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Abstract Parareal is a widely studied parallel-in-time method that can achieve
meaningful speedup on certain problems. However, it is well known that the method
typically performs poorly on non-diffusive equations. This paper analyzes linear sta-
bility and convergence for IMEX Runge-Kutta Parareal methods on non-diffusive
equations. By combining standard linear stability analysis with a simple convergence
analysis, we find that certain Parareal configurations can achieve parallel speedup
on non-diffusive equations. These stable configurations possess low iteration counts,
large block sizes, and a large number of processors. Numerical examples using the
nonlinear Schrödinger equation demonstrate the analytical conclusions.

Keywords Parareal · Parallel-in-time · Implicit-explicit · High-order · Dispersive
equations

1 Introduction

The numerical solution of ordinary and partial differential equations (ODEs and
PDEs) is one of the fundamental tools for simulating engineering and physical sys-
tems whose dynamics are governed by differential equations. Examples of fields
where PDEs are used span the sciences from astronomy, biology, and chemistry to
zoology, and the literature on methods for ODEs is well established (see e.g. [19,
20]).

Implicit-explicit (IMEX) methods are a specialized class of ODE methods that
are appropriate for problems where the right-hand side of the equation is additively
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split into two parts so that

y′(t) = FE (y, t)+ F I (y, t). (1)

The key characteristic of an IMEX method is that the term FE (assumed to be non-
stiff) is treated explicitly while the term F I (assumed to be stiff) is treated implicitly.
In practice, IMEX methods are often used to solve equations that can be naturally
partitioned into a stiff linear component that is treated implicitly and a non-stiff
nonlinearity that is treated explicitly. The canonical example is a nonlinear advection-
diffusion type equation, where the stiffness comes from the (linear) diffusion terms
while the nonlinear terms are not stiff. IMEX methods are hence popular in many
fluid dynamics settings. Second-order methods based on a Crank-Nicolson treatment
of the diffusive terms and an explicit treatment of the nonlinear terms are a notable
example. However, in this study, we consider a different class of problems where
the IMEX schemes are applied to a dispersive rather than diffusive term. Here, a
canonical example is the nonlinear Schrödinger equation. Within the class of IMEX
methods, we restrict the study here to those based on additive or IMEX Runge-Kutta
methods (see e.g. [3, 7, 11, 22]). In particular, we will study the behavior of the
parallel-in-time method, Parareal, constructed from IMEX Runge-Kutta (hereafter
IMEX-RK) methods applied to non-diffusive problems.

Parallel-in-time methods date back at least to the work of Nievergelt in 1964 [27]
and have seen a resurgence of interest in the last two decades [17]. The Parareal
method introduced in 2001 [24] is perhaps the most well-known parallel-in-time
method and can be arguably attributed to catalyzing the recent renewed interest in
temporal parallelization. The emergence of Parareal also roughly coincides with the
end of the exponential increase in individual processor speeds in massively paral-
lel computers, a development that has resulted in a heightened awareness of the
bottleneck to reducing run time for large-scale PDE simulations through spatial par-
allelization techniques alone. Although Parareal is a relatively simple method to
implement (see Sect. 3) and can, in principle, be employed using any single-step
serial temporal method, one main theme of this paper is that the choice of method is
critical to the performance of the algorithm.

Parareal employs a concurrent iteration over multiple time steps to achieve par-
allel speedup. One of its main drawbacks is that the parallel efficiency is typically
modest and is formally bounded by the inverse of the number of iterations required to
converge to the serial solution within a pre-specified tolerance. Another well-known
limitation is that the convergence of the method is significantly better for purely
diffusive problems than for advective or dispersive ones. As we will show, the con-
vergence properties of the Parareal methods considered here are quite complex, and
the efficiency is sensitive to the problem being solved, the desired accuracy, and the
choice of parameters that determine the Parareal method. In practice, this makes the
parallel performance of Parareal difficult to summarize succinctly.

Incorporating IMEX integrators into Parareal enables the creation of new Parareal
configurations that have similar stability and improved efficiency compared to
Parareal configurations that use fully implicit solvers. IMEX Parareal integrators
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were first proposed by Wang et al. [34], where their stability is studied for equations
with a stiff dissipative linear operator and a non-stiff, non-diffusive, and nonlinear
operator. In this work, we focus exclusively on non-diffusive equations where the
spectrums of FE and F I are both purely imaginary. Moreover, we only consider
Parareal methods on bounded intervals with a fixed number of iterations. Under
these restrictions, one can interpret Parareal as a one-step Runge-Kutta method with
a large number of parallel stages. By taking this point of view, we can combine
classical linear stability and accuracy theory with more recent convergence analy-
ses of Parareal [29]. Furthermore, fixing the parameters means that the parallel cost
of Parareal is essentially known a priori making comparisons in terms of accuracy
versus wall-clock more straightforward.

Themain contribution of thiswork is to introduce newdiagrams that combine con-
vergence regions and classical linear stability regions for Parareal on the partitioned
Dahlquist problem. The diagrams and underlying analysis can be used to determine
whether a particular combination of integrators and parameters will lead to a stable
and efficient Parareal method. They also allow us to identify the key Parareal param-
eter choices that can provide some speedup for non-diffusive problems. Overall, the
results can be quite surprising, including the fact that convergence regions do not
always overlap with stability regions; this means that a rapidly convergent Parareal
iteration does not imply that Parareal considered as a one-step method with a fixed
number of iterations is stable in the classical sense.

The rest of this paper is organized as follows. In the next section, we present
a general overview of IMEX-RK methods and the specific methods used in our
study are identified. In Sect. 3, we provide a short review of the Parareal method
followed by a discussion of the theoretical speedup and efficiency. In Sect. 4, we
conduct a detailed examination of the stability and convergence properties of IMEX-
RK Parareal methods. Then, in Sect. 5, we present several numerical results using
the nonlinear Schrödinger equation to confirm the insights from the linear analysis.
Finally, we present a summary of the findings, along with our conclusions in Sect. 6.

