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Abstract

In real-world settings involving consequential decision-making, the deployment of machine learning
systems generally requires both reliable uncertainty quantification and protection of individuals’ privacy.
We present a framework that treats these two desiderata jointly. Our framework is based on conformal
prediction, a methodology that augments predictive models to return prediction sets that provide un-
certainty quantification—they provably cover the true response with a user-specified probability, such as
90%. One might hope that when used with privately trained models, conformal prediction would yield
privacy guarantees for the resulting prediction sets; unfortunately this is not the case. To remedy this
key problem, we develop a method that takes any pretrained predictive model and outputs differentially
private prediction sets. Our method follows the general approach of split conformal prediction; we use
holdout data to calibrate the size of the prediction sets but preserve privacy by using a privatized quan-
tile subroutine. This subroutine compensates for the noise introduced to preserve privacy in order to
guarantee correct coverage. We evaluate the method on large-scale computer vision data sets.

1 Introduction

The impressive predictive accuracies of black-box machine learning algorithms on tightly controlled test
beds do not sanctify their use in consequential applications. For example, given the gravity of medical
decision-making, automated diagnostic predictions must come with rigorous instance-wise uncertainty to
avoid silent, high-consequence failures. Furthermore, medical data science requires privacy guarantees, since
individuals would suffer material harm were their data to be accessed or reconstructed by a nefarious actor.
While uncertainty quantification and privacy are generally dealt with in isolation, they arise together in
many real-world predictive systems, and, as we discuss, they interact. Accordingly, the work that we
present here involves a framework that addresses uncertainty and privacy jointly. Specifically, we develop a
differentially private version of conformal prediction that results in private, rigorous, finite-sample uncertainty
quantification for any model and any data set at little computational cost.

This work takes a modular viewpoint on data science: we seek
to give practitioners the flexibility to train whatever underlying pri-
vate model gives the best performance (e.g., via deep learning), then

later endow the model with rigorous statistical properties, without —

modifying that underlying model. See Figure [I} Zooming out, per- oot dat - Eltecllmform, sagnoss
haps the most consistent trend in the history of engineering is that

modular engineering building blocks—Ilike integrated circuits or re- fesnet

action chemistry—are the key to scalable and deployable systems
where each part can be improved and debugged separately. Private
prediction sets allow simple, private uncertainty quantification for Figure 1: Modular data science.
any system and thus provide conceptual building blocks for data

scientists constructing such systems.
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Figure 2: Examples of private conformal prediction sets on COVID-19 data. We show three
examples of lung X-rays taken from the CoronaHack data set (Perez et all |2020) with their corresponding
private prediction sets at & = 10% from a ResNet-18. All three patients had viral pneumonia (likely
COVID-19). The classes in the prediction sets appear in ranked order according to the softmax score of
the model; the center and right images are incorrectly classified if the predictor returns only the most likely
class, but are correctly covered by the private prediction sets. See Experiment for details.

Turning to the details, our approach builds on the notion of prediction sets—subsets of the response
space that provably cover the true response variable with prespecified probability (e.g., 90%). Formally, for
a test point with feature vector X € X and response Y € ), we compute an uncertainty set function, C(-),
mapping a feature vector to a subset of ) such that

P{Y eC(X)} >1—a, (1)

for a user-specified confidence level 1 — «, where a € (0,1). We use the output of an underlying predictive
model (e.g., a pretrained, privatized neural network) along with a held-out calibration data set, {(X;, Y;)} 4,
from the same distribution as (X,Y") to fit the set-valued function C(-). The probability in expression
is therefore taken over both the randomness in (X,Y) and {(X;,Y;)}7,. If the underlying model expresses
uncertainty, C will be large, signaling skepticism regarding the model’s prediction.

Moreover, we introduce a differentially private mechanism for fitting C, such that the sets that we compute
have low sensitivity to the removal of any calibration point. This will allow an individual to contribute a
calibration data point without fear that the prediction sets will reveal their sensitive information. Note that
even if the underlying model is trained in a privacy-preserving fashion, this provides mo privacy guarantee
for the calibration data. Therefore, we will provide an adjustment that masks the calibration data set with
additional randomness, addressing both privacy and uncertainty simultaneously.

See Figure [2| for a concrete example of private prediction sets applied to the automated diagnosis of
COVID-19. In this setting, the prediction sets represent a set of plausible diagnoses based on an X-ray
image—either viral pneumonia (presumed COVID-19), bacterial pneumonia, or normal. We guarantee
that the true diagnosis is contained in the prediction set with high probability, while simultaneously ensuring
that an adversary cannot detect the presence of any one of the X-ray images used to train the predictive
system.

