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A symmetry breaking mechanism is investigated that creates bistability between fully and partially
synchronized states in oscillator networks. Two populations of oscillators with unimodal frequency
distribution and di↵erent amplitudes, in the presence of weak global coupling, are shown to sim-
plify to a modular network with asymmetrical coupling. With increasing the coupling strength, a
synchronization transition is observed with an isolated fully synchronized state. The results are
theoretically interpreted in the thermodynamic limit and confirmed in experiments with chemical
oscillators.

Biological and engineered systems often consist of dis-
crete oscillatory units with slightly di↵erent properties
(e.g., natural amplitudes and frequencies), and coupling
among the units can generate collective rhythms that are
essential for normal operation [1–4]. Many features of the
transition to synchronization can be captured with sim-
plified models, e.g., with the Kuramoto phase model, that
predicts ’classical’ transitions, e.g., second order phase
transitions with continuous increase of order above a crit-
ical coupling strength [5, 6]. Sudden increase of order
parameter due to first order transitions can also be ob-
served with increase in coupling, e.g., for specific natural
frequency distributions [7–9], for strongly coupled relax-
ation oscillators [10], with coupling delays [11] or low-pass
filters [12], or with correlations of network properties (de-
gree with natural frequencies) [13–15]; in these examples
the order parameter vs. the coupling strength curves of-
ten exhibit S shapes with two stable and one unstable
branches.

All above synchronization transitions have a common
feature: For su�ciently large values of coupling strength
they predict approaching the fully synchronized state
where all oscillators behave identically. The question
naturally arises whether this feature is general, or qual-
itatively di↵erent synchronization scenarios could exist?
For example, a practically dangerous situation can oc-
cur in scenarios where certain states are isolated from
other states and thus cannot be obtained from continua-
tion, i.e., through sweeping the coupling strength up and
down. Such states often lie on isolas in bifurcation dia-
grams, where the stable states are created and destroyed
through fold bifurcations.

One natural condition where isolas could occur is in
networks of oscillators where chimera states (i.e., par-
tially synchronized states of identical phase oscillators in
symmetric networks) impede the transition to full syn-
chronization [16, 17]. In this particular case, isolated
fully synchronized states were predicted for small param-
eter regions in phase oscillator models with an explicit
two population coupling [16, 17].

In this Letter, we show that non-classical synchroniza-
tion transitions with an isolated fully synchronized state,
in general, can be found in a population of oscillators,
that exhibit heterogeneities in both amplitudes and nat-
ural frequencies. For this, we consider a system of two
populations (� = 1, 2) of Stuart-Landau oscillators
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with a complex coe�cient Ke�i↵, where K 2 [0,1) and
↵ 2 (�⇡/2,⇡/2) are real parameters referred to as the
coupling strength and the phase lag. In the absence of
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with widths �� > 0. In the symmetric case q1 = q2
system (1) becomes a single globally coupled popula-
tion which was considered in [18]. In contrast, here
we focus on the asymmetric case q1 6= q2, which oc-
curs if oscillators of two di↵erent types are mixed to-
gether. Note that such amplitude asymmetry sometimes
can emerge spontaneously in globally coupled limit cycle
oscillators [19], where it serves as a prerequisite for the
symmetry breaking partially synchronized states called
chimera states [19, 20].
For simplicity, we consider the weak coupling case

K << 1. Then system (1) can be reduced to a phase
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oscillator model with a type of asymmetrical coupling
topology. Using the polar coordinate ansatz

W (�)
j (t) = b(�)j (t) exp(i✓(�)j (t)),

we find that the amplitudes of the oscillators b(�)j (t)

remain almost unchanged, whereas their phases ✓(�)j (t)
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Eq. (3) shows that each oscillator in (2) influences other
oscillators with a strength proportional to its ampli-
tude, while the oscillator’s sensitivity to the impact of
other oscillators is inversely proportional to its ampli-
tude. Note that the two population models of form (2)
have been studied in many other works [16, 17, 21–
25], but with qualitatively di↵erent connectivity matri-
ces ��0 . For example, symmetric matrices with positive
elements 11 = 22 > 21 = 21 have been used in several
studies of chimera states [16, 17, 21]. Moreover, matri-
ces ��0 with positive and negative elements have been
considered in [22, 23]. Furthermore, connectivity matri-
ces of the form ��0 ⇠ d�d�0 , where d� denotes the node
degree, were related to the annealed approximation of
random Kuramoto networks [24, 25]. However, it is easy
to see that the connectivity matrix (3) cannot be reduced
to any of the above examples.

