Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Graph Collaborative Reasoning

Hanxiong Chen
Rutgers University
New Brunswick, NJ, US
hanxiong.chen@rutgers.edu

Shuchang Liu
Rutgers University
New Brunswick, NJ, US
shuchang liu@rutgers.edu

ABSTRACT

Graphs can represent relational information among entities and
graph structures are widely used in many intelligent tasks such as
search, recommendation, and question answering. However, most
of the graph-structured data in practice suffer from incompleteness,
and thus link prediction becomes an important research problem.
Though many models are proposed for link prediction, the follow-
ing two problems are still less explored: (1) Most methods model
each link independently without making use of the rich information
from relevant links, and (2) existing models are mostly designed
based on associative learning and do not take reasoning into con-
sideration. With these concerns, in this paper, we propose Graph
Collaborative Reasoning (GCR), which can use the neighbor link
information for relational reasoning on graphs from logical reason-
ing perspectives. We provide a simple approach to translate a graph
structure into logical expressions so that the link prediction task
can be converted into a neural logic reasoning problem. We apply
logical constrained neural modules to build the network architec-
ture according to the logical expression and use backpropagation to
efficiently learn the model parameters, which bridges differentiable
learning and symbolic reasoning in a unified architecture. To show
the effectiveness of our work, we conduct experiments on graph-
related tasks such as link prediction and recommendation based on
commonly used benchmark datasets, and our graph collaborative
reasoning approach achieves state-of-the-art performance.

CCS CONCEPTS

« Computing methodologies — Logical and relational learn-
ing; Machine learning; Neural networks; « Information sys-
tems — Recommender systems.

KEYWORDS

Collaborative Reasoning; Relational Reasoning; Neural-Symbolic
Learning and Reasoning; GNNs; Recommendation; Link Prediction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM °22, February 21-25, 2022, Tempe, AZ, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9132-0/22/02...$15.00
https://doi.org/10.1145/3488560.3498410

Yungqi Li
Rutgers University
New Brunswick, NJ, US
yungili@rutgers.edu

He Zhu
Rutgers University
New Brunswick, NJ, US
hz375@cs.rutgers.edu

75

Shaoyun Shi
Tsinghua University
Beijing, China
shisy17@mails.tsinghua.edu.cn

Yongfeng Zhang
Rutgers University
New Brunswick, NJ, US
yongfeng.zhang@rutgers.edu

ACM Reference Format:

Hanxiong Chen, Yungi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng
Zhang. 2022. Graph Collaborative Reasoning. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining (WSDM °22),
February 21-25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3488560.3498410

1 INTRODUCTION

Graph is able to describe the entities and their relations in many real-
world systems and research problems, such as e-commerce user-
item interactions, social networks, citation networks and knowl-
edge graphs. Though graphs can encode rich relationships among
plenty of entities, they still suffer from incompleteness [28, 39].
This issue gives rise to the link prediction task, which is to learn
representations from the known data and then predict the potential
valid connections. Link prediction is essential to many tasks such as
knowledge graph reasoning, entity search, recommender systems
and question answering.

Recent years have witness the success of knowledge graph em-
bedding methods for link prediction [2, 5, 34, 41, 42]. The basic idea
is to encode the entities and their relations into a low dimensional
vector space while the inherent structure information of the graph
is preserved. However, one drawback of these embedding-based
models is that they usually process each (entity, relation, entity)
triplet independently without explicitly considering the informa-
tion from neighborhood links, though information from neighbour-
hood nodes is considered. As a result, these methods are not able
to capture the rich information from the neighbor connections and
hence result in less informative embeddings [1, 20].

Another line of research is graph neural networks (GNNs), which
have shown the power in many graph-related problems [11, 15, 36].
These approaches are able to learn effective entity representations
by aggregating its own representation and the representations of
surrounding neighbors. The nodes in the graph can exchange infor-
mation through message passing [7], which alleviates the problem
of aforementioned embedding-based methods. Despite that GNNs
could capture more information than those shallow embedding-
based models, their key idea for handling link prediction tasks
are actually similar—they aim to learn embeddings to capture the
similarity patterns among entities, so that link prediction can be
conducted by calculating the similarity for a pair of nodes over
a specific relation. However, most GNN approaches are designed
from a perceptual perspective and they seldom consider the logical
relationship among entities and links for relational reasoning.

https://doi.org/10.1145/3488560.3498410
https://doi.org/10.1145/3488560.3498410

Research Paper

Logical reasoning is an essential and many times a natural way
to conduct reasoning on graphs for two reasons. First, many triplets
in the graph may be logically related and can be modeled together
through logical connections. Take knowledge graph for example,
the triplet (x, capitalOf; y) logically implies the relation (x, locatedIn,
¥). Thus, we can use implication operations in predicate logic to de-
scribe this connection between the two triplets as (x, capitalOf, y)
— (x, locatedIn, y). The logical relationship among triplets, if ac-
curately captured, would be helpful for predicting unknown links.
Second, each triplet can be naturally represented as a predicate in
logical reasoning, which makes it easy to model the link prediction
task as a reasoning process. For example, we can treat the target
triplet (x, locatedIn, y) as a predicate expression locatedIn(x,y). Then,
the link prediction task can be formulated as answering whether
the logical expression capitalOf{x,y) — locatedIn(x,y) is true, given
that the predicate capitalOf{x,y) is true. If the logical expression is
true, then we can infer that the target predicate should be true. In
other words, the target triplet is a valid link.

In this paper, we explore an approach that transforms the link
prediction task into a logical reasoning process on graphs. Our goal
is to model the structure of a graph as simple Horn clauses so that
link prediction can be conducted via logical reasoning. Inspired
by [3, 31], we apply modularized logical neural networks to learn
the logical operations. Instead of using explicit hand-crafted logic
rules as many previous approaches did, we introduce a method to
convert graph structures into Horn clauses as potential rules to be
learnt. The logical relations can be captured by the neural networks
so that relational reasoning can be conducted on graphs.