2 IMEX Runge-Kutta Methods

In this section, we briefly discuss the IMEX Runge-Kutta (IMEX-RK) methods that
are used in this paper. Consider the ODE (1) where FE , is assumed to be non-stiff
and while F I is assumed to be stiff. Denoting yn as the approximation to y(tn) with
∆t = tn+1 − tn , the simplest IMEX-RK method is forward/backward Euler

yn+1 = yn + ∆t
(
FE (yn, tn)+ F I (yn+1, tn+1)

)
. (2)

In each step, one needs to evaluate FE (yn, tn) and then solve the implicit equation

yn+1 − ∆t F I (yn+1, tn+1) = yn + ∆t F E (yn, tn). (3)
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Higher order IMEX methods can be constructed using different families of inte-
grators and IMEX-RK methods (also called additive or partitioned) are one popular
choice (see e.g. [3, 7, 11, 22]). The generic form for an s stage IMEX-RKmethod is

yn+1 = yn + ∆t




s∑

j=1

bE
j F

E (Y j , tn + ∆tcEj )+ bI
j F

I (Y j , tn + ∆tcIj )



 , (4)

where the stage values are

Y j = yn + ∆t

(
s−1∑

k=1

aE
j,k F

E (Yk, tn + ∆tcEk )+
s∑

k=1

aI
j,k F

I (Yk, tn + ∆tcIk )

)

. (5)

Such methods are typically encoded using two Butcher tableaus that, respectively,
contain the coefficients aE

j,k , b
E
j , c

E
j and aI

j,k , b
I
j , and cIj . As with the Euler method,

each stage of an IMEX method requires the evaluation of FE (y j , t j ), F I (y j , t j ) and
the solution of the implicit equation

Y j − (∆ta I
j, j )F

I (Y j , tn + ∆tcIj ) = r j , (6)

where r j is a vector containing all the known quantities that determine the j th stage.
IMEX methods are particularly attractive when F I (y, t) = Ly, where L is a linear
operator so that (6) becomes

(I − ∆ta I
j, j L)Y j = r j . (7)

If a fast preconditioner is available for inverting these systems, or if the structure
of L is simple, then IMEX methods can provide significant computational savings
compared to fully implicit methods.

To achieve a certain order of accuracy, the coefficients aE and aI must satisfy
both order and matching conditions. Unfortunately, the total number of conditions
grows extremely fast with the order of the method, rendering classical order-based
constructions difficult. To the best of the authors’ knowledge, there are currently no
IMEX methods beyond order five that have been derived using classical order con-
ditions. However, by utilizing different approaches, such as extrapolation methods
[12] or spectral deferred correction [15, 25], it is possible to construct high-order
IMEX methods.

In this work, we consider IMEX-RKmethods of order one through four. The first-
and second-order methods are the (1, 1, 1) and (2, 3, 2) methods from [3] whose
tableaus can be found in Sects. 2.1 and 2.5, respectively. The third- and fourth-order
methods are the ARK3(2)4L[2]SA and ARK4(3)6L[2]SA, respectively, from [22].
All the schemes we consider have an L-Stable implicit integrator.
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3 The Parareal Method

The Parareal method, first introduced in 2001 [24], is a popular approach to time-
parallelization of ODEs. In this section, we will give a brief overview of Parareal
and then present a theoretical model for the parallel efficiency and speedup of the
method (Table1).

3.1 Method Definition

In the original form, Parareal is straightforward to describe by a simple iteration. Let
[T0, T f in] be the time interval of interest and tn denote a series of time steps in this
interval. Next, define coarse and fine propagators G and F , each of which produces
an approximation to the ODE at tn+1 given an approximation to the solution at tn .

Assume that one has a provisional guess of the solution at each tn , denoted y0n .
This is usually provided by a serial application of the coarse propagator G. Then the
kth Parareal iteration is given by

yk+1
n+1 = F(ykn )+ G(yk+1

n ) − G(ykn ), (8)

Table 1 Definitions of variable names used in the description of Parareal
Variable Meaning Definition

T f in Final time of ODE Problem-specified

Np Number of processors User-defined

Ns Total Number of fine steps User-defined

Nb Number of Parareal blocks User-defined

K Number of Parareal iterations User-defined or adaptively controlled

∆t Time step for serial method T f in/Ns

G Fine propagator Here 1 step of IMEX RK method

F Fine propagator N f steps of IMEX RK method

N f Number of RK steps in F Ns/(NpNb)

Ng Number of RK steps in G 1 for all examples

NT Total number of fine steps per block Ns/Nb

Cs Cost of full serial run Nsc f

cg Cost of method per step in G User-defined

c f Cost of method per step in F User-defined

CF Cost of F N f c f

CG Cost of G Ngcg
α Ratio of G to F cost CG/CF
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where the critical observation is that the F(ykn ) terms can be computed on each time
interval in parallel. The goal of Parareal is to iteratively compute an approximation
to the numerical solution that would result from applyingF sequentially on Np time
intervals,

yn+1 = F(yn), for n = 0 . . . Np − 1 (9)

where each interval is assigned to a different processor. As shown below, assuming
that G is computationally much less expensive thanF and that the method converges
in few enough iterations, parallel speedup can be obtained.

A part of the appeal of the Parareal method is that the propagators G and F
are not constrained by the definition of the method. Hence, Parareal as written can
in theory be easily implemented using any numerical ODE method for G and F .
Unfortunately, as discussed below, not all choices lead to efficient or even convergent
parallel numerical methods, and the efficiency of themethod is sensitive to the choice
of parameters.

Note that as described, the entire Parareal method can be considered as a
self-starting, single-step method for the interval [T0, T f in] with time step ∆T =
T f in − T0. In the following section, the classical linear stability of Parareal as a
single-step method will be considered for G and F based on IMEX-RK integrators.
This perspective also highlights the fact that there is a choice that must be made for
any particular Parareal runs regarding the choice of ∆T . To give a concrete example
for clarity, suppose the user has an application requiring 1024 time steps of some
numerical method to compute the desired solution on the time interval [0, 1], and
that 8 parallel processors are available. She could then run the Parareal algorithm on
8 processors with 128 steps of the serial method corresponding to F . Alternatively,
Parareal could be run as a single step method on two blocks of time steps correspond-
ing to [0, 1/2] and [1/2, 1] with each block consisting of 512 serial fine time steps,
or 64 serial steps corresponding to F for each processor on each block. These two
blocks would necessarily be computed serially with the solution from the first block
at t = 1/2 serving as the initial condition on the second block.

3.2 Cost and Theoretical Parallel Speedup and Efficiency

Wedescribe a general framework for estimating the potential speedup for the Parareal
method in terms of the reduction in the run time of the method. Although theoretical
cost estimates have been considered in detail before (see e.g. [4], we repeat the basic
derivation for the specific assumptions of the IMEX-RKbasedmethods used here and
for the lesser known estimates for multiple block Parareal methods. For simplicity,
assume that an initial value ODE is to be solved with some method requiring Ns time
steps to complete the simulation on the interval [0, T f in]. We assume further that the
same method will be used in the fine propagator in Parareal. If each step of the serial
method has cost c f , then the total serial cost is
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Cs = Nsc f . (10)

In the numerical examples present in Sect. 5, both the coarse and fine propagators
consist of a number of steps of an IMEX-RK method applied to a pseudospectral
discretization of a PDE. The main cost in general is then the cost of the FFT used
to compute explicit nonlinear spatial function evaluations. Hence each step of either
IMEX-RK method has essentially a fixed cost, denoted c f and cg . This is in contrast
to the case where implicit equations are solved with an iterative method and the cost
per time step could vary considerably by step.