In the following we assume that the population sizes
are equal, N1 = N2. Without loss of generality we choose
q2 > q1, then the small amplitude oscillators (SA) and
the large amplitude oscillators (LA) are grouped into the
first and the second populations, respectively. Denoting
amplitude ratios µ = q2/q1 and inserting this into Eq. (3)
we obtain the following expressions for the connectivity
matrix ��0

11 = 22 = K/2, 12 = Kµ/2, 21 = K/(2µ), (4)

illustrated schematically in Fig. 1(a). Note that the am-
plitude ratio µ also acts as an inter-population coupling
asymmetry factor.

Thermodynamic limit analysis. In the thermodynamic
limit N1 = N2 ! 1, the state of the system (2) can be
described by the probability density function f�(!, ✓, t)
for each population �, then
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FIG. 1. Network schematic and experimental setup. (a)
Schematic of the network topology exhibiting the same intra-
population but di↵ering inter-population coupling strength.
(b) Experimental implementation of the feedback scheme.
The currents of each population are measured (ik(t)) and
fed back to the applied circuit potentials (Vk) according to
Eqs. (11) and (12). Each population has 40 electrodes (only
two are shown for clarity).

is the complex order parameter of the �th population.
The modulus of z� satisfies |z�(t)| 2 [0, 1] and mea-
sures the synchrony of the �th population. Small values
of |z�(t)| correspond to asynchronous population dynam-
ics, while |z�(t)| = 1 indicates its perfect synchrony. Us-
ing a standard analytical procedure (see Sec. 3.1.1 in [26])
we can show that the long-term dynamics of probability
densities f� typically settles down on the Ott-Antonsen
invariant manifold [27]. The evolution on this manifold
is described by a system of two complex ordinary di↵er-
ential equations (ODEs) for z1 and z2, which, using the
polar coordinate representation z�(t) = r�(t) exp(i��(t))
and denoting  (t) = �2(t) � �1(t), can be written as an
equivalent real ODE system

ṙ1 = ��1r1 +
1� r21

2
[11r1 cos↵+ 12r2 cos( � ↵)],(6)

ṙ2 = ��2r2 +
1� r22

2
[22r2 cos↵+ 21r1 cos( + ↵)],(7)
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� r22 + 1

2r2
[22r2 sin↵+ 21r1 sin( + ↵)]. (8)

Below we consider two cases of the system (6)–(8) with
the connectivity coe�cients ��0 determined by (4):
(i) oscillators with identical frequencies, �1 = �2 = 0,
(ii) oscillators with unimodal frequency distribution

and identical widths in the two populations, �1 = �2 > 0.
Note that because of (4) the system (6)–(8) with �1 = �2
is not Z2-symmetric with respect to the transformation
(r1, r2, ) 7! (r2, r1,� ). This fact makes it qualita-
tively di↵erent from the phase oscillator model consid-
ered in [16, 17].
Case (i). We start with the case of oscillators with

identical frequencies (�1 = �2 = 0). It is known [28, 29]
that in this case, the Ott-Antonsen manifold is not at-
tractive and many other dynamical regimes (which are
typically quasiperiodic) can be found outside of the man-
ifold at di↵erent distances from it. On the other hand,
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all neutrally stable equilibria and periodic orbits found
in the system (6)–(8) with �1 = �2 = 0 usually be-
come attractors of the same system for arbitrarily small
but positive values of �1 and �2. Therefore, consider-
ing the case �1 = �2 = 0 we obtain useful information
about the behavior of system (6)–(8) in the singular limit
�1 = �2 ! 0.

Simple calculations demonstrate that the system (6)–
(8) with �1 = �2 = 0 has two types of fixed points. The
first type are fixed points describing fully synchronized
states, where each population is synchronized r1 = r2 = 1
but with a phase shift between their collective phases
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◆
.