Technically, we propose a Graph Collaborative Reasoning (GCR)
framework for relational reasoning over graphs. Specifically, we
consider that links (or triplets) are potentially related to each other
if they are connected by shared nodes. Based on this, we can infer
a link through its neighbor links for relational reasoning. To com-
pute the Horn clauses via deep neural networks, we encode each
triplet as a predicate embedding, i.e., each entity in a given triplet is
represented as a vector embedding and each relation is modeled as
a neural module to encode the triplet. With the encoded predicate
embeddings, we can construct the network structure using the neu-
ral modules in accordance with the modeled Horn clauses. The key
benefits of our design compared to previous works are four aspects.
First, we can take advantage of GNN strategies to aggregate rich
information from neighbor links through message passing to make
link predictions. Second, we consider logical reasoning for link pre-
diction, which can make use of the logical relationships between
links. Third, we incorporate logical reasoning without manually
predefined rules, which makes our method easily adaptable to differ-
ent scenarios. Finally, our model can handle uncertainty in logical
reasoning. Our contributions can be summarized as follows:

e We introduce a new view of the link prediction task from
logical reasoning perspectives. In this way, the link predic-
tion task is translated into a true/false evaluation problem
of predicate logical expressions.

e We propose the Graph Collaborative Reasoning (GCR) model,
which conducts relational reasoning by taking advantage of
the neighbor link information for message passing.

o We show the effectiveness of our approach on various graph

relational reasoning tasks on several real-world graph datasets.

76

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

In the following, we will present related works in Section 2. After
that, in Section 3, we formalize the link prediction task in logical
language. Section 4 presents the details of our model and Section 5
gives our experimental setup and results. We will conclude this
work with outlooks for future work in Section 6.

2 RELATED WORKS

Existing techniques for link prediction can be roughly classified
into three categories: translation-based, tensor factorization-based,
and neural network-based. The translation-based models [2, 13,
17, 41, 43] translate a head embedding into a tail embedding via a
relation. The scoring function is defined as the distance between
the translated head embedding and the tail embedding. Tensor
factorization-based methods, such as RESCAL [23], ComplEx [34],
RotatE [32], DistMult [42] and HolE [22], consider the graph as a
3D adjacency matrix, which represents the head, tail and relation
embeddings along each dimension. They apply operations such as
linear mapping (RotatE), bilinear mapping (DistMult and ComplEx)
or circular correlation operation (HolE) to obtain low-dimensional
representations for each entity and relation. The deficiency of these
methods lie in treating each triplet independently and thus the rich
structural information in the graph cannot be adequately used.

Neural network-based methods, such as CNN-based [5, 21] and
GNN-based [30, 35] methods, use neural network structures to cap-
ture the rich information among the links. CNN-based methods,
such as ConvE [5], use 2D convolution layers to extract the relation-
ships between head entity embeddings and relation embeddings.
The relations are represented as multiple feature maps, which are
obtained through various filters. Then all these feature maps are
concatenated and fed into a fully connected layer to get the pro-
jected embeddings for similarity calculation with the tail entity
embeddings. These models still consider each triplet independently
which also suffer from the aforementioned problem. GNN-based
models, such as GCN [15], GAT [36] and GraphSAGE [11], can help
to resolve this issue by using message passing strategy to aggregate
information from neighbor nodes so as to enrich the vector repre-
sentation of each entity. Since the original design of these models
are based on homogeneous graphs, they are unable to handle multi-
relational link prediction tasks. Later, an extension of GCN named
R-GCN [30] is proposed to deal with multi-relational data. How-
ever, none of the above methods consider the logical relationships
between nodes/links in the graph for relational reasoning.

Recently, there have been some research works on integrating
logic into link prediction. The related approaches can be broadly
classified into hard-logic-based and soft-logic-based methods. The
hard-logic-based methods focus on applying hard logic rules to the
learning process [4, 9, 27, 37, 38]. The problem of using hard logic
rules is that the model does not tolerate to any violation. As a result,
the logic rules need to be carefully designed and the application
scenarios can be limited. For example, the hard-rule-based methods
are able to handle rules like “x is the capital of y implies x is located
in y,” however, they can hardly deal with rules like “user purchased
a cellphone x implies that user probably will purchase a phone case
y,” since the rule can be violated in some cases.

To solve the problem, soft-logic-based methods try to handle this
uncertainty by using soft logic constraints, which assign probabili-
ties to the logic rules to make the model more tolerate to exceptions

Research Paper

[8, 10, 12, 24, 25, 44, 45]. One powerful model is pLogicNet [24],
which is based on Markov Logic Network. It can learn the weight for
each predefined logic rule to handle uncertainty and noise. However,
these models usually need to ground the logic rules by traversing
all potential valid links in a graph, which makes these methods
difficult to scale to large graphs. Though recent works try to get rid
of the grounding process by directly adding rule-based constraints
on the relation vector representations [6, 8, 19], they can only deal
with simple rules such as (x, hypernym,y) — (y, hyponym, x).

All of the aforementioned logical rule-based methods need ex-
plicitly predefined logic rules either as part of a pipelined frame-
work or as a constraint of the learning process. This makes the
model highly dependent on the effectiveness of the predefined logic
rules. An open challenge, as mentioned in [8], is to design models
that can handle not only simple (manually) designed rules but also
complex learned rules while considering the scalability and un-
certainty. Although soft-logic-based methods can be more flexible
than hard-logic-based approaches, these works all need the back-
ground knowledge of the data so that logical rules can be created
reasonably, which needs considerable manual efforts.

3 PROBLEM FORMULATION

The link prediction task predicts the potential connections among
nodes/entities from the known information in a graph. Different
from previous works which treat each triplet independently, we con-
sider that triplets may have potential relations to each other if they
have shared nodes. This information is helpful in many cases. For
example, in a social network, the reason that Alice and Bob follow
each other is probably because of their common habits. That means
the triplet (Alice, follows, Bob) is valid due to (Alice, likes, Pop) and
(Bob, likes, Pop), which can be represented as the logical expression
likes(Alice, Pop) A likes(Bob, Pop) — follows(Alice, Bob). Based on
this, we can take advantage of the neighbor information to help link
prediction. To realize this idea, we model the link prediction task in
three steps: 1) convert the graph structure into a logic expression; 2)
use neural modules to encode triplets as predicate embeddings; 3)
apply logical constrained modules to generate ranking scores. The
details for step 2) and 3) will be given in Section 4. In this section,
we focus on how to convert an graph structure into a logic expres-
sion and how to formulate the link prediction task as a true/false
evaluation problem of logical expressions.

Suppose we have a graph G = (V, R, 7), where V is the vertex
set, R is the relation set, and the known triplets (edges) in the graph
are represented as 7. For any v;,v; € V and a relation ry € R, we
need to predict if the target triplet Ty = (v;, 1y, 0;) is valid, where
T € T . To solve this problem, we first get the neighbors of both v;
and v; and get all the triplets 7;; that contain either v; or v;.

