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Abstract

With histograms as its foundation, we develop Categorical Exploratory Data Analy-
sis (CEDA) under the extreme-K sample problem, and illustrate its universal applicability
through four 1D categorical datasets. Given a sizable K, CEDA’s ultimate goal amounts
to discover by data’s information content via carrying out two data-driven computational
tasks: 1) establish a tree geometry upon K populations as a platform for discovering a wide
spectrum of patterns among populations; 2) evaluate each geometric pattern’s reliability. In
CEDA developments, each population gives rise to a row vector of categories proportions.
Upon the data matrix’s row-axis, we discuss the pros and cons of Euclidean distance against
its weighted version for building a binary clustering tree geometry. The criterion of choice
rests on degrees of uniformness in column-blocks framed by this binary clustering tree. Each
tree-leaf (population) is then encoded with a binary code sequence, so is tree-based pat-
tern. For evaluating reliability, we adopt row-wise multinomial randomness to generate an
ensemble of matrix mimicries, so an ensemble of mimicked binary trees. Reliability of any
observed pattern is its recurrence rate within the tree ensemble. A high reliability value
means a deterministic pattern. Our four applications of CEDA illuminate four significant
aspects of extreme-K sample problems.

1 Introduction

Categorical data is ubiquitous in every corner business and industry, the sciences, and the
humanities. It is fair to say that categorical data is no less prevalent than the other data
types: continuous or discrete. Indeed, in some fields, categorical data can be considered the
predominant data type. Nonetheless, the popularity of Categorical Data Analysis, as a topic of
statistics, is disproportional to the extreme. In fact, this topic is indeed disappearing in recent
decades under the shadows of Machine Learning and Data Science. The following two facts offer
a glimpse into its current state of affairs. 1) It is no longer a required course for M.A or PhD
students in Statistics. 2) It hardly appears in titles in our Statistics department seminars. If
you ask students how would they deal with a categorical variable in data analysis, then, with
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a high probability, their answers are exactly the same: making use of dummy binary variables.
But is this surrogate representation of a categorical variable legitimate in data analysis?

Since a categorical variable does not naturally lend itself to the fundamental statistical
concepts of mean and variance, neither Regression analysis nor Analysis of Variance (ANOVA)
are directly or intuitively applied. Traditional techniques for categorical data analysis have
mainly focused on associations between two or three categorical variables within a population
via logit model and the like [1, 2]. Such methodologies are limited exclusively to the domain of
Categorical Data analysis. It may seem striking to argue that categorical variable-based analysis
is a new fundamental frontier of data analysis in Data Science, but we endeavor to offer glimpse
of this perspective in this paper.

Consider one categorical variable with data sampled from K populations with K being large.
This data setting is termed ”Extreme-K categorical sample problem”. Our proposed compu-
tational paradigm, called categorical exploratory data analysis (CEDA), is nonparametric and
exploratory in nature. Since our methodology is based on K histograms, it may accommodate all
data-types. That is, each continuous variable can be effectively converted into a categorical one
because its distribution function can be approximated very well by a piecewise-linear version,
which is a distribution of a possibly-gapped histogram [3]. As a histogram is universal for all
variables, our CEDA is also universally applicable.

Further, our categorical exploratory data analysis (CEDA) is developed to achieve the uni-
versal goal of data analysis: extracting the data’s full information content. This goal is par-
ticularly relevant when the number (K) of populations involved is large. On one hand, the
system containing such a collection of populations is likely vast and complex. On the other
hand, researchers interested in such a system are unlikely to have complete a priori knowledge
what hypotheses may be of interest and what hypotheses need not apply to the system at hand.
Hence, it becomes essential that exploratory data analysis is conducted in hopes revealing all
potential patterns that might be truly sustained by data. Ideally our CEDA would render these
patterns and arrange them on a geometry that reveals both the global and local structures on
the space of populations. Upon such a geometry, researchers can more efficiently invest further
analytical efforts. Thus, it is worth keeping in mind that when patterns are to be discovered in
a complex system, hypotheses determined in a priori fashion are neither realistic nor practical.

A tree geometry on a space of populations, in general, is an informative construct that
accommodates a fairly wide scope of patterns that are commonly found to be sustained by data.
This capacity is afforded by the tree’s sequential bifurcating structures, which yield a well-guided
map for making pairwise comparisons. More importantly, a tree gives rise to multiscale maps
of clustering compositions that will allow researchers to discover diverse patterns of groupings
for populations of various sizes, as well as patterns of separations among groups. Such patterns
must ultimately be confirmed or disputed via evaluations of their uncertainty or reliability, but
their discoveries upon a tree’s branching geometry are the first step in the critical process of
revealing hidden knowledge and intelligence via data analysis.

Our focus on a tree’s geometry doesn’t imply that we rule out the possibility of vital patterns
existing beyond a tree geometry. Our focal clustering tree in fact is the natural marginal statistics
of the observed bipartite network represented by the observed data matrix. A tree of this nature
is specifically called a label-embedding tree in Multiclass Classification (MCC), which is a major
machine learning topic [4, 5]. Although the extreme-K sample problem is a special case of MCC
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involving only one feature, the classification task is hardly its primary focus. This drastic shift on
presumed primary tasks within MCC, due simply to differences in number of involved features,
strongly indicates that the classification task by-and-large is neither universal nor fundamental in
MCC. In contrast, the task of extracting full information content contained in data is universal
and fundamental. Here a population embedding tree is only one component of information
content.

The data sampled from K populations indeed contains other components of information
content that are key to our understanding of the system of interest. Our CEDA also develops
a mimicking algorithm to evaluate the uncertainty or reliability of each structural pattern of
interest observed on a population embedding tree. This mimicking algorithm generates a large
ensemble of mimicries of the observed data matrix, with which we generate a large ensemble
of mimicries of a population embedding tree. Given that each mimicry replicates as nearly as
possible the full stochasticity embraced by the original data matrix, this ensemble of mimicked
trees is designed to supposedly disentangle deterministic structures from the stochastic structures
of the original tree. This separation of deterministic and stochastic features of the observed tree
is an essential and necessary component of extracting the data’s full information content.

Since this ensemble of mimicries can have an arbitrarily large size, the heterogeneous uncer-
tainties or reliability for all possible perceivable patterns are probabilities in reality. Further,
they become visible and explainable when we superimpose the original tree onto the data ma-
trix’s row-axis. This rearranged data matrix is termed a heatmap. Upon such a heatmap, all
large and small tree branches are seen being attached with a series of column-blocks with various
degrees of uniformness. In other words, we are able to elucidate why some observed tree pat-
terns are confirmed as deterministic, because they can’t be swayed by the data’s stochasticity,
whereas some tree patterns are declared as stochastic, because they can be swayed by data’s
stochasticity. These collections of visible and readable pattern information are the data’s chief
information content.

