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The global moduli theory of symplectic varieties
By Benjamin Bakker at Chicago and Christian Lehn at Chemnitz

Abstract. We develop the global moduli theory of symplectic varieties in the sense of
Beauville. We prove a number of analogs of classical results from the smooth case, including
a global Torelli theorem. In particular, this yields a new proof of Verbitsky’s global Torelli theo-
rem in the smooth case (assuming b2 � 5) which does not use the existence of a hyperkähler
metric or twistor deformations.

1. Introduction

A symplectic variety X (in the sense of Beauville [7]) is a normal variety admitting
a nondegenerate closed holomorphic 2-form � 2 H 0.X reg;�2

X reg/ on its regular part which
extends holomorphically on some resolution of singularities ⇡ W Y �! X . If X is compact,
H 1.X;OX / D 0, and � is unique up to scaling, we say X is a primitive symplectic variety. We
consider these varieties a singular analog of (compact) irreducible symplectic manifolds which
is as general as possible such that a reasonable global moduli theory can still be established.

Irreducible symplectic manifolds are one of the three main building blocks of com-
pact Kähler manifolds with vanishing first Chern class by a theorem of Beauville–Bogomolov
[6, Théorème 1], and their geometry is very rich. In particular, Verbitsky’s global Torelli theo-
rem [88, Theorem 1.17] gives a precise description of the global deformations of a symplectic
manifold in terms of the Hodge structure on its second cohomology.

Recent work of Druel, Greb, Guenancia, Höring, Kebekus and Peternell [24, 25, 34,
35, 39, 42] has shown a version of the above Beauville–Bogomolov decomposition theorem
for singular projective varieties with trivial canonical class, see [42, Theorem 1.5], and the
“holomorphic-symplectic” factors1) that show up are a special case of the primitive sym-
plectic varieties we consider. This level of generality is important because singularities are
often unavoidable in higher-dimensional geometry, for instance in the minimal model pro-
gram. Our results show that the geometry of singular holomorphic-symplectic varieties enjoys
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the same richness as that of smooth ones, and deformation theory – especially deformations to
non-projective varieties – is as essential a part of the picture as in the smooth case. Interest-
ingly, whereas it has proven difficult to produce new deformation types of smooth irreducible
symplectic varieties, in the singular case a number of “new” deformation types – that is, defor-
mation types which do not seemingly arise from holomorphic symplectic manifolds – can be
constructed, see Example 3.2 (2).

Our main result is a global Torelli theorem for primitive symplectic varieties in general
with surjectivity of the period map in the Q-factorial2) terminal case. Before stating the theo-
rem, let us fix some notation. The torsion-free part H 2.X;Z/tf WD H 2.X;Z/=torsion of the
second cohomology of a primitive symplectic varietyX carries a pure weight two Hodge struc-
ture (see Lemma 2.1) which is further endowed with an integral locally trivial deformation-
invariant quadratic form qX called the Beauville–Bogomolov–Fujiki (BBF) form (see Sec-
tion 5.1). Fixing a lattice ƒ and denoting its quadratic form by q, a ƒ-marking of X is an
isomorphism � W .H 2.X;Z/tf; qX /

ä�! .ƒ; q/. The set of isomorphism classes of ƒ-marked
primitive symplectic varieties .X;�/ is given the structure of an analytic space Mƒ by gluing
the bases of locally trivial Kuranishi families (see Definition 6.13). In fact, Mƒ is a not-
necessarily-Hausdorff complex manifold by the unobstructedness of locally trivial deforma-
tions (see Theorem 4.7).

We obtain a period map P W Mƒ �! �ƒ to the period domain�ƒ ⇢ P .ƒC/ by sending
.X;�/ to �.H 2;0.X// and it is a local isomorphism (see Proposition 5.5). There is a Hausdorff
reduction H W Mƒ �! Mƒ, where Mƒ is a Hausdorff complex manifold and H identifies
inseparable points (see Section 8), and we moreover have a factorization

Mƒ

SP
""

Mƒ

H

<<

P

// �ƒ:

We now state our main result:

Theorem 1.1. Assume that rk.ƒ/ � 5. Then for each connected component M of the
ƒ-marked moduli space Mƒ we have:

(1) The monodromy group Mon.M/ ⇢ O.ƒ/ is of finite index.

(2) P W M �!�ƒ is bijective over Mumford–Tate general points and in general the fibers
consist of pairwise bimeromorphic varieties.

(3) SP W M �!�ƒ is an isomorphism onto the complement of countably many maximal Picard
rank periods.

(4) If moreover one point of M corresponds to a primitive symplectic variety with Q-factor-
ial terminal singularities, then the same is true of every point and SP W M �! �ƒ is an
isomorphism.

Theorem 1.1 of course also applies to the smooth case, and yields a new proof of
Verbitsky’s global Torelli theorem. Note that Q-factorial terminal singularities form a natu-

2) There is a subtlety with the definition of Q-factoriality in the analytic category: requiring every divisor to
be Q-Cartier is potentially different from requiring every rank one torsion-free sheaf to have an invertible reflexive
power (see Section 2.12).
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ral class of singularities for symplectic varieties – see Example 3.2 for some examples. First,
such singularities are well suited to MMP techniques (see e.g. Section 7 and Example 3.2 (5)).
Second, symplectic varieties always have canonical singularities, and any projective primitive
symplectic variety X admits a crepant partial resolution with Q-factorial terminal singularities
X 0 (a so-called Q-factorial terminalization) whose deformation theory controls that of X (see
Section 5.19). Note that a Q-factorial terminalK-trivial variety does not admit a further crepant
resolution. A version of Theorem 1.1 has been proven by Menet [67] for a symplectic vari-
eties with quotient singularities; see Example 3.2 (4) for an explicit example of a Q-factorial
terminal symplectic variety which does not have quotient singularities.

In [5, Theorem 1.3] the authors prove Theorem 1.1 (with surjectivity in part (3)) in the
case where M parametrizes primitive symplectic varieties admitting a crepant resolution. The
proof crucially uses that simultaneous crepant resolutions exist in locally trivial families of such
varieties, as then Verbitsky’s global Torelli theorem can be applied to the crepant resolution.
Note that by definition, M consists of varieties of a fixed locally trivial deformation type which
allows one to prove that either all varieties it parametrizes admit a crepant resolution or none.

The main difficulty in the general setting is that while one could try to reduce to the
Q-factorial terminal case by passing to a simultaneous Q-factorial terminalization, even in this
case a new strategy is needed as Verbitsky’s proof (as well as Huybrechts’ proof of the surjec-
tivity of the period map [44, Theorem 8.1]) fundamentally uses the existence of hyperkähler
metrics and twistor deformations. We instead prove Theorem 1.1 directly using global results
on the geometry of the period domain via Ratner theory (as first investigated by Verbitsky
[89, 90]) together with finiteness results coming from algebraic geometry. The surjectivity in
Theorem 1.1 then follows from a generalization to the Q-factorial terminal case of work of
Kollár, Laza, Saccà and Voisin [57] on projective degenerations using MMP techniques.

In fact, there is another problem with the naive generalization of the argument of [5]:
Q-factorial terminalizations are not guaranteed to exist in the analytic setting. In the projective
case the existence of a Q-factorial terminalization is a consequence of deep results of Birkar,
Cascini, Hacon and McKernan [9] on the termination of an appropriate version of the MMP,
but it is not even clear a priori that a symplectic variety can be deformed to a projective one
(although Namikawa [72] has results in this direction). For this reason, we need a projectivity
criterion for symplectic varieties, analogous to Huybrechts’ criterion [44, Theorem 3.11] for
hyperkähler manifolds:

Theorem 1.2. Let X be a primitive symplectic variety, and assume ˛ 2 H 2.X;Q/ is
a .1; 1/-class with qX .˛/ > 0. Then X is projective.

Corollary 1.3. Every primitive symplectic variety is locally trivially deformation equiv-
alent to a projective primitive symplectic variety.

The proof uses a (weak) singular analog of the Demailly–Păun theorem on the numerical
characterization of the Kähler cone.

As an application of Theorem 1.1, we can in fact conclude that terminalizations of
symplectic varieties exist in the non-projective case, up to a bimeromorphism:

Theorem 1.4. Let X be a primitive symplectic variety with b2.X/ � 5. Then there is
a primitive symplectic variety X 0 that is bimeromorphic and locally trivially deformation-
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equivalent to X that admits a Q-factorial terminalization: that is, there exists a (compact)
Q-factorial terminal Kähler variety Y and a crepant map ⇡ W Y �! X 0.

We view Theorem 1.4 as an indication that the deformation theoretic tools we develop
might be used to generalize the MMP for projective symplectic varieties [23, 63] to the Kähler
setting, and this will be pursued in a subsequent paper.

In addition to the global arguments, the proofs of Theorems 1.1, 1.2, and 1.4 require
a careful analysis of the infinitesimal locally trivial deformation theory of not-necessarily-
projective symplectic varieties. There are a number of new complications all critically stem-
ming from the fact that one can no longer bootstrap classical results on the geometry of
hyperkähler manifolds via passing to a crepant resolution. In particular, we must provide:

(i) An analysis of the Hodge theory of rational and symplectic singularities in the non-
projective setting, using recent results of Kebekus and Schnell [54] on extending holo-
morphic forms.

(ii) An adaptation of the results of Kollár, Laza, Saccà and Voisin [57] on limits of pro-
jective families in the singular setting. This requires a singular analog of a theorem
of Verbitsky saying that for a primitive symplectic variety X , the cup product map
SymkH 2.X;Q/ �! H 2k.X;Q/ is injective for 2k  dimX .

(iii) A description of the deformation theory of terminalizations. In particular, this requires
a careful treatment of Q-factoriality in the analytic category, as there are several non-
equivalent generalizations of the corresponding notion in the algebraic category.

Previous work. In [5] the authors extended many of the classical results about compact
irreducible symplectic manifolds to primitive symplectic varieties admitting a crepant resolu-
tion through the study of their locally trivial deformations. Menet [67] has proven a version of
the global Torelli theorem for certain primitive symplectic varieties with orbifold singularities
using twistor deformations. There are many interesting ideas in his work that have influenced
parts of the present paper, especially concerning the projectivity criterion. The local deforma-
tion theory (and in particular the local Torelli theorem) of primitive symplectic varieties has
been treated by many authors, notably by Namikawa [70, 71, 73] and Kirschner [55].

Outline. In Section 2 we review basic notions and results about the Hodge theory of
rational singularities, Kähler spaces, big and nef classes, and Q-factoriality in the analytic
category. Section 3 is devoted to primitive symplectic varieties and their Hodge theory. In
Section 4 we show locally trivial deformations of symplectic varieties are unobstructed. In
Section 5 we recall the BBF form and deduce the local Torelli theorem. We also analyze the
deformation theory of Q-factorial terminalizations and prove some topological results, includ-
ing the existence of Fujiki relations and the analog of a theorem of Verbitsky discussed in (ii)
above. In Section 6 we prove a (weak) singular analog of the Demailly–Păun theorem and apply
it to deduce the projectivity criterion, Theorem 1.2 (see Theorem 6.9). We also prove analogs
of results of Huybrechts [44] and [5] on the inseparability of bimeromorphic symplectic vari-
eties in moduli, including part (2) of Theorem 1.1 (see Theorem 6.14 and Corollary 6.17). In
Section 7 we indicate the necessary changes to [57] to show the existence of limits of projective
families for which the period does not degenerate in the Q-factorial terminal setting. In Sec-
tion 8 we prove parts (1), (3), and (4) of Theorem 1.1 (see Theorem 8.2). In Section 9 we apply
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the deformation theory of terminalizations and the global Torelli theorem to prove Theorem 1.4
(see Theorem 9.1).

For those interested in the proof of the global Torelli theorem in the smooth case, Sec-
tion 8 can be read independently, as the results used from previous sections are standard in the
smooth case3).

Notation and conventions. A resolution of singularities of a variety X is a proper sur-
jective bimeromorphic morphism ⇡ W Y �! X from a nonsingular variety Y . The term variety
will denote an integral separated scheme of finite type over C in the algebraic setting or an
irreducible and reduced separated complex space in the complex analytic setting.

Acknowledgement. We benefited from discussions, remarks, emails of Valery Alex-
eev, Andreas Höring, Daniel Huybrechts, Stefan Kebekus, Manfred Lehn, Thomas Peternell,
Antonio Rapagnetta, Bernd Schober, and Christian Schnell. The first named author would like
to thank Giulia Saccà for conversations related to Section 7. Both authors are grateful to the
referees for a very careful reading and many suggestions that have greatly improved the article.

2. Preliminaries

A complex variety X is said to have rational singularities if it is normal and for any
resolution of singularities ⇡ W Y �! X and any i > 0 one has Ri⇡⇤OY D 0. Recall that the
Fujiki class C consists of all those compact complex varieties which are meromorphically
dominated by a compact Kähler manifold, see [28, Definition 1.1]. This is equivalent to saying
that there is a resolution of singularities by a compact Kähler manifold by [28, Lemma 1.1].

The following lemma is well known; we refer to [5, Lemma 2.1] for a proof.

Lemma 2.1. Let ⇡ W Y �! X be a proper bimeromorphic morphism where X is a com-
plex variety with rational singularities. Then, ⇡⇤ W H 1.X;Z/ �! H 1.Y;Z/ is an isomorphism
and the sequence

0 ��! H 2.X;Z/
⇡

⇤
��! H 2.Y;Z/ ��! H 0.X;R2⇡⇤Z/

is exact. In particular, if X is compact and Y is a compact manifold of Fujiki class C , then
H i .X;Z/ carries a pure Hodge structure for i D 1; 2. Moreover, ⇡⇤H 1;1.X;Z/ is the sub-
space of H 1;1.Y;Z/ of all classes that vanish on the classes of ⇡-exceptional curves.

For a complex space X , recall that �Œpç
X

denotes the sheaf of reflexive p-forms:

Definition 2.2. Let X be a complex space. The module of reflexive p-forms on X is
defined as

�
Œpç

X
WD .�

p

X
/__;

where F _ D HomOX
.F;OX / is the dual of a sheaf of OX -modules.

3) Except for the required results from [57], which can be quoted without modification.
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If X is a reduced normal complex space and j W U ,! X denotes the inclusion of the
regular locus, then �Œpç

X
D j⇤�

p

U
. For a resolution of singularities ⇡ W Y �! X we moreover

have ⇡⇤�
p

Y
D �

Œpç

X
by [54, Corollary 1.7] if in addition X has rational singularities. If finally

X is also of Fujiki class C , then for p C q  2 the graded pieces of the Hodge filtration can be
identified with H q.X;�

Œpç

X
/, see e.g. [5, Corollary 2.3].

2.3. Kähler spaces. The notion of a Kähler complex space, which we now recall, is
due to Grauert [32, Section 13, 3., p. 346]. Recall that a smooth function on a complex space
Z is by definition just a function f W Z �! R such that under a local holomorphic embedding
of Z into an open set U ⇢ C

n, there is a smooth (i.e., C1) function on U (in the usual sense)
that restricts to f on Z.

