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Abstract—Heterogeneous SoCs integrate FPGAs and micro-
processor cores on the same fabric to accelerate applications,
such as cryptography and deep learning. Since FPGAs share
resources with the microprocessor cores, they can launch non-
cacheable synchronous DRAM (SDRAM) transactions through
direct FPGA-to-microprocessor SDRAM interface. Therefore,
if the FPGA 3rd party IPs (3PIPs) are malicious, they can
launch rowhammer attacks on the SDRAM. Today’s counter-
measures based on performance counters cannot detect these
attacks because memory transactions from FPGAs do not pass
through the cache. In addition, today’s countermeasures that
count the frequency of activation of memory rows cannot identify
the intellectual property (IP) that launches the attack from the
FPGA. We present a security solution that monitors the SDRAM
transactions from IPs on the FPGA to each bank of the micropro-
cessor SDRAM through the FPGA-to-microprocessor SDRAM
interface. The proposed monitor is implemented on the FPGA
fabric. It can detect attempts to launch a rowhammer attack
before it causes bit flips in the SDRAM. It utilizes 6.3% of the
adaptive logic modules (ALMs) available in an Intel Cyclone V
FPGA, when multiple IPs are monitored.

Index Terms—Computer security, memory, synchronous
DRAM (SDRAM), system-on-chip.

I. INTRODUCTION

W
ITH the increasing popularity of Internet-of-Things

(IoT) and machine learning-based applications [1], [2],

FPGA-SoCs are being developed to meet the growing need

for powerful and energy-efficient computing platforms. These

SoCs integrate general-purpose microprocessors, FPGA, and

other intellectual property (IP) blocks [3]. Security is already

an important consideration for such systems; however, current

countermeasures are not sufficient to ensure that the untrusted

IPs that are dynamically configured on the FPGA cannot

maliciously impact trusted IPs.
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In an FPGA-SoC, the IP blocks implemented on the

FPGA fabric share resources with microprocessor cores.

Intel refers to a microprocessor core as the hard pro-

cessor system (HPS), while Xilinx calls it the processing

system (PS). In many Intel and Xilinx FPGA-SoC prod-

ucts, the FPGA accesses the microprocessor synchronous

DRAM (SDRAM) either through cache-coherent interconnects

or directly through cache-incoherent interconnects [4]–[6].

The noncache-coherent interconnects between the FPGA and

the SDRAM can allow IPs to directly access the physi-

cal address space of the SDRAM [4]. In addition, in SoCs

with FPGAs, physical address to row address mapping is

clearly documented in the technical manuals published by the

manufacturers [7]. Therefore, these malicious IPs can launch

rowhammer attacks by repetitively accessing specific SDRAM

rows, which can result in bit flips in neighboring rows [8].

Prior work detects rowhammer attacks by monitoring the

cache-miss rates recorded by the performance counters in

a microprocessor [9], [10]. However, in FPGA-SoCs, the

FPGA IPs can access microprocessor SDRAM directly with-

out accessing the cache. Therefore, a rowhammer attack can

be launched from these IPs without affecting the cache-miss

rates. Counters can be integrated in the DRAM chip or in the

memory controllers to measure the frequency of access to each

memory row [11]–[14]. These countermeasures cannot iden-

tify the attacking IP. Thus, the attack will remain active, and

the victim memory rows will be continuously refreshed.

FPGA-SoCs are currently integrated in critical applications,

e.g., avionics applications [15] and in the automotive indus-

try [2], while current countermeasures cannot secure these

applications against rowhammer attacks. Therefore, we propose

a security countermeasure against rowhammer attacks that can

be integrated in the FPGA-SoCs that are available in the market.

We present an FPGA-to-microprocessor SDRAM security mon-

itor that observes the memory transactions between the FPGA

IPs and SDRAM within a sliding window of ψ addresses.

This monitor detects and blocks malicious IPs that request

Nth accesses to a specific row within ψ consecutive memory

accesses. The value of ψ is determined by the minimum required

duration between two activations of the same row to avoid bit

flips when the row is repetitively accessed, and the time taken by

the DRAM to activate a row. The value of Nth is chosen to ensure

that the number of row activations does not exceed the minimum

threshold for causing bit flips, reported in [16]. As shown in

Section VI, for current DRAM chips, Nth = 2 and ψ = 10 and

20 to detect single-sided and double-sided rowhammer attacks,

respectively. The attack detection and IP blocking occur early
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enough, before the attack modifies the SDRAM contents. Our

proposed approach also identifies stealthy IPs that collude to

launch an attack that is not detected if each IP is monitored

independently.

The main contributions of this article are listed as follows.

1) This is the first method that can detect rowhammer

attacks launched from malicious FPGA IPs. These IPs

can severely compromise the system because they have

direct access to the physical address space of the

SDRAM. The proposed method detects the rowham-

mer before its effect is propagated through the system.

Therefore, refreshing of the victim rows is not required.

2) We propose and evaluate a memory-access policy for

benign FPGA IPs through the FPGA-to-microprocessor

SDRAM interface to avoid false positives.

3) We locate malicious FPGA IPs and identify stealthy IPs

that collude to launch combined attacks on the system.

4) We evaluate the overhead of the proposed security

monitor. It scrutinizes memory requests to a specific

memory bank with maximum FPGA utilization of

only 6.3%.

The remainder of this article is organized as fol-

lows. Section II reviews FPGA-to-microprocessor SDRAM

interconnects in FPGA-SoCs and provides background on

rowhammer attacks. Section III describes related prior work.

Section V describes the target threat model. Section VI

presents the proposed countermeasure and the benign memory-

access policy for the FPGA-to-microprocessor SDRAM

interface in FPGA-SoCs. Section VII describes the simulation

results, hardware demo, and overhead for the FPGA-to-

microprocessor SDRAM security monitor. Finally, we con-

clude this article in Section IX.