When K is large, each clustering tree based on the original or a mimicked data matrix is
likely geometrically complex. However, because of their bifurcating nature, each population-leaf
can be represented (encoded) with a binary code sequence for its location on a tree. Hence, each
observable pattern upon a tree geometry can be located precisely via a binary code segment.
That is, each tree geometry based on the observed or a mimicked data matrix will give rise
to a table of population-leaf-specific binary code sequences. Consequently, data’s information
content can be efficiently extracted by algorithmically working upon the collection of tables
of binary code sequences. Such information content is only possible and feasible by virtue of
modern computational resources. Based on such information content, an Extreme-K sample
problem’s data matrix can be made into an A.I.

In this paper, we analyze four data sets: 1) Country of origin of foreign students attending
national universities in Taiwan; 2) Amino acid content of proteins; 3) Behavioral time budgets
of organic dairy cows; and 4) Major League Baseball (MLB) pitchers’ pitch-types.
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2 Structural details in an extreme-K categorical sample prob-
lem.

Let the focal categorical variable commonly realize its qualitative categories {J1, J2, .....JM}
across all K populations with varying total counts {Nk}Kk=1. We turn the observed category-
counts into proportions denoted as pokm for all k = 1, ...,K and m = 1, ...,M . That is, we observe
a M -vector P o

k = (pok1, ..., p
o
km, ...p

o
kM ), which is also a histogram, from the k-th population.

What then is information content contained in {P o
k }Kk=1 How should we build a tree geometry

upon the K populations based on the {P o
k }Kk=1? These are fundamental questions that need to

be answered. In Statistics, due to the largeness of K and categorical nature of the data, such
questions do not fall within the domain of classic K-sample problem.

For simplicity, we assume independency among all K observed histograms, and each his-
togram is resulted from the identically independently sampling within each population. These
assumptions are operational ones. They might be violated even for all examples considered
here. Then, given independency, the k-th population’s stochastic and deterministic structures
are coherently captured by Multinomial random variables MN(Nk, P

o
k ) with k = 1, ...,K. There-

fore, we can simulate Nk categorical samples from MN(Nk, P
o
k ) to make up a mimicry of P o

k ,
denoted as P b

k = (pbk1, ....., p
b
kM ). Let’s create a large mimicry ensemble {{P b

k}Kk=1}Bb=1 in accor-
dance with the independency assumptions imposed on the original data {P o

k }Kk=1. We compile
all population-vectors into a K ×M matrix format:

Po = [P o
km].

This matrix Po is exactly the compositional view of the “histogram” of pooled data. On the
other hand, it is a bipartite network. Likewise, we denote an ensemble of matrix-mimicries as

{Pb}Bb=1 = {{(pbk1, ....., pbkM )}Kk=1}Bb=1.

Next, if we take the K populations to constitute a system under study that gives rise to
the data matrix Po, then the M -categories being arranged along the column axis are legitimate
M -features. In spite of the constraint of

∑M
m=1 p

o
km = 1, these features’ associative patterns

ideally would reflect the system’s hidden nature that we seek to computationally recover.
A glimpse of such associative patterns can be visualized in the following manner. We can

build a possibly gapped histogram based on each column of Po [3]. Then we accordingly build
a contingency table for each pair of columns and calculate its mutual conditional entropy to
assess its degree of association [6]. The lower mutual conditional entropy value is, the higher
the association between the pair of columns (or categories). We can encode all bins of the
two marginal histograms with distinct colors. In this fashion, a population is represented by a
bivariate color-codes. Then associative patterns from this highly associative pair of columns can
then be visualized via a properly permuted K × 2 color-coded matrix, which is carried out by
simply grouping all of the same bivariate color-codes together. This permuted matrix reveals
associative patterns because there will be only a small number of distinct bivariate codes present
due to their high association. Such associative patterns under a slightly different color-coding
scheme can be seen in Fig. 1 and Fig. 4 and many others figures reported afterward.
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Likewise we can put together three highly associated columns to reveal their association
patterns, and so on. Within this protocol of demonstrating associative patterns among category-
based columns or features, we need to choose the number of bins in individual histograms and
then carry out grouping on multivariate color-code. Here we appeal to a tree geometry to resolve
all aforementioned tasks in an automatic and systematic fashion, since its bifurcating structures
are to be dictated by multiscale associative patterns underlying the M features. This fact can
be explicitly seen. When we superimpose a computed tree geometry upon the row-axis of data
matrix Po, we expect to see that various levels of tree branches indeed frame out multiple
column-blocks with various degrees of uniformness within each of the M columns, as would be
seen all of the real extreme-Ksample problems considered here.

The capability of a tree geometry in revealing multiscale associative patterns for extreme-K
sample problem is in fact blurred by the stochasticity of all orders of dependence. For example,
pairwise correlations and higher order correlations, existing among the M components of vector
P o
k = (pok1, ..., p

o
km, ...p

o
kM ) within each population can blur the patterns we seek to discover.

Under the Multinomial random variable MN(nk, P
o
k ), each mimicry P b

k = (pbk1, ....., p
b
kM ) indeed

replicates such pairwise correlations, as listed below:

Cov[pbkm, p
b
km′ ] = E[pbkmp

b
km′ ]− pokmpokm′

=
−1

Nk
pokmp

o
km′ , if m 6= m′;

V ar[pbkm] =
1

Nk
pokm(1− pokm), if m = m′.

Thus, in each of the real examples we consider, our patterns also get blurred in the tree geom.
But the unknown and potentially versatile higher order dependence among the M components
of vector P o

k = (pok1, ..., p
o
km, ...p

o
kM ) are surely lost due to employing identically independent

sampling when carrying out mimicry P b
k = (pbk1, ....., p

b
kM ). We explicitly demonstrate such losses

in the cow’s time budget example. How such losses could impact our discovering associative
patterns among the M -features is still unknown at this stage.

The above formulas of within-population correlations and variances also reveal that the
heterogeneous sample sizes {Nk}Kk=1 lead to the heterogeneous precisions of {pokm}Kk=1 within a
bin-locality. The small Nks likely further enhance the blurring effect in uncovering the associative
patterns of M -features via the concept of uncertainty or reliability.

3 How should a tree geometry be computed?

Our focal tree geometry is a clustering tree based on the Hierarchical Clustering (HC) algorithm.
It groups similar M -vectors together, and at the same time bifurcates dissimilar groups into
nearby or faraway branches according to the degrees of their mutual dissimilarity. The HC
algorithm operates upon a chosen distance measure calculated between two M vectors, and the
module of distance computed between two sets of vectors. We decide to use the module called
Ward.D2 for its stability. The resultant tree geometry is proven to be more sensitive to the
choice of a distance measure than the choice of module.

