacians in the literature (see
for instance [5]), but they often make assumptions on the compatibility of
the connection with other data (the Hermitian metric or complex structure)
and we need explicit dependence on the compatibility conditions so that
we can perturb some of the data while holding others fixed. We therefore
go through the calculations with explicit assumptions on the compatibility
of V with the data (g, h,V, J, J.).

We also recall the general identities, d*(fa) = —«d*(fa) = —xd(f*xa) =
—xdf A*xa + fd*a. Note that G(n,()w = n A *¢. Hence, — x df A xa =
—xG(df, a)w = —G(df, a) since *w = 1.

3.1. Calculation in a unitary frame

In this section we assume that V is compatible with h. We recall from
Section 2 that on a Hermitian line bundle (L, k), the set A}, of connections
on L which are compatible with the Hermitian metric is the affine space
{A, = Ag+a:a € QYX)} where Ay is a fixed background connection
and Q' (X) are the real 1-forms on X. The Hermitian metric determines the
principal U(1) bundle P, of unitary frames of L and as before A; determines
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a connection 1-form a7 on P,. On the base X, the connection 1-form is
iR-valued in a unitary frame and we write it as i« with a real-valued a.

PROPOSITION 3.2. — Let (X,g) be a Riemannian manifold and let
(L,h) be a Hermitian line bundle with h-compatible connection V. Let
V(fer) = (df +ifa) ® e, with a € R in a unitary frame er,. Then,

V*V(fer) = (—Ayf —2iG(df, ) +ifdja+ G(a,a)f) eL.
where A, is the scalar Laplace operator.

Proof. — In a unitary frame, |er|? = e~% = 1 and this factor drops out.
We leave it in until the last step for purposes of later comparison to other
frames. Since V(fer) = df ® e, +ifaer, and by (3.1),

Qg.h,v(s) = / |df + ifa|_3e_deg.
X
Note that
df+ifal2 = G(df+ifa,df T ifa) = |df)2+2RFG(AF, —ia) +Gla, )|

is the Hermitian norm-squared, so
qg,h7V<s) :/ (|df‘527 + 2§RfG(df? —iOé) + G(O(7 a)|f|2) e_deg
X
:/ (—2RfG(df,ia) + G(a, )| f]?) e ¥dV, —/ Ja(evdf)dv,
X b'e

— [ (-2riG(sia) + Glaa)lfP) av, - [ Fdzdpav,,
X X

where in the last line we use that vy = 0 in a unitary frame. Since « is
real-valued,

—2RfG(Af,ia) = —i(fG(df,a) — fG(df,a)).

Recall that dj(fa) = —+dx(fa) = —=G(df, o)+ fd;a. Replacing iG(df, a)
by —i (d}(fo) — fd;a) and integrating the d} by parts gives

/X (=ifG(df, o) — ifG(df, @) + il fP Ao+ Gla, )| f]?) AV,

- [ faanav,
X
Thus, we get
V*Vf=-Ayf —2iG(df,a) +ifdja+ Gla,a)f. O
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3.2. Holomorphic line bundles: J;-compatible connections.

In this section we give a local formula for the Bochner Laplacian when
L — X is a holomorphic line bundle and V is compatible with the complex
structure. Thus, complex structures J on X and Jp on L are fixed. In a
holomorphic frame, |lez| = e™% # 1 and Ver = a® e, where « is of type

(1,0). We write V = 9V + 3" for the decomposition of a connection into
its (1,0) resp. (0,1) parts, with 9V = V(l’o),gv =von,
The Bochner-Kodaira identity relates V*V to 8,8y, where
Or(fer) == VIO (fer) = (0f +af)®er,
gL(feL) = V(O’l)(feL) = gf Rer.

The analogue of Proposition 3.2 is

PRrROPOSITION 3.3. — IfV is compatible with Jy, with connection 1-form
Ver, = a® ep, with a of type (1,0) in the holomorphic frame ey, then

V*V(fer) = (—Agf +G(dY+a,df) — fG(dy,a) + fd"a+ G(o, &) f) er.

Proof. — The proof is similar to that of Proposition 3.2, with two dif-
ferences:

(i) we use a holomorphic frame rather than a unitary frame and |ey |7 =
e~ % is not equal to 1;
(ii) « is of type (1,0) rather being iR-valued.
Note that

|df + fal; = G(Af + fa,df + fa) = |df[; + 2RfG(df, @) + G(a, @)/ f|?

By (3.1), and integrating by parts the [df|2 term, and with | - |* denoting
the Hermitian metric, we get

qg,n,v (8)

:/ [df + falle™"aV,
X
:/ (Jdf 2 + 2RFG(AS, G) + Gla, 3)|f1?) e~¥aV,
X
z/X(2§RfG(df,d)+G(a7d)\f|2) e_deg—/X fdi(emvdf)dV,
:/X(28%fG(df,07)+G(a7d)|f|2)e_’”dVg—/Xf(d;df—G(dw?df))e_deg

Further,
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We simplify the fG(df, a) term using that _d*(fozz = —xdx*(fa) =
—G(df,a) + fd*a so that G(df,a) = —d*(fa) + fd*a. Integrating the
d* by parts gives

/X (2RFG(Af, @) + G(a, @)|f]?) e PaV,
- [ (Fer.a) + 1GWf.0) + Glo.a) ) e
=/X(fG(df,&)—fd*(fa)+|f\2d*a+G(a,a)|f\2) e~ vav,
- [ (F6r.a) - f6@r.0) = 7 (Glav.a)

+ |fPd*a + G, @) f|2)e v dV,.
Combining with the term — [ f(d;df — G(dy,df))e"*dV,, we get
V'Vf=-Ayf +G(dY +a—a,df) — fG(dY,a) + fd'a+ Gla, &) f. O

3.3. Chern connection

In this section we assume V is both h-compatible and Jj-compatible,
i.e., that it is the Chern connection with connection 1-form 9. One can
then compute V*V using the relation

(3.2) V'V =290 +ixda

between the Kodaira and Bochner Laplacians.

Note that de is real and 9y = «, so d¢) = a+a and G(dv+a—a,df) =
G(a,df) above. Also, G(dy,a) = G(a,a), so the terms —fG(dvy, o) +
G(a,a)f cancel and from the preceding Proposition we get

V*V(fer) = —Ayf + G(a,0f) + fdja
We now prove this directly.
PROPOSITION 3.4. — Let V be the Chern connection for (L,h). Then,
ViV (fer) = (=D f+G(8%,0f) + f(i  QY))er.
Proof. — Using (3.2) and gv(feL) = (0f ®er), we have

@25&9’ S)h = <5LS,5LS>h®g-
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We rewrite C_?(gf,ﬁf) term using that d*(f_aj_”) = —xd=* (fof) =
—G(df,0f) + fd*0f so that G(Of,0f) = —d*(fof) + fd*Of. Integrat-
ing the d* by parts gives

/ G(B1,0f)eVwy = / (~d*(Faf) + Fd*af)ew,
X X
- /X (G(Of,dp) — Af)) Fevu,.

Adding the curvature term adds f(i * QV). O

Remark 3.5. — Proposition 3.4 and (3.2) are consistent by the following
calculation: If o = 07 is a Chern connection 1-form, then

(dia)wy = QY =i00Y = (Agh)wy, dija = Agy.
Indeed, in terms of the Hermitian inner product,

(dgev, f)rz = (a,df)p2 = (@, 0f )12 = /Xaa-gfwg =1 ; g—f%dzdé

. 0% —
= —Z/X 8z82fd2dz
= *<A1/’7 f>L2'

3.4. Canonical bundle: L = K and V is the Riemannian
connection

Let z be a local holomorphic coordinate and let dz be the associated
section of K. Differentials of type (dz)™ are sections of K™, the m-th
power of the canonical bundle. The Riemannian metric on X induces a
Hermitian metric A™ on K™, namely |dz|, = |dz|, where g is the co-
metric. dz = dx + idy and at x + iy, |dz| = y.

The metric g on TX endows a Hermitian metric g* on K and the as-
sociated Riemannian connection V, is the Chern connection with connec-
tion 1-form a = —dlog g11 in the frame dz. For simplicity of notation we
write ¢ = — log gli. It induces connections and Hermitian metrics on K™
with connection 1-forms ma. The associated Bochner Laplacian V3, 'V, 4
on K™ corresponds to the quadratic form

Gmg(5) = /X V02, g = /X A7 + m OB ()™ |2mivy

z/X|df—|—mf8¢|26_m¢wg.
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Note that wy, = % g17dz A dz and the Laplacian on scalar functions is given
.
by Aof = gll Bzgé'
PROPOSITION 3.6. — Let V,, be the Chern connection for (K™, g*™).
Then,

Vi Vi (f(d2)™) = (=Agf +mG(0¢,9f) + mK f)(dz)™

Proof. — This follows from Proposition 3.4. We give a direct proof. By
the Bochner-Kodaira formula (3.2), it suffices to prove

33 02 = (0" L (57) 52) e

where ¢(z) = —log|dz|, = —log g™
As above, we calculate the adjoint to be

O 02) = (e 5 (1) e ) )

Haj
0z

=0
= 9“8% —mf(z)g

It follows that
0y D (F(d2)™)
=0, <af( )m®(dz))

_ of _
—_ meo 1 11 md)
(e “o az(@z ‘ ))

