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A B S T R A C T

Convolutional neural networks (CNNs) are implemented to expedite the determination of representative volume
elements for microstructurally small cracks (RVEMSC). By definition, RVEMSC is the minimum volume of
microstructure required around a microstructurally small crack (MSC) to achieve convergence of crack-front
parameters with respect to volume size. In a previous study, RVEMSC was determined using a computationally
expensive finite-element (FE) framework involving the simulation of many microstructural instantiations. With
the aim of increasing the computational efficiency of determining RVEMSC, CNNs are leveraged herein to reduce
the number of FE simulations required to determine RVEMSC. Using data from the previous FE-based RVEMSC
study, CNNs are trained to predict RVEMSC,ip values, which quantify crack-front parameter convergence with
respect to volume size for microstructural instantiation 𝑖 evaluated at individual crack-front points p, given
local microstructural and geometrical information. Predicted RVEMSC,ip values are subsequently used to estimate
RVEMSC values. Studies are carried out to determine the optimal amount of training data, assess CNN-based
RVEMSC estimation performance, and demonstrate the use of CNNs as microstructural-instantiation screening
tools by enabling downselection of microstructures that are considered critical in terms of volume requirements.
Individual and ensemble CNN predictions are compared. While CNNs are not found to be accurate enough to
replace all FE simulations, CNNs are found to be effective as a rapid screening tool for improving the efficiency
of the FE-based RVEMSC determination framework and for expediting future RVEMSC studies.
1. Introduction

In the context of investigations of microstructurally small cracks
(MSCs), or cracks whose lengths are on the order of the predominant
microstructural features of a material [1], a critical question that must
be answered is: What is the minimum microstructural volume that should
be included in studies involving MSCs? Whether through experimental
characterization or computational representation, the consideration of
microstructural features in studies of MSCs is critical given the strong
influence of microstructural features on MSC behavior [2–6]. To clarify
the requisite volume of microstructure that should be included or
represented in MSC studies, DeMille and Spear [7] introduced RVEMSC,
r ‘‘the smallest heterogeneous volume containing an MSC such that
ocal crack-front parameters are converged with respect to volume
ize’’, and established the size of RVEMSC for linear-elastic materials as a
unction of boundary condition and crack size normalized with respect
o microstructure-feature size.

∗ Corresponding author.
E-mail address: karen.demille@utah.edu (K.J. DeMille).

The concept of RVEMSC is closely related to other volume elements
used in analyzing heterogeneous material behavior. Other volume el-
ements include representative volume elements (RVEs) and statistical
volume elements (SVEs). An RVE is the minimum volume of heteroge-
neous material required to capture an average material property that
does not vary with volume size [8]. Heterogeneous material volume
elements smaller than RVE, whose average material properties vary
with volume size, are referred to as SVEs [9]. In other words, increasing
the size of a volume beyond RVE will not impact the average material
properties of the volume, while increasing the size of a volume beyond
an SVE size may affect the average properties of the volume. Although
most often used in homogenization applications [8,10–15], RVEs and
SVEs have been used in studies of local fatigue indicator parameters
(FIPs) [16]; maximum principal stresses and strains [17,18]; and crack-
tip opening displacements [19]. Here, we consider local J-integral
values along a crack front. In this work, the minimum volume of
interest is designated RVEMSC because, similar to an RVE, the J-integral
927-0256/© 2022 Elsevier B.V. All rights reserved.
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value at a given crack-front point does not vary with volume size for
volumes larger than RVEMSC.

In previous work by the authors [7], a finite-element (FE) frame-
ork was used to find RVEMSC under assumptions of a linear-elastic
onstitutive model and a semi-circular surface crack. In the frame-
ork, various instantiations of idealized heterogeneous microstructures
ontaining MSCs were simulated. Crack-front parameter values (viz., J-
ntegrals) were then tracked as the volume of microstructure around an
SC was systematically varied. Despite important outcomes from that
tudy, the framework proved computationally intractable for further
tudies due to the large number of FE simulations required. Given the
ssumptions of the previous RVEMSC study, an expedited framework
or determining RVEMSC under different conditions (e.g., elastic–plastic
onstitutive model, non-circular internal crack) is needed to better
nderstand minimum volume requirements for studies of MSCs.
Machine learning (ML) is a potential tool for expediting compu-

ationally expensive, simulation-based frameworks, such as the afore-
entioned RVEMSC framework. Given sufficient data, ML models can
apture complex, non-linear relationships between material features
nd material behavior [20]. Various studies have shown the ability of
L to predict material behavior with high accuracy in significantly less
ime than high-fidelity, physics-based simulations [21–23]. Some ML
odels, including artificial neural networks (ANNs), random forests,
nd Bayesian networks, take one-dimensional inputs and make one-
imensional predictions. These types of models have been used to
redict stress and strain distributions [24,25], stress hotspots [26–
8], effective properties [22,29], crack growth [30,31], and crystal
rientation evolution [32]. Microstructural descriptors used as input to
he ML models included shape encodings [24], grain shape and size [22,
6–28], and volume-fraction porosity and average pore sizes [25].
patial relationships between microstructural features were input to
he ML models in various ways. Mangal and Holm [26] encoded
patial relationships of grains through neighborhood features, includ-
ng distances to special points and the number of nearest neighbors.
athan et al. [29] used two-point correlations and principal component
nalysis (PCA) to describe the spatial relationships between fibers
n fiber-reinforced composites. Pandey et al. [32] accounted for the
patial relationships between voxels by providing grain orientations for
urrounding voxels alongside the orientation of the voxel of interest
o their model. However, manually encoding spatial relationships be-
ween many microstructural features as single-dimensional inputs is a
omplex, non-trivial task.
Convolutional neural networks (CNNs) offer an alternative to man-

ally encoding spatial relationships between material features for ML
odel input [22,23,33–35]. By design, CNNs take in multidimensional
rrays of data, detect hierarchical patterns of features, extract single-
imensional descriptors of the input, and make a prediction [36,37].
ang and Ren [33] and Lubbers et al. [38] extracted low-dimensional
epresentations of heterogeneous materials using CNNs. In multiple
tudies [22,23,39–43], CNNs were trained to predict effective prop-
rties of various materials given images of heterogeneous microstruc-
ures. Other studies [34,44,45] predicted stress or strain fields from
mages of microstructures. Pierson et al. [46] predicted the path of a
rack through a heterogeneous microstructure, and Kantzos et al. [47]
redicted stress concentrations from surface height maps. Given the
bilities of CNNs to rapidly predict material behavior from 3D mi-
rostructural data, it is hypothesized that the bottleneck in the original
VEMSC framework due to a large number of required FE simula-
ions can be addressed by introducing CNNs into the determination of
VEMSC.
The objective of this work is to demonstrate the potential of CNNs

o expedite a computationally expensive, simulation-based study of
aterial behavior, specifically in the context of establishing RVEMSC.
iven the computational expense associated with obtaining RVEMSC
ata, the data generated in the previous RVE study [7] is harnessed
2

MSC
or this work. A task-specific microstructural sampling strategy, involv-
ng 3D grids of microstructural features ahead of crack-front points, is
elected to quantify the MSC-containing microstructures. The amount
f training data provided to the CNN is varied to establish an optimal
mount of training data. Subsequently, ensemble CNN performance
s compared with individual CNN performance. CNN performance is
valuated on two tasks: directly estimating RVEMSC values from CNN
redictions and screening microstructural instantiations prior to FE
imulation. Although this work focuses on using CNNs to expedite
he determination of minimum volume requirements for studies of
SCs, the methods and findings from the work could be applica-
le to other computational materials science applications involving
omputationally expensive simulations.

