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Abstract—Heterogeneous SoCs integrate FPGAs and micro-
processor cores on the same fabric to accelerate applications,
such as cryptography and deep learning. Since FPGAs share
resources with the microprocessor cores, they can launch non-
cacheable synchronous DRAM (SDRAM) transactions through
direct FPGA-to-microprocessor SDRAM interface. Therefore,
if the FPGA 3rd party IPs (3PIPs) are malicious, they can
launch rowhammer attacks on the SDRAM. Today’s counter-
measures based on performance counters cannot detect these
attacks because memory transactions from FPGAs do not pass
through the cache. In addition, today’s countermeasures that
count the frequency of activation of memory rows cannot identify
the intellectual property (IP) that launches the attack from the
FPGA. We present a security solution that monitors the SDRAM
transactions from IPs on the FPGA to each bank of the micropro-
cessor SDRAM through the FPGA-to-microprocessor SDRAM
interface. The proposed monitor is implemented on the FPGA
fabric. It can detect attempts to launch a rowhammer attack
before it causes bit flips in the SDRAM. It utilizes 6.3% of the
adaptive logic modules (ALMs) available in an Intel Cyclone V
FPGA, when multiple IPs are monitored.

Index Terms—Computer security,
DRAM (SDRAM), system-on-chip.

memory, synchronous

I. INTRODUCTION

ITH the increasing popularity of Internet-of-Things

(IoT) and machine learning-based applications [1], [2],
FPGA-SoCs are being developed to meet the growing need
for powerful and energy-efficient computing platforms. These
SoCs integrate general-purpose microprocessors, FPGA, and
other intellectual property (IP) blocks [3]. Security is already
an important consideration for such systems; however, current
countermeasures are not sufficient to ensure that the untrusted
IPs that are dynamically configured on the FPGA cannot
maliciously impact trusted IPs.
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In an FPGA-SoC, the IP blocks implemented on the
FPGA fabric share resources with microprocessor cores.
Intel refers to a microprocessor core as the hard pro-
cessor system (HPS), while Xilinx calls it the processing
system (PS). In many Intel and Xilinx FPGA-SoC prod-
ucts, the FPGA accesses the microprocessor synchronous
DRAM (SDRAM) either through cache-coherent interconnects
or directly through cache-incoherent interconnects [4]-[6].
The noncache-coherent interconnects between the FPGA and
the SDRAM can allow IPs to directly access the physi-
cal address space of the SDRAM [4]. In addition, in SoCs
with FPGAs, physical address to row address mapping is
clearly documented in the technical manuals published by the
manufacturers [7]. Therefore, these malicious IPs can launch
rowhammer attacks by repetitively accessing specific SDRAM
rows, which can result in bit flips in neighboring rows [8].

Prior work detects rowhammer attacks by monitoring the
cache-miss rates recorded by the performance counters in
a microprocessor [9], [10]. However, in FPGA-SoCs, the
FPGA 1IPs can access microprocessor SDRAM directly with-
out accessing the cache. Therefore, a rowhammer attack can
be launched from these IPs without affecting the cache-miss
rates. Counters can be integrated in the DRAM chip or in the
memory controllers to measure the frequency of access to each
memory row [11]-[14]. These countermeasures cannot iden-
tify the attacking IP. Thus, the attack will remain active, and
the victim memory rows will be continuously refreshed.

FPGA-SoCs are currently integrated in critical applications,
e.g., avionics applications [15] and in the automotive indus-
try [2], while current countermeasures cannot secure these
applications against rowhammer attacks. Therefore, we propose
a security countermeasure against rowhammer attacks that can
be integrated in the FPGA-SoCs that are available in the market.
We present an FPGA-to-microprocessor SDRAM security mon-
itor that observes the memory transactions between the FPGA
IPs and SDRAM within a sliding window of ¢ addresses.
This monitor detects and blocks malicious IPs that request
Ny, accesses to a specific row within i consecutive memory
accesses. The value of ¢ is determined by the minimum required
duration between two activations of the same row to avoid bit
flips when the row is repetitively accessed, and the time taken by
the DRAM to activate a row. The value of Ny, is chosen to ensure
that the number of row activations does not exceed the minimum
threshold for causing bit flips, reported in [16]. As shown in
Section VI, for current DRAM chips, Ny, = 2 and ¢ = 10 and
20 to detect single-sided and double-sided rowhammer attacks,
respectively. The attack detection and IP blocking occur early
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enough, before the attack modifies the SDRAM contents. Our
proposed approach also identifies stealthy IPs that collude to
launch an attack that is not detected if each IP is monitored
independently.
The main contributions of this article are listed as follows.
1) This is the first method that can detect rowhammer
attacks launched from malicious FPGA IPs. These IPs
can severely compromise the system because they have
direct access to the physical address space of the
SDRAM. The proposed method detects the rowham-
mer before its effect is propagated through the system.
Therefore, refreshing of the victim rows is not required.

2) We propose and evaluate a memory-access policy for
benign FPGA IPs through the FPGA-to-microprocessor
SDRAM interface to avoid false positives.

3) We locate malicious FPGA IPs and identify stealthy IPs

that collude to launch combined attacks on the system.

4) We evaluate the overhead of the proposed security

monitor. It scrutinizes memory requests to a specific
memory bank with maximum FPGA utilization of
only 6.3%.

The remainder of this article is organized as fol-
lows. Section II reviews FPGA-to-microprocessor SDRAM
interconnects in FPGA-SoCs and provides background on
rowhammer attacks. Section III describes related prior work.
Section V describes the target threat model. Section VI
presents the proposed countermeasure and the benign memory-
access policy for the FPGA-to-microprocessor SDRAM
interface in FPGA-SoCs. Section VII describes the simulation
results, hardware demo, and overhead for the FPGA-to-
microprocessor SDRAM security monitor. Finally, we con-
clude this article in Section IX.

II. PRELIMINARIES
A. FPGA-to-Microprocessor SDRAM Interconnects

In FPGA-SoCs, FPGAs and the SDRAM are connected
using cacheable and noncacheable interconnects. We focus on
the noncacheable interconnect, which we refer to as FPGA-to-
microprocessor SDRAM interface. In Xilinx SoCs, it is called
the programmable logic (PL)-to-PS interface. In Intel SoCs,
it is called FPGA-to-HPS SDRAM interface. This interface is
used when high-throughput and low-latency SDRAM accesses
from the FPGA are required. It is configured as an advanced
extensible interface (AXI) interface in Xilinx SoCs and as AXI
or Avalon memory-mapped (MM) interface in Intel SoCs.