:gli *f —-m <8f 11) ¢ +ﬁ 11‘910{%91i n <afgn> Ologwg

9207 9z ) 92T 9zY o 9z 92
1 0 f af 11\ 99
1 _ o (9F 11) 99
9207 m(azg ) 9z
where we used m%zgﬁ + % =0. 0

4. Perturbation theory and genericity

In this section we prove generic properties of the eigenvalues and eigen-
sections of Bochner Laplacians V3.V on complex holomorphic Hermitian
line bundles (L, h) — X. Our ultimate goal is to deduce generic properties
of Kaluza—Klein Laplacians on the principal U(1) frame bundles P, — X
associated to h. First we discuss generic properties of Bochner Laplacians
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on the line bundles and then we draw conclusions for the Kaluza—Klein
Laplacians. We prove that for generic data (g,h,V) (with fixed (Jz,J)),
eigenvalues of Bochner Laplacians V7 , V are simple (multiplicity one) and
all eigensections intersect the zero section transversally (i.e., have 0 as a
regular value). This immediately implies that for the associated Kaluza—
Klein Laplacians Ag on Py, all joint eigenfunctions of the U(1) action and
Ag have simple joint spectrum and have 0 as a regular value. In Section 4.6,
we discuss the multiplicity of the spectrum of A, hence proving a part of
Theorem 1.5.
The main result of this section is:

THEOREM 4.1. — For generic “admissible data” described below, and
for every m, the spectrum of each Bochner Laplacians V7, ,V on CH(X,L™)
is simple and all of its eigensections have zero as a regular value. Moreover,
if we lift sections to equivariant eigenfunctions ¢, then R¢ and ¢ have
zero as a regular value.

The generic admissible data is of the following kinds:

(1) We fix h,g and vary the connection V in Ay. Fixing h is equiva-
lent to fixing the principal U(1) bundle Py, — X, and varying the
connection 1-forms.

(2) We fix (J,Jr,g) and vary both h and V, assuming that V € Ac is
compatible with Jy, on L but not necessarily with h.

(3) We fix (g,Jr,J) and vary (h,V) assuming that V is compatible
with both (h, Jr,), hence is the Chern connection of (L, Jp, h).

(4) We fix L = K™ and also fix J and vary g in the conformal class
associated to J. We assume that h is the Hermitian metric induced
by g and that V is the Levi-Civita connection.

The proofs in each of the cases are given in separate sections.

Note that the functions relevant to this article are smooth sections of a
complex line bundle L, and may locally be represented as complex valued
functions u. We will prove that u : M — C has zero as a regular value, i.e.,
that du, = dRu+idSu is surjective. It follows that Ju, Su are independent
and nowhere vanishing on their zero sets, and that each has zero as a regular
value

4.1. The Uhlenbeck framework

To study generic properties of the spectrum, we follow [20] and work
with C" spaces of metrics and connections. We use the following notation:
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e We denote by G"(X) the Banach space of C" metrics on X. Since
X is a surface and we usually fix the complex structure J, we only
work with C™ metrics in the associated conformal class Conf(.J)
and represent them in the usual Weyl gauge g = e”gy relative to
a fixed background metric go € Conf(J). Thus, we may identify
G"(X) = C"(X). We may also fix the area of the metrics with
no loss of generality and then Conf(J) may be identified with the
space K, of Kéhler metrics on X in a fixed cohomology class. This
is simply a different choice of gauge in which we write the Kéahler
forms as wg = wo + i00¢ and use the potentials ¢ rather than the
Weyl gauge u to parameterize metrics.

e We denote by H"(L) the Banach space of C” Hermitian metrics on
L. Once we fix a local frame e;, we may identify h € H"(L) with
the function 1 such that [er(2)||? = e %), and H"(L) is then
equivalent to C" (X)) except of course that the identification is frame
dependent and the frame is only local (defined on the complement
of a smooth closed curve in X, e.g.).

e We denote by A"(L) the space of connections with C” connection
forms. As before, we also denote by A}, resp. Af, the h-compatible
(resp. Jr-compatible) C" connections.

e We denote by C"(X, L) the C” sections of L. We also denote by
H*(X, L) the Sobolev space of sections with s derivatives in L?.

We define
G (X)x H'(L) x A"(L) x H*(X,L) x C — L*(X, L),

by
(I)L(ga ha v» S, )\) = (Vz’hv — )\)S

Here, the eigenvalue parameter A in the domain is allowed to be complex
even though at zeros of ®; it is always real. This does not change the
arguments in [20] but is needed so that As spans the eigenspace when s
is an eigensection. In [20] the eigenfunctions were real-valued, so this issue
did not arise.

Recall that a linear map between Banach spaces is Fredholm if it has
closed image and finite dimensional kernel and cokernel. The index of a
Fredholm operator is the difference of the dimensions of its kernel and
cokernel. A nonlinear map ® : N — Y of Banach manifolds is Fredholm if
its derivative D®,, is Fredholm for every n € N.

Our first goal, roughly speaking, is to prove that ® is a Fredholm map
of index 0, i.e., to prove surjectivity of the differentials D>® from tangent
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spaces of

Q={(g,h,V,8,\) : ®r(g,h,V,\) =0}
to L2(X, L). It is sufficient to pick the relevant types of frames and calculate
the Bochner Laplacians in the frame as in Section 3.

Regarding the surjectivity, we need to prove density of the image and
that the image is closed. Some care needs to be taken because sections of
complex line bundles are “vector-valued”, i.e., have two real components. As
explained in [6], there are pitfalls to avoid when generalizing the arguments
of [20] to the vector-valued case. But sections of line bundles are locally
complex-valued functions and are essentially scalar functions, albeit with
scalars in C.

4.2. Uhlenbeck’s argument

We briefly review Uhlenbeck’s proof that for generic metrics on compact
CTRiemannian manifolds, all eigenvalues are simple and all eigenfunctions
have 0 as a regular value.

Her framework is quite general and therefore uses the notation B for the
relevant space of metrics or other geometric data, and L; for the Laplacian
associated to b. The relevant functions are denoted by u and the space of
such functions on a manifold M is denoted by C*(M), even though they
could be sections of a bundle over M. Then define

D(u, A\, b) = (Lp + N,
and put
e Q:={(u,\g) € C*X) xRy x B:®(u,\b) =0}
e a:QxXM—C:alu, b z)=u(z).
e 3:QXM—T*M: B(u,\b,z)=Vu(z).
Then,

1o / uvdVy =0,
Tu,)\,bQ: ('U,'I%S)€H’ (X)X(CXT[;B: X
(Lpy + N)v+nu+ Dapps =0
We often write
v="1, n=2>X Dy(®)s=Au, (A+Ni+(A+Nu=0.
Further, let Dy« denote the derivative of a along Q). Then,

D(u,)\,b)a(v> 0,c, 0) = ’U(l’) = u(:v)
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Also define J to be the image of Dy®,
J=Im Da®y xp) = {Au : A is a variation of A along a curve of metrics}.

We use the following “abstract genericity” result of [20, Theorem 1]
and [20, Lemmas 2.7-2.8].

THEOREM 4.2. — Assume that ® is C* and has zero as a regular value.
Then the eigenspaces of L are one-dimensional. If additionally, o : ) X
M — C has zero as a regular value, then additionally

{b € B : the eigenfunctions of Ly, have 0 as a regular value}

is residual in B.

The key proposition is the following procedure for verifying the first
hypothesis of Theorem 4.2. (see [20, Proposition 2.10]).

PROPOSITION 4.3. — Let J = im Dy® and assume that for W € L*(M)
and W € C*(M — {y}), the property [,, W(z)j(z)dpu, = 0 for all j € J
implies W = 0. Then ¢ is C* and has zero as a regular value.

For the sake of completeness, we briefly review the main steps in proving
Theorem 4.2: The main input are two transversality theorems. The first is:
Let ¢ : Hx B — E be a C* map where H, B, E are Banach manifolds. If 0
is a regular value of ¢ and ¢y () := ¢( -, b) is a Fredholm map of index < k,
then the set {b € B : 0 is a regular value of ¢} is residual in B.

The second statement follows from [20, Lemma 2.7): Let 7 : Q@ — B be
a C* Fredholm map of index 0. Then if f : @ x X — Y is a C* map
for k sufficiently large and if f is transverse to Y’ then {b € B : f;, :=
flz—1(») is transverse to Y} is residual in B. Let

a:fHY)=Bbea: fH(Y)CQ— B.

LEMMA 4.4. — The eigenfunctions of Ly have zero as a regular value if
b is a regular value of m and if 0 is a regular value of &, -1y X M := ay.

Eigenfunctions and eigenvalues move continuously under perturbations
of the operator. So it is easy to show that the set of metrics with for which
the jth eigenvalue is simple is open. The difficulty is to prove that this set
is dense.

To prove the first statement in Theorem 4.1 we need to verify the hy-
potheses of Theorem 4.2 and therefore need to prove Proposition 4.3, i.e.,
to determine the range of Ds¢.

PROPOSITION 4.5. — For each of the admissible types of perturbation,
Dy ®,, is surjective from Ty x ¢)@m — ck—2,
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4.3. Base metric variations

In this section we fix (h,V,J,Jr) and vary only g = e”. Equivalently,
we consider Kaluza—Klein metrics on a fixed U(1) bundleP, — M with a
fixed connection a and vary the base metric g.

PROPOSITION 4.6. — Suppose that (L,h,J) — X is a Hermitian holo-
morphic line bundle with h-compatible connection V. Let V(fer) = (df +
ifa) ® e, with a € R in a unitary frame ey,. Then for generic Riemann-
ian metrics g = e”go in the conformal class of J, all of the eigenvalues of
V3 1 Vi are simple and all of the eigensections have 0 as a regular value.