The second type are partially synchronized fixed points
with one population fully (r1 = 1) and the second popu-
lation partially (r2 < 1) synchronized. These points are
defined parameterically by formulas

r2 = �cos( + ↵)

µ cos↵
,

µ2 = � cos2( + ↵) sin / cos↵

sin( + 2↵) cos↵+ 2 cos2( + ↵) sin( � ↵)
,

with  and ↵ varying in the intervals [�⇡,⇡]
and (�⇡/2,⇡/2) respectively. Note that not all values
of  and ↵ are admissible. First, the expression for r2
must satisfy the inequality 0 < r2  1. Second, the right-
hand side of the formula for µ2 must be positive. Using
these restrictions, we find two critical values ↵1 ⇡ 1.05
and ↵2 ⇡ 1.23 such that for 0  ↵ < ↵1 system (6)–
(8) has only fully synchronized fixed point r1 = r2 = 1,
while for ↵ > ↵1 and su�ciently large µ it also has two
other partially synchronized fixed points (one stable and
one unstable) lying on a folded branch. Moreover, for
↵ > ↵2 there is a bounded interval of µ values where
the upper part of the folded branch becomes unphysical
(r2 > 1). Figure 2(a),(c) shows the two types of fixed
points (r2 vs. µ) for two representative values ↵, and
Figure 2(b),(d) shows the corresponding global order pa-
rameter

R =
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|z1 + z2| =
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2

��r1 + r2e
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(The unphysical branch (r2 > 1) connecting two trans-
critical bifurcation points is not shown in Fig. 2(d).)

Case (ii). For oscillators with unimodal frequency dis-
tribution (�1 = �2 > 0), without cross-coupling the two
populations would exhibit a Kuramoto transition to syn-
chrony at the same critical coupling strength. There-
fore, symmetry broken partially synchronized states are
due to the cross-coupling between the populations. In
this case, the dynamics on the Ott-Antonsen manifold
(Eq. (6)–(8)) is relevant to the long-term dynamics of
phase model (2) with heterogeneous natural frequen-
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FIG. 2. Stable (black) and unstable (orange/gray) fixed
points of network (6)–(8) with identical oscillator frequencies
(�1 = �2 = 0). (a)–(b): ↵ = 1.15. (c)–(d): ↵ = 1.3. The top
panels show the dependence of the second population order
parameter r2 versus the amplitudes ratio µ (for the first pop-
ulation r1 = 1). The bottom panels show the corresponding
global order parameters R, see (9). Notice that unphysical
fixed points r2 > 1 are discarded in panel (d).

The synchronization transitions can be described by
the changes of the global order parameter
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on the coupling strength K. In the thermodynamic limit
RN (t) ⇡ R, see (9), therefore the transitions can be pre-
dicted by Eqs. (6)–(8). For this, we fix values of �1 = �2,
µ and ↵, vary the coupling strength K and compute the
corresponding fixed points (r1, r2, ) of the system (6)–
(8) using the Newton-Raphson method. Then insert-
ing the result into (9), we obtain the graph of R ver-
sus K. Figure 3 shows qualitatively di↵erent synchro-
nization transition scenarios found for �1 = �2 = 0.01,
↵ = 1.15 and several µ. For identical amplitudes in both
populations (symmetrical coupling, µ = 1) we recover
the well-known classical (second order) monotonous syn-
chronization transition typical for the Kuramoto model
with all-to-all coupling [5, 6]. For µ = 1.67 the (nearly)
fully synchronized state is reached through an S shaped
(first order) transition from the partially synchronized
state [Fig. 3(b)]. Finally, for µ = 5 [Fig. 3(c)], with in-
creasing the coupling strength, first a partially synchro-
nized state occurs, which retains its stability in the limit
of strong (infinite, in the phase model) K. Thus, the
(nearly) fully synchronized state is isolated. The corre-
sponding branch starts from a fold bifurcation at a fi-
nite coupling strength and ends in the infinite coupling
strength limit. The predictions of these non-classical bi-
furcation diagrams were confirmed with numerical simu-
lations with N1 = N2 = 500 oscillators with forward and
backward sweeps of the coupling strengths in Figure 3
(crosses and circles, respectively).
Note that all synchronization transitions described