Given Np available processors, the Parareal algorithm can be applied to Nb blocks
of time intervals, with each block having length∆T = T f in/Nb. Again for simplicity
we assume that in each time block, each processor is assigned a time interval of
equal size ∆Tp = ∆T /Np. Under these assumptions, F is now determined to be
N f = Ns/(NpNb) steps of the serial method. Parareal is then defined by the choice
of G, which we assume here is constant across processors and blocks consisting of
Ng steps of either the same or different RK method as used in F with cost per step
cg . Let CF = N f c f be the time needed to compute F , and likewise, let CG = Ngcg
be the cost of the coarse propagator.

The cost of K iterations of Parareal performed on a block is the sum of the cost
of the predictor on a block, NpCG , plus the additional cost of each iteration. In
an ideal setting where each processor computes a quantity as soon as possible and
communication cost is neglected, the latter is simply the K (CF + CG). Hence, the
total cost of Parareal on a block is

CB = NpCG + K (CF + CG). (11)

The total cost of Parareal is the sum over blocks

Cp =
Nb∑

i=1

(
NpCG + Ki (CF + CG)

)
= NbNpCG + (CF + CG)

Nb∑

i=1

Ki , (12)

where Ki is the number of iterations required to converge on block i . Let K̄ denote
the average number of iterations across the blocks then

Cp = Nb
(
NpCG + K̄ (CF + CG)

)
. (13)

Note the first term NbNpCG is exactly the cost of applying the coarse propagator
over the entire time interval.

Finally, denoting α = CG/CF , the speedup S = Cs/Cp is then

S = Np

Npα + K̄ (1+ α)
. (14)
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For fixed K , where K̄ = K , this reduces to the usual estimate (see e.g. Eq. (28) [26]
or Eq. (19) of [4]). The parallel efficiency of Parareal E = S/Np is

E = 1

(Np + K̄ )α + K̄
. (15)

A few immediate observations can be made from the formulas for S and E .
Clearly, the bound on efficiency is E < 1/K̄ . Further, if significant speedup is to be
achieved, it should be true that K̄ is significantly less than Np and Npα is small as
well. As will be demonstrated later, the total number of Parareal iterations required
is certainly problem-dependent and also dependent on the choices of F and G. It
might seem strange at first glance that the number of blocks chosen does not appear
explicitly in the above formulas for S and E . Hence, it would seem better to choose
more blocks of shorter length so that K̄ is minimized. Note however that increasing
the number of blocks by a certain factor with the number of processors fixed means
that N f will decrease by the same factor. If the cost of the coarse propagator CG is
independent of the number of blocks (as in the common choice of G being a single
step of a given method, i.e. Ng = 1), then α will hence increase by the same factor.
Lastly, one can derive the total speedup by also considering the speedup over each
block, Si as

S = 1
∑Nb

i=1
1

NbSi

= 1
1
Nb

∑Nb
i=1

1
Si

. (16)

Finally, we should note that more elaborate parallelization strategies than that
discussed above are possible, for example [1, 4, 6, 28].

4 Non-diffusive Dalquist: Stability, Convergence, Accuracy

In this section, we analyze linear stability and convergence properties for IMEX-RK
Parareal methods for non-diffusive problems. There have been multiple previous
works that have analyzed convergence and stability properties of Parareal. Bal [5]
analyzed Parareal methods with fixed parameters, and Gander and Vandewalle [18]
studied the convergence of parareal on both bounded and unbounded intervals as the
iterations k tends to infinity. More recently, Southworth et al. [31, 32] obtained tight
convergence bounds for Parareal applied to linear problems. Specific to stability for
non-diffusive equations, Staff andRonquist [33] conducted an initial numerical study,
Gander [16] analyzed the stability of Parareal using characteristics, andRuprecht [29]
studied the cause of instabilities for wave equations. In this work, we will use the
work of Ruprecht as a starting point to study stability and convergence for Parareal
integrators that are constructed using IMEX-RK integrators.

In this work, we consider the non-diffusive partitioned Dahlquist test problem
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{
y′ = iλ1y + iλ2y

y(0) = 1
λ1,λ2 ∈ R, (17)

where the term iλ1y is treated implicitly and the term iλ2y is treated explicitly.
This equation is a generalization of the Dahlquist test problem that forms the basis
of classical linear stability theory [35, IV.2], and the more general equation with
λ1,λ2 ∈ C has been used to study the stability properties of various specialized
integrators [2, 9, 13, 21, 23, 30]. In short, (17) highlights stability for (1) when
FE (y, t) and F I (y, t) are autonomous, diagonalizable linear operators that share
the same eigenvectors, and have a purely imaginary spectrum.

When solving (17), a classical one-step integrator (e.g. an IMEX-RK method)
reduces to an iteration of the form

yn+1 = R(i z1, i z2)yn where z1 = hλ1, z2 = hλ2, (18)

and R(ζ1, ζ2) is the stability function of the method. A Parareal algorithm over an
entire block can also be interpreted as a one-step method that advances the solution
by Np total time steps of the integrator F . Therefore, when solving (17), it reduces
to an iteration of the form

y(Np(n+1)) = R(i z1, i z2)y(Npn). (19)

The stability function R(ζ1, ζ2) plays an important role for both convergence and
stability of Parareal, and the approach we take for determining the stability functions
and convergence rate is identical to the one presented in [29].

The formulas and analysis presented in the following two subsections pertain to
a single Parareal block. Since we will compare Parareal configurations that vary the
number of fine steps N f (so that the fine integrator F is F = f N f ), it is useful to
introduce the blocksize NT = NpN f which corresponds to the total number of steps
that the integrator f takes over the entire block.

4.1 Linear Stability

The stability region for a one-step IMEX method with stability function R(ζ1, ζ2) is
the region of the complex ζ1 and ζ2 plane given by

Ŝ =
{
(ζ1, ζ2) ∈ C2 : |R(ζ1, ζ2)| ≤ 1

}
. (20)

Inside Ŝ the amplification factor |R(ζ1, ζ2)| is smaller than or equal to on, which
ensures that the time step iteration remains forever bounded. For traditional inte-
grators, one normally expects to take a large number of time steps, so even a mild
instability will eventually lead to unusable outputs.
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Fig. 1 Non-diffusive linear stability regions (21) for IMEX-RK methods (top) and surface plots
showing log(amp(i z1, i z2)) (bottom). For improved readability, we scale the z1 and z2 axes differ-
ently. For the amplitude function plots, zero marks the cutoff for stability since we are plotting the
log of the amplitude function

The full stability region Ŝ is four dimensional is difficult to visualize. Since we
are only considering the non-diffusive Dahlquist equation, we restrict ourselves to
the simpler two dimensional stability region

S =
{
(z1, z2) ∈ R2 : |R(i z1, i z2)| ≤ 1

}
. (21)

Moreover, all the integrators we consider have stability functions that satisfy

R(i z1, i z2) = R(−i z1,−i z2) (22)

which means that we can obtain all the relevant information about stability by only
considering S for z1 ≥ 0.