. Methods

.1. Previous work: finite-element models

All of the data used in this work come from FE simulations per-
ormed with Abaqus 6.14 [48] for the original RVEMSC determination
ramework [7]. In the simulations, the volume of heterogeneous ma-
erial surrounding an MSC was varied systematically while crack-front
arameters (viz., J-integral values) were tracked along the crack front.
etails of the FE simulations reported in previous work are provided
ext for completeness.
The FE models consisted of idealized, heterogeneous microstruc-

ures, each containing a semi-circular surface crack. The microstruc-
ures comprised cube-shaped grains whose elastic moduli (𝐸) values
ere varied to implicitly represent different grain orientations. As
hown in Fig. 1, the cube-shaped grains had side lengths of 𝑔, which
as arbitrarily defined given that the constitutive model did not ac-
ount for grain size. The crack had a half-length of 𝑎. Each grain was
ssigned an elastic modulus between 75 and 225GPa and a Poisson’s
atio of 𝜈 = 0.32. The microstructural volume surrounding the crack
as parameterized by 𝑑1, the minimum distance from the crack-front
o the sides of the volume in the crack plane, and 𝑑2, the distance from
he crack plane to the lower and upper surfaces. For the remainder of
he paper, 𝑑1 and 𝑑2 will be expressed in terms of the number of grains,
.e., the physical distance normalized by the grain size, g.
Cracked microstructural instantiations were created for each of four

ormalized crack sizes (𝑎∕𝑔 = 0.25, 0.45, 1.0, and 3.0). For each
rack size, 22 different microstructural instantiations were generated,
esulting in 88 unique cracked microstructural instantiations. Most
nstantiations were generated by randomly selecting an elastic mod-
lus for each grain. Fig. 1 shows an example of an instantiation, in
hich colors reflect the elastic moduli of grains. In some instantiations,
elect grains along the crack front were strategically assigned either
he maximum or minimum elastic modulus. For each crack size, one
icrostructural instantiation had all grains assigned a uniform value of
= 138GPa.
The FE models were analyzed under two different sets of boundary

onditions: full submodeling or free sides. Both of these boundary con-
itions incorporated a submodeling approach, where the displacements
pplied to the boundaries of the microstructure were interpolated from
isplacement results of a global (homogeneous) FE model. The global
E model, shown in Fig. 2a, represents the gauge section of a tensile
pecimen loaded to 800MPa in the y-direction. The global model had
imensions of 25mm × 10mm × 2.1mm, an elastic modulus of 𝐸 =
38GPa, and a Poisson’s ratio of 𝜈 = 0.32. For the full-submodeling
oundary condition, x-, y-, and z-displacements were applied to all
aces of the microstructural model except the surface intersecting the
rack, as shown in green in Fig. 2b. This boundary condition is intended
o represent the behavior of an MSC embedded within a large volume
f material. For the free-sides boundary condition, y-displacements
ere applied to only the top and bottom faces of the microstructural
odel, as shown in green in Fig. 2c. This boundary condition is
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Fig. 1. Idealized, heterogeneous microstructural FE models used in the determination
of RVEMSC. A semi-circular surface crack of half-length a is embedded in a microstruc-
ture consisting of cube-shaped grains with side length g. Different elastic moduli are
assigned to each grain. Two parameters, 𝑑1 and 𝑑2, are used to define the volume of
microstructure around the crack.

intended to represent the response of an MSC embedded in a very
narrow specimen, such as the matchstick specimens often used in X-ray
tomography experiments [49–52]. In total, 176 unique combinations
of microstructural instantiation, crack size, and boundary condition
were simulated. Results from the FE simulations in Ref. [7] showed
that volume requirements ranged from 4 to 3439 grains (for a 5%
tolerance), depending on material constraint from boundary condition,
microstructure arrangement, and crack size.

2.2. Convolutional neural networks

To expedite the determination of RVEMSC, CNNs are implemented in
this work to predict (or estimate) volume requirements for J-integral
convergence with respect to volume size. Volume requirements are
considered at three levels: individual crack-front points, individual mi-
crostructural instantiations, and across all crack-front points in all mi-
crostructural instantiations. The CNNs are trained to predict RVEMSC,ip,
or the minimum volume required for a crack-front parameter (viz.,
J-integral) to converge with respect to volume size at crack-front
point p in microstructural instantiation i. Predictions of RVEMSC,ip are
subsequently used to estimate RVEMSC,i, or the minimum volume for
hich J-integral values are converged with respect to volume size at
ll crack-front points (except those at grain boundaries1) in microstruc-
ural instantiation i Finally, estimates of RVEMSC,i are used to estimate
VEMSC, or the minimum volume of microstructure required around an
SC to achieve J-integral convergence with respect to volume size at
ll crack-front points in all microstructural instantiations.

1 Spurious J-integral values occur at grain boundaries.
3

Fig. 2. Boundary conditions used in FE simulations for determining RVEMSC [7]:
a) global model used to compute displacements for boundary conditions of the
icrostructure models; (b) full-submodeling and (c) free-sides boundary conditions,
here surfaces highlighted in green have applied displacements interpolated from the
lobal model.

A total of four CNNs (all having the same architecture) are used to
redict one of two RVEMSC,ip parameters (𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝) under one of two
oundary conditions. All data for the CNNs (both input and target data)
re obtained from the FE simulations completed during the previous
VEMSC determination study [7]. The following sections describe the
NN inputs, targets, architecture, and data.

.2.1. CNN inputs
For a given crack-front point p, the inputs to the CNN model consist

f two 3D arrays and two scalar values. The 3D arrays are sampled from
regular grid of 𝑁 × 𝑁 × 𝑁 points located at p such that the grid is
angent to the crack front, as shown in Fig. 3. The size, location (relative
o the crack-front point), and dimensions of the sampling grids used to
enerate the 3D array inputs for the CNN models are specified by three
arameters: the distance ahead of the crack-front point (𝑑ahead), the
istance behind the crack-front point (𝑑behind), and the number of grid
oints in each direction (𝑁). From these grid parameters, the distance
etween grid points can be determined using the equation

grid =
𝑑ahead + 𝑑behind

𝑁 − 1
. (1)

The same grid spacing is used in each of the three directions. The grid
parameters used for this work are provided in Table 1.