Proof. — By Proposition 3.2,
V*V(fer) = (—Agf —2iG(df, ) + ifd;a + G(a,a)f) er.

where A, f is the scalar Laplace operator, where g = e”.
Taking the variation 0 with respect to p (and designating the variation
with a dot),

SV*V(fer) = (~Agf — 2iG(df, a) +ifdia+ G(e,a)f) er.
But each term is conformal to that of g with conformal factor e™. Hence
SV*V(fer) = f%pAf(x) — 2ipG(df, a) + (ipdia + pG(6,0)) fer,
=pV*V(fer).
If V*V(fer)u = —Au then
0,V*V(fer)u(z) = —Apu.

To prove that the image of Dy®;, is dense we argue by contradiction and
suppose that there exists W € L?(X, L) such that

/ 5,V Vh(fer, W (2))adV, = 0
X

for all p. But this implies that fX p(fer, W)pdV, = 0 for all p, then W = 0.
Write W = Fey, so that the integral becomes, fX pfﬁe’deg = 0 for all
p. This is only possible if fFe~* = 0. But f and e~% can only vanish on
a set of measure zero, so F' = 0 almost everywhere. The image is closed
because V*V is a Fredholm operator. (|
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4.4. Varying the Hermitian connection

In this section we fix g, h and vary V € Aj. In the application to Kaluza—
Klein metrics, P, is fixed and the base and vertical metrics are fixed and
only the splitting into horizontal and vertical is varied.

We recall from Section 2 that some of the variations are “trivial”, i.e., are
within a gauge equivalence class. Bochner Laplacians with gauge-equivalent
connections are unitary equivalent by a gauge transformation, i.e., they
have the same spectrum and their eigensections are related by a gauge
transformations. Viewed in terms of line bundles over X, gauge equivalent
connection forms are connection forms of a single connection in two different
unitary frames, hence differ by a gauge transformation e € Map(X, S!)
taking e;, — e?ey. The connection 1-form then changes by idf € Q!(X,R).
A unique representative of a gauge equivalence class is defined by the
Coulomb gauge d*a = 0.

PROPOSITION 4.7. — Suppose that (L,h,J) — X is a Hermitian holo-
morphic line bundle and let V € Ay, be given by V(fer) = (df +ifa)®er
with a € R in a unitary frame ey,. Suppose that L is non-flat, or if it is flat,
that da # 0. Then for generic gauge equivalence classes a € A, = QY(X),
all of the eigenvalues of V , V), are simple and all of the eigensections have
0 as a regular value.

Proof. — Again by Proposition 3.2,
V*V(fer) = (—Ayf —2iG(df, a) + ifdja+ G(a,a)f) e,

where A f is the scalar Laplace operator. Taking the variation with respect
to «a gives,

5V*V(fer) = (=2iG(df, &) + ifd;d + 2G (&, o) f) er.

If the image is not dense, there exists W = Fey, so that
/X (=2iG(df, &) +ifd;a +2G(&, o) f) Fe ¥dV, = 0,
for all & € 2(X). We integrate dj by parts to get,
/X ((—2iG(df, &) + 2G (&, @) f)F +iG (&, d(fF))) e ¥dV, = 0.

We may assume that the frame ey, is unitary so that ¢ = 0. If 3 € Q(M, C)
and [y, G(B,v)dVy = 0 for all v € Q'(M,R), then 8 = 0. Indeed, we may
consider v of the types v = vidx, vody separately to get orthogonality of
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the components 3; with v;. This reduces matters to the fact that if u,v are
complex-valued and [ uvdVy = 0 for all v, then u = 0. We conclude that

(—=2idf + 2af)F +id(fF) =0 <= (—idf + 2af)F +ifdF = 0.
On any open set U where f, F # 0 we may divide by ifF and write the

solution as, ~
dr df
— =—(—-——=+2ia|.
F ( f )
This implies that -
F
dlog? = —2iac = da=0

on a dense open set and since o € C™, it is everywhere closed and hence
the curvature of (L, h) is zero. This is impossible unless L is a topologically
trivial line bundle, and the contradiction implies that F' = 0 except when
da = 0. g

4.5. Proof of Theorem 4.1

As mentioned in the previous section, eigenfunctions move continuously
under perturbations of the operator. So it is easy to show that the set of
metrics with for which the jth eigenvalue is simple is open. The difficulty
is to prove that this set is dense.

To prove the first statement in Theorem 4.1 we need to verify the hy-
potheses of Theorem 4.2 and therefore need to prove Proposition 4.3, i.e.,
to determine the range J of Dsy¢.

To complete the proof of Theorem 4.1 it suffices to prove:

PROPOSITION 4.8. — For each m, D1y, is surjective to C.

Proof. — Let Gy, A(z,w) be the kernel of the Green’s function Gy, :
[ker(D,, + A)]* — [ker(D,, + A)]* for D,,(g) + A for a given background
metric g. As above, one may use the Hermitian metric h on K or the
associated Kéhler metric ¢ = w; as the parameter space of metrics.

We need to show that for each x € M,

am @ x{z} = C: a(u, A g,z) = u(z)
has 0 € C as a regular value, i.e., that
Dla( i) (E) : Tu,A,b(Q) — C, Dla( . vx)(u)\,g) (6u($)7 0; C, 0) = (5u(x)

is surjective to C, where D; is the differential along @) with x € M held
fixed. Since z is fixed we may use a local coordinate z and frame (dz)™
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as above and identify local sections of K™ with complex-valued functions
u: U — C, where U is an open set containing x.
The constraint equation for (v,0,¢,0) € Tiap@ is

(Dm(g) + Mv + (Dim(g9) + Mu =0,
and we can solve for v ker(D,,(g) + A) as

o(z) = — /M G (@, TIE (Do + M)l (1) AV (3).

By Proposition 4.5, the range of Do®, i.e., the set of functions [(D,, +A)u],
spans L3. Therefore, the image ITy [(D,, + A\)u] spans [ker(D,, + A)]*. It
follows that the possible values of v are all functions of the form,

o(z) = /N G ) f )V ),

where fLker(D,,(g9) + A). Thus, Dy« is surjective to C unless for all
jLker(Dp,(g) + A), either the real or imaginary parts of

G (G)(z) = /M G (2, )i (1) AV (1)

vanish (or both) for every such j.
Since j = [Dy,(9)+A]f where [ f = 0 we would get the absurd conclusion
that
f(x)=0, V flker(Dy(g) + A).
Equivalently,
Gma(z,y) + ux(z) =0.

This is not possible and the contradiction ends the proof. O

4.6. Multiplicity of the spectrum of A,

We begin by observing that A, ; = A_,, ; and that ¢_,, ; = ¢y, ;. Then
any real eigenfunction which is a linear combination of ¢, ; and ¢_,, ; is

R (ewo ¢m,j)
for some constant 0. In local coordinates, ¢, ; is a(z)eime, and therefore
we see that
R (™G ;) = R (Toybm,s) = TooR (Sm.;) -
For m; and mg such that |mi| # |mg|, we argue that A\, j, # A, j, 1S
satisfied for an open dense subset of metric G. This immediately implies
the first, third, and the fourth statement of Theorem 1.5. Note that the
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eigenvalue moves continuously with respect to G. So it is sufficient to prove
that

LEMMA 4.9. — Let P — X be a non-trivial principal S* bundle. Fix
integers my and mg such that |mq| # |mz|. Among all S'-invariant metric
G on P, G satisfying Apm, j, # Ams,j, is dense.

Proof. — The deformation of the base of the Kaluza—Klein metric does
not touch the vertical operator % and therefore the first order perturbation
equations for infinitesimal deformations of the base metric g gives,

(4.1) (Al + Ami)bmi = (Agr + Anj +m) s
Taking the inner product with ¢,, ; gives
(4.2) — Amj = (Agdmj, dm ).

If there exist weights m; # mg for which we cannot split the eigenvalue
Amij1 = Ama,j. then for all infinitesimal base perturbations p we get

(4‘3) j\m17j1 = >.\777,2,j2 @ <AH¢m1,j1>¢m1,j1> = <AH¢m2,j2u¢m2,j2>~

Write ¢, j = fm,;j(dz)™. Differentiation of the eigenvalue equation there-
fore gives the well-known formula

<Dm1 fmhjl ) fm17j1> = <szgm2,j2 ’ gm27j2>

for every variation of g, where the inner product is that of gg.
Recall from previous section that Ay = pAg. Because —Ap¢y, ; =
(Am,j — m?)¢m ; we have for any p € C(X),

(/\’ml,jl _mf)/ p|fm1,j1|2€_ml¢d140
X
= (/\m2,j2 - m%)/ p|fm2,j2‘2€_m2¢dA0.
X
Thus,

()‘ml,jl - m%)|fm17j1 ‘2€—m1¢ = ()‘mz,jz - m§)|fm2,]‘2|26_m2¢.

Integrating both sides against dV, and using that both eigenfunctions
are L? normalized gives

()‘m17j1 - m%) = ()‘mz,jz - mg)v ie., |m1| = |m2| U
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5. Local structure of eigensections at zeros

To study the nodal sets of real and imaginary parts of Kaluza—Klein
Laplacians, we first study the zeros of the associated sections of the line
bundles. For simplicity of exposition, we assume that L = K and describe
the zero sets of eigen-m-differentials. Essentially the same discussion is valid
for other line bundles.