Linear stability for IMEX-RK Before introducing stability for Parareal, we briefly
discuss the linear stability properties of the four IMEX-RK methods considered in
this work. In Fig. 1, we present 2D stability regions (21) and surface plots that show
the corresponding amplitude factor.When z2 = 0, IMEX-RK integrators revert to the
fully implicit integrator. Since themethodswe consider are all constructed using anL-
stable implicit method, the amplification factor will approach zero as z1 → ∞. This
implies that we should not expect good accuracy for large |z1| since the exact solution
of the non-diffusive Dahlquist equation always has magnitude one. As expected, this
damping occurs at a slower rate for the more accurate high-order methods.

Linear stability for Parareal The importance of linear stability for Parareal (i.e.
the magnitude of R(z1, z2) from (19)) depends on the way the method is run and on
the severity of any instabilities. In particular, we consider two approaches for using
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Parareal. In the first approach, one fixes the number of processors and integrates in
time using multiple Parareal blocks. This turns Parareal into a one-step RK method;
therefore, if one expects to integrate over many blocks, then the stability region
becomes as important as it is for a traditional integrator.

An alternative approach is to integrate in time using a single large Parareal block.
If more accuracy is required, then one simply increases the number of time steps
and/or processors, and there is never a repeated Parareal iteration. In this second
scenario, we can relax traditional stability requirements since a mild instability in
the resulting one-step Parareal method will still produce usable results. However, we
still cannot ignore large instabilities that amplify the solution by multiple orders of
magnitude.

To analyze the linear stability of parareal, we first require a formula for its stability
function. In [29], Ruprecht presents a compact formulation for the stability function
of a single Parareal block. He first defines the matrices

MF =





I
−F I

. . .
. . .

−F I




MG =





I
−G I

. . .
. . .

−G I




, (23)

where the constants F = R f (i z1, i z2)N f and G = Rc(i z1, i z2)Ng are the stability
functions for the fine propagatorF and the coarse propagatorG. The stability function
for Parareal is then

R(i z1, i z2) = c2




k∑

j=0

E j



M−1
G c1, (24)

where E = I − M−1
G M−1

F and c1 ∈ RNp+1, c2 ∈ R1,Np+1 are c1 = [1, 0, . . . , 0]T and
c2 = [0, . . . , 0, 1].

4.2 Convergence

A Parareal method will always converge to the fine solution after Np iterations.
However, to obtain parallel speedup, one must achieve convergence in substantially
fewer iterations. Convergence rates for a linear problem can be studied by writing the
Parareal iteration in matrix form, and computing the maximal singular values of the
iterationmatrix [29]. Below,we summarize the key formulas behind this observation.

For the linear problem (17), the Parareal iteration (8) reduces to

MGyk+1 = (MG − MF )yk + b, (25)
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where y = [y0, y1, y2, . . . , yNp ]T is a vector containing the approximate Parareal
solutions at each fine time step of the integrator F , the matrices MG,MF ∈
RNp+1,Np+1 are defined in (23) and the vector b ∈ RNp+1 is [y0, 0, . . . , 0]T . The
Parareal algorithm can now be interpreted as a fixed point iteration that converges to
the fine solution

yF =
[
1, F, F2, . . . , FNp

]T
y0 (26)

and whose error ek = yk − yF evolves according to

ek = Eek−1 where E = I − M−1
G MF . (27)

Since Parareal converges after Np iterations, the matrix E is nilpotent and conver-
gence rates cannot be understood using the spectrum. However, monotonic conver-
gence is guaranteed if ‖E‖ < 1 since

‖ek+1‖ ≤ ‖E‖‖ek‖ < ‖ek‖,

where ‖ · ‖ represents any valid norm.We therefore introduce the convergence region

Cp =
{
(z1, z2) : ‖E‖p < 1

}
(28)

that contains the set of all z1, z2, where the p-norm of E is smaller than one and
the error iteration (27) is contractive. Note that for rapid convergence that leads to
parallel speedup one also needs ‖E‖p ) 1.

Two-norm for Bounding E In [29], Ruprecht selects ‖E‖2 = max j σ j , where σ j is
the j th singular value of E. However, the two-norm needs to be computed numeri-
cally, which prevents us from understanding the conditions that guarantee fast con-
vergence.

Infinity-norm for boundingE If we consider the∞-norm,we can exploit the simple
structure of the matrix E to obtain the exact formula

‖E‖∞ = 1 − |G|Np

1 − |G| |G − F |. (29)

This equality can be obtained directly through simple linear algebra (See Appendix
1) and is similar to the formula used in more sophisticated convergence analysis of
Parareal [18, 31] and MGRIT [14]. By using this exact formula, we can understand
the requirements that must be placed on the coarse and fine integrators to guarantee
a rapidly convergent Parareal iteration. We summarize them in three remarks.

Remark 1 IfG is stable, so that its stability function is less then one, and |G − F | <
1
Np

then the Parareal iteration converges monotonically. Notice that when |G| < 1,
then
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1 − |G|Np

1 − |G| =
Np−1∑

j=0

|G| j < Np. (30)

Therefore from (29) it follows that if |G − F | < 1
Np

then ‖E‖∞ < 1. Note, however,
that this is not always mandatory, and in the subsequent remark we show how this
restriction is only relevant for modes with no dissipation. Nevertheless, if we want to
add many more processors to a Parareal configuration that converges for all modes,
then we also require a coarse integrator that more closely approximates the fine
integrator. One way to satisfy this restriction is by keeping NT fixed while increasing
the number of processors; this shrinks the stepsize of the coarse integrator so that it
more closely approximates the fine integrator. Another option is to simply select a
more accurate coarse integrator or increase the number of coarse steps Ng .

Remark 2 It is more difficult to achieve large convergence regions for a non-
diffusive equation than for a diffusive one. If we are solving a heavily diffusive
problem y′ = ρ1y + ρ2y where Re(ρ1 + ρ2) ) 0 with an accurate and stable inte-
grator, then |G| ) 1. Conversely, if we are solving a stiff non-diffusive problem (17)
with an accurate and stable integrator we expect that |G| ∼ 1. Therefore,

1 − |G|Np

1 − |G| ∼
{
1 Diffusive Problem,
Np Non-Diffusive Problem.

(31)

From this, we see that the non-diffusive case is inherently more difficult since we
require that the difference between the coarse integrator and the fine integrator should
be much smaller than 1

Np
for fast convergence. Moreover, any attempts to pair an

inaccurate but highly stable coarse solver (|G| ) 1) with an accurate fine solver
(|F | ∼ 1) will at best lead to slow convergence for a non-diffusive problem since
|G − F | ∼ 1. Rapid convergence is possible if both |F | ) 1 and |G| ) 1, however,
this is not meaningful convergence since both the coarse and fine integrator are
solving the non-diffusive problem inaccurately.