above have an important scaling property. For fixed µ
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FIG. 3. Synchronization transitions in the network model
(6)–(8) with unimodal distribution of the natural frequencies
(�1 = �2 = 0.01) at three di↵erent amplitude ratios µ. Stable
and unstable branches are shown as black and orange/gray
curves. Order parameter R is computed by (9). Crosses and
circles show the time-averaged global order parameters RN

obtained in the forward and the backward K-sweeps (with
initial conditions from the previous integration), respectively,
for the system (2) with N1 = N2 = 500 and ↵ = 1.15.

and ↵, the value of an equilibrium of the system (6)–(8)
depends on the ratio K/�, but not on K and � sepa-
rately. This means that every qualitative feature of the
synchronization transitions in the system (6)–(8) can be
realized for arbitrarily small values K, provided that the
values of �1 and �2 are small enough. For example, Fig. 4
shows that every type of synchronization transition from
Fig. 3 indeed can be found in the original system of the
mean-field coupled Stuart-Landau oscillators (1).

Experiments with electrochemical oscillators. The
asymmetry induced synchronization bistability was ex-
plored with 80 electrochemical oscillators (using Ni elec-
trodissolution) that can be coupled with a delayed feed-
back [30]. At constant circuit potential (V ), the oscil-
latory dissolution rate, the corrosion current, of each of
the 1-mm diameter nickel wires can be measured in a
3 mol/L sulfuric acid electrolyte maintained at a tem-
perature of 10 �C. It was expected that the theoretically
predicted synchronization features can be observed in the
experiments, provided that the modular network with the
asymmetrical coupling between the two groups can be re-
alized.

The first and second populations of 40 wires were con-
nected to the corresponding channels of a bipotentiostat;
see Fig. 1(b) for a schematic of the experiments. The
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FIG. 4. Synchronization transitions in the system of mean-
field coupled Stuart-Landau oscillators (1) with unimodal dis-
tribution of the natural frequencies (�1 = �2 = 0.01) at
three di↵erent amplitude ratios µ = q2/q1. Crosses and cir-
cles show the time-averaged mean-field hW i obtained in the
forward and the backward K-sweeps (with initial conditions
from the previous integration), respectively. Other parame-
ters: N1 = N2 = 50, ↵ = 1.15, and q1 = 2.

bipotentiostat measured the total currents of each popu-
lation (i1(t) and i2(t)), and applied small adjustments of
the circuit potentials (V1(t) and V2(t)) of the two popu-
lations:

V1(t) = V0 +K [̃i1(t� ⌧) + ✏1ĩ2(t� ⌧)], (11)

V2(t) = V0 +K [̃i2(t� ⌧) + ✏2ĩ1(t� ⌧)], (12)

where ĩk(t) = ik(t) � ok is the o↵set (ok(t)) corrected
population current, V0 is the base circuit potential (at
which the oscillations occur). ✏1 and ✏2 represent the
inter-population coupling factors. K is the feedback gain
which is equivalent to the (overall) coupling strength.
Finally, ⌧ is the feedback delay, which corresponds to
the phase lag parameter ↵. According to our previous
study [30], the ↵/2⇡ quantity approximately corresponds
to ⌧/T0, where T0 = 2.4s is the mean period of the
uncoupled population (K = 0 V/mA). We have chosen
⌧ = 0.9T0/4, which corresponds to ↵ ⇡ 1.4 in the theory.
In the experiments, we chose ✏1 = 0.2 and ✏2 = 5.0

that corresponds to asymmetrically coupled populations
with µ = 5. A series of experiments were performed
with a given coupling strength K, starting from random
and in-phase synchronized initial conditions; the mean
Kuramoto (global) order parameters for both initial con-
ditions are shown in Fig. 5. For weak coupling (K <
0.010 V/mA), a desynchronized state was observed for
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FIG. 5. Synchronization transition in a population of oscil-
latory chemical reactions. The global order parameter as a
function of the coupling strength. Error bars show the stan-
dard deviation of R in the time series for each point. The
empty and filled circles correspond to in-phase and random
initial conditions, respectively. The states of each population
are shown in Fig. 6 marked with the dashed lines.

