
AutoLossGen: Automatic Loss Function Generation for
Recommender Systems

Zelong Li
Rutgers University

New Brunswick, NJ, US
zelong.li@rutgers.edu

Jianchao Ji
Rutgers University

New Brunswick, NJ, US
jianchao.ji@rutgers.edu

Yingqiang Ge
Rutgers University

New Brunswick, NJ, US
yingqiang.ge@rutgers.edu

Yongfeng Zhang
Rutgers University

New Brunswick, NJ, US
yongfeng.zhang@rutgers.edu

ABSTRACT
In recommendation systems, the choice of loss function is critical
since a good loss may significantly improve the model performance.
However, manually designing a good loss is a big challenge due to
the complexity of the problem. A large fraction of previous work
focuses on handcrafted loss functions, which needs significant ex-
pertise and human effort. In this paper, inspired by the recent devel-
opment of automated machine learning, we propose an automatic
loss function generation framework, AutoLossGen, which is able
to generate loss functions directly constructed from basic mathe-
matical operators without prior knowledge on loss structure. More
specifically, we develop a controller model driven by reinforcement
learning to generate loss functions, and develop iterative and alter-
nating optimization schedule to update the parameters of both the
controller model and the recommender model. One challenge for
automatic loss generation in recommender systems is the extreme
sparsity of recommendation datasets, which leads to the sparse
reward problem for loss generation and search. To solve the prob-
lem, we further develop a reward filtering mechanism for efficient
and effective loss generation. Experimental results show that our
framework manages to create tailored loss functions for different
recommendation models and datasets, and the generated loss gives
better recommendation performance than commonly used baseline
losses. Besides, most of the generated losses are transferable, i.e.,
the loss generated based on one model and dataset also works well
for another model or dataset. Source code of the work is available
at https://github.com/rutgerswiselab/AutoLossGen.

CCS CONCEPTS
• Computing methodologies→Machine learning; Reinforce-
ment learning; • Information systems→ Recommender sys-
tems; Information retrieval.

KEYWORDS
Recommender Systems; Loss Learning; Loss Generation; Loss Func-
tion; Automatic Machine Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531941

ACM Reference Format:
Zelong Li, Jianchao Ji, Yingqiang Ge, Yongfeng Zhang. 2022. AutoLossGen:
Automatic Loss Function Generation for Recommender Systems. In Proceed-
ings of the 45th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3477495.3531941

1 INTRODUCTION
In this era of information explosion, recommendation system (RS)
has become an important platform to filter unrelated items and to
provide users with items of personalized interest. Many researches
are dedicated to optimizing RS models in order to promote the
recommendation accuracy. However, a complete RS architecture
consists of two vital parts: the RS model, and the loss function to
optimize the RS model. Compared to the vast amount of research
efforts on developing various kinds of RS models, the research on
learning good loss function is still in its initial stage.

Actually, the choice of loss function may significantly influence
the accuracy of the recommendation model. This is because the
training of a RS model eventually depends on minimizing the loss
function, and the gradient of the loss function supervises the opti-
mization direction of the RS model. As a result, any inconsistency
between the optimization goal and the optimization direction may
hurt the model performance. An intuitive solution to this problem
is directly using the optimization goal (e.g., the final evaluation
metric) as the loss function. This can be effective when the eval-
uation metric is differentiable such as the root mean square error
(RMSE) for some regression tasks. However, many metrics are non-
differentiable and it is difficult to find derivatives such as the Area
under the Curve (AUC) for classification tasks. For these cases, it
is a challenge to design a good surrogate loss function to approxi-
mate the optimization goal, which needs comprehensive analysis
and understanding of the task. Thanks to the meticulous design
of researchers with their expertise and efforts, we have many use-
ful handcrafted loss functions to solve the optimization problems
under non-differentiable metrics [21, 31, 35, 40–43, 49].

Even though handcrafted loss functions have been used in vari-
ous scenarios, it is still considerably beneficial to have methods that
can automatically search and generate good loss functions. This
is mainly for two reasons: 1) automatic loss generation helps to
remove or reduce the manual efforts in loss design, and 2) the best
loss could be different for different RS models and datasets, as a
result, automatic loss generation can help to generate the best loss
tailored to a specific model-dataset combination.

In recent years, we havewitnessed the development of automated
machine learning (AutoML) techniques and especially neural archi-
tecture search (NAS) [24, 46, 51], which can automatically design

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1304

https://github.com/rutgerswiselab/AutoLossGen
https://doi.org/10.1145/3477495.3531941
https://doi.org/10.1145/3477495.3531941

model architectures that are on par with or surpass the manually
designed model architectures. Inspired by the success of AutoML,
we propose an automatic loss function generation (AutoLossGen)
framework that can automatically generate loss functions for model
optimization. AutoLossGen is different from existing loss learn-
ing research [32–34, 38, 39, 52, 55, 58] on two perspectives. First,
AutoLossGen is particularly designed for recommender systems,
which present unique challenges due to the extreme data sparsity
of recommender systems. This leads to the sparse reward prob-
lem in automatic loss generation, and to solve the problem, we
propose a reward filtering mechanism for efficient and effective
loss generation. Second, previous work on loss learning for rec-
ommender systems mostly focuses on automatic loss combination
[58], which adopts several handcrafted base losses and learns the
weight/importance for each loss, and then combines the losses
through weighted sum as the final loss function. Different from
previous work, we do not assume any prior knowledge on the loss
structure, instead, we directly assemble new loss functions based on
very basic mathematical operators, which can help to generate com-
pletely new loss functions. Our work is complementary to rather
than adversary with previous loss combination methods because
our generated new losses can be used as base losses, which can be
combined with other handcrafted losses for better loss combination.

This paper makes the following key contributions:
• We propose the AutoLossGen framework, which can gener-
ate loss functions directly constructed from basic mathemat-
ical operators without prior knowledge on loss structure.
• We develop proxy test and reward filtering mechanisms to
speed up the generation process and mitigate the issues
caused by the sparsity of RS datasets, so that the framework
can produce reliable outcomes efficiently.
• We conduct experiments on two real-world datasets to show
that the loss functions generated from the AutoLossGen
framework outperform handcrafted base losses.
• We verify the transferability of our generated loss functions
by showing that when applying them to other model-dataset
settings, the losses can still achieve satisfactory performance.

In the following part of this paper, we first introduce the related
work in Section 2. In Section 3, we show the high-level architecture
of our AutoLossGen framework. In Section 4, we introduce the
detailed design of the loss generation process along with methods
for better generation efficiency. We provide and analyze the experi-
mental results in Section 5, and finally conclude the work together
with future directions in Section 6.

2 RELATEDWORK
In this section, we first introduce related work on automated ma-
chine learning (AutoML), and thenwe introduce loss learningwhich
is a sub-category of AutoML.

2.1 Automated Machine Learning
Automated Machine Learning (AutoML) has been an important
direction in recent years, which aims for reducing or even removing
the requirement of human intervention in machine learning tasks.

There are three typical applications of AutoML [57]: 1) auto-
mated model selection, such as Auto-sklearn [14] and Auto-WEKA

[29], which automatically selects a good machine learning model
based on a library of models and hyper-parameter setting; 2) au-
tomated feature engineering, such as Data Science Machine [26],
ExploreKit [27] and VEST [8], which generates or selects some
useful features without manual intervention. Feature engineering
is of great importance due to its great influence on model perfor-
mance [44]; 3) neural architecture search (NAS), such as ENAS
[45], DARTS [37], NASH [51], GNAS [24] and AmoebaNet-A [46],
which enables to search an effective neural network for a given
task without manual architecture design. Experiments have shown
that networks generated from NAS are on par with or surpass
human-crafted architectures in different tasks.

Our work is related to NAS among these three applications. A
loss for model training is usually a function that can be described
as terms and operators, while searched architectures from NAS
can be described as computation cells and connections. Thus, we
can leverage the idea of NAS to construct a loss function search
model implemented by reinforcement learning (RL). Although some
research employs evolutionary algorithm [46, 47] and hill-climbing
procedure [51] for neural architecture search, RL has been shown
effective in more research works, including [3, 5, 6, 36, 45, 60], and
thus becomes the dominant method in this field. To the best of
our knowledge, we are the first to develop automated loss function
generation frameworks by RL for recommender systems (RS).