Remark 3 If G is not stable (i.e. |G| > 1), then fast convergence is only possible if
F is also unstable so that |F | > 1. Convergence requires that the difference between
the coarse and fine iterator is sufficiently small so that

|G − F | < 1 − |G|
1 − |G|Np

. (32)

Since G and F are complex numbers we can interpret 1−|G|
1−|G|Np as the radial distance

between the numbers. If wewant |F | ≤ 1, thenG can never bemore than the distance
1−|G|

1−|G|Np from the unit circle. Therefore, we require that
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|G| − 1 − |G|
1 − |G|Np

≤ 1 =⇒ |G| ≤ 1. (33)

4.3 Linear Stability and Convergence Plots for Parareal

The aim of this subsection is to broadly categorize the effect that each of the Parareal
parameters has on stability and convergence. The first parameters that we consider
are the coarse and fine integrators. Since we are considering IMEX-RKmethods with
orders one to four, there are ten possible IMEX-RK pairings where the fine integrator
has higher or equivalent order compared to the coarse integrator. The remaining
parameters are the number of processors, the number of Parareal iterations K , and
the number of coarse and fine integrator steps, Ng and N f .

In practice, Parareal is commonly runwith an adaptively selected K that causes the
method to iterate until a pre-specified residual tolerance is satisfied.When discussing
linear stability, we instead assume that Parareal always performs a fixed number of
iterations. This simplifies our analysis and allows us to quantify how iteration count
affects stability. Since the matrix E from (27) does not depend on K , the number
of iterations has no effect on the convergence regions. Therefore, our convergence
results apply to both non-adaptive and adaptive Parareal.

To reduce the number of total parameters further, we always take the number of
coarse integrator steps Ng to be one. Even with this simplification, there are still too
many degrees-of-freedom to discuss all the resulting Parareal methods. Therefore,
we only show several example plots that capture the essential phenomena and provide
a set of general remarks to encapsulate our main observations. Those who wish to
see additional stability and convergence plots can download our Matlab code [10]
which can be used to generate figures for any other set of Parareal parameters.

To showcase the stability and convergence properties of Parareal, we present 2D
plots that overlay the linear stability region (21) and the convergence region (28) with
p = ∞.We startwith a simple example that demonstrates howweconstruct our plots.
Consider the Parareal integrator with IMEX-RK3 and IMEX-RK4 as the coarse and
fine integrator, respectively, and with parameters K = 2, Ng = 1, N f = 8, Np = 64.
The following three figures show the convergence region (left), the stability region
(middle), and an overlay of both (right). Each plot shows the (z1, z2) plane where we
only consider z1 ≥ 0 due to the symmetry condition (22).
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The convergence rate plot has a color bar that corresponds to the norm of the
Parareal iteration matrix E from (27). In the overlay plot, there are three distinct
regions that are colored according to the legend shown above.

To simplify the comparison between different Parareal methods, we scale all the
stability functions used to compute both stability and convergence relative to the
number of total fine integrator steps NT ; in other words, our plots are generated
using the scaled stability function R̂(i z1, i z2) = R(i NT z1, i NT z2).

For brevity, we only present plots for Parareal methods with IMEX-RK3 and
IMEX-RK4 as the coarse and fine integrators, and with the following parameters:

NT ∈ {512, 2048}, Ng ∈ {1}, N f ∈ {4, 8, 16, 32}, k ∈ {1, 2, 3, 4}.

For each configuration, the number of processors Np = NT /N f . In Figs. 2 and 3, we
show a grid of convergence plots and stability-convergence overlay plots for IMEX
Parareal integrators with NT = 512 and NT = 2048. Due to the limited stability of
the Parareal methods near the origin, we magnify the axes in comparison to our plots
for IMEX-RKmethods. Three additional figures for Parareal methods with different
coarse and fine integrators are shown in Appendix 2, and additional plots with further
methods and different axes are available in [10].

General remarks on stability and convergenceWemake several remarks based on
the stability plots shown in Figs. 2, 3, and the additional ones contained in [10]. These
remarks are meant to be general and should hold for parareal methods constructed
using a larger range of IMEX-RK families than the four discussed in this work.

1. There are many regions in the (z1, z2) plane where stability and convergence
regions do not overlap (in Figs. 2 and 3 these regions appear in a light blue color).
Therefore, a Parareal method that does not take K = Np can be unstable even
for (z1, z2) pairs that are inside the convergence region. If this Parareal method is
iterated over many blocks, or if the instability is large, then the final output will
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Fig. 2 Stability and convergence overlay plots for Parareal configurations with a block size of
NT = 512 and IMEX-RK3, IMEX-RK4 as the coarse and fine integrator. The number of processors
increases as onemoves rightward in the horizontal direction. The top row shows the convergence rate
plot for the method, and all subsequent rows show stability convergence overlays for an increasing
number of iterations. The subfigure titles show the theoretical speedup (S) and efficiency (E) for
each Parareal configuration
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Fig. 3 Stability and convergence overlay plots for Parareal configurations with a block size of
NT = 2048 and IMEX-RK3, IMEX-RK4 as the coarse and fine integrator

be unusable. Conversely, lack of convergence paired with stability means that the
solution will remain bounded. However, the accuracy for these (z1, z2) pairs will
never surpass that of the coarse integrator unless the number of iterations is large;
in many cases as large as K = Np.

2. Convergence regions for Parareal change drastically depending on the parameters.
Overall, we see that the choice of coarse integrator and the number of processors
have the most prominent effect on the convergence regions near the origin. In
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particular, the shape of the convergence region is primarily driven by the choice of
coarse integrator (See the following remark and the additional figures inAppendix
2), and the size of the region contracts if NT is increased, while N f is kept
constant. For a fixed NT , the size of the convergence region near the origin is
roughly inversely proportional to N f (or equivalently, proportional to the ratio
of the number of processors Np and the block size NT ). Though one may hope
to attain the fastest speedup using a coarse solver with large time steps, these
observations suggest that it is important to carefully balance speedup with the
size of the solution spectrum.

3. The choice of fine integrator has almost no effect on the shape or size of the
convergence region near the origin. We can understand this by first noticing that
the convergence region depends on F through the term |G − F | in (29). Now,
suppose that we select a coarse integrator of order γ, and a fine integrator of order
γ + δ, where δ ≥ 0. If we define λ = z1 + z2, it follows that

G = exp(iλ)+O (|λ|γ) , F(δ) = exp(iλ)+O
(
|λ|γ+δ

)
.

Therefore, |G − F(δ)| = |G − F(0)| +O (|λ|γ). This implies that for any choice
of fine integrator, the convergence rates will be nearly identical near the (z1, z2)
origin where λ is small.

4. Stability regions are non-trivial and depend onmore parameters than convergence
regions. The most significant effect on stability regions is due to the choice of
coarse integrator, the number of processors, and the number of Parareal iterations.
In the next subsection, we make a few additional comments about the stability of
the IMEX integrators tested in this work.