Tij = {(vi, rin, on)lon € Ni} U{(0),7jm,om)lom € Nj}
= {rin(vi,on)lon € Ni} U {rjm(vj, om)lom € Nj}

1)

where N; and N are the neighbor vertex sets of node v; and vj,
respectively, and the link is considered as a predicate. Since it is
possible that not all the triplets in 7;; are the reasons of the target
triplet Ty, we apply the OR operator to model the prediction task.
The intuition here is that: the reason that Ty holds could be any of
its neighbour links or any combination of its neighbour links. We

77

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

translate this idea into the following expression:
(I > T) V(L > T) V-V (T, > Ty)
V(IHAL 5 Tx) V(LA 5> T) V-V (Ty-1 AT, — Ty)
V(IHALAT -5 T) V-V (T2 ATpo1 ATy — Ty)

V(HATA- AT, - Ty)

)
where T1, T - - - Ty, are triplets in 7;, and “—” is called the impli-
cation operation!. This expression contains not only simple Horn
clauses, such as (T; — Tx), but also higher-order Horn clauses,
suchas (T} ATy, > Ty) and (T ATy A--- AT, — Ty). Based on
this definition, we have the following theorem:

THEOREM 1. Equation (2) is true if and only if Ty is true.
To show why, we first have the following lemma:

LEMMA 2. Let the premise p be true, then the clause p — q is true
if and only if the conclusion q is true.

The lemma naturally follows from the definition of the implica-
tion operation: p — q & —p V gq. Now back to Theorem 1, since
all of the known triplets in the training data are valid, we know
that each T, € 7jj is true, and thus any conjunction among T is
also true. As a result, if Ty is true, then Eq.(2) must be true, and
if Eq.(2) is true, we know that at least one of the Horn clauses in
Eq.(2) must be true, and thus Tx must be true, meaning that Ty is
a valid triplet. Now the problem of judging if a target triplet Ty is
valid or not becomes answering the question that whether the logic
expression in Eq.(2) is true given the known triplets. The intuition
here is that Ty is true as long as at least one of its known neighbour
connections or their conjunctions can imply T.

However, one problem is that the size of the expression is huge,
which is equal to O(2")—the size of the power set of 7;;, making
it impractical to implement Eq.(2). Fortunately, we can simplify
the expression in Eq.(2) through implication rule and De Morgan’s
Law?, which translates Eq.(2) into following simplified form:

“Tiv-aToV--- VAT, VT

®)
Compare to the O(2") complexity of Expression (2), the com-
plexity of Expression (3) is only O(n). We will use Expression (3) for
our model implementation. In the next section, we will introduce
how to encode triplets into embeddings and then build logic neural
networks to generate ranking scores for relational reasoning.

4 GRAPH COLLABORATIVE REASONING

Our GCR framework views a graph from the edge perspective and
aims to learn the relationship between adjacent edges that are
connected by common nodes. Instead, traditional GNN views a
graph from the node perspective and aims to learn the relation-
ship between nodes that are connected by common edges. In Fig-
ure 1, we use an example to show how a link prediction task on
a heterogeneous graph can be viewed from logical perspective.
In this example, we hope to predict if node v; and vy could be

!In classical logic, p — q is equivalent to =p V q
’De Morgan’s Law, in formal language, is written as ~(p V q) & -p A —q and
S(pAg) © -pV g

Research Paper

Figure 1: An example of link prediction on a heterogeneous
graph. From a logical view, ry(v1,02) to be true could result
from any order of combinations of the neighbor links, e.g.
first-order ry(v1,v4), second-order r1(v1,v4) A ry(02,06) Or even
higher-order r1(v1,04) A ra(v1,03) A ... A r3(vg,05).

connected by relation ry. Intuitively, ry (v1,v2) could be true due
to: 1) any first-order implication, e.g. r1(v1,04) — rx(v1,v2) or
r3(v2, v5) — ry(v1,02) is true, or 2) any second-order implication,
e.g. r1(v1,04) Ara(v2,06) — 1y (v1,02) is true, or even higher-order
implication, e.g. r1(v1,v4) Ar2(v1,03) A...Ar3(v2,05) = rx(v1,02)
is true. With Eq.(3), this problem can be simplified as predicting if
the following expression consisting of all neighbour links is true:

—r1(v1, v4) V-ra (01, 03) Varg (v, v6) V-rs (02, v5) V-re (v, v7) Vry (01, 02)

4)
In the following subsections, we will show the details of our
graph collaborative reasoning framework.

4.1 Node and Link Encoding

We treat each type of relation in the graph as a predicate, e.g., each
of the previously mentioned relations such as capitalOf, locatedIn,
follows, likes is a predicate. We learn each node as a vector embed-
ding, same as traditional graph neural networks. Meanwhile, we
learn each predicate (relation type) as a small neural module. The
predicate serves as a function that converts the two connected
nodes into a latent vector in the reasoning space, e.g., to pro-
cess the link (Alice, likes, Pop), we write it as the predicate form
likes(Alice, Pop), then the node embeddings of Alice and Pop are
fed into the neural module of likes to get the output representation
for this link. More specifically, the encoding process is given as:

®)

where Py (-, -) is the predicate function for relation r € R; ey, e; €
RY are embeddings for head and tail entities; (-;-) is concatenation
operation; ¢(-) is ReLU activation function; W7, W; € R™2d and
bq, b; € R" are network parameters and bias terms. Here e;l ‘ is
the predicate embedding of the triplet (vp,r,v;). One thing,we
need to clarify here is that the order of the head and tail entity
embeddings must be correctly sorted during the implementation,
because we use concatenation operation to combine the head and
tail embeddings, different ordering of head and tail concatenation
will result in different outputs. However, this can be a problem for
undirected graphs where the triplet (h, r,) should have the same
vector representation as (¢, 7, h). In our implementation, we solve
this problem by assigning a unique ID to each vertex in the graph
and sort their ID in ascending order. This will make sure that the
triplet always comes with the smaller ID entity as the head entity
while the bigger ID entity as the tail entity. For directed graphs, we
will not conduct the sorting operation since the ordering is part of
the graph information.

ez,t =Pr(ep, er) = Wi (W7 (ep; ;) +b]) + b))

78

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

N § e

BEm o= mm e

[X X J
B§ e

Figure 2: The logical network structure of the link predic-
tion task given in Figure 1. The network is assembled using
the logical equivalent expression which is converted via De
Morgan’s Law.