both initial conditions. For 0.015 V/mA  K  0.050
V/mA, the system exhibited the same partially synchro-
nized state for both in-phase and random initial condi-
tions. For K=0.015 V/mA, the Kuramoto order for each
population (top), the current oscillations of every ele-
ments (middle), and the snapshot of the phases (bottom)
are shown in Fig. 6(a). Population 1 exhibited a synchro-
nized state, while population 2 was desynchronized.

FIG. 6. Multistability of synchronized states observed for
di↵erent initial conditions in two populations of oscillatory
chemical reactions. The black and red lines correspond to the
populations 1 and 2, respectively. (a) Partially synchronized
state with K = 0.015 V/mA and in-phase initial conditions.
(b) Partially synchronized state with K = 0.060 V/mA and
random initial conditions. (c) Nearly fully synchronized state
with K = 0.060 V/mA and in-phase initial conditions. Top
row: order parameters for each population vs. time. Middle
row: the time series of the oscillator currents for each pop-
ulation. Bottom row: snapshot of the phases (filled circles:
population 1, empty squares: population 2).

As it is shown in Fig. 5, with further increase in the
coupling strength (0.055 V/mA  K  0.070 V/mA),
the experiments with in-phase initial conditions resulted
in a strongly synchronized state with large Kuramoto
order parameter (R ⇡ 0.7 � 0.8), which di↵ered from
a lower synchrony state (R ⇡ 0.6) obtained from desyn-
chronized initial conditions, therefore, bistability was ob-
served. Figure 6(b) shows that the state obtained from
desynchronized initial condition for K = 0.060 V/mA
was similar to the partially synchronized state at lower
coupling strength: population 1 was synchronized, and
population 2 was desynchronized. However, starting
from an in-phase initial condition we obtained a state
where population 2 became partially synchronized (while
population 1 remained fully synchronized, see Fig. 6(c)).
The experiments thus showed that the asymmetry in-
duced bistability in the synchronization pattern is a ro-
bust phenomenon, and the comparison of the theoreti-
cally predicted [Fig. 3(c)] and experimentally measured
[Fig. 5] R vs. K graphs indicate the presence of the iso-
lated (nearly) fully synchronized state.
Conclusions. We have shown that a system of globally

coupled oscillators, that is a mixture of two populations
with di↵erent amplitudes, can be reduced in the weak
coupling case to an asymmetrically coupled modular net-
work. The system exhibits non-classical synchronization
transitions, where a partially synchronized and an iso-
lated (nearly) fully synchronized states coexist for arbi-
trarily large coupling strength. The experiments demon-
strated that the salient dynamical features of the behav-
ior can be observed in systems without amplitude het-
erogeneity with asymmetrical coupling (through param-
eter µ). Important future directions include exploring the
correlations between amplitude heterogeneities and fre-
quency distributions on the observed partially synchro-
nized states, because in experimental settings changing
the amplitudes through bifurcation parameters could also
impact the frequency distribution.
The predicted synchronization bistability is very ro-

bust to finite size e↵ects as it was observed even with 40
oscillator populations in experiments. In contrast, simi-
lar bistable synchronization transitions in coupled oscilla-
tor models with non-identical frequencies but with iden-
tical oscillator amplitudes required much larger system
sizes (e.g., ten thousand of oscillators) for their observa-
tion [8, 9]. Moreover, it seems likely that finite size e↵ects
were also more pronounced in the bistable synchroniza-
tion transitions found in other mean-field coupled oscil-
lator models [31–35]. In a more general context, our
results show that even relatively small asymmetry in the
coupling topology (e.g., through amplitude heterogene-
ity) can produce very robust partially synchronized states
where one population is strongly synchronized while the
other is desynchronized. The proposed mechanism thus
should be considered for interpretation of partially syn-
chronized states that seem to prevalent in biological sys-
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tems [36, 37], in particular, in various aspects of brain
dynamics [38–40].
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