II. PRELIMINARIES

A. FPGA-to-Microprocessor SDRAM Interconnects

In FPGA-SoCs, FPGAs and the SDRAM are connected

using cacheable and noncacheable interconnects. We focus on

the noncacheable interconnect, which we refer to as FPGA-to-

microprocessor SDRAM interface. In Xilinx SoCs, it is called

the programmable logic (PL)-to-PS interface. In Intel SoCs,

it is called FPGA-to-HPS SDRAM interface. This interface is

used when high-throughput and low-latency SDRAM accesses

from the FPGA are required. It is configured as an advanced

extensible interface (AXI) interface in Xilinx SoCs and as AXI

or Avalon memory-mapped (MM) interface in Intel SoCs.

1) AXI Protocol: The AXI interfaces allow read and write

operations to occur simultaneously; therefore, two command

ports are used at a time, while Avalon-MM interfaces issue

either a read or write operation at-a-time. The same proposed

countermeasure applies to Avalon-MM interfaces. The basic

AXI control, command, and data signals that are used in this

article and their descriptions are listed in Table I. The AXI

operations during read and write memory transactions are as

follows [17].

When an IP reads data from memory, it performs the

following: 1) assigns address read valid signal (ARVALID)

to “1” and ARADDR to the desired address; 2) ARVALID

remains set to “1” till SDRAM asserts ARREADY to “1”;

TABLE I
RELEVANT AXI BUS SIGNALS AND THEIR DEFINITIONS

TABLE II
RELEVANT AVALON-MM BUS SIGNALS AND THEIR DEFINITIONS

3) assigns RREADY to “1” when it is ready to receive data;

and 4) SDRAM assigns RVALID to “1” to send RDATA.

When an IP writes data to memory, it performs the follow-

ing: 1) assigns AWVALID to “1” and AWADDR to the desired

address; 2) AWVALID remains set to “1” till SDRAM assigns

AWREADY to “1”; 3) assigns WVALID to “1” and WDATA to

the target data; and 4) WVALID remains set to “1” till SDRAM

assigns WREADY to “1.”

2) Avalon-MM Protocol: From a security perspective, the

biggest difference between the AXI and Avalon-MM interfaces

is that Avalon-MM interfaces do not allow read and write oper-

ations to be issued simultaneously. The Avalon-MM signals

that are relevant to the monitor design in this article are sum-

marized in Table II. Read and write operations share a common

address port. They are controlled by two signals, read and

write, which must be asserted separately. As an example, the

master component can set the correct read address and assert

the read signal at cycle 1. If read operations have a fixed

latency of 1 cycle, then, at cycle 2, the master component

can obtain the data read from the readdata port. At cycle 3,

the master component deasserts the read signal and asserts

the write signal, while changing the address to the intended

write address and setting the writedata port. After waiting for

a few cycles, the response for the previous write transfer can

be read [18]. The SDRAM can set waitrequest signal to “1”

when it cannot respond to incoming read or write commands.

When waitrequest signal is set to “1,” the master IP halts all

the transaction to the SDRAM till waitrequest is set to “0” by

the SDRAM [18].

B. DRAM

Each DRAM chip is composed of multiple banks and each

bank is composed of a 2-D array of memory cells that are

arranged in rows and columns. Each row is connected to a

wordline and has multiple memory cells. A typical 1T1C cell

consists of a pass transistor and a capacitor. In current DRAM

implementations, a true cell (anti-cell) stores a bit value of

logic “1” (“0”) when the capacitor is charged and a bit value
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of logic “0” (“1”) when discharged [16], [19]. During a read

or write operation, the wordline connected to the target row

is asserted and the value of the memory cells in the row is

transferred to the row buffer. Since DRAM cells are composed

of capacitors that leak their charge over time, they need to be

continuously refreshed to ensure that they retain their values.

The time interval between the charging cycles of the capacitors

of DRAM cells is called “refresh interval” [16].

C. Rowhammer Attack

The rowhammer attack is caused by the repetitive activa-

tion of specific DRAM rows during read or write operations

within the DRAM memory refresh interval. When aggressors

are activated and deactivated multiple times during the refresh

interval, they leak charge to the cells in neighboring memory

rows (victims), which leads to the modification of the values

of their stored bits.

Rowhammer attacks can be single sided or double sided. In

single-sided attacks, one arbitrary memory address is repet-

itively accessed. In double-sided rowhammer, two addresses

adjacent to a specific memory location are repetitively

accessed. The values stored in the activated row needs to be

transferred to the row buffer several times to induce bit flips.

The experiments in [16] show that continuous accesses to the

same row do not induce errors as the value will be transferred

to the row buffer once and read from there in subsequent acti-

vation. Therefore, the rowhammer attack is effective only if

different rows in the same bank are repetitively accessed in

alternating patterns.

Rowhammer attacks compromise remote systems [20], [21]

and are used in root privilege escalation [22], [23], and denial-

of-service attacks on Intel Software Guard Extensions-based

systems [24]. Recent work [25] demonstrates a rowhammer

attack that remotely targets heterogeneous Intel FPGA-SoCs.

III. RELATED PRIOR WORK

Countermeasures for rowhammer include increasing the

memory refresh rate to reduce bit flips [26]–[28]. However,

these countermeasures increase the system power consumption

and reduces the memory throughput. Therefore, they are not so

desirable in power-constrained systems and also when memory

aging is a concern. Another problem is that this defense

is bypassed by the double-sided rowhammer attack, when

neighbors of the victim rows are repeatedly accessed [10].

Other proposed solutions identify anomalous behavior in

performance counters that indicates the presence of rowham-

mer attacks. After a rowhammer attack is detected, victim

rows are refreshed to mitigate the effects of the attack.

The work in [10] monitors the miss rate of the last level

of cache to identify rows from the same bank that are

accessed with high frequency. Payer [9] detected rowhammer

if the number of cache misses constitutes greater than 70%

of the overall number of cache accesses. These approaches

are not suitable for the detection of rowhammer that are

launched from FPGA because caches are not involved in the

FPGA-to-microprocessor SDRAM transactions.

Another countermeasure adds silicon overhead by integrat-

ing memory-row counters in the memory controllers or DRAM

chips to count the frequency of activating specific rows.

