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The global moduli theory of symplectic varieties

By Benjamin Bakker at Chicago and Christian Lehn at Chemnitz

Abstract. We develop the global moduli theory of symplectic varieties in the sense of
Beauville. We prove a number of analogs of classical results from the smooth case, including
a global Torelli theorem. In particular, this yields a new proof of Verbitsky’s global Torelli theo-
rem in the smooth case (assuming b, > 5) which does not use the existence of a hyperkihler
metric or twistor deformations.

1. Introduction

A symplectic variety X (in the sense of Beauville [7]) is a normal variety admitting
a nondegenerate closed holomorphic 2-form o € H%(X'¢, Qg(mg) on its regular part which
extends holomorphically on some resolution of singularities 7 : ¥ — X. If X is compact,
HY(X,0Ox) = 0, and o is unique up to scaling, we say X is a primitive symplectic variety. We
consider these varieties a singular analog of (compact) irreducible symplectic manifolds which
is as general as possible such that a reasonable global moduli theory can still be established.

Irreducible symplectic manifolds are one of the three main building blocks of com-
pact Kéhler manifolds with vanishing first Chern class by a theorem of Beauville-Bogomolov
[6, Théoreme 1], and their geometry is very rich. In particular, Verbitsky’s global Torelli theo-
rem [88, Theorem 1.17] gives a precise description of the global deformations of a symplectic
manifold in terms of the Hodge structure on its second cohomology.

Recent work of Druel, Greb, Guenancia, Horing, Kebekus and Peternell [24, 25, 34,
35, 39, 42] has shown a version of the above Beauville-Bogomolov decomposition theorem
for singular projective varieties with trivial canonical class, see [42, Theorem 1.5], and the
“holomorphic-symplectic” factors! that show up are a special case of the primitive sym-
plectic varieties we consider. This level of generality is important because singularities are
often unavoidable in higher-dimensional geometry, for instance in the minimal model pro-
gram. Our results show that the geometry of singular holomorphic-symplectic varieties enjoys
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D They were called irreducible symplectic by Greb, Kebekus and Peternell [36, Definition 8.16], where
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the same richness as that of smooth ones, and deformation theory — especially deformations to
non-projective varieties — is as essential a part of the picture as in the smooth case. Interest-
ingly, whereas it has proven difficult to produce new deformation types of smooth irreducible
symplectic varieties, in the singular case a number of “new” deformation types — that is, defor-
mation types which do not seemingly arise from holomorphic symplectic manifolds — can be
constructed, see Example 3.2 (2).

Our main result is a global Torelli theorem for primitive symplectic varieties in general
with surjectivity of the period map in the Q-factorial® terminal case. Before stating the theo-
rem, let us fix some notation. The torsion-free part H?(X,Z) := H?(X,Z)/torsion of the
second cohomology of a primitive symplectic variety X carries a pure weight two Hodge struc-
ture (see Lemma 2.1) which is further endowed with an integral locally trivial deformation-
invariant quadratic form gy called the Beauville—-Bogomolov—Fujiki (BBF) form (see Sec-
tion 5.1). Fixing a lattice A and denoting its quadratic form by ¢, a A-marking of X is an
isomorphism u : (H2(X,Z). qx) = (A, q). The set of isomorphism classes of A-marked
primitive symplectic varieties (X, ) is given the structure of an analytic space JJi o by gluing
the bases of locally trivial Kuranishi families (see Definition 6.13). In fact, M A is a not-
necessarily-Hausdorff complex manifold by the unobstructedness of locally trivial deforma-
tions (see Theorem 4.7).

We obtain a period map P : M p — Qp to the period domain 25 C P(A¢) by sending
(X, p) to w(H?°(X)) and it is a local isomorphism (see Proposition 5.5). There is a Hausdorff
reduction H : Mp — M, where M is a Hausdorff complex manifold and H identifies
inseparable points (see Section 8), and we moreover have a factorization

We now state our main result:

Theorem 1.1. Assume that tk(A) > 5. Then for each connected component WM of the
A-marked moduli space WM A we have:

(1) The monodromy group Mon(I) C O(A) is of finite index.

(2) P:IM— Qp is bijective over Mumford—Tate general points and in general the fibers
consist of pairwise bimeromorphic varieties.

(3) P :IM — Q4 is an isomorphism onto the complement of countably many maximal Picard
rank periods.

(4) If moreover one point of W corresponds to a primitive symplectic variety with Q-factor-
ial terminal singularities, then the same is true of every point and P : W — QA is an
isomorphism.

Theorem 1.1 of course also applies to the smooth case, and yields a new proof of
Verbitsky’s global Torelli theorem. Note that QQ-factorial terminal singularities form a natu-

2) There is a subtlety with the definition of Q-factoriality in the analytic category: requiring every divisor to
be Q-Cartier is potentially different from requiring every rank one torsion-free sheaf to have an invertible reflexive
power (see Section 2.12).
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ral class of singularities for symplectic varieties — see Example 3.2 for some examples. First,
such singularities are well suited to MMP techniques (see e.g. Section 7 and Example 3.2 (5)).
Second, symplectic varieties always have canonical singularities, and any projective primitive
symplectic variety X admits a crepant partial resolution with Q-factorial terminal singularities
X’ (a so-called Q-factorial terminalization) whose deformation theory controls that of X (see
Section 5.19). Note that a Q-factorial terminal K-trivial variety does not admit a further crepant
resolution. A version of Theorem 1.1 has been proven by Menet [67] for a symplectic vari-
eties with quotient singularities; see Example 3.2 (4) for an explicit example of a Q-factorial
terminal symplectic variety which does not have quotient singularities.

In [5, Theorem 1.3] the authors prove Theorem 1.1 (with surjectivity in part (3)) in the
case where )t parametrizes primitive symplectic varieties admitting a crepant resolution. The
proof crucially uses that simultaneous crepant resolutions exist in locally trivial families of such
varieties, as then Verbitsky’s global Torelli theorem can be applied to the crepant resolution.
Note that by definition, )t consists of varieties of a fixed locally trivial deformation type which
allows one to prove that either all varieties it parametrizes admit a crepant resolution or none.