We follow the notation and terminology in the theory of holomorphic
quadratic differentials, even though our eigendifferentials are C*°, usually
not holomorphic and of general weight m. Following a standard terminol-
ogy for quadratic differentials, we call a point z such that f, . (z) # 0
a “regular point” and a point where f,, ., (2) = 0 a “critical point” or a
“singular point”.

After the first version of this article was written, we located some recent
articles generalizing the geometric properties of quadratic differentials on
Riemann surfaces to C* higher order differentials [7, 1] and to other line
bundles. We now use the terminology and results of these articles but have
retained some from our first version since it is important for us to lift to Pj,.

5.1. Trajectories of eigen-differentials.

The real and imaginary parts of the eigendifferentials w,, j=fm ;(2)(dz)™
are called binary differentials of degree m and the equation for the zero
set of Quwyy, ; is called a binary differential equation of degree m [7]. It
is traditional to consider the nodal set S f, ;(2)(dz)™ = 0. If there exist
exactly m solutions at a regular point where wy, ;(2) # 0 then wy, ; is called
totally real in [7]. Our m-differentials are of a special type since they are real
and imaginary parts of f,, ;(2)(dz)™ and therefore only have terms of the
form (dz)™ or (dz)™. The following is the key input into Proposition 1.8.

LEMMA 5.1. — S fp ;(dz)™ is a totally real m-differential. At a regular
point z, there exist m distinct solutions v of S fp, ;(dz)™(v) =0 in T, X.

Proof. — Tt f v = (cos ¢,sin ¢), then in the notation of (1.4), the equa-
tion is
(@m,jCm — b ;Sm) (cosf,sinf) = 0.
Here ¢, = R(cos b + isin 6)™ = cos mb, and the equation is
am,j

A, j(2) cosmb — by, ;(2)sinmf =0 <= tanmb = ,
m,j
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where a, j,bm,; € R and where we assume with no loss of generality that
bm,; # 0. Since the principal branch of tan™! : R — (—m/2,7/2) is one-

Z’"’J_' with mf €

m,j

to-one, there exists precisely one solution 6y of tanmf =

1 am,4 )

(—m/2,7/2), namely the principal branch of tan™!(-L$™<). Since tan 6 is

m-periodic, tanmf is [--periodic, and the full set of solutions is bo + k-
with k=0,...,m— 1. a

The kernel of Jf,, ;(dz)™ defines a smooth m-valued distribution on
X with singularities where wy, ; = fm, j(d2)™ = 0. The m line fields de-
fines a web of m transverse singular foliations, whose leaves are called the

trajectories:

DEFINITION 5.2. — The trajectories of the m differential f,, ;(dz)™ are
the integral curves of the kernel of S fp, j(dz)™, i.e. the trajectories are the
(smooth) curves ~y(t) in X along which S, ;(v(t),~'(t)) = 0.

Remark 5.3. — A trajectory in this sense of this article is called a “hor-
izontal trajectory” in [19, Definition 5.5.3]. They are illustrated in [19,
Section 7] for holomorphic quadratic differentials. Illustrations of webs for
higher order real differentials can be found in [7].

Trajectories downstairs on X lift to Pj, by their tangent vectors. A tra-
jectory 7., g, (t) downstairs is a smooth curve along which

S(Qsm’j (720,90 (t)v '3/20,90 (t)) =0.

It lifts to a smooth curve (7z,,0, (t); ¥20,0, (£)) int the nodal set upstairs. Since
dm is an isomorphism, the trajectories are special curves on the nodal set
Som,; = 0.

5.2. Non-degenerate singular points

The structure of the trajectories through a singular (zero) may be com-
plicated in general if no conditions are placed on the degeneracy of the
zeros. The purpose of Theorem 4.1 is to allow us to assume that the zeros
are of first order, so that they are isolated and non-degenerate.

The structure of the trajectories of a totally real m-differential near an
isolated singular point is discussed in [7]. As with vector fields, the key
topological invariant of the singular point is its index.

DEFINITION 5.4. — The index of a singular point zy where

fm.j(20)(d2)™ =0
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is related to the degree of the circle map defined by

fm,i(6(t))
| fm,i (8())]

5(t) = 20 +re't —

on a small circle around z to S* by

g (6(8))
e B s 00

Equivalently, in a small circle C' around zy, choose a unit vector X (0) €
ker S fp,j(d2)™| ¢y where C(t) : [0,2n] — X is a constant speed param-
etrization of C' and let { = L(C) be its length. Let X (t) be a smooth
extension of X (0) along C(t). After a complete turn, X (2m) must be one
of the 2m solutions of w(X) = 0. After 2m turns X (2mf) = 0. Let 0(t)
be a smooth determination of the angle between the tangent line to C and
X(t). Then 0(2mt) and 0(0) differ by an integer multiple of 2r. The index
of zq is defined by

il’ld(Zo)

ind(w, z9) = W

Thus, the index has the form 57~ with s € Z. The following Lemma shows
that singular points must exist when the genus of X is non-zero.

LEMMA 5.5. — If f,, ;(d2)™ has isolated non-degenerate zeros, then the
sum of the indices of the zeros is the Chern class of K.

LEMMA 5.6. — If 2y is a non-degenerate singular point (zero of order 1)
of fyn;(d2)™, then ind(wp,j, 20) = 2.

Proof. — This follows from the fact that f, ; is linear in this case and
hence the degree of the associated circle map is £1. O

PROPOSITION 5.7. — For a generic Riemannian metric g on X all sin-
gular points of all eigendifferentials of V*V on K™ have 1ndex for all
m # 0.

Proof. — 1t is part of Theorem 4.1, all singular points are non-degen-
erate. To prove this it suffices to show that the coefficients f,, ; are lin-
ear near each singular point. This follows from the Bers local formula for
eigensections around a zero. We use Proposition 3.3 to Taylor expand the
operator

Dy = V5 Vi

52 om {6f 11] ¢ LK,

_2988 0z | 82

around a nodal point.
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Let p be a nodal point of fy, ;. We Taylor expand the coefficients in
Kéhler normal coordinates for (J,g) in a disc z € D(p,r) to get

o g =1+ K>+
e X =0 tuw =

Thus, the osculating constant coefficient operator is

62
020%Z

Db f =22 f+ K(p).
Let Py denote homogeneous polynomials of degree k in z, z. It is better
to arrange the terms of the Taylor expansion of D,, at p into terms

Dy,=Lo+L_1+Lo+Li+---

where L; : P — Pryj.
2 2 _
Thus, L_s = %7 L1=0,Lo= K[Q]% - 2m[%]z + K (p) etc. Note
that L_; = 0 because dg'!(p) = 0 and 9é(p) = 0, so neither the second or
first derivative terms contribute at this order.

Also expand

f(z)=Az+ i)z + fup)2® + fi®)|21* + fri(Z) + -+ fug + -,

where fi;) € Py is homogeneous of order k.
The following is the generalization of the Bers local expansion theorem
to complex line bundles.

LEMMA 5.8. — Let 29 be a zero of f,, j(dz)™. The first non-zero ho-
mogeneous term f,) of the Taylor expansion of an eigenfunction is a har-
monic homogeneous polynomial. If the order of vanishing is n, fi,)(2) =
aRz™ + ibSSz™. In particular, at a non-degenerate zero, the first homoge-
neous term is fy, ; = a¥tz 4 163z.

Proof. — 1t is evident that L_o = 52— : Py — Py_o. If fy is the
term of lowest degree in the expansion of f then %(;zf[k] =0, i.e., flg is
a homogeneous harmonic polynomial. In real dimension 2 the only possi-
bilities are linear combinations of the real and imaginary parts of z¥. By
a well-known argument, the nodal set of the real and imaginary parts of
f are topologically equivalent to those of the leading order homogeneous
term. g

This completes the proof of the Proposition 5.7. O
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6. Adapted Kaluza—Klein metrics

All of the Kaluza—Klein metrics are Riemannian metrics on principal
St bundles P, — X associated to C*° complex Hermitian line bundles
L — X. Given P, we recover L as an associated line bundle. Let (X, g) be
any Riemannian surface. We denote the genus of X by g. Let (L,h) — X
be any complex line bundle with Hermitian metric h. Associated to L is the
U(1) bundle P, of orthonormal frames. Let T' = -2 generate the S! = U(1)
action. We endow P}, with a connection ¢, that is, an S' invariant 1-form
on P, such that a(T) = 1.

The connection defines a splitting

T,P, = H, &V,

into horizontal and vertical spaces. The vertical space is given by orbits
of the S' action. The horizontal space is defined by H, = kera and is
isomorphic under dm, to T, X where 7(p) = 2.

DEFINITION 6.1. — The Kaluza—Klein metric on P, is the S'-invariant
metric G such that the horizontal space H,, := ker da is isometric to T, X,
so that V = R% is orthogonal to H and is invariant under the natural S!
action and so that the fiber is a unit speed geodesic.

A Kaluza—Klein metric on the principal S' bundle Py is thus determined
by the pair (g, a) where g is a metric on X and where « is a connection 1-
form on F'. In general, the metric and connection are chosen independently.
In Section 2.6 we discuss the orthonormal frame bundle, where « is the
Riemannian connection of g.

Given P, and any character x,, = ¢"™? of S' we obtain associated line
bundles (resp, real rank 2 bundles) by

L™ =P, x,, C.