1) AXI Protocol: The AXI interfaces allow read and write
operations to occur simultaneously; therefore, two command
ports are used at a time, while Avalon-MM interfaces issue
either a read or write operation at-a-time. The same proposed
countermeasure applies to Avalon-MM interfaces. The basic
AXI control, command, and data signals that are used in this
article and their descriptions are listed in Table 1. The AXI
operations during read and write memory transactions are as
follows [17].

When an IP reads data from memory, it performs the
following: 1) assigns address read valid signal (ARVALID)
to “1” and ARADDR to the desired address; 2) ARVALID
remains set to “1” till SDRAM asserts ARREADY to “17;
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TABLE I
RELEVANT AXI BUS SIGNALS AND THEIR DEFINITIONS

Signal Name

ARVALID (AWVALID)
ARADDR (AWADDR)
ARREADY (AWREADY)

Signal Definition (Sender)

Read (Write) address valid (IP)

Target read (Write) address (IP)

Ready for read (write) address (SDRAM)

RREADY IP ready to read data (IP)

RVALID Sending valid read data (SDRAM)
RDATA (WDATA) Read data (SDRAM) (Write data (IP))
WREADY Ready to receive write data (SDRAM)
WVALID IP sending valid write data (IP)

TABLE II
RELEVANT AVALON-MM BUS SIGNALS AND THEIR DEFINITIONS

Signal Name | Signal Definition (Sender)

read Indicate a read transfer (IP)

write Indicate a write transfer (IP)

address Target address shared by read and write (IP)

readdata Data for read transfers (SDRAM)

writedata Data for write transfers (IP)

waitrequest Indicate that SDRAM cannot respond to
commands (SDRAM)

3) assigns RREADY to “1” when it is ready to receive data;
and 4) SDRAM assigns RVALID to “1” to send RDATA.
When an IP writes data to memory, it performs the follow-
ing: 1) assigns AWVALID to “1” and AWADDR to the desired
address; 2) AWVALID remains set to “1” till SDRAM assigns
AWREADY to “17; 3) assigns WVALID to “1” and WDATA to
the target data; and 4) WVALID remains set to “1” till SDRAM
assigns WREADY to “1.”

2) Avalon-MM Protocol: From a security perspective, the
biggest difference between the AXI and Avalon-MM interfaces
is that Avalon-MM interfaces do not allow read and write oper-
ations to be issued simultaneously. The Avalon-MM signals
that are relevant to the monitor design in this article are sum-
marized in Table II. Read and write operations share a common
address port. They are controlled by two signals, read and
write, which must be asserted separately. As an example, the
master component can set the correct read address and assert
the read signal at cycle 1. If read operations have a fixed
latency of 1 cycle, then, at cycle 2, the master component
can obtain the data read from the readdata port. At cycle 3,
the master component deasserts the read signal and asserts
the write signal, while changing the address to the intended
write address and setting the writedata port. After waiting for
a few cycles, the response for the previous write transfer can
be read [18]. The SDRAM can set waitrequest signal to “1”
when it cannot respond to incoming read or write commands.
When waitrequest signal is set to “1,” the master IP halts all
the transaction to the SDRAM till waitrequest is set to “0” by
the SDRAM [18].

B. DRAM

Each DRAM chip is composed of multiple banks and each
bank is composed of a 2-D array of memory cells that are
arranged in rows and columns. Each row is connected to a
wordline and has multiple memory cells. A typical 1T1C cell
consists of a pass transistor and a capacitor. In current DRAM
implementations, a true cell (anti-cell) stores a bit value of
logic “1” (“0”) when the capacitor is charged and a bit value
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of logic “0” (“1”) when discharged [16], [19]. During a read
or write operation, the wordline connected to the target row
is asserted and the value of the memory cells in the row is
transferred to the row buffer. Since DRAM cells are composed
of capacitors that leak their charge over time, they need to be
continuously refreshed to ensure that they retain their values.
The time interval between the charging cycles of the capacitors
of DRAM cells is called “refresh interval” [16].

C. Rowhammer Attack

The rowhammer attack is caused by the repetitive activa-
tion of specific DRAM rows during read or write operations
within the DRAM memory refresh interval. When aggressors
are activated and deactivated multiple times during the refresh
interval, they leak charge to the cells in neighboring memory
rows (victims), which leads to the modification of the values
of their stored bits.

Rowhammer attacks can be single sided or double sided. In
single-sided attacks, one arbitrary memory address is repet-
itively accessed. In double-sided rowhammer, two addresses
adjacent to a specific memory location are repetitively
accessed. The values stored in the activated row needs to be
transferred to the row buffer several times to induce bit flips.
The experiments in [16] show that continuous accesses to the
same row do not induce errors as the value will be transferred
to the row buffer once and read from there in subsequent acti-
vation. Therefore, the rowhammer attack is effective only if
different rows in the same bank are repetitively accessed in
alternating patterns.

Rowhammer attacks compromise remote systems [20], [21]
and are used in root privilege escalation [22], [23], and denial-
of-service attacks on Intel Software Guard Extensions-based
systems [24]. Recent work [25] demonstrates a rowhammer
attack that remotely targets heterogeneous Intel FPGA-SoCs.

III. RELATED PRIOR WORK

Countermeasures for rowhammer include increasing the
memory refresh rate to reduce bit flips [26]-[28]. However,
these countermeasures increase the system power consumption
and reduces the memory throughput. Therefore, they are not so
desirable in power-constrained systems and also when memory
aging is a concern. Another problem is that this defense
is bypassed by the double-sided rowhammer attack, when
neighbors of the victim rows are repeatedly accessed [10].