Definition 2.4. Let Z be a complex space. A Kähler form for Z is given by an open
covering Z D S

i2I Ui and smooth strictly plurisubharmonic functions 'i W Ui �! R such that
on Uij WD Ui \ Uj the function 'i jUij

� 'j jUij
is pluriharmonic, i.e., locally the real part of

a holomorphic function.

There are two important sheaves related to Kähler forms. We denote by PHZ the sheaf
of pluriharmonic functions on Z and by C1

Z
the sheaf of smooth real-valued functions on Z.

Then we have the sequences

(2.1) 0 �! PHZ �! C1
Z

�! C1
Z
=PHZ �! 0

and

(2.2) 0 �! RZ
i�! OZ

R�! PHZ �! 0;

where i stands for multiplication by
p

�1 andR is given by taking the real part. Thus, a Kähler
form on Z gives rise to an element ! 2 H 0.Z; C1

Z
=PHZ/. Successively applying the con-

necting homomorphisms of (2.1) and (2.2), we obtain two classes Œ!ç 2 H 1.Z;PHZ/ and
Œ!ç 2 H 2.Z;R/. The latter is called the Kähler class of !.

Definition 2.5. Let Z be a reduced complex space. A Kähler class on Z is a class
 2 H 2.Z;R/ which is the Kähler class of some Kähler form onZ. The Kähler cone is the set

KZ WD π˛ 2 H 2.Z;R/ j ˛ D Œ!ç for some Kähler form !º:

Remark 2.6. There are several things we wish to observe.

(1) It follows from the definition that for a compact complex space Z the Kähler cone
KZ is open in the image of H 1.Z;PHZ/ �! H 2.Z;R/. Indeed, being strictly plurisub-
harmonic is stable under small perturbations and H 0.Z; C1

Z
=PHZ/ �! H 1.Z;PHZ/ is

surjective as C1
Z

is a fine sheaf.

(2) We can describe the Kähler forms alternatively as follows: these are Kähler forms !
on Zreg in the usual sense such that for every p 2 Z there is an open neighborhood
p 2 U ⇢ Z and a closed embedding U ,! V into a smooth Kähler manifold, where the
restriction of the Kähler form of V to U reg equals !jU reg .

(3) Let us observe that by applying the (real) operator i�N� a Kähler form also gives rise
to a global section of A

1;1

Z
, where A

p;q

Z
denotes the sheaf of smooth .p; q/-forms with
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C-coefficients onZ – which is defined in the same manner as the sheaf of C1-functions.
This is because �N�'i D �N�'j on Uij as �N� annihilates pluriharmonic functions. The
cohomology class of ! in H 2.Z;A✏

Z
/ is the image of the Kähler class under the natural

map induced by the morphism RZ �! A
✏
Z

.

Let us recall the following properties of Kähler spaces. We will use throughout the text,
sometimes without explicit mention.

Proposition 2.7. The following statements hold:

(1) Every subspace of a Kähler space is Kähler.

(2) A smooth complex space is Kähler if and only if it is a Kähler manifold in the usual sense.

(3) Every reduced Kähler space has a resolution of singularities by a Kähler manifold.

Proof. This is a consequence of [86, Section II, 1.3.1 Proposition].

The proposition in particular implies that compact Kähler spaces are of Fujiki class C
so that their singular cohomology groups carry a mixed Hodge structure. For X 2 C , we may
thus define

Hk;k.X;R/ WD Hom.R.�k/;H 2k.X;R//(2.3)

D F kH 2k.X;C/ \H 2k.X;R/:

Note that the weights that show up in the mixed Hodge structure on Hk.X;Z/ are  k – the
argument for class C varieties is the same as in the algebraic case, cf. [78, Theorem 5.39].

Proposition 2.8. Let X be a reduced compact Kähler space. Then KX ⇢ H 1;1.X;R/.

Proof. The claim is easily verified using a construction of Ancona and Gaveau [2] some
properties of which we briefly recall. In this proof, all references are to [2] if not mentioned
otherwise. For a reduced complex space X , in [2, Section II.2] they construct a complex ƒ✏

X

which is a fine resolution of the constant sheaf CX . In fact,ƒ✏
X

is not unique but we may fix one
such complex once and for all. A section of ƒ✏

X
by [2, Section II.2, Definition 2.1] is a collec-

tion of differential forms (of shifted degrees) on an associated hypercovering πX` �! Xº`2L,
where the X` are smooth. In [2, Section II.3] they use this complex to construct Deligne’s
mixed Hodge structure on Hk.X;Z/ if X is Kähler (or more generally of Fujiki class C ). As
discussed in [2, Section II.2.8], the complex A

✏
X

of smooth differential forms onX (introduced
in Remark 2.6 above) is a subcomplex of ƒ✏

X
and this inclusion clearly sends the filtration

F pA
k

X
WD

M

r�p
A
r;k�r
X

to the Hodge filtration. For a Kähler form ! D π'iºi2I 2 H 0.X; C1
X
=PHX /, the claim now

follows, because
p

�1��π'iºi2I 2 F 1A1

X
.X/.

Observe that if in additionX has rational singularities, the claim of the proposition simply
follows from Lemma 2.1 and strictness of the pullback for the Hodge filtration.
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2.9. Big and nef cohomology classes. We briefly recall the definition of �N�-cohomol-
ogy for a complex manifold X . As before, we denote A

k

X
respectively A

p;q

X
the sheaf of dif-

ferential k-forms respectively .p; q/-forms with values in C. Then �N�-cohomology is defined
as

H
p;q�N� .X/ WD ker

�
d W A

p;q

X
.X/ �! A

pCqC1
X

.X/
�

im
�
i�N� W A

p�1;q�1
X

.X/ �! A
p;q

X
.X/

� :

Similarly, we write Hp;p�N� .X;R/ if we take cohomology of R-valued differential forms
(which is different from zero only for p D q). Note that i�N� in the above formula defines a real
operator.

In algebraic geometry, bigness and nefness are important notions for line bundles. In the
complex analytic world, these notions can also be defined for real cohomology classes as we
now recall.

Definition 2.10. Let X be a compact complex manifold. We call a cohomology class
˛ 2 H 1;1�N� .X;R/ nef if for some hermitian form ! on X and for every " > 0 it can be repre-
sented by a smooth .1; 1/-form ⌘" such that ⌘" � �"!. A Kähler current is a closed positive
.1; 1/-current T such that T � ! in the sense of currents. A class ˛ 2 H 1;1�N� .X/ is called big if
it can be represented by a Kähler current.

We refer to [37, Chapter 3, 1.] or [20, Chapter 1] for a general reference on currents and
notions of positivity.

Remark 2.11. On compact manifolds of Fujiki class C (in particular on compact Kähler
manifolds) the natural map from �N�-cohomology to de Rham cohomology is injective and gives
an identification ofHp;q�N� .X/ withHp;q.X/. This follows directly from the ��-lemma, see e.g.
[18, (5.21) and (5.22) Theorem] for manifolds of class C .

2.12. Q-factoriality. Let us spend a moment to discuss the notion of Q-factoriality.
A normal algebraic variety Z is called Q-factorial if for every Weil divisor D on Z there
is m 2 N such that mD is Cartier. In the algebraic category, Q-factoriality is local for the
Zariski topology. Recall from [41, Proposition 2.7] that Weil divisor classes are in bijective
correspondence with isomorphism classes of reflexive sheaves of rank one: to a Weil divisorD
on Z one associates the sheaf OZ.D/ defined by

U 7! OZ.D/.U / WD πf 2 C.Z/ j DjU C div.f jU / � 0º;

which is easily seen to be reflexive. So Q-factoriality can be equivalently characterized using
reflexive sheaves.

Finally, assume thatZ is compact, let ⇡ W Z0 �! Z be a resolution of singularities, and let
E1; : : : ; Em be the prime divisors contained in the exceptional locus Exc.⇡/. By [58, (12.1.6)
Proposition], the variety Z is Q-factorial if and only if

(2.4) im
�
H 2.Z0;Q/�!H 0.Z;R2⇡⇤QZ0/

�
D im

 
mM

iD1
QŒEi ç�!H 0.Z;R2⇡⇤QZ0/

!
:

See also [73, Section 12 (i)] for an argument for the only if -direction. We summarize this
discussion as follows.
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Lemma 2.13. Let Z be a normal algebraic variety over C. Then the following are
equivalent:

(1) Z is Q-factorial.

(2) Every Zariski open subset U ⇢ Z is Q-factorial.

(3) For every reflexive sheafL onZ of rank 1, there is n 2 N such that .L˝n/__ is invertible.

If in addition Z is compact and has rational singularities, the above statements are equivalent
to:

(4) Equality (2.4) holds for some resolution ⇡ W Z0 �! Z.

Proof. For the equivalence of (1) and (3) one only needs that for a Weil divisor D on Z
we have

OZ.nD/ D .OZ.D/˝ : : :˝ OZ.D/„ ƒ‚ …
n-times

/__

which can be obtained by pushforward and the fact that it holds on the regular part.

In the analytic category, the situation is a little more subtle. We have several different
notions which turn out to be non-equivalent, see Proposition 2.15 and Example 9.3.

Definition 2.14. A normal complex analytic varietyZ is called divisorially Q-factorial
if for every Weil divisor D on Z there is m 2 N such that mD is Cartier and it is called
Q-factorial if for every reflexive sheaf L on Z of rank 1, there is n 2 N such that .L˝n/__

is invertible. We say that Z is locally analytically (divisorially) Q-factorial if every open set
U ⇢ X in the Euclidean topology is (divisorially) Q-factorial.

Clearly, local analytic (divisorial) Q-factoriality implies (divisorial) Q-factoriality. The
converse however is not true. The reason is that there are usually many more local divisors than
global divisors, e.g. one cannot obtain a global divisor by taking the closure of a divisor on
a small open subset. There might be no global divisors at all, see e.g. Example 9.3, which is
also the reason why divisorial Q-factoriality is not the right property to ask for and one should
rather work with Q-factoriality (defined in terms of rank one reflexive sheaves).

Proposition 2.15. Let Z be a normal complex analytic variety and consider the follow-
ing statements:

(1) Z is locally analytically Q-factorial.

(2) Z is locally analytically divisorially Q-factorial.

(3) Z is Q-factorial.

(4) Z is divisorially Q-factorial.

Then we have the following implications:

(1) +3

↵◆

(3)

↵◆
(2) +3 (4).
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Moreover, suppose Z is also compact of class C with rational singularities. Then Z is
Q-factorial if and only if for some resolution ⇡ W Z0 �! Z we have

(2.5) im
�
Pic.Z0/Q �! H 0.Z;R2⇡⇤QZ0/

�
D im

 
mM

iD1
QŒEi ç �! H 0.Z;R2⇡⇤QZ0/

!
:

Proof. The implications (1) ) (3) ) (4) and (1) ) (2) ) (4) are immediate.
The last part is a slight adaption of Kollár and Mori [58, (12.1.6) Proposition], replacing

(2.4) with (2.5) which is what is actually used there. Briefly, ifZ is Q-factorial, then for any line
bundle M on Z0, the sheaf L WD .⇡⇤M/__ is reflexive and therefore ⇡⇤..Lk/__/ ä M k.E/

for some divisor E whose support is contained in the exceptional locus. Hence,

Pic.Z0/Q D ⇡⇤ Pic.Z/Q C
X

i

QŒEi ç;

which implies (2.5). Conversely, if (2.5) is satisfied, then for any rank one reflexive sheaf L
onZ we can find a divisorE whose support is contained in the exceptional locus and for which
M WD .⇡⇤L/__.E/ is numerically trivial on fibers. But then by [58, (12.1.4) Proposition],
⇡⇤.M k/ is a line bundle for some k, and therefore by normality .Lk/__ is invertible.

3. Symplectic varieties

For the remainder of this paper, we will use the term (primitive) symplectic variety in the
following sense.

Definition 3.1. Following Beauville [7], a symplectic variety is a pair .X; �/ consisting
of a normal variety X and a closed holomorphic symplectic form � 2 H 0.X reg;�2

X
/ on X reg

such that there is a resolution of singularities ⇡ W Y �! X for which ⇡⇤� extends to a holomor-
phic form on Y . A primitive symplectic variety is a normal compact Kähler variety X such that
H 1.X;OX / D 0 and H 0.X reg;�2

X
/ D C� such that .X; �/ is a symplectic variety.

Greb, Kebekus and Peternell introduced a notion of irreducible holomorphic-symplectic
variety (more restrictive than ours) in [36, Definition 8.16] which serves as one of the three
building blocks in a decomposition theorem (due to Druel, Greb, Guenancia, Höring, Kebekus
and Peternell, see introduction for references). Matsushita [66, Definition 1.6] introduced the
related notion of cohomologically irreducible symplectic varieties. The definition we use here
appeared before in Schwald [84, Definition 1] for projective varieties under the name irre-
ducible symplectic. We chose to work with the above definition because it seems to be the
most general framework that allows for a general moduli and deformation theory similar to the
smooth case. We prefer however the name primitive over irreducible symplectic for the lack of
a decomposition theorem. This fits together with Menet’s usage [67, Definition 3.1].

Example 3.2. (1) If X is a primitive symplectic variety, then so is:
✏ any contraction, that is, X 0 for any proper bimeromorphic f W X �! X 0 onto a normal

Kähler space,
✏ any quotient of X by a finite group of symplectic automorphisms [7, Proposition 2.4],
✏ any small locally trivial deformation (see Corollary 4.11 below).
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(2) By Nikulin [74] any symplectic involution ◆ of a K3 surface S has eight fixed points.
The quotient X of the Hilbert scheme S Œnç of n � 3 points by ◆ has Q-factorial terminal
singularities by [59, Proposition 5.15] and Theorem 3.4 (3) below.

For n D 2, X has
�
8

2

�
D 28 isolated singularities and a K3 surface of transverse A1 sin-

gularties, corresponding to the 28 fixed reduced subschemes and the closure of the locus of
reduced orbits, respectively (see for example [13, Section 16]). It is therefore not terminal.
The Q-factorial terminalization Y is obtained by blowing up the K3 surface. The second Betti
number of X is 15, and so the locally trivial deformation space of X is 13-dimensional while
Y deforms in one dimension higher (see Theorem 4.7 below). A complete projective family of
this deformation type is produced in [14]; see [27] for some other “new” deformation types.

(3) There is a cubic fourfold Z ⇢ P
5 with an order 11 automorphism (see for example

[68]). Its Fano variety of lines F has a symplectic automorphism � with isolated fixed points,
and the quotient X D F=� is a Q-factorial terminal primitive symplectic variety with b2 D 3.
It follows from [67, Theorem 3.17 and Theorem 5.4] that the only deformation of X is the
twistor deformation.