Remarks regarding IMEX PararealOverall, IMEX Parareal methods are not well
suited for non-diffusive equations. Our main observation is that the stability region
splits in two along the z1 axis; see the bottom right diagrams in Figs. 2 and 3 as
an example. For all ten IMEX-RK pairings that form the basis of this work, we
consistently find the following patterns for the stability regions near the origin:

• Stability regions grow larger if NT is increased while keeping N f constant.
• For fixed NT , stability regions grow if N f is decreased (or equivalently Np is
increased).

• Stability regions do not monotonically increase with iteration count. Instead, the
regions initially contract and separate as K increases.

Nevertheless, IMEX Parareal methods can still be effective for solving non-diffusive
equations under three conditions:

1. Select a stable method pairing. This is non-trivial and many pairings lead to an
IMEX Parareal method with no stability along the z1 axis for small K . Of the ten
possible coarse-fine integrator pairings, only the ones with IMEX-RK1 or IMEX-
RK3 as the coarse integrator were stable. Selecting IMEX-RK2 or IMEX-RK4 as
the coarse integrator produced an unstable Parareal method for all the parameters
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we considered. More generally, this suggests that RK pairs should be specially
constructed to maximize stability.

2. Keep the iteration counts low, choose large block lengths, and avoid using
too few processors. Increasing the number of Parareal iterations causes the sta-
bility region to separate along the z1 axis. After looking across a wide range of
parameters, we find that the stability regions of the IMEX integrators consistently
get worse as the number of iterations initially increases. This is especially true
if we consider small block lengths NT or small Np. This suggests that adaptive
implementations of IMEX Parareal on non-diffusive problems will likely lead to
an unstable method if the residual tolerance is set too low. However, if one fixes
the maximum number of iteration K , selects a large block length NT , and uses a
sufficient number of processors Np, then the methods can be effective.
We note that choosing large block lengths with many processors will limit the
maximal theoretical speedup of the parareal method. However, for non-diffusive
equations, optimizing purely for parallel speedup will lead either to an unstable
method or to a pararealmethodwith a very small convergence region that renders it
less efficient compared to the serial fine integrator.Moreover, the importantmetric
is not parallel speedup, but rather efficiency (error vs time) of the parareal integra-
tor compared to its serial fine integrator. To properly determine whether a parareal
configuration is efficient, one needs to carefully balance stability, speedup, and
convergence relative to the spectrum of the ODE problem that is being solved.

3. Avoid problems with broad spectrums. Stable pairings of IMEX integrators
possess good stability and convergence near the (z1, z2) origin. However, for all
the RK pairings we tested, the convergence regions do not extend far along the
z1 axis. For moderately sized z1, we consistently see a region of good stability
that is paired with non-contractive convergence. These observations suggest that
IMEX Parareal methods will converge slowly on solutions where the energy is
concentrated in these modes. We note that the convergence region is restored as
z1 gets sufficiently large (outside the range of the figures contained in the paper).
However, in these regions the coarse and fine IMEX integrators both exhibit heavy
damping, therefore, rapid convergence to the fine integrator is not a sign of good
accuracy; see Remark 2 in Sect. 4.2.

4.4 Accuracy Regions for the Non-diffusive Dahlquist
Equation

To supplement our stability plots, we also consider the accuracy regions for IMEX
integrators. The accuracy region Aε shows the regions in the (z1, z2) plane where
the difference between the exact solution and the numerical method is smaller than
ε. The accuracy region for an IMEX method is typically defined as

Aε = {(z1, z2) ∈ R : |R(i z1, i z2) − exp(i z1, i z2)| ≤ ε} , (34)
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where R(ζ2, ζ2) is the stability function of the method. Since Parareal methods
advance the solution multiple time steps, we scale the accuracy regions by the total
number of time steps in a block so that

Aε = {(z1, z2) ∈ R : |R(i NT z1, i NT z2) − exp(i NT z1, i NT z2)| ≤ ε} . (35)

Under this scaling, the accuracy region of a fully converged Parareal method with
K = Np is

Aε =
{
(z1, z2) ∈ R : |RF (i z1, i z2)NT − exp(i NT z1, i NT z2)| ≤ ε

}
. (36)

where RF (ζ1, ζ2) is the stability function of the fine integrator; this is the accuracy
region of a method that consists of NT steps of the fine integrator.

In Fig. 4, we show the accuracy regions for IMEX Parareal methods with NT =
2048. The diagrams highlight the importance of the different regions in our stability
plots. First, we can clearly see fast convergence to the fine solution inside contractive
regions where ‖E‖ ) 1. Second, for any (z1, z2) pair that are inside the stability
region but outside the convergence region, we see that increasing the number of
Parareal iterations does not improve the accuracy of the solution beyond that of
the coarse integrator. Finally, in the regions with large instabilities, the solution is
no longer useful. However, many of the instabilities that lie inside the convergence
regions are so small in magnitude that they do not appear prominently in the accuracy
plots since they will only affect accuracy after many steps of Parareal.

5 Numerical Experiments

The aim of our numerical experiments is to validate the results from linear stability
analysis and demonstrate thatwe can obtainmeaningful parallel speedupwith IMEX-
RK Parareal on a nonlinearly dispersive equation. In particular, we show that

1. Taking too many Parareal iterations leads to an unstable method; however, select-
ing larger block sizes NT for a fixed N f increases the range of stable choices for
the iteration count K .

2. Decreasing the number of processors for a fixed block size NT and fixed Ng

eventually leads to an unstable method, even for time steps where the coarse
integrator is stable.

3. For the parameters considered in this work, Parareal methods with an adaptive
iteration count K are effective so long as one limits the maximum number of
iterations.

For our model nonlinear problem, we select the one dimensional nonlinear
Schrödinger (NLS) equation
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Fig. 4 Accuracy regions for Parareal with a block size of NT = 2048 and IMEX-RK3, IMEX-
RK4 as the coarse and fine integrators. These plots complement the stability plots in Fig. 3. The top
row shows the accuracy of the fine integrator, the second row shows the coarse integrator, and all
subsequent rows show parareal methods with an increasing number of iterations. Color represents
the log of the absolute value of the error

iut + uxx + 2|u|2u = 0,

u(x, t = 0) = 1+ 1
100 exp(i x/4), x ∈ [−4π, 4π].

(37)

We equip NLS with periodic boundary conditions and use the method of lines with a
fixed spatial grid. For the spatial component, we use a Fourier spectral discretization
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with 1024 points. In the time dimension, we apply IMEX Parareal methods that treat
the linear spatial derivative term implicitly and the nonlinear term explicitly. We
solve the equation in Fourier space where the discrete linear derivative operators are
diagonal matrices and the implicit solves amount to multiplications with a diagonal
matrix.