1.1 Owur contribution

Our main contribution is a privacy-preserving algorithm that takes as input any predictive model together
with a calibration data set, and outputs a set-valued function C(-) that maps any input feature vector X to a
set of labels such that the true label Y is contained in the predicted set with probability at least 1 —«, as per
Equation . In order to generate prediction sets satisfying this property, we use ideas from split conformal
prediction (Papadopoulos et all 2002, Vovk et al., [2005; [J. Lei et all [2018]), modifying this approach to
ensure privacy. Importantly, if the provided predictive model is also trained in a differentially private way,
then the whole pipeline that maps data to a prediction set function C(+) is differentially private as well.
In Algorithm [I] we sketch our main procedure.



Algorithm 1 Private prediction sets (informal)

input: predictor f(-), calibration data {(X;,Y;)};, privacy level € > 0, confidence level a € (0,1)
For 1 < i < n, compute conformity score s; = Sf(Xi, Y:)

Compute e-differentially private (1 — a + O((ne)~1))-quantile of {s;}™ ;, denoted 3

output: C(-) ={y: S;(-,y) < 8}

Algorithm [I]first computes the conformity scores for all training samples. Informally, these scores indicate
how well a feature—label pair ’conforms’ to the provided model f , a low score implying high conformity and
a high score being indicative of an atypical point from the perspective of f . Then, the algorithm generates
a certain carefully chosen private quantile of the scores. Finally, it returns a prediction set function C(+)
which, for a given input feature vector, returns all labels that result in a conformity score below the critical
threshold 3.

Our main theoretical result asserts that Algorithm [1| has strict coverage guarantees and is differentially
private. In addition, we show that the coverage is almost tight, that is, not much higher than 1 — a.

Theorem 1 (Informal preview). The prediction set function C(-) returned by Algorithm [1] is e-differentially
private and satisfies
l—a<P{Y eC(X)}<1l—a+O0((ne)™).

We obtain a gap between the lower and upper bound on the probability of coverage to be roughly of
the order O((ne)™!), similar to the standard gap O(n™!) without the privacy requirement. With this, we
provide the first theoretical insight into the cost of privacy in conformal prediction. To shed further light
on the properties of our procedure, we perform an extensive empirical study where we evaluate the tradeoff
between the level of privacy on one hand, and the coverage and size of prediction sets on the other.

1.2 Related work

Differential privacy (Dwork et all [2006) has become the de facto standard for privacy-preserving data
analysis, as witnessed by its widespread adoption in large-scale systems such as those by Google (Erlingsson|
et all 2014; Bittau et al. [2017), Apple (Differential Privacy Team Apple, 2017), Microsoft (Ding et al.
2017), and the US Census Bureau (Abowd, 2018; Dwork, 2019). This increasing adoption of differential
privacy goes hand in hand with steady progress in differentially private model training, ranging across
both convex (Chaudhuri et al., [2011; Bassily et al., |2014) and nonconvex (Abadi et al. 2016 Neel et al.
2020) settings. Our work complements these works by proposing a procedure that can be combined with any
differentially private model training algorithm to account for the uncertainty of the resulting predictive model
by producing a prediction set function with formal guarantees. At a technical level, closest to our algorithm
on the privacy side are existing methods for reporting histograms and quantiles in a privacy-preserving
fashion (Dwork et al.| [2006; Xu et al. 2013; |J. Lei, [2011} [Smith| 2011; |[Feldman & Steinke| 2017). Finally,
there have also been significant efforts to quantify uncertainty with formal privacy guarantees through various
types of private confidence intervals (Karwa & Vadhan| 2017; Sheffet| |2017; |Gaboardi et al.| 2019; Wang et|
. While prediction sets resemble confidence intervals, they are fundamentally different objects as
they do not aim to cover a fixed parameter of the population distribution, but rather a randomly sampled
outcome. As a result, existing methods for differentially private confidence intervals do not generalize to our
problem setting.