The input arrays provide the CNN with a 3D ‘‘image’’ of the local
microstructure in the neighborhood of each crack-front point. The use
of a local microstructure sampling method is similar to that used by
Yang et al. [34]. In this work, the sampling grids are designed to
probe grains primarily ahead of the crack front, as Rovinelli et al. [53]
showed that clusters of grains ahead of a crack tip influence short crack
behavior; hence 𝑑 > 𝑑 . The selected values of 𝑑 and 𝑑
ahead behind ahead behind
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Fig. 3. Sampling strategy used to extract microstructural information from around a
crack-front point p. The top figure shows a top-down view of the sampling grid, while
the bottom figure shows a front view of the sampling grid. The 16 × 16 × 16 grid is
defined using parameters 𝑑ahead = 4 grains, 𝑑behind = 0.95 grains, and 𝛥grid = 0.33 grains.
rid points are colored according to the normalized elastic modulus. Purple points
epresent grid points located outside of the physical volume.

Table 1
Parameters used to define the sampling grids used to extract data for the 3D array
inputs of the CNNs. Sampling grids are placed tangent to the crack front at each
crack-front point, as shown in Fig. 3.
Grid parameter Value

𝑑ahead 4 grain widths
𝑑behind 0.95 grain widths
𝑁 16
𝛥grid 0.33 grain widths

result in grids that include slightly more grains than the number of
nearest-neighbor grains shown to have the strongest influence on lo-
cal crack-front parameter convergence behavior; namely, the previous
RVEMSC study showed that the second and third nearest-neighbor grains
head of a crack front have the greatest impact on the local crack-
ront parameter convergence rates [7]. In other studies, local FIPs or
echanical fields in a given grain were found to be most sensitive to
he first through third nearest-neighbor grains [16,18,54].
Input to the CNN model for crack-front point p includes both
icrostructural and geometrical features. Elastic moduli and Euclidean
istances between grid points and crack-front point p sampled from
he grid comprise the 𝐸 and distance to crack front (𝑑cfp) input arrays,
espectively. If a grid point falls outside of the physical volume of the
E model, then a value of −1 is assigned to the corresponding array
omponent. The scalar inputs are the normalized crack size (𝑎∕𝑔) and
he distance from the crack-front point to the free surface (𝑑fs), which is
imply the z-coordinate of the crack-front point (Fig. 3). The inclusion
f 𝑑 as an input is intended to inform the CNN of the degree of
4

fs b
aterial constraint (ranging from plane-stress to plane-strain) acting
n crack-front point p, which may influence the convergence trends of
rack-front parameters [55]. To improve CNN model performance, the
NN inputs are normalized. The components of 3D array inputs are
ormalized to range from 0 to 1 for grid points inside the FE model
nd set to −1 for grid points outside the FE model. The scalar inputs
re normalized to range from 0 to 1.

.2.2. CNN targets
For a given crack-front point p, the targets of the CNN models

onsist of RVEMSC,ip parameter values, 𝑑1,𝑖𝑝 and 𝑑2,𝑖𝑝. A total of four
ifferent CNNs are used in predicting the RVEMSC,ip parameter values.
separate CNN is trained for each combination of boundary condi-

ion (full submodeling or free sides) and RVEMSC,ip parameter (𝑑1,𝑖𝑝
r 𝑑2,𝑖𝑝). Separate CNN models for different combinations of bound-
ry condition and RVEMSC,ip parameter reflect the approach used by
ovinelli et al. [30,31], where separate ML models were used to predict
rack-growth direction and rate.
Fig. 4a and b illustrate the process of finding 𝑑1,𝑖𝑝 and 𝑑2,𝑖𝑝, re-

pectively, for microstructure i at crack-front point p under a given
oundary condition from previously completed FE simulations [7]. In
inding 𝑑1,𝑖𝑝 (Fig. 4a), 𝑑1 is varied, while 𝑑2 is fixed at 𝑑2 = 𝑆, where
≫ 𝑑2,MSC. In Fig. 4a, 𝑆 = 16 grains. For each crack-front point, or
ode along the crack-front, a coarsely-sampled set of J-integral values
s extracted from FE simulation results for volumes with 𝑑1 values
ncremented in steps of 2 grains (𝑑1 = {2, 4, 6, 8,… , 24} grains). The
oarsely-sampled J-integral values are shown as circles in the plot of
ig. 4a. Bounds of ±5% are established based on the J-integral value
orresponding to the largest volume (e.g., 𝑑1 = 24 grains in Fig. 4a).
he largest 𝑑1 value whose corresponding J-integral value falls outside
f the ±5% bounds is identified as the divergence point (e.g., 𝑑1 = 2
rains in Fig. 4a). The set of sampled J-integral values is locally refined
round the divergence point, as J-integral values are extracted from FE
imulation results for volumes with 𝑑1 values incremented in steps of
.5 grains between the divergence point and the next-largest volume
𝑑1 = {2.5, 3, 3.5} grains in Fig. 4a). The locally refined J-integral values
re shown as crosses in the plot of Fig. 4a. An updated divergence point
s identified (𝑑1 = 2.5 grains), and the volume immediately to the right
f this volume is identified as 𝑑1,𝑖𝑝 (𝑑1,𝑖𝑝 = 3 grains). A similar process
s used to determine 𝑑2,𝑖𝑝 (Fig. 4b). In the case of determining 𝑑2,𝑖𝑝, 𝑑2
s varied and 𝑑1 is fixed at 𝑑1 = 𝑇 , where 𝑇 ≫ 𝑑1,MSC (𝑇 = 14 grains2
n Fig. 4b). Note that in Fig. 4b, the divergence point for the coarsely
ampled J-integral value set is 0 grains since no coarsely sampled J-
ntegral values fall outside of the ±5% convergence bounds. Given that
1 and 𝑑2 values are incremented in minimum steps of 0.5 grains, 𝑑1,𝑖𝑝
nd 𝑑2,𝑖𝑝 are determined with resolutions of 0.5 grains. To improve CNN
odel performance, the targets for the CNNs are normalized to a range
f 0 to 1.

.2.3. CNN-based estimates of RVEMSC,i and RVEMSC
Predictions of RVEMSC,ip parameter values are used to make CNN-

ased estimates of RVEMSC,i and RVEMSC. The limiting (or maximum)
VEMSC,ip parameter values define the RVEMSC,i parameter values for a
iven microstructure:

1,𝑖 = max
𝑝

(𝑑1,𝑖𝑝) (2)

2,𝑖 = max
𝑝

(𝑑2,𝑖𝑝). (3)

2 Selected values of 𝑆 and 𝑇 vary based on crack size and boundary
condition due to variations in 𝑑2,MSC and 𝑑1,MSC for different crack sizes and
oundary conditions.
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Given that RVEMSC requires J-integral values to be converged at all
crack-front points in all microstructural instantiations, RVEMSC is de-
ermined by taking the maximum RVEMSC,i parameter values among
ll microstructures:

1,𝑀𝑆𝐶 = max
𝑖
(𝑑1,𝑖) (4)

𝑑2,𝑀𝑆𝐶 = max
𝑖
(𝑑2,𝑖). (5)