(4) Let S be a projective K3 surface, and v 2 H⇤.S;Z/ an algebraic Mukai vector with
v2 > 0. Then for k � 1, the moduli space X D M.kv/ of stable sheaves of Mukai vector kv
with respect to a generic polarization is a primitive symplectic variety. Moreover, X is always
locally factorial and terminal [51, Theorem A] unless k D 2 and v2 D 2 (in which case X
admits a resolution by an irreducible symplectic manifold – the O’Grady tenfold [76]). The
singularities of M.kv/ can be non-quotient singularities, as the completions of the local rings
are often not (even analytically) Q-factorial – see [51, Remark 6.3]. This is because analytically
locally or étale locally, these examples admit small crepant resolutions (but not globally).

(5) Forthcoming work of Saccà [80] shows using MMP techniques that a (projective)
Lagrangian fibration which extends in codimension 2 admits a compactification as a Q-factorial
terminal symplectic variety. This for example applies to show that if f WX �!B is a Lagrangian
fibration of a smooth (projective) irreducible symplectic variety which is smooth over U ⇢ B ,
then any fibration isogenous to f �1.U / �! U admits such a compactification.

(6) For a possibly singular cubic fourfold Y ⇢ P
5 not containing a plane, it was shown in

[62, Theorem 3.3] that the varietyM1.Y / of lines on Y is a symplectic variety birational to the
second punctual Hilbert scheme of an associated K3 surface. Hence, M1.Y / admits a crepant
resolution by an irreducible symplectic manifold, see [62, Corollary 5.6]. A similar statement is
deduced for the target spaceZ.Y / of the MRC-fibration of the Hilbert scheme compactification
of the space of twisted cubics on Y , see [62, Theorem 1.1, Corollaries 5.5 and 6.2].

Note that even for smooth X the notion of a primitive symplectic variety is a priori more
general than that of an irreducible symplectic manifold. However, we do not know if there
are smooth primitive symplectic varieties which are not irreducible symplectic manifolds. By
Lemma 3.3 below such a variety must have dimension � 6.

Lemma 3.3. Let X be a smooth primitive symplectic variety of dimension  4. Then X
is an irreducible symplectic manifold (in the classical sense).

Proof. For dimX D 2 this is well known, so let us assume dimX D 4.
If X is a smooth primitive symplectic variety in our sense, the Beauville–Bogomolov

decomposition theorem yields that a finite topological cover eX �! X of X splits as a product
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eX ä H ⇥ C ⇥ T , where H is a product of irreducible symplectic manifolds, C a product of
strict Calabi–Yau varieties, and T a complex torus. From the existence of a symplectic form
on eX (by pullback from X ) we deduce that the factor C is trivial.

By assumption, H 1.OX / D 0 and thus H 3.OX / D 0 by Serre duality. Moreover, by the
unicity of the symplectic form we in fact have �.OX / D 3. If there is a torrus factor, then
�.O zX / D 0 contradicting �.O zX / D d�.OX /, where d is the degree of the cover, so the factor
T is trivial. If eX is a product of K3 surfaces, then �.O zX / D 4, which is impossible. Thus, eX
is irreducible symplectic, so that d D 1, and thus X is irreducible symplectic as well.

It is unclear whether the statement of Lemma 3.3 holds in higher dimensions. It is worth-
while noting that there is a singular example of a primitive symplectic variety due to Matsushita
[65], see also [83, Lemma 15] and [84, Example 29], which has the right cohomological invar-
iants but is a torus quotient. Schwald’s account nicely illustrates how the geometry of primitive
symplectic varieties may deviate from the one of irreducible symplectic manifolds.

We collect the following basic results about symplectic varieties which are due to work
of Beauville, Kaledin, and Namikawa; we give precise references in the proof.

Theorem 3.4 (Beauville, Kaledin, and Namikawa). The following statements hold:

(1) A normal variety is symplectic if and only if it has only rational Gorenstein singularities
and its smooth part admits a holomorphic symplectic form. In particular, a symplectic
variety has rational singularities.

(2) Let X be a symplectic variety and consider the stratification X D X0 � X1 � : : : ,
where XiC1 is the singular part of Xi endowed with the reduced structure. Then the
normalization of every irreducible component of Xi is a symplectic variety. In particular,
the singular locus of a symplectic variety has even codimension.

(3) A symplectic variety X has terminal singularities if and only if codimX X sing � 4.

Proof. At least for algebraic varieties, this result is well known. We give a sketch of the
argument and comment on why the arguments hold in the analytic context as well.

(1) The only if direction is proven in [7, Proposition 1.3] and is valid in the analytic
context as well. The converse follows from [54, Corollary 1.7].

(2) The existence of the stratification is [50, Theorem 2.3]. It is not claimed there that
XiC1 D .X

sing
i
/red, however, that is how the stratification is constructed, see [50, Proposi-

tion 3.1]. The decomposition a priori only holds on the formal level by Kaledin’s result,
however by [4, Corollary (1.6)] a formal isomorphism implies the existence of an isomorphism
of analytic germs. We refer to Remark 3.6 for why Kaledin’s results also apply in the analytic
situation.

(3) For algebraic varieties, this statement is [69, Corollary 1]. The proof is a bit involved
so we take the opportunity to use Kebekus–Schnell’s functorial pullback of reflexive differential
forms and Kaledin’s decomposition theorem to write down a simple proof that also works in
the analytic setting. We do not claim originality, the argument expands on an observation by
Namikawa (see [69, footnote on page 1 and Section 11]).

By [50, Theorem 2.3], the codimension of the singular locus is even, and if x 2 X sing

is a general point of an irreducible component of X sing of codimension 2, the germ .X; x/

is isomorphic to the product of a smooth germ and the germ of rational double point. Such
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a product however does not have terminal singularities. If codimX sing � 4, we take a resolu-
tion ⇡ W Y �! X and assume that E ⇢ Y is a divisor with vanishing discrepancy. Then Y is
symplectic at the generic point of E and ⇡.E/ ⇢ X sing. Let us consider a diagram

E 0

⇡
0
✏✏

//

 

77E �
�

// Y

⇡

✏✏

†
'

// X ,

where † is a resolution of ⇡.E/ and E 0 �! E is a resolution. Then by [54, Theorem 14.1] one
can pullback the symplectic form along ' such that ⇡ 0⇤'⇤� D  ⇤⇡⇤� . The pullback  ⇤⇡⇤�
has one-dimensional radical at the general point of E 0 and '⇤� is generically symplectic by
Kaledin’s result. This is a contradiction to dim†  dimX � 4.

As a direct consequence of Theorem 3.4 and Lemma 2.1 we infer:

Corollary 3.5. Let X be a compact symplectic variety. Then the Hodge structure on
H 2.X;Z/tf is pure.

Remark 3.6. Kaledin’s article [50] is formulated for complex algebraic varieties, but
his results are used in Theorem 3.4 for arbitrary symplectic varieties. Let us comment on
why they carry over to the analytic setting. The crucial ingredient from algebraic geometry
in Kaledin’s proofs is the use of functorial mixed Hodge structures on cohomology groups of
complex projective algebraic varieties and there is no such structure on the cohomology of arbi-
trary complex varieties. However, Kaledin only uses it for fibers of resolutions of singularities
which, also in the analytic category, can be chosen projective. Actually, these fibers are always
compact complex varieties of Fujiki class C , which is sufficient.

With this in mind, Kaledin’s proofs work almost literally for analytic varieties. More
precisely, one first shows using mixed Hodge structures that Kaledin’s proofs yield analogs
of [50, Lemma 2.7] and [50, Lemma 2.9] in the analytic setting. These are the key technical
ingredients to prove the stratification and formal product decomposition [50, Theorem 2.3]
as well as [50, Theorem 2.5] which relates the symplectic and Poisson structure. Other than
mixed Hodge theory, Kaledin mainly uses Poisson structures, commutative algebra, or direct
geometric arguments which all make sense also in our setting. Finally, also semi-smallness
(see [50, Lemma 2.11]) is a consequence of geometric properties of the symplectic form
and [50, Lemma 2.9].

4. Deformation theory

Definition 4.1. A deformation of a compact complex space Z is a flat and proper
morphism Z �! S of complex spaces together with a distinguished point 0 2 S and an iso-
morphism of the fiber of Z �! S over 0 with Z. A deformation ⇡ W Z �! S is called locally
trivial at 0 2 S if for every p 2 Z D ⇡�1.0/ there exist open neighborhoods U ⇢ Z of p and
S0 ⇢ S of 0 such that U ä U ⇥ S0 over S0, where U D U \Z. The deformation is called
locally trivial if it is locally trivial at each point of S . We speak of a locally trivial family or
locally trivial morphism ⇡ W Z �! S if we do not specify 0 2 S and the fiber over it.
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For most properties and statements we should rather speak about the morphism of space
germs .Z ; Z/ �! .S; 0/. All deformation theoretic statements have to be interpreted as state-
ments about germs. Considering deformations and locally trivial deformations gives rise to two
deformation functors; in fact, the functor D

lt
Z

of locally trivial deformations of Z is a subfunc-
tor in the functor DZ of all deformations of Z. They have tangent spaces T

D
lt
Z

D H 1.Z; TZ/

and if Z is reduced TDZ
D Ext1.�Z ;OZ/, respectively. Note that H 1.Z; TZ/ is a subset

of Ext1.�Z ;OZ/ by the local-to-global spectral sequence for Ext. We refer to [85, Proposi-
tion 1.2.9] (which actually works for arbitrary schemes) respectively [85, Theorem 2.4.1 (iv)].
Even though Sernesi’s book treats deformations of algebraic schemes, the arguments apply lit-
erally for deformations of complex spaces, mainly because zero-dimensional complex spaces
are nothing else but zero-dimensional C-schemes of finite type.

4.2. Versality and universality. Recall that a deformation .Z ; Z/ �! .S; 0/ is called
versal if for every deformation .Z 0; Z/ �! .S 0; 0/ of Z there is a map ' W .S 0; 0/ �! .S; 0/ of
(germs of) complex spaces such that Z ⇥S S 0 ä Z 0. It is called miniversal if moreover the
differential T';0 W TS 0;0 �! TS;0 is uniquely determined. The deformation is called universal if
furthermore the map ' is unique. Clearly, every universal deformation is miniversal and every
miniversal deformation is versal. The different notions of versality are defined analogously for
other deformation problems such as locally trivial deformations.

4.3. Existence of a miniversal deformation. Recall that miniversal4) deformations
exist by [33, Hauptsatz, p. 140], see also [22, Théorème principal, p. 598]. More precisely,
it is shown in [33] that there exist miniversal deformations Z �! S of a given compact com-
plex space Z which are versal in every point of S . We will frequently write S D Def.Z/. The
family Z �! Def.Z/ is called the Kuranishi family and Def.Z/ is called Kuranishi space.

If Z is a complex space satisfying H 0.Z; TZ/ D 0, then every miniversal deformation
is universal.

4.4. Locally trivial miniversal deformations. Recall from [26, (0.3) Corollary] that
for a miniversal deformation Z �! Def.Z/ of a compact complex spaceZ there exists a closed
complex subspace Deflt.Z/ ⇢ Def.Z/ of the Kuranishi space parametrizing locally trivial
deformations of Z. More precisely, the restriction of the miniversal family to this subspace,
which by abuse of notation we denote also by Z �! Deflt.Z/, is a locally trivial deformation
of Z and is miniversal for locally trivial deformations of Z. When speaking about locally triv-
ial deformations we will usually use the terms versal, miniversal, universal with respect to the
functor of locally trivial deformations.

Lemma 4.5. Let S be a complex space and let f W X �! S be a locally trivial family
whose fiber X above a point 0 2 S is a primitive symplectic variety. Denote by j W U �! X
the inclusion of the regular locus. Then in a neighborhood of 0 2 S we have:

(1) L WD .f ı j /⇤�2U =S is an invertible sheaf and compatible with arbitrary base change.

(2) The following natural map is an isomorphism:

(4.1) TX =S ˝ f ⇤L �! j⇤�U =S :
4) Note that Grauert uses the term complete (resp. versal) for what we call versal (resp. miniversal).

Nowadays, our terminology seems to be more common; some authors use semi-universal instead of miniversal.
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Proof. By local triviality, the sheaves j⇤�
p

U =S , j⇤TU =S , �X =S , TX =S are all flat
over S and compatible with arbitrary base change. As push forward is compatible with flat base
change, invertibility of L can be tested on the completion. By the theorem on formal functions
we may reduce (1) to the case where S is the spectrum of an artinian local C-algebra of finite
type. Then by the primitivity assumption onX and [5, Lemma 2.4], the sheafL is invertible and
compatible with arbitrary base change in a neighborhood of 0. As every section ofL determines
a morphism TU =S �! �U =S , we obtain a canonical morphism j⇤TU =S ˝ f ⇤L �! j⇤�U =S

and (4.1) is just the composition with TX =S �! j⇤TU =S tensored with the pullback of L.
It then follows that (4.1) is an isomorphism in a neighborhood of 0 because it is over the
special fiber.

Lemma 4.6. Let X be a primitive symplectic variety. Then H 0.X; TX / D 0 and every
miniversal deformation of X is universal.

Proof. Let ⇡ W Y �! X be a resolution of singularities by a Kähler manifold and denote
by j W U ,! X the inclusion of the regular part. Then we have TX ä ⇡⇤�Y by Lemma 4.5
and [54, Corollary 1.8]. Consequently,

H 0.X; TX / D H 0.Y;�Y / ä H 1;0.Y /

by the Dolbeault isomorphism and the complex conjugate of the latter is

H 0;1.Y / ä H 1.Y;OY / D H 1.X;OX /

again by Dolbeault and by rationality of singularities. We conclude the proof with the obser-
vation that H 1.X;OX / D 0 by definition of a primitive symplectic variety.

The proof of the following result is similar to the proof of [5, Theorem 4.1]. For lack of
a crepant resolution, some minor changes are necessary which is why we include a proof.

Theorem 4.7. Let X be a primitive symplectic variety. Then the space Deflt.X/ of
locally trivial deformations of X is smooth of dimension h1;1.X/.

Proof. Smoothness is deduced using Kawamata–Ran’s T 1-lifting principle [52,53,79],
see also [38, Section 114], [61], [60, VI.3.6] for more details. We have to show the following.
Let X �! S be a locally trivial deformation of X , where S D SpecR for some Artinian local
C-algebra R with residue field C, let S 0 ⇢ S be a closed subscheme, and let

X 0 WD X ⇥S S 0 �! S 0

be the induced deformation. Then we need to prove that the canonical morphism

H 1.TX =S / �! H 1.TX 0=S 0/

is surjective.
Let j W U ,! X the inclusion of the regular part. By Lemma 4.5, it suffices to show that

H 1.j⇤�U =S / �! H 1.j 0
⇤�U 0=S 0/ is surjective where j W U 0 D U ⇥S S 0 �! X 0 is the regular

part of X 0 �! S 0. However, by [5, Lemma 2.4] theR-moduleH 1.j⇤�U =S / is locally free and
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compatible with arbitrary base change. In other words,

H 1.j⇤�U 0=S 0/ D H 1.j⇤�U =S /˝R R
0;

where S 0 D SpecR0, and the map is clearly surjective. Thus, it follows from the T 1-lifting
criterion that the space Deflt.X/ is smooth.