Two distance measures are considered here. One is the Euclidean distance d0(., .) in RM .
This distance measure employs equal weights across all its M components when evaluating
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dissimilarity among the K row-vectors of data matrix Po. This constant weighting scheme is
robust. But it is insensitive to the heterogeneous precisions due to the heterogeneity of {Nk}Kk=1.
Such insensitivity could cause biases in measuring distances.

In contrast, a version of fine-tuned Euclidean distance is proposed as follows. By knowing
the component-wise variations for all localities at m-th category and k-th population across
m = 1, ...M and k = 1, ..,K, it seems reasonable to modify the popularly employed Euclidean
distance in RM among {P o

k }Kk=1 and {P b
k}Kk=1} for all b = 1, ..., B according to the locality

variations evaluated and denoted as: given the B can be arbitrary large,

V ar[pbkm] =
1

Nk
pokm(1− pokm) ≈ 1

B

B∑
b=1

(pokm − pbkm)2.

Here V ar[pbkm] is the mimicking variation of pbkm for all k = 1, ..,K and m = 1, ....M . Then we
have

V ar[pbkm − pbk′m] = V ar[pbkm] + V ar[pbk′m].

Then one version of fine tuning on the Euclidean distance for observed and mimicked vectors
should be:

d∗(P o
k , P

o
k′) =

M∑
m=1

[pokm − pok′m]2

V ar[pbkm] + V ar[pbk′m]

d∗(P b
k , P

b
k′) =

M∑
m=1

[pbkm − pbk′m]2

V ar[pbkm] + V ar[pbk′m]

The key rationale underlying this re-scaled fashion is given follows. Each component-wise
discrepancy is distributed as: if Nk is large enough, then

[pbkm − pbk′m]2

V ar[pbkm] + V ar[pbk′m]
∼

[pokm − pok′m]2

V ar[pbkm] + V ar[pbk′m]
+ χ2

1.

where ∼ means “distributed as”, χ2
1 denotes Chi-square distribution with degree freedom 1 and

[pokm−p
o
k′m]2

V ar[pbkm]+V ar[pb
k′m]

is a non-centrality .

Therefore, for all k and k′ across all b, we have:

d∗(P b
k , P

b
k′) ∼ d∗(P o

k , P
o
k′) + χ2

M .

When all sample sizes {Nk}Kk=1 are uniformly large enough, then this expression of d∗(P b
k , P

b
k′)

ensures that all involved distances are comparable across all K row-vectors. But it is not the
case for Euclidean distances d0(P

b
k , P

b
k′) due to heterogeneity of {Nk}Kk=1.

The above equality implies that the HC tree geometry, denoted as T̃ o, computed by applying
the HC algorithm based the K × K distance matrix [d∗(P o

k , P
o
k′)] (1 ≤ k, k′ ≤ K) should be

“stochastically homomorphic” with tree geometries {T̃ b}Bb=1 associating with K × K distance
matrix [d∗(P b

k , P
b
k′)] for all 1 ≤ b ≤ B. In this fashion, we accommodate locality variations across

all categories, on one hand. And we make the component-wise discrepancies comparable across
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all M categories as well as across all K populations. This is the true spirit of doing re-scaling.
This is the essential concept of Analysis of Variance (ANOVA).

However, when some of {Nk}Kk=1 are small, then the re-scaling could be destabilized. The
resultant tree geometry T̃ o would end up contain many unreliable structures. In such a case,
the tree geometry based on Euclidean distance d0(., .) might turn out more sensible.

4 A real data illustration

We illustrate our CEDA and reliability computations using behavioral time budget data col-
lected from a herd of organic dairy cows [7]. Via this data set, we demonstrate the benefits
of adopting d∗(., .) over do(., .) in our associative pattern explorations. We also use this data
to demonstrate the benefits of knowing how exactly the identically independently sampling
assumption is violated.

Data for these analyses were generated as part of a comprehensive feed trial conducted by
the Dairy Systems Group at Colorado State University. After a herd of 200 cows had been fully
established, a commercial ear tag accelerometer device was used to automatically record the
behaviors of each animal. producing each hour a breakdown of total minutes a cow was engaged
in five behaviors: active, highly active, nonactive, ruminating, or eating. After scrubbing data
for cows with sensor-receiver failures and health complications, complete records were available
from 124 cows over a period of 42 days. For this analysis, records were aggregated into an overall
time budget spanning all 42 days; however, time budgets could have also been generated at the
hourly or daily level. Due to daily schedule changes for managemental reasons, the identically
independently sampling doesn’t hold across the entire temporal span, which for each cow is
about 1008 hours (60060 min). With such uniformly large data sizes for all involved cows, we
expect that the distance d∗(., .) would lead us to more evident patterns than do(., .) could.

For illustrating purpose, we demonstrate this evident fact by comparing the two heatmaps
based on the data matrix of 124 cows, as shown in Fig. 1. We immediately observe that panel
(B) reveals clearer uniformness upon the 6 cluster-based column-blocks across all 5 columns
of behaviors, particularly on the columns of nonactive and eating. (If it is necessary, then we
could also use within-cluster total-variations to quantify such a comparison.) Since similarity is
dictated by the employed distance measure, such clearer associative patterns with uniformness
imply that cows sharing the same cluster are indeed truly similar to each other. Therefore, we
conclude that d∗(., .) indeed brings out more solid patterns than do(., .) could in this example.

Next, we turn to the the benefits realized in relaxing the identically independently sampling
assumption. Under the temporally homogeneous assumption, the stochasticity captured by
aggregating 42-days time budget via a Multinomial random variable MN(Nk, Pk) doesn’t reflect
the reality of temporal heterogeneity in the observed data matrix Po due to within- and between-
day changes in cow management schedules. It is curious as well as interesting to see what
differences could possibly be made if we build the temporal heterogeneity into the mimicking
protocol used for generating the ensemble of matrix-mimicries {Pb}Bb=1. That is, we generate
hourly time-budgets across 42-days for each cow by sampling from the multinomial at each
observation hour, and then pool the data together to form an aggregate 42-days time budget
for each cow.
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Figure 1: Two heatmaps of cows’ time budgets superimposed with a HC-tree based on distance
measure (A) do(., .); (B) d∗(., .).

By accommodating the real temporal non-homogeneity, differences on cow-behavior’s sample
variances are realized. One large scale version of variance comparison is shown in Fig 2 on three
behaviors: nonactive, eating and ruminating. We see that histograms of cow-behavior-specific
sample variance across the B matrix mimicries under temporal heterogeneous sampling scheme
shift to the left of the histograms under temporal homogeneous sampling scheme. One fine-scale
version of variance comparison is given in the panel (A) of Fig. 3. We see almost all cows’
temporal-heterogeneity-based variances of two behaviors: ruminating and eating, are smaller
than temporal-homogeneity-based ones. Further, we also conclude that such a phenomenon of
variance reduction indeed occurs simultaneously across all behaviors as illustrated in panel (B)
of Fig. 3.