2.2.4. CNN architecture
The 3D CNN architecture used in each of the four CNN models is

based on the VGG-16 CNN model [56] and is shown in Fig. 5. Fig. 5
pecifies the number of filters, convolutional filter sizes, and activation
unction for each convolutional layer. For each maximum pooling layer,
he pooling window size is shown. All of the convolutional layers and
aximum pooling layers use strides of 1 × 1 × 1. Same padding is used
or each convolutional layer, while valid padding is used for each max-
mum pooling layer. Following the third maximum pooling layer, the
ayer output is flattened in preparation for the fully connected layers.
ig. 5 specifies the number of output units and activation functions for
he fully connected layers. Max-norm regularization [57] is applied to
ach convolutional filter, fully connected weight vector, and bias vector
ith a weight constraint of 𝑐 = 4. Dropout layers [57] are placed prior
o both fully connected layers and retain layer units with a probability
f 50%. The CNN models are built using Keras 2.3 [58] and TensorFlow
.14 [59]. The architecture is selected using Hyperas [60] and a greedy
ptimization approach.
The CNNs are trained using the ADAM optimizer [61] and mean

quare error (MSE) loss. A mini-batch size of 64 and an ADAM learning
ate of 0.001 are used. Training is stopped once the validation loss has
ailed to decrease over ten epochs. The model weights corresponding
o the lowest validation loss are restored for the final trained model.
5

l

.2.5. CNN data overview and splitting
Recall, previous FE simulations [7] provide data for the CNNs; in the

E simulations, four different crack sizes (𝑎∕𝑔 = 0.25, 0.45, 1.0, and 3.0)
nd 22 microstructural instantiations per crack size were considered
or each combination of boundary condition and RVEMSC,ip parameter.
hus, each of the four CNN models has 88 crack-front-point (CFP)
roups of 𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝 values associated with it. Each CFP group contains
1,𝑖𝑝 or 𝑑2,𝑖𝑝 values for all crack-front points (except points that lie on
rain boundaries) in a given microstructural instantiation containing
n MSC of size 𝑎∕𝑔. Each crack contains between 91 and 269 crack-
ront points, depending on the crack size. By considering J-integral
onvergence at individual crack-front points, 88 FE simulation sets are
ffectively expanded to a total of 14 168 available data points per CNN
odel.
In the studies discussed in Section 2.3, the 14 168 data points are

plit into training, validation, and testing sets. During the splitting, data
oints are split such that all crack-front points from a given CFP group
re kept together. This splitting approach ensures that similar data from
eighboring crack-front points in a given CFP group do not introduce
ata duplicity between the training, validation, and testing sets.

.3. CNN evaluation studies

Four studies are performed to evaluate the performance of the
NN models in expediting the determination of RVEMSC. First, the
ptimal amount of training data for the CNN models is found. Sec-
nd, individual CNN models are evaluated on their performance in
redicting RVEMSC,ip and making estimates of RVEMSC,i and RVEMSC.
hird, individual CNN model performance is compared to ensemble
NN model performance in predicting RVEMSC,ip and making estimates
f RVEMSC,i and RVEMSC. Fourth, CNN models are evaluated on their
bility to screen for cracked microstructural instantiations that have

arge volume requirements.
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Fig. 5. The 3D CNN architecture, based on VGG-16 [56], used to predict RVEMSC,ip parameter values. Convolutional filter sizes, maximum pooling window sizes, fully connected
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.3.1. Identification of optimal amount of training data
The first study aims to identify the optimal amount of training data

or the CNN models. In this case, the optimal amount of training data
epresents the number of CFP groups that balances model performance
nd computational cost. To identify the optimal amount of training
ata, the performance of the CNN models on a constant test set is
racked as the amount of training data is systematically increased.
even cases of increasing training/validation data, shown in Table 2,
re compared. The following process is repeated for each of the four
NN models. First, approximately 20% (or 18) of 88 CFP groups are
et aside as a test set. Recalling that each CFP group contains between
1 and 269 data points (Section 2.2.5), the test set contains ∼2900
ata points. From the remaining 70 CFP groups, 80% (56 CFP groups)
nd 20% (14 CFP groups) are placed in training and validation data
ools, respectively. The training and validation data pools contain
9000 and ∼2300 data points, respectively. For each of the seven train-
ng/validation data amounts in Table 2, training and validation CFP
roups are randomly selected from the training and validation data
ools. The model is trained with the selected training/validation sets,
hen evaluated on the test set. Given that CNN performance varies from
ne training run to another, the training and testing process is repeated
en times for each amount of training data to capture the variability in
NN performance. For the ten repetitions, the test set remains fixed,
hile the training and validation data sets are randomly drawn during
ach repetition.
The variation of training and validation data amounts is repeated

or a total of five random test sets. From ten training repetitions for
ive test sets, CNN performance is evaluated 50 different times for each
mount of training data with three sources of variation: the random
election of training/validation data, the random selection of test data,
nd the random initialization of model weights.

.3.2. Individual CNN model performance evaluation
The second study seeks to assess the performance of an individual

NN model in predicting RVEMSC,ip and, hence, estimating RVEMSC,i and
VEMSC parameter values. A repeated five-fold cross-validation [62]
s performed to: first, evaluate RVEMSC,ip predictions; second, evaluate
VEMSC,i parameter estimates among all microstructural instantiations;
nd third, evaluate RVEMSC parameter estimates. To perform a single
ive-fold cross-validation for a given combination of boundary condi-
ion and RVEMSC,ip parameter type, the 88 CFP groups are randomly
plit into five subsets containing 17, 17, 17, 17, and 20 groups, re-
6

pectively. In each of five training folds, one of the five subsets is o
Table 2
Training and validation data set sizes compared during the identification of the optimal
amount of training data. Each CFP group contains data for all crack-front points in a
given microstructural instantiation i containing a crack of size 𝑎∕𝑔.
Training data case Number of CFP groups (Approx. number of data points)

Training Validation Test

1 8 (∼1300) 2 (∼300) 18 (∼2900)
2 16 (∼2600) 4 (∼600) 18 (∼2900)
3 24 (∼3900) 6 (∼1000) 18 (∼2900)
4 32 (∼5200) 8 (∼1300) 18 (∼2900)
5 40 (∼6400) 10 (∼1600) 18 (∼2900)
6 48 (∼7700) 12 (∼1900) 18 (∼2900)
7 56 (∼9000) 14 (∼2300) 18 (∼2900)

reserved for testing. From the remaining four subsets, 50 CFP groups
(the optimal number identified from the previous study, as presented
later in Section 3.1) are randomly selected for training and validation
data. The training and validation data are used to train the CNN. The
trained CNN then predicts RVEMSC,ip parameter values for the test set.
During the five-fold cross-validation, each subset of data is held out
as the test set exactly once, resulting in one prediction of RVEMSC,ip for
each crack-front point. The RVEMSC,ip predictions are used with Eqs. (2)
and (3) to estimate RVEMSC,i parameters. With RVEMSC,i parameter
estimates for all microstructural instantiations, Eqs. (4) and (5) are used
o estimate RVEMSC parameters. To improve the accuracy of the model
erformance evaluation, the five-fold cross-validation process described
bove is completed a total of five times.