Prediction sets as a way to represent uncertainty are a classical idea, going back at least to tolerance
regions in the 1940s (Wilks| |1941], 1942; Wald, 1943; Tukey, |1947). See |Krishnamoorthy & Mathew| (2009)
for an overview of tolerance regions and [Park et al. (2020) for a recent application to deep learning mod-
els. Conformal prediction (Vovk et all [1999] [2005} [Shafer & Vovk| 2008) is a related way of producing
predictive sets with finite-sample guarantees. Most relevant to the present work, split conformal predic-
tion (Papadopoulos et all 2002} [J. Lei et all [2015] [2018) is a convenient version that uses data splitting
to give prediction sets in a computationally efficient way. [Vovk (2015) and Barber et al| (2021) refine this
approach to reuse data for both training and calibration, improving statistical efficiency. Recent work has
targeted desiderata such as small set sizes (Sadinle et al., [2019; |/Angelopoulos et al., 2020)), coverage that is
approximately balanced across feature space (Vovkl 2012; [Foygel Barber et al 2019; [Romano et al. [2019;




[Izbicki et al.l [2019; Romano et al., [2020; |Guanl, [2020; (Cauchois, Gupta, & Duchil, [2020)), and coverage that is
balanced across classes (J. Lei, 20145 Sadinle et al., 2019; Hechtlinger et al., 2018; Guan & Tibshirani, 2019).
Further extensions address problems in distribution estimation (Vovk et all 12020), handling or testing
distribution shift (Tibshirani et al} [2019; [Cauchois, Gupta, Ali, & Duchil 2020} Hu & Lei, [2020), causal
inference (L. Lei & Candes| 2020)), and controlling other notions of statistical error (Bates et al., 2021). We
suggest (Angelopoulos & Bates, 2021) and (Shafer & Vovk, [2008)) as introductory tutorials on conformal
prediction for the unfamiliar reader. Lastly, we highlight two alternative approaches with a similar goal to
conformal prediction. First, the calibration technique in|Jung et al.| (2020) and |Gupta et al.| (2021)) generates
prediction sets via the estimation of higher moments across many overlapping subpopulations. Second, there
is a family of techniques that define a utility function balancing set-size and coverage and then search for
set-valued predictors to maximize this utility (Grycko, 1993;|del Coz et al., 2009; Mortier et al., 2020). The
present work builds on split conformal prediction, but modifies the calibration step to preserve privacy.

2 Preliminaries

In this section, we formally introduce the main concepts in our problem setting. Split conformal predic-
tion assumes access to a predictive model, f , and aims to output prediction sets that achieve coverage by
quantifying the uncertainty of f and the intrinsic randomness in X and Y. It quantifies this uncertainty
using a calibration data set consisting of n ii.d. samples, {(X;,Y;)}", that were not used to train f. The
calibration proceeds by defining a score function S P X x Y — R. Without loss of generality we take the
range of this function to be the unit interval [0, 1]. The reader should think of the score as measuring the
degree of consistency of the response Y with the features X based on the predictive model f (e.g., the size
of the residual in a regression model), but any score function would lead to correct coverage. To simplify
notation we will write S(-,-) to denote the score, where we implicitly assume an underlying model f . From
this score function, one forms prediction sets as follows:

Cx) ={y: S(z,y) <3}, (2)
for a choice of § based on the calibration dataset. In particular, § is taken to be a quantile of the calibration
scores s; = S(X;,Y;) for ¢ = 1,...,n. In nonprivate conformal prediction, one simply takes § to be the

((n+1)(1 — @))/n quantile, and then a standard argument shows that the coverage property in holds.
In this work we show how to take a modified private quantile that maintains this coverage guarantee.

As a concrete example of standard split conformal prediction, consider classifying an image in X = R™*¢
into one of a thousand classes, Y = {1,...,1000}. Given a standard classifier outputting a probability
distribution over the classes, f : X — [0,1]1990 (e.g., the output of a softmax layer), we can define a natural
score function based on the activation of the correct class, S(z,y) = 1 — f (x)y. Then we take § as the upper
[0.9(n 4+ 1)]/n quantile of the calibration scores s1, ..., s, and define C as in equation (2). That is, we take
as the cutoff § the value such that if we include all classes with estimated probability greater than 1 — §, our
sets have (only slightly more than) 90% coverage on the calibration data. The result C(z) on a test point
is then a set of plausible classes guaranteed to contain the true class with probability 90%. Our proposed
method will follow a similar workflow, but with a slightly different choice of § to guarantee both coverage
and privacy.

We next formally define differential privacy. We say that two data sets D, D’ are neighboring if they differ
in a single element, that is, either data set can be obtained from the other by removing a single entry. For
example, D € (X x V)" and D' = D\ {(Xo, Yo)}, for some (X, Yy) € D. Differential privacy then requires
that two neighboring data sets produce similar distributions on the output.

Definition 1 (Differential privacy (Dwork et al., 2006)). A randomized algorithm A is e-differentially private
if for all neighboring data sets D and D’, it holds that:

P{A(D) € O} < eP{A(D') € O},

for all measurable sets O.