The victim rows are refreshed when a prespecified thresh-

old on memory access frequency is reached. Kim et al. [29]

implemented a counter for each memory row. To reduce the

area overhead, Seyedzadeh et al. [11] divided each memory

bank into groups of memory rows and assigned a counter to

each group. Lee et al. [13] implemented a counter for only

the active rows that are accessed with a frequency above a

prespecified threshold. Vig et al. [14] integrated a module

in the memory controller to monitor the memory transac-

tions. Memory rows that are accessed more than once within

a sliding window of ten addresses are regarded as a source

of rowhammer attacks. Thus, the hash of their neighboring

rows, which are considered as victim rows, are stored in a

hash tree. The entries in the hash tree are compared with the

actual values of the memory rows to identify bit flips.

These counter-based countermeasures target microproces-

sors. Therefore, they cannot identify which malicious IPs on

the FPGA are launching the attack. Our proposed approach

leverages the reconfiguration ability of the FPGA to imple-

ment an immediate solution to the attacks that are launched

from the FPGA IPs.

IV. MOTIVATION

Methods to secure memory in ASIC chips using

counter-based countermeasures have been previously

proposed [11], [13], [14], [29]. However, securing SoCs

with FPGAs against rowhammer attacks using our proposed

security monitor is particularly important due to the following

reasons.

1) Identify the Source of Attack: The methods in [11], [13],

and [29] monitor memory access requests. When a

certain threshold on the number of memory access

requests to a specific row is reached, the victim rows

are refreshed. However, these methods do not iden-

tify the source of the attack. Thus, since the source

of the attack is not identified, the attack persists in the

system. Moreover, these countermeasures can reduce the

performance of the overall system due to the repetitive

refresh cycles applied to victim rows. Current memory

modules waste 1.4%–35% of their operation time on

memory refreshes [16]. The proposed approach avoids

performance degradation due to persistent attacks by

identifying the attackers.

2) Ability to Detect Double-Sided Rowhammer Attacks:

Unlike counter-based measures [11], [29], the proposed

approach does not keep an exclusive counter for each

row. We monitor if any row is invoked more than twice

within a fixed window. All repetitive accesses to all

the rows are captured within a specific sliding window.

Therefore, our approach can detect both single-sided

and double-sided rowhammer attacks. A single-sided

rowhammer attack requires repetitive access to the same

specific row. A double-sided rowhammer attack requires

repetitive access to the same two neighboring rows. In
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our proposed approach, any repetitive access to any row

within a specified window is flagged as a rowhammer

attack. Thus, a double-sided rowhammer attack can be

detected.

3) Monitor Noncacheable Transactions: The connection

between the microprocessor and the SDRAM is

cacheable. Thus, the detection of rowhammer attacks

launched by the microprocessor can be detected by

monitoring the cache miss patterns [9], [10]. However,

some transactions that are issued from IPs to the

SDRAM controller, and implemented on FPGAs, are

noncacheable. Thus, there is a need for monitors imple-

mented on FPGAs to exclusively monitor these non-

cacheable transactions.

A common practice to secure SDRAM memory used

in FPGASoCs is to use an error-correcting code (ECC).

Such ECC-based solutions were previously believed to secure

SDRAM against rowhammer attacks [16]. However, the work

in [30] shows that ECC can be bypassed by the Rowhammwer

attackers.

V. THREAT MODEL

In an FPGA-SoC, FPGAs can be configured with malicious

3rd party IPs (3PIPs) that can be one or more of the following

types.

1) Implemented by untrusted vendors.

2) Altered during data transfer between the vendor and the

FPGA, even if bitstreams are secured with encryption

and authentication mechanisms. Bitstream encryption

and authentication can be compromised by side-channel

analysis [31]–[33]. In addition, side-channel analysis

attacks can be remotely launched when the FPGA is

shared among multiple tenants [34].

3) Injected with hardware Trojans that skip detection

during the verification phase to launch rowhammer

attacks [35].

We assume that the integration of the IP within the system

is performed using trusted design-automation tools, and

that the FPGA fabric is trusted. Therefore, the FPGA-to-

microprocessor SDRAM interface and the security monitors

are trusted. They cannot mask the rowhammer behavior of the

malicious IPs. We assume that the 3PIPs are provided as bit-

streams. Hence, the system integration tools do not have access

to their HDL code. Thus, their code cannot be inspected for

rowhammer activity. Also, these IPs do not require root priv-

ileges to launch rowhammer attacks. They can cause bit flips

by repetitively requesting to read memory addresses that lie

within their legitimate memory space in user mode [23].

VI. PROPOSED COUNTERMEASURE

The proposed security monitor, implemented on the

FPGA fabric, observes the FPGA-to-microprocessor SDRAM

memory-access transactions that are sent from IPs to each

bank of the microprocessor SDRAM (see Fig. 1). SDRAM

can include multiple banks to allow simultaneous memory

access. The monitor determines which chip and bank each

Fig. 1. Integration of our proposed security monitor in FPGA-SoC.

input address belongs to, and assigns the address to a spe-

cific sliding window W that corresponds to a specific chip

and bank. The sliding window W for each SDRAM bank is

a buffer that stores the row-address requests to each bank. It

has a size of ψ . If a row address in the same memory bank is

repeated for a prespecified threshold of Nth times among the ψ

addresses, the monitor raises a rowhammer alarm and blocks

the IPs that requested access to the repeated row address. The

monitor blocks these malicious IPs by asserting a block sig-

nal to “1.” This block signal is used to clock-gate the clock

that synchronizes the operations of the malicious IPs. Note

that given this setup, since the security monitor only listens to

the signals associated with the FPGA-to-SDRAM interface, it

does not make assumptions about the internal design of the

IP.

In addition, in FPGAs that support partial reconfiguration,

this block signal can control the FPGA configuration man-

ager to remove the configuration of the malicious IPs from

the FPGA. Partial reconfiguration is a feature of current-

generation FPGAs that allows only a partition of the FPGA

to be configured without interrupting the activity of the IPs

configured on the rest of the FPGA [36]. Thus, the operations

of the malicious IPs are halted when the IP block signal is

asserted.

We select the values of ψ and Nth for single-sided rowham-

mer attacks according to the criteria proposed in [14] as

follows. Kim et al. [16] investigated the effect of SDRAM

activation interval (AI) at a refresh interval of 64 ms, which

represents the time interval between the subsequent activa-

tions of the same row, and the number of induced bit flips.