The main difficulty in the general setting is that while one could try to reduce to the
QQ-factorial terminal case by passing to a simultaneous Q-factorial terminalization, even in this
case a new strategy is needed as Verbitsky’s proof (as well as Huybrechts’ proof of the surjec-
tivity of the period map [44, Theorem 8.1]) fundamentally uses the existence of hyperkéhler
metrics and twistor deformations. We instead prove Theorem 1.1 directly using global results
on the geometry of the period domain via Ratner theory (as first investigated by Verbitsky
[89, 90]) together with finiteness results coming from algebraic geometry. The surjectivity in
Theorem 1.1 then follows from a generalization to the (Q-factorial terminal case of work of
Kollar, Laza, Sacca and Voisin [57] on projective degenerations using MMP techniques.

In fact, there is another problem with the naive generalization of the argument of [5]:
Q-factorial terminalizations are not guaranteed to exist in the analytic setting. In the projective
case the existence of a Q-factorial terminalization is a consequence of deep results of Birkar,
Cascini, Hacon and M“Kernan [9] on the termination of an appropriate version of the MMP,
but it is not even clear a priori that a symplectic variety can be deformed to a projective one
(although Namikawa [72] has results in this direction). For this reason, we need a projectivity
criterion for symplectic varieties, analogous to Huybrechts’ criterion [44, Theorem 3.11] for
hyperkéhler manifolds:

Theorem 1.2. Let X be a primitive symplectic variety, and assume o € H*(X, Q) is
a (1, 1)-class with gx («) > 0. Then X is projective.

Corollary 1.3. Every primitive symplectic variety is locally trivially deformation equiv-
alent to a projective primitive symplectic variety.

The proof uses a (weak) singular analog of the Demailly—P&un theorem on the numerical
characterization of the Kéhler cone.

As an application of Theorem 1.1, we can in fact conclude that terminalizations of
symplectic varieties exist in the non-projective case, up to a bimeromorphism:

Theorem 1.4. Let X be a primitive symplectic variety with by(X) > 5. Then there is
a primitive symplectic variety X' that is bimeromorphic and locally trivially deformation-
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equivalent to X that admits a Q-factorial terminalization: that is, there exists a (compact)
Q-factorial terminal Kcihler variety Y and a crepant map w - Y — X'.

We view Theorem 1.4 as an indication that the deformation theoretic tools we develop
might be used to generalize the MMP for projective symplectic varieties [23,63] to the Kéhler
setting, and this will be pursued in a subsequent paper.

In addition to the global arguments, the proofs of Theorems 1.1, 1.2, and 1.4 require
a careful analysis of the infinitesimal locally trivial deformation theory of not-necessarily-
projective symplectic varieties. There are a number of new complications all critically stem-
ming from the fact that one can no longer bootstrap classical results on the geometry of
hyperkéhler manifolds via passing to a crepant resolution. In particular, we must provide:

(1) An analysis of the Hodge theory of rational and symplectic singularities in the non-
projective setting, using recent results of Kebekus and Schnell [54] on extending holo-
morphic forms.

(i) An adaptation of the results of Kolldr, Laza, Sacca and Voisin [57] on limits of pro-
jective families in the singular setting. This requires a singular analog of a theorem
of Verbitsky saying that for a primitive symplectic variety X, the cup product map
Symf H2(X, Q) — H?k(X, Q) is injective for 2k < dim X.

(iii) A description of the deformation theory of terminalizations. In particular, this requires
a careful treatment of QQ-factoriality in the analytic category, as there are several non-
equivalent generalizations of the corresponding notion in the algebraic category.

Previous work. In [5] the authors extended many of the classical results about compact
irreducible symplectic manifolds to primitive symplectic varieties admitting a crepant resolu-
tion through the study of their locally trivial deformations. Menet [67] has proven a version of
the global Torelli theorem for certain primitive symplectic varieties with orbifold singularities
using twistor deformations. There are many interesting ideas in his work that have influenced
parts of the present paper, especially concerning the projectivity criterion. The local deforma-
tion theory (and in particular the local Torelli theorem) of primitive symplectic varieties has
been treated by many authors, notably by Namikawa [70,71,73] and Kirschner [55].

QOutline. In Section 2 we review basic notions and results about the Hodge theory of
rational singularities, Kéhler spaces, big and nef classes, and Q-factoriality in the analytic
category. Section 3 is devoted to primitive symplectic varieties and their Hodge theory. In
Section 4 we show locally trivial deformations of symplectic varieties are unobstructed. In
Section 5 we recall the BBF form and deduce the local Torelli theorem. We also analyze the
deformation theory of Q-factorial terminalizations and prove some topological results, includ-
ing the existence of Fujiki relations and the analog of a theorem of Verbitsky discussed in (ii)
above. In Section 6 we prove a (weak) singular analog of the Demailly—Pdun theorem and apply
it to deduce the projectivity criterion, Theorem 1.2 (see Theorem 6.9). We also prove analogs
of results of Huybrechts [44] and [5] on the inseparability of bimeromorphic symplectic vari-
eties in moduli, including part (2) of Theorem 1.1 (see Theorem 6.14 and Corollary 6.17). In
Section 7 we indicate the necessary changes to [57] to show the existence of limits of projective
families for which the period does not degenerate in the (Q-factorial terminal setting. In Sec-
tion 8 we prove parts (1), (3), and (4) of Theorem 1.1 (see Theorem 8.2). In Section 9 we apply
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the deformation theory of terminalizations and the global Torelli theorem to prove Theorem 1.4
(see Theorem 9.1).

For those interested in the proof of the global Torelli theorem in the smooth case, Sec-
tion 8 can be read independently, as the results used from previous sections are standard in the
smooth case?.

Notation and conventions. A resolution of singularities of a variety X is a proper sur-
jective bimeromorphic morphism 7 : ¥ — X from a nonsingular variety Y. The term variety
will denote an integral separated scheme of finite type over C in the algebraic setting or an
irreducible and reduced separated complex space in the complex analytic setting.

Acknowledgement. We benefited from discussions, remarks, emails of Valery Alex-
eev, Andreas Horing, Daniel Huybrechts, Stefan Kebekus, Manfred Lehn, Thomas Peternell,
Antonio Rapagnetta, Bernd Schober, and Christian Schnell. The first named author would like
to thank Giulia Sacca for conversations related to Section 7. Both authors are grateful to the
referees for a very careful reading and many suggestions that have greatly improved the article.