Such variance differences would be factored into the re-scaling via V ar[pbkm] + V ar[pbk′m] in
defining d∗(., .) distance measure. The overall effects of being able to truthfully reflect data’s
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Figure 2: Variance comparison on two version mimicked cow-specific ensembles with temporal
homogeneity ((A),(B), (C)) and non-homogeneity ((D),(E), (F)) across three behavioral cate-
gories: (A, D) non-activity; (B, E) Ruminating; (C,F) eating.

authentic stochasticity would be explicitly reflected in the heatmap, as shown in Fig. 4, which
shows more evident uniformness within all column-blocks than the two heatmaps in Fig. 1. These
effects are expected to be translated into the reliability evaluations of all potential observed
patterns through the heatmap in Fig. 4, as would be seen Fig. 7 in the section below . This is
the primary merit of adopting truthful stochasticity of data matrix Po.

5 Reliability evaluation

As each structural pattern is represented by a set of binary code-sequences, evaluating its relia-
bility becomes a relatively simple task. Likewise, we apply the coding scheme on each HC tree
T̃ b computed on mimicry Pb. Then the most critical parts of information content contained con-
tained in data matrix Po are collected in a two-step fashion: Step-1) Identify a pattern of interest
on HC tree T̃ o; Step-2) Evaluate this pattern’s reliability based on the clustering-tree ensemble
of {T̃ b}Bb=1. Such information content, particularly from a group perspective, is invaluable.

Following these steps, we then want to know what can be attributed to the system’s deter-
ministic structures, in contrast with what are largely made out of stochastic structures. Thus,
the next key issue arises: how to determine which tree structures are deterministic, which struc-
tures are in fact primarily stochastic in nature? That is, we expect heterogeneous reliability
or uncertainty attached to any tree’s structural component. In this paper, we make use of the
ensemble {Pb}Bb=1 to reveal each observed geometric component’s reliability. In the next section,
we explicitly illustrate what are typical tree structural patterns of interest and how to express
them via binary code sequences.

By employing the distance measure d∗(., .) (modified Euclidean), we obtain a clustering tree
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Figure 3: Variance comparison on two version mimicked cow-specific ensembles with temporal
homogeneity and two behaviors:(A) homogeneity vs. non-homogeneity w.r.t ruminating and
eating, respectively; (B) Ruminating vs. eating w.r.t the two sampling schemes.

T̃ o on row axis of data matrix Po and T̃ b on Pb with b = 1, .., B. We seek reliability or uncertainty
pertaining to whatever observable structural components of T̃ o. Intuitively, this uncertainty or
reliability concept should be based on how often the targeted patterns indeed being conserved
within the ensemble {T̃ b}Bb=1. We develop our reliability evaluating protocol as follows.

Upon a computed HC tree T̃ o, one binary coding is found by descending from the tree’s
top internal node to each tree-leaf via a simple binary coding scheme: code-0 for going to left
branch and code-1 for the right. Via this coding scheme, memberships of any branch of T̃ o can
be simply identified by a common segment of binary codes shared by all its members’ binary
codes. Therefore, any observable structural patterns on T̃ o can be defined via one binary code
sequential segment. Two pieces of information are counted from one common code sequential
segment: the length of a binary code segment and the size of tree-leaves sharing the
same binary code sequential segment. These two counts are the two key-ingredients for our
reliability evaluation protocol because they exactly determine whether a tree with or without
a targeted pattern. We use the protein’s Amino Acid content as an example for illustrating
purpose.

We select 79 proteins and collect their amino acid content from their sequences. There are
20 amino acids in protein sequences with code-names:
{R,K,C,W,N,Q,M,F,H, Y, T, P,D, I, E, S,A,G,L, V }. A protein sequence, to a great degree,
can infer a protein’s 3D structure, and consequently imply proteins’ spatial or evolutionary
closeness or functionally similarity. By completely scrambling a protein sequence, a 20-dim
vector of proportions (amino acid contents) seemingly loses all its primary biological information.

Nonetheless, it is still reasonable to ask: whether similarity via amino acid content could
offer any biologically relevant information? This question is surely exploratory in nature. That
is, from a Data Science perspective and having no a priori knowledge, our data analysis merely
aims to provide a small window for biologists to discover what kinds of biologically relevant
information could possibly turn out. On the other hand, this categorical data structure with
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Figure 4: Heatmap with a HC-tree based on a mimicking scheme adopting temporal non-
homogeneity and distance measure d∗(., .).

relatively short sequences provides an excellent example of high variability or low reliability.
To visualize the data set, the d∗(., .) distance measure is employed to build a HC-tree and

compute a heatmap as shown in Fig. 5. Based on the binary coding scheme: 0 for Left-branching
(lower) and 1 for right-branching (upper), each protein as a tree-leaf can be located via a binary
code sequences within the tree’s bifurcating structures. For instance, the bottom tree-leaf is
the protein named [{eL41}]o. It is attached with a binary code sequence [00]o with code-length
being equal to 2. The 2nd tree-leaf from bottom is the protein named [{eL29}]o with code
sequence [0100]o and code-length 4. The top tree-leaf is the protein named [{uS11}]o with a
code sequence [1111111111111]o of 13 in length.

Further, with a binary code sequence for each tree leaf, an observed branch can be also
encoded. For instance, the small branch of 3 proteins [{eL29, eL39, eL40}]o has a binary code
sequence [010]o, while a tiny branch of 2 protein [{P1, P2}]o is encoded by [100]o. Very impor-
tantly, the idea of common binary code sequence also works for whether the separation of two
groups is realistic or not.

Here we illustrate our computational result only on one group of proteins as follows. The
four proteins {P1, P2, uL10, uL11} are part of a well-known P-stalk region of the ribosome.
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Figure 5: Heatmaps with a HC-tree based on protein data with distance measure d∗(., .).

These four proteins are found sharing a small stand-alone branch (the 2nd from bottom) in the
HC-tree derived based on distance measure d∗(., .), as shown in Fig. 5. If the a priori knowledge
implies these four proteins {P1, P2, uL10, uL11} should stay close, then the HC-tree based on
distance measure d∗(., .) seems to rightly capture the pattern.

This pattern of {P1, P2, uL10, uL11} on the HC-tree T̃ o turns out to have relatively small
reliability, as shown in Fig. 6. It is very interesting to note that this seemingly visually evident
pattern upon the geometry of T̃ o is not sustained in the ensemble {T̃ b}Bb=1. Only 7 mimicked
HC-trees contain these four proteins as in an early bifurcated branch. The protein group is more
likely jointed by many other proteins on tree-tops and then gets separated rather early. On the
other hand, the group of {P1, P2} is a rather robust stand-alone small branch.