Other proposed solutions identify anomalous behavior in
performance counters that indicates the presence of rowham-
mer attacks. After a rowhammer attack is detected, victim
rows are refreshed to mitigate the effects of the attack.
The work in [10] monitors the miss rate of the last level
of cache to identify rows from the same bank that are
accessed with high frequency. Payer [9] detected rowhammer
if the number of cache misses constitutes greater than 70%
of the overall number of cache accesses. These approaches
are not suitable for the detection of rowhammer that are
launched from FPGA because caches are not involved in the
FPGA-to-microprocessor SDRAM transactions.
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Another countermeasure adds silicon overhead by integrat-
ing memory-row counters in the memory controllers or DRAM
chips to count the frequency of activating specific rows.
The victim rows are refreshed when a prespecified thresh-
old on memory access frequency is reached. Kim et al. [29]
implemented a counter for each memory row. To reduce the
area overhead, Seyedzadeh et al. [11] divided each memory
bank into groups of memory rows and assigned a counter to
each group. Lee et al. [13] implemented a counter for only
the active rows that are accessed with a frequency above a
prespecified threshold. Vig et al. [14] integrated a module
in the memory controller to monitor the memory transac-
tions. Memory rows that are accessed more than once within
a sliding window of ten addresses are regarded as a source
of rowhammer attacks. Thus, the hash of their neighboring
rows, which are considered as victim rows, are stored in a
hash tree. The entries in the hash tree are compared with the
actual values of the memory rows to identify bit flips.

These counter-based countermeasures target microproces-
sors. Therefore, they cannot identify which malicious IPs on
the FPGA are launching the attack. Our proposed approach
leverages the reconfiguration ability of the FPGA to imple-
ment an immediate solution to the attacks that are launched
from the FPGA IPs.

IV. MOTIVATION

Methods to secure memory in ASIC chips using
counter-based countermeasures have been previously
proposed [11], [13], [14], [29]. However, securing SoCs

with FPGAs against rowhammer attacks using our proposed
security monitor is particularly important due to the following
reasons.

1) Identify the Source of Attack: The methods in [11], [13],
and [29] monitor memory access requests. When a
certain threshold on the number of memory access
requests to a specific row is reached, the victim rows
are refreshed. However, these methods do not iden-
tify the source of the attack. Thus, since the source
of the attack is not identified, the attack persists in the
system. Moreover, these countermeasures can reduce the
performance of the overall system due to the repetitive
refresh cycles applied to victim rows. Current memory
modules waste 1.4%-35% of their operation time on
memory refreshes [16]. The proposed approach avoids
performance degradation due to persistent attacks by
identifying the attackers.

2) Ability to Detect Double-Sided Rowhammer Attacks:
Unlike counter-based measures [11], [29], the proposed
approach does not keep an exclusive counter for each
row. We monitor if any row is invoked more than twice
within a fixed window. All repetitive accesses to all
the rows are captured within a specific sliding window.
Therefore, our approach can detect both single-sided
and double-sided rowhammer attacks. A single-sided
rowhammer attack requires repetitive access to the same
specific row. A double-sided rowhammer attack requires
repetitive access to the same two neighboring rows. In
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our proposed approach, any repetitive access to any row
within a specified window is flagged as a rowhammer
attack. Thus, a double-sided rowhammer attack can be
detected.

3) Monitor Noncacheable Transactions: The connection
between the microprocessor and the SDRAM is
cacheable. Thus, the detection of rowhammer attacks
launched by the microprocessor can be detected by
monitoring the cache miss patterns [9], [10]. However,
some transactions that are issued from IPs to the
SDRAM controller, and implemented on FPGAs, are
noncacheable. Thus, there is a need for monitors imple-
mented on FPGAs to exclusively monitor these non-
cacheable transactions.

A common practice to secure SDRAM memory used
in FPGASoCs is to use an error-correcting code (ECC).
Such ECC-based solutions were previously believed to secure
SDRAM against rowhammer attacks [16]. However, the work
in [30] shows that ECC can be bypassed by the Rowhammwer
attackers.

V. THREAT MODEL

In an FPGA-SoC, FPGAs can be configured with malicious
3rd party IPs (3PIPs) that can be one or more of the following
types.

1) Implemented by untrusted vendors.

2) Altered during data transfer between the vendor and the
FPGA, even if bitstreams are secured with encryption
and authentication mechanisms. Bitstream encryption
and authentication can be compromised by side-channel
analysis [31]-[33]. In addition, side-channel analysis
attacks can be remotely launched when the FPGA is
shared among multiple tenants [34].

3) Injected with hardware Trojans that skip detection
during the verification phase to launch rowhammer
attacks [35].

We assume that the integration of the IP within the system
is performed using trusted design-automation tools, and
that the FPGA fabric is trusted. Therefore, the FPGA-to-
microprocessor SDRAM interface and the security monitors
are trusted. They cannot mask the rowhammer behavior of the
malicious IPs. We assume that the 3PIPs are provided as bit-
streams. Hence, the system integration tools do not have access
to their HDL code. Thus, their code cannot be inspected for
rowhammer activity. Also, these IPs do not require root priv-
ileges to launch rowhammer attacks. They can cause bit flips
by repetitively requesting to read memory addresses that lie
within their legitimate memory space in user mode [23].

VI. PROPOSED COUNTERMEASURE

The proposed security monitor, implemented on the
FPGA fabric, observes the FPGA-to-microprocessor SDRAM
memory-access transactions that are sent from IPs to each
bank of the microprocessor SDRAM (see Fig. 1). SDRAM
can include multiple banks to allow simultaneous memory
access. The monitor determines which chip and bank each
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Fig. 1. Integration of our proposed security monitor in FPGA-SoC.

input address belongs to, and assigns the address to a spe-
cific sliding window W that corresponds to a specific chip
and bank. The sliding window W for each SDRAM bank is
a buffer that stores the row-address requests to each bank. It
has a size of . If a row address in the same memory bank is
repeated for a prespecified threshold of Ny, times among the ¥
addresses, the monitor raises a rowhammer alarm and blocks
the IPs that requested access to the repeated row address. The
monitor blocks these malicious IPs by asserting a block sig-
nal to “1.” This block signal is used to clock-gate the clock
that synchronizes the operations of the malicious IPs. Note
that given this setup, since the security monitor only listens to
the signals associated with the FPGA-to-SDRAM interface, it
does not make assumptions about the internal design of the
IP.

In addition, in FPGAs that support partial reconfiguration,
this block signal can control the FPGA configuration man-
ager to remove the configuration of the malicious IPs from
the FPGA. Partial reconfiguration is a feature of current-
generation FPGAs that allows only a partition of the FPGA
to be configured without interrupting the activity of the IPs
configured on the rest of the FPGA [36]. Thus, the operations
of the malicious IPs are halted when the IP block signal is
asserted.