For purposes of this paper it may be assumed that m > 0.

We often assume that X is equipped with a complex structure J and
that L is a holomorphic line bundle. Let D} C L* be the unit co-disc
bundle with respect to h and let P, = dDj be its boundary, an S* bundle
7: P, — X.

Remark 6.2. — Not all S! invariant metrics on P, are adapted Kaluza—
Klein metrics. It would be interesting to consider more general S*-invariant
metrics on SX or on other manifolds (of all dimensions), as well as invariant
metrics under more general compact Lie groups.
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6.1. Geometry and analysis of Kaluza—Klein metrics

We use the term Kaluza—Klein metric or Kaluza—Klein metric in the
sense of Definition 6.1 to denote metrics G on the unit tangent bundles
T : P, = SX — X over surfaces for which the vertical and horizontal
spaces are orthogonal and which is invariant under the free S = SO(2)
action®) . They are special cases of Riemannian submersions with totally
geodesic fibers isometric to R/27Z.

DEFINITION 6.3. — If H is a compact Lie group, and if # : M — B
is a principal H-bundle with fiber F', then one says that a connection 6
is an H-connection for m if the H action preserves the horizontal spaces
and preserves the connection 1-form. One says that a metric G is adapted
to H if the fibers 7=1(b) are totally geodesic and isometric to F' and such
that the horizontal distribution of 6 is the orthogonal complement to the
vertical.

The following Lemma gives details on the equivalences of the various
conditions and is implicitly contained in [3, Example 2.1] and is proved
in [21, Theorem 3.5]. Hence we only sketch the proof.

LEMMA 6.4. — Suppose that S' acts freely on M and that G is an
St invariant metric for which all orbits are geodesics isometric to R/27nZ.
Then G is a Kaluza—Klein metric and = : M — M/S' is a Riemannian
submersion with totally geodesic fibers isometric to R/2nZ.

Proof. — Under the freeness assumption, we have an S bundle 7 : M —
X :=M/St. Let V = R% be the vertical space, i.e., the tangent space to
the orbits. Let H, = V;-. The metric G determines a quotient Riemannian
metric on X using the isomorphisms dm, : Hy — T ;) X. By assumption,
| 2| = 1 if we identify S' = R/(27Z. The only non-trivial statement is
that the orbits are geodesics. Let a(t) denote the orbit of a point  under the
St action. Let v(0) be a horizontal vector at a(0). Let o(t, s) be the parallel
translation of «(¢) along a curve in X with initial tangent vector dmr(v(0)).
Then %a(t, 0) is a horizontal vector field along «(t). The arclength of the
curve t — o(s,t) is constant in s. The first variation formula implies that
a(t) is geodesic. O

These adapted metrics are special cases of invariant metrics on an S!-
manifold M. For instance, in the case of the non-free action of S* on the
standard S? by rotations around the zz-axis, |%\ go varies with the orbit,

(2) A free action is one for which all isotropy groups are trivial.
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and almost no orbits are geodesics. It would be interesting to consider
generalizations to all S! invariant metrics.

Sections of K™ i.e., differentials of type (dz)™, lift to the dual line bundle
K* = T(10) a5 equivariant scalar functions F : K* — C transforming by
e’ under the S! action of rotating a frame. Using the metric g we form
the unit tangent bundle 7 : SX — X. In this section, we review the
relevant formulae for lifted operators and review the fact that the Bochner
Laplacians are Fourier components of the horizontal Laplacian on SX.

6.2. Lifts to P,

The natural inner product on L?(Py,,dVg) is given by

5= [ 15Pave.
Py
Sections s of L™ naturally lift to L* and F} by

3(z, ) = A(s(2)).

It is straightforward to check that the lift of s € C(X, L™) satisfies §(rgz) =
e"™3(x) and that

wamwzéww%mr

Indeed, if z = ry HZE:EZH then §(z) = €™ ||er, (2)]7%.
In the case of L = Kx, the lift has the form,

Fldz)™(Y) = f(d=(V)™.

We define a orthonormal frame of T*X by w; = e~ %dz := \5172\,, as above,
and let ”a%”ilﬁ = e‘ba% be the dual frame. In local coordinates z,z

on X and in this local frame we define local coordinates (z,%,6) on SX
corresponding to the point ewe‘z’%.
Then (dz)™ lifts to the function,

em(za 23 9) = (dz)m (6196(15) = eszemqb(z).
0z
Consequently, the eigendifferential f,, ;(dz)™ lifts to

Gm.j (2, 2,0) = f j(2)e™ 0o

In (1.2) we decomposed the lift into real and imaginary parts. We now
relate them to the real and imaginary parts of fy, ;.
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If we take the inner product of u,, ; and v, ; just along the fiber and
use orthogonality of cos m#, sin mf and that f()27r((:os,2 mf —sin® mf)do = 0,
and then integrate in dA(z) we get

LEMMA 6.5. — (U, j,Vm,;) = 0.

6.3. Eigenspace decompositions

The Kaluza—Klein Laplacian has the form

2

0
AG—AH+8027

is the horizontal Laplacian. The fact that the fiber Laplacian is g—; reflects
the fact that S' orbits are geodesics isometric to R/27Z.

The weight spaces are Apg-invariant, i.e., as an unbounded self-adjoint
operator,

where Ay = €2 + &2

AH Ho — Hom
Under the canonical identification
Hom = LA(X,L™)

using the lifting map and Agly,, = D,, —m?I under the lifting map.
We then consider joint eigenfunctions ¢, ; of the Kaluza—Klein Laplacian
Ag and of 2. The commutation relations show that [Ag, 88—922] =0.

LEMMA 6.6. — TheBochner Laplacian agrees with the horizontal Lapla-
cian Ag. In the above local coordinates and frame,

Vi Vo (f(d2)™) = Ap(f(dz)™).

Note that except for the last identity, these statements are true for any
isometric S! action, not just for adapted Kaluza—Klein metrics.

6.4. Equivariant decomposition

Since St acts isometrically on (M, G) we may decompose into its weight
spaces,
2(M,dVe) = €D Hom.
meZ
where

={f:M—>C: f(ewx) = e“”ef(a:)}.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS OF THE NUMBER OF NODAL DOMAINS 1011

The weight spaces are A g-invariant, i.e., as an unbounded self-adjoint op-
erator,

The lifting map gives a canonical identification

Hom = LA(X, ™).

7. Connectivity of nodal sets of Kaluza—Klein
eigenfunctions

Given the preparations in Section 5, it is now a simple matter to prove
Theorem 1.9. The following is an immediate consequence of Lemma 5.1:

LEMMA 7.1. — If 0 is a regular value, then N, , C SX is a singu-
lar 2m-fold cover of X with blow-down singularities over points where

fm.j(2)(dz)™ = 0.

Indeed, the 2m zeros of Swy, ;(v) = 0in 5. X give 2m points on the fiber
71(2) in Py,. Since locally there exist 2m smooth determinations of the
zeros, the nodal set is a covering map away from the singular points.

We have separated Lemma 7.1 from further geometric results on the map

N,

Um,j

results in Theorem 1.9.

— X in the next section since it was stated separately from those

Remark 7.2. — In the literature, 7 : N, ; = X is sometimes called a
branched cover [1, Section 4], but as J. Y. Welschinger explained to us,
the terminology is misleading since smooth branched covers are supposed
1/m singularities over the branch points, just as for holomorphic
branched covers, while the inverse image of a zero of f,, ; is an S* orbit and

the singularity is blown up. In some sense, 7 is locally like the projection

to have z

of a vertical helicoid onto the horizontal plane.

8. Nodal domains of real and imaginary parts

We now give a sketch of the proof of Theorem 1.5. By Proposition 1.8
(and (1.5)), Nsg,. ,\(Nsg,.,NE) = X\ Zy,, ; is a 2m-sheeted cover. More-
over, P,\X — X is an S! bundle and

i(P\Z)\WNag,, = X
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is a fiber bundle whose fibers consist of the punctured fibers 77! (2)\Wgsy,, -
The connected components of each punctured fiber consist of “arcs” along
which S¢,,,; has a constant sign. We therefore express it as

(P \E)\Nag,, = Py | JP-

where sign S¢,,; = & in P+. Each 7 : P+ — X is a fiber bundle whose
fiber consists of m arcs of the fibers of 7 : P, — X. Since the number of
zeros in each regular fiber is 2m, the number of connected components of
Py is < m. When we take the closure of these sets (i.e., add in the singular
fibers, on which J¢,,.; = 0, the connected components of the closure are
the nodal domains. It follows that there are < 2m nodal domains. We now
argue that the closure of Pi is connected, so that there exist exactly 2
nodal domains.

We now use the local analysis in Section 5 of eigendifferentials of generic
Bochner Laplacians around their zeros to determine how the sheets are
connected at the singular fibers C; = 77!(z;), corresponding to singular
points (i.e., zeros) of f,, j(dz)™ i.e., we consider the maximal components

Pi,j of
P\ UG = Py
=1 =1

in which 3¢, ; has a single sign. When we union the left side with UT:l C;
we glue together some of these domains along intervals of the singular fibers.

The gluing rule for the nodal domains is determined by the gluing rule
for the nodal set, since the boundary of the each nodal domain is the nodal
set. From the downstairs point of view, the gluing rule is the monodromy
of the cover N, . — X\Z(wm, ;) If we fix a singular point z, then we get

Jm,J

a monodromy representation
P T(X\Z (Wi ) — Aut(m™ (20)),

determining how the sheets of the nodal set are changed as the point circles
around zg.