2. Preliminaries

A complex variety X is said to have rational singularities if it is normal and for any
resolution of singularities 7 : ¥ — X and any i > 0 one has ROy = 0. Recall that the
Fujiki class ¢ consists of all those compact complex varieties which are meromorphically
dominated by a compact Kdhler manifold, see [28, Definition 1.1]. This is equivalent to saying
that there is a resolution of singularities by a compact Kéhler manifold by [28, Lemma 1.1].

The following lemma is well known; we refer to [5, Lemma 2.1] for a proof.

Lemma 2.1. Let 7w : Y — X be a proper bimeromorphic morphism where X is a com-
plex variety with rational singularities. Then, n* : HY(X,Z) — HY(Y,Z) is an isomorphism
and the sequence

0 — H*(X,7) 2> H*(Y,Z) — H(X, R®>m.7)

is exact. In particular, if X is compact and Y is a compact manifold of Fujiki class €, then
H(X,Z) carries a pure Hodge structure for i = 1,2. Moreover, n* HV1(X,Z) is the sub-
space of HVY(Y, 7Z) of all classes that vanish on the classes of m-exceptional curves.

For a complex space X, recall that ng] denotes the sheaf of reflexive p-forms:

Definition 2.2. Let X be a complex space. The module of reflexive p-forms on X is
defined as
Ql?l.— (@),

where FV = Homg, (F, Ox) is the dual of a sheaf of @y -modules.

3) Except for the required results from [57], which can be quoted without modification.
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If X is a reduced normal complex space and j : U < X denotes the inclusion of the
regular locus, then ng] = Jx Qg. For a resolution of singularities 7 : ¥ — X we moreover
have 74 QI; =Q gf ] by [54, Corollary 1.7] if in addition X has rational singularities. If finally
X is also of Fujiki class %', then for p + g < 2 the graded pieces of the Hodge filtration can be
identified with H7(X, @71, see e.g. [5, Corollary 2.3].

2.3. Kiihler spaces. The notion of a Kéhler complex space, which we now recall, is
due to Grauert [32, Section 13, 3., p.346]. Recall that a smooth function on a complex space
Z is by definition just a function f : Z — R such that under a local holomorphic embedding
of Z into an open set U C C", there is a smooth (i.e., C °°) function on U (in the usual sense)
that restricts to f on Z.

Definition 2.4. Let Z be a complex space. A Kdhler form for Z is given by an open
covering Z = | J;¢; U; and smooth strictly plurisubharmonic functions ¢; : U; — R such that
on Uj; := U; N Uj the function ¢; |y;; — ¢j|u;; is pluriharmonic, i.e., locally the real part of
a holomorphic function.

There are two important sheaves related to Kihler forms. We denote by PHz the sheaf
of pluriharmonic functions on Z and by C3° the sheaf of smooth real-valued functions on Z.
Then we have the sequences

2.1) 0—PHz - C;°— C;°/PHz — 0
and
j R
2.2) 0>Ry 075 PH, — 0,

where i stands for multiplication by ~/—1 and R is given by taking the real part. Thus, a Kihler
form on Z gives rise to an element w € H%(Z,C 7°/PHZz). Successively applying the con-
necting homomorphisms of (2.1) and (2.2), we obtain two classes [w] € H 1(Z,PHz) and
[w] € H?(Z,R). The latter is called the Kdhler class of .

Definition 2.5. Let Z be a reduced complex space. A Kihler class on Z is a class
k € H*(Z,R) which is the Kihler class of some Kihler form on Z. The Kihler cone is the set

Kz :={a € H*(Z,R) | o = [w] for some Kihler form w}.

Remark 2.6. There are several things we wish to observe.

(1) It follows from the definition that for a compact complex space Z the Kihler cone
XKz is open in the image of H'(Z,PHz) — H?(Z,R). Indeed, being strictly plurisub-
harmonic is stable under small perturbations and H%(Z, C 7°/PHz) — H 1(Z,PHy) is
surjective as C2° is a fine sheaf.

(2) We can describe the Kéhler forms alternatively as follows: these are Kéhler forms w
on Z'™ in the usual sense such that for every p € Z there is an open neighborhood
p € U C Z and a closed embedding U < V into a smooth K#hler manifold, where the
restriction of the Kéhler form of V' to U™8 equals @|yre.

(3) Let us observe that by applying the (real) operator {90 a Kihler form also gives rise
to a global section of A;l, where ,AIZ”q denotes the sheaf of smooth (p, g)-forms with
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C-coefficients on Z — which is defined in the same manner as the sheaf of C °°-functions.
This is because d0¢; = 00¢ ; on Uj; as 00 annihilates pluriharmonic functions. The
cohomology class of w in H%(Z, 4% ) is the image of the Kéhler class under the natural
map induced by the morphism Rz — A°%,.

Let us recall the following properties of Kihler spaces. We will use throughout the text,
sometimes without explicit mention.

Proposition 2.7. The following statements hold:
(1) Every subspace of a Kdhler space is Kdhler.
(2) A smooth complex space is Kdhler if and only if it is a Kdahler manifold in the usual sense.

(3) Every reduced Kiihler space has a resolution of singularities by a Kdhler manifold.
Proof. 'This is a consequence of [86, Section II, 1.3.1 Proposition]. o

The proposition in particular implies that compact Kihler spaces are of Fujiki class %
so that their singular cohomology groups carry a mixed Hodge structure. For X € ¢, we may
thus define

(2.3) H*k (X, R) := Hom(R(—k), H*(X,R))
= F*H?*(X,C)n H?**(X,R).

Note that the weights that show up in the mixed Hodge structure on H¥ (X, Z) are < k — the
argument for class ¢ varieties is the same as in the algebraic case, cf. [78, Theorem 5.39].

Proposition 2.8. Let X be a reduced compact Kiihler space. Then Xy C HV1(X,R).