2.2 Loss Learning
Loss function plays an important role in machine learning, as it
provides the direction for model training and significantly affects
the performance [48]. Thus, besides model design, the choice of loss
functions attracts more and more attention for specific tasks. Before
the use of AutoML, loss functions are highly handcrafted and those
handcrafted losses are shown to be effective and transferable under
different scenarios. For regression tasks, mean absolute error (MAE)
and root mean square error (RMSE) [1] are often employed in model
evaluation [9, 54], and besides L1 and L2 losses, there are some
loss variants including Smooth-L1 loss [20], Huber loss [25] and
Charbonnier loss [10] for corresponding metrics. For classification
tasks, since somemetrics are non-differentiable, e.g., the Area under
the ROCCurve (AUC) [7], more attempts on loss functions aremade,
including cross entropy (CE) [49], hinge loss [21] and its variants
[31], softmax loss and its variants [40, 41], Focal loss [35], Savage
loss [43] and tangent loss [42].

With recent development of AutoML, some researchers propose
and study automated loss learning to avoid the significant require-
ment of human efforts and expertise in loss design. Xu et al. [55]
design a framework to automatically select which loss to use and
what parameters to update at each stage of the iterative and alter-
nating optimization schedule. Li et al. [32] and Wang et al. [52]
investigate the softmax loss to create an appropriate search space
for loss learning and apply RL for the best parameter of the loss
function. Liu et al. [39] provide a framework to automatically learn
different weights of loss candidates for given data examples in a dif-
ferentiable way. Li et al. [34] substitute non-differentiable operators
in metrics with parameterized functions to automatically search
surrogate losses. Although these methods aim to learn losses auto-
matically, they still depend on human expertise in the loss search
process to a large extent, because the search process starts from

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1305

Symbol Description

𝑈 The set of users in a recommender system
𝐼 The set of items in a recommender system
𝑢 A user ID in a recommender system
𝑖 An item ID in a recommender system
𝒆𝑢 Embedding vector of the user 𝑢
𝒆𝑖 Embedding vector of the item 𝑖

𝑦𝑢𝑖 or 𝑦 Ground-truth value of the pair (𝑢, 𝑖)
𝑦𝑢𝑖 or 𝑦 Predicted value of the pair (𝑢, 𝑖)

𝑆 Set of controller’s currently maintained variables
𝐿 or 𝐿′ A list storing the generated candidate losses

𝐵 A small batch of training data
𝜃 Parameters of the controller model
𝜔 Parameters of the recommender model
L Loss value
𝑓 A sampled loss function from the controller model

𝜋 (𝑓 , 𝜃) Policy of the controller model
𝜌 Learning rate of the recommender model
Table 1: Summary of the notations in this work.

existing loss functions. Liu et al. [38] and Li et al. [33] search loss
functions composed of primitive mathematical operators for several
computer vision tasks by evolutionary algorithm, which is similar
to our work, but we focus on different fields (recommender sys-
tem) by the RL method and aim to address distinct challenges since
the sparsity of recommender system datasets causes sparse reward
issues if RL is directly applied. In the field of loss learning for RS,
Zhao et al. [58] propose a framework to search for an appropriate
loss for a given data example, which adopts a set of base loss func-
tions and dynamically adjust the weight of these loss functions for
loss combination. Our method is different from and complementary
to their work since we focus on generating new losses instead of
combining existing losses. More specifically, we construct a new
loss function starting from basic variables and operators without
prior knowledge of loss structure or predefined loss functions.

3 OVERALL AUTOLOSSGEN FRAMEWORK
In this section, we show the high-level architecture and the main
components of the AutoLossGen framework. We will introduce the
refined details of the key components in the next section.

3.1 Problem Formalization and Notations
Table 1 introduces the basic notations that will be used in this paper.
In order to show our AutoLossGen framework is able to generate
effective loss functions, we need to work on a concrete recommen-
dation task so that evaluating the generated loss is possible. In the
following part of the paper, we explore the binary like/dislike pre-
diction task for each user-item pair (𝑢, 𝑖) in recommender system.
This can be formulated as either a 0-1 regression problem or a 0-1
classification problem, and we will explore both of them in the
following. To formalize the task, given a pair of user 𝑢 ∈ 𝑼 and
item 𝑖 ∈ 𝑰 , the learned RS model is required to accurately predict
the likeness of user 𝑢 on item 𝑖 as 𝑦𝑢𝑖 , while the ground-truth like-
ness is either 𝑦𝑢𝑖 = 1 (like) or 𝑦𝑢𝑖 = 0 (dislike). Following standard
treatment on this problem, we consider the 5-star rating scale in

0 1 0 ••• 0 0 0 0 1 0 ••• 0

𝑼

𝑰

𝒖𝒔𝒆𝒓 one_hot 𝒊𝒕𝒆𝒎 one_hot

Output

Interaction Layer

User
Embedding

Item
Embedding

Look up

Look up

Figure 1: Structure of the recommender model

this paper, while ratings > 3 are considered as likes (𝑦𝑢𝑖 = 1) and
ratings ≤ 3 are considered as dislikes (𝑦𝑢𝑖 = 0).

Our framework contains two components, an RS model and a
loss generation model (also called as the controller). These two
parts are introduced in the following subsections.

3.2 The Recommender System Model
AutoLossGen framework is quite flexible for different kinds of
recommender models. In this paper, we choose two simple but
representative models as examples to explore, which are Matrix
Factorization (MF) [28] and the Multi-Layer Perceptron (MLP) net-
work [13] for recommendation. The former stands for traditional
shallow matching method for recommendation, while the latter rep-
resents the deep matching model for recommendation. As shown in
Figure 1, the recommender model is composed of three layers: em-
bedding layer, interaction layer and output layer, which are briefly
introduced in the following.

3.2.1 Embedding Layer. In our recommendation task, we ob-
tain the embedding vectors of users and items by their one-hot ID
vectors. To formulate this, after transforming the user and item IDs
to their corresponding one-hot vectors 𝑢 and 𝑖 , the user embedding
𝑒𝑢 and item embedding 𝑒𝑖 are calculated as:

𝑒𝑢 = 𝑀𝑢 · 𝑢, and 𝑒𝑖 = 𝑀𝑖 · 𝑖 (1)

where 𝑀𝑢 ∈ R𝑑×|𝑈 | and 𝑀𝑖 ∈ R𝑑×|𝐼 | are the matrices storing the
embeddings of all users𝑈 and all items 𝐼 , respectively, and they are
learned during the training process. In this way, the sparse and high-
dimensional one-hot vectors are compressed into low-dimensional
embedding vectors, and we can retrieve their representations in
this layer.

3.2.2 Interaction Layer. After the embedding layer, we feed the
user and item representations into the interaction layer to make
predictions. The structure of this layer is the main difference be-
tween MF and MLP. In MF model, we calculate the inner product
of vectors with the bias terms, as shown in Eq.(2), where 𝑏𝑢 , 𝑏𝑖
and 𝑏𝑔 are the user bias term, item bias term and global bias term,
respectively. Together with 𝑒𝑢 and 𝑒𝑖 , they are the parameters of
MF to be learned.

ℎ𝑜𝑢𝑡 = 𝑒𝑢 · 𝑒𝑖 + 𝑏𝑢 + 𝑏𝑖 + 𝑏𝑔 (2)

For MLP model, the structure of the interaction layer is multiple
hidden layers composed of fully-connected layer and activation

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1306

Operator Expression Arity

Add 𝑥 + 𝑦 2
Multi 𝑥 · 𝑦 2
Max max(𝑥,𝑦) 2
Min min(𝑥,𝑦) 2

Neg −𝑥 1
Identical 𝑥 1
Log sign(𝑥) · log(|𝑥 | + 𝜉) 1
Square 𝑥2 1
Reciprocal sign(𝑥)/(|𝑥 | + 𝜉) 1

Table 2: The set of basic mathematical operators. 𝑥 and 𝑦 are
variables for operators. 𝜉 = 10−6 is a small value to avoid
numerical error such as division by zero. Besides, the result
of each operation is clamped in the interval [𝜉, 1/𝜉] to avoid
numerical explosion.