Recall that the tangent space to Deflt.X/ at the origin is H 1.TX / ä H 1.j⇤�U /, which
by [5, Corollary 2.3] has dimension h1;1.X/. By the smoothness assertion we proved before
the dimension of the tangent space is the dimension of Deflt.X/.

As an application, we deduce the existence of a simultaneous resolution.

Definition 4.8. Let X �! S be a flat morphism between complex spaces with reduced
and connected fibers. A simultaneous resolution of X �! S is a proper bimeromorphic S -mor-
phism ⇡ W Y �! X such that Y �! S is smooth. A simultaneous resolution is called strong if
moreover ⇡ is an isomorphism over the complement of the singular locus of X �! S .

It follows from the definition that for every s 2 S the fiber Ys �! Xs is a resolution of
singularities. It is well known that simultaneous resolutions do not always exist. For example,
let f W X �! S be a family of elliptic curves, where X is smooth and S is a smooth curve.
Suppose that there is a point 0 2 S such that f is smooth over S n π0º and X0 D f �1.0/
is a reduced nodal rational curve. If there were a simultaneous resolution ⇡ W Y �! X , the
exceptional set of ⇡ would be a divisor E ⇢ Y . Then ⇡.E/ ⇢ X would be a finite set which
contradicts smoothness of Y �! S because this map would have some reducible fibers.

Lemma 4.9. Let X �! S be a locally trivial deformation of a reduced compact com-
plex space X over a reduced complex space S and let U �! S be the regular part of X �! S .
Then there exists a simultaneous resolution ⇡ W Y �! X of X which is obtained by succes-
sive blowing ups along centers which are smooth over S . Moreover, ⇡ can be chosen to be an
isomorphism over U .

Proof. By [8], resolution of singularities works algorithmically, see also [92]. Given
a global embedding X ⇢ M into a smooth spaceM , Bierstone and Milman define an invariant
◆ WD inve

X
W M �! Ä with values in an ordered set in [8, Theorem 1.14 and Remark 1.16] such

that the locus where ◆ is maximal is smooth and Zariski closed. As explained in [8, proof
of Theorem 1.6, p. 285], successively blowing up the maximal locus of ◆ gives an algorithmic
resolution. The invariant ◆ a priori depends on the embeddingX ⇢ M . However, it is explained
in [8, 13.] that it is in fact independent of the local embedding. It only depends on the local
ring at the point and on the history of the blow up (which is how they obtain resolution results
without the hypothesis of X being embedded).

Therefore, we may apply the same argument in the relative setting for locally trivial
deformations. Given a point p 2 X mapping to s 2 S , we choose neighborhoods V of p in
X and S0 of s in S and a trivialization ' W V

ä�! V ⇥ S0, where V D V \ Xs . The maximal
locus of the Bierstone–Milman invariant ◆ defines a smooth closed subset C ⇢ V sing of the
singular locus V sing ⇢ V . By local triviality, the singular locus V

sing of V �! S0 is identified
under ' with V sing ⇥ S0. Thanks to the above mentioned independence of ◆, the closed subsets
C ⇥ S0 glue to give a center C ⇢ X for a blow up and C is smooth over S . Moreover, the
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blow up of X in C is by construction again locally trivial over S , hence we can repeat the
process and obtain the sought-for resolution ⇡ W Y �! X .

Remark 4.10. As the morphism ⇡ W Y �! X from the preceding lemma is obtained
by successive blow ups in centers which are smooth over S , every such blow up family is
locally trivial over S and moreover, also the morphism ⇡ is itself locally trivial. More pre-
cisely, for every open sets V ⇢ X and S0 ⇢ S admitting a trivialization ' W V

ä�! V ⇥ S0
where V is the intersection of V with some fiber over a point of S0, there is a trivialization
� W ⇡�1.V/ �! ⇡�1.V / ⇥ S0 such that the diagram

⇡�1.V/

✏✏

// ⇡�1.V / ⇥ S0

✏✏

V // V ⇥ S0
commutes (and similarly for any intermediate step of the resolution procedure).

Corollary 4.11. Every small locally trivial deformation of a primitive symplectic vari-
ety X is a primitive symplectic variety. In particular, the locally trivial Kuranishi family of
a primitive symplectic variety is universal (for locally trivial deformations) for all of its fibers.

Proof. Let f W X �! S be a small locally trivial deformation of X D f �1.0/, 0 2 S .
First note thatX has canonical, hence rational singularities by Theorem 3.4, so by [71, Proposi-
tion 5], nearby fibers remain Kähler. We choose a simultaneous resolution ⇡ W Y �! X over S ,
denote by j W U �! X the inclusion of the regular locus, and consider the canonical morphism
f⇤⇡⇤�2Y =S �! .f ı j /⇤�2U =S . Both sheaves are locally free and compatible with arbitrary
base change, the former by the argument of [17, Théorème 5.5] – see e.g. [5, Lemma 2.4] for
the necessary changes in the analytic category – the latter by Lemma 4.5. As X is a primitive
symplectic variety, both sheaves are invertible and the above morphism is an isomorphism at
the point corresponding to X , hence in a small neighborhood. We thus find a relative holomor-
phic 2-form ! on U whose pullback extends to a holomorphic 2-form on Y . As the restriction
!0 to the fiber X D X0 is nondegenerate, the same is true for the restriction !s to Xs for
s 2 S close to 0. Hence, the nearby fibers Xs are symplectic varieties whose symplectic form
is unique up to scalars. By semi-continuity, H 1.Xs;OXs / D 0 for all s in a neighborhood
of 0 2 S , and so the first claim follows. The last claim follows directly from Lemma 4.6 and
openness of versality, see [33, Hauptsatz, p 140].

4.12. Deformations of line bundles. Let X be a primitive symplectic variety and L
a line bundle on it. We will frequently consider deformations of the pair .X;L/. For this purpose
one considers the morphism d log W O

⇥
X

�! �X , f 7! df

f
and the induced first Chern class

morphism
c1 W H 1.X;O⇥

X
/ �! H 1.X;�X / �! H 1.X;�

Œ1ç

X
/

which takes values in the cohomology of reflexive differentials. Recall that

H 1.X;�
Œ1ç

X
/ ä H 1;1.X/

by [5, Corollary 2.3].



18 Bakker and Lehn, The global moduli theory of symplectic varieties

Lemma 4.13. Let L be a nontrivial line bundle on X . Then the canonical projec-
tion Deflt.X;L/ �! Deflt.X/ is a closed immersion and identifies Deflt.X;L/ with a smooth
hypersurface whose tangent space is equal to

ker
⇣
H 1.X; TX /

[ c1.L/�����! H 2.X;OX /
⌘
;

where the map is given by contraction and cup product.

Proof. We have a canonical map

H 1.X;�
Œ1ç

X
/ D Ext1

X
.OX ;�

Œ1ç

X
/ �! Ext1

X
.TX ;OX /

given by sending an extension to its dual (observe that we have Ext1
X
.OX ;OX / D 0). Therefore,

c1.L/ 2 H 1.X;�
Œ1ç

X
/ gives rise to an extension

0 �! OX �! EL �! TX �! 0

and the sheaf EL is shown to control the deformation theory of the pair .X;L/ in the sense that
H 1.X;EL/ is the tangent space to the functor D.X;L/ of deformations of the pair .X;L/ and
H 2.X;EL/ is an obstruction space, see e.g. [85, Theorem 3.3.11]. The proof there is written
for nonsingular projective varieties only, however, the argument is the same for locally trivial
deformations of compact complex spaces. The rest of the proof is exactly as in [44, 1.14].

5. The Beauville–Bogomolov–Fujiki form and local Torelli

In this section, we develop the theory of the Beauville–Bogomolov–Fujiki (BBF) form
for primitive symplectic varieties. Thanks to previous works by several authors (see Sec-
tion 5.1) such a form exists and was known to share many properties with its counterpart in
the smooth case. After a brief summary of these results with no claim for originality, the first
fundamentally new result is the local Torelli theorem for locally trivial deformations, see Propo-
sition 5.5, which was established for Q-factorial terminal varieties by Namikawa [71, Theo-
rem 8]. With this at hand, we prove many advanced features of the BBF form that are known in
the smooth case: the higher degree Fujiki relations in Proposition 5.15, a Riemann–Roch-type
formula in Corollary 5.16, and the non-existence of subvarieties of odd dimension on a general
deformation in Corollary 5.18.

The material developed in this section is essential in the proof of the projectivity criterion
in Section 6.

5.1. The Beauville–Bogomolov–Fujiki form. LetX be a primitive symplectic variety.
Due to the work of Namikawa [71], Kirschner [55], Matsushita [66], and Schwald [84] there
is a nondegenerate quadratic form qX W H 2.X;R/ �! R whose associated bilinear form has
signature .3; b2.X/ � 3/. As for irreducible symplectic manifolds, we will refer to qX as the
Beauville–Bogomolov–Fujiki (BBF) form, see Definition 5.4. We will use it to establish a local
Torelli theorem in Proposition 5.5 and we will see in Proposition 5.15 that it satisfies analogous
Fujiki relations as it does for irreducible symplectic manifolds.
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We will first recall the following definition, see [55, Definition 3.2.7] and also [84, Defi-
nition 20].

Definition 5.2. LetX be a compact complex variety of Fujiki class C and dimension 2n
with rational singularities let � 2 H 2;0.X/ be the cohomology class of a holomorphic 2-form
on X reg (recall from Lemma 2.1 that the Hodge structure on H 2.X;Z/ is pure). We denote byR
X

W H 4n.X;Z/ �! Z the cap product with the fundamental class. Then one defines a quadratic
form qX;� W H 2.X;C/ �! C via

(5.1) qX;� .˛/ WD n

2

Z

X

.� N�/n�1˛2 C .1 � n/
Z

X

�n N�n�1˛
Z

X

�n�1 N�n˛:

If X is a primitive symplectic variety, one can also define a form qY;� on a resolution
of singularities ⇡ W Y �! X by the analog of formula (5.1), where � is replaced by the exten-
sion of the symplectic form to Y and qX;� is the restriction to H 2.X;Q/ ⇢ H 2.Y;Q/. This
is Namikawa’s approach, see [71], and both are equivalent by [84, Corollary 22]. Note that
Schwald assumes X to be projective but this is in fact not used in the argument.

The following result is already contained in the work of Namikawa [71], Matsushita
[65], Kirschner [55], Schwald [84]. Let us emphasize that the projectivity hypothesis which
is sometimes made is in fact not necessary. Denote by bi .X/ WD dimQH

i .X;Q/, i 2 N0 the
i -th Betti number.

Lemma 5.3. Let X be as in Definition 5.2. Then the quadratic form

qX;� W H 2.X;R/˝H 2.X;R/ �! R.�2/
is a morphism of R-Hodge structures. IfX is a primitive symplectic variety, then qX;� is nonde-
generate and has signature .3; b2.X/�3/. Furthermore, if � is chosen such that

R
X
.� N�/n D 1,

then qX;� does not depend on � .

Proof. It is immediate from (5.1) that qX;� is defined over R so that the statements of
the lemma make sense. The first statement is easily verified. The statement about the signature
(and hence also nondegeneracy) is [84, Theorem 2]. The statement about independence of qX;�
for normalized � is [84, Lemma 24].

Definition 5.4. Let X be a primitive symplectic variety of dimension 2n and let
� 2 H 2;0.X/ be the cohomology class of a holomorphic symplectic 2-form on X reg satis-
fying

R
X
.� N�/n D 1. Then the Beauville–Bogomolov–Fujiki (BBF) form is the quadratic form

qX WD qX;� , up to scaling.

It is not hard now to deduce a local Torelli theorem for locally trivial deformations. Pre-
liminary versions have been established by Namikawa [70], Kirschner [55, Theorem 3.4.12],
Matsushita [66], and the authors [5].

Proposition 5.5 (Local Torelli theorem). LetX be a primitive symplectic variety, let qX
be its BBF form, and let

�.X/ WD πŒ�ç 2 P .H 2.X;C// j qX .�/ D 0; qX .�; N�/ > 0º
be the period domain for X inside P .H 2.X;C//. If f W X �! Deflt.X/ denotes the universal



20 Bakker and Lehn, The global moduli theory of symplectic varieties

locally trivial deformation of X and Xt WD f �1.t/, then the local period map

(5.2) } W Deflt.X/ �! �.X/; t 7! H 2;0.Xt /:

is a local isomorphism.

Proof. Let us denote by j W U �! X the inclusion of the regular locus. By Lemma 4.5,
the sheaf L WD .f ı j /⇤�2U =S is invertible and compatible with arbitrary base change. From
this and [5, Corollary 2.3] we deduce that the subbundle L ⇢ H 2.X;C/˝ ODeflt

.X/
defines

the period map Deflt.X/ �! P .H 2.X;C// which therefore is holomorphic. We will argue as
in [6, Théorème 5] to prove that it takes values in�.X/. The statement is local, so it suffices to
show that qX .�t / D 0, where �t is a section of f⇤�2X =S

evaluated at t 2 S for t sufficiently
close to the origin. This is done in the same way as in the first paragraph of the proof of
[6, Théorème 5 (b)]. Let j W U ,! X denote the inclusion of the regular part. It is well known
that the differential of } at zero can be described as the map

H 1.X; TX / �! Hom.H 0.X; j⇤�2U /;H
1.X; j⇤�1U //

given by cup product and contraction. This is clearly an isomorphism as H 0.X; j⇤�2U / is
spanned by the symplectic form. Therefore, the map (5.2) is an isomorphism in a neighborhood
of zero.

Remark 5.6. Namikawa assumes Q-factorial terminal singularities for his local Torelli
theorem [71, Theorem 8], and in this case all deformations are locally trivial. Proposition 5.5
shows that in fact local triviality (and not the kind of singularities) is the essential ingredient.

The local Torelli theorem can be exploited just as for irreducible symplectic manifolds.
We start with the integrality of the quadratic form.

Lemma 5.7. The BBF form qX is up to a multiple a nondegenerate quadratic form
H 2.X;Z/ �! Z. Moreover, it is invariant under locally trivial deformations.

Proof. The second statement is a consequence of the first, so we are left to prove inte-
grality. This is done as in [6, Théorème 5 (a)]: we deduce from the local Torelli Theorem 5.5 the
following formula. For every � 2 H 2.X;C/ we denote v.�/ WD

R
X
�2n, where 2n D dimX .

Note that for a locally trivial deformation f W X �! S of X , if � is a section of R2f⇤C,
then v.�/ is locally constant as it can be computed on a simultaneous resolution. For every
˛ 2 H 2.X;C/ we have

(5.3) v.�/2qX .˛/ D qX .�/

✓
.2n � 1/v.�/

Z

X

�2n�2˛2 � .2n � 2/
✓ Z

X

�2n�1˛
◆2◆

:

This formula immediately shows that some real multiple of qX is defined over Z.