Proof. The claim is easily verified using a construction of Ancona and Gaveau [2] some
properties of which we briefly recall. In this proof, all references are to [2] if not mentioned
otherwise. For a reduced complex space X, in [2, Section I1.2] they construct a complex A%
which is a fine resolution of the constant sheaf Cy . In fact, A% is not unique but we may fix one
such complex once and for all. A section of A% by [2, Section II.2, Definition 2.1] is a collec-
tion of differential forms (of shifted degrees) on an associated hypercovering {Xy — X }sey.,
where the Xy are smooth. In [2, Section II.3] they use this complex to construct Deligne’s
mixed Hodge structure on H k(X,7)if X is Kihler (or more generally of Fujiki class %). As
discussed in [2, Section I1.2.8], the complex A)'( of smooth differential forms on X (introduced
in Remark 2.6 above) is a subcomplex of A§ and this inclusion clearly sends the filtration

FPAK = P A
r=p

to the Hodge filtration. For a Kihler form o = {¢;};ie; € H(X, C¢°/PHy), the claim now
follows, because v/—100{¢; };es € F! A}( (X). |

Observe that if in addition X has rational singularities, the claim of the proposition simply
follows from Lemma 2.1 and strictness of the pullback for the Hodge filtration.
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2.9. Big and nef cohomology classes. We briefly recall the definition of d9-cohomol-
ogy for a complex manifold X. As before, we denote :A;é‘( respectively A)’}’q the sheaf of dif-
ferential k-forms respectively (p, g)-forms with values in C. Then d0-cohomology is defined
as

ker(d : AR (X) - ALTIT (X))
im(i90 : AL (X) - ARY(X))

Similarly, we write Ha%’p (X, R) if we take cohomology of R-valued differential forms
(which is different from zero only for p = ¢). Note that i d0 in the above formula defines a real
operator.

In algebraic geometry, bigness and nefness are important notions for line bundles. In the
complex analytic world, these notions can also be defined for real cohomology classes as we
now recall.

p.q R
HZI(X) =

Definition 2.10. Let X be a compact complex manifold. We call a cohomology class
o€ Halé’1 (X, R) nef if for some hermitian form w on X and for every ¢ > 0 it can be repre-
sented by a smooth (1, 1)-form 7, such that n, > —ew. A Kdhler current is a closed positive
(1, I)-current T such that 7 > w in the sense of currents. A class @ € Halg;l (X) is called big if
it can be represented by a Kéhler current.

We refer to [37, Chapter 3, 1.] or [20, Chapter 1] for a general reference on currents and
notions of positivity.

Remark 2.11. On compact manifolds of Fujiki class ¢ (in particular on compact Kihler
manifolds) the natural map from aé—cohomology to de Rham cohomology is injective and gives
an identification of H a%q (X) with HP?-9(X). This follows directly from the 09-lemma, see e.g.
[18, (5.21) and (5.22) Theorem] for manifolds of class %

2.12. Q-factoriality. Let us spend a moment to discuss the notion of QQ-factoriality.
A normal algebraic variety Z is called Q-factorial if for every Weil divisor D on Z there
is m € N such that mD is Cartier. In the algebraic category, QQ-factoriality is local for the
Zariski topology. Recall from [41, Proposition 2.7] that Weil divisor classes are in bijective
correspondence with isomorphism classes of reflexive sheaves of rank one: to a Weil divisor D
on Z one associates the sheaf @z (D) defined by

U 0z(D)U):={f €C(Z)| Dly +div(f|y) = 0}

which is easily seen to be reflexive. So (Q-factoriality can be equivalently characterized using
reflexive sheaves.

Finally, assume that Z is compact, let 7 : Z" — Z be a resolution of singularities, and let
Eq, ..., Ey be the prime divisors contained in the exceptional locus Exc(sr). By [58, (12.1.6)
Proposition], the variety Z is Q-factorial if and only if

24) im(H*(Z',Q)— H°(Z, R?n:Qz/)) =im (@ Q[E/]— H (z, Rzn*(@z/)).

i=1
See also [73, Section 12 (i)] for an argument for the only if-direction. We summarize this
discussion as follows.
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Lemma 2.13. Let Z be a normal algebraic variety over C. Then the following are
equivalent:

(1) Z is Q-factorial.
(2) Every Zariski open subset U C Z is Q-factorial.
(3) For every reflexive sheaf L on Z of rank 1, there isn € N such that (L®™")VV is invertible.

If in addition Z is compact and has rational singularities, the above statements are equivalent
to:

(4) Equality (2.4) holds for some resolution w - Z' — Z.

Proof.  For the equivalence of (1) and (3) one only needs that for a Weil divisor D on Z
we have

Oz(nD)=(0z(D)®...® Oz(D))""

n-times

which can be obtained by pushforward and the fact that it holds on the regular part. |

In the analytic category, the situation is a little more subtle. We have several different
notions which turn out to be non-equivalent, see Proposition 2.15 and Example 9.3.

Definition 2.14. A normal complex analytic variety Z is called divisorially Q-factorial
if for every Weil divisor D on Z there is m € N such that mD is Cartier and it is called
Q-factorial if for every reflexive sheaf L on Z of rank 1, there is n € N such that (L®")VV
is invertible. We say that Z is locally analytically (divisorially) Q-factorial if every open set
U C X in the Euclidean topology is (divisorially) Q-factorial.

Clearly, local analytic (divisorial) Q-factoriality implies (divisorial) Q-factoriality. The
converse however is not true. The reason is that there are usually many more local divisors than
global divisors, e.g. one cannot obtain a global divisor by taking the closure of a divisor on
a small open subset. There might be no global divisors at all, see e.g. Example 9.3, which is
also the reason why divisorial Q-factoriality is not the right property to ask for and one should
rather work with Q-factoriality (defined in terms of rank one reflexive sheaves).

Proposition 2.15. Let Z be a normal complex analytic variety and consider the follow-
ing statements:

(1) Z is locally analytically Q-factorial.

(2) Z is locally analytically divisorially Q-factorial.
(3) Z is Q-factorial.

(4) Z is divisorially Q-factorial.

Then we have the following implications:

(H==0)

||

2) == ).