By Proposition 5.7, the index of the singular points zqy is % In terms
of the monodromy, this means precisely that each turn around a circle
C enclosing z lifts to an arc from one vector in the fiber to its nearest
neighbor with the same sign of R¢,, ; (i.e., skipping the neighboring vector
of the opposite sign).

It follows that both the + region and — region is connected in Pj. Hence
there are just two nodal domains.
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8.1. Counting the number of nodal domains

We now give a more detailed presentation.

Let D be an open disc. We first study connectivity of a certain graph
that arise from a pair of partitions of D.

Let P and @ be partitions of D, i.e., P (resp. Q) is a collection of
disjoint open-sets Qp(1),...,Qp(np) C D (resp. Qg(1),...,Q¢q(ng) € D)
such that

URE Qp(k) = D (resp. U2 Qg (k) = D).

Let ¢cp : P — {0,1} and ¢g : P — {0,1} be colorings of P and @, and
define the inversions of ¢p and c¢g by ¢ =1 — cp and Cb =1-cq.

We now define a graph G,,,(P, @, cp,cg) as follows:

The vertex set is

V1,1, V1,2, te Vinp,
V21, V2,2, te V2,ng>
V3.1, V3,2, U3 np,
V4,1, V4,2, e U4,n@7
V4m,1, Vam,2, - ’U4m7nQ

and edges are

{v4j,a, 4541} suchthat Qg(a) N Qp(b)#D, and C’Q(QQ(a)) =cp(Qp (b)),
{V4j+1,0, Vaj+2,0} suchthat Qp(a) N Qo(b)#0D, and cp(Qp(a)) =co (g (b)),
{vaj42,0,Vaj+3,} suchthat Qo (a) N Qp(b) #0, and cg (R (a)) =cp(Qp (b)),
{v4j43,a,v4j44,} suchthat Qp(a) N Qo (b)#0, and c¢p(2p(a)) =cH (g (b))

for j =0,1,...,m — 1 with the identification vy 4 = Vam,q-
DEFINITION 8.1. — We say a pair of partitions (P, Q) generic, if
D — (UZ£1QP(]€) U U221QQ(]‘7))
does not contain a closed curve.

LEMMA 8.2. — For a generic pair of partitions (P, Q) with any given
colorings cp and cg, any connected component of G, (P, Q, cp, cg) contains
at least one of the following 2m vertices:

V1,1, U3,15---, V4m—3, Vim—1-

In particular, G,,(P,Q, cp,cq) has at most 2m connected components.
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Proof. — We first consider the case m = 1. To claim G (P, @, c¢p, ¢g) has
only 2 connected components, it is sufficient to prove that if ¢cp(Qp(ay)) =
cp(Qp(asz)), then vy 4, and vy 4, are path-connected.

Because (P, Q) is a generic pair, one can find a chain of open-sets

Qp(al) = Qp(cl), QQ(b1), QP(CQ), QQ(bg), .. .,QP(Ck) = Qp(ag)

such that two adjacent open-sets have non-trivial intersection.
Observe that if Qp(c) N Qo (b) # 0, then either

{v1,c,v20}, Or {16,040}

is an edge, and likewise either

{03,C7U2,b}7 or {U3,c,v4,b}

is an edge.

Therefore the above chain of open-sets corresponds to a path connecting
V1,4, With either vy g, or v3 4,. However, from the assumption cp(Qp(ar)) =
cp(Qp(asz)), and from the construction of G1 (P, Q, cp, cq), V1,4, cannot be
connected to v3 4,, hence is connected to vy 4, .

Now for the rest, note that G,, is an m-covering of GG1, and because
v1,1 and vy3 belongs to the different connected components of G, any
connected components of GG, must contain at least one vertex of the fiber
of V1,1 Or Vq1,3. O

For a large class of colorings, we can deduce a much stronger result.

LEMMA 8.3. — Let (P,Q) be a generic pair of partitions. Assume that
we are given with a pair of colorings cp and cg:
There exist four open sets Qp(a1), Qp(az), Qg (b1), Qg (b2) such that

Qp(as) (12 (by) 0
fori=1,2 and j = 1,2, and that
cp(Qp(ar)) +cp(Qp(az)) = co(o(b1)) + co (g (b)) = 1.
Then the graph G,,,(P,Q, cp,cq) has 2 connected components.

Proof. — Note that any connected component of G,,, must contain either
one of vy, or one of vy, With j = 1,...,m, because G has only two
connected components.

Without loss of generality, assume that

cp(Qp(ar)) = co(Qq(br)).
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Then from the construction of the graph and from the assumption of the
lemma

{vaj.a1, V45410, ) {v4j41,01, V442,02 }

{v4j12,05, V45430, ), and {04436y, V45440,
are edges, hence v4; 4, and vgj44,, are connected. Likewise, v4; 4, and
U4j44,a, are connected. Therefore any connected component of G, must
contain either vy q, Or V4,q4,. O

8.2. The number of nodal domains of generic eigenfunctions

Let P be a principal S* bundle over a connected smooth compact Rie-
mannian surface X with the covering map 7 : P — X. Let m be a fixed
integer, and assume that ¢ € C'(M) satisfies the following conditions:

CONDITION 8.4. — For any small open U C X such that 71U = U x
S, there exists a local coordinate (x,0) of m=U such that
(1) ¢(@,0) = f(x)e™?,
(2) the zero set of Rf (resp. Sf) gives rise to a partition P = Py (resp.
Q =Qu) of U, and
(3) (Py,Qu) is a generic pair of partitions of U.

In this section, we prove the following theorem.

THEOREM 8.5. — Fix any point x € X such that ¢(z,0) # 0. Then any
nodal domain of R¢ has a nonempty intersection with 7~ x. In particular,
the number of nodal domains of R¢ is < 2m. Assume further that ¢ has a
regular zero. Then the number of nodal domains of R¢ is 2.

We begin with few observations in terms of fixed U and a local coordinate
(x,0) of 771U

PROPOSITION 8.6. — If R¢ is positive on two open sets Uy C 771U N
{0 = ) and U, c 77U N{0 = (k;inll)”} for some integer k, and if
wUy N0y # 0, then Uy and Uy are contained in the same nodal domain

of Rep.

Proof. — Let xg be a point in the intersection 7U; N7wUs. Then from the
equation
Rp(xo,0) = Rf(x0) cos(mb) + S f (o) sin(mh),
we see that R¢ is positive along the curve

km (k+1)m
oo SO0 —/— ¢,
{(580,9) om 0 }

2m
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which connects U; and Us. Therefore U; and Us are contained in the same
nodal domain. O

PROPOSITION 8.7. — Any nodal domain of R¢|,—1y must intersect
77U N {0 = 2=} nontrivially for some integer k € Z.

Proof. — Assume for contradiction that 2 is a nodal domain of R¢|,-1y
that is contained in

U n { <0<
2m
From the equation
Rop(x,0) = Rf(x) cos(mb) + S f(x) sin(md),
we see that for each fixed z, R¢(x, ) either vanishes identically or has at
most one sign change along the curve

{(x,&):$<0<W}.

This implies that if x € 7€, then

m(,”>_%%m@+mj_m

T —
2m 2m

which contradicts the assumption that the zero set of Rf gives rise to a
partition of U. O

From these two propositions, we see that the nodal domains of R¢| -1
can be understood from the nodal domains of the restrictions of R|—1¢r
to the 4m-hypersurfaces

k
~lUn {0: ”}, k=0,1,2,...,4m — 1.
2m
In particular, if we define c¢p, and cg, in terms of the sign of Rf and
S, then the number of connected components of G, (Pu, Qu,cp,, cqy ) is
equal to the number of nodal domains of Re| 1.

Proof of Theorem 8.5. — Let x € X be a point where ¢(x, ) # 0, and
let U be a sufficiently small neighborhood of x. We may assume without
loss of generality that the vertices

V1,1, V3,155 U4m—3, VU4m—1

of Gy (Py,Qu,cpy,cq, ) correspond to the nodal domains of the restric-

tions of R¢|,-1y to the hypersurfaces
km

w‘lUﬁ{Q:}, k=1,3,...,4m —3,4m — 1,
2m
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that intersect the fiber 7=!'x. Then Lemma 8.2 implies that any nodal
domain of R¢|,—1 must intersect 7 1a.

Now assume that 2’ is another point in U. Then we may restate this as
“any nodal domain of R¢|,—1 that intersect m~1z’ must intersect 712"
and equivalently, “any nodal domain of R¢ that intersect 7'z’ must in-
tersect 7~ 1z”. Because we assumed that X is connected, by the freedom of
choice of the pair of points # and z’, any nodal domain of ¢ must intersect
w1z, This proves the first part of the theorem.

For the latter part of the theorem, let p be a regular zero of ¢, i.e.,

d¢:T,P = C

»

is a surjection. Choose a sufficiently small neighborhood U C X of 7p, and
let f be the function that satisfies

¢z, 0) = f(z)e™
= Rf cos(mb) + S f sin(mb) + (S f cos(mb) — Rf sin(md))
= R¢p + iS.

If dRf and A f are linearly dependent, then a straightforward computa-
tion implies that d¢ has rank < 1, so dRf and df are linearly independent.

This implies that 7p is a regular zero of both Rf and Jf. Also, linear
independency implies that locally around 7p, Rf = 0 and Sf = 0 define
two curves intersecting transversally at wp. From this, we may find four
open sets near p that are required for Lemma 8.3, and we infer that the
number of nodal domains of R¢|,-1y is two.