The results in [16] show that in the case of a single-sided

rowhammer attack, when AI is equal to 500 ns, no bit flips are

induced. This observation can be justified as follows; when a

target row is activated once within 500 ns, the maximum num-

ber of row activations of this target memory address per the

refresh interval of 64 ms is equal to 64 ms/500 ns = 128 K.

According to the results of SDRAM characterization in [16],

the minimum number of memory activations per row required

to launch a successful single-sided rowhammer attack is 139 K

activations per the refresh interval. Thus, the 128 K activations

per the target memory row are smaller than the minimum num-

ber of activations per memory row that is required to cause bit

flips in the SDRAM chip [16]. Therefore, we select Nth = 2.

We determine the value of ψ as follows: ψ = AI/trc, where

trc is called row cycle time, which is the time taken by the

memory to activate a row. In this work, we consider trc = 50 ns

[14], [37]. Therefore, within a 500-ns interval, a maximum of

ten row activations are possible. Thus, we select the minimum

value of ψ = 10.
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Fig. 2. Flowchart for the operations of the proposed security monitor observing an IP with an AXI interface. Rn: R0 corresponds to the indices of the row
address within the physical address, where n + 1 is the number of row address bits.

For double-sided rowhammer attacks, a fewer number of

memory activations within the activation interval is required

to launch the attack. According to [13], 69 K activations

are required in 64 ms. Therefore, to support the detection of

double-sided rowhammer attacks, we consider AI = 1000 ns,

and we double the size of the sliding window ψ , to ensure

that the number of activation per memory row does not exceed

69 K. The maximum number of allowed activations per row

under this policy is 64 ms/1000 ns = 64 K, which is lower

than 69 K activations required per row to successfully launch

double-sided rowhammer attacks.

Memory-access requests during both read and write oper-

ations can contribute to rowhammer attacks [38]. Therefore,

we monitor the memory transactions during both read and

write operations. The inputs to the monitor are as fol-

lows: 1) clock and reset signals that drive the FPGA-to-

microprocessor SDRAM interface; 2) addresses requested by

the configured IPs during the read and write operations that are

sampled at the positive edge of the FPGA-to-microprocessor

SDRAM interface clock (ARADDRt and AWADDRt, respec-

tively); 3) signals that represent the validity of the sampled

addresses requested during the read and write operations,

ARVALIDt and AWVALIDt, respectively; and 4) signals that

indicate that the SDRAM is ready to accept read and write

addresses, ARREADY and AWREADY , respectively. The out-

put of the security monitor is a signal called “BlockIP,” which

blocks the attacking IP.

The configured IPs might not request a read or write address

every clock cycle (i.e., ARVALIDt = 0 and AWVALIDt = 0).

In addition, there is likely to be a mismatch between the

IP’s operating frequency and the frequency of SDRAM row

activation. For example, the IP and FPGA-to-microprocessor

SDRAM clocks can have a time period (tclk) of 5 ns and trc
of 50 ns. Therefore, the sliding window W that keeps track of

the memory transactions should not increment its indices by

trc when an address is not received, in order to ensure that the

delay between the first address and the last address in the slid-

ing window is at least 500 ns. We achieve this in the monitor’s

design by updating the indices of the sliding window W based

on a timer count that accumulates the time that has elapsed

(in ns) from the capture of the first address of the sliding win-

dow. Count is incremented every clock cycle by trc only when

a valid memory address is requested; otherwise, it is incre-

mented by the value of the clock period. We increment based

on the faster clock, if different IPs have different operating

clock frequencies. A flowchart that describes the operations

of the proposed monitor is shown in Fig. 2.

It is important to note that we propose a reconfigurable

monitor that observes the memory transactions to identify pos-

sible rowhammer attack attempts. Therefore, it can be used

with any integrated circuit that accesses DRAM memories.

In this work, we particularly focus on securing FPGA-SoCs

against rowhammer attacks that are launched from FPGAs

because countermeasures against these attacks are lacking.

Compared with performance counter-based countermeasures,

our proposed method is particularly useful to detect rowham-

mer attacks that are launched by noncacheable memory trans-

actions. These memory transactions do not involve caches.
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Therefore, the proposed method can be used when rowhammer

attacks cannot be detected by monitoring performance counter

metrics such as cache-miss rate.

A. Effect of Changing the IP Operating Frequency

The memory access rate is bounded by the speed of memory

row activation. For example, if an IP has a higher frequency

than the memory controller, multiple memory addresses will

be queued. If an IP has lower frequency and requests memory

access at intervals of more than AI, a rowhammer attack cannot

be launched. Designs that run at higher frequency (i.e., can

issue more than two similar memory requests within AI) can

launch rowhammer attacks.

B. Detection of Stealthy Colluding IPs

We consider the scenario where multiple IPs request access

to the same memory bank at the same time in the presence

of multiport memory controllers [7]. The memory controller

will schedule the memory accesses one after the other. An

example of colluding IPs is as follows. We consider that 3PIPs

from different manufacturers can collude through malicious

software controlling the different IPs. For example, if 3PIPs

accept the target addresses as inputs, the malicious software

can instruct the 3PIPs to access repetitive memory addresses.

The proposed monitor can be implemented independently

for each IP on the FPGA. However, independent monitors

cannot capture the operation of stealthy IPs that collude to

launch a rowhammer attack. As shown in Fig. 3, an inde-

pendent monitor for IP1 and IP2 will consider each IP to be

benign because within the sliding window of ten addresses for

each IP, no row address is repeated twice. However, a central-

ized monitor can detect that some addresses are repeated twice

as they are accessed by each IP once. Therefore, a combined

attack launched by IP1 and IP2 can only be detected in the

presence of a centralized monitor. We design the monitor to

give IPs priority according to numbers provided by the system

integrator. For example, in Fig. 3, we assume that the memory

serves one request from each IP starting from IP1.

We identify the attacking IP by assigning a block signal

to each attacker. The block signal is assigned a value of “1,”

when an IP attempts to access a row address more than once

within a sliding window of addresses of size ψ .