10 Bakker and Lehn, The global moduli theory of symplectic varieties

Moreover, suppose Z is also compact of class € with rational singularities. Then Z is
Q-factorial if and only if for some resolution w : Z' — Z we have

m
2.5) im(Pic(Z")qg — H°(Z, R*74Qz/)) = im<@ Q[Ei{] — H°(Z, Rzn*Qz/)).
i=1
Proof. 'The implications (1) = (3) = (4) and (1) = (2) = (4) are immediate.
The last part is a slight adaption of Kollar and Mori [58, (12.1.6) Proposition], replacing
(2.4) with (2.5) which is what is actually used there. Briefly, if Z is Q-factorial, then for any line
bundle M on Z’, the sheaf L := (s M)V is reflexive and therefore 7*((L¥)VV) =~ M*(E)
for some divisor £ whose support is contained in the exceptional locus. Hence,
Pic(Z')q = 7" Pie(Z)q + ) QIEi].
i
which implies (2.5). Conversely, if (2.5) is satisfied, then for any rank one reflexive sheaf L
on Z we can find a divisor E whose support is contained in the exceptional locus and for which
M := (n*L)VY(E) is numerically trivial on fibers. But then by [58, (12.1.4) Proposition],
75 (M) is a line bundle for some k, and therefore by normality (L¥)VV is invertible. m]

3. Symplectic varieties

For the remainder of this paper, we will use the term (primitive) symplectic variety in the
following sense.

Definition 3.1. Following Beauville [7], a symplectic variety is a pair (X, o) consisting
of a normal variety X and a closed holomorphic symplectic form o € H%(X "¢, 9)2() on X'
such that there is a resolution of singularities 7 : ¥ — X for which 7 *¢ extends to a holomor-
phic form on Y. A primitive symplectic variety is a normal compact Kéhler variety X such that
HY(X,0x) =0and HO(X", 9)2() = Co such that (X, o) is a symplectic variety.

Greb, Kebekus and Peternell introduced a notion of irreducible holomorphic-symplectic
variety (more restrictive than ours) in [36, Definition 8.16] which serves as one of the three
building blocks in a decomposition theorem (due to Druel, Greb, Guenancia, Horing, Kebekus
and Peternell, see introduction for references). Matsushita [66, Definition 1.6] introduced the
related notion of cohomologically irreducible symplectic varieties. The definition we use here
appeared before in Schwald [84, Definition 1] for projective varieties under the name irre-
ducible symplectic. We chose to work with the above definition because it seems to be the
most general framework that allows for a general moduli and deformation theory similar to the
smooth case. We prefer however the name primitive over irreducible symplectic for the lack of
a decomposition theorem. This fits together with Menet’s usage [67, Definition 3.1].

Example 3.2. (1) If X is a primitive symplectic variety, then so is:

e any contraction, that is, X’ for any proper bimeromorphic f : X — X’ onto a normal
Kihler space,

* any quotient of X by a finite group of symplectic automorphisms [7, Proposition 2.4],

* any small locally trivial deformation (see Corollary 4.11 below).



Bakker and Lehn, The global moduli theory of symplectic varieties 11

(2) By Nikulin [74] any symplectic involution ¢ of a K3 surface S has eight fixed points.
The quotient X of the Hilbert scheme S of n > 3 points by ¢ has Q-factorial terminal
singularities by [59, Proposition 5.15] and Theorem 3.4 (3) below.

Forn =2, X has (g) = 28 isolated singularities and a K3 surface of transverse A sin-
gularties, corresponding to the 28 fixed reduced subschemes and the closure of the locus of
reduced orbits, respectively (see for example [13, Section 16]). It is therefore not terminal.
The QQ-factorial terminalization Y is obtained by blowing up the K3 surface. The second Betti
number of X is 15, and so the locally trivial deformation space of X is 13-dimensional while
Y deforms in one dimension higher (see Theorem 4.7 below). A complete projective family of
this deformation type is produced in [14]; see [27] for some other “new” deformation types.

(3) There is a cubic fourfold Z C P> with an order 11 automorphism (see for example
[68]). Its Fano variety of lines F' has a symplectic automorphism o with isolated fixed points,
and the quotient X = F /o is a Q-factorial terminal primitive symplectic variety with by = 3.
It follows from [67, Theorem 3.17 and Theorem 5.4] that the only deformation of X is the
twistor deformation.

(4) Let S be a projective K3 surface, and v € H*(S,Z) an algebraic Mukai vector with
v2 > 0. Then for k > 1, the moduli space X = M(kv) of stable sheaves of Mukai vector kv
with respect to a generic polarization is a primitive symplectic variety. Moreover, X is always
locally factorial and terminal [51, Theorem A] unless k = 2 and v? = 2 (in which case X
admits a resolution by an irreducible symplectic manifold — the O’Grady tenfold [76]). The
singularities of M (kv) can be non-quotient singularities, as the completions of the local rings
are often not (even analytically) Q-factorial — see [S1, Remark 6.3]. This is because analytically
locally or étale locally, these examples admit small crepant resolutions (but not globally).

(5) Forthcoming work of Sacca [80] shows using MMP techniques that a (projective)
Lagrangian fibration which extends in codimension 2 admits a compactification as a Q-factorial
terminal symplectic variety. This for example applies to show that if f : X — B is a Lagrangian
fibration of a smooth (projective) irreducible symplectic variety which is smooth over U C B,
then any fibration isogenous to £ ~!(U) — U admits such a compactification.

(6) For a possibly singular cubic fourfold Y C P> not containing a plane, it was shown in
[62, Theorem 3.3] that the variety M;(Y) of lines on Y is a symplectic variety birational to the
second punctual Hilbert scheme of an associated K3 surface. Hence, M (Y) admits a crepant
resolution by an irreducible symplectic manifold, see [62, Corollary 5.6]. A similar statement is
deduced for the target space Z(Y') of the MRC-fibration of the Hilbert scheme compactification
of the space of twisted cubics on Y, see [62, Theorem 1.1, Corollaries 5.5 and 6.2].

Note that even for smooth X the notion of a primitive symplectic variety is a priori more
general than that of an irreducible symplectic manifold. However, we do not know if there
are smooth primitive symplectic varieties which are not irreducible symplectic manifolds. By
Lemma 3.3 below such a variety must have dimension > 6.

Lemma 3.3. Let X be a smooth primitive symplectic variety of dimension < 4. Then X
is an irreducible symplectic manifold (in the classical sense).

Proof. For dim X = 2 this is well known, so let us assume dim X = 4.
If X is a smooth primitive symplectic variety in our sense, the Beauville—Bogomolov
decomposition theorem yields that a finite topological cover X — X of X splits as a product
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X =~ H xC x T, where H is a product of irreducible symplectic manifolds, C a product of
strict Calabi—Yau varieties, and 7" a complex torus. From the existence of a symplectic form
on X (by pullback from X') we deduce that the factor C is trivial.

