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ARTICLE INFO ABSTRACT
Keywords: Convolutional neural networks (CNNs) are implemented to expedite the determination of representative volume
Microstructure

elements for microstructurally small cracks (RVEygc). By definition, RVEyg. is the minimum volume of
microstructure required around a microstructurally small crack (MSC) to achieve convergence of crack-front
parameters with respect to volume size. In a previous study, RVEy. was determined using a computationally
expensive finite-element (FE) framework involving the simulation of many microstructural instantiations. With
the aim of increasing the computational efficiency of determining RVE,;s;, CNNs are leveraged herein to reduce
the number of FE simulations required to determine RVE,s.. Using data from the previous FE-based RVEq:
study, CNNs are trained to predict RVEygc;, values, which quantify crack-front parameter convergence with
respect to volume size for microstructural instantiation i evaluated at individual crack-front points p, given
local microstructural and geometrical information. Predicted RVEyg;, values are subsequently used to estimate
RVEgc values. Studies are carried out to determine the optimal amount of training data, assess CNN-based
RVEyc estimation performance, and demonstrate the use of CNNs as microstructural-instantiation screening
tools by enabling downselection of microstructures that are considered critical in terms of volume requirements.
Individual and ensemble CNN predictions are compared. While CNNs are not found to be accurate enough to
replace all FE simulations, CNNs are found to be effective as a rapid screening tool for improving the efficiency
of the FE-based RVE,s. determination framework and for expediting future RVEyq. studies.

Machine learning

Computational fracture mechanics
Polycrystalline material
Representative volume element

1. Introduction The concept of RVEys is closely related to other volume elements
used in analyzing heterogeneous material behavior. Other volume el-

In the context of investigations of microstructurally small cracks ements include representative volume elements (RVEs) and statistical

(MSCs), or cracks whose lengths are on the order of the predominant
microstructural features of a material [1], a critical question that must
be answered is: What is the minimum microstructural volume that should
be included in studies involving MSCs? Whether through experimental
characterization or computational representation, the consideration of
microstructural features in studies of MSCs is critical given the strong
influence of microstructural features on MSC behavior [2-6]. To clarify
the requisite volume of microstructure that should be included or
represented in MSC studies, DeMille and Spear [7] introduced RVEyc,
or “the smallest heterogeneous volume containing an MSC such that
local crack-front parameters are converged with respect to volume
size”, and established the size of RVEyg for linear-elastic materials as a
function of boundary condition and crack size normalized with respect
to microstructure-feature size.
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volume elements (SVEs). An RVE is the minimum volume of heteroge-
neous material required to capture an average material property that
does not vary with volume size [8]. Heterogeneous material volume
elements smaller than RVE, whose average material properties vary
with volume size, are referred to as SVEs [9]. In other words, increasing
the size of a volume beyond RVE will not impact the average material
properties of the volume, while increasing the size of a volume beyond
an SVE size may affect the average properties of the volume. Although
most often used in homogenization applications [8,10-15], RVEs and
SVEs have been used in studies of local fatigue indicator parameters
(FIPs) [16]; maximum principal stresses and strains [17,18]; and crack-
tip opening displacements [19]. Here, we consider local J-integral
values along a crack front. In this work, the minimum volume of
interest is designated RVEyqc because, similar to an RVE, the J-integral
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value at a given crack-front point does not vary with volume size for
volumes larger than RVEqc.

In previous work by the authors [7], a finite-element (FE) frame-
work was used to find RVEygc under assumptions of a linear-elastic
constitutive model and a semi-circular surface crack. In the frame-
work, various instantiations of idealized heterogeneous microstructures
containing MSCs were simulated. Crack-front parameter values (viz., J-
integrals) were then tracked as the volume of microstructure around an
MSC was systematically varied. Despite important outcomes from that
study, the framework proved computationally intractable for further
studies due to the large number of FE simulations required. Given the
assumptions of the previous RVEys: study, an expedited framework
for determining RVEysc under different conditions (e.g., elastic—plastic
constitutive model, non-circular internal crack) is needed to better
understand minimum volume requirements for studies of MSCs.

Machine learning (ML) is a potential tool for expediting compu-
tationally expensive, simulation-based frameworks, such as the afore-
mentioned RVEygc framework. Given sufficient data, ML models can
capture complex, non-linear relationships between material features
and material behavior [20]. Various studies have shown the ability of
ML to predict material behavior with high accuracy in significantly less
time than high-fidelity, physics-based simulations [21-23]. Some ML
models, including artificial neural networks (ANNs), random forests,
and Bayesian networks, take one-dimensional inputs and make one-
dimensional predictions. These types of models have been used to
predict stress and strain distributions [24,25], stress hotspots [26—
28], effective properties [22,29], crack growth [30,31], and crystal
orientation evolution [32]. Microstructural descriptors used as input to
the ML models included shape encodings [24], grain shape and size [22,
26-28], and volume-fraction porosity and average pore sizes [25].
Spatial relationships between microstructural features were input to
the ML models in various ways. Mangal and Holm [26] encoded
spatial relationships of grains through neighborhood features, includ-
ing distances to special points and the number of nearest neighbors.
Pathan et al. [29] used two-point correlations and principal component
analysis (PCA) to describe the spatial relationships between fibers
in fiber-reinforced composites. Pandey et al. [32] accounted for the
spatial relationships between voxels by providing grain orientations for
surrounding voxels alongside the orientation of the voxel of interest
to their model. However, manually encoding spatial relationships be-
tween many microstructural features as single-dimensional inputs is a
complex, non-trivial task.

Convolutional neural networks (CNNs) offer an alternative to man-
ually encoding spatial relationships between material features for ML
model input [22,23,33-35]. By design, CNNs take in multidimensional
arrays of data, detect hierarchical patterns of features, extract single-
dimensional descriptors of the input, and make a prediction [36,37].
Cang and Ren [33] and Lubbers et al. [38] extracted low-dimensional
representations of heterogeneous materials using CNNs. In multiple
studies [22,23,39-43], CNNs were trained to predict effective prop-
erties of various materials given images of heterogeneous microstruc-
tures. Other studies [34,44,45] predicted stress or strain fields from
images of microstructures. Pierson et al. [46] predicted the path of a
crack through a heterogeneous microstructure, and Kantzos et al. [47]
predicted stress concentrations from surface height maps. Given the
abilities of CNNs to rapidly predict material behavior from 3D mi-
crostructural data, it is hypothesized that the bottleneck in the original
RVEysc framework due to a large number of required FE simula-
tions can be addressed by introducing CNNs into the determination of
RVEysc.