Neg

Neg

1

1

Add

Add

2,4 𝑥2

2,4

5

𝑥2

ො𝑦 𝑦 1 −ො𝑦 𝑦 + −ො𝑦 𝑦 − ො𝑦 2
1 2 3 4 5 6

Variable set 𝑆

Round 1: 𝑦4 Round 2: 𝑦5 Round 3: 𝑦6

Figure 2: Taking the generation of MSE loss as an example
to illustrate the loss generation process of the controller.

layer. The output of the 𝑙-th hidden layer is formulated as:

ℎ𝑙+1 = 𝑅𝑒𝐿𝑈 (𝑊𝑙ℎ𝑙 + 𝑏𝑙) (3)

where𝑊𝑙 is the weight matrix and 𝑏𝑙 is the bias vector, and the
model uses𝑅𝑒𝐿𝑈 as the activation function. The input to the interac-
tion layer of MLP is the concatenation of user and item embeddings,
denoted as ℎ0 = [𝑒𝑢 , 𝑒𝑖]; the output is the result of the last activa-
tion layer, denoted as ℎ𝑜𝑢𝑡 = ℎ𝑛 if there are 𝑛 hidden layers in total.
Besides, to unify the format of the interaction layer, the dimension
of the last hidden output layer is 1, i.e., ℎ𝑜𝑢𝑡 is a real number. More
implementation details are provided in the experiments.

3.2.3 Output Layer. The task of the output layer is to generate
the final prediction 𝑦𝑢𝑖 of the RS model. Therefore, it could be
different based on the range of 𝑦, but we can define the unified
formula as:

𝑦𝑢𝑖 = 𝜎 (ℎ𝑜𝑢𝑡) (4)
where 𝜎 (·) is the activation function. For our task, it is sigmoid
since we limit the final output to a value between 0 and 1.

3.3 The Controller Model
The controller model is the most important part of the AutoLossGen
framework, which is implemented as a recurrent neural network

(RNN). The controller is able to generate various loss functions
starting from basic mathematical operators. Our loss search space
contains all possible functions composed of the operators shown in
Table 2. Most common handcrafted losses are also built from these
operators, such as the cross-entropy (CE) loss and L2 loss. Thus, we
can expect that the search space is large enough for our controller
to generate some effective loss functions.

The role of variables and operators in loss function is similar
to the role of computation cells and edge connections in neural
networks. As a result, the loss generation process of RNN is similar
to neural architecture search (NAS), shown as Figure 2. At first,
there are three initial variables in the variable set 𝑆 : 𝑦, 𝑦 and the
number 1. During each round, RNN samples an operator first, and
then based on the arity of the operator shown in Table 2, samples
the corresponding number of distinct input variables from the set
𝑆 . For example, in Figure 2, RNN samples Negative operator in the
first round, so for the next step, one variable from the variable set
𝑆 is sampled (suppose 𝑦 is sampled), and a new variable (i.e., −𝑦) is
created and added into the variable set 𝑆 ; in the second round, RNN
samples Add operator, and thus two different variables are needed
to execute the operation. The distribution of operator and variable
sampling in each round is determined by the RNN’s hidden output
vector from the previous round, which goes through a soft-max
layer to create a sampling probability vector with the same size as
the current number of candidate operators and candidate variables
in 𝑆 . Besides, to encourage complex functions in fewer rounds, our
framework allows variables to be used multiple times.

Finally, the controller takes the last variable in the variable set as
the loss function. One thing to note here is that there is no signifi-
cant relationship between the complexity and the performance of
loss functions, i.e., the most effective loss function could have either
complex or concise mathematical forms. As a result, we would not
like to apply too many restrictions during the loss sampling process,
and because of this, our framework is not only able to generate
complex loss functions with various forms, but also includes short
expressions in the search space. More precisely, the loss function
search space includes every possible expression based on the pre-
defined operators that utilizes at most 𝑚 intermediate variables,
where 𝑚 is defined as the maximum number of rounds in RNN.
However, the flexibility of sampled loss functions also brings new
problems, including the zero-gradient problem and the duplicated
function problem, and some bad functions may ruin the perfor-
mance if used as loss. We will provide solutions to these problems
in the loss generation process, specifically in Section 4.1.

4 LOSS GENERATION PROCESS
There are three phases when executing our AutoLossGen frame-
work, as shown in Figure 3. In Phase I (loss search), we optimize all
parameters of our framework in iterative and alternating schedule,
and record the loss function we generated in every RL optimization
loop. In Phase II (validation check), we remove those functions that
cannot produce correct gradient direction for simulated (𝑦,𝑦) pairs.
In Phase III (effectiveness test), for each selected loss in Phase II, we
randomly initialize a recommender model and train the model to
convergence using the loss to obtain the final performance for the
loss, and we keep the best performance loss as the finally selected

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1307

Controller (RNN)
sample a loss 𝑓

Phase Ⅰ: Loss Search

𝐿 = 𝑓1, 𝑓2, 𝑓3, …

Phase Ⅱ: Validation Check

𝑓𝑖 ∈ 𝐿
Simulate (ො𝑦, 𝑦) pairs
Calculate grad 𝑓𝑖′(ො𝑦, 𝑦)

ො𝑦 → 𝑦 ො𝑦 ↛ 𝑦

ො𝑦 → 𝑦

𝑟𝑒𝑚𝑜𝑣𝑒

𝑎𝑐𝑐𝑒𝑝𝑡

Updated 𝐿′ = [……]

Phase Ⅲ: Effectiveness Test

Train RS
by 𝑓𝑖Init RS

𝑓𝑖 final
performance𝑓𝑖 ∈ 𝐿′

Proxy
Test

Update copied RS
model, get reward 𝑟

Reward
check

Pass: Add 𝑓 to 𝐹
and copy RS model

Pass: Update RNN with 𝑟,
add 𝑓 to 𝐿, empty 𝐹 and replace RS with copied RS

Fail: Update RNN with
negative reward

Best 𝑓∗

Figure 3: Overview of the loss generation process with three
phases: loss search, validation check, and effectiveness test.

loss function. In the following part of this section, we introduce the
loss generation phases with the proposed techniques in detail.

4.1 Loss Search Phase
4.1.1 Iterative and Alternating Optimization Schedule. As
introduced in Section 3, both parameters in the recommender model
𝜔 and parameters in the RNN controller model 𝜃 need optimization
in the search process. For the RS model, we perform stochastic
gradient descent (SGD) on it to update 𝜔 , while for the controller,
inspired by the success of neural architecture search (NAS) in [45,
59], we apply the REINFORCE [53] algorithm to update 𝜃 , and the
performance increment on the validation dataset is used as the
reward signal for policy gradient. We use the Area under the ROC
Curve (AUC) for classification task and root mean square error
(RMSE) for regression task to evaluate the performance increment
and obtain the reward on validation set since they are prediction-
sensitive, i.e., the metric values will be different with a very small
fluctuation on predictions [1, 7], so that non-trivial reward can be
calculated for better update on the controller.