By assumption, H!(Ox) = 0 and thus H3(Ox) = 0 by Serre duality. Moreover, by the
unicity of the symplectic form we in fact have y(OQx) = 3. If there is a torrus factor, then
xO0g) =0 contradlctlng 1O %) = dy(Ox), where d is the degree of the cover, so the factor
T is trivial. If X is a product of K3 surfaces, then y(O ) = 4, which is impossible. Thus, X
is irreducible symplectic, so that d = 1, and thus X is irreducible symplectic as well. m)

It is unclear whether the statement of Lemma 3.3 holds in higher dimensions. It is worth-
while noting that there is a singular example of a primitive symplectic variety due to Matsushita
[65], see also [83, Lemma 15] and [84, Example 29], which has the right cohomological invar-
iants but is a torus quotient. Schwald’s account nicely illustrates how the geometry of primitive
symplectic varieties may deviate from the one of irreducible symplectic manifolds.

We collect the following basic results about symplectic varieties which are due to work
of Beauville, Kaledin, and Namikawa; we give precise references in the proof.

Theorem 3.4 (Beauville, Kaledin, and Namikawa). The following statements hold:

(1) A normal variety is symplectic if and only if it has only rational Gorenstein singularities
and its smooth part admits a holomorphic symplectic form. In particular, a symplectic
variety has rational singularities.

(2) Let X be a symplectic variety and consider the stratification X = Xo D X1 D ...,
where X1 is the singular part of X; endowed with the reduced structure. Then the
normalization of every irreducible component of X; is a symplectic variety. In particular,
the singular locus of a symplectic variety has even codimension.

(3) A symplectic variety X has terminal singularities if and only if codimy X*"¢ > 4.

Proof. At least for algebraic varieties, this result is well known. We give a sketch of the
argument and comment on why the arguments hold in the analytic context as well.

(1) The only if direction is proven in [7, Proposition 1.3] and is valid in the analytic
context as well. The converse follows from [54, Corollary 1.7].

(2) The existence of the stratification is [50, Theorem 2.3]. It is not claimed there that
Xitv1 = (Xl.smg)red, however, that is how the stratification is constructed, see [50, Proposi-
tion 3.1]. The decomposition a priori only holds on the formal level by Kaledin’s result,
however by [4, Corollary (1.6)] a formal isomorphism implies the existence of an isomorphism
of analytic germs. We refer to Remark 3.6 for why Kaledin’s results also apply in the analytic
situation.

(3) For algebraic varieties, this statement is [69, Corollary 1]. The proof is a bit involved
so we take the opportunity to use Kebekus—Schnell’s functorial pullback of reflexive differential
forms and Kaledin’s decomposition theorem to write down a simple proof that also works in
the analytic setting. We do not claim originality, the argument expands on an observation by
Namikawa (see [69, footnote on page 1 and Section 11]).

By [50, Theorem 2.3], the codimension of the singular locus is even, and if x € X sing
is a general point of an irreducible component of X" of codimension 2, the germ (X, x)
is isomorphic to the product of a smooth germ and the germ of rational double point. Such
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a product however does not have terminal singularities. If codim X*"¢ > 4, we take a resolu-
tion 7 : ¥ — X and assume that £ C Y is a divisor with vanishing discrepancy. Then Y is
symplectic at the generic point of E and w(E) C X*™. Let us consider a diagram

E——FE—Y

1=

¥—— X,
4

where X is a resolution of 7(E) and E’ — E is a resolution. Then by [54, Theorem 14.1] one
can pullback the symplectic form along ¢ such that 7'*¢*o = ¥ *n*o. The pullback ¥ *7*o
has one-dimensional radical at the general point of E’ and ¢*o is generically symplectic by
Kaledin’s result. This is a contradiction to dim X < dim X — 4. O

As a direct consequence of Theorem 3.4 and Lemma 2.1 we infer:

Corollary 3.5. Letr X be a compact symplectic variety. Then the Hodge structure on
H?(X,Z)y is pure. O

Remark 3.6. Kaledin’s article [50] is formulated for complex algebraic varieties, but
his results are used in Theorem 3.4 for arbitrary symplectic varieties. Let us comment on
why they carry over to the analytic setting. The crucial ingredient from algebraic geometry
in Kaledin’s proofs is the use of functorial mixed Hodge structures on cohomology groups of
complex projective algebraic varieties and there is no such structure on the cohomology of arbi-
trary complex varieties. However, Kaledin only uses it for fibers of resolutions of singularities
which, also in the analytic category, can be chosen projective. Actually, these fibers are always
compact complex varieties of Fujiki class ¢, which is sufficient.

With this in mind, Kaledin’s proofs work almost literally for analytic varieties. More
precisely, one first shows using mixed Hodge structures that Kaledin’s proofs yield analogs
of [50, Lemma 2.7] and [50, Lemma 2.9] in the analytic setting. These are the key technical
ingredients to prove the stratification and formal product decomposition [50, Theorem 2.3]
as well as [50, Theorem 2.5] which relates the symplectic and Poisson structure. Other than
mixed Hodge theory, Kaledin mainly uses Poisson structures, commutative algebra, or direct
geometric arguments which all make sense also in our setting. Finally, also semi-smallness
(see [50, Lemma 2.11]) is a consequence of geometric properties of the symplectic form
and [50, Lemma 2.9].

4. Deformation theory

Definition 4.1. A deformation of a compact complex space Z is a flat and proper
morphism 2 — S of complex spaces together with a distinguished point 0 € S and an iso-
morphism of the fiber of 2 — S over 0 with Z. A deformation 7 : 2 — S is called locally
trivial at 0 € S if forevery p € Z = 7~ 1(0) there exist open neighborhoods % C 2 of p and
So C S of 0 such that Z = U x Sy over Sg, where U = % N Z. The deformation is called
locally trivial if it is locally trivial at each point of S. We speak of a locally trivial family or
locally trivial morphism w : 2 — § if we do not specify 0 € S and the fiber over it.
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For most properties and statements we should rather speak about the morphism of space
germs (%, Z) — (S,0). All deformation theoretic statements have to be interpreted as state-
ments about germs. Considering deformations and locally trivial deformations gives rise to two
deformation functors; in fact, the functor i)h of locally trivial deformations of Z is a subfunc-
tor in the functor Dz of all deformations of Z . They have tangent spaces Ti)n = HY(Z,Tyz)
and if Z is reduced Tp, = Ext!(Qz,07z), respectively. Note that H'(Z, TZ) is a subset
of Ext!(Qz,©z) by the local-to-global spectral sequence for Ext. We refer to [85, Proposi-
tion 1.2.9] (which actually works for arbitrary schemes) respectively [85, Theorem 2.4.1 (iv)].
Even though Sernesi’s book treats deformations of algebraic schemes, the arguments apply lit-
erally for deformations of complex spaces, mainly because zero-dimensional complex spaces
are nothing else but zero-dimensional C-schemes of finite type.