4.2 Logical Reasoning Modules
After obtaining all the encoded triplet vectors, we can rewrite the
Expression (3) in the predicate embedding form:

Tjmy

v —e ™) v el (6)

Ting Ving
(—e." T V=-e' PV ... Ve s i

iny i,ny
Here e;’} represents the predicate embedding for the target triplet
Ty = (vi,rx,vj). Since the target triplet is unknown and need to
be predicted, we use ry instead of r; j to make the notation con-

k

. Yin Tjmy
C1se. ei’nk ;

J:mi
known neighbour triplets in the graph that contain either v; or

vj. Our goal is to predict if the above logical expression is true
in a continuous reasoning space. We define a constant vector T,
which is an anchor vector in the reasoning space that represents
true. It is randomly initialized and kept unchanged during model
training. We expect that the final vector representation of the entire
expression is close to this true vector T if the target triplet Ty is
valid. Otherwise, the vector representation of the logical expression
should be far from T.

To achieve this goal, we create neural modules OR(,-) and
NOT(-) to represent the logical operations V and -, where each
module is an MLP with ReLU as activation function. To allow the
neural logical modules to perform logical operations as expected,
we add logical regularizers to the neural modules to constrain their
behavior as defined in [3, 31]. The regularizers are not only added
to the input predicate embeddings but also to the intermediate hid-
den vectors as well as the output vector to guarantee that all the
embeddings are in the same representation and reasoning space.
The logic constraint is represented as L4

With these logical modules, we can then assemble a neural net-
work for Expression (6). To make the explanation easy to follow,
we use a specific example as shown in Figure 2 to explain the net-
work construction process. This reasoning network structure is
corresponding to the heterogeneous graph given in the Figure 1.
Suppose we are given two vertices v1 and vy, our goal is to predict if
they could have a valid connection through relation ry. According
to the steps mentioned before, we need to first find the neighbors
of both v; and vy, in this example are {v3,v4, v5, v6,v7}. Then we
feed these vertex pairs into the corresponding predicate encoders
to get the predicate embeddings based on Eq.(5). By sending these
predicate embeddings into the NOT(-) module, we can calculate

and e are the encoded predicate embeddings for the

Research Paper

the negated embeddings, e.g. ﬂeil 4 After that, we follow the struc-

ture of Eq.(6) to send the target predicate embedding e;"z together
with the negated embeddings into the OR(:, -) module to get the
final vector representation of the entire expression in the reasoning
space. Since OR(-, -) only takes two inputs at one time, we calcu-
late the joint embedding for more than two predicate embeddings
in a recurrent manner. That is, we first send two predicates, e.g.
ﬂe;f , and ﬂe;f3 in Figure 2, into the OR module and get the hidden

"2 which represents the result of —|e;1 WV —\e;ZS. The next

vector e
predicate embedding in the expression and the previous hidden
vector €2 will be sent into the same OR neural module. This
process is recurrently conducted until we get the final vector rep-
resentation of the entire logical expression. However, we need to
guarantee that the order information will not affect the final output
since the logical OR operation need to satisfy the associativity and
commutativity laws. This is done by randomly shuffling the order
of the expression terms in each iteration. The following equations
describe the process shown in Figure 2:

e _ Tk P
ne s = NOT(ei’j),Vl,]

I'x
1,2

E = OR (—|er1 —|er2 .o) (7)
1,4 1,3’

S eyt e

For expressions that have more predicate embeddings in the
expression, we can simply add more recurrent steps and do the
same operation as mentioned above. The final output E is the vector
representation of the whole expression in the form of Eq.(6). The
next step is to evaluate the distance between E and the constant true
vector T. As stated before, this true vector is randomly initialized
and will not be updated during the learning process, as a result, it
can be treated as an anchor vector in the reasoning space. Here we
apply cosine similarity as the measure:

E-T
IENIT]

This cosine similarity measure is the score function and the output
is treated as the ranking score to generate the entity ranking list.

CosineSim(E, T) = 8)

4.3 Learning Algorithm

We use pair-wise learning algorithm [26] to train our model. Specif-
ically, during the training process, for each known triplet in the
training set, we fix the head entity and their corresponding relation
and sample another entity as the tail. We treat expression created
by this fake triplet T, as the negative sample. The same operation
can be done one more time by holding the tail entity unchanged
and replace the head entity. One thing need to mention here is that
the neighbors to be sampled for creating the logic expression are
never changed even when the head or tail entity is replaced, i.e., the
only change in Eq.(3) is to replace Ty with T. The expression for
the valid triplet, known as the positive sample, is evaluated based
on Eq.(8) and we have the score s;, while the score for negative
sample is s7,. The loss function is written as:

Lger =~ Z Ino(a(s} —s3)) 9
TeT,T'¢T
where o(-) is the logistic sigmoid function o(x) = %; a is an

amplification coeflicient, which is set to 10 in our implementation.
We can apply an optimization algorithm to minimize Ly, so as

79

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 1: Statistics of the recommendation datasets.

Dataset #Users #Items #Interaction Density
Beauty 22,363 12,101 198,502 0.073%
Clothing 39,387 23,033 278,677 0.031%

to maximize the distance between positive and negative samples.
By integrating the logical regularizers into the graph collaborative
reasoning network loss, we get the final loss function:

L= Loer + 1 Liogic + 0103 (10)

where /; is the coefficient of the logical regularizers; © represents all
the trainable parameters of the model, including entity embeddings,
predicate encoder parameters and the parameters of the neural log-
ical modules; Ag is the £>-norm regularization weight; We use back
propagation [29] to optimize the model parameters. The pseudo-
code for the entire training algorithm, including neighbor sampling,
is given in Appendix A.

5 EXPERIMENTS

In this section, we evaluate our proposed model on two types of
link prediction tasks—graph link prediction and recommendation.
The reason why we choose these two tasks for evaluation are based
on two considerations: the uncertainty of the target links and the
type of the graph structure.

Knowledge graph is a type of heterogeneous graph that contains
multi-type relations among entities, which makes the link predic-
tion task challenging. It requires the model to predict not only if
two entities will be connected but also determine which type of
relation connects them. The information in knowledge graphs is
usually based on objective facts. That means each link can only be
grounded as either true or false—not anything in between—since
the links represent facts. Recommendation task usually considers a
bipartite graph, which takes user and item as two types of nodes.
The model needs to predict if a user and an item can be potentially
connected so that we can recommend an item to a target user. The
challenge is that the data is human generated which contains un-
certainty and noise, so that it is usually not suitable to assign a
deterministic truth value for a specific pair of nodes.