We select the values of Y and Ny, for single-sided rowham-
mer attacks according to the criteria proposed in [14] as
follows. Kim et al. [16] investigated the effect of SDRAM
activation interval (Al) at a refresh interval of 64 ms, which
represents the time interval between the subsequent activa-
tions of the same row, and the number of induced bit flips.
The results in [16] show that in the case of a single-sided
rowhammer attack, when A/ is equal to 500 ns, no bit flips are
induced. This observation can be justified as follows; when a
target row is activated once within 500 ns, the maximum num-
ber of row activations of this target memory address per the
refresh interval of 64 ms is equal to 64 ms/500 ns = 128 K.
According to the results of SDRAM characterization in [16],
the minimum number of memory activations per row required
to launch a successful single-sided rowhammer attack is 139 K
activations per the refresh interval. Thus, the 128 K activations
per the target memory row are smaller than the minimum num-
ber of activations per memory row that is required to cause bit
flips in the SDRAM chip [16]. Therefore, we select Ny, = 2.

We determine the value of i as follows: ¢ = Al/t,., where
tye is called row cycle time, which is the time taken by the
memory to activate a row. In this work, we consider #,, = 50 ns
[14], [37]. Therefore, within a 500-ns interval, a maximum of
ten row activations are possible. Thus, we select the minimum
value of ¥ = 10.
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Fig. 2. Flowchart for the operations of the proposed security monitor observing an IP with an AXI interface. R;: Ry corresponds to the indices of the row
address within the physical address, where n + 1 is the number of row address bits.

For double-sided rowhammer attacks, a fewer number of
memory activations within the activation interval is required
to launch the attack. According to [13], 69 K activations
are required in 64 ms. Therefore, to support the detection of
double-sided rowhammer attacks, we consider Al = 1000 ns,
and we double the size of the sliding window ¥, to ensure
that the number of activation per memory row does not exceed
69 K. The maximum number of allowed activations per row
under this policy is 64 ms/1000 ns = 64 K, which is lower
than 69 K activations required per row to successfully launch
double-sided rowhammer attacks.

Memory-access requests during both read and write oper-
ations can contribute to rowhammer attacks [38]. Therefore,
we monitor the memory transactions during both read and
write operations. The inputs to the monitor are as fol-
lows: 1) clock and reset signals that drive the FPGA-to-
microprocessor SDRAM interface; 2) addresses requested by
the configured IPs during the read and write operations that are
sampled at the positive edge of the FPGA-to-microprocessor
SDRAM interface clock (ARADDR; and AWADDR;, respec-
tively); 3) signals that represent the validity of the sampled
addresses requested during the read and write operations,
ARVALID,; and AWVALID,, respectively; and 4) signals that
indicate that the SDRAM is ready to accept read and write
addresses, ARREADY and AWREADY, respectively. The out-
put of the security monitor is a signal called “Block;p,” which
blocks the attacking IP.

The configured IPs might not request a read or write address
every clock cycle (i.e., ARVALID; = 0 and AWVALID,; = 0).

In addition, there is likely to be a mismatch between the
IP’s operating frequency and the frequency of SDRAM row
activation. For example, the IP and FPGA-to-microprocessor
SDRAM clocks can have a time period () of 5 ns and #,.
of 50 ns. Therefore, the sliding window W that keeps track of
the memory transactions should not increment its indices by
t,c when an address is not received, in order to ensure that the
delay between the first address and the last address in the slid-
ing window is at least 500 ns. We achieve this in the monitor’s
design by updating the indices of the sliding window W based
on a timer count that accumulates the time that has elapsed
(in ns) from the capture of the first address of the sliding win-
dow. Count is incremented every clock cycle by #,. only when
a valid memory address is requested; otherwise, it is incre-
mented by the value of the clock period. We increment based
on the faster clock, if different IPs have different operating
clock frequencies. A flowchart that describes the operations
of the proposed monitor is shown in Fig. 2.

It is important to note that we propose a reconfigurable
monitor that observes the memory transactions to identify pos-
sible rowhammer attack attempts. Therefore, it can be used
with any integrated circuit that accesses DRAM memories.
In this work, we particularly focus on securing FPGA-SoCs
against rowhammer attacks that are launched from FPGAs
because countermeasures against these attacks are lacking.
Compared with performance counter-based countermeasures,
our proposed method is particularly useful to detect rowham-
mer attacks that are launched by noncacheable memory trans-
actions. These memory transactions do not involve caches.
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Therefore, the proposed method can be used when rowhammer
attacks cannot be detected by monitoring performance counter
metrics such as cache-miss rate.

A. Effect of Changing the IP Operating Frequency

The memory access rate is bounded by the speed of memory
row activation. For example, if an IP has a higher frequency
than the memory controller, multiple memory addresses will
be queued. If an IP has lower frequency and requests memory
access at intervals of more than A/, a rowhammer attack cannot
be launched. Designs that run at higher frequency (i.e., can
issue more than two similar memory requests within AJ) can
launch rowhammer attacks.

B. Detection of Stealthy Colluding IPs

We consider the scenario where multiple IPs request access
to the same memory bank at the same time in the presence
of multiport memory controllers [7]. The memory controller
will schedule the memory accesses one after the other. An
example of colluding IPs is as follows. We consider that 3PIPs
from different manufacturers can collude through malicious
software controlling the different IPs. For example, if 3PIPs
accept the target addresses as inputs, the malicious software
can instruct the 3PIPs to access repetitive memory addresses.

The proposed monitor can be implemented independently
for each IP on the FPGA. However, independent monitors
cannot capture the operation of stealthy IPs that collude to
launch a rowhammer attack. As shown in Fig. 3, an inde-
pendent monitor for IP1 and IP2 will consider each IP to be
benign because within the sliding window of ten addresses for
each IP, no row address is repeated twice. However, a central-
ized monitor can detect that some addresses are repeated twice
as they are accessed by each IP once. Therefore, a combined
attack launched by IP1 and IP2 can only be detected in the
presence of a centralized monitor. We design the monitor to
give IPs priority according to numbers provided by the system
integrator. For example, in Fig. 3, we assume that the memory
serves one request from each IP starting from IP1.

We identify the attacking IP by assigning a block signal
to each attacker. The block signal is assigned a value of “1,”
when an IP attempts to access a row address more than once
within a sliding window of addresses of size .