.3.3. Ensemble CNN model performance evaluation
The third study compares the performance of individual CNN pre-

ictions with ensemble CNN predictions. A modified five-fold cross-
alidation approach is performed to evaluate ensemble predictions of
VEMSC,ip and estimates of RVEMSC,i and RVEMSC. The same cross-
alidation subsets from Section 2.3.2 are used. During one modified
ross-validation, each of the five cross-validation subsets is held out
s a test set. For each test set, ten individual CNN model RVEMSC,ip
redictions are used to find ensemble model RVEMSC,ip predictions.
irst, 50 CFP groups (the optimal number identified in Section 3.1)
re randomly selected from all data not in the test set. For each of
he ten CNN model predictions, the training/validation data are split
andomly into training and validation sets consisting of 80% and 20%

f the training/validation data, respectively. Using these training and
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validation sets, the CNN model is trained, and 𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝 predictions
for the test set are recorded. The previously selected training/validation
data are then shuffled randomly into new training and validation
sets (maintaining the 80% - 20% split) and the CNN training process
is repeated. The shuffling of training and validation data incorpo-
rates data diversity into the ensemble model [63]. After ten different
prediction sets have been obtained, ensemble model predictions are
made by averaging the ten different 𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝 predictions for each
crack-front point [64]. RVEMSC,i and RVEMSC estimates are found with
Eqs. (2), (3), (4), and (5). As in Section 2.3.2, the modified five-fold
cross-validation is completed a total of five times.

2.3.4. CNN-based microstructure screening performance evaluation
The goal of the fourth study is to test the ability of the CNN models

to identify cracked microstructural instantiations with large RVEMSC,i
values (i.e., large volume requirements to guarantee convergence of
crack-front parameters). For each combination of boundary condition
and RVEMSC,i parameter (𝑑1,𝑖 or 𝑑2,𝑖), ensemble RVEMSC,ip predictions
(Section 2.3.3) are used to screen instantiations for those with large
RVEMSC,i values. First, all 88 cracked microstructural instantiations are
labeled as having large, medium, or small RVEMSC,i parameter values.
For a given crack size, the range of all actual RVEMSC,i parameter values
is divided equally into three bins: small (bottom 33% of range), medium
(middle 33% of range), and large (top 33% of range) volume require-
ments, as shown in Fig. 6. Each cracked microstructural instantiation
is labeled according to its actual 𝑑1,𝑖 or 𝑑2,𝑖 values. Three test sets are
selected, with each test set consisting of a small-, medium-, and large-
volume-requirement instantiation for each crack size (𝑎∕𝑔 = 0.25, 0.45,
1.0, and 3.0). In other words, each test set contains data points from 12
of the 88 CFP groups (1932 of 14 168 data points) associated with the
given combination of boundary conditions and RVEMSC,i parameter.

Ensemble CNN-based RVEMSC,i estimates (Section 2.3.3) are made
for each of the three test sets. Fifty CFP groups (the optimal num-
ber identified in Section 3.1) drawn randomly from all non-test CFP
groups are selected as training/validation data. Ten different models
are trained using different random splits of the training/validation data
into training (40 CFP groups) and validation (10 CFP groups) sets.
Ensemble 𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝 predictions are made by averaging the predic-
tions of the ten individual models. Estimates of 𝑑1,𝑖 or 𝑑2,𝑖 values are
determined for each instantiation (or CFP group) using Eqs. (2) and (3).
The estimated 𝑑1,𝑖 or 𝑑2,𝑖 values derived from CNN predictions of 𝑑1,𝑖𝑝
and 𝑑2,𝑖𝑝 are used to label instantiations as having large, medium, or
small predicted volume requirements using the same binning strategy
used for the actual (ground-truth) results. For the labeling based on
estimated RVEMSC,i parameters, the volume requirement bin boundaries
are adjusted to reflect the range of RVEMSC,i parameter values seen in
only the training/validation data set (all instantiations are considered
in the labeling when selecting test sets).

3. Results

3.1. Optimal amount of training data

Fig. 7 shows the variation of coefficient of determination (𝑅2) as
the amount of training/validation data is increased. Results are shown
for the four CNN model types corresponding to different combina-
tions of boundary condition and RVEMSC,ip parameter type discussed
in Section 2.2. Each blue point represents the performance of one of
50 different CNN model runs described in Section 2.3.1. The black
dotted line represents the trend of the average 𝑅2 value of the 50 model
runs. Considering the plateau in average 𝑅2 that begins to develop
between 40 and 70 CFP training/validation groups, the optimal amount
of training and validation data for predicting RVEMSC,ip is identified as
7

50 CFP groups. Further discussion is given in Section 4.1.
Fig. 6. Binning strategy used in labeling microstructural instantiations as having large,
medium, or small volume requirements. The range of 𝑑1,𝑖 or 𝑑2,𝑖 values for each crack
size is split into three bins, each containing 33% of the total range. Bins for 𝑑1,𝑖 and
the full-submodeling boundary condition are shown. Each point represents one or more
microstructural instantiations, with the size of the points reflecting the number of
instantiations for which the 𝑑1,𝑖 value is repeated.

3.2. CNN model regression performance

Metrics for CNN model performance in predicting and estimating
RVEMSC,ip and RVEMSC,i parameter values, respectively, are shown in
Table 3. Repeated cross-validation predictions (Section 2.3.2) are made
using one CNN model, while ensemble predictions of RVEMSC,ip param-
eters (Section 2.3.3) are equal to the average prediction from ten CNN
models. Estimates of RVEMSC,i parameters are derived from predicted
RVEMSC,ip parameters using Eqs. (2) and (3). The 𝑅2 and root mean
square error (RMSE) scores in Table 3 are equal to the average of
25 cross-validation training runs (five-fold cross-validation repeated
five times) for each of the four models discussed in Section 2.2.

Fig. 8 shows RVEMSC,i parameter values determined based on en-
emble predictions of RVEMSC,ip parameters for one of the modified
ross-validations described in Section 2.3.3. For each of the two bound-
ry conditions, 𝑑1,𝑖 and 𝑑2,𝑖 values for 22 microstructural instantiations
re shown for normalized crack sizes of 𝑎∕𝑔 = 0.25, 0.45, 1.0, and 3.0.
The actual RVEMSC,i parameter values from the previous FE simulations
are shown as blue points. The CNN-estimated RVEMSC,i parameter
values are shown in red. The sizes of the points reflect the number of
times that a given value is repeated in the data set for the normalized
crack size.

Fig. 9 provides an example of comparisons between actual and
CNN-derived estimates of RVEMSC parameter values for one data split.
Results for crack sizes of 𝑎∕𝑔 = 0.25, 0.45, 1.0, and 3.0 for free-sides and
full-submodeling boundary conditions are shown in Figs. 9a,c and b,d,
respectively. The actual RVEMSC parameter values are shown as black
circles with ±1 grain error bars. Estimates of RVEMSC parameter val-
ues from ten individual CNN model runs are shown as gray crosses.
Ensemble RVEMSC parameter value estimates, obtained as described in
Section 2.3.3, are shown as red squares.