The solution of the problem has a subtle behavior when used as a test for a parallel-
in-time method. The initial condition is a perturbation of the plane wave solution
u(t, x) = exp(−2i t). For small time, the solution is smooth and the perturbation
experiences exponential growth that iswell described by the PDE’s local linearization
around the planewave solution [8]. Then, around t = 10, the nonlinear terms become
dominant and cause spectral broadening.

We integrate (37) out to time t = 15 using Ns = 2p time steps where p = 7, . . . ,
18. For a Parareal method with block size NT , we only show data points for Ns ≥
NT since one cannot run Parareal with fewer than NT time steps. Note that when
Ns > NT , this amounts to computing the final solution usingmultiple Parareal blocks
where Nb = Ns/NT . For brevity, we only consider Parareal integrators with IMEX-
RK3 as the coarse integrator and IMEX-RK4 as the fine integrator and always take
the number of coarse steps Ng = 1. In all our numerical experiments, we also include
a serial implementation of the fine integrator.

Finally, for all the plots shown in this section, the relative error is defined as
‖yref − ymethod‖∞/‖yref‖∞, where yref is a vector containing the reference solution in
physical space and ymethod is a vector containing the output of a method in physical
space. The reference solution was computed by running the fine integrator (IMEX-
RK4) with 219 time steps, and the relative error is always computed at the final time
t = 15.

5.1 Varying the Block Size NT for Fixed N f and Ng

In our first numerical experiment, we show that increasing the block size NT for fixed
N f and Ng allows for Parareal configurations that remain stable for an increased
number of iterations K . Since we are fixing N f and Ng , we are increasing Np to
obtain larger block sizes. Therefore, this experiment simultaneously validates the
improvement in stability seen when comparing the i th column of Fig. 3 with the i th
column of Fig. 2, along with the decrease in stability seen when moving downward
along any column of Fig. 2 or 3.

In Fig. 5, we present plots of relative error versus stepsize for three Parareal con-
figurations with block sizes NT = 512, 1024, or 2048. Each of the configurations
takes a fixed number of Parareal iterations K and has Ng = 1, N f = 16. The sta-
bility regions for the Parareal configurations with NT = 512 and NT = 2048 are
shown in the third columns of Figs. 2 and 3. From linear stability, we expect that the
two Parareal methods will, respectively, become unstable if K > 3 and K > 4. The
experiments with NT = 512 align perfectly with the linear stability regions. For the
larger block size, the instabilities are milder and we would need to take many more
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Fig. 5 Accuracy versus stepsize plots for the Parareal method with IMEX-RK3, IMEX-RK4 as the
coarse and fine integrator. The block size NT for the left, middle, and right plots is, respectively,
512, 1024, and 2048. The black line shows the serial fine integrator, while the colored lines represent
Parareal methods with different values of iteration count K . Note that the Parareal configuration
with NT = 512 and K = 6 did not converge for any of the time steps

Parareal blocks for them to fully manifest. Nevertheless, the methods fail to become
more accurate for K = 4 and start to diverge for K > 4. Overall, the results confirm
that increasing the block size by increasing Np leads to an improvement in stability
that allows for a larger number of total Parareal iterations.

Finally, we note that an alternative strategy for increasing NT is to increase N f

while keeping Np constant. However, we do not consider this scenario since increas-
ing N f will lead to a method with a significantly smaller convergence region and no
better stability (e.g. compare column 2 of Fig. 2 with column 4 of Fig. 3).

5.2 Varying the Number of Processors Np for a Fixed NT
and Ng

In our second numerical experiment, we show that decreasing the number of proces-
sors Np (or equivalently increasing the number of fine steps N f ) for a fixed NT and
Ng will lead to an unstable Parareal method. This experiment validates the stability
changes that occur along any row of Fig. 2 or 3.

For brevity, we only consider four Parareal methods with Ng = 1, NT = 512,
K = 3, and Np = 16, 32, 64, or 128. The linear stability regions for each of these
methods are shown in the fourth row of Fig. 2. Only the Parareal method with Np =
128 is stable along the entire z2 axis. The method with Np = 64 has a mild instability
located inside its convergence region, and methods with Np = 32 or Np = 16 have
large instabilities.

In Fig. 6, we show an accuracy versus stepsize plot that compares each of the
four Parareal configurations (shown in colored lines) to the serial fine integrator
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Fig. 6 Variable Np results

(shown in black). The total number of steps Ns is given by 2p, where for Parareal
p = 9, . . . , 18, while for the serial integrator p = 7, . . . , 18. We can clearly see that
decreasing Np leads to instability even at small stepsizes. Note that for Np = 64 the
instability is so small that it does not affect convergence in any meaningful way.

It is important to remark that the largest stable stepsize for any Parareal method
is restricted by the stability of its coarse integrator. Since we are taking Ng = 1, the
number of coarse time steps per block is Np. Therefore, a Parareal configuration with
a smaller Np takes larger coarse stepsizes and requires a smaller∆t to remain stable.
This effect can be seen in Fig. 6, since it causes the rightmost point of the parareal
convergence curves to be located at smaller stepsizes ∆t for methods with smaller
Np. What is more interesting, however, is that the Parareal configurations with fewer
processors are unstable, even when the stepsize is lowered to compensate for the
accuracy of the coarse solver. In other words, instabilities form when the difference
in accuracy between the coarse and fine solver is too large, even if the coarse solver
is sufficiently stable and accurate on its own.

5.3 Efficiency and Adaptive K

In our final numerical experiment, we first compare the theoretical efficiency of
several IMEX Parareal configurations and then conduct a parallel experiment using
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the most efficient parameters. We conduct our theoretical efficiency analysis using
Parareal methods with NT = 2048, N f = 16, Ng = 1, and K = 1, . . . , 6. As shown
in the third column of Fig. 4, these configurations possess good speedup and stability
regions when K ≤ 3. To determine the theoretical runtime for Parareal (i.e. the
runtime in the absence of any communication overhead), we divide the runtime of
the fine integrator by the Parareal speedup that is computed using (14).

In Fig. 7a, we show plots of relative error versus theoretical runtime for the seven
parareal configurations. The total number of steps Ns is given by2p where for Parareal
p = 12, . . . , 18, while for the serial integrator p = 7, . . . , 18. Note that the running
times for the fine integrator and the parareal configuration with K = 0 (i.e. the
serial coarse method) measure real-world efficiency since there are no parallelization
possibilities for these methods.

The efficiency plots demonstrate that it is theoretically possible to achieve mean-
ingful parallel speedup using IMEX Parareal on the nonlinear Schrödinger equation.
Moreover, amongst the seven Parareal configurations, the onewith K = 3 is themost
efficient over the largest range of time steps. However, communication costs on real
hardware are never negligible, and real-world efficiency will depend heavily on the
underlying hardware and the ODE problem. To validate the practical effectiveness of
IMEX Parareal, we ran the most efficient configuration with K = 3 in parallel on a
distributed memory systemwith 128 processors.1 We also tested in identical Parareal
configuration with an adaptive controller for K that iterates until either K ≥ Kmax

or a residual tolerance of 1 × 10−9 is satisfied. Unsurprisingly, it was necessary to
restrict the maximum number of adaptive Parareal iterations to Kmax = 3 or the
adaptive controller caused the method to become unstable.