The search process is a typical bi-level optimization problem [2].
Ideally, after the controller samples a new loss function, we cannot
judge the performance of the loss and retrieve the reward signal
until the RS model is updated to convergence. The optimization
problem can be formulated as:

max
𝜃
E𝑓 ∼𝜋 (𝑓 ,𝜃) [R𝑣𝑎𝑙 (𝑓 , 𝜔∗ (𝑓))]

s.t. 𝜔∗ (𝑓) = argmin
𝜔
L𝑡𝑟𝑎𝑖𝑛 (𝜔, 𝑓)

(5)

where E[R𝑣𝑎𝑙] represents the expected reward on validation sets,
and other symbols can be referred in Table 1. However, due to the
large search space, the nested optimization process is too time-
consuming to be put into practice. Referring to DARTS techniques

Algorithm1: Iterative and alternating optimization schedule
1 Input: Controller, RS model, Reward threshold 𝜂
2 Output: [𝑓1, 𝑓2, 𝑓3 ...]
3 while not converge do
4 𝑖𝑛𝑖𝑡 ← performance of RS on validation data
5 do
6 Controller generates a loss 𝑓 (𝑦,𝑦, 1)
7 while 𝑓 fails on the proxy test;
8 Copy current RS model
9 Update the copied RS by 𝑓 with one epoch of train data

10 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← performance of copied RS on validation data
11 𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 − 𝑖𝑛𝑖𝑡
12 if 𝑟𝑒𝑤𝑎𝑟𝑑 ≥ −𝜂 then
13 Replace RS model by copied RS
14 Record 𝑓 into 𝐿
15 end
16 end
17 return 𝐿

[37], we utilize first-order approximation of the gradient for the RS
model, and leverage the temporary reward to update the controller.
To be specific, we update the RS model with one epoch of training
data by the sampled loss function to approximate the optimization
effect, shown as Eq.(6), and then use the performance increment of
the current RS model on validation datasets as the reward of the
sampled loss to update the controller. The process is called iterative
and alternating optimization, since the updates of the RS model and
the controller is alternating in each iteration. The pseudo code of
our optimization method is described in Algorithm 1. In Section 5,
we experimentally show that the first-order approximation is able
to help our framework generate effective loss functions.

𝜔∗ (𝑓) ≈ 𝜔 − 𝜌∇𝜔L𝑡𝑟𝑎𝑖𝑛 (𝜔, 𝑓) (6)

4.1.2 Proxy Test. In Algorithm 1, we mentioned a proxy test after
the controller samples a loss. As analyzed in Section 3.3, we expect
fewer restrictions on the form of losses when sampling functions,
and as a side effect, zero-gradient functions and gradient-level
duplicated functions may appear during the search process since
the form of sampled functions can be very simple. Zero-gradient
functions are the functions whose gradients over 𝑦 are always zero,
such as (𝑦 + 1), and gradient-level duplicated functions are the
functions that have the same or very close gradient values over 𝑦
with already sampled functions. For instant, if MSE loss (𝑦 − 𝑦)2 is
already sampled from our framework in the current RL optimization
loop, then (𝑦−𝑦)2+𝑦 will be considered as a duplicated loss function
since its gradient over 𝑦 is the same as MSE and thus their effects
are equivalent in gradient-based optimization. To efficiently skip
these losses, at the beginning of the whole loss search process, we
sample a small batch of training data 𝐵, where |𝐵 | is set between 5
to 20 according to the size of datasets and 𝐵 will not be changed.
After the controller samples a loss 𝑓 , we first calculate the gradient
of the RS model on 𝐵, denoted as ∇𝜔 (𝐵, 𝑓), and if:

∥∇𝜔 (𝐵, 𝑓)∥ < 𝛿 (7)

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1308

𝑂 1ො𝑦

⚫

∇𝑓ො𝑦 ො𝑦, 𝑦 ≥ 0𝑓

𝑦 = 0 ←

(a) 𝑦 = 0

𝑂 𝑦 = 1ො𝑦

⚫

∇𝑓ො𝑦 ො𝑦, 𝑦 ≤ 0

𝑓

→

(b) 𝑦 = 1
Figure 4: A toy example to show how a loss function can pass
the validation check.

where 𝛿 is a small value set as 10−4 in implementation, then we
treat 𝑓 as a zero-gradient loss and provide a default negative reward
to update the controller since we do not want zero-gradient losses
in future rounds. Besides, we use a set 𝐹 to temporarily store the
already sampled losses in the current RL optimization loop, and if:

∃𝑓 ′ ∈ 𝐹 , s.t. ∥∇𝜔 (𝐵, 𝑓) − ∇𝜔 (𝐵, 𝑓 ′)∥ < 𝛿 (8)

then we consider 𝑓 as a duplicated loss and directly use the reward
of 𝑓 ′ to update the controller. If 𝑓 is not considered as zero-gradient
or duplicated losses (i.e, if 𝑓 passes the proxy test in Eq.(7) and (8)),
then we add 𝑓 into 𝐹 and calculate its reward over RS model. In this
way, zero-gradient and gradient-level duplicated losses are quickly
skipped after proxy test and thus we do not have to waste time
training the RS model over such losses.

4.1.3 Reward Filtering Mechanism. During the training pro-
cess of the RS model, in most cases, we would have to use more
steps to correct the model if the model is trained along the wrong
direction by a bad loss. As a result, to speed up the loss genera-
tion process and avoid degradation on RS model performance, we
do not directly test a generated loss on the RS model, instead, we
make a copy of the RS model and optimize the copied model over a
generated loss to calculate the reward of the loss. Besides, we only
replace the RS model with the copied RS model if 𝑟𝑒𝑤𝑎𝑟𝑑 ≥ −𝜂,
otherwise, we discard the copied RS model and do not update the
parameter of the RS model. Here, we allow some minor negative
rewards to provide RL with some exploration ability on top of ex-
ploitation so as to avoid getting stuck in local optima. In Section
5.5, we will show through ablation study that without the reward
filter mechanism, the performance of RS model may be unstable
and no effective loss function can be generated during the search.

4.2 Validation Check and Effectiveness Test
We expect our generated losses can update a randomly initialized
RS model from the beginning to convergence throughout the whole
training process. However, the output loss functions from the loss
search phase are only tested to be effective for a certain epoch of
optimizing the RS model. Loss functions should perform well for
various 𝑦 and 𝑦 values in the domain of definition of the values.
Out of such consideration, we design a validation check phase to
filter the loss functions provided by the Loss Search Phase.

More specifically, we sample different values of 𝑦 and 𝑦 from 𝑦 ∈
[0, 1] and 𝑦 ∈ {0, 1} and create a set of synthesized (𝑦,𝑦) pairs. For
each candidate loss function 𝑓 from the previous phase, we calculate
the gradient of 𝑓 over𝑦, denoted as∇𝑓𝑦̂ (𝑦,𝑦). If∇𝑓𝑦̂ (𝑦,𝑦) ≥ 0 when
𝑦 = 0 and ∇𝑓𝑦̂ (𝑦,𝑦) ≤ 0 when 𝑦 = 1 for all of the synthesized pairs,

Dataset #Users #Items #Pos #Neg Density

ML-100K 943 1,682 55,375 44,625 6.30%
Electronics 192,403 63,001 1,356,067 333,121 0.014%

Table 3: Basic statistics of the datasets

then the loss function is considered valid, otherwise, it is removed
from the loss candidate set. As shown in Figure 4, the intuition is
that if the ground truth label is 𝑦 = 0, then we hope the gradient
direction on 𝑦 is positive, and because we use the inverse gradient
direction for loss minimization, so 𝑦 will be optimized towards 0
during optimization. Similar for the case of 𝑦 = 1. Based on this,
we can filter out those losses whose gradients are infeasible for
optimization.

Finally, in Phase III, we leverage each candidate loss to train a
randomly initialized RS model to convergence and use the model
performance on validation set as the effectiveness of the candidate
loss, and we take the most effective loss as the final output loss of
the whole loss learning process. In the experiment part, we will
report the performance of the generated loss on test set.

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness
of generated loss functions and to help better understand the loss
generation process.1

5.1 Experimental Setup
5.1.1 Dataset Description. Our experiments are conducted on
two widely-used benchmark datasets of recommender systems,
namely,ML-100K andAmazon Electronics [15–19, 22, 23, 56], which
are both publicly available. The detailed statistics of the datasets
are shown in Table 3, and we briefly introduce these two datasets
in the following part.
• ML-100K: It is a widely used RS dataset maintained by Grou-
pLens.2 It contains 100,000 ratings from 943 users on 1,682
movies. The rating values are integers ranging from 1 to 5
(both included).
• Amazon Electronics: This is one of the Amazon 5-core e-
commerce datasets3 that records the rating of items given by
users on Amazon spanning from May 1996 to July 2014. We
use the Electronics category with over one million interac-
tions, which is larger and sparser than ML-100K. The rating
values are integers ranging from 1 to 5 (both included).