3.3. Microstructure screening via CNN

Table 4 provides the performance metrics for assessing the CNN’s
ability to detect microstructural instantiations with large volume re-
quirements. Microstructure screening metrics are shown for three dif-
ferent test sets. For large/medium/small volume-requirement binning,
accuracies presented represent the percent of instantiations whose
actual and CNN-estimated RVE parameter values fall within the
MSC,i



Computational Materials Science 207 (2022) 111290K.J. DeMille and A.D. Spear

u
m

v

3

o
t

Fig. 7. Variation of CNN model performance as the amount of training and validation data provided to the CNN model is increased. Each CFP group comprises between 91 and
269 distinct data points. Results are shown for four different types of CNN models trained to predict a specific RVEMSC,ip parameter under a particular type of boundary condition:
(a) 𝑑1,𝑖𝑝 with free sides, (b) 𝑑1,𝑖𝑝 with full submodeling, (c) 𝑑2,𝑖𝑝 with free sides, and (d) 𝑑2,𝑖𝑝 with full submodeling.
Table 3
Average 𝑅2 and RMSE values for RVEMSC,ip and RVEMSC,i parameter predictions and CNN-based estimates, respectively, from repeated cross-validations. The CNN models are trained
sing the optimal training data amount. The repeated cross-validation uses individual CNN model predictions (Section 2.3.2), while the ensemble cross-validation uses ensemble
odel predictions (Section 2.3.3).
Model type Individual CNN cross-validation Ensemble CNN cross-validation

RVEMSC,ip RVEMSC,i RVEMSC,ip RVEMSC,i
𝑅2 RMSE [grains] 𝑅2 RMSE [grains] 𝑅2 RMSE [grains] 𝑅2 RMSE [grains]

Free sides, 𝑑1 0.64 1.11 0.65 1.23 0.70 1.02 0.71 1.11
Free sides, 𝑑2 0.62 1.31 0.45 1.43 0.67 1.21 0.52 1.34
Full submodeling, 𝑑1 0.83 0.55 0.79 0.55 0.82 0.57 0.80 0.54
Full submodeling, 𝑑2 0.68 1.20 0.59 1.21 0.73 1.09 0.67 1.08
i
w
d

same bin. Accuracy, sensitivity, and precision for labeling large and not
large (i.e., small or medium) volume requirements are also shown. The
large/not large accuracies represent the percent of instantiations whose
actual and CNN-estimated RVEMSC,i parameter values fall within the
same bin. The sensitivity represents the percent of instantiations with
actual large RVEMSC,i parameter values whose CNN-estimated RVEMSC,i
parameter values are also in the large bin range. The precision repre-
sents the percent of instantiations with CNN-estimated RVEMSC,i param-
eter values in the large volume bin whose actual RVEMSC,i parameter
alues are also in the large volume bin.

.4. Computational cost of CNNs

The computational cost of using CNNs comes from two sources: a
ne-time training cost and a forward prediction cost. Each CNN model
akes between 3 min (2 CPU hours) and 17 min (10 CPU hours) to train
on 32 cores. The training time accounts for the bulk of the computa-
tional cost, as it takes less than 1 s to predict RVEMSC,ip parameter values
8

for all crack-front points in a microstructural instantiation. d
4. Discussion

4.1. Optimal amount of training data

The comparisons of model performance as increasing amounts of
training and validation data are provided to the CNN models are used to
determine the amount of data that best balances between maximizing
CNN performance and minimizing the expense of obtaining training
data. These comparisons are shown in Fig. 7. Two general trends are ob-
served in the performance comparison plots: a decrease in the scatter of
𝑅2 and an increase in average 𝑅2 as the amount of training/validation
data increases. Similar trends were found in studies on training set size
by Kim [65] and Cho et al. [66]. These observations demonstrate that
the model is making better, more consistent predictions given more
data. However, for each cracked microstructural instantiation, at least
40 CPU hours worth of FE simulations are required to determine either
𝑑1,𝑖𝑝 or 𝑑2,𝑖𝑝 values for the crack-front points in the instantiation. Fig. 7
s used to determine when adding additional training/validation data is
orth the expense. The increasing model performance with increasing
ata is much more significant when the amount of training/validation
ata is smaller, so plateaus in scatter and average 𝑅2 are targeted. The



Computational Materials Science 207 (2022) 111290K.J. DeMille and A.D. Spear
Fig. 8. Scatter plots of actual and CNN-estimated RVEMSC,i parameter values. Estimates are made using the ensemble method described in Section 2.3.3. Results are shown for
four different CNN estimates of a specific RVEMSC,i parameter under a specific boundary condition: (a) 𝑑1,𝑖 with free sides, (b) 𝑑1,𝑖 with full submodeling, (c) 𝑑2,𝑖 with free sides,
and (d) 𝑑2,𝑖 with full submodeling. Relative sizes of points reflect number of times a given value is repeated in the data set.
Fig. 9. Actual and CNN-derived estimates of RVEMSC parameter values. Actual values are shown with ±1 grain error bars. The individual RVEMSC parameter estimates are made
during ten individual CNN model runs. The ten individual estimates are used to calculate the ensemble model estimates. Both 𝑑1,𝑖𝑝 (a,b) and 𝑑2,𝑖𝑝 (c,d) values are compared for
free-sides (a,c) and full-submodeling (b,d) boundary conditions.
optimal training/validation data amount is selected as 50 CFP groups,

or ∼8000 crack-front data points. This optimal training/validation data
9

amount is used in training the CNN models for studies discussed in the

following sections.
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Table 4
Performance metrics for the microstructure screening study in which actual and CNN-estimated RVEMSC,i values are placed into bins of large,
medium, or small volume requirements. Metrics are given for the four types of CNN models corresponding to each combination of boundary
condition and RVEMSC parameter type.
Model type Test set Large/Medium/Small Large/Not large

Accuracy [%] Accuracy [%] Sensitivity [%] Precision [%]

Free sides, 𝑑1 1 50.00 91.67 66.67 100.00
2 66.67 83.33 80.00 80.00
3 58.33 83.33 100.00 66.67

Free sides, 𝑑2 1 83.33 91.67 66.67 100.00
2 41.67 58.33 20.00 50.00
3 75.00 75.00 50.00 66.67

Full submodeling, 𝑑1 1 66.67 83.33 50.00 100.00
2 66.67 75.00 60.00 75.00
3 83.33 91.67 75.00 100.00

Full submodeling, 𝑑2 1 50.00 66.67 50.00 50.00
2 75.00 83.33 50.00 100.00
3 75.00 91.67 100.00 80.00
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4.2. Improvement of RVEMSC predictions via ensemble CNN

Table 3 demonstrates the improvements in RVEMSC,i estimates and
RVEMSC,ip predictions from applying an ensemble prediction approach.
Seven of the eight (87.5%) average 𝑅2 values from ensemble cross-
validation predictions (or estimates) are greater than the correspond-
ing individual cross-validation 𝑅2 values. Decreases in average RMSE
alues accompany the seven increases in average 𝑅2 values.
The improvement of the ensemble cross-validation predictions (or

NN-based estimates) over the individual cross-validation predictions
or CNN-based estimates) comes from harnessing the stochasticity asso-
iated with CNN training to stabilize CNN predictions. During the CNN
raining for ensemble cross-validation, as described in Section 2.3.3,
there are two primary sources of stochasticity. First, the data used for
training and validation are randomly shuffled during each training run.
Second, the CNN model weights are randomly initialized using the
Glorot uniform initializer [67] at the beginning of each training run.
The resulting stochasticity leads to slightly different CNN predictions
for a given test set each time the CNN is trained.