Returning to the previous example with behavioral time budgets of dairy cows, we see from
the heatmap shown in Fig. 4, at least two clusters of cows stand out as being visually distinct
from the remainder of the herd: the 1st and 5th from top-down direction. The 1st cluster is a
group of 8 cows spending a rather large proportion of their time budgets ruminating. In contrast,
the 5th cluster is a group of 4 cow spending a rather large proportion of their time budgets eating.
That is, cows in these two groups appear to have rather distinct feeding patterns. How reliable
are the membership-coupling of these two groups? To answer such a reliability question, we
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Figure 6: Reliability of 4 proteins{P 1, P2, uL10, uL11} with d∗(., .): (A) via coding length;(B)
via scatter plots of 100(= B) sizes of branches containing these four proteins just before they
are separated. The red dot is the observed.

need to represent and define each tree-leaf’s coordinate within a tree geometry.
As seen in panels (B)&(D) of Fig. 7, these two groups are rather reliable. The high eating

group are found clustered together on a terminal node in all mimicries, diverging from the
remainder of the tree within the first 2-4 branches. The high rumination cluster is not as clearly
defined, as seen in panels (A)&(C)&(E) Fig. 7. In nearly half the mimicries, they are found
together on a terminal node, but in remaining samples their branch contains other animals.
In contrasting branch size with code length, we see that in most mimicries these cows are
effectively isolated at the second or third branching, but in some samples they are not well
distinguished from other animals in the high/low eating distinction made at the first branching.
In all mimicries, however, the cows in the high rumination group are separated from the cows in
the high eating group at the first branching, suggesting that there exists robust heterogeneity
in mastication patterns within this herd that warrants further analysis.

6 CEDA on other three real examples

We further analyze a baseball pitchers’ pitch-type data set consisting of 747 pitchers, and then
one relatively small data set of foreign students’ countries of origin in 47 national universities in
Taiwan. The contrasting results presented are to be expected. The majority of baseball patterns
are relatively reliable, while only a minority of university patterns are.
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Figure 7: Reliability of 2 groups of cows via code-length and branch-size:(A,C,E) high ruminat-
ing; (B,D) high easting, based on a mimicking scheme adopting the temporal non-homogeneity
and distance measure d∗(., .).

6.1 MLB pitchers

Every pitcher in Major League Baseball (MLB) has a repertoire of pitch-types in order to deal
with batters effectively. We collect all pitchers’ pitches throughout the entire Year 2017 season.
We select those pitchers who pitched more than one thousand pitches. But we exclude 8 pitchers
who nearly exclusively pitched “curveball”. There are 747 pitchers and 15 possible pitch-types.
The entire data set is represented in a 747 × 15 matrix. Upon this data matrix, we know that
a HC-tree based on d∗(., .) would be more efficient and robust than a tree based on Euclidean
distance do(., .). So, we only report the results based on weighted distance d∗(., .).

The heatmap with a superimposed HC-tree on row-axis, as shown in Fig. 8, reveal many
characteristically distinct clusters of pitchers. It is evident that a series of patterns can be
attached to each pitcher-cluster explain why they are together sharing the same branch, which
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Four.Seam.Fastball Cutter Knuckle.Curve Splitter Knuckle.Ball Forkball Eephus Screwball Pitchout Automatic.Ball Two.Seam.Fastball Changeup Curveball Sinker Slider
Mark Melancon

David Robertson

Kenley Jansen

Mike Bolsinger

Will Harris

Xavier Cedeno

Josh Collmenter

Ryan Merritt

Brandon McCarthy

Josh Tomlin

Scott Feldman

Adam Wainwright

Corey Kluber

Jon Lester

Hisashi Iwakuma

Tony Barnette

Odrisamer Despaigne

Ryan Tepera

Bryan Morris

Kyle Ryan

Zach Lee

Trevor Cahill

Edinson Volquez

J.P. Howell

Sammy Solis

Tyler Duffey

Zack Godley

Craig Stammen

Jarred Cosart

Barrett Astin

Brandon Finnegan

Brandon Kintzler

Dan Otero

Jared Hughes

Jeurys Familia

Wilmer Font

Zack Britton

Scott Alexander

Adam Kolarek

Stefan Crichton

James Pazos

Chad Qualls

Ryan Sherriff

Erick Fedde

Kyle Kendrick

Kyle Lloyd

Alex Claudio

Jeanmar Gomez

Chris Rowley

T.J. McFarland

Victor Alcantara

Tony Watson

Kevin McCarthy

Steve Cishek

Pat Neshek

Peter Moylan

Huston Street

Matt Grace

Marc Rzepczynski

Miguel Castro

Donnie Hart

Cory Gearrin

Mike Hauschild

Joe Ross

Aaron Loup

Doug Fister

Marco Gonzales

Seth Maness

Brad Ziegler

Andrew Heaney

Steven Matz

Chris Volstad

Buddy Boshers

Trevor Gott

Hoby Milner

Ryan Weber

Hector Santiago

Ty Blach

Mike Pelfrey

Jake Arrieta

Sam Gaviglio

Andrew Triggs

Christian Bergman

Lucas Harrell

TJ House

Zach Duke

Seth Frankoff

Roberto  Gomez

Mike Leake

Kendall Graveman

Sam Dyson

Richard Bleier

Chris Rusin

Cesar Valdez

Trevor Hildenberger

Kyle Martin

Kyle Hendricks

A.J. Schugel

CC Sabathia

Anibal Sanchez

Masahiro Tanaka

Chad Kuhl

Brett Anderson

Derek Holland

Jimmy Nelson

Sergio Romo

Tyler Lyons

Darren O'Day

Jake Diekman

Michael Tonkin

Oliver Perez

Tony Zych

Kevin Shackelford

Blake Wood

Joe Smith

Josh Lucas

Carlos Ramirez

Eric O'Flaherty

Edgar Santana

Andrew Chafin

Aaron Bummer

Carson Smith

Gabriel Ynoa

Chasen Bradford

Blake Treinen

Dylan Floro

Robert Gsellman

Chris Heston

Tyler Danish

Tyler Pill

Jakob Junis

Robby Scott

Andrew Albers

Austin Brice

Nick Tepesch

Trevor Williams

Drew Storen

Casey Lawrence

Hector Velazquez

Yohander Mendez

Raisel Iglesias

Josh Ravin

Matt Albers

Mike Wright

Aaron Slegers

Brad Goldberg

Sandy Alcantara

Jose Alvarado

Tyler Olson

Jose Quintana

Evan Marshall

Felix Hernandez

Albert Suarez

Rob Whalen

Jake Buchanan

Brian Duensing

Lucas Sims

Noah Syndergaard

Daniel Wright

Danny Coulombe

Bronson Arroyo

Michael Martinez

Carlos Ruiz

Pedro Beato

Jon Jay

Andrew Kittredge

Edward Paredes

Jairo Labourt

Ivan Nova

Ryan Madson

Braden Shipley

Jose Berrios

Tyler Glasnow

Jameson Taillon

William Cuevas

Tyler Skaggs

Dillon Peters

Gio Gonzalez

Lisalverto Bonilla

Domingo German

Alejandro Chacin

Alex Meyer

Neil Ramirez

Johnny Barbato

Drew VerHagen

John Axford

Jake Esch

Jairo Diaz

Sam Freeman

Matt Bush

Shae Simmons

Tyler Wilson

Eddie Butler

Aaron Sanchez

J.D. Davis

Lance Lynn

Tyler Chatwood

Shelby Miller

Tommy Hunter

David Hernandez

Chase Anderson

Nick Martinez

Parker Bridwell

Cody Martin

Jose Alvarez

Mike Fiers

Mark Leiter Jr.