In short, if no adversary observing the algorithm’s output can distinguish between D and a data set D’
with the i-th entry removed, the presence of individual 7 in the analysis cannot be detected and hence their
privacy is not compromised.

A key ingredient to our procedure is a privatized quantile of the conformity scores. We obtain this
private quantile by discretizing the scores into bins and applying the exponential mechanism (McSherry
& Talwar} |2007)), one of the most ubiquitous tools in differential privacy. Our private quantile routine is
then an extension of the private median routine proposed by Feldman and Steinke (Feldman & Steinke,
2017) to handle arbitrary quantiles. Specifically, let us fix a number of bins m € N, as well as edges
0=e < e <..<em1 < ey =1 The edges define the bins I; = (ej_1,¢;], j = 1,...,m. We use
Algorithm [2] with appropriately chosen quantile level ¢ as a subroutine of our main conformal procedure.

Algorithm 2 Differentially private quantile

input: calibration scores {s1,..., s}, bins {I1,..., I, }, privacy level ¢, level g € [0, 1]
For all 1 < ¢ < n, compute discretized score [s;] = e;, where s; € I;
{ #lifsil<e;} #{iz[si]>e;} }

q

) 1—q

For all 1 < j < m, compute w; = max

€

Let § = e; with probability e=2%7 / Z;’Ll e 5wy
output: private quantile §

3 Algorithm and Guarantees

We next precisely state our main algorithm and its formal guarantees. First, our algorithm has a calibration
step, Algorithm [3] carried out one time using the calibration scores si, ..., s, as input; this is the heart of
our proposed procedure. The output of this step is a cutoff § learned from the calibration data. With this
in hand, one forms the prediction set for a test point x as in equation , which for completeness we state
in Algorithm

Algorithm 3 Differentially private calibration

input: calibration scores {s1,..., s, }, privacy parameter €, coverage level a, bins {I1,..., I}
Compute ¢-quantile of {s1,...,s,} via Algorithm [2] where ¢ is defined in , denoted §
output: calibrated score cutoff §

Algorithm 4 Differentially private prediction set

input: test point z, calibrated score cutoff §
output: prediction set as in ([2): C(z) = {y: S(z,y) < 5}.

This algorithm both satisfies differential privacy and guarantees correct coverage, as stated next in
Proposition [I] and Theorem [2] respectively. The privacy property is a straightforward consequence of the
privacy guarantees on the exponential mechanism (McSherry & Talwar] 2007)).

Proposition 1 (Privacy guarantee). Algom'thm@ is e-differentially private.

Therefore, the main challenge for theory lies in understanding how to compensate for the added differ-
entially private noise in order to get strict, distribution-free coverage guarantees.

Theorem 2 (Coverage guarantee). Fiz the differential privacy level € > 0 and miscoverage level o € (0.5, 1),
as well as a free parameter v € (0,1). Let

meD-a) 2, (m
7= n(l —ya) +enlg<7a>’ ®)

and let § be the output of Algom'thm@ at level min{q, 1}. Then, the prediction sets in with cutoff § satisfy
the coverage property in .
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Figure 3: The private quantile ¢ as n and ¢ grow. We demonstrate the adjusted quantile from as
n and e increase, with automatically chosen values for m and ~ described in Appendix [C} As the number
of samples grows and the privacy constraint relaxes, the procedure chooses a less conservative quantile,
eventually approaching the limiting value 1 — a. The mild fluctuations in the curves are due to differing
choices of m* and ~.

Remark 1. We can choose 7y to minimize ¢, which leads to smallest prediction sets. The optimal value ~*
depends only on n,m, and «, and can be found by taking a derivative of (2)); see Appendix [C]

Note that the significance level ¢ in is just a slightly inflated version of the nonprivate conformal
quantile: ¢ > W > 1 — «. Indeed, taking e = 00,7 — 0 in recovers the nonprivate quantile.
Intuitively, we must raise the significance level to compensate for the noise introduced to preserve privacy.
We note that the additive factor of order i is in fact necessary to compute an approximate quantile with
e-differential privacy (Bun et al., [2017).

We informally sketch the main ideas in the proof, deferring the details to the Appendix.