The objective of this work is to demonstrate the potential of CNNs
to expedite a computationally expensive, simulation-based study of
material behavior, specifically in the context of establishing RVEygc.
Given the computational expense associated with obtaining RVEyg
data, the data generated in the previous RVEy study [7] is harnessed
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for this work. A task-specific microstructural sampling strategy, involv-
ing 3D grids of microstructural features ahead of crack-front points, is
selected to quantify the MSC-containing microstructures. The amount
of training data provided to the CNN is varied to establish an optimal
amount of training data. Subsequently, ensemble CNN performance
is compared with individual CNN performance. CNN performance is
evaluated on two tasks: directly estimating RVEyc values from CNN
predictions and screening microstructural instantiations prior to FE
simulation. Although this work focuses on using CNNs to expedite
the determination of minimum volume requirements for studies of
MSCs, the methods and findings from the work could be applica-
ble to other computational materials science applications involving
computationally expensive simulations.

2. Methods
2.1. Previous work: finite-element models

All of the data used in this work come from FE simulations per-
formed with Abaqus 6.14 [48] for the original RVEyg; determination
framework [7]. In the simulations, the volume of heterogeneous ma-
terial surrounding an MSC was varied systematically while crack-front
parameters (viz., J-integral values) were tracked along the crack front.
Details of the FE simulations reported in previous work are provided
next for completeness.

The FE models consisted of idealized, heterogeneous microstruc-
tures, each containing a semi-circular surface crack. The microstruc-
tures comprised cube-shaped grains whose elastic moduli (E) values
were varied to implicitly represent different grain orientations. As
shown in Fig. 1, the cube-shaped grains had side lengths of g, which
was arbitrarily defined given that the constitutive model did not ac-
count for grain size. The crack had a half-length of a. Each grain was
assigned an elastic modulus between 75 and 225 GPa and a Poisson’s
ratio of v = 0.32. The microstructural volume surrounding the crack
was parameterized by d,, the minimum distance from the crack-front
to the sides of the volume in the crack plane, and d,, the distance from
the crack plane to the lower and upper surfaces. For the remainder of
the paper, d; and d, will be expressed in terms of the number of grains,
i.e., the physical distance normalized by the grain size, g.

Cracked microstructural instantiations were created for each of four
normalized crack sizes (a/g = 0.25, 045, 1.0, and 3.0). For each
crack size, 22 different microstructural instantiations were generated,
resulting in 88 unique cracked microstructural instantiations. Most
instantiations were generated by randomly selecting an elastic mod-
ulus for each grain. Fig. 1 shows an example of an instantiation, in
which colors reflect the elastic moduli of grains. In some instantiations,
select grains along the crack front were strategically assigned either
the maximum or minimum elastic modulus. For each crack size, one
microstructural instantiation had all grains assigned a uniform value of
E =138 GPa.

The FE models were analyzed under two different sets of boundary
conditions: full submodeling or free sides. Both of these boundary con-
ditions incorporated a submodeling approach, where the displacements
applied to the boundaries of the microstructure were interpolated from
displacement results of a global (homogeneous) FE model. The global
FE model, shown in Fig. 2a, represents the gauge section of a tensile
specimen loaded to 800 MPa in the y-direction. The global model had
dimensions of 25mm X 10mm X 2.1 mm, an elastic modulus of E =
138 GPa, and a Poisson’s ratio of v = 0.32. For the full-submodeling
boundary condition, x-, y-, and z-displacements were applied to all
faces of the microstructural model except the surface intersecting the
crack, as shown in green in Fig. 2b. This boundary condition is intended
to represent the behavior of an MSC embedded within a large volume
of material. For the free-sides boundary condition, y-displacements
were applied to only the top and bottom faces of the microstructural
model, as shown in green in Fig. 2c. This boundary condition is
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Fig. 1. Idealized, heterogeneous microstructural FE models used in the determination
of RVEygc. A semi-circular surface crack of half-length a is embedded in a microstruc-
ture consisting of cube-shaped grains with side length g. Different elastic moduli are
assigned to each grain. Two parameters, d, and d,, are used to define the volume of
microstructure around the crack.

intended to represent the response of an MSC embedded in a very
narrow specimen, such as the matchstick specimens often used in X-ray
tomography experiments [49-52]. In total, 176 unique combinations
of microstructural instantiation, crack size, and boundary condition
were simulated. Results from the FE simulations in Ref. [7] showed
that volume requirements ranged from 4 to 3439 grains (for a 5%
tolerance), depending on material constraint from boundary condition,
microstructure arrangement, and crack size.

2.2. Convolutional neural networks

To expedite the determination of RVEygc, CNNs are implemented in
this work to predict (or estimate) volume requirements for J-integral
convergence with respect to volume size. Volume requirements are
considered at three levels: individual crack-front points, individual mi-
crostructural instantiations, and across all crack-front points in all mi-
crostructural instantiations. The CNNs are trained to predict RVEygc i,
or the minimum volume required for a crack-front parameter (viz.,
J-integral) to converge with respect to volume size at crack-front
point p in microstructural instantiation i. Predictions of RVEyg¢ ;, are
subsequently used to estimate RVEygc;, or the minimum volume for
which J-integral values are converged with respect to volume size at
all crack-front points (except those at grain boundaries') in microstruc-
tural instantiation i Finally, estimates of RVEygc; are used to estimate
RVEysc, or the minimum volume of microstructure required around an
MSC to achieve J-integral convergence with respect to volume size at
all crack-front points in all microstructural instantiations.

1 Spurious J-integral values occur at grain boundaries.
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Fig. 2. Boundary conditions used in FE simulations for determining RVEyg. [7]:
(a) global model used to compute displacements for boundary conditions of the
microstructure models; (b) full-submodeling and (c) free-sides boundary conditions,
where surfaces highlighted in green have applied displacements interpolated from the
global model.

A total of four CNNs (all having the same architecture) are used to
predict one of two RVEyg¢ ;, parameters (d ;, or d, ;,) under one of two
boundary conditions. All data for the CNNs (both input and target data)
are obtained from the FE simulations completed during the previous
RVEysc determination study [7]. The following sections describe the
CNN inputs, targets, architecture, and data.

2.2.1. CNN inputs

For a given crack-front point p, the inputs to the CNN model consist
of two 3D arrays and two scalar values. The 3D arrays are sampled from
a regular grid of N x N x N points located at p such that the grid is
tangent to the crack front, as shown in Fig. 3. The size, location (relative
to the crack-front point), and dimensions of the sampling grids used to
generate the 3D array inputs for the CNN models are specified by three
parameters: the distance ahead of the crack-front point (dy,.,q), the
distance behind the crack-front point (dy;,q), and the number of grid
points in each direction (N). From these grid parameters, the distance
between grid points can be determined using the equation

Agig = dahea]dv +_dfehind. )
The same grid spacing is used in each of the three directions. The grid
parameters used for this work are provided in Table 1.