The stabilization in CNN-based RVEMSC parameter estimates that
ccurs by averaging slightly different RVEMSC,ip parameter predictions
s shown in Fig. 9. Made according to the steps outlined in Sec-
ion 2.3.3, the ensemble RVEMSC parameter value estimates (shown as
ed squares) represent the results of averaging ten sets of individual
VEMSC,ip parameter value predictions. Looking at the ten individual
odel RVEMSC parameter value estimates (shown as gray crosses),
here is a difference of more than one grain separating the maximum
nd minimum individual 𝑑1,MSC or 𝑑2,MSC values for each crack size,
hich can translate to a difference of hundreds of grains in RVEMSC.
dditionally, some of the individual CNN-based estimates are unusually
igh or low relative to other CNN-based estimates. Using the ensemble
odel, each of the ten predictions is considered in selecting a prediction
avored by the model over multiple training runs, while diminishing the
ffect of unusually high or low individual model predictions.

.3. Performance of CNN in predicting RVEMSC

Having established the superior performance of the ensemble CNN
odel approach to an individual CNN, we evaluate the regression
erformance of the ensemble CNN models. Ensemble cross-validation
2 values averaged over five modified five-fold cross-validations (Sec-
ion 2.3.3) in Table 3 vary from 0.67 to 0.82 for RVEMSC,ip parameters
nd from 0.52 to 0.80 for RVEMSC,i parameters, depending on boundary
ondition and RVEMSC parameter. The best CNN performance is associ-
ted with the full-submodeling boundary condition and 𝑑1,𝑖𝑝 (or 𝑑1,𝑖). In
ontrast, the worst CNN performance is associated with the free-sides
oundary condition and 𝑑2,𝑖𝑝 (or 𝑑2,𝑖). The variations may be explained,
n part, through the trends in the RVEMSC,ip (or RVEMSC,i) parameter
10

alues being predicted (or estimated). Fig. 8 demonstrates some key
rends in actual RVEMSC,i parameter values that may impact CNN-based
stimates of RVEMSC,i. First, the ranges of actual 𝑑1,𝑖 values (Figs. 8a,b)
re smaller than the ranges of 𝑑2,𝑖 values (Figs. 8c,d), especially at larger
rack sizes. Second, the 𝑑1,𝑖 values for the full-submodeling boundary
ondition (Fig. 8b) converge to values below two grains as crack size
ncreases, while the 𝑑1,𝑖 values for the free-sides boundary condition
Fig. 8a) increase to values greater than six grains as the crack size
ncreases beyond 𝑎∕𝑔 of unity. The different ranges of RVEMSC,i pa-
ameter values impact the similarity of CNN target values for different
icrostructural instantiations and crack sizes. Increased similarity of
arget values leads to increased similarity between CNN target data in
he training and test sets. Given that CNNs learn to make predictions
ased on the training data, test data that are the most similar to the
raining data (i.e., 𝑑1,𝑖 under the full-submodeling boundary condition)
hould be best predicted by the CNN. In other words, having more
icrostructural instantiations with similar RVEMSC,i parameter values
ight improve CNN performance as test data targets better reflect
argets present in the training set.
Recalling that the CNN-estimated RVEMSC,i parameter values are

sed in determining RVEMSC, we now evaluate the final CNN-based
VEMSC estimates. Fig. 9 shows the RVEMSC parameter estimates cor-
esponding to the RVEMSC,i parameter estimates shown in Fig. 8. Of
he 16 RVEMSC parameter estimates shown in Fig. 9, 11 ensemble
NN-based estimates fall within one grain of the corresponding actual
VEMSC parameter value. Optimally, RVEMSC captures just enough
icrostructure to ensure that an MSC behaves as if it were embedded
n a full-scale part, while minimizing the expense associated with the
tudy of the MSC. Considering that a difference of just one grain in
1,MSC or 𝑑2,MSC translates to a difference of hundreds of grains in
VEMSC, the CNN-based estimates of 𝑑1,MSC and 𝑑2,MSC cannot be relied
pon to find RVEMSC sizes that truly optimize MSC studies. With this
n mind, completely replacing all FE simulations with CNN predictions
hen determining RVEMSC cannot be justified.

.4. Performance of CNN in identifying large-volume-requirement instanti-
tions

Although CNN predictions cannot directly replace FE simulations,
he ability of the CNN to identify microstructural instantiations with
arge volume requirements is now evaluated. For all except one test set,
he large/medium/small binning accuracy is greater than or equal to
0%, as shown in Table 4. For each test set, the large/not large binning
ccuracy is both greater than 50% and higher than the large/medium
small binning accuracy. The binning accuracies demonstrate that
NNs generally estimate RVEMSC,i values within the same range as
he actual RVEMSC,i values from FE simulations. Large labeling sen-
itivity, or the percent of actual large-volume-requirement instantia-
ions correctly labeled as large-volume-requirement instantiations, is
reater than or equal to 50% for all except one test set and equal
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to 100% for two test sets. Thus, instantiations with RVEMSC,i values
close to RVEMSC are more often identified than not identified during
the CNN-based screening for large-volume-requirement instantiations.
Large-volume binning precision, or the percent of CNN-estimated large-
volume-requirement instantiations that are actually large-volume-
requirement instantiations, is greater than or equal to 50% for all
test sets and equal to 100% for five test sets. Thus, most of the
instantiations identified during the CNN-based screening for large-
volume-requirement instantiations are the large-volume-requirement
instantiations of interest.

4.5. Benefits of incorporating CNNs into the determination of RVEMSC

Incorporating CNNs into the determination of RVEMSC provides
several improvements compared to an FE-only based framework [7].
First, the rapid predictions of the CNN allow for many more microstruc-
tural instantiations to be considered. In the FE-based framework, the
number of instantiations considered was limited by computational cost.
Second, the selection of critical instantiations (i.e., those that likely
contribute to a conservative estimate of RVEMSC) to simulate with FE
will be more informed. In the FE-based framework, instantiations were
pseudo-randomly generated with no indication a priori of whether or
not RVEMSC,i would be near RVEMSC. The blind selection process led
to many RVEMSC,i values that were much smaller than RVEMSC and did
not directly contribute to the conservative estimation of RVEMSC. With
CNNs, microstructural instantiations that are likely to have RVEMSC,i
values close to RVEMSC can be identified and simulated, making FE
simulations more strategic in determining RVEMSC. As screened instan-
tiations are simulated, the new simulation results serve to improve the
estimation of RVEMSC and improve the performance of the CNN by
increasing the amount of available training data (Fig. 7).

Thus, the results from this study suggest that FE simulations in
tandem with CNN models can serve to rapidly, yet with reasonable
accuracy, make conservative estimates of the minimum volume require-
ments for heterogeneous microstructures containing MSCs as a function
of 𝑎∕𝑔 and boundary condition.