Remark 5.8. As a consequence of Lemma 5.7, we will always normalize the BBF form
qX so it is a (usually primitive) integral form.

For the sake of completeness, let us summarize a statement that is well known in the
smooth case.



Bakker and Lehn, The global moduli theory of symplectic varieties 21

Corollary 5.9. Let X be a primitive symplectic variety and let L be a line bundle on it.
Under the local isomorphism Deflt.X/ �! �.X/ by the period map, the subspace Deflt.X;L/

of deformations of the pair .X;L/ is identified with P .c1.L/?/ \�.X/.

We will frequently simply write ˛? instead of P .˛?/ \�.X/ for a class ˛ 2 H 2.X;C/.

5.10. A theorem of Verbitsky. Let X be a primitive symplectic variety of dimen-
sion 2n D dimX . In Section 7 we will need the following analog of a theorem of Verbitsky
[87, Theorem 1.5] (see also [10] and [38, Proposition 24.1]):

Proposition 5.11. Let S⇤H 2.X;C/ be the image of the cup product map

Sym⇤H 2.X;C/ �! H⇤.X;C/:

Then
S⇤H 2.X;C/ ä Sym⇤H 2.X;C/=hxnC1 j qX .x/ D 0i:

Proof. The proof in [10] carries through with very mild modifications, and we summa-
rize the main points. We have the following purely algebraic fact:

Lemma 5.12. Let .H; q/ be a complex vector space with a nondegenerate quadratic
form q, and let A⇤ be a graded quotient of Sym⇤H by a graded ideal I⇤ such that:

(1) A2n ¤ 0,

(2) I⇤ � hxnC1 j q.x/ D 0i.
Then I⇤ D hxnC1 j q.x/ D 0i.

Take .H; q/ D .H 2.X;C/; qX / andA⇤ D S⇤H 2.X;C/. Observe that the first condition
in the lemma is met. Indeed, let w be a generator of the H 2;0-part of H 2.X;C/. Since for
any resolution ⇡ W Y �! X we have an injection ⇡⇤ W H 2.X;C/ �! H 2.Y;C/, it follows that
⇡⇤w is the class of an extension of a symplectic form. As .⇡⇤w/n. S⇡⇤w/n ¤ 0, we then have
wnSwn ¤ 0.

Thus, it remains to verify the second condition. We have the following:

Lemma 5.13. We have wnC1 D 0.

Proof. For a resolution ⇡ W Y �!X , the map ⇡⇤ W grW
m
Hm.X;C/�!Hm.Y;C/ is injec-

tive. Thus, the .m; 0/-part of the mixed Hodge structure on Hm.X;C/ is 0 for m > 2n.

To finish, just as in [10], since the period map is an étale map of Deflt.X/ onto the
irreducible quadric .qX D 0/ by Proposition 5.5, applying Lemma 5.13 to nearby deformations
yields .qX .x/ D 0/ ⇢ .xnC1 D 0/.

5.14. Fujiki relations. Fujiki [30, Theorem 4.7] first established interesting relations
between the self intersection of a given cohomology class and powers of the BBF form on
symplectic manifolds. It seems that Matsushita [65, Theorem 1.2], [66, Proposition 4.1] was the
first to prove the (k D dimX ) Fujiki relation in the singular setting. He required the varieties
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to be projective and to have Q-factorial, terminal singularities only and Schwald extended his
statement to projective primitive symplectic varieties in [84]. We need a more general statement
for the projectivity criterion in the next paragraph. Generalizing to the Kähler setup is not
difficult, basically the existing proofs in the projective case work literally.

A small argument instead is needed when comparing powers of the BBF form to integra-
tion over certain very general homology classes. The first results in this direction in the singular
case can be found in [65, Lemma 2.4].

Proposition 5.15 (Fujiki relations). Let X be a primitive symplectic variety and let
� 2 SymkH 2.X;Q/_ which is of type .�k;�k/ for all small deformations of X . Then if k
is odd, we have � D 0, while if k is even, there exists a constant c D c.�/ 2 Q such that
� D cq

k=2

X
, where qk=2

X
2 Symk=2H 2.X;R/_ is the symmetrization of q˝k=2

X
. In particular, for

all ˛ 2 H 2.X;C/ we have

�.˛k/ D c � qX .˛/k=2:

Proof. Using Proposition 5.5, we see that the Mumford–Tate group of H 2.X 0;Z/ for
a very general locally trivial deformation X 0 of X is SO.H 2.X 0;Q/; qX 0/. The representation
of SO.H 2.X;Q/; qX / on SymkH 2.X;Q/_ has no invariants for odd k, while for even k the
only invariant is qk=2

X
up to scaling.

Corollary 5.16. LetX be a primitive symplectic variety. There is a (unique) polynomial
fX .t/ 2 QŒt ç such that for any line bundle L onX , �.L/ D fX .qX .c1.L/// and fX 0 D fX for
any locally trivial deformation X 0 of X . Moreover,

Proof. As X has rational singularities, for a resolution ⇡ W Y �! X we have

�.L/ D �.⇡⇤L/ D
Z

Y

⇡⇤ch.L/td.Y /:

Since ⇡⇤ W H 2.X;Q/ �! H 2.Y;Q/ is an injection of Hodge structures, it follows that

�.L/ D
X

k

�k.c1.L/k/

for Hodge classes �k 2 SymkH 2.X;Q/_. Moreover, from the existence of a simultaneous
resolution Y �! X of the universal locally trivial deformation X of X , it follows that the �k
are locally constant and of type .�k;�k/ everywhere. Now apply the proposition.

For a compact complex space W of dimension k, we denote by ŒW ç 2 H2k.W;Z/ the
cycle class, that is, the sum over the fundamental classes of the irreducible components of
dimension k weighted by their multiplicities. We write

R
W

W H 2k.W;Z/ �! Z for the cap
product with the cycle class. Hodge classes as in Proposition 5.15 can be constructed via the
following lemma.

Lemma 5.17. Let X be a primitive symplectic variety and f W X �! S a locally trivial
deformation. Let W ⇢ X be a closed subvariety that is flat over S with fiberwise dimension k.
Then

R
Ws

defines a section of SymkR2f⇤Q
_ which is of type .�k;�k/.
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Proof. It suffices to show that for any sufficiently small Euclidean open set U ⇢ S , the
cycle class ŒWuç is constant in Borel–Moore homology HBM

2k
.f �1.U /;Q/. This is done as in

[31, Lemma 19.1.3].

For the following corollary, the term very general is to be interpreted in terms of locally
trivial deformations, i.e., outside a countable union of proper subvarieties in the base of the
locally trivial Kuranishi family.

Corollary 5.18. Let X be a very general primitive symplectic variety. Then X does not
contain odd-dimensional closed subvarieties.

Proof. By the lemma, for a k-dimensional subvarietyW we have a Hodge class � D
R
W

in SymkH 2.X;Q/_. By taking a Kähler class ! 2 H 2.X;R/, we see that
R
W
!k > 0 and thus

� is nonzero, a contradiction.

5.19. Q-factoriality and Q-factorial terminalizations. We first deduce the invariance
of Q-factoriality under locally trivial deformations for primitive symplectic varieties.

Lemma 5.20. Let X be a primitive symplectic variety. Then every small locally trivial
deformation of X is Q-factorial if and only if X is Q-factorial.

Proof. Let ⇡ W Y �! X be a resolution and consider H 2.X;Q/ ⇢ H 2.Y;Q/ via pull-
back. Using Lemma 4.9, we choose a simultaneous resolution Y �! X of the universal locally
trivial deformation X �! Deflt.X/. Recall that by Proposition 5.5, we can think of Deflt.X/

as an open subset of the local period domain �.X/.
For an element � 2 H 2.X;Q/ with qX .�/ > 0, let T� ⇢ �.X/ be the locus for which

� 2 H 2;0.X/˚H 0;2.X/. Note that T� is a totally real half-dimensional closed subvariety of
�.X/ (see Section 8.3). We first claim that we may choose the element � so that T� meets the
image of Deflt.X/. Indeed, note that qX .�/ D 0 is equivalent to qX .Re.�// D qX .Im.�// and
qX .Re.�/; Im.�// D 0. Thus, taking � to be a rational class sufficiently close to Re.�/, then
taking R D � and I to be the projection of Im.�/ to R? scaled so that qX .R/ D qX .I /, we
can make � 0 D RC iI 2 T� arbitrarily close to � .

Now, choosing such a �, in the notation of Lemma 5.7 we have that v.�/ ¤ 0 by Propo-
sition 5.15. Observe that the Fujiki constant is nonzero since qX .� C N�/ ¤ 0 ¤ v.� C N�/.
Define a quadratic form Q� on H 2.Y;Q/ by the right-hand side of equation (5.3) divided by
qY;� .�/ D qX;� .�/. Note that:

(1) Q� is rational.

(2) Q� restricts to (a nonzero multiple of) qX on H 2.X;Q/.

(3) If � 2 H 2;0.X/˚H 0;2.X/, then

v.�/2qY;� .˛/ D qX;� .�/Q�.˛/

for all ˛ 2 H 2.Y;C/, as in [6, Théorème 5 (c)].

We now claim that Q� is a morphism of Hodge structures. For this, we consider Q� as
a quadratic from on the local system of weight two Hodge structures associated to the family
Y �! Deflt.X/ ⇢ �.X/. In view of (1), it suffices to show thatQ� is a morphism of R-Hodge
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structures. By (3) and Lemma 5.3, this is the case for all periods in T� \ Deflt.X/ and this
set is nonempty and open in T� by the above. But the Hodge locus of Q� is certainly an
analytic subset of Deflt.X/ and therefore must be all of Deflt.X/ as T� is totally real and
dimR T� D dimC Deflt.X/.

Now, qX is nondegenerate by Lemma 5.3, so by property (2) the Q�-orthogonal space
H 2.X;Q/? ⇢ H 2.Y;Q/ is a rational complement to H 2.X;Q/ and is Hodge–Tate. Thus,
condition (2.5) is equivalent to (2.4). Using Lemma 4.9 again, we see that the validity of
(2.4) is clearly invariant under locally trivial deformations. We therefore conclude by Proposi-
tion 2.15.

The rest of this section will be devoted to relating the locally trivial deformation theory
of a projective primitive symplectic variety X to that of a Q-factorial terminalization, which
will play a role in the proof of surjectivity of the period map. We start with the following slight
generalization of [5, Lemma 3.5]. The proof is literally the same as in [5] so we omit it here.

Lemma 5.21. Let ⇡ W Y �! X be a proper bimeromorphic morphism between primitive
symplectic varieties. Then ⇡⇤ W H 2.X;C/ �! H 2.Y;C/ is injective and the restriction of qY
to H 2.X;C/ is equal to qX . We have an orthogonal decomposition

H 2.Y;Q/ D ⇡⇤H 2.X;Q/˚NQ;

where N WD zq�1
Y
.N1.Y=X//, which is negative definite.

LetX , Y be normal compact complex varieties with rational singularities and ⇡ W Y �! X

a proper bimeromorphic morphism. It follows that ⇡⇤OY D OX and R1⇡⇤OY D 0 so that by
[58, Proposition 11.4], there is a commutative diagram

(5.4) Y

✏✏

P //X

✏✏

Def.Y /
p
// Def.X/

for the miniversal families of deformations of X and Y . Consider the case that ⇡ W Y �! X is
a Q-factorial terminalization of a projective primitive symplectic variety. We will show below
(Proposition 5.22) that the locally trivial deformations of X are identified via p with the locus
of deformations of Y where the classes of contracted curves remain Hodge.

Proposition 5.22. LetX; Y be projective primitive symplectic varieties and ⇡ W Y �! X

a proper bimeromorphic morphism. Assume Y is Q-factorial and terminal. LetN ⇢ H 2.Y;C/

be the qY -orthogonal complement to H 2.X;C/ ⇢ H 2.Y;C/ and consider diagram (5.4).
Denote by Def.Y;N / ⇢ Def.Y / the subspace of deformations such that classes in N remain
of type .1; 1/. Then the following holds:

(1) p�1.Deflt.X// D Def.Y;N / ⇢ Def.Y /.

(2) The restriction p W Def.Y;N / �! Deflt.X/ is an isomorphism.

Proof. By Theorem 4.7 respectively [73, Main Theorem], the two spaces Deflt.X/ and
Def.Y / are smooth of dimension h1;1.X/ and h1;1.Y /, respectively. Moreover, by [73, Theo-
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rem 1], Def.X/ is smooth while p W Def.Y / �! Def.X/ is finite and, as both are of the same
dimension, surjective.

Now, Def.Y;N / ⇢ Def.Y / is a smooth subvariety of codimension m WD dimN whose
tangent space is identified with H 1;1.X/ under the period map, see Lemma 4.13. By Corol-
lary 4.11, the fibers of the universal deformations Y �! Def.Y / and X �! Deflt.X/ are prim-
itive symplectic varieties. Therefore, [5, Lemma 2.2] entails that the second cohomology of
locally trivial deformations of X form a vector bundle on Deflt.X/, in particular, we have
h1;1.Xp.t// D h1;1.X/. Thus, by the decompositionH 2.Y;C/ D N ˚H 2.X;C/ from Lem-
ma 5.21 we see that the space N1.Yt=Xp.t// of curves contracted by Pt W Yt �! Xt has
dimension m for all t 2 p�1.Deflt.X//. As N is the orthogonal complement of H 2.X;C/, it
also varies in a local system. Using the period map this shows that p�1.Deflt.X//D Def.Y;N /.

One shows as in [63, Proposition 2.3 (ii)] that p is an isomorphism, see also [5, Proposi-
tion 4.5].

We will need the following corollary in Section 8. For a projective primitive sym-
plectic variety X and a Q-factorial terminalization ⇡ W Y �! X , let g W Y �! Def.Y / and
f W X �! Def.X/ be the universal deformations, and let f 0 W X 0 �! Def.Y / be the pullback
of X to Def.Y / along p as in (5.4). Then P 0 W Y �! X 0 is a simultaneous Q-factorial termi-
nalization by [73, Main Theorem] and Lemma 5.20. Consider the constant second Betti number
locus

BX WD πt 2 Def.Y / j rk.R2f 0
⇤QX 0/t D b2.X/º

which is a (reduced) closed analytic subspace of Def.Y /.

Corollary 5.23. In the above setup, BX D Def.Y;N /.

Proof. Certainly BX � Def.Y;N / by the proposition and [5, Lemma 2.4]. By Lem-
ma 5.21 and proper base change we have an injection

0 �! .R2f 0
⇤QX 0/t �! .R2g⇤QY /t

for all t 2 Def.Y /. The restrictions .R2g⇤QX 0/jBX
and .R2f 0

⇤QY /jBX
are local systems as

therefore is the orthogonal .R2f 0
⇤QX 0/j?