To detect colluding attackers, we consider the scenario that
only the IP that requests the second request to the memory
address is considered as an attacker. For example, in Fig. 3,
only IP2 is considered as an attacker by the proposed security
monitor. We adopt this scenario because if we alternatively
consider both IP1 and IP2 as attackers, IP2 can deliberately
access addresses that have been previously requested by IP1
to trigger the blocking of IP1 by the security monitor, and
thereby, cause denial of service.

C. Memory-Access Policy for Benign IPs

The proposed security monitor blocks an IP if it attempts to
access a row address more than once in a sliding window with
Y consecutive memory transactions. Therefore, we propose the
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Fig. 3. Example of stealthy IPs. If IP1 and IP2 are monitored independently,
they will be regarded as benign IPs, even though they are colluding to launch
a rowhammer attack on the SDRAM.
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Fig. 4. Simulation of the operations of the monitor. (i) IP requests the access
to the address “2e000000” during the read operation and sends a write request
to the same address in the next clock cycle. (ii) Block signal is asserted to “1.”

following memory-access policy to be utilized by benign IP
vendors to avoid the blocking of their IPs.

1) No row address can be accessed by a benign IP more
than once during a sliding window of size yr. Section VI
explains this choice of .

2) Multiple IPs that belong to the same vendor cannot
access the same row address more than once during a
sliding window of size V.

With this memory-access policy, we can ensure that: 1) the
number of false positives is zero because only malicious IPs
will attempt to access the same row addresses more than once
within the specified window and 2) the number of false neg-
atives is zero because no IP can issue rowhammer access
patterns without detection. Note that if a malicious IP adopts
the policy for benign IPs, its memory-access behavior will not
cause bit flips. Thus, it will be considered to be secure as far
as rowhammer attacks are concerned.

VII. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Platform

We use Mentor Graphics ModelSim to simulate the behav-
ior of the proposed security FPGA-to-microprocessor SDRAM
monitor in the presence of malicious FPGA IPs. We evalu-
ate the FPGA utilization of the proposed monitor using Intel
Quartus II. We configure the synthesis tool in Quartus II
to optimize the design for area. We demonstrate the effec-
tiveness of the proposed monitor to detect malicious IPs on
the SDRAM using an Intel DE1SoC board with a Cyclone
V FPGA. The physical address is mapped in sequence into
chip select, row address, bank address, and column address.
We consider the presence of one-bit chip select, 15-bit row
address, 3-bit bank address, and 10-bit column address [7].

B. Detection of Malicious IPs That Connect to the SDRAM
Using AXI Interface

We simulate the operations of the malicious IP proposed
in [8], which requests a read operation from addresses
“2e000000” followed by write operation to the same address.
As shown in Fig. 4, when the monitor observes the repeated
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Fig. 5. Simulation of the localization of attacking IPs and the detection of
colluding attackers. (i) IP1 requests the access to memory address “2e200800”
and IP2 requests access to memory address “2e200800” one clock cycle after
IP1’s request. (ii) IP2 is blocked. (iii) IP1 and IP3 continue their operations
normally.
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Fig. 6. Simulation of the proposed monitor successfully blocking a single
rowhammer attack in the Avalon-MM interface. (i) IP repetitively requests
read from the same row address. (ii) IP is blocked.

row address requested by the malicious IP, a block signal is
asserted that blocks the operations of the malicious IP.

C. Identification of the Attackers That Connect to the
SDRAM Using AXI Interface

We simulate the behavior of three IPs and identify the
attacking IP, as shown in Fig. 5. In Fig. 5(i), IP1 first requests
the access to memory address “2e200800”; then IP2 requests
access to memory address ‘“2¢200800” one clock cycle after
IP1’s request. Therefore, IP2 is blocked.

D. Identification of the Attackers That Connect to the
SDRAM Using Avalon-MM Interface

The simulation result for single rowhammer attacks
launched in the Avalon-MM interface is shown in Fig. 6. The
attack is launched by requesting two continuous read opera-
tions on the same address 2ed00000. After the second request
on 2ed00000 is detected, the monitor immediately asserted the
block signal, disabling this potentially malicious IP.

E. Identification of the Attackers That Connect to the
SDRAM Using Avalon-MM Interface

We simulate the behavior of six IPs and identify the attack-
ing IP, as shown in Fig. 7. In Fig. 7(i), similar to Fig. 5, IP1
first requests the access to memory address “2e200800; then
IP2 requests access to memory address “2e200800” one clock
cycle after IP1’s request. Therefore, IP2 is blocked.

F. Hardware Demo

We demonstrate the effectiveness of the proposed coun-
termeasure with a hardware demo on DE1SoC board with
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Cyclone V (5CSEMASF31C6) FPGA. The demo can be
accessed in [39]. The proposed approach can be implemented
in any Intel or Xilinx SoC board, for example, Xilinx Zyng-
7000 SoC [5] and Intel Arria V Cyclone V [4] and Stratix
10 [40]. As shown in Fig. 8, the sliding window of the moni-
tor is implemented as a buffer. The presence of repeated row
addresses is determined by the presence of XNOR gates that
compare the memory requests at each clock cycle to each
entry in the buffer. The system integrator connects the outputs
of each IP that is connected to the FPGA-to-microprocessor
SDRAM interface to the inputs of the monitor. At each
clock cycle, the ARADDR, AWADDR, ARVALID, AWVALID,
ARREADY, and AWREADY of each IP are inputs to the
monitor.

We configure the malicious IP implemented in [8] on the
FPGA. This malicious IP attempts to launch rowhammer
attacks on the shared SDRAM from the FPGA. The malicious
IP is connected to the shared SDRAM controller through the
FPGA-to-microprocessor SDRAM interface. This connection
is configured using Intel Quartus Qsys as shown in Fig. 9.
We observe the number of bit-flips in the SDRAM in the
absence and presence of the proposed monitor as shown in
Fig. 10(a) and (b), respectively. Fig. 10(a) shows one bitflip
at memory address “00d6ab7” in the absence of the proposed
monitor. Fig. 10(b) shows that when the proposed monitor
is configured on the FPGA and activated, the rowhammer
attack is detected and the malicious IP is blocked before it
succeeds in causing any bit-flips. In order to observe the
operations of the proposed monitor, we use the SignalTap
IT Logic Analyzer tool in Intel Quartus to observe the val-
ues of the requested memory addresses and the value of the
block signal. The details of the monitor’s operations are shown
in Fig. 11.