As we mentioned before, our model can handle the uncertainty
for relational reasoning over multi-relational graphs, we choose
these two tasks to verify the effectiveness of our graph collaborative
reasoning model by answering the following research questions:

e RQ1: What is the performance of GCR in terms of graph link
prediction and recommendation tasks? Does it outperform
state-of-the-art models? (Section 5.4)

e RQ2: If and how does the logic regularizer help to improve
the performance? (Section 5.5)

e RQ3: What is the impact of logical reasoning on few-shot
data? (Section 5.6)

5.1 Datasets

For graph link prediction task, we use a well-known dataset FB15k-
237 [33], which is a subset of FB15k by removing the inverse re-
lations in the training set to avoid data leakage. It contains 14,541
entities and 237 relations. The training dataset contains 272,115

Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 2: Baseline models used for either graph link prediction task or recommendation task.

Baseline TransE DistMult ConvE R-GCN pLogicNet pGAT BPR-MF NCR NGCF
KG Completion v v v v v v X X X
Recommendation v v v X X X v v v

edges while the validation and testing sets contain 17,535 and 20,466
edges, respectively. In the experiment, we use the same training,
validation and testing data splits as described in [33].

For recommendation task, we use a publicly available Amazon
e-commerce dataset [18], which includes the user, item and rating
information. The user-item interaction matrix can be viewed as a
bipartite graph with two types of nodes, i.e. user and item, and a sin-
gle relation, which is the purchase relation in e-commerce scenario.
This is a sparse dataset which makes personalized recommendation
challenging. We take Beauty and Clothing sub-categories for our
experiments to explore both the link prediction performance and
how our model performs in few-shot scenarios. Statistics of the
datasets are shown in Table 1.

5.2 Baselines

We select several representative models for graph link prediction
and recommendation to evaluate the performance of our proposed
method. For graph link prediction, we use translation-based, tensor
factorization-based, neural network-based as well as logic-based
baselines for performance comparison.

o TransE [2]: A classical translation-based knowledge graph
embedding algorithm. The scoring function for each triplet
is given as ||h +r — t||p, where h, 1, t are entity and relation
embeddings and || - ||, is the p-norm of the output vector.

e DistMult [42]: This is a tensor factorization-based knowl-
edge graph embedding algorithm, which is a bilinear diago-
nal model.

e ConveE [5]: This approach uses 2D-convolutional operation
over embeddings to capture the information from the triplets,
which is one of the state-of-the-art models on graph link
prediction.

e R-GCN [30]: This is a graph neural network based method,
which extends Graph Convolutional Network (GCN) [15] to
handle multi-relational link prediction tasks.

e pLogicNet [24]: The Probabilistic Logic Network, which
is a logic-based relational reasoning model. It defines the
joint distribution of all possible triplets trough Markov Logic
Network (MLN) with logic rules, so that the optimization
process can be efficient.

e pGAT [12]: This is a state-of-the-art MLN-based relational
reasoning model, which combines MLN with graph attention
network for link prediction.

For recommendation task, we also use the TransE, DistMult
and ConvE knowledge graph embedding models as baselines since
these models can also handle recommendation tasks. Other than
that, we also use three recommendation models to explore if the
GCR relational reasoning model can outperform those models that
are specifically designed for recommendation, including:

80

e BPR-MF [26]: This is a pair-wise ranking model for rec-
ommendation. We implement the prediction function under
the BPR framework by following [16], which considers user,
item and global bias terms for matrix factorization.

e NCR [3]: This is a state-of-the-art reasoning-based recom-
mendation framework. It utilizes neural logic reasoning to
model recommendation tasks.

e NGCF [40]: This is an extension of GCN for recommen-
dation task. It allows for multi-hop user-item information
aggregation via message passing to enhance the user and
item embeddings for recommendation.

We use Table 2 to show which baseline model can be used for
which link prediction task. For reproducibility, we present the de-
tails of the experimental setup for training and evaluating our model
and baselines in Appendix B.

5.3 Evaluation Protocol

5.3.1 Link Prediction. In the evaluation step, for each triplet,
we first hold the head entity and replace the tail entity with ones
that the head entity is not connected to. Then we do the same
operation to hold the tail entity and replace the head entity. We
call these generated non-existent triplets as negative samples. For
each triplet and its corresponding negative samples, we calculate
their evaluation metrics. The final results are averaged over all the
triplets. We follow existing works [2, 42] and use the filtered setting
for evaluation. We report Mean Reciprocal Rank (MRR) and top-K
Hit rate (Hit@K) evaluation metrics in our results.

5.3.2 Recommendation. In recommendation task, for each user-
item interaction, we only sample items for each user that the user
has never interacted with. Then these negative samples together
with the target triplets constitute a user ranking list. Then we cal-
culate the corresponding ranking score for each user and report the
final scores by averaging over all the users. Here we use Normal-
ized Discounted Cumulative Gain (NDCG@K) and Hit rate (Hit@K)
metrics in our recommendation evaluation.

5.4 Overall Performance of GCR (RQ1)

We report the overall performance for graph link prediction and
recommendation tasks in Table 3.

For the graph link prediction task, from the results, we see that
our GCR model significantly outperforms all the baselines on MRR
and Hit@1. The good performance on MRR and Hit@1 indicates
that our model can generate high-quality predictions by ranking the
correct target at top positions. Although Hit@3 is not better than
pGAT, the performance is still competitive. According to the results,
we observe that logic-based methods can consistently outperform
the other non-logical models. This indicates the effectiveness of
applying logic to graph link prediction tasks.

Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 3: Link prediction performance on three datasets with metrics NDCG (N) and Hit Ratio (HR). We use underline (number)
to show the best result among the baselines, and use bold font to mark the best result of the whole column. We use star (*) to
indicate that the performance is significantly better than all baselines. The significance is at 0.05 level based on paired ¢-test.
The last row shows the relative improvement of our model against the best baseline performance.

FB15k-237 Beauty

Clothing

MRR Hit@1 Hit@3 NDCG@5 NDCG@10

Hit@5 Hit@10 NDCG@5 NDCG@10 Hit@5 Hit@10

TransE 0.326 0.229 0.363 0.0063 0.0086 0.0096 0.0165 0.0025 0.0035 0.0040 0.0069
DistMult 0.241 0.155 0.263 0.0105 0.0139 0.0171 0.0278 0.0036 0.0046 0.0055 0.0086
ConvE 0.325 0.237 0.356 0.0064 0.0084 0.0099 0.0162 0.0030 0.0042 0.0047 0.0083
R-GCN 0.248 0.153 0.258 - - - - - - - -
pLogicNet 0.332 0.237 0.367 - - - - - - - -
pGAT 0.457 0.377 0.494 - - - - - - - -
BPRMF - - - 0.0274 0.0348 0.0428 0.0658 0.0086 0.0109 0.0129 0.0200
NCR - - - 0.0369 0.0453 0.0664 0.0767 0.0109 0.0132 0.0143 0.0246
NGCF - - - 0.0453 0.0576 0.0715 0.1057 0.0133 0.0173 0.0219 0.0331
GCR 0.492* 0.490* 0.493 0.0606* 0.0829* 0.0940" 0.1637* 0.0159* 0.0229* 0.0262* 0.0478*
Improvment 7.66% 29.97% - 33.77% 43.92% 31.47% 54.87% 19.55% 32.37% 19.63% 44.41%
1072 1072 1072
-10.6 T T T
0.5 o =]
o ® S ® =
- a T g T
h0.3 Z
’
0 ! I ! 0.2 6.5 ! ! ! 1 I | | 13
0 107 107 107 107! 0 10° 10* 102 1 0 10 107* 102 1
Logical Regularization Coefficient Logical Regularization Coefficient Logical Regularization Coefficient
(a) FB15k-237 (b) Beauty (c) Clothing