BX
in .R2f 0

⇤QY /jBX
. We must then have the equal-

ity .R2f 0
⇤QX 0/?

t
D N for all t 2 BX , but since .R2f 0

⇤QX 0/?
t

is Hodge–Tate, we obtain the
reverse inclusion BX ⇢ Def.Y;N /.

6. The projectivity criterion

In this section we formulate and prove an analog of Huybrechts’ projectivity criterion
[44, Theorem 3.11] (see also [45]) in the singular setup. Note that for orbifold singularities, the
question has been examined by Menet [67]. We use several of his as well as of Huybrechts’
arguments.

6.1. A singular version of the Demailly–Păun theorem. We do not know whether
the analog of Demailly–Păun’s celebrated theorem [21, Main Theorem 0.1] on the numerical
characterization of the Kähler cone of a compact Kähler manifold holds for singular varieties.
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One may however easily deduce from it that a similar statement holds which is good enough
for our purposes. For this purpose, we introduce a notion for cohomology classes that behave
as if they were Kähler classes.

Recall from (2.3) that we definedH 1;1.X;R/ D F 1H 2.X;C/\H 2.X;R/ for a reduced
compact complex space of class C .

Definition 6.2. Let X be a reduced compact complex space of class C and consider
a class  2 H 1;1.X;R/. We say that  is Demailly–Păun if for every compact complex mani-
fold V and for every generically finite morphism f W V �! X the class f ⇤ is big and nef. We
denote by DP.X/ ⇢ H 1;1.X;R/ the convex cone consisting of all Demailly–Păun classes. We
refer to it as the Demailly–Păun cone.

This definition deserves a couple of comments.

Remark 6.3. (1) Every Kähler class is Demailly–Păun, in particular, DP.X/ ¤ ; if X
is Kähler. Indeed, every Kähler class is a .1; 1/-class by Proposition 2.8. Then the claim follows
as the pullback of a Kähler class under a generically finite morphism from a smooth variety is
big and nef.

(2) We do not know of an example of a class that is Demailly–Păun but not Kähler.
It seems likely that Demailly–Păun classes are the same as Kähler classes. Apart from the
Demailly–Păun theorem [21, Main Theorem 0.1], evidence for this presumption is given in (3).

(3) Every rational Demailly–Păun class is Kähler. Indeed, a multiple of such a class is
the first Chern class of a big line bundle L. Therefore, X is Moishezon and L is ample by
the Nakai–Moishezon criterion. Note that the Nakai–Moishezon criterion holds for big line
bundles on Moishezon varieties, see e.g. [56, 3.11 Theorem].

(4) A closed subvariety of a class C variety is again dominated by a compact Kähler
manifold, see Proposition 2.7, and so it is itself class C . Then it is immediate that the restriction
of a Demailly–Păun class to a subvariety is again Demailly–Păun.

(5) The assumption that X be of class C is somewhat redundant but simplifies the expo-
sition. If for some  2 H 1;1�N� .X;R/ the pullback ⇡⇤ along a resolution ⇡ W Y �! X is big,
then Y (and hence also X ) are of class C by [21, Theorem 0.7].

Lemma 6.4. Let X be a compact variety of class C and let  2 H 1;1.X;R/. Then 
is Demailly–Păun if and only if for every compact complex manifold W and for every holo-
morphic map ⇡ W W �! X which is bimeromorphic onto its image the class ⇡⇤ is big and nef.
Moreover, the pullback of a Demailly–Păun class to an arbitrary compact complex manifold
is nef.

Proof. To prove the non-trivial direction of the first claim, let ⇡ W V �! X be a holo-
morphic map from a compact complex manifold which is generically finite onto its image. We
denote NV WD ⇡.V / and factor ⇡ as V

⇡1�! NV ⇡2�! X . We then chose a diagram

W2
�
//

f

✏✏

V

⇡

��

⇡1

✏✏

W1
 
// NV ⇡2 // X ,
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where W1; W2 are compact Kähler manifolds and W1 �! NV , W2 �! V are bimeromorphic. By
assumption, ˛ WD  ⇤⇡⇤

2
 is big and nef. By a result of Păun [77, Théorème 1], nefness of ˛

is equivalent to f ⇤˛ being nef. Bigness is preserved under generically finite pullbacks so that
f ⇤˛ is big and nef. Since W2 �! V is bimeromorphic between compact complex manifolds,
⇡⇤ is big and nef as �⇤⇡⇤ D f ⇤˛ is.

For the second statement, let ⇡ W V �! X be a morphism from a compact complex mani-
fold. We change the above diagram accordingly and deduce the claim by invoking Păun’s result
once more.

The main result of this section is deduced from the smooth Demailly–Păun theorem and
Păun’s results in [77] via an inductive argument. Note that while our result is not essentially
new compared to the Demailly–Păun theorem, it should be mentioned that Collins and Tosatti
proved in [15, Theorem 1.1] a true generalization of the Demailly–Păun theorem for possibly
singular compact subvarieties of Kähler manifolds.

Theorem 6.5. Let X be a reduced compact complex space of class C and consider the
cone P ⇢ H 1;1.X;R/ of all classes ˛ on X such that for all closed analytic subsets V ⇢ X

we have Z

V

˛dimV > 0:

Then the Demailly–Păun cone DP.X/ is empty or a connected component of P . IfX is Kähler,
DP.X/ is the connected component of P containing the Kähler cone.

Proof. Clearly, DP.X/ ⇢ P and as the Demailly–Păun cone is convex, it is contained
in a connected component of P . Moreover, if X is Kähler, then the Kähler cone is contained
in DP.X/.

For the converse, we may assume that DP.X/ is non-empty, otherwise there is nothing to
prove. Let ˛ 2 P be a class in the same connected component as DP.X/. We will prove that
the restriction of ˛ to any subvariety of X is Demailly–Păun by induction on the dimension of
the subvariety.

For d D 0 the statement is trivial. Let V ⇢ X be a subvariety of dimension d and assume
that ˛ is Demailly–Păun on every subvariety of X of dimension strictly smaller than d . We
denote by ⇡ W W �! X the composition of a resolution of singularities of V with the inclu-
sion V ⇢ X where W is a compact Kähler manifold of dimension d . Such a resolution exists
thanks to Proposition 2.7. By Lemma 6.4 it suffices to prove that ⇡⇤˛ is big and nef. Clearly,
˛jV fulfills the hypotheses of the theorem if ˛ does. We show first that ⇡⇤˛ is nef on W using
the Demailly–Păun theorem onW . Let us take a Kähler class  onW . For 0 < " ⌧ 1 the class
˛W WD ⇡⇤˛ C " satisfies ˛d

W
> 0. If Z ⇢ W is a proper analytic subvariety of dimension e,

then ⇡.Z/ ⇢ V is also a proper subvariety and thus ˛j⇡.Z/ is Demailly–Păun by the inductive
hypothesis. We will show that

R
Z
˛e
W
> 0. But this can be computed on a resolution of singu-

larities, so we may without loss of generality assume that Z is nonsingular. Then ⇡⇤˛jZ is nef
by Lemma 6.4 and therefore ˛W jZ has positive top self intersection.

As ˛ is in the same connected component of P D P.V / as the Demailly–Păun classes
on V , also ˛W is in the same connected component P.W / as the Demailly–Păun classes onW .
But by [21, Main Theorem 0.1], we have DP.W / D K.W /, where K.W / denotes the Kähler
cone. Hence, the Demailly–Păun theorem applies and ˛W is Kähler. Moreover, ⇡⇤˛ is nef on
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W because " was arbitrarily small. But certainly
R
W
.⇡⇤˛/d > 0 and therefore ⇡⇤˛ is also big

on W by [21, 0.4 Theorem]. This concludes the proof.

6.6. Projectivity criterion. In this subsection, the term very general is to be interpreted
in terms of locally trivial deformations, i.e., outside a countable union of proper subvarieties in
the base of the locally trivial Kuranishi family.

Definition 6.7. LetX be a primitive symplectic variety and qX its BBF form. We define
the positive cone

CX WD π˛ 2 H 1;1.X;R/ j qX .˛/ > 0º ;
where  denotes the connected component containing the Kähler cone.

Theorem 6.8. For a very general primitive symplectic variety X , the positive cone
equals the Demailly–Păun cone:

DP.X/ D CX :

Proof. The Demailly–Păun cone is always contained in the positive cone by Theo-
rem 6.5. Let us prove the other inclusion. By Corollary 5.18, X does not contain any odd-
dimensional subvarieties. Let Z ⇢ X be a subvariety and denote by 2d its dimension. Choose
a Kähler class  onX . Then by the Fujiki relations, Proposition 5.15, there is a constant cZ 2 R

such that for every ˛ 2 H 2.X;C/ the equality

cZ �
Z

Z

.˛S C T /2d D qX .˛S C T /d D
�
qX .˛/S

2 C 2qX .˛; /ST C qX ./T
2
�d

of polynomials in the indeterminates S and T holds. Choosing ˛ D , we see that cZ has
to be strictly positive. From now on let ˛ 2 CX . As also  2 CX , Lemma 5.3 implies that
qX .˛; / > 0. The coefficients of the polynomial on the right-hand side are manifestly all pos-
itive. We conclude from looking at the left-hand side that for every 0  �  1 we have that
�˛ C .1 � �/ lies in the cone P from Theorem 6.5. In particular, ˛ is in the connected
component of P containing the Kähler cone K.X/. We conclude from Theorem 6.5 that
˛ 2 DP.X/.

The following is the singular version of [46, Theorem 3.11] and the proof relies on impor-
tant ideas of his and of Menet [67], see section 4 of Menet’s article. The presentation follows
[38, Proposition 26.13].

Theorem 6.9. LetX be a primitive symplectic variety and ˛ 2 H 2.X;Z/ a .1; 1/-class.
If q.˛/ > 0, then X is projective.

Note that the existence of such a class can be read off only from the period.

Proof. By the Lefschetz .1; 1/-theorem, there is a line bundle L on X with first Chern
class c1.L/ D ˛. We show that L is big. It suffices to do this on a resolution, say ⇡ W Y �! X ,
as bigness of a line bundle is a birationally invariant notion. Bigness of the line bundle ⇡⇤L
is implied by bigness of ⇡⇤˛, see [49, Theorem 4.6]. The strategy is to infer bigness of ˛ by
approximating ˛ on a resolution with Kähler currents on nearby varieties.
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Consider the locally trivial Kuranishi family X �! S WD Deflt.X/ and take a simultane-
ous resolution Y �! X which is possible by Lemma 4.9. From now on we choose ⇡ W Y �! X

to be the special fiber of Y �! X . For a very general t 2 S the corresponding primitive
symplectic varieties Xt satisfy DP.Xt / D CXt thanks to Theorem 6.8. Therefore, ˛ can be
approximated by Demailly–Păun classes ˛ti on Xti

where ti �! 0 2 S for i �! 1, where X is
the fiber of X �! S over 0. Consequently, ⇡⇤˛ can be approximated by big classes on nearby
fibers Yti and as in [19, Proposition 6.1], see also the proof of [38, Proposition 26.13], we
deduce that ⇡⇤˛ is big. The key point here is to see that in the above approximation proce-
dure, the limit of a sequence of closed positive currents are again closed and positive. This
is explained in detail in the appendix by Diverio to [3]. As explained before, bigness of ⇡⇤˛
implies that ⇡⇤L and hence L is big. Thus, X is Moishezon. Being Kähler and having rational
singularities, it must be projective by [72, Theorem 1.6].

The following result is the singular analog of [29, Theorem 4.8 2)], see also [44, Theo-
rem 3.5] and [38, Proposition 26.6]. We have to change the proof slightly in the singular
setting.

Corollary 6.10. Let X be a primitive symplectic variety, f W X �! Deflt.X/ the uni-
versal locally trivial deformation of X D f �1.0/, and S ⇢ Deflt.X/ a positive-dimensional
subvariety through 0 2 Deflt.X/. Then in every open neighborhood U ⇢ S of 0 there is a point
s 2 U such that the fiber Xs is projective.

Proof. The proof is almost the same as in [29, Theorem 4.8 2)] respectively [44, Theo-
rem 3.5]. We refer to these references for details and content ourselves with a sketch of proof.
One restricts to a one-dimensional disk S ⇢ Deflt.X/ and chooses a Kähler form ! on X
such that the locus SŒ!ç ⇢ Deflt.X/ where the class Œ!ç remains of type .1; 1/ intersects S
transversally. Next one chooses classes ˛i 2 H 2.X;Q/ converging to Œ!ç such that the ˛i are
not of type .1; 1/ on X . Then the .1; 1/-locus S˛i

⇢ Deflt.X/ intersects S in points ti ¤ 0

converging to 0. Now the idea is that the .1; 1/-class ˛i is Kähler on Xti
for ti sufficiently

close to 0. In [44, Theorem 3.5] this is seen via harmonic representatives. As X is singular,
we cannot argue literally the same. However, due to Lemma 4.9 we may take a simultaneous
resolution ⇡ W Y �! X obtained by successive blow ups. In particular, there is an R-linear
combination E of exceptional divisors such that for e WD c1 .O.E// we have that ˛i � e is
Kähler on Y WD ⇡�1.X/. Now we apply the argument involving harmonic representatives to
˛i � e and deduce that for ti sufficiently close to 0 the variety Yti is projective. Hence, also the
corresponding Xti

is projective by [72, Theorem 1.6].

We immediately deduce:

Corollary 6.11. Let X be a primitive symplectic variety and let f W X �! Deflt.X/ be
the universal locally trivial deformation of X D f �1.0/. Then for every positive-dimensional
subvariety S ⇢ Deflt.X/ the set of points † ⇢ S with projective fiber is dense.

6.12. Inseparability and moduli. Given a primitive symplectic variety X and a lattice
ƒ with quadratic form q, a ƒ-marking of X is an isomorphism

� W .H 2.X;Z/tf; qX /
ä�! .ƒ; q/:
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A ƒ-marked primitive symplectic variety is a pair .X;�/, where X is a primitive symplectic
variety and � is a ƒ-marking of X . Two ƒ-marked primitive symplectic varieties .X;�/ and
.X 0;�0/ are isomorphic if there is an isomorphism ' W X �! X 0 such that �0 D � ı '⇤.

Definition 6.13. Given a lattice ƒ as above, we denote by Mƒ the analytic coarse
moduli space of ƒ-marked primitive symplectic varieties. As a set, Mƒ consists of isomor-
phism classes of ƒ-marked primitive symplectic varieties .X;�/, and it is given the structure
of a not-necessarily-Hausdorff complex manifold using Theorem 4.7 by identifying points in
the bases of locally trivial Kuranishi families over which the fibers are isomorphic asƒ-marked
varieties.

Note that this definition coincides with the usual one [44, 1.18] for irreducible symplec-
tic manifolds due to the fact that all deformations of smooth varieties are locally trivial. The
following statement of Huybrechts’ carries over together with its proof.