To detect colluding attackers, we consider the scenario that

only the IP that requests the second request to the memory

address is considered as an attacker. For example, in Fig. 3,

only IP2 is considered as an attacker by the proposed security

monitor. We adopt this scenario because if we alternatively

consider both IP1 and IP2 as attackers, IP2 can deliberately

access addresses that have been previously requested by IP1

to trigger the blocking of IP1 by the security monitor, and

thereby, cause denial of service.

C. Memory-Access Policy for Benign IPs

The proposed security monitor blocks an IP if it attempts to

access a row address more than once in a sliding window with

ψ consecutive memory transactions. Therefore, we propose the

Fig. 3. Example of stealthy IPs. If IP1 and IP2 are monitored independently,
they will be regarded as benign IPs, even though they are colluding to launch
a rowhammer attack on the SDRAM.

Fig. 4. Simulation of the operations of the monitor. (i) IP requests the access
to the address “2e000000” during the read operation and sends a write request
to the same address in the next clock cycle. (ii) Block signal is asserted to “1.”

following memory-access policy to be utilized by benign IP

vendors to avoid the blocking of their IPs.

1) No row address can be accessed by a benign IP more

than once during a sliding window of size ψ . Section VI

explains this choice of ψ .

2) Multiple IPs that belong to the same vendor cannot

access the same row address more than once during a

sliding window of size ψ .

With this memory-access policy, we can ensure that: 1) the

number of false positives is zero because only malicious IPs

will attempt to access the same row addresses more than once

within the specified window and 2) the number of false neg-

atives is zero because no IP can issue rowhammer access

patterns without detection. Note that if a malicious IP adopts

the policy for benign IPs, its memory-access behavior will not

cause bit flips. Thus, it will be considered to be secure as far

as rowhammer attacks are concerned.

VII. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Platform

We use Mentor Graphics ModelSim to simulate the behav-

ior of the proposed security FPGA-to-microprocessor SDRAM

monitor in the presence of malicious FPGA IPs. We evalu-

ate the FPGA utilization of the proposed monitor using Intel

Quartus II. We configure the synthesis tool in Quartus II

to optimize the design for area. We demonstrate the effec-

tiveness of the proposed monitor to detect malicious IPs on

the SDRAM using an Intel DE1SoC board with a Cyclone

V FPGA. The physical address is mapped in sequence into

chip select, row address, bank address, and column address.

We consider the presence of one-bit chip select, 15-bit row

address, 3-bit bank address, and 10-bit column address [7].

B. Detection of Malicious IPs That Connect to the SDRAM

Using AXI Interface

We simulate the operations of the malicious IP proposed

in [8], which requests a read operation from addresses

“2e000000” followed by write operation to the same address.

As shown in Fig. 4, when the monitor observes the repeated
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Fig. 5. Simulation of the localization of attacking IPs and the detection of
colluding attackers. (i) IP1 requests the access to memory address “2e200800”
and IP2 requests access to memory address “2e200800” one clock cycle after
IP1’s request. (ii) IP2 is blocked. (iii) IP1 and IP3 continue their operations
normally.

Fig. 6. Simulation of the proposed monitor successfully blocking a single
rowhammer attack in the Avalon-MM interface. (i) IP repetitively requests
read from the same row address. (ii) IP is blocked.

row address requested by the malicious IP, a block signal is

asserted that blocks the operations of the malicious IP.

C. Identification of the Attackers That Connect to the

SDRAM Using AXI Interface

We simulate the behavior of three IPs and identify the

attacking IP, as shown in Fig. 5. In Fig. 5(i), IP1 first requests

the access to memory address “2e200800”; then IP2 requests

access to memory address “2e200800” one clock cycle after

IP1’s request. Therefore, IP2 is blocked.

D. Identification of the Attackers That Connect to the

SDRAM Using Avalon-MM Interface

The simulation result for single rowhammer attacks

launched in the Avalon-MM interface is shown in Fig. 6. The

attack is launched by requesting two continuous read opera-

tions on the same address 2ed00000. After the second request

on 2ed00000 is detected, the monitor immediately asserted the

block signal, disabling this potentially malicious IP.

E. Identification of the Attackers That Connect to the

SDRAM Using Avalon-MM Interface

We simulate the behavior of six IPs and identify the attack-

ing IP, as shown in Fig. 7. In Fig. 7(i), similar to Fig. 5, IP1

first requests the access to memory address “2e200800”; then

IP2 requests access to memory address “2e200800” one clock

cycle after IP1’s request. Therefore, IP2 is blocked.

F. Hardware Demo

We demonstrate the effectiveness of the proposed coun-

termeasure with a hardware demo on DE1SoC board with

Cyclone V (5CSEMA5F31C6) FPGA. The demo can be

accessed in [39]. The proposed approach can be implemented

in any Intel or Xilinx SoC board, for example, Xilinx Zynq-

7000 SoC [5] and Intel Arria V Cyclone V [4] and Stratix

10 [40]. As shown in Fig. 8, the sliding window of the moni-

tor is implemented as a buffer. The presence of repeated row

addresses is determined by the presence of XNOR gates that

compare the memory requests at each clock cycle to each

entry in the buffer. The system integrator connects the outputs

of each IP that is connected to the FPGA-to-microprocessor

SDRAM interface to the inputs of the monitor. At each

clock cycle, the ARADDR, AWADDR, ARVALID, AWVALID,

ARREADY , and AWREADY of each IP are inputs to the

monitor.

We configure the malicious IP implemented in [8] on the

FPGA. This malicious IP attempts to launch rowhammer

attacks on the shared SDRAM from the FPGA. The malicious

IP is connected to the shared SDRAM controller through the

FPGA-to-microprocessor SDRAM interface. This connection

is configured using Intel Quartus Qsys as shown in Fig. 9.

We observe the number of bit-flips in the SDRAM in the

absence and presence of the proposed monitor as shown in

Fig. 10(a) and (b), respectively. Fig. 10(a) shows one bitflip

at memory address “00d6ab7” in the absence of the proposed

monitor. Fig. 10(b) shows that when the proposed monitor

is configured on the FPGA and activated, the rowhammer

attack is detected and the malicious IP is blocked before it

succeeds in causing any bit-flips. In order to observe the

operations of the proposed monitor, we use the SignalTap

II Logic Analyzer tool in Intel Quartus to observe the val-

ues of the requested memory addresses and the value of the

block signal. The details of the monitor’s operations are shown

in Fig. 11.