Tommy Milone

Chad Bettis

Michael Lorenzen

Wade Miley

Cole Hamels

Tommy Layne

Wade LeBlanc

Alex Wood

Jason Vargas

Jason Motte

Vance Worley

Erasmo Ramirez

David Price

Charlie Morton

Max Povse

Craig Breslow

Jesus Sucre

Jim Johnson

Taylor Rogers

Zach Davies

Joe Biagini

Zach Neal

Alec Asher

Jace Fry

Luis Avilan

Fernando Rodney

Austin Maddox

Bartolo Colon

Jake Petricka

Jesse Hahn

Andrew Cashner

Dan Straily

Chris Sale

Scott Oberg

Luiz Gohara

Bruce Rondon

Chris Beck

Chih−Wei Hu

Ricardo Pinto

Randall Delgado

Joaquin Benoit

Luis Castillo

Onelki Garcia

Steven Brault

Nick Wittgren

Pedro Baez

Buck Farmer

Adalberto Mejia

Michael Blazek

Sal Romano

Mat Latos

Daniel Hudson

Eduardo Paredes

Carlos Rodon

Kyle Freeland

Matt Harvey

Jose De Leon

Clayton Richard

Frankie Montas

Ben Taylor

Hansel Robles

Jose Torres

Buddy Baumann

Brad Peacock

Dinelson Lamet

Dustin McGowan

Patrick Corbin

Daniel Stumpf

Ervin Santana

Logan Verrett

Adam Morgan

Jhan Marinez

Miguel Diaz

Francisco Liriano

Kevin McGowan

Johnny Cueto

Rafael Montero

Raul Alcantara

Jose Urena

Jake Thompson

Jason Wheeler

Carlos Martinez

Danny Duffy

Michael Fulmer

Kelvin Herrera

Brock Stewart

Jordan Montgomery

Seth Lugo

Jered Weaver

Matthew Boyd

Martin Perez

John Gant

Dylan Covey

Zach Eflin

Sonny Gray

Jacob Turner

Chris Flexen

Myles Jaye

Kyle Gibson

Tanner Roark

Austin Pruitt

Joe Blanton

Austin Bibens−Dirkx

Dylan Bundy

Zack Greinke

Jacob deGrom

Jharel Cotton

Stephen Strasburg

Carlos Carrasco

Wei−Yin Chen

Lucas Giolito

David Holmberg

Julio Urias

Felix Jorge

Matt Garza

Mike Foltynewicz

Zack Wheeler

Julio Teheran

Edwin Jackson

Daniel Gossett

Yovani Gallardo

Miguel Almonte

Rick Porcello

Jordan Lyles

Tom Wilhelmsen

Juan Minaya

Ben Lively

Chase De Jong

Matt Cain

Paolo Espino

Jackson Stephens

J.A. Happ

Henderson Alvarez III

Danny Salazar

Sean Gilmartin

Jaime Garcia

Jesse Chavez

Marcus Stroman

Shane Greene

Dallas Keuchel

Chad Bell

Luis Perdomo

Nate Jones

Jimmy Yacabonis

Chaz Roe

Al Alburquerque

Dan Jennings

Luke Gregerson

Joely Rodriguez

Glen Perkins

Brian Flynn

Jason Hursh

Jose Ruiz

Dan Runzler

Matt Wisler

Arodys Vizcaino

Matt Dermody

Jose A. Valdez

Zac Rosscup

JC Ramirez

Rob Scahill

Mitch Moreland

Jason Hammel

Jhoulys Chacin

Michael Ynoa

Paul Blackburn

Aaron Blair

Jeremy Jeffress

Matt Bowman

Jeff Samardzija

Ricky Nolasco

Miguel Gonzalez

Junior Guerra

Matt Shoemaker

Homer Bailey

Ubaldo Jimenez

Luis Garcia

Pedro Strop

Anthony Bass

Jacob Rhame

R.A. Dickey

Steven Wright

Erick Aybar

Dellin Betances

Robbie Ray

Alex Cobb

Vince Velasquez

Fernando Salas

Chris Smith

Cody Allen

Carter Capps

Corey Knebel

Craig Kimbrel

Josh Fields

Archie Bradley

Walker Buehler

James Paxton

Drew Pomeranz

Santiago Casilla

Joe Kelly

Jack Flaherty

Ian Kennedy

Chris Tillman

German Marquez

Gerrit Cole

Tom Koehler

Nick Pivetta

Aaron Nola

Fernando Abad

Jeff Locke

Lance McCullers Jr.