As mentioned in Section 3.1, we would like to predict the explicit
feedback from users, either as a classification task or as a regression
task. Following standard treatment, ratings ≥ 4 are considered as
positive (like) with label as 1, while ratings ≤ 3 are considered as
negative (dislike) with label as 0. We use positive Leave-One-Out
to create the train-validation-test datasets [11, 12, 50]. Specifically,
for each user, based on timestamp, we put the user’s last positive
interaction, along with following negative interactions, into the
test set, put the second-to-last positive interaction, together with

1Source code available at https://github.com/rutgerswiselab/AutoLossGen.
2https://grouplens.org/datasets/movielens/100k/
3http://jmcauley.ucsd.edu/data/amazon/index.html

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1309

https://github.com/rutgerswiselab/AutoLossGen
https://grouplens.org/datasets/movielens/100k/
http://jmcauley.ucsd.edu/data/amazon/index.html

Model Dataset Task Loss Name Abbr. Loss Formula

MF ML-100K

Classification

Max of Ratio Loss MaxR max
(
(𝑦 + 𝜖)/(𝑦 + 𝜖), (𝑦 + 𝜖)/(𝑦 + 𝜖)

)
MF Electronics Sum of Reciprocal Loss SumR (𝑦 + 𝑦 + 𝜖)/(𝑦 · 𝑦 + 𝜖)
MLP ML-100K

MLP Electronics Log Min Based Loss LogMin log
(
(1 + 𝜖)/(min(𝑦,𝑦) + 𝜖)

)
·
(
𝑦 + 𝑦 +min(𝑦,𝑦)

)
* * Regression Mean Square Error Loss MSE (𝑦 − 𝑦)2

Table 4: Loss generation result, 𝜖 is a tunable parameter representing the smoothing coefficient to prevent numerical errors
such as division by zero. MSE loss is generated in all four model-dataset combinations for the regression task.

remaining following negative interactions, into the validation set,
and put all of the remaining interactions into the training set. If a
user has fewer than 5 interactions, we put all its interactions into
the training set to avoid the cold start problem.

5.1.2 Baseline Losses. We compare with the following baseline
losses in the experiment.
• Mean Square Error (MSE) [1]: MSE is a commonly used
loss for regression tasks, but also shows good performance
for classification. It minimizes the square of difference be-
tween label and prediction values.
• Binary Cross Entropy (BCE) [49]: BCE is a special form of
cross entropy (CE) for binary classification task. It is one of
the most widely used loss functions for the task. Besides, two
well-known losses, logistic loss and Kullback–Leibler (KL)
divergence [30], are different from BCE only in constants for
binary classification task, and thus, we use BCE as a baseline
loss to represent these types of losses.
• Hinge Loss [21]: Hinge loss is a margin-based loss function.
It does not require the prediction to be exactly the same as
the true value. Instead, if 𝑦 and 𝑦 are close enough, the loss
value would be 0, which is reasonable for classification tasks.
• Focal Loss [35]: Focal is recently proposed and revised from
the CE loss. It is designed for models to concentrate on hard
samples and reduce the weight of well-classified samples.

We are aware of some recent loss combination techniques such as
SLF [39] and AutoLoss [58]. However, these models do not generate
new loss functions. Instead, they learn a weighted sum of existing
handcrafted losses as the final loss. However, our work aims to
generate new individual losses rather than weighted combination
of losses, as a result we only compare with individual loss functions.
Actually, our work is complementary to rather than adversary
with these loss combination methods, because our generated new
losses can be used as base losses together with existing handcrafted
losses for loss combination. As a result, our method will positively
contribute to the loss combination methods if our generated loss
functions are better than existing handcrafted loss functions.

5.1.3 Evaluation Metrics. To evaluate the final performance of
the generated loss functions, we use the Area under the ROC Curve
(AUC), F1-score and Accuracy for evaluating the classification task,
and use mean absolute error (MAE) and root mean square error
(RMSE) for evaluating the regression task.

5.1.4 Implementation Details. Our framework and all baselines
are implemented by PyTorch, an open source library. As mentioned

in Section 3.2, we test on two types of RSmodels, a shallowmatching
model based on Matrix Factorization (MF) and a neural matching
model based on Multi-Layer Perceptron (MLP). The implantation
details of the RS models are as follow: (a) Embedding layer : we set
the dimension of embedding vectors as 64 for both users and items.
(b) Interaction layer : we do not have hyper-parameters for MF, and
for the MLP model, we have three fully-connected layers with layer
size 128× 64, 64× 16 and 16× 1. For each layer of MLP, we leverage
batch normalization, dropout (with rate as 0.2) and ReLU function
for activation. (c) Output layer : we use sigmoid function since 𝑦 is
either 0 or 1, and 𝑦 is expected to be in-between 0 and 1.

Besides the RS model, another critical part of the AutoLossGen
framework is the controller model. The controller RNN is imple-
mented by a two-layer LSTM with 32 hidden units on each layer,
and the weights of controller are uniformly initialized between
-0.1 and 0.1. We use logit clipping with the tanh constant of 1.5 to
limit the range of logits so as to control the sampling entropy. This
can help to increase the sampling diversity and avoid premature
convergence [4]. We also add the controller’s sampling entropy
to the reward, weighted by 0.0001, to drive the sampling process
towards a relatively stable status. The largest length of variable
set is fixed to 10, i.e., our search space includes all functions that
utilizes at most 10 intermediate variables including 𝑦,𝑦 and 1.

During the loss generation process, we use iterative and alter-
nating schedule to optimize the controller and RS models. When
training the RS model, we fix the parameters of the controller 𝜃 ,
and use stochastic gradient descent (SGD) optimizer with learning
rate as 0.01 to update the RS model; when training the controller,
we fix the parameters of the RS model 𝜔 , and use Adam optimizer
with learning rate as 0.001. To reduce random bias, we average the
rewards of ten sampled loss functions to update the controller. ℓ2
parameter regularization is adopted in both RS model and controller
model optimization. For the proxy test in the loss search phase, the
batch size |𝐵 | is set as 5 for the smaller ML-100K dataset and 20 for
the larger Electronics dataset. We want the exploration process to
be as thorough as possible, as a result, the termination condition we
set is that the RS model converges or the controller cannot sample
an effective loss to pass the reward filtering mechanism over 24
hours. The running time of the exploration process varies from
about two days to one week with different model-dataset combi-
nations. However, the exploration and loss learning process is like
gold mining—once the loss function is found, we do not have to
re-run the process any more.

For the validation check in the second phase of Figure 3, the
number of simulated pairs is 2, 000. In the effectiveness test phase,

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1310

Model Dataset Metric
Handcrafted Loss Generated Loss

MSE BCE Hinge Focal MaxR SumR LogMin

MF ML-100K
AUC ↑ 0.7808 0.7882 0.7848 0.7930 0.8087∗ 0.8086 0.7981

F1-score ↑ 0.6058 0.6073 0.6133 0.6121 0.6260∗ 0.6245 0.6160
Accuracy ↑ 0.6919 0.6972 0.7239 0.7011 0.7305 0.7645∗ 0.7398

MF Electronics
AUC ↑ 0.6510 0.6515 0.6689 0.6521 0.6697∗ 0.6695 0.6534

F1-score ↑ 0.8843 0.8843 0.8846 0.8843 0.8846 0.8846 0.8844
Accuracy ↑ 0.7927 0.7927 0.7937 0.7927 0.7937 0.7937 0.7927

MLP ML-100K
AUC ↑ 0.7655 0.7725 0.7472 0.7629 0.7747 0.7743 0.7752∗

F1-score ↑ 0.5938 0.5985 0.5865 0.5890 0.6130∗ 0.6053 0.6064
Accuracy ↑ 0.6625 0.6797 0.6717 0.6437 0.7077∗ 0.6830 0.6909

MLP Electronics
AUC ↑ 0.6232 0.6228 0.6242 0.6205 0.6250 0.6404∗ 0.6318

F1-score ↑ 0.8843 0.8843 0.8843 0.8843 0.8844∗ 0.8843 0.8843
Accuracy ↑ 0.7926 0.7926 0.7926 0.7926 0.7928∗ 0.7927 0.7926

Table 5: Final performance on the classification task. ↑means the measure is the higher the better. Bold numbers indicate its
performance is significantly better at 𝒑 < 0.01 than all baseline losses, and * represents the best performance of each row.