Proof sketch. We can write the probability of coverage as:
P{Y e C(X)} =E[F(3)],

where F' is the distribution of appropriately discretized empirical scores. We observe that for all g, the
exponential mechanism with input ¢ and si,...,s, returns an empirical quantile no smaller than the ¢ —
O(1/(ne)) empirical quantile. This allows us to write

E[F(3)] 2 (1 = 7a)E [F(F~}(G - 0(1/(ne))]

where F' denotes the empirical distribution of the discretized scores. For any ¢, the random variable
F(F~1(q)) is distributed as the [ng]-th order statistic of a super-uniform distribution, which implies that
it can be stochastically lower bounded by the [ng]-th order statistic of a uniform distribution. This or-
der statistic follows a beta distribution with known parameters, whose expectation can hence be evaluated
analytically. Carefully choosing ¢ as a function of this expectation completes the proof of the theorem. [

With the validity of Algorithm [3]established, we next prove that the algorithm is not too conservative in
the sense that the coverage is not far above 1 — a. A key quantity in our upper bound is
= 1%zzgxm P{s1 € I;}.
This quantity captures the impact of the score discretization. Smaller pl. = corresponds to mass being
spread more evenly throughout the bins. For well-behaved score functions, we expect pp.,. to scale as
O(m™1). Indeed, if the scores have any continuous density on [0, 1] bounded above and we take uniformly
spaced bins, then p, = O(m™1). In terms of p”, ., we have the following upper bound.

Theorem 3 (Coverage upper bound). The prediction sets in with § is as in Theorem @, satisfy the
following coverage upper bound:

P (1 ¥ max{gq, 1}) log(m/(va))

P{Y € C(X)} <1—(1—~)a+ (1—~a) [ 2p7,, + n+1)e




where q is defined in .

If we further assume a weak regularity condition on the scores, then by balancing the rates in the
expression above we arrive at an explicit upper bound.

Corollary 1 (Coverage upper bound, simplified form). Suppose that the input scores follow a continuous
distribution on [0, 1] with a density that is bounded above. Take m x ne and v =1/m. Then, the prediction
sets in , with § as in Theorem@ satisfy the following upper bound:

IP’{YEC(X)}<1—a+O<bg(n€/a)>.

ne

We emphasize that the assumptions on the score distribution are only needed to prove the upper bound;
the coverage lower bound holds for any distribution. In any case, these assumptions are very weak, essentially
requiring only that the score distribution contains no point masses. In fact, this requirement could even be
enforced ex post facto by adding a small amount of tiebreaking noise, in which case we would need no
restrictions on the input distribution of scores whatsoever.

The upper bound answers an important practical question: how many bins should we take? If m is too
small, then the histogram only coarsely approximates the empirical distribution of the scores. On the other
hand, if m is too large, then the histogram is accurate, but the private quantile in [ can grow as well. This
tension can be observed in the terms in Theorem [3] that have a dependence on m. Corollary [I] suggests that
the correct balance—which leads to minimal excess coverage—is to take m o ne. In practice, because the
dependence of § on m is only logarithmic, m is often very large.

This upper bound also gives insight to an important theoretical question: what is the cost of privacy in
conformal prediction? In nonprivate conformal prediction, the upper bound is 1 —a + O(n~1t) (J. Lei et al.,
2018). In private conformal prediction, we achieve an upper bound of 1 —a +O((ne) '), a relatively modest
cost incurred by privacy-preserving calibration.

4 Experiments

We now turn to an empirical evaluation of differentially private conformal prediction for image classification
problems. In this setting, each image X; has a single unique class label Y; € {1,..., K} estimated by a
predictive model f : X — [0,1]%. We seek to create private prediction sets, C(X;) C {1,..., K}, achieving
coverage as in equation , using the following score function:

S(z,y) =1— f(x)y,

as in|Sadinle et al.[(2019). This section evaluates the prediction sets generated by Algorithmby quantifying
the cost of privacy and the effects of the model, number of calibration points, and number of bins used in
our procedure. We use the CIFAR-10 data set (Krizhevsky & Hinton, [2009) wherever we require a privately
trained neural network. Otherwise, we use a nonprivate model on the ImageNet data set (Deng et al.,
2009), to investigate the performance of our procedure in a more challenging setting with a large number of
possible labels. Except where otherwise mentioned, we use an automated number of uniformly spaced bins
m* to construct the privatized CDF. Appendix [C] describes the algorithm for choosing an approximately
optimal value of m* when the conformal scores are roughly uniform based on fixed values of n, €, and o. We
finish the section by providing private prediction sets for diagnosing viral pneumonia on the CoronaHack
data set (Perez et all |2020)). The reader can reproduce the experiments exactly using our public GitHub
repository.

4.1 Isolating the effects of private model training and private conformal pre-
diction
We would like to disentangle the effects of private conformal prediction from those of private model training.