The input arrays provide the CNN with a 3D “image” of the local
microstructure in the neighborhood of each crack-front point. The use
of a local microstructure sampling method is similar to that used by
Yang et al. [34]. In this work, the sampling grids are designed to
probe grains primarily ahead of the crack front, as Rovinelli et al. [53]
showed that clusters of grains ahead of a crack tip influence short crack
behavior; hence dy.oq > dyening- The selected values of dyy.,q and dygping
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Fig. 3. Sampling strategy used to extract microstructural information from around a
crack-front point p. The top figure shows a top-down view of the sampling grid, while
the bottom figure shows a front view of the sampling grid. The 16 x 16 X 16 grid is
defined using parameters dy,.,q =4 grains, dye,q = 0.95 grains, and 4,4 = 0.33 grains.
Grid points are colored according to the normalized elastic modulus. Purple points
represent grid points located outside of the physical volume.

Table 1

Parameters used to define the sampling grids used to extract data for the 3D array
inputs of the CNNs. Sampling grids are placed tangent to the crack front at each
crack-front point, as shown in Fig. 3.

Grid parameter Value

dypeaa 4 grain widths
yehing 0.95 grain widths
N 16

Agria 0.33 grain widths

result in grids that include slightly more grains than the number of
nearest-neighbor grains shown to have the strongest influence on lo-
cal crack-front parameter convergence behavior; namely, the previous
RVEygc study showed that the second and third nearest-neighbor grains
ahead of a crack front have the greatest impact on the local crack-
front parameter convergence rates [7]. In other studies, local FIPs or
mechanical fields in a given grain were found to be most sensitive to
the first through third nearest-neighbor grains [16,18,54].

Input to the CNN model for crack-front point p includes both
microstructural and geometrical features. Elastic moduli and Euclidean
distances between grid points and crack-front point p sampled from
the grid comprise the E and distance to crack front (d.,) input arrays,
respectively. If a grid point falls outside of the physical volume of the
FE model, then a value of —1 is assigned to the corresponding array
component. The scalar inputs are the normalized crack size (a/g) and
the distance from the crack-front point to the free surface (dy,), which is
simply the z-coordinate of the crack-front point (Fig. 3). The inclusion
of di, as an input is intended to inform the CNN of the degree of
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material constraint (ranging from plane-stress to plane-strain) acting
on crack-front point p, which may influence the convergence trends of
crack-front parameters [55]. To improve CNN model performance, the
CNN inputs are normalized. The components of 3D array inputs are
normalized to range from O to 1 for grid points inside the FE model
and set to —1 for grid points outside the FE model. The scalar inputs
are normalized to range from O to 1.

2.2.2. CNN targets

For a given crack-front point p, the targets of the CNN models
consist of RVEygc;, parameter values, d,;, and d,;,. A total of four
different CNNs are used in predicting the RVEyg¢;, parameter values.
A separate CNN is trained for each combination of boundary condi-
tion (full submodeling or free sides) and RVEygc; parameter (d;;,
or d,;,). Separate CNN models for different combinations of bound-
ary condition and RVEygc, parameter reflect the approach used by
Rovinelli et al. [30,31], where separate ML models were used to predict
crack-growth direction and rate.

Fig. 4a and b illustrate the process of finding d,;, and d,,, re-
spectively, for microstructure i at crack-front point p under a given
boundary condition from previously completed FE simulations [7]. In
finding d, ;, (Fig. 4a), d, is varied, while d, is fixed at d, = .S, where
S > d,ysc. In Fig. 4a, S = 16 grains. For each crack-front point, or
node along the crack-front, a coarsely-sampled set of J-integral values
is extracted from FE simulation results for volumes with d; values
incremented in steps of 2 grains (d; = {2.4,6,8,...,24} grains). The
coarsely-sampled J-integral values are shown as circles in the plot of
Fig. 4a. Bounds of +5% are established based on the J-integral value
corresponding to the largest volume (e.g., d; = 24 grains in Fig. 4a).
The largest d, value whose corresponding J-integral value falls outside
of the +5% bounds is identified as the divergence point (e.g., d; = 2
grains in Fig. 4a). The set of sampled J-integral values is locally refined
around the divergence point, as J-integral values are extracted from FE
simulation results for volumes with d; values incremented in steps of
0.5 grains between the divergence point and the next-largest volume
(d; = {2.5,3,3.5} grains in Fig. 4a). The locally refined J-integral values
are shown as crosses in the plot of Fig. 4a. An updated divergence point
is identified (d, = 2.5 grains), and the volume immediately to the right
of this volume is identified as d, ;, (d,;, = 3 grains). A similar process
is used to determine d, ;, (Fig. 4b). In the case of determining d,;,, d,
is varied and d, is fixed at d; = T, where T > d| y5c (T’ = 14 grains®
in Fig. 4b). Note that in Fig. 4b, the divergence point for the coarsely
sampled J-integral value set is O grains since no coarsely sampled J-
integral values fall outside of the +5% convergence bounds. Given that
d, and d, values are incremented in minimum steps of 0.5 grains, d, ;,
and d, ;, are determined with resolutions of 0.5 grains. To improve CNN
model performance, the targets for the CNNs are normalized to a range
of 0 to 1.

2.2.3. CNN-based estimates of RVEygc; and RVEygc

Predictions of RVEygc;, parameter values are used to make CNN-
based estimates of RVEygc; and RVEygc. The limiting (or maximum)
RVEysc,jp parameter values define the RVEyg¢; parameter values for a
given microstructure:

dy; = m;lx(dl,,-p) 2)
dy; = mléjix(dz,,«p). 3
2 Selected values of § and T vary based on crack size and boundary

condition due to variations in d,\sc and d; s for different crack sizes and
boundary conditions.
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Fig. 4. Procedure used in determining (a) d,;, and (b) d,;, via FE simulations [7]. To determine d,;, or d,,, respectively, the volume of microstructure around a crack is varied
in d, or d, while tracking the convergence of J-integral values with respect to volume size at crack-front point p in microstructure i.