Figure 3: MRR/NDCG @10 (red squared line) and HR@3/HR@10 (blue circled line) on three datasets according to the increment
of the logical regularization coefficient A,.

For the recommendation task, our model consistently outper-

forms all the baselines on all the evaluation metrics. From the
reported results, we have the following observations:

Knowledge graph embedding models have relatively worse per-
formance than those recommendation models on the recommen-
dation task. One reason is that the KG embedding models treat
each triplet independently while recommendation needs to con-
sider users and items from a collaborative learning perspective.
This could limit the KG models to gain a good performance on
recommendation tasks. Another reason is that the recommen-
dation data presents more uncertainty than KG data since the
recommendation data is recorded from user behaviors while the
KG data is mostly fact-based, which is a challenge for the KG
embedding methods.

Among the recommendation baseline models, NGCF outperforms
all other baseline methods. This indicates that it is beneficial
to incorporate neighborhood information over graphs to make
recommendation predictions.

GCR outperforms NCR. This is because NCR only takes user
historical interactions to generate logic expressions. However,
GCR not only considers the items that the user interacted with,
but also considers which other users interacted with these items.
By leveraging the rich information from both user- and item-side,
GCR can have a better recommendation quality than NCR.

81

o GCR consistently outperforms all the baselines. In particular, GCR
improves over the strongest baseline NGCF on both datasets by
at least 19.55% on NDCG@5. For Hit@10, our model can achieve
even 44.41% improvement on the Clothing dataset. We realize
that our model can have higher improvements over baselines
when the dataset is more sparse. The Beauty dataset has a den-
sity 0.073% while the Clothing dataset is 0.031%. This result is
reasonable because NGCF needs to aggregate neighborhood infor-
mation to enhance user and item embedding representations. A
very sparse dataset means that the average interactions over each
user is limited so that the model cannot aggregate enough neigh-
bor information to promote the representation quality. However,
our GCR, by modeling link prediction from logical reasoning per-
spective, can help to improve the recommendation performance
on sparse dataset. We conducted paired t-test and the p-value
< 0.05, which shows that our model has statistical significant
improvements over the strongest baseline.

5.5 Impact of Logical Regularization (RQ2)

In this section, we answer the question that if the logical regulariza-
tion helps the learning process. We conduct experiments by tuning
the logical regularization coefficient A; in [0, 1077,1075,1073, 10_1]
for FB15k-237 and [0,107°,107%,1072, 1] for Beauty and Clothing.
We show how performance changes w.r.t MRR, Hit Rate and NDCG
in Figure 3. We have two major observations from the results:

Research Paper

-10* -10*

” ” -0.25
510 H0.15 g o1
5 =} Jo2 o
s ® = “ 8
5 = 5 =
£ 05 401 & < 05 40.15 &
£ g o
Z o z

o 0.1

0 T T T =—=10.05 Y T T T T
<5 <10 <30 =>=30 <5 <10 <30 =>=30
User Group User Group

—8— GCR =—f&— NGCF —8— GCR =—f— NGCF

(a) Beauty Hit@5 (b) Beauty Hit@10

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

-10.06
15+ 1.5+
§ § N 1
2 o Ho03 g N 0.05
&1 o &1 =1
5] \ ® 5] ®
b = 2 H0.04 =
T
2] T
E o5l o0z E 05| 008
Z . Z 90
0 T T T T 0 T T T T 0.02
<5 <7 <15 =>=15 <5 <7 <15 =>=15
User Group User Group

—8— GCR =8~ NGCF —— GCR =8~ NGCF

(¢) Clothing Hit@5 (d) Clothing Hit@10

Figure 4: Performance comparision between GCR and NGCF on Beauty and Clothing datasets. The histograms represent the
total number of users in each group, the lines indicate the performance trend with the growing number of per user interactions.

o The results show that logical regularization do help to improve
the performance when comparing the results of non-logic model
(A4; = 0) and logic-regularized models (A; # 0). However, how
strong the regularization should be added to the neural network
need to be carefully adjusted, similar to the observations in [3].

e Sparser data needs a relatively smaller logical regularization
coeflicient. For the Beauty and Clothing datasets, which are bi-
partite graphs, their densities are 0.073% and 0.031%, respectively.
For FB15k-237, which is a multi-relational graph, the density is

m X 100% =~ 0.0006%. This is because we not only
need to decide if an entity pair will be connected but also need to
decide the type of relation between them, which is different from
the recommendation bipartite graphs. For the most sparse data
FB15k-237, the best logic regularization weight is 1077, while the
best weight for the most dense dataset among the three is 1072,
The reason for the observation is that there is a trade-off between
the prediction loss and the logical loss. The model needs to learn
useful information from limited data to generate good predictions.
For the sparse FB15k-237 dataset, the model is very sensitive to
large logical regularization weights because the logical loss will
dominate the total loss when training data is insufficient for the
prediction loss. However, for Clothing dataset, which is about
50 times denser than FB15k-237, we see that the model is not
that sensitive to large logical regularization weights. Even with
a higher regularization weight, the model still achieves better
performance than non-logic model that A; = 0.

5.6 Impact of Sparsity Levels (RQ3)

The sparsity issue brought by data incompleteness may limit the
embedding quality of prediction models. When the data is insuf-
ficient, it is difficult for models to capture the relations between
entity pairs, and thus influence the quality of the generated predic-
tions. This issue would especially affect the link prediction models
since they usually relies on collective information for model learn-
ing. In this section, we explore whether logical reasoning models
can help to improve the prediction performance when the data
is sparse. With this consideration, we conduct an experiment by
evaluating the model performance over different data groups that
have different sparsity. For better visualization of the results, we
perform the experiments on the two bipartite graphs.