Max Ratio Loss

(a) Complete AutoLossGen (b) Without Reward Filtering

Figure 5: The performance of MF model on training and vali-
dation datasets of ML-100K during loss generation process
under the classification task.

we randomly initialize a new RS model and use SGD for model
optimization. There may exist tunable parameters to avoid numeri-
cal errors such as division by zero in the generated loss functions
(e.g., the 𝜖 in Table 4), and we use grid search in [1, 10−1, 10−2,
10−3, 10−4, 10−5, 10−6] on validation set to decide the value of the
parameters. To prevent over-fitting, if the performance of the RS
model on validation set is decreasing in 10 consecutive epochs, or
the best performance on validation set is over 50 epochs before,
then the training process will be early terminated.

5.2 The Generated Loss Functions
In this section, we would like to show the generated loss functions
and the loss generation process of our framework described in Sec-
tion 4 and Figure 3. We run the AutoLossGen framework under four
model-dataset combinations for both the classification task and the
regression task. The best loss function after Phase III under each set-
ting is shown in Table 4, and more losses are provided in Appendix.
The smoothing coefficient 𝜖 is included in each formulation when
a division is calculated, which is to prevent numerical errors such
as division by zero. The generated losses for the classification task
are new losses and we name them MaxR, SumR and LogMin loss,
respectively, while the generated loss for the regression task is the
existing MSE loss for all of the four model-dataset combinations.

We take the generation process of the Max Ratio Loss (MaxR)
as an example. Figure 5a shows the performance of the MF model
on training and validation datasets during the loss search phase
on the classification task. We can see that there is a significant
increase on recommendation performance by using MaxR in that
epoch, implying that MaxR is a good loss candidate to promote
the performance. After the first phase, we confirm that MaxR is an
effective loss based on the validation check in the second phase,
which is further selected as the best loss in the third phase. And
finally, we show that MaxR is indeed an effective loss on test set in
Section 5.3.

Other generated loss functions also show similar improvements
in Phase I and proven effective in Phase II, and finally selected by
Phase III. Note that the generated loss under MF-Electronics setting
is very similar with that under MLP-ML100K setting, with only a
small difference in the constant term. Thus, we merge these two loss
functions as SumR, whose name is due to the sum of the reciprocal
of𝑦 and𝑦. The SumR loss may not be handcrafted by human experts
since if separating the formula to the sum of the reciprocals (i.e.,
1
𝑦̂
+ 1

𝑦), we intuitively may not accept it as a good loss since it may
cause numerical exception. However, after merging the reciprocals
and adding smoothing coefficient 𝜖 , SumR proves to be a simple
and effective loss, as we will show in the following experiment. For
regression task, our AutoLossGen framework generates MSE as the
loss in all of the four experimental settings, which is reasonable
because MSE directly optimizes the target RMSEmetric. This shows
that when the ground-truth loss exists for a task, our framework is
able to recover the ground-truth loss.

5.3 Performance Comparison
We compare the performance of the generated loss functions and
four baseline losses on the test set for the classification task. Results
under different model-dataset and evaluation metrics are shown in
Table 5. We have the following observations from the results.

First and most importantly, the loss function generated in the
corresponding model-dataset performs better on AUC than any

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1311

× 103

Figure 6: The accumulated number of sampled loss functions
is shown in hours when using proxy test or not.

Model Dataset Metric
Handcrafted Loss Generated Loss

BCE Hinge Focal MSE

MF ML-100K RMSE ↓ 0.4540 0.4602 0.4710 0.4480∗
MAE ↓ 0.4386 0.4077 0.4673 0.3548∗

MF Electronics RMSE ↓ 0.4043 0.4075 0.4363 0.3945∗
MAE ↓ 0.3224 0.3501 0.4237 0.3180∗

MLP ML-100K RMSE ↓ 0.4338 0.4643 0.4376 0.4268∗
MAE ↓ 0.3802 0.3642 0.3811 0.3586∗

MLP Electronics RMSE ↓ 0.4005 0.4097 0.4153 0.4000∗
MAE ↓ 0.3105 0.3633 0.3573 0.3100∗

Table 6: Final performance on the regression task. ↓means
the measure is the lower the better. * represents the best
performance for each row.

#Sampled Loss Speed-up

Without proxy test 3,200 1×
With proxy test 93,792 ∼ 30×

Table 7: Ablation study on proxy test. Speed-up shows how
many times of losses are sampled than that w/o proxy test.

of the four baseline losses. The reason why the generated loss
from our AutoLossGen framework outperforms the handcrafted
loss functions is that during the loss generation process, the gen-
erated loss has been tested effective on both real data in Phase I
(loss search) and on synthesized data in Phase II (validation check).
Also, the performance on F1-score and accuracy of our generated
losses is on par or better than that of all baselines. As a result, the
generated losses from AutoLossGen can be more suitable for the
corresponding model-dataset combination.

One interesting observation is that there is no globally best
loss function, not only among the generated loss functions, but
also for the handcrafted loss functions. For example, when we
use MF as the RS model and Electronics as the dataset, hinge loss
outperforms other baseline losses, however, if dataset switches

to ML-100K, Focal loss is the best among the handcrafted losses.
Furthermore, for the combination of MLP and ML-100K, BCE loss
defeats other baseline losses on all three metrics. This observation
indicates the importance of using AutoLossGen framework when
the environment changes so as to find the best loss function tailored
to the environment.

For the regression task, the experimental results are show in Ta-
ble 6. MSE loss is the generated loss in this task and the performance
of MSE loss is better than other losses as expected.

5.4 Loss Transferablity
Even though the transferablity of the generated loss functions is
not the key focus of this paper, we still do not expect the loss from
AutoGenLoss can only be applicable to one model or one dataset.
Table 5 also shows the results when a loss generated from one
model-dataset setting is applied on another model-dataset setting.
We can see that even if applied to other experimental settings,
our generated loss functions still outperform the baseline losses
in most cases. The only exception is the LogMin loss under the
MF-Electronics combination, where LogMin is slightly worse than
the Hinge loss. However, LogMin is still better than all of the other
three baseline losses under this setting. Besides, MaxR and SumR
are both better than Hinge loss under this setting.

As a result, though it is best to apply the AutoLossGen framework
to each specific experimental setting to obtain the most suitable loss
for that setting, but to some extent, our generated loss functions
are transferable to other experiment settings.

5.5 Ablation Study on Efficiency
In this section, we discuss the improvement on efficiency by the
proposed proxy test mechanism in Section 4.1.2.

For proxy test, we compare the number of explored loss func-
tions with and without the proxy test mechanism under the same
amount of time. Here, without proxy test mechanism means that
all of the sampled loss from the controller will directly pass the
proxy test and update the copied RS model. For fair comparison, all
experiments are run on a single NVIDIA Geforce 2080Ti GPU in
24 hours. The operating system is Ubuntu 20.04 LTS. The quanti-
tative results are shown in Table 7 and the accumulated number
of sampled loss functions over time (in hours) is shown in Figure
6. We can see that the loss search efficiency is significantly better
when the proxy test is applied, which means that a lot more loss
functions can be explored within the same amount of time. This
is not surprising because we encourage fewer restrictions on the
form of sampled functions, which can lead to a large number of
zero-gradient and gradient-level duplicated functions during the
search process. Without the proxy test mechanism, all functions
will pass the test and thus a lot of time has to be spent on updating
the copied RS model, which reduces the number of functions that
can be explored in the same amount of time.