Given that RVEy. requires J-integral values to be converged at all
crack-front points in all microstructural instantiations, RVEygc is de-
termined by taking the maximum RVEygq; parameter values among
all microstructures:

dimsc =max(dy ;) (4
dy msc = miax(dz,i)- 6]

2.2.4. CNN architecture

The 3D CNN architecture used in each of the four CNN models is
based on the VGG-16 CNN model [56] and is shown in Fig. 5. Fig. 5
specifies the number of filters, convolutional filter sizes, and activation
function for each convolutional layer. For each maximum pooling layer,
the pooling window size is shown. All of the convolutional layers and
maximum pooling layers use strides of 1 x 1 x 1. Same padding is used
for each convolutional layer, while valid padding is used for each max-
imum pooling layer. Following the third maximum pooling layer, the
layer output is flattened in preparation for the fully connected layers.
Fig. 5 specifies the number of output units and activation functions for
the fully connected layers. Max-norm regularization [57] is applied to
each convolutional filter, fully connected weight vector, and bias vector
with a weight constraint of ¢ = 4. Dropout layers [57] are placed prior
to both fully connected layers and retain layer units with a probability
of 50%. The CNN models are built using Keras 2.3 [58] and TensorFlow
1.14 [59]. The architecture is selected using Hyperas [60] and a greedy
optimization approach.

The CNNs are trained using the ADAM optimizer [61] and mean
square error (MSE) loss. A mini-batch size of 64 and an ADAM learning
rate of 0.001 are used. Training is stopped once the validation loss has
failed to decrease over ten epochs. The model weights corresponding
to the lowest validation loss are restored for the final trained model.

2.2.5. CNN data overview and splitting

Recall, previous FE simulations [7] provide data for the CNNs; in the
FE simulations, four different crack sizes (a/g = 0.25, 0.45, 1.0, and 3.0)
and 22 microstructural instantiations per crack size were considered
for each combination of boundary condition and RVEygc ;, parameter.
Thus, each of the four CNN models has 88 crack-front-point (CFP)
groups of d; ;, or d, ;, values associated with it. Each CFP group contains
dyp or d;, values for all crack-front points (except points that lie on
grain boundaries) in a given microstructural instantiation containing
an MSC of size a/g. Each crack contains between 91 and 269 crack-
front points, depending on the crack size. By considering J-integral
convergence at individual crack-front points, 88 FE simulation sets are
effectively expanded to a total of 14 168 available data points per CNN
model.

In the studies discussed in Section 2.3, the 14 168 data points are
split into training, validation, and testing sets. During the splitting, data
points are split such that all crack-front points from a given CFP group
are kept together. This splitting approach ensures that similar data from
neighboring crack-front points in a given CFP group do not introduce
data duplicity between the training, validation, and testing sets.

2.3. CNN evaluation studies

Four studies are performed to evaluate the performance of the
CNN models in expediting the determination of RVEygc. First, the
optimal amount of training data for the CNN models is found. Sec-
ond, individual CNN models are evaluated on their performance in
predicting RVEyg¢;, and making estimates of RVEygc; and RVEygc.
Third, individual CNN model performance is compared to ensemble
CNN model performance in predicting RVEyg¢ ;, and making estimates
of RVEygc; and RVEygc. Fourth, CNN models are evaluated on their
ability to screen for cracked microstructural instantiations that have
large volume requirements.
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Fig. 5. The 3D CNN architecture, based on VGG-16 [56], used to predict RVEy;, parameter values. Convolutional filter sizes, maximum pooling window sizes, fully connected
layer units, dropout rates, and activation functions are shown. In addition to model specifications shown, strides of 1 x 1 x 1 and max-norm regularization are used.

2.3.1. Identification of optimal amount of training data

The first study aims to identify the optimal amount of training data
for the CNN models. In this case, the optimal amount of training data
represents the number of CFP groups that balances model performance
and computational cost. To identify the optimal amount of training
data, the performance of the CNN models on a constant test set is
tracked as the amount of training data is systematically increased.
Seven cases of increasing training/validation data, shown in Table 2,
are compared. The following process is repeated for each of the four
CNN models. First, approximately 20% (or 18) of 88 CFP groups are
set aside as a test set. Recalling that each CFP group contains between
91 and 269 data points (Section 2.2.5), the test set contains ~2900
data points. From the remaining 70 CFP groups, 80% (56 CFP groups)
and 20% (14 CFP groups) are placed in training and validation data
pools, respectively. The training and validation data pools contain
~9000 and ~2300 data points, respectively. For each of the seven train-
ing/validation data amounts in Table 2, training and validation CFP
groups are randomly selected from the training and validation data
pools. The model is trained with the selected training/validation sets,
then evaluated on the test set. Given that CNN performance varies from
one training run to another, the training and testing process is repeated
ten times for each amount of training data to capture the variability in
CNN performance. For the ten repetitions, the test set remains fixed,
while the training and validation data sets are randomly drawn during
each repetition.

The variation of training and validation data amounts is repeated
for a total of five random test sets. From ten training repetitions for
five test sets, CNN performance is evaluated 50 different times for each
amount of training data with three sources of variation: the random
selection of training/validation data, the random selection of test data,
and the random initialization of model weights.

2.3.2. Individual CNN model performance evaluation

The second study seeks to assess the performance of an individual
CNN model in predicting RVEyg 3, and, hence, estimating RVEyg¢; and
RVEysc parameter values. A repeated five-fold cross-validation [62]
is performed to: first, evaluate RVEyisc,ip predictions; second, evaluate
RVEysc ; parameter estimates among all microstructural instantiations;
and third, evaluate RVEygc parameter estimates. To perform a single
five-fold cross-validation for a given combination of boundary condi-
tion and RVEygc;, parameter type, the 88 CFP groups are randomly
split into five subsets containing 17, 17, 17, 17, and 20 groups, re-
spectively. In each of five training folds, one of the five subsets is

Table 2

Training and validation data set sizes compared during the identification of the optimal
amount of training data. Each CFP group contains data for all crack-front points in a
given microstructural instantiation i containing a crack of size a/g.

Training data case =~ Number of CFP groups (Approx. number of data points)

Training Validation  Test
1 8 (~1300) 2 (~300) 18 (~2900)
2 16 (~2600) 4 (~600) 18 (~2900)
3 24 (~3900) 6 (~1000) 18 (~2900)
4 32 (~5200) 8 (~1300) 18 (~2900)
5 40 (~6400) 10 (~1600) 18 (~2900)
6 48 (~7700) 12 (~1900) 18 (~2900)
7 56 (~9000) 14 (~2300) 18 (~2900)

reserved for testing. From the remaining four subsets, 50 CFP groups
(the optimal number identified from the previous study, as presented
later in Section 3.1) are randomly selected for training and validation
data. The training and validation data are used to train the CNN. The
trained CNN then predicts RVEygc ;, parameter values for the test set.
During the five-fold cross-validation, each subset of data is held out
as the test set exactly once, resulting in one prediction of RVEyg;, for
each crack-front point. The RVEyg¢ ;, predictions are used with Egs. (2)
and (3) to estimate RVEyg; parameters. With RVEygc; parameter
estimates for all microstructural instantiations, Egs. (4) and (5) are used
to estimate RVEyqc parameters. To improve the accuracy of the model
performance evaluation, the five-fold cross-validation process described
above is completed a total of five times.