G. Evaluation of the Area Overhead of the Proposed
Monitor

We investigate the area overhead of the proposed security
monitor in terms of the number of the FPGA adaptive logic
modules (ALMs). The ALM is the basic building block of
Intel Cyclone V FPGAs, which includes full adders, a carry
chain, a register chain, and a 64-bit LUT. In Intel Cyclone V,
which is used in our experiments, the FPGA-to-microprocessor
SDRAM interface has six command ports and four read and
write ports. We consider as a proof of concept, master IPs that
send a single data transfer per transaction (i.e., nonbursting
transfers) on AXI and Avalon-MM interfaces.

1) AXI Interface: The AXI interface can simultaneously
handle read and write commands. Therefore, using the AXI
interface implementation, a maximum of three IPs can be
configured to access the SDRAM in Cyclone V FPGAs.
Hence, we investigate the area overhead of the monitor that
observes the read and write memory transaction to a memory
bank when one and three IPs are configured, respectively.
The Quartus II utilization report shows that the monitor that
observes one (three) IP (IPs) to detect single-sided rowhammer
attacks utilizes 383 (1320) ALMs, respectively, which consti-
tutes an ALM utilization of only 1.2% (4.1%) for one memory
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Fig. 7. Simulation of the proposed monitor successfully blocking a rowhammer attack in the Avalon-MM interface. (i) IP repetitively requests read from
the same row address. (ii) IP2 is blocked. (iii) IP6 is not blocked even though it sends a read request to the same row address as IP5 because the requested
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Fig. 8. Setup of the hardware demo for the proposed countermeasure.

bank. The ALM utilization for the detection of double-sided FPGAs. Thus, we evaluate the area overhead of the monitor
rowhammer attack for one (three) IP (IPs) is 585 (2013), which  for listening to one and six IPs. The monitor that listens to one
constitutes 1.8% (6.3%) overhead for one memory bank. (six) IP(s) to detect single-sided rowhammer attacks utilizes

2) Avalon-MM Interface: Since the Avalon-MM interface 119 (1246) ALMs, respectively, which constitutes an ALM uti-
does not allow simultaneous read and write commands, a lization of only 0.37% (3.9%) for one memory bank. The ALM
maximum of six IPs can be configured in the Cyclone V utilization for the detection of double-sided rowhammer attack

Authorized licensed use limited to: Duke University. Downloaded on August 15,2022 at 23:02:19 UTC from IEEE Xplore. Restrictions apply.



2060

1= SystemContents % | Address Map ‘ Interconnect Requirements |
~ W system:system.ac_iface Path: IP.altera_axidlit=_master

u_‘ Use  Connections Name

uy . windowed_siave

X

=

DIEEEEE

- i ACLK

v T ARESETn

= Itera_axidite_s.
ACLK_S
ARESETNn_S i

version_id Hard processing
[222hes __1—"system with shared
<4 memor Y SDRAM
< hps_io
haf_reset FPGA-to-
f2h_sdram0_dlock microprocessor
Ao viats SDRAM interface
to SDRAM
controller
Fig. 9. Illustration of how the IP is connected to the SDRAM through the

FPGA-to-microprocessor SDRAM interface in Intel Quartus Qsys.

(b)

Fig. 10. Memory bitflips in the (a) absence and (b) presence of the proposed
countermeasure.

for one (six) IP(s) is 181 (1918), which constitutes 0.56%
(6.0%) overhead for one memory bank.

When a single IP communicates with the SDRAM through
Avalon-MM interface, the secure monitor utilizes fewer ALMs
compared to when an AXI interface is used. This observation
can be attributed to the fact that the Avalon-MM interface
has only one address signal that is shared between the read
and write operations. In contrast, the AXI interface has two
address signals. One address signal is dedicated for the read
operations and the other one is dedicated for the write oper-
ations. Therefore, the monitor for the Avalon-MM interface
compares only one address to the saved addresses, while the
AXI monitor compares two.

Since DRAM chips have multiple banks, e.g., four or eight
banks [41], the estimated area overhead for monitoring all
the banks might not be practical for FPGAs with limited
resources. Therefore, we propose to restrict IPs implemented
on the FPGA to access a limited number of banks. The num-
ber of DRAM chip banks that the IPs are allowed to access
depends on the logic utilization for each IP, so that the FPGA
can fit the IPs and the monitors at the same time.

H. Power Overhead Estimation

In addition to adding a small area overhead, the proposed
monitor also consumes additional power. We estimate the
power overhead using the PowerPlay Power Analyzer in the
Intel Quartus toolchain. The default toggle rate for I/O signals
is set as 12.5%.

1) AXI Interface: The monitor that listens to one (three)
IP(s) to detect single-sided rowhammer attacks consumes

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 7, JULY 2022

424.34 (433.97) mW. The power consumption for the detec-
tion of double-sided rowhammer attack for one (three) IP(s) is
424.33 (433.91) mW. To further understand the data reported,
we estimate the power of a single inverter with the same set-
tings as 419.30 mW. We treat this as the baseline power, i.e.,
the power consumption of an empty FPGA fabric without any
programmed logic, to maximize the estimated percentage over-
head. Then, the single-sided rowhammer monitor that listens
to one (three) IP(s) consumes 5.04 (14.67) mW additional
power and 1.20% (3.50) of the baseline, while the double-sided
rowhammer monitor that listens to one (three) IP(s) consumes
5.03 (14.61) mW additional power and 1.20% (3.48) of the
baseline.

2) Avalon-MM Interface: The monitor that listens to one
(six) IP(s) to detect single-sided rowhammer attacks consumes
421.92 (435) mW. Compared to the baseline power of the
FPGA fabric, it consumes 2.62 (15.7) mW additional power
when listening to one (six) IPs and 0.62 (3.74) % of the base-
line. The power consumption for the detection of double-sided
rowhammer attack for one (six) IP(s) is 421.91 (434.98) mW.
Compared to the baseline power of the FPGA fabric, it con-
sumes 2.61 (15.68) mW additional power when listening to
one (six) IPs, 0.62% (3.74) of the baseline.