In Fig. 7b, we show plots of relative error versus parallel runtime, and in Table 2,
we also include the corresponding speedup for the two Parareal methods. Even on
this simple 1D problem, we were able to achieve approximately a ten-fold real-
world speedup relative to the serial IMEX-RK4 integrator. This is very encouraging
since the ratio between the communication and time step costs is larger for a 1D
problem. Our results also show that there is not much noticeable difference between
the parareal method with fixed K and the method with adaptive K , except at the
finest time steps where the adaptive implementation is able to take fewer iterations.

6 Summary and Conclusions

We have introduced a methodology for categorizing the convergence and stabil-
ity properties of a Parareal method with pre-specified parameters. By recasting the
Parareal algorithm as a one-step RK method with many stages, we are able to com-
bine classical stability analysis with a simple bound on the norm of the Parareal
iteration matrix. The resulting stability convergence overlay plots highlight the key

1 The numerical experiments were performed on the Cray XC40 “Cori” at the National Energy
Research Scientific Computing Center using four 32-core Intel “Haswell” processor nodes. The
Parareal method is implemented as part of the open-source package LibPFASST available at https://
github.com/libpfasst/LibPFASST.

https://github.com/libpfasst/LibPFASST
https://github.com/libpfasst/LibPFASST
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Fig. 7 Relative error versus computational time for the NLS equation solved using an IMEX
Parareal methods with NT = 2048 and Np = 128. The left plot a compares the theoretical running
times of seven Parareal methods that each take a different number of iterations K per block. The
right plot b compares the real-world running times of the Parareal method with K = 3, and a
Parareal method with the adaptive controller, where K ≤ 3. We also show the theoretical running
times of the two methods in gray to highlight the losses due to communication. In both plots, the
black line shows the fine integrator that is run in parallel. All times have been scaled relative to the
fine integrator at the coarsest time step

Table 2 Achieved speedup (AS) and theoretical speedup (TS) for the two Parareal configurations
shown in Fig. 7b
NT AS (K = 3) TS (K = 3) AS (K ≤ 3) TS (K ≤ 3)

4096 8.55 16.18 8.54 16.18

8192 9.75 16.18 9.74 16.18

16384 10.25 16.18 10.55 17.01

32768 10.56 16.18 11.06 17.16

65536 10.74 16.18 11.27 17.24

131072 10.76 16.18 12.69 19.54

262144 10.98 16.18 13.57 20.61

characteristics of a Parareal method including regions of fast and slow convergence,
stable regions where convergence does not occur, and regions where instabilities will
eventually contaminate the method output.

By searching through a wide range of IMEX Parareal methods, we were able
to identify several stable configurations that can be used to solve dispersive equa-
tions. Moreover, each of the configurations possessed the same characteristics: low
iteration counts K , large block sizes NT , and a large number of processors Np. We
also observed that the coarse integrator is the most important factor that determines
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whether a Parareal method is stable, and a bad choice can single-handedly lead to an
unstable method regardless of the other parameters.

More broadly, we see that convergence and stability regions are highly nontrivial
and depend heavily on the parameters. It is clear that one cannot arbitrarily combine
coarse and fine integrators and expect to obtain a good Parareal method for solving
dispersive equations. The same lesson also applies to all Parareal parameters since
serious instabilities can form by arbitrarily changing the number of iterations, the
block size, or the number of processors.

Finally, we remark that the analysis presented in this work can be reused to study
the properties of any Runge-Kutta Parareal method on the more general partitioned
Dahlquist problem that represents both dispersive and diffusive equations. However,
many of the conclusions and properties that we found are specific to IMEX methods
and will not hold for different method families or for different problem types.
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Appendix 1: Infinity Norm of the Parareal IterationMatrix E

Let A(γ) be the lower bidiagonal matrix

A(γ) =





1
γ 1
. . .

. . .

γ 1

.





Lemma 1 The inverse of A(γ) is given by

A−1
i, j (γ) =

{
(−γ)i− j j ≤ i
0 otherwise

Proof For convenience, we temporarily drop the γ so that A = A(γ), then
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(
AA−1)

i j =
Np+1∑

k=1

AikA−1
k j =






0 j > i
Ai iA−1

i i i = j
Ai iA−1

i j + Ai,i−1A−1
i−1, j j < i

=






0 j > i
1 i = j
(−γ)i− j + γ(−γ)i−1− j j < i

=
{
1 i = j,
0 otherwise.

Lemma 2 The product of A(ω)A−1(γ) is

(
A(ω)A−1(γ)

)
i j =






0 j > i
1 i = j
(−γ)i− j−1(ω − γ) j < i

Proof

(
A(ω)A−1(γ)

)
i j =

Np+1∑

k=1

Aik(ω)A−1
k j (γ)

=






0 j > i
Ai i (ω)A−1

i i (γ) i = j
Ai i (ω)A−1

i j + Ai,i−1(ω)A−1
i−1, j (γ) j < i

=






0 j > i
1 i = j
(−γ)i− j + ω(−γ)i−1− j j < i

Lemma 3 The infinity norm of the matrix M(ω, γ)=I−A(ω)A−1(γ)∈RNp+1,Np+1

is

‖M(ω, γ)‖∞ = 1 − |γ|Np

1 − |γ| |γ − ω|.

Proof Using Lemma 2, the j th absolute column sum of M(ω, γ) is

c j =
Np+1∑

k= j+1

|(−γ)k− j−1(ω − γ)| =
Np− j∑

k=1

|(−γ)k ||(ω − γ)|

It follows that max j c j = c1, which can be rewritten as

1 − |γ|Np

1 − |γ| |γ − ω|.
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Appendix 2: Additional Stability and Convergence Overlay
Plots

Figures8, 9, and 10 show stability and convergence overlay plots for Parareal. The
following three figures show stability and convergence overlay plots for Parareal con-
figurations with: NT = 2048, IMEX-RK4 as the fine integrator, and three different
coarse integrators. These additional figures supplement Fig. 3 and show the effects
of changing the course integrator.

Fig. 8 Stability and convergence overlay plots for Parareal configurations with a block size of
NT = 2048 and IMEX-RK1, IMEX-RK4 as the coarse and fine integrators
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Fig. 9 Stability and convergence overlay plots for Parareal configurations with a block size of
NT = 2048 and IMEX-RK2, IMEX-RK4 as the coarse and fine integrators
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Fig. 10 Stability and convergence overlay plots for Parareal configurations with a block size of
NT = 2048 and IMEX-RK4, IMEX-RK4 as the coarse and fine integrators
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