2.3.3. Ensemble CNN model performance evaluation

The third study compares the performance of individual CNN pre-
dictions with ensemble CNN predictions. A modified five-fold cross-
validation approach is performed to evaluate ensemble predictions of
RVEygcp and estimates of RVEyg; and RVEygc. The same cross-
validation subsets from Section 2.3.2 are used. During one modified
cross-validation, each of the five cross-validation subsets is held out
as a test set. For each test set, ten individual CNN model RVEyg(
predictions are used to find ensemble model RVEygq;, predictions.
First, 50 CFP groups (the optimal number identified in Section 3.1)
are randomly selected from all data not in the test set. For each of
the ten CNN model predictions, the training/validation data are split
randomly into training and validation sets consisting of 80% and 20%
of the training/validation data, respectively. Using these training and
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validation sets, the CNN model is trained, and d, ;, or d,;, predictions
for the test set are recorded. The previously selected training/validation
data are then shuffled randomly into new training and validation
sets (maintaining the 80% - 20% split) and the CNN training process
is repeated. The shuffling of training and validation data incorpo-
rates data diversity into the ensemble model [63]. After ten different
prediction sets have been obtained, ensemble model predictions are
made by averaging the ten different d, ;, or d,;, predictions for each
crack-front point [64]. RVEygc; and RVEys estimates are found with
Egs. (2), (3), (4), and (5). As in Section 2.3.2, the modified five-fold
cross-validation is completed a total of five times.

2.3.4. CNN-based microstructure screening performance evaluation

The goal of the fourth study is to test the ability of the CNN models
to identify cracked microstructural instantiations with large RVEygc;
values (i.e., large volume requirements to guarantee convergence of
crack-front parameters). For each combination of boundary condition
and RVEygc; parameter (d; or d,;), ensemble RVEygc;, predictions
(Section 2.3.3) are used to screen instantiations for those with large
RVEyc; values. First, all 88 cracked microstructural instantiations are
labeled as having large, medium, or small RVEys; parameter values.
For a given crack size, the range of all actual RVEyg¢; parameter values
is divided equally into three bins: small (bottom 33% of range), medium
(middle 33% of range), and large (top 33% of range) volume require-
ments, as shown in Fig. 6. Each cracked microstructural instantiation
is labeled according to its actual d,; or d,; values. Three test sets are
selected, with each test set consisting of a small-, medium-, and large-
volume-requirement instantiation for each crack size (a/g = 0.25, 0.45,
1.0, and 3.0). In other words, each test set contains data points from 12
of the 88 CFP groups (1932 of 14 168 data points) associated with the
given combination of boundary conditions and RVEysc; parameter.

Ensemble CNN-based RVEysc; estimates (Section 2.3.3) are made
for each of the three test sets. Fifty CFP groups (the optimal num-
ber identified in Section 3.1) drawn randomly from all non-test CFP
groups are selected as training/validation data. Ten different models
are trained using different random splits of the training/validation data
into training (40 CFP groups) and validation (10 CFP groups) sets.
Ensemble d, ;, or d,;, predictions are made by averaging the predic-
tions of the ten individual models. Estimates of d,; or d,; values are
determined for each instantiation (or CFP group) using Egs. (2) and (3).
The estimated d, ; or d,; values derived from CNN predictions of d, ,,
and d,;, are used to label instantiations as having large, medium, or
small predicted volume requirements using the same binning strategy
used for the actual (ground-truth) results. For the labeling based on
estimated RVEygc ; parameters, the volume requirement bin boundaries
are adjusted to reflect the range of RVEyg¢; parameter values seen in
only the training/validation data set (all instantiations are considered
in the labeling when selecting test sets).

3. Results
3.1. Optimal amount of training data

Fig. 7 shows the variation of coefficient of determination (R?) as
the amount of training/validation data is increased. Results are shown
for the four CNN model types corresponding to different combina-
tions of boundary condition and RVEyg;, parameter type discussed
in Section 2.2. Each blue point represents the performance of one of
50 different CNN model runs described in Section 2.3.1. The black
dotted line represents the trend of the average R? value of the 50 model
runs. Considering the plateau in average R? that begins to develop
between 40 and 70 CFP training/validation groups, the optimal amount
of training and validation data for predicting RVEygcj, is identified as
50 CFP groups. Further discussion is given in Section 4.1.
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Fig. 6. Binning strategy used in labeling microstructural instantiations as having large,
medium, or small volume requirements. The range of d,; or d,, values for each crack
size is split into three bins, each containing 33% of the total range. Bins for d,, and
the full-submodeling boundary condition are shown. Each point represents one or more
microstructural instantiations, with the size of the points reflecting the number of
instantiations for which the d,; value is repeated.

3.2. CNN model regression performance

Metrics for CNN model performance in predicting and estimating
RVEysc,jp and RVEygc; parameter values, respectively, are shown in
Table 3. Repeated cross-validation predictions (Section 2.3.2) are made
using one CNN model, while ensemble predictions of RVEyg ;, param-
eters (Section 2.3.3) are equal to the average prediction from ten CNN
models. Estimates of RVEygc; parameters are derived from predicted
RVEMSC,ip parameters using Eqs. (2) and (3). The R? and root mean
square error (RMSE) scores in Table 3 are equal to the average of
25 cross-validation training runs (five-fold cross-validation repeated
five times) for each of the four models discussed in Section 2.2.

Fig. 8 shows RVEygc; parameter values determined based on en-
semble predictions of RVEygc; parameters for one of the modified
cross-validations described in Section 2.3.3. For each of the two bound-
ary conditions, d;; and d,; values for 22 microstructural instantiations
are shown for normalized crack sizes of a/g = 0.25, 0.45, 1.0, and 3.0.
The actual RVEygc; parameter values from the previous FE simulations
are shown as blue points. The CNN-estimated RVEyg.; parameter
values are shown in red. The sizes of the points reflect the number of
times that a given value is repeated in the data set for the normalized
crack size.