4.2. Versality and universality. Recall that a deformation (%, Z) — (S, 0) is called
versal if for every deformation (27, Z) — (S’,0) of Z there is a map ¢ : (S’,0) — (S, 0) of
(germs of) complex spaces such that 2 xg S’ =~ Z”. It is called miniversal if moreover the
differential Ty o : Ts’,0 — T's,0 is uniquely determined. The deformation is called universal if
furthermore the map ¢ is unique. Clearly, every universal deformation is miniversal and every
miniversal deformation is versal. The different notions of versality are defined analogously for
other deformation problems such as locally trivial deformations.

4.3. Existence of a miniversal deformation. Recall that miniversal® deformations
exist by [33, Hauptsatz, p. 140], see also [22, Théoreme principal, p.598]. More precisely,
it is shown in [33] that there exist miniversal deformations 2 — S of a given compact com-
plex space Z which are versal in every point of S. We will frequently write S = Def(Z). The
family & — Def(Z) is called the Kuranishi family and Def(Z) is called Kuranishi space.

If Z is a complex space satisfying H°%(Z, Tz) = 0, then every miniversal deformation
is universal.

4.4. Locally trivial miniversal deformations. Recall from [26, (0.3) Corollary] that
for a miniversal deformation 2~ — Def(Z) of a compact complex space Z there exists a closed
complex subspace Def!'(Z) C Def(Z) of the Kuranishi space parametrizing locally trivial
deformations of Z. More precisely, the restriction of the miniversal family to this subspace,
which by abuse of notation we denote also by 2 — Def''(Z), is a locally trivial deformation
of Z and is miniversal for locally trivial deformations of Z. When speaking about locally triv-
ial deformations we will usually use the terms versal, miniversal, universal with respect to the
functor of locally trivial deformations.

Lemma 4.5. Let S be a complex space and let | : 2 — S be a locally trivial family
whose fiber X above a point 0 € S is a primitive symplectic variety. Denote by j : U — 2
the inclusion of the regular locus. Then in a neighborhood of 0 € S we have:

(1) L:=(foj )*Q%/ /s is an invertible sheaf and compatible with arbitrary base change.
(2) The following natural map is an isomorphism:

(4.1) Toys ® [*L— jsxQyys.

4 Note that Grauert uses the term complete (resp. versal) for what we call versal (resp. miniversal).
Nowadays, our terminology seems to be more common; some authors use semi-universal instead of miniversal.




Bakker and Lehn, The global moduli theory of symplectic varieties 15

Proof. By local triviality, the sheaves j*ng/s’ JxTy s, Qg s, Ty s are all flat
over S and compatible with arbitrary base change. As push forward is compatible with flat base
change, invertibility of L can be tested on the completion. By the theorem on formal functions
we may reduce (1) to the case where S is the spectrum of an artinian local C-algebra of finite
type. Then by the primitivity assumption on X and [5, Lemma 2.4], the sheaf L is invertible and
compatible with arbitrary base change in a neighborhood of 0. As every section of L determines
a morphism T, /s — 4,5, we obtain a canonical morphism j«Ty /s ® f*L — j«Qy/s
and (4.1) is just the composition with Ty-/s — j«Ty s tensored with the pullback of L.
It then follows that (4.1) is an isomorphism in a neighborhood of 0 because it is over the
special fiber. o

Lemma 4.6. Let X be a primitive symplectic variety. Then H°(X, Ty) = 0 and every
miniversal deformation of X is universal.

Proof. Letmw : Y — X be aresolution of singularities by a Kéhler manifold and denote
by j : U — X the inclusion of the regular part. Then we have Ty =~ 7,Qy by Lemma 4.5
and [54, Corollary 1.8]. Consequently,

H(X,Tx) = H(Y,Qy) = H'(Y)
by the Dolbeault isomorphism and the complex conjugate of the latter is
H'\(Y) = H'(Y.Oy) = H' (X, Ox)

again by Dolbeault and by rationality of singularities. We conclude the proof with the obser-
vation that H!(X, Ox) = 0 by definition of a primitive symplectic variety. |

The proof of the following result is similar to the proof of [5, Theorem 4.1]. For lack of
a crepant resolution, some minor changes are necessary which is why we include a proof.

Theorem 4.7. Let X be a primitive symplectic variety. Then the space Def'(X) of
locally trivial deformations of X is smooth of dimension h'>'(X).

Proof. Smoothness is deduced using Kawamata—Ran’s T !-lifting principle [52, 53,791,
see also [38, Section 114], [61], [60, VI.3.6] for more details. We have to show the following.
Let 2 — S be alocally trivial deformation of X, where S = Spec R for some Artinian local
C-algebra R with residue field C, let S” C S be a closed subscheme, and let

X =2 xg S — 8
be the induced deformation. Then we need to prove that the canonical morphism
H'(Tys) —~ H'(Tys)

is surjective.

Let j : % — 2 the inclusion of the regular part. By Lemma 4.5, it suffices to show that
H'(j«Qys) = H'(j.Qys/) is surjective where j : %' = U xg S’ — 2" is the regular
partof 2/ — S’. However, by [5, Lemma 2.4] the R-module H ' (j«Q4, /s) is locally free and
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compatible with arbitrary base change. In other words,
H'(jsQyrys) = H' (j+Qus) ®r R,

where S’ = Spec R’, and the map is clearly surjective. Thus, it follows from the 7 !-lifting
criterion that the space Def''(X) is smooth.

Recall that the tangent space to Def''(X) at the origin is H!(Tx) = H'(j«Qy), which
by [5, Corollary 2.3] has dimension 4!*1(X). By the smoothness assertion we proved before
the dimension of the tangent space is the dimension of Def''(X). O

As an application, we deduce the existence of a simultaneous resolution.