In particular, we split the users in the testing set into different
groups based on their total number of interactions in the training
data. Take the Beauty dataset as an example, users are divided

82

into four groups, corresponding to the users whose number of
interactions is in [1, 5), [5, 10), [10,30) and [30, o), respectively.
We compare our model with the strong baseline NGCF and report
the results with respect to Hit@5 and Hit@10 in Figure 4. Since
similar trend is also observed on the NDCG metric, we do not plot
the NDCG results to keep the figure clarity.

From the experiments, we see that our GCR model has signifi-
cantly better performance than NGCF on sparse user groups. When
the user has more interactions, the performance of NGCF can be
better than ours. This observation can be explained by the underly-
ing modeling mechanism of NGCG and GCR. NGCF needs to take
the neighborhood information to enrich the node embeddings. For
the users with very few interactions, it would be challenging for
NGCF to capture the user similarities. Although the GCR model also
relies on the neighborhood information, it benefits from two spe-
cial advantages. First, the model can leverage both neighbour node
and neighbour link information, and second, the logic component
helps to model the logical relationship among the limited neigh-
bourhood entities rather than merely relying on the associative
node similarity information for prediction. The good performance
on sparse user groups show that our logical reasoning-based model
helps to improve the recommendation quality on sparse data. This
is an important advantage of our model, since users with fewer
interactions are the majority, as shown in Figure 4.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose to model link prediction as a reasoning
problem over graphs. Specifically, we propose a Graph Collaborative
Reasoning (GCR) approach, which takes the neighborhood link
information to predict the connections in a latent reasoning space.
Experiments on two representative link prediction tasks—graph
link prediction and recommendation—show the effectiveness of the
model, especially for link prediction on sparse data.

We believe enabling the ability of reasoning over graphs is im-
portant for future cognitive intelligent systems. This work is just
one of our first steps towards this goal, and there is still much
room for future improvements. In this paper, we only used the
one-hop neighborhood links, while in the future we will extend
to multi-hop reasoning over graphs based on the GCR framework
to model hierarchical data structure. Besides the knowledge graph
and recommendation tasks considered in this work, graph collab-
orative reasoning may also help other intelligent tasks such as
question answering, molecular graph modeling, entity search and
conversational systems, which we will explore in the future.

Research Paper WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

REFERENCES [24

Meng Qu and Jian Tang. 2019. Probabilistic logic neural networks for reasoning.

[1] Siddhant Arora. 2020. A Survey on Graph Neural Networks for Knowledge Graph Advances in neural information processing systems 32, (2019), 7712_,7722' .
Completion. arXiv preprint arXiv:2007.12374 (2020). [25] Hongyu Ren and Jure Leskovec. 2020. Beta Embeddings for Multi-Hop Logical
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok- Reasoning in Knowledge Graphs. arXiv preprint arXiv:2010.11465 (2020).

[26

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings

of the 25th conference on uncertainty in am{icial intelligence. AUAI Press, 452-461.
Tim Rocktaschel, Sameer Singh, and Sebastian Riedel. 2015. Injecting logical

background knowledge into embeddings for relation extraction. In Proceedings

of the 2015 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies. 1119-1129.

Andrea Rossi, Donatella Firmani, Antonio Matinata, Paolo Merialdo, and Denilson

Barbosa. 2020. Knowledge Graph Embedding for Link Prediction: A Comparative

Analysis. arXiv preprint arXiv:2002.00819 (2020).

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986. Learning

representations by back-propagating errors. nature 323, 6088 (1986), 533-536.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In European Semantic Web Conference. Springer, 593-607.

Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, and Yongfeng

Zhang. 2020. Neural Logic Reasoning. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management. 1365-1374.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. arXiv preprint

arXiv:1902.10197 (2019).

Kristina Toutanova, Dangi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-

hury, and Michael Gamon. 2015. Representing text for joint embedding of text

and knowledge bases. In Proceedings of the 2015 conference on empirical methods

in natural language processing. 1499-1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. International

Conference on Machine Learning (ICML).

[35] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph Convolu-

tional Matrix Completion. (2018).

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-

ference on Learning Representations.

[37] Mengya Wang, Erhu Rong, Hankui Zhuo, and Huiling Zhu. 2018. Embedding
knowledge graphs based on transitivity and asymmetry of rules. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 141-153.

[38] Quan Wang, Bin Wang, and Li Guo. 2015. Knowledge base completion using
embeddings and rules. In Twenty-Fourth International Joint Conference on Artificial
Intelligence.

[39] Shen Wang, Xiaokai Wei, Cicero dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, and S Yu Philip. 2020. H2KGAT: Hierarchical
Hyperbolic Knowledge Graph Attention Network. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). 4952—
4962.

[40] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165-174.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

graph embedding by translating on hyperplanes.. In AAAIL Vol. 14. Citeseer,

1112-1119.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.

Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787-2795.

[3] Hanxiong Chen, Shaoyun Shi, Yungi Li, and Yongfeng Zhang. 2021. Neural
Collaborative Reasoning. In Proceedings of the 30th Web Conference (WWW).

[4] Thomas Demeester, Tim Rocktéschel, and Sebastian Riedel. 2016. Lifted Rule
Injection for Relation Embeddings. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. 1389-1399.

[5] T Dettmers, P Minervini, P Stenetorp, and S Riedel. 2018. Convolutional 2D
knowledge graph embeddings. In 32nd AAAI Conference on Artificial Intelligence,
AAAI 2018, Vol. 32. AAI Publications, 1811-1818.

[6] Boyang Ding, Quan Wang, Bin Wang, and Li Guo. 2018. Improving Knowledge
Graph Embedding Using Simple Constraints. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
110-121.

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In ICML.

Shu Guo, Lin Li, Zhen Hui, Lingshuai Meng, Bingnan Ma, Wei Liu, Lihong Wang,

Haibin Zhai, and Hong Zhang. 2020. Knowledge Graph Embedding Preserving

Soft Logical Regularity. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 425-434.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2016. Jointly embed-

ding knowledge graphs and logical rules. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing. 192—-202.

[10] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2018. Knowledge
graph embedding with iterative guidance from soft rules. AAAI (2018).

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024-1034.

[12] L Vivek Harsha Vardhan, Guo Jia, and Stanley Kok. 2020. Probabilistic Logic

Graph Attention Networks for Reasoning. In Companion Proceedings of the Web

Conference 2020. 669-673.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge

graph embedding via dynamic mapping matrix. In Proceedings of the 53rd annual

meeting of the association for computational linguistics and the 7th international

Jjoint conference on natural language processing (volume 1: Long papers). 687-696.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (ICLR ’17).

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30-37.