Fig. 9 provides an example of comparisons between actual and
CNN-derived estimates of RVEyc parameter values for one data split.
Results for crack sizes of a/g = 0.25, 0.45, 1.0, and 3.0 for free-sides and
full-submodeling boundary conditions are shown in Figs. 9a,c and b,d,
respectively. The actual RVEygc parameter values are shown as black
circles with +1 grain error bars. Estimates of RVEysc parameter val-
ues from ten individual CNN model runs are shown as gray crosses.
Ensemble RVEygc parameter value estimates, obtained as described in
Section 2.3.3, are shown as red squares.

3.3. Microstructure screening via CNN

Table 4 provides the performance metrics for assessing the CNN’s
ability to detect microstructural instantiations with large volume re-
quirements. Microstructure screening metrics are shown for three dif-
ferent test sets. For large/medium/small volume-requirement binning,
accuracies presented represent the percent of instantiations whose
actual and CNN-estimated RVEygq; parameter values fall within the
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Fig. 7. Variation of CNN model performance as the amount of training and validation data provided to the CNN model is increased. Each CFP group comprises between 91 and
269 distinct data points. Results are shown for four different types of CNN models trained to predict a specific RVEy.;, parameter under a particular type of boundary condition:
(@) d,;, with free sides, (b) d,;, with full submodeling, (c) d,;, with free sides, and (d) d,;, with full submodeling.

Table 3

Average R? and RMSE values for RVEy;c;, and RVEy;c; parameter predictions and CNN-based estimates, respectively, from repeated cross-validations. The CNN models are trained
using the optimal training data amount. The repeated cross-validation uses individual CNN model predictions (Section 2.3.2), while the ensemble cross-validation uses ensemble

model predictions (Section 2.3.3).

Model type Individual CNN cross-validation Ensemble CNN cross-validation
RVEyscp RVEysc, RVEysc,p RVEysc,
R? RMSE [grains] R? RMSE [grains] R? RMSE [grains] R? RMSE [grains]
Free sides, d, 0.64 1.11 0.65 1.23 0.70 1.02 0.71 1.11
Free sides, d, 0.62 1.31 0.45 1.43 0.67 1.21 0.52 1.34
Full submodeling, d, 0.83 0.55 0.79 0.55 0.82 0.57 0.80 0.54
Full submodeling, d, 0.68 1.20 0.59 1.21 0.73 1.09 0.67 1.08

same bin. Accuracy, sensitivity, and precision for labeling large and not
large (i.e., small or medium) volume requirements are also shown. The
large/not large accuracies represent the percent of instantiations whose
actual and CNN-estimated RVEygq; parameter values fall within the
same bin. The sensitivity represents the percent of instantiations with
actual large RVEygc; parameter values whose CNN-estimated RVEygc ;
parameter values are also in the large bin range. The precision repre-
sents the percent of instantiations with CNN-estimated RVEyg¢; param-
eter values in the large volume bin whose actual RVEygc; parameter
values are also in the large volume bin.

3.4. Computational cost of CNNs

The computational cost of using CNNs comes from two sources: a
one-time training cost and a forward prediction cost. Each CNN model
takes between 3 min (2 CPU hours) and 17 min (10 CPU hours) to train
on 32 cores. The training time accounts for the bulk of the computa-
tional cost, as it takes less than 1 s to predict RVEyg , parameter values
for all crack-front points in a microstructural instantiation.

4. Discussion
4.1. Optimal amount of training data

The comparisons of model performance as increasing amounts of
training and validation data are provided to the CNN models are used to
determine the amount of data that best balances between maximizing
CNN performance and minimizing the expense of obtaining training
data. These comparisons are shown in Fig. 7. Two general trends are ob-
served in the performance comparison plots: a decrease in the scatter of
R? and an increase in average R? as the amount of training/validation
data increases. Similar trends were found in studies on training set size
by Kim [65] and Cho et al. [66]. These observations demonstrate that
the model is making better, more consistent predictions given more
data. However, for each cracked microstructural instantiation, at least
40 CPU hours worth of FE simulations are required to determine either
dyp Or d,;, values for the crack-front points in the instantiation. Fig. 7
is used to determine when adding additional training/validation data is
worth the expense. The increasing model performance with increasing
data is much more significant when the amount of training/validation
data is smaller, so plateaus in scatter and average R? are targeted. The
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Fig. 8. Scatter plots of actual and CNN-estimated RVEyg; parameter values. Estimates are made using the ensemble method described in Section 2.3.3. Results are shown for
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Fig. 9. Actual and CNN-derived estimates of RVEy parameter values. Actual values are shown with +1 grain error bars. The individual RVEyg. parameter estimates are made
during ten individual CNN model runs. The ten individual estimates are used to calculate the ensemble model estimates. Both d;;, (a,b) and d,;, (c,d) values are compared for
free-sides (a,c) and full-submodeling (b,d) boundary conditions.

optimal training/validation data amount is selected as 50 CFP groups, amount is used in training the CNN models for studies discussed in the

or ~8000 crack-front data points. This optimal training/validation data following sections.
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Table 4
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Performance metrics for the microstructure screening study in which actual and CNN-estimated RVEyc; values are placed into bins of large,
medium, or small volume requirements. Metrics are given for the four types of CNN models corresponding to each combination of boundary

condition and RVEyg; parameter type.

Model type Test set Large/Medium/Small Large/Not large
Accuracy [%] Accuracy [%] Sensitivity [%] Precision [%]
Free sides, d, 1 50.00 91.67 66.67 100.00
2 66.67 83.33 80.00 80.00
3 58.33 83.33 100.00 66.67
Free sides, d, 1 83.33 91.67 66.67 100.00
2 41.67 58.33 20.00 50.00
3 75.00 75.00 50.00 66.67
Full submodeling, d, 1 66.67 83.33 50.00 100.00
2 66.67 75.00 60.00 75.00
3 83.33 91.67 75.00 100.00
Full submodeling, 4, 1 50.00 66.67 50.00 50.00
2 75.00 83.33 50.00 100.00
3 75.00 91.67 100.00 80.00

4.2. Improvement of RVEys. predictions via ensemble CNN

Table 3 demonstrates the improvements in RVEygc; estimates and
RVEjg¢ jp predictions from applying an ensemble prediction approach.
Seven of the eight (87.5%) average R®> values from ensemble cross-
validation predictions (or estimates) are greater than the correspond-
ing individual cross-validation R? values. Decreases in average RMSE
values accompany the seven increases in average R? values.

The improvement of the ensemble cross-validation predictions (or
CNN-based estimates) over the individual cross-validation predictions
(or CNN-based estimates) comes from harnessing the stochasticity asso-
ciated with CNN training to stabilize CNN predictions. During the CNN
training for ensemble cross-validation, as described in Section 2.3.3,
there are two primary sources of stochasticity. First, the data used for
training and validation are randomly shuffled during each training run.
Second, the CNN model weights are randomly initialized using the
Glorot uniform initializer [67] at the beginning of each training run.
The resulting stochasticity leads to slightly different CNN predictions
for a given test set each time the CNN is trained.