Now because any nodal domain of ¢ must intersect with 7~ 'z for some
x € U, any nodal domain of ¢ must contain one of the nodal domains of
R| -1y, from which we conclude that $¢ has only two nodal domains. O

We are ready to prove our main theorem, Theorem 1.5.

Proof. — It is sufficient to verify the assumptions in Theorem 8.5 is
satisfied. The first condition is trivial to verify. For the other conditions,
note from the assumption that P — X is non-trivial, Zy, . is non-empty,
and Theorem 4.1 implies that it is discrete and consists only of regular
ZEros. g

Remark 8.8. — If Zj, . contains a closed curve that divides X into two
connected components, then the number of nodal domain can be large. For
instance, if f,, ; vanishes on the boundary of small open disc U C X, and
if it does not vanish on U, then R¢,, ; vanish identically on 0 (7T_1U), and
therein, ¢, ; has 2m-distinct nodal domains. In particular, Theorem 8.5
fails even if f,, ; has a regular zero elsewhere.
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9. Surfaces of constant curvature

In this section, we illustrate the geometry of Kaluza—Klein metrics and
the Kaluza—Klein eigenvalue problem on unit tangent bundles of surfaces
of constant curvature.

9.1. Flat tori

Let T? = RQ/ZQ. We use coordinates z = xy + ixs. Its unit tangent
bundle is ST? = T2 x S'. The connection is flat and Ay = A is simply
the Laplacian of T2. The Kaluza-Klein Laplacian is that Aqg = A+ g—; on
T? x S'. The Kaluza—Klein eigenfunctions are linear combinations of the
product eigenfunctions,

¢ *(.’ﬂ171’279) = ei<k’£>eim97 AG¢m’E = _(|E|2 + m2)¢ k

m,k m,k*
The multiplicity of the eigenvalue with fixed m is the number of ways of
representing |k|? as a sum of two squares. They correspond to eigendiffer-
entials

P () (d2)™ = €50 (dz)™.

s

In the notation (1.2),

Ro,, p(x1,22,0) = u,, (21,22,0) = cos((k, &) + mb),
gqﬁmvg(xl,xg, 0) = vm,E(xl,xg,G) = sin((E, ) + m#).

The nodal sets of the imaginary part are given by,
2, . ={(x1,22,0) : (k, &) +mb € 7L},

Z, . contains the set
((21,22,0) : (k,@) € 72,0 =0 ¢ =1,....m).
m

Note that ¢, z(z1,2,0) has no zeros on T? x St and fon 7(2)(d2)"™ has
no zeros as an m-differential on T2.

If we change the lattice to a general lattice L C R2, the eigenfunctions
of T? change to ez(Z) = > where X € A = L*, the dual lattice.
For generic L, the eigenvalues have multiplicity 2 and the eigenspaces are
spanned by the real and imaginary parts of e5 or equivalently by ey and its
complex conjugate e_5. The same is true of the Kaluza—Klein eigenfunc-
tions ¢ ;= 2mi{X.7) gim Again, ¢ 5 has no zeros. Using the bifurcation
of nodal sets of eigenfunctions under generic paths of metrics of [20], one
can show that
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CONJECTURE 9.1. — for generic Kaluza—Klein metrics on ST?, the joint
eigenfunctions ¢, ; have no zeros.

We now give an explicit orthonormal eigenbasis of T® such that all of
them have exactly two nodal domains, hence proving Theorem 1.11.
To begin with, let f1(z) = cos(2mz) and fo(x) = sin(27x). Then
{5, (maza) £, (ma2) f3,(msws) = jr =0or 1, my € Zzo}
is an orthogonal eigenbasis of T2. We consider four cases.

Case 1: mymoms > 0. — We first have

{f5. (maza) £, (maw2) fis (maws), fi—jy (ma@1) fij, (Maw2) fi—js (M3ws) })
={fj (m1z1) £, (max2) fj, (Maws) £ fr—j(maz) fr—j(maz2) fi—j(mazs)})
Assume without loss of generality that j; = 0. Then

{f (maza) £, (ma2) fi, (maxs) £ fij, (maz1) fioj, (Maz2) fi—js (mazs3)

= R ((f1.(mawa) fi, (maws) £ i f1j, (mawa) frj, (maaz)) 27mMo1),
has two nodal domains by Theorem 8.5, because
fiz(max2) fjs (mazs) £ if1—j, (max2) fi—js (msws)

has a regular zero.

Case 2: exactly one my, is zero, and the other two are different. — From
the same reasoning, each eigenfunction in the new basis in the following
has two nodal domains:

{fi (maz) £, (maw2), fj, (max1) fj; (maexs) @ ji =0 or 1})
= ({f5 (maz1) fj,(max2) = f1—j, (max1) fi;(maxs) @ jp =0 or 1}),

{ i (maz2) fj, (max1), fj,(max2) fj; (maxs) @ ji =0 or 1})
= ({fi,(maz2) fj, (max1) £ f1-j,(max2) fi;(maxs) : jp =0 or 1}),

and

({fis(mazs) fj, (max1), fjs(maxs) fj, (maze) @ ji =0 or 1})
= ({fis(maxs) i, (max1) + f1—j;(maxs) fi,(max2) @ jp =0 or 1}).

Case 3: exactly one my, is zero, and the other two are equal. — Again
by the same reasoning, each of the following

Jo(maxy) fo(maz) £ fi(maxy) fo(mas),  fo(maz) fo(mas) £ fi(mas) fo(may),
fo(mas) fo(ma1) £ f1(mas) fo(maz),  fi(max1) fr(mze) £ f1(mas) fo(mar),
fi(maxa) fi(mas) £ fi(mxy) fo(mae),  fi(mas)fi(mzr) £ fi(mas) fo(mas)
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has two nodal domains, and these are the basis of

<{fj1 (mxl)f]é (mx2)7fj1 (mxl)fjs(mxii)aij(me)fj:;(mxi?t) : ]k =0or 1}>

Case 4: exactly one my, is nonzero. — In this case, we consider orthog-
onal eigenfunctions

Jo(mz1) + fo(mzz) — 1fo(mxf’»), fo(max1) + fo(mas) — %fo(mmz)’

2
folma2) + fo(mzs) — %fo(ml’l)a filmaq) + fi(maz) — %fl(mx3)7
Fuman) + fulmas) — S fulmaa),  filmas) + falmes) — 5 falman),

which span
({fi(ma1), fj(mas), fj(mxs) : j=0or1}).
Each of these has only two nodal domains from the following lemma.

LEMMA 9.2. — Let m be a positive integer. Then

1
cos(may) + cos(masy) — 3 cos(mxs)

has only two nodal domains.
Proof. — Let 1 — x93 = a, x1 — x3 = b, and x5 + x3 = ¢. Then
2mimay + eQﬂimmg _ 1627rim:63
2
1

— (eﬂ'zmaeﬂ'zmb + e—TrzmaeTrzmb _ —_mima —Trzmb) e27mmc7

€

26 (&

and from Theorem 8.5, it is sufficient to prove that
ﬂimae'/rimb + e*ﬂimaeﬂ'imb o Eeﬂ’imaefﬂ'imb
2
has a regular zero. Let mm(a + b) = x and mm(a — b) = y, then this is

equivalent to

e

1 . 3 .
cosT + B cosy +1 (Smx —3 smy>
3
2
singular points, it is sufficient to check if these two functions have a common

having a regular zero. Since cosz + %cos y and sinx — 5 siny do not have

zero, in other words, if
1 s 3 .
cosx+§cosy+z smac—ismy =0
has a solution. Note that this is equivalent to

; 1 3
(9.1) e’ = —3 cosy—i—ii sin y.
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Because

L + 2 ! + 2sin”
—— COS 17— S1n = — S1n
5 COSY +igsiny| = o Y,

for y such that i—Q—Z sin? y = 1, there is z satisfying (9.1), and this completes
the proof. O

9.2. Kaluza—Klein metrics on S°

Let (S2,90) be the 2-sphere with its standard metric of curvature 1.
Then its unit tangent SS? = SO(3) = RP3 = $3/ 4+ 1 and the Kaluza—
Klein metric is the standard metric of constant sectional curvature 1 on
S3 (divided by the antipodal group Zs). The Kaluza—Klein Laplacian is
therefore the standard Laplacian Ags on Zs-invariant functions.

Since S is a group, L?(5%) = @x_, VN ® Vy where Vy is an irreducible
representation of S® of dimension N+ 1. Alternatively, the eigenfunctions of
S3 are harmonic homogeneous polynomials on R3. Moreover, Aly,gvy =
N(N +2) = (N +1)? — 1. The eigenfunctions of RP? are those where N is
even.

We need explicit separation of variables expressions for equivariant spher-
ical harmonics, and therefore need to introduce coordinate systems. We use
“axis - angle” Hopf coordinates («,6,¢) on S® C R* defined by

T sin a cos ¢
N To sin arsin ¢
r= =r

T3 cos o cos 6

T4 cosasin @

Here 0 < ae < 7/2,0 < 0, ¢ < 27. This corresponds to writing
21 =e?sina, z = e’ cosa, ((21,22) € C* ~RY)).