Nate Karns

Jeremy Hellickson

Trevor Bauer

James Shields

Phil Hughes

Dillon Gee

Kevin Gausman

Chris Hatcher

Jake Faria

Kirby Yates

Ariel Miranda

Josh Smoker

Blake Parker

Jorge De La Rosa

Edward Mujica

Hector Neris

Zach Putnam

Oliver Drake

Chasen Shreve

Koji Uehara

Jake Odorizzi

Taijuan Walker

Taylor Jungmann

Miguel Montero

Jorge Lopez

Tyler Cloyd

Hernan Perez

Jack Leathersich

Matt Koch

Kevin Plawecki

Andrew Romine

Jake McGee

Sean Doolittle

Chad Green

Shawn Armstrong

Justin Wilson

Brandon Morrow

Antonio Senzatela

Matt Strahm

Justin Haley

Jeremy Guthrie

Trevor Rosenthal

Tony Cingrani

Christian Bethancourt

Josh Hader

Brent Suter

Drew Steckenrider

Carlos Estevez

Keury Mella

Mychal Givens

Aroldis Chapman

Bobby Wahl

Tyler Mahle

Giovanny Gallegos

Antonio Bastardo

Felix Pena

Luis Cessa

David Paulino

Drew Anderson

Deck McGuire

Daniel Norris

Luke Farrell

Robert Stephenson

Mike Clevinger

Daniel Mengden

Troy Scribner

Matt Andriese

Joakim Soria

Dillon Overton

Felipe Vazquez

Andrew Moore

Jen−Ho Tseng

Blake Snell

Adam Wilk

Joe Musgrove

Max Scherzer

Tyler Clippard

Deolis Guerra

Diego Moreno

Ronald Herrera

Chase Whitley

Silvino Bracho

Caleb Smith

Mike Morin

Chris Devenski

Miguel Socolovich

Sean Manaea

Jeff Ferrell

Akeel Morris

Gabriel Moya

Brad Boxberger

Jose Ramirez

Adam Conley

Danny Barnes

Adam Liberatore

Taylor Cole

Brad Brach

Tommy Kahnle

Edubray Ramos

Greg Holland

Heath Hembree

Mike Dunn

Jordan Jankowski

Clayton Kershaw

Josh Edgin

Luke Jackson

Jonathan Holder

Casey Fien

Hunter Cervenka

Jerad Eickhoff

Eric Skoglund

Ryan Pressly

Sam Tuivailala

Jordan Zimmermann

Shane Carle

A.J. Cole

Derek Law

Warwick Saupold

Sean Newcomb

Jeff Hoffman

Brian Johnson

Matt Barnes

Kevin Quackenbush

Justin Verlander

Javy Guerra

Jon Gray

Artie Lewicki

Aaron Wilkerson

Gregory Infante

Glenn Sparkman

Tim Melville

Brooks Pounders

Hector Rondon

John Brebbia

Jonathan Broxton

Yacksel Rios

Tyson Ross

Hunter Strickland

Cory Mazzoni

Juan Nicasio

Nick Gardewine

Liam Hendriks

Zac Reininger

J.J. Hoover

Matt Belisle

Wily Peralta

Brad Hand

Alex Wilson

Ian Krol

Garrett Richards

Blaine Boyer

Tony Sipp

Adam Ottavino

Jesen Therrien

Victor Arano

Boone Logan

Damien Magnifico

Dillon Maples

Jumbo Diaz

Austin Adams

Andrew Miller

Dario Alvarez

Chris Young

Tim Mayza

Anthony Swarzak

Hunter Wood

Ryne Stanek

Jake Barrett

Jamie Callahan

Michael Feliz

Ricardo Rodriguez

Edwin Diaz

Reymin Guduan

Richard Rodriguez

Randy Rosario

Thyago Vieira

Tanner Scott

Addison Reed

Rex Brothers

Enny Romero

Arcenio Leon

Daniel Descalso

John Curtiss

Simon Castro

Taylor Williams

Keynan Middleton

Paul Sewald

Jason Grilli

Ernesto Frieri

Dan Altavilla

Shawn Kelley

Rubby De La Rosa

Jandel Gustave

David Goforth

Cam Bedrosian

Ken Giles

Nick Goody

Reyes Moronta

Mike Minor

Ross Stripling

Adam Warren

Koda Glover

AJ Ramos

James Hoyt

Vidal Nuno III

Wei−Chung Wang

Chris Archer

Ryan Dull

Fabio Castillo

Kyle Barraclough

Mike Mayers

Leonel Campos

Jimmie Sherfy

Sam Moll

Luis Severino

Kyle Crockett

Jarlin Garcia

Cody Reed

Michael Pineda

Wandy Peralta

Neftali Feliz

Joe Jimenez

Ashur Tolliver

Preston Claiborne

Brandon Woodruff

Brandon Maurer

Amir Garrett

Dayan Diaz

Zac Curtis

Andres Machado

Junichi Tazawa

Zach McAllister

Alan Busenitz

Grant Dayton

Phil Maton

Carl Edwards Jr.

Brett Nicholas

Asher Wojciechowski

Ariel Hernandez

Nik Turley

Luis Santos

Francis Martes

Ben Heller

Leonys Martin

Rich Hill

Justin Grimm

Jason Gurka

Jerry Blevins

Keone Kela

Dan Slania

Pierce Johnson

Tanner Scheppers

Tyler Anderson

Hyun−Jin Ryu

Michael Wacha

Carson Fulmer

Jayson Aquino

Angel Sanchez

Yusmeiro Petit

Blaine Hardy

Justin Nicolino

A.J. Griffin

Max Fried

Mike Montgomery

Jeff Beliveau

Tim Adleman

Brian Ellington

Tyler Webb

Tyler White

Marco Estrada

Alex Wimmers

Luke Weaver

Reynaldo Lopez

Kevin Siegrist

Dietrich Enns

Luis Sardinas

Anthony Banda

Justin Marks

Roenis Elias

Kyle McGrath

Jean Machi

Danny Farquhar

Francisco Rodriguez

Noe Ramirez

Erik Goeddel

George Kontos

Bud Norris

Steven Okert

Roberto Osuna

Drew Rucinski

Dominic Leone

Kyle Crick

Yu Darvish

Kenta Maeda

Josh A. Smith

Chris Stratton

Collin McHugh

Eduardo Rodriguez

Travis Wood

Rookie Davis

Josh Lindblom

Jose Leclerc

Josh Osich

David Phelps

Wade Davis

Brandon Workman

Brett Cecil

Matt Moore

Jacob Barnes

A.J. Minter

Seunghwan Oh

Emilio Pagan

Ryan Buchter

Bryan Mitchell

Rob Zastryzny

Andrew Bailey

Ryan Garton

Dovydas Neverauskas

Evan Scribner

Robbie Ross Jr.

Alex Colome

Nick Vincent

John Lackey

Carlos Torres
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Clay Buchholz
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Figure 8: Heatmap of MLB pitchers’ pitch-types superimposed with a HC-tree based on distance
measure d∗(., .) among 746(= 754− 8) by excluding 8 pitchers who exclusively pitch curveball.

can be big or small in sizes. We particularly mark two individual pitchers and four small clusters
of pitchers, as listed below:

Individuals : Clayton Kershaw and Jacob DeGrom

blue box : Mark Melancon, David Robertson, Kenley Jansen, Mike Bolsinger, Will Harris,
Xavier Cedeno, Josh Collmenter, Ryan Merritt;

green box : R.A. Dickey, Steven Wright, Erick Aybar

orange box : David Phelps, Wade Davis, Brandon Workman, Brett Cecil, Matt Moore

purple box : Jon Jay, Andrew Kittredge, Edward Paredes, Jairo Labourt

We then evaluate and report these patterns’ values of reliability in Fig. 9. From the panels
(A) and (B), we can see that these two pitchers are individually similar with many other pitchers
in terms of frequencies of pitch-types. So, there are no singular patterns of usages of pitch-types
pertaining to two pitchers. Among the four small clusters of pitchers, we found that, except the
“orange” cluster of pitchers, the rest of three clusters of pitchers are rather robust with high
values of reliability.
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Figure 9: Reliability of branches of pitchers.(A)Clayton Kershaw;(B)Jacob DeGrom;(C)blue
box; (D)green box; (E)orange box; (F)purple box.