The stabilization in CNN-based RVEygc parameter estimates that
occurs by averaging slightly different RVEygc;, parameter predictions
is shown in Fig. 9. Made according to the steps outlined in Sec-
tion 2.3.3, the ensemble RVEyqc parameter value estimates (shown as
red squares) represent the results of averaging ten sets of individual
RVEygcp parameter value predictions. Looking at the ten individual
model RVEyg: parameter value estimates (shown as gray crosses),
there is a difference of more than one grain separating the maximum
and minimum individual d; \;sc or d,\sc values for each crack size,
which can translate to a difference of hundreds of grains in RVEygc.
Additionally, some of the individual CNN-based estimates are unusually
high or low relative to other CNN-based estimates. Using the ensemble
model, each of the ten predictions is considered in selecting a prediction
favored by the model over multiple training runs, while diminishing the
effect of unusually high or low individual model predictions.

4.3. Performance of CNN in predicting RVE;sc

Having established the superior performance of the ensemble CNN
model approach to an individual CNN, we evaluate the regression
performance of the ensemble CNN models. Ensemble cross-validation
R? values averaged over five modified five-fold cross-validations (Sec-
tion 2.3.3) in Table 3 vary from 0.67 to 0.82 for RVEygc;, parameters
and from 0.52 to 0.80 for RVEygc; parameters, depending on boundary
condition and RVEy;s; parameter. The best CNN performance is associ-
ated with the full-submodeling boundary condition and d, ;, (or d, ;). In
contrast, the worst CNN performance is associated with the free-sides
boundary condition and d, ;, (or d, ;). The variations may be explained,
in part, through the trends in the RVEygc;, (or RVEygc;) parameter
values being predicted (or estimated). Fig. 8 demonstrates some key
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trends in actual RVEyg; parameter values that may impact CNN-based
estimates of RVEygc ;. First, the ranges of actual d, ; values (Figs. 8a,b)
are smaller than the ranges of d, ; values (Figs. 8c,d), especially at larger
crack sizes. Second, the d;; values for the full-submodeling boundary
condition (Fig. 8b) converge to values below two grains as crack size
increases, while the d,; values for the free-sides boundary condition
(Fig. 8a) increase to values greater than six grains as the crack size
increases beyond a/g of unity. The different ranges of RVEysc; pa-
rameter values impact the similarity of CNN target values for different
microstructural instantiations and crack sizes. Increased similarity of
target values leads to increased similarity between CNN target data in
the training and test sets. Given that CNNs learn to make predictions
based on the training data, test data that are the most similar to the
training data (i.e., d;; under the full-submodeling boundary condition)
should be best predicted by the CNN. In other words, having more
microstructural instantiations with similar RVEysc; parameter values
might improve CNN performance as test data targets better reflect
targets present in the training set.

Recalling that the CNN-estimated RVEyqg.; parameter values are
used in determining RVEygq, we now evaluate the final CNN-based
RVEygc estimates. Fig. 9 shows the RVEyqc parameter estimates cor-
responding to the RVEygc; parameter estimates shown in Fig. 8. Of
the 16 RVEyg; parameter estimates shown in Fig. 9, 11 ensemble
CNN-based estimates fall within one grain of the corresponding actual
RVEysc parameter value. Optimally, RVEygc captures just enough
microstructure to ensure that an MSC behaves as if it were embedded
in a full-scale part, while minimizing the expense associated with the
study of the MSC. Considering that a difference of just one grain in
diysc Or dyysc translates to a difference of hundreds of grains in
RVEysc, the CNN-based estimates of d| \isc and d; yisc cannot be relied
upon to find RVEyg. sizes that truly optimize MSC studies. With this
in mind, completely replacing all FE simulations with CNN predictions
when determining RVEygc cannot be justified.

4.4. Performance of CNN in identifying large-volume-requirement instanti-
ations

Although CNN predictions cannot directly replace FE simulations,
the ability of the CNN to identify microstructural instantiations with
large volume requirements is now evaluated. For all except one test set,
the large/medium/small binning accuracy is greater than or equal to
50%, as shown in Table 4. For each test set, the large/not large binning
accuracy is both greater than 50% and higher than the large/medium
/small binning accuracy. The binning accuracies demonstrate that
CNNs generally estimate RVEygc; values within the same range as
the actual RVEygc; values from FE simulations. Large labeling sen-
sitivity, or the percent of actual large-volume-requirement instantia-
tions correctly labeled as large-volume-requirement instantiations, is
greater than or equal to 50% for all except one test set and equal
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to 100% for two test sets. Thus, instantiations with RVEyqc; values
close to RVEysc are more often identified than not identified during
the CNN-based screening for large-volume-requirement instantiations.
Large-volume binning precision, or the percent of CNN-estimated large-
volume-requirement instantiations that are actually large-volume-
requirement instantiations, is greater than or equal to 50% for all
test sets and equal to 100% for five test sets. Thus, most of the
instantiations identified during the CNN-based screening for large-
volume-requirement instantiations are the large-volume-requirement
instantiations of interest.

4.5. Benefits of incorporating CNNs into the determination of RVEysc

Incorporating CNNs into the determination of RVEyg: provides
several improvements compared to an FE-only based framework [7].
First, the rapid predictions of the CNN allow for many more microstruc-
tural instantiations to be considered. In the FE-based framework, the
number of instantiations considered was limited by computational cost.
Second, the selection of critical instantiations (i.e., those that likely
contribute to a conservative estimate of RVEygc) to simulate with FE
will be more informed. In the FE-based framework, instantiations were
pseudo-randomly generated with no indication a priori of whether or
not RVEyc; would be near RVEygc. The blind selection process led
to many RVEygc; values that were much smaller than RVEyg: and did
not directly contribute to the conservative estimation of RVEygc. With
CNNs, microstructural instantiations that are likely to have RVEygc;
values close to RVEygc can be identified and simulated, making FE
simulations more strategic in determining RVEygc. As screened instan-
tiations are simulated, the new simulation results serve to improve the
estimation of RVEyg: and improve the performance of the CNN by
increasing the amount of available training data (Fig. 7).

Thus, the results from this study suggest that FE simulations in
tandem with CNN models can serve to rapidly, yet with reasonable
accuracy, make conservative estimates of the minimum volume require-
ments for heterogeneous microstructures containing MSCs as a function
of a/g and boundary condition.