4.6. Computational cost comparison

The computational cost of training CNNs (assuming sufficient train-
ing data are available) and making RVEMSC,i estimates based on CNN
predictions is significantly lower than the cost of performing the FE
simulations described in Section 2.1. The ten different CNNs needed
for making ensemble predictions can be trained in less than 100 CPU
hours. Once CNNs are trained, a CNN-based 𝑑1,𝑖 or 𝑑2,𝑖 estimate for
ne microstructural instantiation can be made in less than 1 s. On
he other hand, using FE simulations to determine 𝑑1,𝑖 or 𝑑2,𝑖 for one
microstructural instantiation required at least 40 CPU hours. Even
accounting for CNN training time, hundreds of 𝑑1,𝑖 or 𝑑2,𝑖 values can
be estimated via an ensemble CNN approach in the same amount of
time that two 𝑑1,𝑖 or 𝑑2,𝑖 values can be determined via FE simulations.

5. Limitations

The CNNs trained during this work are only tested on making
CNN-based estimates of RVEMSC for idealized microstructures with
linear-elastic behavior. The idealized microstructures consist of cube-
shaped grains whose orientations are implicitly specified via different
elastic moduli. The surface cracks included in the microstructures are
planar, semi-circular, and vary in size from 𝑎∕𝑔 = 0.25 to 𝑎∕𝑔 = 3. The
transferability of the trained CNNs from this work to conditions varying
from those in the training data, such as non-idealized microstructures,
elastic–plastic behavior, internal cracks, non-semi-circular cracks, or
cracks with 𝑎∕𝑔 > 3, is not explored here. However, new CNNs could
be trained to estimate RVEMSC (via RVEMSC,ip predictions) for different
conditions by providing relevant training data to CNN models.
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6. Conclusions

In computational materials science, computational expense is of-
ten a limiting factor when investigating material behavior via nu-
merical simulation. Here, machine learning is explored as a poten-
tial tool for reducing the computational expense required for investi-
gations of material behavior. Convolutional neural networks (CNNs)
are implemented to expedite the determination of representative vol-
ume elements for microstructurally small cracks (RVEMSC). By def-
inition, RVEMSC is the minimum volume of microstructure required
around a microstructurally small crack (MSC) to achieve convergence
of crack-front parameters with respect to volume size [7].

In a previous study [7], RVEMSC was determined using a com-
putationally expensive framework, which relied on three-dimensional
finite-element (FE) simulations of idealized heterogeneous microstruc-
tures containing MSCs. The FE simulations considered 88 combinations
of microstructure and crack size under two different types of bound-
ary conditions (full submodeling and free sides). The previous FE
simulations provide data for the CNNs in this work.

In this work, CNNs are trained to predict RVEMSC,ip parameters
1,𝑖𝑝 and 𝑑2,𝑖𝑝 at 14 168 crack-front points, where RVEMSC,ip is the
olume at which the crack-front parameter at a given crack-front
oint p in a given microstructure i converges with respect to volume
ize. Inputs to the CNNs comprise microstructural and geometrical
nformation local to the given crack-front point. Estimates of RVEMSC,i
parameters (𝑑1,𝑖 and 𝑑2,𝑖) are made from RVEMSC,ip parameter pre-
dictions, where RVEMSC,i is the volume at which crack-front param-
eters in a given microstructure i converge with respect to volume
size. The RVEMSC,i parameter estimates are subsequently used to make
conservative estimates of RVEMSC parameters (𝑑1,MSC and 𝑑2,MSC).

Several studies are performed to evaluate the effectiveness of using
NNs to expedite the determination of RVEMSC. First, the amount
of training data provided to the CNNs is systematically increased to
determine the optimal amount of data to use in CNN training. Second,
individual CNN model predictions are compared to predictions from an
ensemble CNN approach that incorporates predictions from multiple
CNNs. Third, CNNs are evaluated on two different tasks: estimating
RVEMSC,i values from CNN predictions and screening microstructural in-
stantiations to identify those requiring large volumes. From the studies,
the following conclusions are drawn:

• The improvement in CNN model performance with the addition of
more training data diminishes as the total amount of training data
increases. Considering the computational cost associated with
obtaining more training data, an optimal amount of training data
for this problem is selected by identifying the point where model
performance plateaus (50 cracked microstructural instantiations,
corresponding to ∼8000 discrete data points).

• Using an ensemble CNN approach improves RVEMSC,ip predic-
tions and RVEMSC,i estimates over individual CNN predictions
and estimates, respectively. Taking advantage of the stochasticity
associated with CNN training, noisy individual CNN predictions
are stabilized in ensemble predictions by averaging individual
CNN predictions (ten, in this case).

• The performance of CNN models varies when estimating different
RVEMSC,i parameters under different boundary conditions. The
best performance is achieved for the full submodeling, 𝑑1,𝑖 CNN-
based estimates (average ensemble model 𝑅2 of 0.80). In contrast,
the worst performance is achieved for free sides, 𝑑2,𝑖 CNN-based
estimates (average ensemble model 𝑅2 of 0.52). The difference in
performance indicates that features of the RVEMSC,i data, such as
trends across crack size and data scatter, significantly impact CNN
performance.

• Despite the previous conclusion, CNN predictions are inadequate
as direct substitutes for FE simulations in determining RVEMSC.

Estimates of RVEMSC parameter values based on CNN predictions
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have errors greater than one grain. The differences in RVEMSC
parameter values translate to differences of hundreds of grains
between the actual and estimated RVEMSC sizes.

• Overall, CNNs are effective as a tool for identifying microstruc-
tural instantiations with large RVEMSC,i parameter values. Accu-
racies ranging from 58.3% to 91.7% are achieved in identifying in-
stantiations with large RVEMSC,i parameters (top 33% of RVEMSC,i
parameter value range) from other instantiations.

• Using CNN predictions to estimate RVEMSC,i parameters provides
massive time savings over the previous FE-based approach. In
the time required to train CNN models and make CNN-based
estimates of RVEMSC,i for hundreds of cracked microstructural
instantiations, RVEMSC,i can only be determined for two cracked
microstructural instantiations with the FE-based approach.

While not capable of completely replacing FE simulations, CNN
predictions streamline an inefficient, simulation-based framework that
previously relied on brute-force FE simulations of a limited number
of cracked microstructural instantiations. Through rapid CNN predic-
tions, a large number of cracked microstructural instantiations can be
evaluated, and microstructures likely to contribute to the conservative
estimate of RVEMSC can be identified and confirmed via FE simulation.

As demonstrated through the application of CNNs to the deter-
mination of RVEMSC, future studies of material behavior involving
computationally expensive simulations of microstructure can benefit
from the incorporation of machine learning. For example, CNNs can
be used to rapidly predict material response with reduced numerical
simulation. Thus, CNNs allow for rapid yet thorough searches of a
materials-design space. When machine learning predictions of material
response are not sufficiently accurate to fully replace physics-based
simulations, rapid CNN predictions can be used to inform the selection
of microstructural instantiations to investigate via high-fidelity simula-
tion. With this CNN-based screening approach, both CNN efficiency and
simulation accuracy can be harnessed in future materials investigations.
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