To that end, we report the coverage and set sizes of the following four procedures: private conformal
prediction with a private model, nonprivate conformal prediction with a private model, private conformal
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Figure 4: Coverage and set size with private/nonprivate models and private/nonprivate con-
formal prediction. We demonstrate histograms of coverage and set size of nonprivate/private models and
nonprivate/private conformal prediction at the level a = 0.1, with e =8, § = le — 5, and n = 5000.
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Figure 5: Coverage and set size for different values of m. We demonstrate the performance on
Imagenet of private conformal prediction using a nonprivate ResNet-152 as the base model at a = 0.1 and
€ = 1. The coverage is nearly constant over three orders of magnitude of bin numbers. All of the histograms
on the right hand side are overlapping. See Section for details.

prediction with a nonprivate model, and nonprivate conformal prediction with a nonprivate model. The
nonprivate model and private model are both the same stock convolutional architecture from the Opacus
library. The private model is trained with private SGD (Abadi et al., [2016)), as implemented in the Opacus
library, with privacy parameters ¢ = 8 and § = le — 5. We used the suggested private model training
parameters from the Opacus library (see Appendix , as our work does not aim to improve private model
training. The nonprivate model’s accuracy (73%) was significantly higher than that of the private model
(67%).

Figure[dshows histograms of the coverages and set sizes of these procedures over 1,000 random splits of the
CIFAR-10 validation set with n = 5000. Notably, the results show the price of private conformal prediction is
very low, as evidenced by the minuscule increase in set size caused by private conformal prediction. However,
the private model training causes a larger set size due to the private model’s comparatively poor performance.
Note that a user desiring a fully private pipeline will use the procedure in the bottom right quadrant of the
plot.
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Figure 6: Coverage and set size for different values of . We demonstrate the performance on ImageNet
of private conformal prediction using a nonprivate ResNet-152 as the base model with a = 0.1. The coverage
improves slightly for liberal (large) ¢, although the cost of privacy is evidently very low. All of the histograms
on the right hand side are overlapping. See Section for details.
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Figure 7: Coverage and set size on the CoronaHack data set. We demonstrate the performance on
the CoronaHack data set of private conformal prediction using a nonprivate ResNet-18 as the base model
with a = 0.1. The median coverage was 90.4%. See Section for details.

4.2 Varying number of bins m

Here we probe the performance of private prediction sets as the number of uniformly spaced bins m in our
procedure changes. Based on our theoretical results, m should be on the order of ne, with the exact number
dependent on the underlying model and the choices of a;, n, and €. A too-small choice of m coarsely quantizes
the scores, so Algorithm [4| may be forced to round up to a very conservative private quantile. A too-large
choice of m increases the logarithmic term in [3} The optimal choice of m balances these two factors.

To demonstrate this tradeoff, we performed experiments on ImageNet. We used a nonprivate, pretrained
ResNet-152 from the torchvision repository as the base model. Figure [§] shows the coverage and set size
of private prediction sets over 100 random splits of ImageNet’s validation set for several choices of m; we
used n = 30000 and evaluated on the remaining 20000 images. The experimental results suggest m* works
comparatively well, and that our method is relatively insensitive to the number of bins over several orders
of magnitude.

4.3 Varying privacy level ¢

Next we quantify how the coverage changes with the privacy parameter e. We used n = 30000 calibration
points and 20000 evaluation points as in Experiment For each value of € we choose a different value
of m*. Figure [f] shows the coverage and set size of private prediction sets over 100 splits of ImageNet’s
validation set for several choices of €. As e grows, the procedure becomes less conservative. Overall the
procedure exhibits little sensitivity to e.



4.4 COVID-19 diagnosis

Next we show results on the CoronaHack data set, a public chest X-ray data set containing 5908 X-
rays labeled as normal, viral pneumonia (primarily COVID-19), or bacterial pneumonia. Using 4408
training pairs over 14 epochs, we (nonprivately) fine-tuned the last layer of a pretrained ResNet-18 from
torchvision to predict one of the three diagnoses. The private conformal calibration procedure saw a
further n = 1000 examples, and we used the remaining 500 for validation. The ResNet-18 had a final accu-
racy of 756% after fine-tuning. Figure 7] plots the coverage and set size of this procedure over 1000 different
train/calibration/validation splits of the dataset, and Figure [2 shows selected examples of these sets.