4.6. Computational cost comparison

The computational cost of training CNNs (assuming sufficient train-
ing data are available) and making RVEygc; estimates based on CNN
predictions is significantly lower than the cost of performing the FE
simulations described in Section 2.1. The ten different CNNs needed
for making ensemble predictions can be trained in less than 100 CPU
hours. Once CNNs are trained, a CNN-based d;; or d,; estimate for
one microstructural instantiation can be made in less than 1 s. On
the other hand, using FE simulations to determine d,; or d,; for one
microstructural instantiation required at least 40 CPU hours. Even
accounting for CNN training time, hundreds of d,; or d,; values can
be estimated via an ensemble CNN approach in the same amount of
time that two d,; or d,; values can be determined via FE simulations.

5. Limitations

The CNNs trained during this work are only tested on making
CNN-based estimates of RVEygc for idealized microstructures with
linear-elastic behavior. The idealized microstructures consist of cube-
shaped grains whose orientations are implicitly specified via different
elastic moduli. The surface cracks included in the microstructures are
planar, semi-circular, and vary in size from a/g = 0.25 to a/g = 3. The
transferability of the trained CNNs from this work to conditions varying
from those in the training data, such as non-idealized microstructures,
elastic—plastic behavior, internal cracks, non-semi-circular cracks, or
cracks with a/g > 3, is not explored here. However, new CNNs could
be trained to estimate RVEygc (via RVEyg(, predictions) for different
conditions by providing relevant training data to CNN models.
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6. Conclusions

In computational materials science, computational expense is of-
ten a limiting factor when investigating material behavior via nu-
merical simulation. Here, machine learning is explored as a poten-
tial tool for reducing the computational expense required for investi-
gations of material behavior. Convolutional neural networks (CNNs)
are implemented to expedite the determination of representative vol-
ume elements for microstructurally small cracks (RVEyc). By def-
inition, RVEygc is the minimum volume of microstructure required
around a microstructurally small crack (MSC) to achieve convergence
of crack-front parameters with respect to volume size [7].

In a previous study [7], RVEygc was determined using a com-
putationally expensive framework, which relied on three-dimensional
finite-element (FE) simulations of idealized heterogeneous microstruc-
tures containing MSCs. The FE simulations considered 88 combinations
of microstructure and crack size under two different types of bound-
ary conditions (full submodeling and free sides). The previous FE
simulations provide data for the CNNs in this work.

In this work, CNNs are trained to predict RVEygc;, parameters
dy;, and d,;, at 14168 crack-front points, where RVEygc; is the
volume at which the crack-front parameter at a given crack-front
point p in a given microstructure i converges with respect to volume
size. Inputs to the CNNs comprise microstructural and geometrical
information local to the given crack-front point. Estimates of RVEygc;
parameters (d,; and d,;) are made from RVEygq,, parameter pre-
dictions, where RVEygq; is the volume at which crack-front param-
eters in a given microstructure i converge with respect to volume
size. The RVEygc; parameter estimates are subsequently used to make
conservative estimates of RVEygc parameters (d; ysc and d, yisc)-

Several studies are performed to evaluate the effectiveness of using
CNNs to expedite the determination of RVEygc. First, the amount
of training data provided to the CNNs is systematically increased to
determine the optimal amount of data to use in CNN training. Second,
individual CNN model predictions are compared to predictions from an
ensemble CNN approach that incorporates predictions from multiple
CNNs. Third, CNNs are evaluated on two different tasks: estimating
RVEysc,; values from CNN predictions and screening microstructural in-
stantiations to identify those requiring large volumes. From the studies,
the following conclusions are drawn:

» The improvement in CNN model performance with the addition of
more training data diminishes as the total amount of training data
increases. Considering the computational cost associated with
obtaining more training data, an optimal amount of training data
for this problem is selected by identifying the point where model
performance plateaus (50 cracked microstructural instantiations,
corresponding to ~8000 discrete data points).

Using an ensemble CNN approach improves RVEygq;, predic-
tions and RVEygc; estimates over individual CNN predictions
and estimates, respectively. Taking advantage of the stochasticity
associated with CNN training, noisy individual CNN predictions
are stabilized in ensemble predictions by averaging individual
CNN predictions (ten, in this case).

The performance of CNN models varies when estimating different
RVEygc; parameters under different boundary conditions. The
best performance is achieved for the full submodeling, d;; CNN-
based estimates (average ensemble model R? of 0.80). In contrast,
the worst performance is achieved for free sides, d,; CNN-based
estimates (average ensemble model R? of 0.52). The difference in
performance indicates that features of the RVEysc; data, such as
trends across crack size and data scatter, significantly impact CNN
performance.

Despite the previous conclusion, CNN predictions are inadequate
as direct substitutes for FE simulations in determining RVEygc.
Estimates of RVEygc parameter values based on CNN predictions
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have errors greater than one grain. The differences in RVEy;c
parameter values translate to differences of hundreds of grains
between the actual and estimated RVEyq¢ sizes.

Overall, CNNs are effective as a tool for identifying microstruc-
tural instantiations with large RVEygc; parameter values. Accu-
racies ranging from 58.3 % to 91.7 % are achieved in identifying in-
stantiations with large RVEygc; parameters (top 33% of RVEygc;
parameter value range) from other instantiations.

Using CNN predictions to estimate RVEygq; parameters provides
massive time savings over the previous FE-based approach. In
the time required to train CNN models and make CNN-based
estimates of RVEygq; for hundreds of cracked microstructural
instantiations, RVEysc; can only be determined for two cracked
microstructural instantiations with the FE-based approach.

While not capable of completely replacing FE simulations, CNN
predictions streamline an inefficient, simulation-based framework that
previously relied on brute-force FE simulations of a limited number
of cracked microstructural instantiations. Through rapid CNN predic-
tions, a large number of cracked microstructural instantiations can be
evaluated, and microstructures likely to contribute to the conservative
estimate of RVEy;g: can be identified and confirmed via FE simulation.

As demonstrated through the application of CNNs to the deter-
mination of RVEyg:, future studies of material behavior involving
computationally expensive simulations of microstructure can benefit
from the incorporation of machine learning. For example, CNNs can
be used to rapidly predict material response with reduced numerical
simulation. Thus, CNNs allow for rapid yet thorough searches of a
materials-design space. When machine learning predictions of material
response are not sufficiently accurate to fully replace physics-based
simulations, rapid CNN predictions can be used to inform the selection
of microstructural instantiations to investigate via high-fidelity simula-
tion. With this CNN-based screening approach, both CNN efficiency and
simulation accuracy can be harnessed in future materials investigations.
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