Theorem 6.14. Let X , X 0 be primitive symplectic varieties such that for some choice
of marking � W H 2.X;Z/tf �! ƒ, �0 W H 2.X 0;Z/tf �! ƒ the pairs .X;�/, .X 0;�0/ define non-
separated points in the ƒ-marked moduli space. Then there is a bimeromorphic map

� W X Ü X 0:

Proof. Identical to [44, Theorem 4.3] using a simultaneous resolution.

Corollary 6.15. If .X;�/ and .X 0;�0/ are inseparable in moduli with Mumford–Tate
general periods, then .X;�/ D .X 0;�0/.

Proof. By the theorem, there is a bimeromorphic � W X Ü X 0. Mumford–Tate gen-
erality implies that neither X nor X 0 contain compact curves. Indeed, such a curve would
define a non-zero Hodge class, e.g., in H2.X;Q/, so by the BBF form we also had a non-
zero Hodge class in H 2.X;Q/. By a standard argument, bimeromorphic maps between nor-
mal varieties without curves are necessarily isomorphisms.5) We therefore obtain an isomor-
phism of Hodge structures H 2.X;Z/tf �! H 2.X 0;Z/tf which maps a Kähler class to a Kähler
class. The claim follows since the automorphism group of a Mumford–Tate general period
AutHdg.H

2.X;Z/tf/ D π˙1º, since End.H 2.X;Q/; qX /
SO.H2

.X;Q/;qX / D Q id.

We denote by Å D πz 2 C j jzj  1º the complex unit disk and by Å⇤ WD Å n π0º the
complement of the origin. Recall that if two not necessarily Q-factorial complex varieties are
bimeromorphic, it is not in general true that we can push forward (or pull back) line bundles
along the bimeromorphic map.

Theorem 6.16. LetX;X 0 be projective primitive symplectic varieties and � W X Ü X 0

a birational map which is an isomorphism in codimension 1 such that

�⇤ W Pic.X/Q �! Pic.X 0/Q

5) This can be seen exactly as for projective algebraic varieties of Picard rank one by applying, e.g.,
[16, Lemma 1.15 (b)] to a resolution of indeterminacies and its inverse.
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is well defined and an isomorphism. Then there are one parameter locally trivial deforma-
tions f W X �! Å, f 0 W X 0 �! Å such that X and X 0 are birational over Å and such that
X ⇤ D f �1.Å⇤/ ä .f 0/�1.Å⇤/ D .X 0/⇤.

Proof. The basic strategy of [44, Theorem 4.6] remains unchanged, we will therefore
only explain where we need to deviate from it. By Corollary 5.16, there are polynomials fX .t/
and fX 0.t/ with rational coefficients of degree n D dimX

2
such that for any line bundle L on X

a Hirzebruch–Riemann–Roch statement of the form �.X;L/ D fX .qX .c1.L/// holds and sim-
ilarly forX 0. We may assume that fX � fX 0 with respect to the lexicographic order and choose
an ample line bundleL0 onX 0 and denote byL the corresponding Q-line bundle onX . Replac-
ing L0 by a multiple, we may assume that L is integral. Let ⇡ W .X ;L / �! S be a locally
trivial deformation of .X;L/ over a smooth one-dimensional base such that the Picard number
of the general fiber of X �! S is one. As in [44, Theorem 4.6], using the projectivity crite-
rion from Theorem 6.9, one shows that h0.L ˝m

t / for m � 0 does not depend on t 2 S that
the associated linear system gives a meromorphic S -morphism X Ü PS .⇡⇤L _/ which is
bimeromorphic onto its image. We obtain X 0 �! S as the closure of this image and one verifies
as in [43, Proposition 4.2] that X 0 �! S has the desired properties, in particular, that its central
fiber is X 0.

This result can be reformulated as follows.

Corollary 6.17. Let X and X 0 be projective primitive symplectic varieties, and let
� W X Ü X 0 be a birational map which is an isomorphism in codimension 1 such that

�⇤ W Pic.X/Q �! Pic.X 0/Q

is well defined and an isomorphism. Then for every choice of a marking � W H 2.X;Z/tf �! ƒ

there exists a marking �0 W H 2.X 0;Z/tf �! ƒ such that the points .X;�/ and .X 0;�0/ are
inseparable points in the moduli space Mƒ.

7. Projective degenerations

The main goal of this section is to prove the following result, which will be needed for
the surjectivity of the period map in Section 8:

Theorem 7.1. Let f W X ⇤ �! Å⇤ be a projective locally trivial family of primitive sym-
plectic varieties with Q-factorial terminal singularities such that the monodromy ofR2f⇤QX ⇤

is finite. Then there is a proper locally trivial family g W Y �! Å of primitive symplectic vari-
eties whose restriction Y jÅ⇤ �! Å⇤ is isomorphic to the restriction of the base-change of
X ⇤ �! Å⇤ along a finite étale cover Å⇤ �! Å⇤.

Theorem 7.1 is proven for smooth X ⇤ �! Å⇤ in [57, Theorem 1.7], and the proof in our
slightly more general setting involves very mild modifications of the same arguments given
Proposition 5.11, albeit rearranged slightly and with some simplifications.

A crucial step is the following version of [57, Theorem 2.1] which uses the MMP to
produce nice models for degenerations of K-trivial varieties.
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Theorem 7.2 ([57, Theorem 2.1 and Remarks 2.3 and 2.4]). Let f W X �! Å be a pro-
jective family whose generic fiber is a K-trivial variety with Q-factorial terminal singularities
and such that at least one component of the special fiber is not uniruled. Then there is a projec-
tive family g W Y �! Å for which:

(1) the restriction Y jÅ⇤ �!Å⇤ is isomorphic to the restriction of the base-change of X �!Å

along a finite cover Å �! Å,

(2) the special fiber is a K-trivial variety with canonical singularities,

(3) the total space Y has terminal singularities.

Note that the third statement follows from the proof in [57]. Theorem 7.2 reduces the
proof of Theorem 7.1 to showing that the assumption on the local monodromy implies that
some component of a degeneration must be non-uniruled, and this is accomplished by the
following:

Proposition 7.3. Let f W X �! Å be a flat projective family such that:

(1) the restriction X ⇤ WD X jÅ⇤ �! Å⇤ is a locally trivial family of primitive symplectic
varieties,

(2) the local monodromy of R2f⇤QX is trivial,

(3) the special fiber X has no multiple components,

(4) the total space X has log terminal singularities.

Then a resolution of some component of the special fiber X has a generically nondegenerate
holomorphic 2-form.

Proof. Let 2n be the fiber dimension of f and take ⇡ W .Y ; Y / �! .X ; X/ to be a log
resolution and g WD f ı ⇡ W Y �! Å. After possible shrinkingÅ, Y �! X is a fiberwise reso-
lution over Å⇤. Recall that there is a specialization map sp W H⇤.Y;Q/ �! H⇤.Y1;Q/ which
is topologically constructed as follows. After possibly shrinkingÅwe let Y1 D e⇤YÅ⇤ , where
e W H �! Å⇤ is the universal cover. Then sp is the pullback along the natural map Y1 �! Y
composed with the isomorphism induced by the inclusion Y �! Y which is a homotopy equiv-
alence. Note that sp is a ring homomorphism, and that the inclusion Yt �! Y1 of a fiber above
t 2 Å⇤ is also a homotopy equivalence, as locally trivial families are topologically (even real
analytically) trivial [1, Proposition 5.1]. We can also view H⇤.Y1;Q/ as the nearby cycles
 Rf⇤QY (up to a shift) and the specialization map as the natural map i⇤Rf⇤QY �!  Rf⇤QY

by proper base-change, where i W π0º �! Å is the inclusion. By Saito’s theory [81, 82], this is
a morphism of mixed Hodge structures, the mixed Hodge structure on  Rf⇤QY being the
limit mixed Hodge structure.

Now for t 2 Å⇤, we have that the pullback ⇡⇤
t

W H⇤.Xt ;Q/ �! H⇤.Yt ;Q/ induces an
injection grW

k
Hk.Xt ;Q/ �! Hk.Yt ;Q/ for all k. By Theorem 5.11, for k  n we have an

induced injection
SymkH 2.Xt ;Q/ �! H 2k.Yt ;Q/

and therefore also an injection

SymkH 2.X1;Q/ �! H 2k.Y1;Q/:
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Claim. The image of the specialization sp W H 2k.Y;Q/ �! H 2k.Y1;Q/ contains the
image of SymkH 2.X1;Q/ for k  n.

Proof. By the semisimplicity of the category of variations of polarized integral Hodge
structures, SymkR2f⇤QX ⇤ is a summand of R2kg⇤QY ⇤ for k  n. By the decomposition
theorem [81, Section 15.3], the intermediate extension jä⇤.SymkR2f⇤QX ⇤ Œ1ç/Œ�2k � 1ç is
a summand of Rg⇤QY , where j W Å⇤ �! Å is the inclusion. Because the monodromy of
SymkR2f⇤QX ⇤ is trivial, the specialization map

i⇤jä⇤.SymkR2f⇤QX ⇤ Œ1ç/ �!  jä⇤.SymkR2f⇤QX ⇤ Œ1ç/

is an isomorphism, hence the claim.

Now, H 2.Y1;Q/ has the same Hodge numbers as the general fiber (since the mon-
odromy is trivial), and it follows that there is an element w 2 I 2;0H 2.Y;Q/ mapping to
a generator of I 2;0H 2.Y1;Q/. Here, I 2;0 denotes the .2; 0/-part of the Deligne splitting,
see e.g. [78, Lemma-Definition 3.4]. Moreover, wn ¤ 0 by the claim. The same is true on the
normalization zY �! Y , so some component of Y has a generically nondegenerate holomorphic
2-form. Finally, since X is log terminal, by [40, Corollary 1.5] the exceptional divisors of
⇡ W Y �! X are uniruled, so the same must be true of X .

Proof of Theorem 7.1. Obviously we may assume the monodromy ofR2f⇤QX ⇤ is triv-
ial. Let f W X �! Å be a flat projective family restricting to the base change of X ⇤ over
Å⇤; we may assume the special fiber has no multiple component. By running the MMP as
in the first part of [57, Theorem 2.1], we may assume X has terminal singularities, and so
by Proposition 7.3 and Theorem 7.2 we may assume the special fiber X is a K-trivial vari-
ety with canonical singularities. By the proposition again and Theorem 3.4, X is symplectic.
Take a Q-factorial terminalization ⇡ W Y �! X and consider the diagram (5.4) for ⇡ . With the
notations used there, the deformation Y �! Def.Y / is locally trivial by [73, Main Theorem].
By [73, Theorem 1] the induced map p W Def.Y / �! Def.X/ is finite and surjective. Thus, the
classifying map Å �! Def.X/ of the family X �! Å can be lifted to Def.Y / over a finite
cover Å0 �! Å. The pullback YÅ0 is then the claimed family; it only remains to show that it
is isomorphic to the pullback XÅ0 outside the central fiber. This is because for t 0 2 Å0⇤ map-
ping to t 2 Å⇤ we have that Yt 0 �! Xt is a proper birational morphism between Q-factorial
terminal K-trivial varieties and thus is an isomorphism.

Remark 7.4. The techniques of [57] are used to fill in varieties over projective period
points in the interior of the period domain. We would like to point out that in the smooth
case this technique of “filling holes” has been used independently by Odaka and Oshima for a
different purpose, see [75, second paragraph in the first proof of Claim 8.10].

8. Monodromy and Torelli theorems

Fix a lattice ƒ and denote its quadratic form by q.

Definition 8.1. A Hodge structure onƒ is semi-polarized (by q) if q W ƒ˝ƒ �! Z.�2/
is a morphism of Hodge structures. We furthermore say a semi-polarized Hodge structure is
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hyperkähler if it is pure of weight two with h2;0 D h0;2 D 1, the signature of q is .3; b2 � 3/,
and q is positive-definite on the real space underlying H 2;0 ˚H 0;2. Hyperkähler Hodge
structures on ƒ are parametrized by the period domain

�ƒ WD πŒ�ç 2 P .ƒC/ j q.�/ D 0; q.�; N�/ > 0º:

Let XC be a primitive symplectic variety with

.H 2.XC;Z/tf; qXC/ ä .ƒ; q/;

and let MC be the moduli space of ƒ-marked locally trivial deformations of XC. Note that
MC is a union of connected components of the full moduli space Mƒ of ƒ-marked primitive
symplectic varieties from Section 6.12.

Set � WD �ƒ. We have a period map P W MC �! � which is a local isomorphism by
the local Torelli theorem (Proposition 5.5). Furthermore, inseparable points of MC lie above
proper Mumford–Tate subdomains of � by Corollary 6.15, so as in6) [47, Corollary 4.10] we
have a factorization

M
C

SP
!!

MC

H

<<

P

// �,

where H is the Hausdorff reduction of MC and SP is a local homeomorphism. For each
x 2 M

C
, a local basis is provided by images H.B/ of open balls x 2 B ⇢ MC over which

there is a universal family for x.
Note that O.ƒ/ acts on each of MC, M

C
, and � by changing the marking, and the

three maps H;P; SP respect these actions. For any connected component M of MC, we define
Mon.M/ ⇢ O.ƒ/ to be the image of the monodromy representation on second cohomology,
which is defined up to conjugation.

The goal of this section is to show:

Theorem 8.2. Assume rk.ƒ/ � 5 and let M be a connected component of MC.
(1) The monodromy group Mon.M/ ⇢ O.ƒ/ is of finite index.
(2) SP is an isomorphism of M onto the complement in� of countably many maximal Picard

rank periods.
(3) If XC is Q-factorial and terminal, then the same is true of every point .X;�/ 2 M and

SP is an isomorphism of M onto �.

Theorem 8.2 immediately yields parts (1), (3), and (4) of Theorem 1.1. Before the proof,
we briefly recall the classification of orbit closures in � under an arithmetic lattice, which is
crucial to the argument.

8.3. Reminder on orbit closures.

Definition 8.4. The rational rank of a hyperkähler period p 2 � is defined as

rrk.p/ WD dimQ
�
.H 2;0 ˚H 0;2/ \ƒQ

�
2 π0; 1; 2º:

6) Huybrechts uses that the inseparability only occurs above Noether–Lefschetz loci, but the same argument
works for any countable union of proper complex analytic subvarieties.
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We define the rational rank of a primitive symplectic variety to be the rational rank of its Hodge
structure on second cohomology.

Recall that the period domain� can be thought of as the oriented positive Grassmannian
GrCC.2;ƒR/. For a rational positive-definite sublattice ` ⇢ ƒQ with rk.`/  2, we define T`
to be the locus of periods for which ` ⇢ .H 2;0 ˚H 0;2/R. Obviously we have that T` � T`0

if ` ⇢ `0. Note that if rk.`/ D 2, then T` is a pair of conjugate maximal Picard rank points
(and all such pairs arise this way). For rk.`/ D 1, the set T` is isomorphic to the space SC.`?

R/

positive unit-norm vectors in `?
R, which is a totally real submanifold of � of real dimen-

sion rk.ƒ/ � 2.
The important point is that orbit closures for the action of a finite index subgroup Ä

of O.ƒ/ on the period domain � are classified according to rational rank.