5 Discussion

We introduce a method to produce differentially private prediction sets that contain the true response with
a user-specified probability by blending split conformal prediction with differentially private quantile com-
putation. The primary challenge we resolve in this work is simultaneously satisfying the coverage property
and privacy property, which requires a careful choice of the conformal score threshold to account for the
added privacy noise. Our corresponding upper bound shows that the coverage does not greatly exceed the
nominal level 1 — o, meaning that our procedure is not too conservative. Moreover, our upper bound gives
insight into the price of privacy in conformal prediction: the upper bound scales as O((ne)~!) compared to
O(n~1) for nonprivate conformal prediction, a mild decrease in efficiency. This is confirmed in our exper-
iments, where we show that there is little difference between private and nonprivate conformal prediction
when using the same predictive model. We also observe the familiar phenomenon that there is a substantial
decrease in accuracy for private model fitting compared to nonprivate model fitting. We conclude that the
cost of privacy lies primarily in the model fitting—private calibration has a comparatively minor effect on
performance. We also note that any improvement in private model training would immediately translate
to smaller prediction sets returned by our method. In sum, we view private conformal prediction as an
appealing method for uncertainty quantification with differentially private models.
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A Auxiliary results

We start with a result about the error of the private quantile mechanism, stated in Algorithm[2] The following
is an extension of the the analogous result for the private median due to |Feldman & Steinke| (2017]).

Lemma 1. For any o0 € (0,1), the differentially private quantile algorithm (Algom'thm@) satisfies:

Qmax{l%qq, 1} log(m/9)

1
ZHL s <8y >q— >1—
P n#{z [s;] <3} >¢q — >1-946
and
A Qmax{lzﬁ,l}log(m/é)
Po—#{i:[s;] <8} <q+ — >1-94
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Proof. By the standard utility guarantee for the exponential mechanism (McSherry & Talwar} 2007)) (e.g.,
Corollary 3.12 in (Dwork & Rothl [2014))), we have

p{max{#{j tsi] <8} #{j:ls;] > 3}

o 2max{l/q,1/(1 — q)}log(m/9)

)

}<minw¢
q 1—¢ i

} >1-4  (4)
First we argue that min; w; < n. Let s* = min{s € {eg,...,em} : #{i : [s;] < s} > gn}. Then, #{i: [s;] >
s*} < (1 — ¢)n trivially. Furthermore, #{i : [s;] < s*} < gn by the definition of s*, since s* is the first point
at which the cumulative fraction of scores less than or equal to s* exceeds g. Since we have identified a bin

#{j:s;1<s*} #{j:ls;]>s"}
q ’ 1—q

Going back to Equation , we have that with probability at least 1 — 9,

where max

} < n, we can conclude that min; w; < n.

%#{i:sigé}zl—%#{i18i>5}

>1—(1—g) miIZ w;  2max{(1l - q)n/? 1} log(m/d)
>q— 2max{(1 - q)/q,1}log(m/6)

Similarly,

min; w; n 2max{1,¢q/(1 — q)}log(m/d)
 2max{l, ¢/(1 — g)}log(m/0)

1
—#{i:s;, <5} <gq
n

<gq

O

Next, we package some classical facts about the distribution of order statistics in a form helpful for
analyzing conformal prediction.
Lemma 2. Let F be the CDF of a distribution supported on a finite set {a1,...,am}. Let Z1,...,Z, b F,
and let F denote the empirical CDF corresponding to Z1, . .., Z,. Denote also pit,. = maxi<i<m P{Z1 = a;}.
Then, R
ZBera +p$ax = F(F_l(Q)) = ZBgra,

where Zpgra follows the beta distribution BETA([ng]|,n — [ng] + 1) and = denotes first-order stochastic
dominance.

Proof. Since we take F~'(¢) = inf{z : F'(z) > ¢} by definition, then that implies F'~'(q) = Z([nq)), Where
Z;y denotes the i-th nondecreasing order statistic of Z1,...,7Z,. By monotonicity of F, we further have
that F'(Z([png1)) is identical to the [ng]-th nondecreasing order statistic of F'(Z1),...,F(Z,). By a standard
argument, the samples F(Zy),...,F(Z,) are super-uniform, that is, P{F(Z;) < u} < u for all u € [0,1].
In other words, they are stochastically larger than a uniform distribution on [0, 1], and thus their [ng]-th
order statistic is stochastically lower bounded by the [ng]-th order statistic of a uniform distribution, which
follows the BETA([na],n — [na] + 1) distribution. This completes the proof of the lower bound. For the
upper bound, we use the fact that P{F(Z1) < u} > u—p™, ., and so F(Z;) are stochastically dominated
by U; + pit., where {U;}_, are i.i.d. uniform on [0,1]. Their [ng]-th order statistic is distributed as
ZBera + P, Which completes the proof. O

B Proofs
B.1 Proof of Theorem [2

First we introduce some notation. By F' we will denote the discretized CDF of the scores; in particular, for
any i € {1,...,n},
F(s) =P{[s;] < s}.
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Here, by [si] we denote a discretized version of s; where we set [s;] = e; if 5; € I;. We also let E denote the
empirical distribution of the discretized scores:

F(s) = Zl{[sz] < s}

3=

By convention, we let F~'(§) denote the left-continuous inverse of F, i.e. F~'(d) := inf{s : F(s) > d},
and we similarly define F'=1(5).