1. Comparison With Prior Work

Prior counter-based rowhammer detection approaches report
their area overhead using different metrics. For example, [11]
reports the area overhead as the percentage of the DRAM
chip die area, while [14] reports only the number of bits
that are required to store the hash tree used to determine the
number of bit flips; it neglects the memory controller mod-
ule that implements the sliding window approach to identify
vulnerable memory rows. As a result, it is difficult to conclu-
sively determine which method has the lowest area overhead.
In Table III, we compare our proposed approach to prior
work. The proposed approach is the only counter-based coun-
termeasure that targets the security of SoCs against attacks
launched from the FPGA. It can be immediately implemented
in FPGA-SoCs available in the market. It is also the only
method that utilizes FPGAs to provide security; thus, the
added overhead is temporary and depends on the presence of
IPs that access the SDRAM through FPGA-to-microprocessor
SDRAM. Moreover, the proposed security monitor is the only
approach that can identify the attacker IP on the FPGA and
detect the attack early enough such that the victim rows do
not require refreshing.

J. Evaluation of Overhead Due to Memory-Access Policy

In Section VI-C, we proposed a memory-access policy for
benign IPs to eliminate potential false positives for our moni-
tor. For some IPs, the policy can impose additional overhead in
memory operations. In this section, we evaluate this overhead
by investigating the memory access patterns of three designs
that are representative of typical IPs accelerated on FPGAs:
1) machine learning [42]; 2) cryptography [43]; and 3) com-
munications [44]. All three IPs can directly access SDRAM
through the FPGA-to-SDRAM interface. In this article, the
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TABLE III
COMPARISON WITH PREVIOUS COUNTERMEASURES
Proposed
[13] [11] [14] [29] method
Location of Counter Register Clock DRAM chip Memory Controller Memory Controller FPGA
driver and DRAM chip and DRAM Chip
Attacker Identification X X X X v
Overhead 2.71KB per 1GB 1.29%-5.2% 1820-8184 bits on DRAM chip 0.0375% of 6.3% FPGA
(DRAM bank) (DRAM die area) | + non-evaluated checker overhead main memory utilization
Permanent/Temporary Overhead Permanent Permanent Permanent Permanent Temporary
Victim Row Refresh Required ? v v v v X

designs studied are implemented by different developers to
avoid any bias in the evaluation.

We set up the experiment as follows: in the worst case, each
IP requires access to the SDRAM every clock cycle. A possi-
ble example of this scenario would be an IP that reads a value
from a sensor and writes to the same memory address. For
example, if it reads a new value every 50 ns into the same
address, we suggest that it alternates between different loca-
tions. Thus, a maximum of 20 row addresses per IP need to
be reserved to protect against double-sided rowhammer. These
addresses constitute negligible overhead compared to the num-
ber of row addresses per memory bank, which is in the order
of 8K—64K row addresses per bank, depending on the memory
size.

If multiple IPs share the same memory location, it is more
efficient to communicate through shared on-chip SRAM—
which is not vulnerable to rowhammer—instead of SDRAM.
For example, in the scenario when multiple IPs need to poll
a specific memory address, a top module can be inserted to
poll that memory address once and load its value inside an

SRAM cell where all the other IPs can access without the risk
of rowhammer attacks.

1) SVM Accelerator: Since machine-learning acceleration
on FPGAs is becoming increasingly popular, we also investi-
gate the memory access patterns of a support vector machine
(SVM) accelerator [45]. We simulate the SVM accelerator in
ModelSim and monitor the memory access patterns. The accel-
erator accesses three RAM memories during its operation.
Two RAM memories hold the values of the input image to
be classified and the support vectors. As shown in Fig. 12, the
accelerator does not access repeated addresses. Therefore, if
the SVM accelerator accesses SDRAM, enacting the proposed
policy will not add any additional overhead. The accelerator
also accesses a specific address in the third RAM for one
cycle and keeps the address signal assigned to the same value
for multiple consecutive clock cycles. During these multiple
consecutive clock cycles, the returned data from RAM3 are
constant. In this case, if this RAM is implemented in SDRAM,
the address will be read once from the SDRAM and then
the ARVALID will be deasserted and the read data will be
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Fig. 14. Memory-access patterns during the operation of the turbo-code interleaver core.

stored in an on-chip SRAM for repetitive access during the
rest of the clock cycles. This strategy will require us to reserve
only one memory location on the on-chip SRAM to store
the data that is read from the SDRAM. Thus, the proposed
memory-access policy incurs negligible overhead in practi-
cal scenarios. Also, even if the SVM accelerator developers
do not implement the proposed memory-access policy, the
proposed monitor will block rowhammer attacks with 0% false
positive rate.

2) SHA-1 Hash Core: In addition, we simulated the
memory access behavior of a SHA-1 hash core [46] to deter-
mine its overhead under the proposed policy. A SHA-1 hash
core implements a widely used hash algorithm to authenticate
transferred data. It is usually connected as a peripheral com-
ponent in an SoC via a bus interface. Based on the simulated
memory-access pattern, we determine if the proposed policy
imposes any overhead.

The implementation of SHA-1 core in [46] constitutes a
wrapper that implements an on-chip SRAM memory array to
store the block data to be hashed. This SRAM memory array
is populated with data from a testbench. Next, the SHA-1 core
reads the block data from the SRAM memory locations. The
testbench waits for the SHA-1 core to finish its processing
before it starts reading the output of the SHA-1 core.

In our evaluation, we consider the testbench as a process
running on the microprocessor that writes the block data to
different location in the SDRAM memory. We also consider
that the SHA-1 core is implemented on FPGA and acce-
ses the SDRAM through FPGA-to-microprocessor SDRAM
interconnect. We are interested in the addresses that the test-
bench accesses. In practical scenarios, these addresses are
equivalent to the SDRAM memory addresses that the SHA-1
core accesses to read the data to be hashed.

Fig. 13 shows that the testbench writes to a sequence of
different SRAM memory locations (from 0x00 to 0x 1f) with
no repetition, and then waits for a ready signal to be asserted.
During the phase when it is waiting for the ready signal, it
accesses the same location multiple times. In practical sce-
narios, the read valid signal will be deasserted during this
waiting phase. Thus, this behavior will not alert the monitor
at the FPGA side to block the SHA-1 core; the SHA-1 core
only accesses nonrepetitive memory addresses to read the data
to be hashed. After the SHA-1 core finishes its operations,
it writes the ready signal to a specific memory location and
starts writing the output of the hash operations to nonrepeti-
tive memory locations in the SDRAM memory. Since memory
addresses are not repetitively accessed during the operations of
the SHA-1 core, the proposed monitor incurs 0% false positive

rate even if the SHA-1 developers do not follow the proposed
benign memory-access policy.