Proposition 8.5 ([89, Theorem 4.8] and [90, Theorem 2.5]). Assume rk.ƒ/ � 5. We
have for p 2 �:

(1) If rrk.p/ D 0, then Ä � p D �.

(2) If rrk.p/ D 1, then Ä � p is a (countable) union of T` with rk.`/ D 1.

(3) If rrk.p/ D 2, then Ä � p is a (countable) union of T` with rk.`/ D 2.

8.6. Proof of Theorem 8.2. We divide the proof into five steps. Parts (1), (2), and (3)
are proven in Steps 4, 5 (a), and 5 (b), respectively.

Step 1. Let p 2 � be a very general period with Picard group generated by a positive
vector. Then SP�1.p/ is finite.

Proof. In fact, its equivalent to show P�1.p/ is finite by the assumption on the Picard
rank. For the following lemma, we say an ample line bundle L on a primitive symplectic
variety X has BBF square d if qX .c1.L// D d .

Proposition 8.7. Pairs .X;L/ consisting of a primitive symplectic variety X of a fixed
locally trivial deformation type and an ample line bundle L with fixed BBF square form
a bounded family.

Proof. Using that the Fujiki constants are locally trivially deformation-invariant and
[64, Theorem 2.4], for any such pair .X;L/, the variety X can be embedded with bounded
degree in P

N for some fixed N via the sections of some fixed power Lk . Let H be the cor-
responding Hilbert scheme of subschemes of P

N of bounded degree, and let f W X �! H be
the universal family. Let H 0 ⇢ H denote the subset over which the fibers of f are primitive
symplectic. By semi-continuity and openness of symplecticity, H 0 ⇢ H is open.

Lemma 8.8. There is a stratification of H 0 by locally closed reduced subschemes over
which X is locally trivial.

Proof. There is a stratification Hi of H 0 by locally closed reduced subschemes along
which the second Betti numbers .R2f⇤QX /t are constant, for instance by using étale cohomol-
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ogy. By Corollary 5.23, X is locally trivial in an analytic neighborhood of every point t in
each Hi , and so X is locally trivial on each Hi .

It follows from the lemma that the set of pairs .X;L/ as in the statement of the proposi-
tion together with a choice of an embedding into P

N as above is a locally closed subscheme
U of H . The C-points of the quotient stack ŒPGLNC1nU ç then parametrize isomorphism
classes of the pairs .X;L/. The PGLNC1 action has finite stabilizers on U by Lemma 4.6,
so by general theory ŒPGLNC1nU ç is a Deligne–Mumford stack and there is a finite-type étale
atlas S ! ŒPGLNC1nU ç.

To summarize, there is (depending on the fixed locally trivial deformation type and the
fixed BBF square) a finite-type scheme S and a locally trivial family X �! S of primitive
symplectic varieties and a relatively ample L on X which has the property that every .X;L/
as in the statement of the lemma appears finitely many times (and at least once) as a fiber.

Each component S0 of the scheme S constructed in the proof of the lemma has a period
map of the form Pv W S0 ! O.v?/n�v? for some v 2 ƒ with fixed square q.v/ D d , where
we think of�v? D P .v?/ \�. Moreover,Pv is a local isomorphism and therefore quasifinite,
as by, e.g., [11, Theorem 3.10] the fibers are algebraic.

Now, for p 2 � as in the original claim, suppose q.v/ D d for a generator v of the Picard
group. It follows that there are finitely many isomorphism classes of pairs .X;L/, where X is
a primitive symplectic variety that is locally trivially deformation-equivalent to XC, and L is
an ample bundle of BBF square d , and the primitive parts of H 2.X;Z/tf and p are abstractly
isomorphic as polarized Hodge structures. By the assumption on the Picard rank, there are
then finitely many isomorphism classes of projectiveX locally-trivially deformation equivalent
to XC and with H 2.X;Z/tf abstractly isomorphic to p as semi-polarized Hodge structures.
Moreover, Aut.p/ D ˙1, so for each such X there are finitely many such isomorphisms.

To finish, by Theorem 6.9 every point in P�1.p/ is projective and uniquely polarized by
a class of BBF square d , and the claim follows.

For the next step, let �rrkD0 ⇢ � be the rational-rank-zero locus, let MC
rrkD0 ⇢ M

C
be

the preimage of �rrkD0 under SP , and let SPrrkD0 be the restriction of SP to MC
rrkD0. Note that

since we are assuming rk.ƒ/ � 5, every p 2 �rrkD0 has dense O.ƒ/-orbit, by Proposition 8.5.

Step 2. The map SPrrkD0 is a covering map onto �rrkD0.

Proof. The claim follows from the following two lemmas.

Lemma 8.9. The map SPrrkD0 has finite fibers of constant size. In particular, it is surjec-
tive onto �rrkD0.

Proof. By the previous step there is a point p0 2 �rrkD0 over which SP�1.p0/ is finite
of size N , and therefore SP�1.p/ is finite of size  N for every point p 2 �rrkD0. Indeed, if
some p 2 �rrkD0 had at least N C 1 preimages, then by Hausdorffness we can find pairwise
non-intersecting open neighborhoods around any N C 1 points in the fiber SP�1.p/ that map
isomorphically to the same open neighborhood V of p, but p0 has dense orbit. Interchanging
p0 and p, we see that in fact the fibers are finite of constant size.
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Lemma 8.10. Suppose f W X �! Y is a local homeomorphism between two Hausdorff7)

topological spaces. If f has finite fibers of constant size, it is a covering map onto its image.

Proof. For any y 2 Y , because f �1.y/ is finite we may find nonintersecting open sets
Ux around each point x 2 f �1.y/ on which f is a homeomorphism, and by shrinking we may
further assume all the Ux have the same image U . It follows from the assumption on fiber size
that f �1.U / D S

x2f �1.y/
Ux .

The claim is proved.

Step 3. The map SPrrkD0 is an isomorphism of MrrkD0 onto �rrkD0.

Proof. The rational-rank-zero locus is, in the notation of Section 8.3,

�rrkD0 WD � n
[

`¤0
T`;

and each T` is a closed submanifold of real codimension rk.ƒ/ � 2. Assuming rk.ƒ/ � 5,
we have that �rrkD0 is locally path-connected and path-connected by [88, Lemma 4.10] and
moreover locally simply connected and simply connected by the following lemma, as the same
is true of �.

Lemma 8.11. If M is a simply connected smooth manifold and S is a countable union
of closed submanifolds of (real) codimension � 3, then M n S is simply connected.

Proof. This argument is taken from a MathOverflow answer of Martin M. W. [93]. The
result is well known when S is a single closed submanifold of codimension � 3. The space of
nullhomotopies S1 ⇥ Œ0; 1ç �! M of a given path with the compact open topology is a Baire
space and the set of homotopies avoiding a single closed submanifold of codimension � 3 is
a dense open subset. Therefore, the set of homotopies avoiding S is nonempty (and in fact
dense) by definition of a Baire space.

Thus, the claim follows from the previous step.

Step 4. The subgroup Mon.M/ has finite index in O.ƒ/.

Proof. The map SP W M
C
rrkD0 �! �rrkD0 has finite degree and �rrkD0 is path-connected.

Therefore, MC has finitely many connected components. The group Mon.M/ is the stabilizer
of the component M, and is therefore finite index.

Step 5 (a). The map SP is an isomorphism of M onto the complement in� of countably
many maximal Picard rank periods.

Proof. By Step 3, it is enough to show that the image of M under P contains the
locus �rrk1 of non-maximal Picard rank periods. The image is open and Mon.M/-invariant,
whereas by Proposition 8.5 and the previous step a Mon.M/ orbit closure in�must be a union

7) In fact, only Hausdorffness on the source is used.
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of T` or all of �. It is therefore enough to show that for any rank one sublattice ` ⇢ ƒ, a very
general point of T` is contained in P.M/.

Considering a projective .X;�/ 2 M with a polarization v that is orthogonal to `, we
obtain a period map Pv W S0 ! O.v?/n�v? as in Step 1 corresponding to a family of locally
trivial deformations of X over S0. The complement of Pv.S0/ is a locally closed subvariety of
O.v?/n�v? and its preimage V in �v? is therefore also a locally closed analytic subvariety.

It suffices to show that T` \�v? is not contained in V . But T` is totally real and has half
the (real) dimension of �, so the tangent space to T` \�v? at a point p is not contained in
any proper complex subspace of Tp�v? . It follows that if T` were contained in V , it must be
contained in the singular locus of V , and so by induction we get a contradiction.

Step 5 (b). When XC is Q-factorial and terminal, then the same is true of every point
.X;�/ 2 M and SP is an isomorphism of M onto �.

Proof. The first claim follows from Lemma 5.20. For the second claim, by the previous
step, it remains to show P.M/ contains all maximal Picard rank points, which are in particular
projective by Theorem 6.9.

Now for any maximal Picard rank period p, let v 2 ƒ be a positive vector which is
Hodge with respect to p. A very general deformation of p for which v remains algebraic is in
the image of P , and the period map Pv W S0 ! O.v?/n�v? from Step 1 is dominant, so we
can find a curve B ⇢ O.v?/n�v? through p such that an open set U ⇢ B lifts to S0, possibly
after a base change. Now apply8) Proposition 7.1.

This concludes the proof.

Remark 8.12. The argument given in Step 1 of the proof of the theorem together with
Huybrechts’ surjectivity of the period map [44, Theorem 8.1] implies that the monodromy
group is of finite index for irreducible symplectic manifolds even when b2 D 4 (for b2 D 3 it
is automatic). For an argument not using Huybrechts’ theorem, see [91, Theorem 2.6].

Remark 8.13. Some ideas similar to those appearing in the proof of Theorem 8.2 have
also been used recently by Huybrechts [48] to prove some finiteness results for hyperkähler
manifolds, and these arguments can likely be adapted to the singular setting.

9. Q-factorial terminalizations

If X is an algebraic variety, then by [9, Corollary 1.4.3] there exists Q-factorial termi-
nalization ⇡ W Y �! X . This is often crucial in the theory of singular symplectic varieties. On
the other hand, even if you are mainly interested in projective symplectic varieties, it is often
necessary to consider also compact Kähler varieties and certainly the methods of [9] are not yet
established in the Kähler case. The main result of this section, Theorem 9.1, partially remedies
this in the case of primitive symplectic varieties. If we start with a primitive symplectic variety
with second Betti number � 5, it establishes the existence of Q-factorial terminalizations on a
bimeromorphic model which is locally trivially deformation equivalent to the initial variety.

8) Or [57, Theorem 1.7] in the smooth case.
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In fact, by Theorem 6.14 the following is slightly stronger, though we expect it to be
equivalent. For a normal variety X we denote by !X the push forward of the canonical bundle
along the inclusion of the regular locus.

Theorem 9.1. LetX be a primitive symplectic variety satisfying b2.X/ � 5. Then there
exist a primitive symplectic variety X 0 which is inseparable from X in (locally trivial) moduli
and a Q-factorial terminalization of X 0, i.e., a proper bimeromorphic morphism ⇡ W Y �! X 0

such that Y has only Q-factorial terminal singularities and ⇡⇤!X 0 D !Y D OY . In particular,
Y is a primitive symplectic variety.

As a consequence of the fact that bimeromorphic varieties without compact curves are
isomorphic, see e.g. the proof of Corollary 6.15, we obtain:

Corollary 9.2. Let X be as in Theorem 9.1, and additionally assume it has Picard rank
zero. Then X has a Q-factorial terminalization.

The proof of Theorem 9.1 is obtained by combining Proposition 5.22 with Corollary 6.11,
Theorems 6.14 and 8.2, and the existence of Q-factorial terminalizations of projective varieties.

Proof of Theorem 9.1. Consider the universal locally trivial deformation X �! Deflt.X/

and choose t 2 Deflt.X/ nearby such that X0 WD Xt is projective. Take a Q-factorial termi-
nalization Y0 �! X0, denote N the qY0

-orthogonal complement of H 2.X0;Q/ in H 2.Y0;Q/,
and consider the universal deformation of the pair

Y0 //

✏✏

X0

✏✏

Def.Y0; N /
p
// Deflt.X0/

given by Proposition 5.22. By Lemma 5.20, we may assume that every fiber of the map
Y0 �! Def.Y0; N / is Q-factorial and by local triviality and Theorem 3.4, every fiber has ter-
minal singularities. In other words, for all s 2 Def.Y0; N / the morphism .Y0/s �! .X0/p.s/ is
a Q-factorial terminalization.

If rrk.X/ D 0, then by Proposition 8.5 and Theorem 8.2 there is a point t 0 2 Deflt.X0/

such that the fiber X 0 WD .X0/t 0 and X are inseparable in moduli. By construction, X 0 has
a Q-factorial terminalization, and by Theorem 6.14, X 0 is bimeromorphic to X . If rrk.X/ D 1,
projective periods are still dense in the orbit closure of the period of X by Theorem 6.9, so the
same argument can be applied by choosing the period of X0 to be in the orbit closure of the
period of X . Finally, varieties X with rrk.X/ D 2 are projective so there the result is known
anyway by [9, Corollary 1.4.3].

As an application, we can give examples of divisorially Q-factorial but not Q-factorial
varieties.

Example 9.3. Consider a projective irreducible symplectic manifold Y of dimension
2n admitting a small contraction ⇡ W Y �! X , where X is a projective primitive symplectic
variety and the exceptional locus of ⇡ is isomorphic to P

n. As ⇡ has connected fibers, P
n
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must be contracted to a point and thus X has an isolated singularity. Such examples can be
realized on the Hilbert scheme Y D S Œnç of n points on a K3 surface S containing a smooth
rational curve. As the contraction is small, the varietyX is not Q-factorial. By [5, Theorem 4.1,
Propositions 4.5 and 5.8], this contraction deforms over a smooth hypersurface in Def.Y /.

Let us denote by ` ⇢ P
n ⇢ Y a line and by L the unique line bundle on Y satisfying

qY .c1.L/; � /D .`; � /, where the right–hand side denotes the pairingN1.Y /Q ˝N 1.Y /Q �! Q.
It follows that c1.L/ is q-orthogonal to the pullback of any ample divisor on X , hence we have
qY .c1.L// D qY .`/ < 0. Replacing X by a small locally trivial deformation, we may assume:

(1) The contraction ⇡ W Y �! X deforms and has P
n as its exceptional set.

(2) The varieties X and Y are Kähler and non-algebraic such that the Picard group of X is
trivial and Pic.Y / has rank one.

(3) There are no divisors on Y , in particular, X is not Q-factorial but divisorially Q-factorial
in the sense of Definition 2.14.

For (3), if Ln were represented by an effective divisor D, then since qX .D/ < 0 it is excep-
tional [12, Theorem 4.5] and hence uniruled [12, Proposition 4.7]. However, the only curves
on Y are the ones contracted by ⇡ .
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