We can write
P{Y € C(X)} =P{S(X,Y) < §} =E[F(9)].

Denote the event E = {1#{i : [s;] < §} > §— 2 log(m/(ya))}, and note that by Lemma and the fact
that ¢ > 0.5, P{E} > 1 — ya. By splitting up the analysis depending on F, we obtain the following:

E[F(3)] = E[F(S)1{E}] + E[F(5)1{E}]
> ya -0+ E [F(3)1{E}]

> (e |F (£ (1 Ziog (/) )]

where the final inequality follows by the definition of E. Thus, it suffices to show that

11—«

B |7 (7 (i Zogn/00)) )] 2 1% 6

Let j* = [n (¢ — 2 log (m/(ya)))]. Then, by Lemma

F(F7 (2 Ziog(n/0a)) ) = BomaGiein -7+ )

E {F (F <q 2 og “W”))} S ;;Oi(f/(”a)))] |

SO

By the definition of ¢, we see that

[n(d — 2 log (m/(y0)] _ 1-a
n+1 T 1-va’

holds, which implies Equation and thus completes the proof.

B.2 Proof of Theorem [3l
We adopt the definitions of F, F from Theorem [2| and define E as the event

{1 _ Qmax{liq,l}log(m/'ya)}

i) <5 <+ -

which by Lemma [T] has probability at least 1 — ya. By a similar reasoning as in Theorem [2| we obtain the
following:

E[F(3)] = E[F(5)1{E"}] + E[F(3)1{E}]
<ra-1+E[F(3)1{E}Y]

. 2 max L~, 1
F <F1 <€z+ i;“’ L log (m/(va))>>

where the final inequality follows by the definition of E.

<7ya+ (1-~a) <]E

+ pﬁax> ; (6)
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Let j* = [n (c}' + % log (m/(’ya)))] By Lemma we have

- 2max{1%~q,l} ’ .
FF g+ e log (m/(ya)) <X BETA(j*,n—j"+1)+pl .

SO

E

 ma(i ) . (a4 22 tog om0 )
F (F_l (@ + qu log (m/(va))>>] < +Pmax = —— P
)

By the definition of ¢, we see that

|—’I’L ((j + % log (m/(’y@)))] 1—a (n + 1) 4 2(1+max{1%.q.,1})
<

l1—vya € IOg (m/(’Ya))
n+1 - n +}
_l-a 21+ max{ 'z, 1}) log(m/(ya)) ®)
1o (n+1)e '

Putting together Equations @, , and completes the proof.

C Experimental details

Choosing m* and ~. Algorithm [5]| gives automatic choices of the optimal number of uniformly spaced
bins, m*, and the tuning parameter v that work well for approximately uniformly distributed scores. In a
moment, we will show how to find the optimal value v* for a fixed value of m. Once v* gets chosen, we will
simulate uniformly distributed scores to choose the value m* that results in the best quantile for specific,
pre-determined values of «, €, and n. In practice, m* can be chosen from a relatively coarse grid of, say, 50
values logarithmically spaced from 102 to 10°. )
We start choosing the optimal value v* by solving for the zeros of the derivative 2—3, leading to the
quadratic expression,
% =0 <= a’y* - (
oy

a(l —a)e(n+1)

+20¢>7—|—1:0. (9)

Letting I" be the roots of @, we can then choose the optimal value v* as

~*=  argmin [(”Jrl)(l_a) + 208 <m>] : (10)

vern(.Dufle—12y L 7l —ya) en ya

where the number le-12 takes care of the case that both roots lie outside the interval (0,1).

Algorithm 5 Get optimal number of bins and

input: number of calibration points n, privacy level e > 0, confidence level « € (0, 1)
Simulate n uniform conformity scores s; ~ Unif(0,1),i =1,...,n
Choose m* to be the value of m minimizing the output of Algorithm 3 on the s; with the optimal v* chosen

by .

output: m*, v*

Private training procedure. We used the Opacus library with the default parameter choices included
in the [CIFAR-10 example code] The only difference in the nonprivate model training is the use of the
--disable-dp flag, turning off the added noise but preserving all other settings.
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