5.6 Ablation Study on Reward Filtering
We explore the role of the reward filtering mechanism in Section
4.1.3. We use the MF model under the ML-100K dataset as an exam-
ple. Observations on other model-dataset combinations are similar.
We plot the accuracy of the RS model when the reward filtering

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1312

mechanism is removed during the loss search phase as Figure 5b
for better comparison with Figure 5a. We can see that when the
reward filtering mechanism is removed, the AUC of the RS model
will stay around 0.5, which means that the RS model is unable to
learn useful information for prediction.

Intuitively, the reward filtering mechanism guarantees that the
RS model will only be updated when the sampled loss is relatively
good (i.e., reward ≥ −𝜂). Without the reward filtering mechanism,
the RS model will always be updated by any sampled loss as long
as the loss passes the proxy test, including those low-quality losses
that lead to very negative rewards on the copied RS model. As a
result, the reward filtering mechanism is important to guarantee
the performance of the RS model and to filter out the low-quality
losses from the candidate loss list.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose AutoGenLoss, an automatic loss func-
tion generation framework for recommender systems (RS), which
is implemented by reinforcement learning (RL) and optimized in
iterative and alternating schedules. Experiments show the better
performance and transferablity of the generated loss functions than
commonly used handcrafted loss functions under various settings.

We will further extend our framework on several aspects in the
future. For the controller model, although REINFORCE [53] has
shown its effectiveness, more state-of-the-art RL algorithms may
reduce the redundant sampling for better efficiency. Meanwhile,
faster search makes it possible to include more operators with
larger search space to locate better loss functions. Another line of
potential research is to propose an end-to-end differentiable model
and integrate coefficient search in loss generation, since coefficients
in loss functions may influence the performance. Besides, wemainly
focused on classification and regression loss generation in this work,
while it is promising to generalize the framework for other tasks
such as ranking in the future. Finally, through this work we can
see that the generated loss function formulas have different forms—
some are simple while some are complex; some are effective while
some are non-effective. In the future, it will be very interesting to
build systematic theories and/or methodologies to understand what
are the key factors that make a loss formula effective and how can
such understanding be encoded into the loss learning algorithm to
search for the best loss function more efficiently and effectively.

ACKNOWLEDGEMENT
This work was supported in part by NSF IIS 1910154, 2007907, and
2046457. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the sponsors.

APPENDIX
In the AutoLossGen framework, multiple loss functions may pass
Phase II (validation check) and enter Phase III (effectiveness test). In
Table 4 we have listed the best loss 𝑓 ∗ after Phase III (effectiveness
test) on each dataset-model combination. Here, we use the MF on
ML-100K combination as an example to show all of the generated
loss functions that passed Phase II (i.e., passed the validation check
on more than 90% of (𝑦,𝑦) pairs) and entered Phase III, as shown in

Table 8. An observation from the results is that the generated loss is
either effective (AUC close to known loss functions) or non-effective
at all (AUC around 0.5, i.e., close to random guess). This implies
that the effectiveness (in terms of AUC) of loss functions does not
uniformly span across the effectiveness space, but instead tend to
be binary, i.e., a loss function either works or does not work at all,
and there may not be a loss function that partially works. As long
as an effective loss exists, the AutoLossGen framework is able to
generate the loss in Phase I and eventually find it through Phase II
(validation check) and Phase III (effectivenss test). Our observation
also indicates that there may exist some general knowledge about
what key factors contribute to the effectiveness of loss formula. For
example, the best loss functions (Table 4) tend to exhibit certain
degrees of symmetry. In the future, it will be very interesting to
build systematic theories and/or methodologies to understand what
are the key factors that make a loss formula effective and how can
such knowledge be embedded into the loss learning algorithm or
process as prior knowledge to search for the best loss function more
efficiently and effectively.

REFERENCES
[1] David M Allen. 1971. Mean square error of prediction as a criterion for selecting

variables. Technometrics 13, 3 (1971), 469–475.
[2] G Anandalingam and Terry L Friesz. 1992. Hierarchical optimization: An intro-

duction. Annals of Operations Research 34, 1 (1992), 1–11.
[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=S1c2cvqee

[4] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[5] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. 2017. Neural opti-
mizer search with reinforcement learning. In International Conference on Machine
Learning. PMLR, 459–468.

[6] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. 2018. Path-
level network transformation for efficient architecture search. In International
Conference on Machine Learning. PMLR, 678–687.

[7] Toon Calders and Szymon Jaroszewicz. 2007. Efficient AUC optimization for
classification. In European Conference on Principles of Data Mining and Knowledge
Discovery. Springer, 42–53.

[8] Vitor Cerqueira, Nuno Moniz, and Carlos Soares. 2021. Vest: Automatic feature
engineering for forecasting. Machine Learning (2021), 1–23.

[9] Tianfeng Chai and Roland R Draxler. 2014. Root mean square error (RMSE) or
mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature.
Geoscientific model development 7, 3 (2014), 1247–1250.

[10] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and Michel Barlaud. 1994.
Two deterministic half-quadratic regularization algorithms for computed imaging.
In Proceedings of 1st International Conference on Image Processing, Vol. 2. IEEE,
168–172.

[11] Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng
Zhang. 2022. Graph Collaborative Reasoning. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining. 75–84.

[12] Hanxiong Chen, Shaoyun Shi, Yunqi Li, and Yongfeng Zhang. 2021. Neural
Collaborative Reasoning. In Proceedings of the Web Conference 2021. 1516–1527.

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[14] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated
Machine Learning. In Advances in Neural Information Processing Systems,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/
11d0e6287202fced83f79975ec59a3a6-Paper.pdf

[15] Zuohui Fu, Yikun Xian, Yaxin Zhu, Shuyuan Xu, Zelong Li, Gerard De Melo,
and Yongfeng Zhang. 2021. HOOPS: Human-in-the-Loop Graph Reasoning
for Conversational Recommendation. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1313

https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

Positive Rate Loss Formula AUC (MF on ML-100K)

1.000 max
(
𝑦,𝑦∗max(𝑦, 1

𝑦̂+𝜖)
)

0.4882
1.000 𝑦 + 1

𝑦∗𝑦̂+𝜖 0.4918

1.000 max(𝑦̂,𝑦)
𝑦̂+𝜖 0.4881

1.000 1 + 𝑦 + 1
min(𝑦̂,𝑦)+𝜖 +max

(
1

min(𝑦̂,𝑦)+𝜖 ,max
(
min(𝑦,𝑦), 𝑦 + 1

min(𝑦̂,𝑦)+𝜖
))

0.4863
1.000 𝑦 + 𝑦 + 1

min(𝑦,𝑦̂)2+𝜖 0.4898
1.000 1

min(𝑦,𝑦̂)+𝜖 +max(𝑦,𝑦) +max(𝑦,𝑦)2 0.4877
1.000 1 +min

(
min(1, 𝑦 + 𝑦), 1

𝑦+𝑦̂+𝜖
)

0.7658
1.000 max(𝑦,𝑦) + 1

max(𝑦̂+1,𝑦)+𝜖 0.7703
1.000 𝑦 + 1

min(𝑦̂,𝑦)+𝜖 0.4872

1.000
(
min

(1
𝑦+𝑦̂+𝜖 ,max(𝑦,𝑦)

))2
0.7782

0.996 min
(

1
max(𝑦̂,𝑦+𝑦̂2)+𝜖 ,max

(
𝑦, (𝑦2)2

))
0.7787

0.902 𝑦2 + 1
min(𝑦,𝑦̂)+𝜖 0.4884

Table 8: Loss generation result, changing random seed from 0 to 42. 𝜖 is a tunable parameter representing the smoothing
coefficient to prevent numerical errors such as division by zero. Filter out the loss functions whose positive rate is less than 0.9
(i.e., randomly sample 2000 pairs of (𝑦,𝑦) and fewer than 1800 pairs lead 𝑦 towards 𝑦) in Validation Check.