[17] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 29.

[18] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR. ACM.

[19] Pasquale Minervini, Luca Costabello, Emir Mufioz, Vit Novacek, and Pierre-Yves
Vandenbussche. 2017. Regularizing knowledge graph embeddings via equivalence
and inversion axioms. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 668-683.

[27

[28

[29

@
=

[31

=

[32

=
0

[33

[34

[36

[13

[42

20] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. 2019. Learn- X . . X
[20] ing l;\ttention—basled Embeddings for Relation Prediction in Knowledge Graphs In Proceedings of the International Conference on Learning Representations (ICLR)
. . L. .) 2015.
?;:Z);‘;fi”ﬁslg{ :};‘;35 7th Annual Meeting of the Association for Computational [43] Shihui Yang, Jidong Tian, Honglun Zhang, Junchi Yan, Hao He, and Yaohui
[21] Tu gDinh N.guyen Dat 'Quoc Nguyen, Dinh Phung, et al. 2018. A Novel Embed- Jin. ZAOP' TransMS: Kn(?wledge Graph Embedding for Complex Relations by
ding Model for Knowledge Base Completion Based on Convolutional Neural [44] i\}\/lfultldzl}rlectlor];ais]e(n;’antéc?“1141'1 I]Cz&l; 1935;.1942‘ Chen. Hai Zhu. Wei Zh
Network. In Proceedings of the 2018 Conference of the North American Chapter Aberréliharsr;imlst;n :: d ;—I)ual‘?lrrllgCh:n géoizo};?;ativeel’ leilrninu,emfl:)le d d;ngs’
of the Association for Computational Linguistics: Human Language Technologies, d rules for k 1 d Jh . : " l; id gb &
Volume 2 (Short Papers). 327-333. and rules for knowledge graph reasoning. In The World Wide Web Conference.
[22] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic 2366-2377.

[45] Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, and Le
Song. 2020. Efficient Probabilistic Logic Reasoning with Graph Neural Networks.
In ICLR.

embeddings of knowledge graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 30.

[23] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way
model for collective learning on multi-relational data. In Icml.

83

Research Paper

A TRAINING ALGORITHM PSEUDO-CODE

Algorithm 1: GCR Training Algorithm

:Graph G(V, R, T); triples
T (h,r,t)Vh,t € V,Vr € R; predicate function
P,,Vr € R; epochs K; neighbor sample function N;
negative sample function S; scoring function Sim;
Graph Collaborative Reasoning network GCR;
anchor vector T; optimization algorithm OPTIM;
model parameters ©; logic regularizer weight A;; £
regularizer weight Ag; amplification coefficient o

Input

1 Initialize node vectors x,, Yo € V;
2 Initialize predicate modules Py, Vr € R;
3 for epoch k < 1to K do

4 L 0

5 e’%‘l — Pr(xp,%¢), VT €T, hrteT;

o | ek ek ek

7 forT € 7 do

8 T « S(T) > sample a fake triplet for T;

9 E — GCR(ek, {e’;N,VTN e N(D)));

10 E’ — GCR(ek,, {e’;N,VTN e N(T)});

11 s; — Sim(E, T), s}, < Sim(E’, T);

12 Lyer < =1In O'(a(s; =s7))s

13 Liogic < 2iri > logic constraints for logical laws;
14 L« ~£+£gcr+/ll'£logic+A®||®||2§

15 end
16 OPTIM(L) » optimize all parameters for round k;

17 end

B EXPERIMENTAL SETTINGS

B.1 Link Prediction

In the training stage, we first need to find the neighbors of the head
and tail entity of the given triplet. Instead of using all the neighbor
nodes to assemble the logical expression, we sample the neighbors
uniformly, by following [11], in each iteration to predict the target
triplet. In our implementation, we sample at most n € {5,10,20}
neighbors for each entity in the given triplet. In other words, for
each target triplet, the total number of neighbor triplets can be up

84

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

to 2n (n from the head entity and n from the tail entity). To train
the model, for each target triplet, we sample 1 negative triplet for
pair-wise learning as mentioned in Eq.(9).

We set all vector embedding size to 64. The number of layers
for predicate encoder networks and logical module networks is set
to 3. The network parameters are initialized with normal distribu-
tion with mean 0 and standard deviation is 0.01. Dropout and ¢,
regularization are adopted to avoid over-fitting. We set the dropout
rate to 0.2 and the weight for # regularizer Ag is selected from
1073 to 1077, The logical regularizer weight 4; is selected in the
range 107! to 1077. We use Adam [14] as the optimization algo-
rithm with learning rate initialized to 0.001 and learning rate decay

is adopted during the training process. Early-stopping is used and
the best model for reporting the results is selected based on the

best performance on the validation set.

B.2 Recommendation

For each user-item interaction in training set, we randomly sample
the neighbors for both user and item nodes to construct the logical
expression. We set the total number of neighbors for each user or
item to 5, i.e. there will be at most 10 neighbor user-item interactions
in the logical expression. We set the embedding size to 64 and the
number of layers for network modules is 2. £, penalty weight Ag is
107> for both datasets. The logical regularization weight A; is 107°.
Learning rate is fixed at 0.001. Other settings are the same as the
previous subsection.

For TransE, DistMult and ConvE, we set the embedding size to
100, while the embedding size and hidden size for BPR-MF and NCR
are 64. £, weight for all baselines are 107°. For ConvE, the number
of channel is set to 32 and the kernel size is 3. For NCR, we use
the open source implementation®, more specifically, we apply the
BPR-ranking loss to train the model and the neural logic modules
have two layers with LeakyReLU as the activation function. Since
NCR only considers nodes on user side, we only sample neighbor
nodes on the user side. For NGCF, we also use the open source
implementation in [40] to run the experiments.

C ACKNOWLEDGEMENT

This work was supported in part by NSF IIS-1910154, IIS-2007907,
1IS-2046457 and CCF-2124155. Any opinions and findings in this
material are those of the authors and do not necessarily reflect
those of the sponsors.

3https://github.com/rutgerswiselab/NCR

https://github.com/rutgerswiselab/NCR

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Graph Collaborative Reasoning
	4.1 Node and Link Encoding
	4.2 Logical Reasoning Modules
	4.3 Learning Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Protocol
	5.4 Overall Performance of GCR (RQ1)
	5.5 Impact of Logical Regularization (RQ2)
	5.6 Impact of Sparsity Levels (RQ3)

	6 Conclusions and Future Work
	References
	A Training Algorithm Pseudo-code
	B Experimental Settings
	B.1 Link Prediction
	B.2 Recommendation

	C Acknowledgement