There exist two commuting isometric S actions generated by the Killing
vector fields

—Q‘FE Y—g_é
00 0’ 0 00’

The metric is (da)? + (cos adf)? + (sin ad@)?. In these coordinates one
has an orthogonal basis of eigenfunctions given by

X

B (@, 6,0) = O @l )oeine )0

my+m_ my —m_

(1 —cos2a)7 =  (1+cos2a) = P&ni+7j”m+7m’ (cos 2a),
5 m
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where P](\}l *) is a Jacobi polynomial and where

el < XNy e

my|<—,——m .

+ 2 ) 2 +

Here, weight m in our sense means that the eigenfunctions transform by
em= (=0 U™ are also known as “Wigner D-functions” on SU(2).

Another expression is
my,m2
Ty

=Cy""™ (cos ael?)mtms (gin ei®)m2—m P&?;::E matmi) (cos(2a)).

Here my = m in our notation. These are manifestly joint eigenfunctions of
Ags and of %, 6%.

LEMMA 9.3. — The nodal sets of the equivariant eigenfunctions @;G*’m’
(or equivalently Tx'*""*) have real dimension 2.

Proof. — The only factors with zeros are the a-functions. These have
roughly m discrete zeros in «. Hence, the complex nodal set is a union

{(6, ¢, ) : (cosa)™ ™2 (sin a)m2_m1P](\,T;L;:;n;’mﬁml)(cos@a)) =0},

and thus has real dimension 2. O

As a result, these eigenfunctions do not satisfy the conditions of the
generic Kaluza—Klein metrics to which our results apply, and their nodal
sets are quite different.

As mentioned in the introduction, the numerical experiments of A. Bar-
nett et al. [2] show that random spherical harmonics of degree N on S also
have different types of nodal sets than our generic eigenfunctions. Namely,
the expected number of nodal domains has the asymptotics ¢N? for a cer-
tain ¢ > 0. As proved in [15], the nodal sets of real/imaginary parts of
random equivariant eigenfunctions with fixed m (a subspace isomorphic to
Vn) have connected nodal sets. The difference is due to the fact that our
random equivariant spherical harmonics are a thin subset of the random
spherical harmonics of degree N on S3.

Remark 9.4. — In [15], we compute the expected genus of the single
component of the nodal sets of real/imaginary parts of random equivariant
spherical harmonics of degree (N, m) where |m| < N,2|(N —m). The ex-
pected Euler characteristic is of the form m(N? — m?) + N modulo lower
order terms.
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9.3. Hyperbolic surfaces H?

Although it differs from our prior discussion in the compact case, let us
consider a finite area hyperbolic real Riemann surface of constant negative
curvature —1. Then X = S;M = I'\G where G' = PSL(2,R). The total
space X carries a Lorentz Cartan—Killing metric with indefinite Laplacian
the Casimir operator €. It is well known that Q = H? 4+ V2 —W?2. We now
change the sign of the third term to get the Kaluza—Klein Laplacian Ax =
H? + V2 + W2, The associated metric defines a Riemannian submersion
m : X — M with fibers given by K-orbits. They are necessarily totally
geodesic. It follows that the horizontal Laplacian H? + V2 commutes with
the vertical Laplacian W2. This is obvious because 0 = [, W?] = [H? +
V2, W2 =0.

The joint eigenfunctions of {2, W are denoted by ¢, ;. When m = 0 they
are pullbacks of eigenfunctions of M = T'\G/K.

In particular the number of nodal domains of ¢;¢ on X is the same
as the number of nodal domains of ¢; on M. The former nodal sets are
K-invariant and in the case of regular nodal components are 2-tori over
circles.

The lift of weight m of an m-differential f(dz)™ is given by

O(z,y,0) = y™ 2 f(x + iy)e ™.
Here, the Kéhler potential is ¢ = logy, d¢ = %y, A¢ = y?*(logy)” = —1.

Also, |42 = 2|92 2 = 1 and +dg = +(6,da+ dydy) = (~pudy-+o,da)y.
The Maass operator is

0? 0? 3}
9 iy
Dm=y (8x2 + 8y2) 2imy Ox

Doy fm g = 5( )fm,]
Breaking up into real and imaginary parts gives the system,
AERfmJ +2my ‘Sfmj *5(175)%fm,j7
AS fm, — 2my%%fm,j =5(1—95)Sfm,;-
The raising/lowering operators are the Maass operators defined by
Kp=(z— 2)8% +k =2y~ kaazyk,
Ly =(z —E)a% —k=—2iy'Th 2 9 Ly =K _y.

and

Then,
Ky : 9% = Dr+1, Lt Hx — HDr—1,
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and
D11 Ky = Ky Dy, DLy +1 = Liy1 Dy,
and
Dy = L1 Ky, + kj(k + 1) =Ky 1L+ k‘(k‘ - 1).

9.3.1. Automorphic forms on the full modular group

Now we consider the case I' = PSLy(Z). Note that the quotient I'\G is
non-compact in this case. Nevertheless, it is known that —Ag has infinitely
many discrete spectrum, where corresponding L? integrable eigenfunctions
can be chosen so that they are in one-to-one correspondence with Maass—
Hecke cusp forms or holomorphic Hecke cusp forms. We refer the readers
to [10] for detailed background.

THEOREM 9.5. — Let X = PSLy(Z)\H, and let ¢, be a weight m
Maass—Hecke cusp form on

PSLy(Z)\ PSLy(R).

Assume that the zeros of ¢, ;r are isolated. Then R¢y, ;r has only two
nodal domains.

Proof. — The first statement of Condition 8.4 follows from the definition
of Maass—Hecke cusp form, and the second statement follow from the fact
that ¢, ir : X — C can not be scaled to a real-valued function, and that
@m,ir is analytic. The third statement follows from the assumption.

Now, because the first Hecke eigenvalue is 1, the first Fourier coefficient
of ¢m,ir at the cusp does not vanish, meaning that ico is a regular zero of
®m,ir- We conclude the proof by applying Theorem 8.5. (|

Remark 9.6. — It is not hard to see that in the constant curvature case,
the nodal set of ¢ ;- consists of the fibers over the critical point set Cy,,
of ¢i. At this time, it does not seem to be known whether Cy, is nec-
essarily a discrete set of points in the case of hyperbolic surfaces. This
cannot be proved by a purely local calculation, since the critical point set
of rotationally invariant Dirichlet/Neumann eigenfunctions on a compact
rotationally invariant submanifold C'z of a hyperbolic cylinder H?/(~q) con-
sists of a union of S! orbits. Here, 7 is a hyperbolic element and (7o) is
the cyclic group it generates. Thus, negative curvature does not rule out
codimension 1 critical point sets. One can put any negatively curved S!
invariant metric on C'g and obtain the same result, so it is not an effect
of constant curvature. We conjecture that for compact hyperbolic surfaces
without boundary, Cy,, is a finite set for every eigenfunction.
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When we have holomorphicity of ¢, we may remove the assumption that
the zeros of ¢ being isolated. For instance, we have:

THEOREM 9.7. — Let X = PSLy(Z)\H, and let ¢y, 0 be a Laplacian
eigenfunction on PSLy(Z)\ PSLy(R) corresponding to a holomorphic Hecke
cusp form F' of weight m. Then ¢, o has only two nodal domains.

Proof. — We first note that ¢,, o(z,60) = y™/2F(z)e~""?, and F is holo-
morphic. Therefore Condition 8.4 is satisfied.

Because we assumed that F' is a Hecke cusp form, the first Hecke eigen-
value is 1. Therefore oo is a regular zero of ¢, 9, and now the theorem
follows from Theorem 8.5. |

COROLLARY 9.8. — There exist eigenfunctions on PSLy(Z)\ PSLy(R)
that have only two nodal domains but with arbitrarily large eigenvalues.

We remark here that Theorem 9.7 is false, without the assumption that
F is a Hecke cusp form. To construct a counter example, let A(z) be the
discriminant modular form given by

= q — 24¢% + 252¢% — 1472¢" + 4830¢° — 6048¢° — 16744¢" + .. .,

where ¢ = ¢*™#. This is a weight 12 modular form on PSLy(Z)\H. Thus
A(2)? is a modular form of weight 24 on PSLy(Z)\H, and

o = %(y12A(Z>26—24i9)

is a Laplacian eigenfunction on PSLy(Z)\ PSLa(R) of weight 24. To count
the number of nodal domains of this eigenfunction, we let

F = {x+iy D] < %, x2+y2>1} CH
be the fundamental domain of PSLy(Z)\H, and let My = F x {# : 0 <
0 < 2rm}.

We then consider the restrictions of ® to the top 0 = 27, side x = —1/2,
and front 22 4+ y? = 1 of the solid M.

It can be shown that the nodal set of ® on the side is that of cos(246) = 0,
and on the front is that of cos(12(¢ + 260)) = 0, where we define ¢ =
arccos(z). We compute the nodal set of the restriction to the top numeri-
cally using Mathematica.
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I
els

Y z

|
1
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v

The nodal set of ® on the front, the side, and the top of the solid M.

Note that we may obtain PSLy(Z)\ PSLa(R) from My by gluing the sides
via (2,y,0) = (z+1,y,0) (corresponding to (1)), the top and the bottom
via (z,y,0) = (x,y,0 4+ 2m) (corresponding to k() = k(0 + 27)), and then
the front with itself via (¢,0) = (7 — ¢,0 + ¢) and (p,0) = (,0 + 27)
(corresponding to (9 ') and k(0) = k(0 + 27)).

From these, one can verify that ® has exactly four nodal domains, where

in the pictures above, two positive nodal domains are colored differently
with red and orange.
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