2415–2421.
[16] Yingqiang Ge, Juntao Tan, Yan Zhu, Yinglong Xia, Jiebo Luo, Shuchang Liu,

Zuohui Fu, Shijie Geng, Zelong Li, and Yongfeng Zhang. 2022. Explainable
Fairness in Recommendation. SIGIR (2022).

[17] Yingqiang Ge, Shuyuan Xu, Shuchang Liu, Zuohui Fu, Fei Sun, and Yongfeng
Zhang. 2020. Learning Personalized Risk Preferences for Recommendation. In
Proceedings of the 43rd SIGIR. 409–418.

[18] Yingqiang Ge, Shuyuan Xu, Shuchang Liu, Shijie Geng, Zuohui Fu, and Yongfeng
Zhang. 2019. Maximizing marginal utility per dollar for economic recommenda-
tion. In The World Wide Web Conference. 2757–2763.

[19] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized
Prompt & Predict Paradigm (P5). arXiv preprint arXiv:2203.13366 (2022).

[20] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[21] Bharath Hariharan, Lihi Zelnik-Manor, SVN Vishwanathan, and Manik Varma.
2010. Large scale max-margin multi-label classification with priors. In ICML.

[22] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[23] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[24] Siyu Huang, Xi Li, Zhi-Qi Cheng, Zhongfei Zhang, and Alexander Hauptmann.
2018. Gnas: A greedy neural architecture search method for multi-attribute
learning. In Proceedings of the 26th ACM international conference on Multimedia.
2049–2057.

[25] Peter J Huber. 1992. Robust estimation of a location parameter. In Breakthroughs
in statistics. Springer, 492–518.

[26] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, 1–10.

[27] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. Explorekit: Automatic
feature generation and selection. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 979–984.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[29] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2019. Auto-WEKA: Automatic model selection and hyperparameter
optimization in WEKA. In Automated Machine Learning. Springer, Cham, 81–95.

[30] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[31] Ching-Pei Lee and Chih-Jen Lin. 2013. A study on L2-loss (squared hinge-loss)
multiclass SVM. Neural computation 25, 5 (2013), 1302–1323.

[32] Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu, Junjie Yan, and Wanli
Ouyang. 2019. Am-lfs: Automl for loss function search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 8410–8419.

[33] Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao Huang, and Xizhou Zhu.
2021. AutoLoss-Zero: Searching Loss Functions from Scratch for Generic Tasks.
arXiv preprint arXiv:2103.14026 (2021).

[34] Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, and Jifeng Dai.
2021. Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation. In
International Conference on Learning Representations. https://openreview.net/
forum?id=MJAqnaC2vO1

[35] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[36] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In Proceedings of the European conference on computer
vision (ECCV). 19–34.

[37] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations.
https://openreview.net/forum?id=S1eYHoC5FX

[38] Peidong Liu, Gengwei Zhang, Bochao Wang, Hang Xu, Xiaodan Liang, Yong
Jiang, and Zhenguo Li. 2021. Loss Function Discovery for Object Detection via
Convergence-Simulation Driven Search. In International Conference on Learning
Representations. https://openreview.net/forum?id=5jzlpHvvRk

[39] Qingliang Liu and Jinmei Lai. 2020. Stochastic Loss Function. Proceedings
of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020), 4884–4891.
https://doi.org/10.1609/aaai.v34i04.5925

[40] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. 2017.
Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 212–220.

[41] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. 2016. Large-Margin
Softmax Loss for Convolutional Neural Networks. In Proceedings of The 33rd
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR,
New York, New York, USA, 507–516. https://proceedings.mlr.press/v48/liud16.
html

[42] Hamed Masnadi-Shirazi, Vijay Mahadevan, and Nuno Vasconcelos. 2010. On the
design of robust classifiers for computer vision. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE, 779–786.

[43] Hamed Masnadi-Shirazi and Nuno Vasconcelos. 2008. On the design of loss
functions for classification: theory, robustness to outliers, and SavageBoost. In
Proceedings of the 21st International Conference on Neural Information Processing
Systems. 1049–1056.

[44] Tom Mitchell. 1997. Machine learning. McGraw hill Burr Ridge.
[45] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient

neural architecture search via parameters sharing. In International Conference on
Machine Learning. PMLR, 4095–4104.

[46] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regularized
Evolution for Image Classifier Architecture Search. Proceedings of the AAAI
Conference on Artificial Intelligence 33, 01 (Jul. 2019), 4780–4789. https://doi.org/
10.1609/aaai.v33i01.33014780

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1314

https://openreview.net/forum?id=MJAqnaC2vO1
https://openreview.net/forum?id=MJAqnaC2vO1
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=5jzlpHvvRk
https://doi.org/10.1609/aaai.v34i04.5925
https://proceedings.mlr.press/v48/liud16.html
https://proceedings.mlr.press/v48/liud16.html
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780

[47] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on Machine Learning. PMLR,
2902–2911.

[48] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and
Alessandro Verri. 2004. Are loss functions all the same? Neural computation 16,
5 (2004), 1063–1076.

[49] Reuven Rubinstein. 1999. The cross-entropy method for combinatorial and
continuous optimization. Methodology and computing in applied probability 1, 2
(1999), 127–190.

[50] Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, and Yongfeng
Zhang. 2020. Neural Logic Reasoning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1365–1374.

[51] Frank Hutter Thomas Elsken, Jan Hendrik Metzen. 2018. Simple and efficient
architecture search for Convolutional Neural Networks. https://openreview.net/
forum?id=SySaJ0xCZ

[52] Xiaobo Wang, Shuo Wang, Cheng Chi, Shifeng Zhang, and Tao Mei. 2020. Loss
function search for face recognition. In International Conference on Machine
Learning. PMLR, 10029–10038.

[53] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[54] Cort J Willmott and Kenji Matsuura. 2005. Advantages of the mean absolute
error (MAE) over the root mean square error (RMSE) in assessing average model

performance. Climate research 30, 1 (2005), 79–82.
[55] Haowen Xu, Hao Zhang, Zhiting Hu, Xiaodan Liang, Ruslan Salakhutdinov, and

Eric Xing. 2019. AutoLoss: Learning Discrete Schedule for Alternate Optimization.
In International Conference on Learning Representations. https://openreview.net/
forum?id=BJgK6iA5KX

[56] Shuyuan Xu, Yingqiang Ge, Yunqi Li, Zuohui Fu, Xu Chen, and Yongfeng Zhang.
2021. Causal collaborative filtering. arXiv preprint arXiv:2102.01868 (2021).

[57] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li,
Wei-Wei Tu, Qiang Yang, and Yang Yu. 2018. Taking human out of learning appli-
cations: A survey on automated machine learning. arXiv preprint arXiv:1810.13306
(2018).

[58] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, and Chong Wang.
2021. AutoLoss: Automated Loss Function Search in Recommendations. In KDD
’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, Singapore, August 14-18, 2021, Feida Zhu, Beng Chin Ooi, and
Chunyan Miao (Eds.). ACM, 3959–3967. https://doi.org/10.1145/3447548.3467208

[59] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=r1Ue8Hcxg

[60] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1315

https://openreview.net/forum?id=SySaJ0xCZ
https://openreview.net/forum?id=SySaJ0xCZ
https://openreview.net/forum?id=BJgK6iA5KX
https://openreview.net/forum?id=BJgK6iA5KX
https://doi.org/10.1145/3447548.3467208
https://openreview.net/forum?id=r1Ue8Hcxg

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Machine Learning
	2.2 Loss Learning

	3 Overall AutoLossGen Framework
	3.1 Problem Formalization and Notations
	3.2 The Recommender System Model
	3.3 The Controller Model

	4 Loss generation process
	4.1 Loss Search Phase
	4.2 Validation Check and Effectiveness Test

	5 Experiments
	5.1 Experimental Setup
	5.2 The Generated Loss Functions
	5.3 Performance Comparison
	5.4 Loss Transferablity
	5.5 Ablation Study on Efficiency
	5.6 Ablation Study on Reward Filtering

	6 Conclusions and Future Work
	References