G. Evaluation of the Area Overhead of the Proposed

Monitor

We investigate the area overhead of the proposed security

monitor in terms of the number of the FPGA adaptive logic

modules (ALMs). The ALM is the basic building block of

Intel Cyclone V FPGAs, which includes full adders, a carry

chain, a register chain, and a 64-bit LUT. In Intel Cyclone V,

which is used in our experiments, the FPGA-to-microprocessor

SDRAM interface has six command ports and four read and

write ports. We consider as a proof of concept, master IPs that

send a single data transfer per transaction (i.e., nonbursting

transfers) on AXI and Avalon-MM interfaces.

1) AXI Interface: The AXI interface can simultaneously

handle read and write commands. Therefore, using the AXI

interface implementation, a maximum of three IPs can be

configured to access the SDRAM in Cyclone V FPGAs.

Hence, we investigate the area overhead of the monitor that

observes the read and write memory transaction to a memory

bank when one and three IPs are configured, respectively.

The Quartus II utilization report shows that the monitor that

observes one (three) IP (IPs) to detect single-sided rowhammer

attacks utilizes 383 (1320) ALMs, respectively, which consti-

tutes an ALM utilization of only 1.2% (4.1%) for one memory
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Fig. 7. Simulation of the proposed monitor successfully blocking a rowhammer attack in the Avalon-MM interface. (i) IP repetitively requests read from
the same row address. (ii) IP2 is blocked. (iii) IP6 is not blocked even though it sends a read request to the same row address as IP5 because the requested
row address is located in two different memory banks.

Fig. 8. Setup of the hardware demo for the proposed countermeasure.

bank. The ALM utilization for the detection of double-sided

rowhammer attack for one (three) IP (IPs) is 585 (2013), which

constitutes 1.8% (6.3%) overhead for one memory bank.

2) Avalon-MM Interface: Since the Avalon-MM interface

does not allow simultaneous read and write commands, a

maximum of six IPs can be configured in the Cyclone V

FPGAs. Thus, we evaluate the area overhead of the monitor

for listening to one and six IPs. The monitor that listens to one

(six) IP(s) to detect single-sided rowhammer attacks utilizes

119 (1246) ALMs, respectively, which constitutes an ALM uti-

lization of only 0.37% (3.9%) for one memory bank. The ALM

utilization for the detection of double-sided rowhammer attack
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Fig. 9. Illustration of how the IP is connected to the SDRAM through the
FPGA-to-microprocessor SDRAM interface in Intel Quartus Qsys.

Fig. 10. Memory bitflips in the (a) absence and (b) presence of the proposed
countermeasure.

for one (six) IP(s) is 181 (1918), which constitutes 0.56%

(6.0%) overhead for one memory bank.

When a single IP communicates with the SDRAM through

Avalon-MM interface, the secure monitor utilizes fewer ALMs

compared to when an AXI interface is used. This observation

can be attributed to the fact that the Avalon-MM interface

has only one address signal that is shared between the read

and write operations. In contrast, the AXI interface has two

address signals. One address signal is dedicated for the read

operations and the other one is dedicated for the write oper-

ations. Therefore, the monitor for the Avalon-MM interface

compares only one address to the saved addresses, while the

AXI monitor compares two.

Since DRAM chips have multiple banks, e.g., four or eight

banks [41], the estimated area overhead for monitoring all

the banks might not be practical for FPGAs with limited

resources. Therefore, we propose to restrict IPs implemented

on the FPGA to access a limited number of banks. The num-

ber of DRAM chip banks that the IPs are allowed to access

depends on the logic utilization for each IP, so that the FPGA

can fit the IPs and the monitors at the same time.

H. Power Overhead Estimation

In addition to adding a small area overhead, the proposed

monitor also consumes additional power. We estimate the

power overhead using the PowerPlay Power Analyzer in the

Intel Quartus toolchain. The default toggle rate for I/O signals

is set as 12.5%.

1) AXI Interface: The monitor that listens to one (three)

IP(s) to detect single-sided rowhammer attacks consumes

424.34 (433.97) mW. The power consumption for the detec-

tion of double-sided rowhammer attack for one (three) IP(s) is

424.33 (433.91) mW. To further understand the data reported,

we estimate the power of a single inverter with the same set-

tings as 419.30 mW. We treat this as the baseline power, i.e.,

the power consumption of an empty FPGA fabric without any

programmed logic, to maximize the estimated percentage over-

head. Then, the single-sided rowhammer monitor that listens

to one (three) IP(s) consumes 5.04 (14.67) mW additional

power and 1.20% (3.50) of the baseline, while the double-sided

rowhammer monitor that listens to one (three) IP(s) consumes

5.03 (14.61) mW additional power and 1.20% (3.48) of the

baseline.

2) Avalon-MM Interface: The monitor that listens to one

(six) IP(s) to detect single-sided rowhammer attacks consumes

421.92 (435) mW. Compared to the baseline power of the

FPGA fabric, it consumes 2.62 (15.7) mW additional power

when listening to one (six) IPs and 0.62 (3.74) % of the base-

line. The power consumption for the detection of double-sided

rowhammer attack for one (six) IP(s) is 421.91 (434.98) mW.

Compared to the baseline power of the FPGA fabric, it con-

sumes 2.61 (15.68) mW additional power when listening to

one (six) IPs, 0.62% (3.74) of the baseline.

I. Comparison With Prior Work

Prior counter-based rowhammer detection approaches report

their area overhead using different metrics. For example, [11]

reports the area overhead as the percentage of the DRAM

chip die area, while [14] reports only the number of bits

that are required to store the hash tree used to determine the

number of bit flips; it neglects the memory controller mod-

ule that implements the sliding window approach to identify

vulnerable memory rows. As a result, it is difficult to conclu-

sively determine which method has the lowest area overhead.