3) Turbo-Code Interleaver: The third IP that we evalu-
ate is a custom-designed interleaver component in a turbo
encoder [47]. The turbo encoder is an essential compo-
nent in modern communication systems. The interleaver is a
subcomponent in the encoder that carries out encryption func-
tions. The interleaver implementation performs encryption by
accessing precomputed values stored in two RAMs. In theory,
these RAMs can be local SRAMs. However, we consider the
case that a high throughput is needed [4]; therefore, SDRAM
is used.

Upon boot, the interleaver first writes precomputed patterns
to two RAMs, and then performs encoding by reading from
these RAMs. The signals of interest in our experiment are
the memory addresses of the two RAMs. We evaluate their
memory-access behavior in the encoding of a code block. In the
simulation, the interleaver first writes to a sequence of different
memory locations addressed by a counter that increments by 1
every cycle, and then reads from different locations to perform
encryption. The addresses associated with reading are related
to the input from the previous subcomponent. After analyzing
the sequence of memory locations in Fig. 14, we conclude that
there is no overhead associated with the proposed policy for the
turbo interleaver because it does not access the same memory
location. In addition, in the scenario, when the turbo interleaver
developer does not implement the proposed memory-access
policy, the false positive rate will be 0%.

To verify that the experiments we performed in simula-
tion match the real scenario onboard, we demonstrate further
that when the turbo-code interleaver IP is programmed on the
DE1-SoC together with our proposed monitor, it can perform
normal operations. We show our test setup in Fig. 15 and the
SignalTap capture of internal signals in Fig. 16.

The IP under test is an automated test setup that reads inputs
from a test-input memory, feeds the inputs to the turbo-code
interleaver system, and then compares the outputs with a set
of golden outputs stored in another memory. We add the mon-
itor similar to the simulation setup: two monitor instances
listen to the memory transactions of two internal memory
blocks of the turbo-code interleaver. The reset signal and the
start-test control signal of the IP are programmed to switches
onboard and the block signals of the two monitors are NORed
and mapped to a LED onboard, so that if any of the block
signals become high, the LED will switch off. During the
entire testing sequence, we do not observe the LED switching
off. This shows that the benign IP memory accesses are not
blocked.
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Fig. 15. Onboard test setup.
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Fig. 16. SignalTap results of the turbo-code interleaver IP programmed onboard with monitors.

We further probe the internal signals of the IP using
SignalTap. As shown in Fig. 16, the test_good signal of the
automatic testing system is always held high, and the blocksig-
nal always held low. We also show the address access patterns.
From this experiment, we conclude that the monitors’ presence
do not interfere with the normal operations of the turbo-code
interleaver. Therefore, we have tested the proposed monitor on
an actual board not only in simulations. To control the effect
of temperature in real-life systems, we suggest that the system
administrators control the die temperature to lie within a fixed
range. The die temperature can be monitored through on-chip
temperature sensors. There are built-in sensors in almost all
FPGAs from different vendors and they can be used to con-
trol the board fan speed. In this way, when our monitor is
integrated, we can make sure we have control over the die
temperature.

It is important to note that the benign memory-access pol-
icy should be enforced even if the proposed monitor detects
rowhammer attacks with false positive rate for the designs
studied in this section. Developers can implement the same
IPs and get FPR that ranges from 0% to 100%. It depends
on how the IP design is implemented to request access to the
SDRAM. Therefore, we propose that the IP developers enforce
the benign memory-access policy to ensure that their benign
IPs are not blocked during their normal operations.

VIII. DISCUSSION
A. Extension to Other Memory Interfaces

In this article, we have shown that our proposed monitor
can be adapted to both the AXI and Avalon-MM interfaces,
two widely used memory interfaces in FPGA-SoCs. Here,
we describe how the monitor can also be extended to other
interfaces that may become popular in the future.

In essence, the proposed monitor requires information on:
1) address of a memory transaction; 2) whether the trans-
action is a read or a write; and 3) validity of the memory
transaction. Since these pieces of information are essential to
define a memory transaction, they should be available in all
memory interfaces. Therefore, following the examples on AXI
and Avalon-MM, we can easily adapt the proposed monitor by
mapping the corresponding signals given the three categories
listed above. Whether the memory interface allows simultane-
ous read and write transactions is another consideration that
we also demonstrated in the comparison between AXI and
Avalon-MM interfaces.

B. DDR3 Versus DDR4

While our monitor is developed based on prior work on
DDR3 memory, we believe that it can adapt to new attacks
on more recent DDR4 memory. Although DDR4 was initially
thought to be secure against Rowhammer attacks, a recent
attack, TRRespass [48] successfully launches Rowhammer
attacks on DDR4 using more than two aggressor rows.
Nevertheless, the strategy that our monitor uses, i.e., checking
for repeated accesses on a single row, will still be applicable to
this new attack with a few adaptations in the sliding window
size and detection logic. However, this adaptation will increase
the area and power consumption overhead of the proposed
monitor. In addition, the false positive rate might increase.
We will address these issues in details as part of future work.

C. Complete Halting of Malicious IPs Versus TRR

In some scenarios, the system administrators can choose
between complete halting of malicious IPs and the launch of
TRR cycles. Our proposed approach presents a conservative
method to prevent increased power consumption that results
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from the repetitive launching of TRR cycles, especially in
power-restricted platforms. However, the launching of TRR
cycles can be a valid solution in systems with relaxed restric-
tions over power consumption. Thus, we suggest an adaptive
countermeasure policy. System administrators can configure
the security monitor to block suspicious IPs if there are severe
limits on power consumption. For example, in systems that run
on batteries, if batteries are less than 40% charged, the secu-
rity monitor should block any attacking IPs. Otherwise, the
security monitor can force TRR cycles.

IX. CONCLUSION

We have presented an effective and efficient countermeasure
against rowhammer attacks in FPGA-SoCs. This approach is
based on an FPGA-to-microprocessor SDRAM security mon-
itor that guarantees the detection of the rowhammer-attack
attempts launched from the FPGA before the rowhammer
effect is propagated to the DRAM chips. The proposed moni-
tor utilizes only 6.3% of the Cyclone V FPGA ALM:s for one
memory bank when either AXI or Avalon-MM interfaces are
used with nonbursting transfers. It can also be immediately
integrated in current FPGA-SoCs.
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