Certainly, there are many more clusters of pitchers of great interest waiting to be discovered
through the heatmap in Fig. 8. In the near future, we plan to set up a website and upload
all tables of coding sequences for observed and mimicked HC-trees. We expect that, through
interactive Q&A, readers can go to the web-site to explore all possible patterns and their values
of reliability.

6.2 Home Countries of foreign students at 47 Universities in Taiwan

We illustrate CEDA through a real data set of country-of-origin of foreign students in national
universities of Taiwan. This is one case where row-sums are not large enough.

We collect data of country-of-origin of current foreign students in 47 national universities
of Taiwan. These 47 universities are rather heterogeneous in characters. There are only a few
complete universities, like NTU, NCKU and NTHU. There are technology oriented ones, like
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Figure 10: Histograms of cell-counts (A) and row sums (B) of 47× 9 matrix of foreign students
in national universities of Taiwan.

NCTU and NTUST. There are politics and business oriented universities, such as NCCU. There
are university specialized on nursing, like NTIN, on art, like TCPA. We are interested in exploring
what kinds interesting associative patterns exist between the heterogeneity in universities and
the geographic regions foreign students come from. Through the foreign student body in Taiwan,
we have to find relationships between types of universities they attend and the economic interests
of their home countries.

Due to the presence of many small counts across many universities, we group countries into 7
geographic categories: ASEAN, Europe, South Asia, North America, Africa, China, HK/Macau,
Other Asia, Central and south America. However, many small counts are still present, as seen in
panel (A) of Fig 10. The concern of small counts is essential here because a small count within a
university will create a small variance V ar[pbkm]. When two universities both have small counts
within one category they have a high potential of generating large variations in their distance
evaluations. That is the case in observed data matrix and even more so in mimicked data
matrices. Such a potential is especially high when the row-sums are not large enough, as seen
in panel (B) of Fig 10. In fact, this is the case in this data set. It is noteworthy that zero counts
in the observed data don’t generate or contribute to this issue.

Such large variations will diminish the expected gains by using d∗(., .) because of instability
of distance evaluations. In contrast, the Euclidean distance do(., .) doesn’t suffer from such an
issue created by small counts. Therefore, the differences between these two distance measures
used in constructing HC-trees are evident through various patterns’ reliability, as would be seen
below.
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Figure 11: Heatmaps of foreign students in Taiwanese universities superimposed with a HC-tree
based on distance measure:(A) do(., .); (B) d∗(., .).

The association between geographic region and university character can more or less be seen
through the heatmaps in Fig. 11. We see European students are in three major universities,
while students from Chain and HK/Macau are attending relatively smaller universities located
on the upper branch. Despite the difference in distance range, it is evident that the two HC-trees
are rather similar in branching on large as well as on local scales. For instance, the singleton
branch {NTIN} and two small branches: {NTU,NTNU,NCCU} and {NTHU,NCKU}, are
found in relative similar locations of the two trees.

However, the reliability of the two small branches: {NTU,NTNU,NCCU} and {NTHU,NCKU}
are different. The Euclidean distance do(., .) offers a slightly larger reliability value for the tiny
branch {NTHU,NCKU} then d∗(., .) does, while offers significantly larger reliability value for
{NTU,NTNU,NCCU} than d∗(., .) does. It is a bit surprising that reliability evaluations based
on both distance measures strongly indicate that the observed singleton branch {NTIN} is not
that reliable.

7 Conclusions.

For comparing a large number of populations via a categorical variable, as termed Extreme-K
categorical-sample problem here, is rather a common problem we encounter in real world. But it
is strange we seldom research about it. Beyond those issues we discussed here, there many issues
remain waiting to be solved. Such as, how to accommodate randomness from bins’ boundaries
of a histogram under the continuous measurement setting. However we refrain from going to
that in this conclusion section. Here we briefly reiterate key concepts discussed in the previous
sections under Extreme-K categorical-sample problem.

Our focus are placed on patterns of histograms’ global shapes. With a large K, the num-
ber of all possible population-pairs is K(K−1)

2 already very big. If we go beyond the pairwise
comparisons, then the number of potential comparisons would be Exponentially big. That is
to say that a priori determined comparisons are out of practical considerations. On the other
hand, we need to present computable data’s information content in a fashion that facilitates all
potentially viable comparisons and their reliability-evaluations.
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Figure 12: Reliability of 3 patterns on two HC-tree based on distance measure based on do(., .)
((A), (B), (C) and d∗(., .) ((D), (E), (F)): ((A), (D)

{NTIN}; ((B),(E)) {NTHU,NCKU}; ((C),(F))) {NTU,NCCU,NTNU}

Our global scale comparisons are practically phrased as issues of “which populations’ histogram-
shapes are close to which populations’, but far away from which populations’ ”, then resolutions
of such global issues must be resolved by constructing a geometry upon the observed data matrix
Po. Specifically, we propose a proper distance measure and build a tree geometry on the popula-
tion space. So that whoever is interested on such an extreme-K categorical samples can discover
patterns of interest and their reliability. This is the chief objective of our CEDA developments.

Our CEDA enables us to achieve the following goals with computational effectiveness: 1)
handle a framework that Analysis of Variance (ANOVA) in Statistics cannot handle; 2) build
a tree geometry as a discovery platform for a wide spectrum of objectives embedded within
K populations; 3) evaluate uncertainty or reliability of all objective via mimicking. The huge
number of group-based comparisons as our collective of objectives inspires a natural link to
artificial intelligence (A.I.). We argue that, with a properly chosen or constructed distance
measure, a clustering based tree geometry can be built as a population embedding tree, which
serves as a natural platform for discovering viable and pertinent objectives hidden and embraced
by such a data framework. Thus, such a tree geometry can effectively exhibit complexity of data’s
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information content. All global and local geometric structural patterns (in various forms of
group-comparisons) pertaining to such a tree are mathematically represented via binary coding
sequences of all tree-leaves (population-IDs). Based on the ensemble of matrix mimicries, we are
able to evaluate each geometric structural pattern’s computable reliability or uncertainty. We
conclude that the data’s information content is explicitly visible and readable via a population
embedding tree geometry and its heatmap coupled with uncertainty heterogeneity.

From a machine learning (ML) perspective, though this Extreme-K categorical-sample prob-
lem is a special Multiclass Classification setting by having one single feature, all machine learning
(ML) techniques will not be efficient. Furthermore ML methodologies all aim at predictive capa-
bility, but there is not much room for prediction here. These two facts might explain to a great
extent why this setting is not popularly researched. We emphasize again that extracting data’s
full information content as the objective of data analysis is far beyond the inferential purpose.
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