In Table III, we compare our proposed approach to prior

work. The proposed approach is the only counter-based coun-

termeasure that targets the security of SoCs against attacks

launched from the FPGA. It can be immediately implemented

in FPGA-SoCs available in the market. It is also the only

method that utilizes FPGAs to provide security; thus, the

added overhead is temporary and depends on the presence of

IPs that access the SDRAM through FPGA-to-microprocessor

SDRAM. Moreover, the proposed security monitor is the only

approach that can identify the attacker IP on the FPGA and

detect the attack early enough such that the victim rows do

not require refreshing.

J. Evaluation of Overhead Due to Memory-Access Policy

In Section VI-C, we proposed a memory-access policy for

benign IPs to eliminate potential false positives for our moni-

tor. For some IPs, the policy can impose additional overhead in

memory operations. In this section, we evaluate this overhead

by investigating the memory access patterns of three designs

that are representative of typical IPs accelerated on FPGAs:

1) machine learning [42]; 2) cryptography [43]; and 3) com-

munications [44]. All three IPs can directly access SDRAM

through the FPGA-to-SDRAM interface. In this article, the
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Fig. 11. Operations of the proposed monitor observed in the SignalTap II logic analyzer. (i) Monitor reset signal is asserted. (ii) Monitor reset signal is
deasserted and memory requests are recorded in the sliding window. (iii) Block signal is asserted when repetitive access to the same row address is detected.

Fig. 12. Memory-access patterns during the operation of the SVM accelerator.

TABLE III
COMPARISON WITH PREVIOUS COUNTERMEASURES

designs studied are implemented by different developers to

avoid any bias in the evaluation.

We set up the experiment as follows: in the worst case, each

IP requires access to the SDRAM every clock cycle. A possi-

ble example of this scenario would be an IP that reads a value

from a sensor and writes to the same memory address. For

example, if it reads a new value every 50 ns into the same

address, we suggest that it alternates between different loca-

tions. Thus, a maximum of 20 row addresses per IP need to

be reserved to protect against double-sided rowhammer. These

addresses constitute negligible overhead compared to the num-

ber of row addresses per memory bank, which is in the order

of 8K–64K row addresses per bank, depending on the memory

size.

If multiple IPs share the same memory location, it is more

efficient to communicate through shared on-chip SRAM—

which is not vulnerable to rowhammer—instead of SDRAM.

For example, in the scenario when multiple IPs need to poll

a specific memory address, a top module can be inserted to

poll that memory address once and load its value inside an

SRAM cell where all the other IPs can access without the risk

of rowhammer attacks.

1) SVM Accelerator: Since machine-learning acceleration

on FPGAs is becoming increasingly popular, we also investi-

gate the memory access patterns of a support vector machine

(SVM) accelerator [45]. We simulate the SVM accelerator in

ModelSim and monitor the memory access patterns. The accel-

erator accesses three RAM memories during its operation.

Two RAM memories hold the values of the input image to

be classified and the support vectors. As shown in Fig. 12, the

accelerator does not access repeated addresses. Therefore, if

the SVM accelerator accesses SDRAM, enacting the proposed

policy will not add any additional overhead. The accelerator

also accesses a specific address in the third RAM for one

cycle and keeps the address signal assigned to the same value

for multiple consecutive clock cycles. During these multiple

consecutive clock cycles, the returned data from RAM3 are

constant. In this case, if this RAM is implemented in SDRAM,

the address will be read once from the SDRAM and then

the ARVALID will be deasserted and the read data will be
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Fig. 13. Memory-access patterns during the operation of the SHA-1 hash core.

Fig. 14. Memory-access patterns during the operation of the turbo-code interleaver core.

stored in an on-chip SRAM for repetitive access during the

rest of the clock cycles. This strategy will require us to reserve

only one memory location on the on-chip SRAM to store

the data that is read from the SDRAM. Thus, the proposed

memory-access policy incurs negligible overhead in practi-

cal scenarios. Also, even if the SVM accelerator developers

do not implement the proposed memory-access policy, the

proposed monitor will block rowhammer attacks with 0% false

positive rate.

2) SHA-1 Hash Core: In addition, we simulated the

memory access behavior of a SHA-1 hash core [46] to deter-

mine its overhead under the proposed policy. A SHA-1 hash

core implements a widely used hash algorithm to authenticate

transferred data. It is usually connected as a peripheral com-

ponent in an SoC via a bus interface. Based on the simulated

memory-access pattern, we determine if the proposed policy

imposes any overhead.

The implementation of SHA-1 core in [46] constitutes a

wrapper that implements an on-chip SRAM memory array to

store the block data to be hashed. This SRAM memory array

is populated with data from a testbench. Next, the SHA-1 core

reads the block data from the SRAM memory locations. The

testbench waits for the SHA-1 core to finish its processing

before it starts reading the output of the SHA-1 core.

In our evaluation, we consider the testbench as a process

running on the microprocessor that writes the block data to

different location in the SDRAM memory. We also consider

that the SHA-1 core is implemented on FPGA and acce-

ses the SDRAM through FPGA-to-microprocessor SDRAM

interconnect. We are interested in the addresses that the test-

bench accesses. In practical scenarios, these addresses are

equivalent to the SDRAM memory addresses that the SHA-1

core accesses to read the data to be hashed.

Fig. 13 shows that the testbench writes to a sequence of

different SRAM memory locations (from 0×00 to 0×1f) with

no repetition, and then waits for a ready signal to be asserted.

During the phase when it is waiting for the ready signal, it

accesses the same location multiple times. In practical sce-

narios, the read valid signal will be deasserted during this

waiting phase. Thus, this behavior will not alert the monitor

at the FPGA side to block the SHA-1 core; the SHA-1 core

only accesses nonrepetitive memory addresses to read the data

to be hashed. After the SHA-1 core finishes its operations,

it writes the ready signal to a specific memory location and

starts writing the output of the hash operations to nonrepeti-

tive memory locations in the SDRAM memory. Since memory

addresses are not repetitively accessed during the operations of

the SHA-1 core, the proposed monitor incurs 0% false positive

rate even if the SHA-1 developers do not follow the proposed

benign memory-access policy.

3) Turbo-Code Interleaver: The third IP that we evalu-

ate is a custom-designed interleaver component in a turbo

encoder [47]. The turbo encoder is an essential compo-

nent in modern communication systems. The interleaver is a

subcomponent in the encoder that carries out encryption func-

tions. The interleaver implementation performs encryption by

accessing precomputed values stored in two RAMs. In theory,

these RAMs can be local SRAMs. However, we consider the

case that a high throughput is needed [4]; therefore, SDRAM

is used.

Upon boot, the interleaver first writes precomputed patterns

to two RAMs, and then performs encoding by reading from

these RAMs. The signals of interest in our experiment are

the memory addresses of the two RAMs. We evaluate their

memory-access behavior in the encoding of a code block. In the

simulation, the interleaver first writes to a sequence of different

memory locations addressed by a counter that increments by 1

every cycle, and then reads from different locations to perform

encryption. The addresses associated with reading are related

to the input from the previous subcomponent. After analyzing

the sequence of memory locations in Fig. 14, we conclude that

there is no overhead associated with the proposed policy for the

turbo interleaver because it does not access the same memory

location. In addition, in the scenario, when the turbo interleaver

developer does not implement the proposed memory-access

policy, the false positive rate will be 0%.

To verify that the experiments we performed in simula-

tion match the real scenario onboard, we demonstrate further

that when the turbo-code interleaver IP is programmed on the

DE1-SoC together with our proposed monitor, it can perform

normal operations. We show our test setup in Fig. 15 and the

SignalTap capture of internal signals in Fig. 16.

The IP under test is an automated test setup that reads inputs

from a test-input memory, feeds the inputs to the turbo-code

interleaver system, and then compares the outputs with a set

of golden outputs stored in another memory. We add the mon-

itor similar to the simulation setup: two monitor instances

listen to the memory transactions of two internal memory

blocks of the turbo-code interleaver. The reset signal and the

start-test control signal of the IP are programmed to switches

onboard and the block signals of the two monitors are NORed

and mapped to a LED onboard, so that if any of the block

signals become high, the LED will switch off. During the

entire testing sequence, we do not observe the LED switching

off. This shows that the benign IP memory accesses are not

blocked.
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Fig. 15. Onboard test setup.

Fig. 16. SignalTap results of the turbo-code interleaver IP programmed onboard with monitors.

We further probe the internal signals of the IP using

SignalTap. As shown in Fig. 16, the test_good signal of the

automatic testing system is always held high, and the blocksig-

nal always held low. We also show the address access patterns.

From this experiment, we conclude that the monitors’ presence

do not interfere with the normal operations of the turbo-code

interleaver. Therefore, we have tested the proposed monitor on

an actual board not only in simulations. To control the effect

of temperature in real-life systems, we suggest that the system

administrators control the die temperature to lie within a fixed

range. The die temperature can be monitored through on-chip

temperature sensors. There are built-in sensors in almost all

FPGAs from different vendors and they can be used to con-

trol the board fan speed. In this way, when our monitor is

integrated, we can make sure we have control over the die

temperature.

It is important to note that the benign memory-access pol-

icy should be enforced even if the proposed monitor detects

rowhammer attacks with false positive rate for the designs

studied in this section. Developers can implement the same

IPs and get FPR that ranges from 0% to 100%. It depends

on how the IP design is implemented to request access to the

SDRAM. Therefore, we propose that the IP developers enforce

the benign memory-access policy to ensure that their benign

IPs are not blocked during their normal operations.

VIII. DISCUSSION

A. Extension to Other Memory Interfaces

In this article, we have shown that our proposed monitor

can be adapted to both the AXI and Avalon-MM interfaces,

two widely used memory interfaces in FPGA-SoCs. Here,

we describe how the monitor can also be extended to other

interfaces that may become popular in the future.

In essence, the proposed monitor requires information on:

1) address of a memory transaction; 2) whether the trans-

action is a read or a write; and 3) validity of the memory

transaction. Since these pieces of information are essential to

define a memory transaction, they should be available in all

memory interfaces. Therefore, following the examples on AXI

and Avalon-MM, we can easily adapt the proposed monitor by

mapping the corresponding signals given the three categories

listed above. Whether the memory interface allows simultane-

ous read and write transactions is another consideration that

we also demonstrated in the comparison between AXI and

Avalon-MM interfaces.

B. DDR3 Versus DDR4

While our monitor is developed based on prior work on

DDR3 memory, we believe that it can adapt to new attacks

on more recent DDR4 memory. Although DDR4 was initially

thought to be secure against Rowhammer attacks, a recent

attack, TRRespass [48] successfully launches Rowhammer

attacks on DDR4 using more than two aggressor rows.

Nevertheless, the strategy that our monitor uses, i.e., checking

for repeated accesses on a single row, will still be applicable to

this new attack with a few adaptations in the sliding window

size and detection logic. However, this adaptation will increase

the area and power consumption overhead of the proposed

monitor. In addition, the false positive rate might increase.

We will address these issues in details as part of future work.

C. Complete Halting of Malicious IPs Versus TRR

In some scenarios, the system administrators can choose

between complete halting of malicious IPs and the launch of

TRR cycles. Our proposed approach presents a conservative

method to prevent increased power consumption that results
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from the repetitive launching of TRR cycles, especially in

power-restricted platforms. However, the launching of TRR

cycles can be a valid solution in systems with relaxed restric-

tions over power consumption. Thus, we suggest an adaptive

countermeasure policy. System administrators can configure

the security monitor to block suspicious IPs if there are severe

limits on power consumption. For example, in systems that run

on batteries, if batteries are less than 40% charged, the secu-

rity monitor should block any attacking IPs. Otherwise, the

security monitor can force TRR cycles.

IX. CONCLUSION

We have presented an effective and efficient countermeasure

against rowhammer attacks in FPGA-SoCs. This approach is

based on an FPGA-to-microprocessor SDRAM security mon-

itor that guarantees the detection of the rowhammer-attack

attempts launched from the FPGA before the rowhammer

effect is propagated to the DRAM chips. The proposed moni-

tor utilizes only 6.3% of the Cyclone V FPGA ALMs for one

memory bank when either AXI or Avalon-MM interfaces are

used with nonbursting transfers. It can also be immediately

integrated in current FPGA-SoCs.
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