Definition 4.8. Let 2° — S be a flat morphism between complex spaces with reduced
and connected fibers. A simultaneous resolution of 2~ — S is a proper bimeromorphic S-mor-
phism 7 : % — 2 such that %" — § is smooth. A simultaneous resolution is called strong if
moreover 7 is an isomorphism over the complement of the singular locus of 2~ — §.

It follows from the definition that for every s € S the fiber %; — Z is a resolution of
singularities. It is well known that simultaneous resolutions do not always exist. For example,
let f: 2 — S be a family of elliptic curves, where 2 is smooth and S is a smooth curve.
Suppose that there is a point 0 € S such that f is smooth over S \ {0} and 2y = f~1(0)
is a reduced nodal rational curve. If there were a simultaneous resolution 7 : % — 27, the
exceptional set of 7 would be a divisor £ C ¢. Then w(E) C 2" would be a finite set which
contradicts smoothness of % — § because this map would have some reducible fibers.

Lemma 4.9. Let & — S be a locally trivial deformation of a reduced compact com-
plex space X over a reduced complex space S and let % — S be the regular part of 2" — S.
Then there exists a simultaneous resolution w : % — 2~ of 2" which is obtained by succes-
sive blowing ups along centers which are smooth over S. Moreover, & can be chosen to be an
isomorphism over U .

Proof. By [8], resolution of singularities works algorithmically, see also [92]. Given
a global embedding X C M into a smooth space M, Bierstone and Milman define an invariant
L= invg( : M — T with values in an ordered set in [8, Theorem 1.14 and Remark 1.16] such
that the locus where ¢ is maximal is smooth and Zariski closed. As explained in [8, proof
of Theorem 1.6, p.285], successively blowing up the maximal locus of ¢ gives an algorithmic
resolution. The invariant ¢ a priori depends on the embedding X C M . However, it is explained
in [8, 13.] that it is in fact independent of the local embedding. It only depends on the local
ring at the point and on the history of the blow up (which is how they obtain resolution results
without the hypothesis of X being embedded).

Therefore, we may apply the same argument in the relative setting for locally trivial
deformations. Given a point p € 2" mapping to s € S, we choose neighborhoods V of p in
Z and Sy of s in S and a trivialization ¢ : 'V = V x S, where V = V N 2. The maximal
locus of the Bierstone—Milman invariant ¢ defines a smooth closed subset C C V"¢ of the
singular locus V"¢ C V. By local triviality, the singular locus V"2 of 'V — Sy is identified
under ¢ with V52 x Sy. Thanks to the above mentioned independence of ¢, the closed subsets
C x Sp glue to give a center € C 2 for a blow up and € is smooth over S. Moreover, the
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blow up of 2" in € is by construction again locally trivial over S, hence we can repeat the
process and obtain the sought-for resolution 7 : % — 2. |

Remark 4.10. As the morphism 7 : % — 2 from the preceding lemma is obtained
by successive blow ups in centers which are smooth over S, every such blow up family is
locally trivial over S and moreover, also the morphism 7 is itself locally trivial. More pre-
cisely, for every open sets V C .2~ and So C S admitting a trivialization ¢ : V = V x Sy
where V' is the intersection of 'V with some fiber over a point of Sp, there is a trivialization
¢ (V) = n~ (V) x Sg such that the diagram

7N (V) —— 771 (V) x So

| |

V——V xS

commutes (and similarly for any intermediate step of the resolution procedure).

Corollary 4.11. Every small locally trivial deformation of a primitive symplectic vari-
ety X is a primitive symplectic variety. In particular, the locally trivial Kuranishi family of
a primitive symplectic variety is universal (for locally trivial deformations) for all of its fibers.

Proof. Let f : 2 — S be a small locally trivial deformation of X = f~1(0), 0 € S.
First note that X has canonical, hence rational singularities by Theorem 3.4, so by [71, Proposi-
tion 5], nearby fibers remain Kéhler. We choose a simultaneous resolution 7 : % — 2 over S,
denote by j : % — Z the inclusion of the regular locus, and consider the canonical morphism
T+ n*Qé/ /s~ (f o j)*Qé/ /s Both sheaves are locally free and compatible with arbitrary
base change, the former by the argument of [17, Théoréme 5.5] — see e.g. [5, Lemma 2.4] for
the necessary changes in the analytic category — the latter by Lemma 4.5. As X is a primitive
symplectic variety, both sheaves are invertible and the above morphism is an isomorphism at
the point corresponding to X, hence in a small neighborhood. We thus find a relative holomor-
phic 2-form @ on % whose pullback extends to a holomorphic 2-form on %/. As the restriction
wy to the fiber X = 2y is nondegenerate, the same is true for the restriction wg to 25 for
s € § close to 0. Hence, the nearby fibers 2§ are symplectic varieties whose symplectic form
is unique up to scalars. By semi-continuity, H!(2y, @ 4,) = 0 for all s in a neighborhood
of 0 € S, and so the first claim follows. The last claim follows directly from Lemma 4.6 and
openness of versality, see [33, Hauptsatz, p 140]. |

4.12. Deformations of line bundles. Let X be a primitive symplectic variety and L
a line bundle on it. We will frequently consider deformations of the pair (X, L). For this purpose
one considers the morphism d log : O — Qx, f +— % and the induced first Chern class
morphism

1 H'(X,0%) — H'(X,Qx) - H' (X, o)
which takes values in the cohomology of reflexive differentials. Recall that
H'(x, M) ~ HV(x)

by [5, Corollary 2.3].



18 Bakker and Lehn, The global moduli theory of symplectic varieties

Lemma 4.13. Let L be a nontrivial line bundle on X. Then the canonical projec-
tion Def'(X, L) — Def'(X) is a closed immersion and identifies Def'(X, L) with a smooth
hypersurface whose tangent space is equal to

Uci(L)

ker(Hl(X, Tx) —— H?*(X, (9X))»

where the map is given by contraction and cup product.

Proof. 'We have a canonical map
H'(X, Q) = Exty (0x, QL)) — Ext} (Tx, Ox)

given by sending an extension to its dual (observe that we have 8xt)1( (Ox, Ox) = 0). Therefore,
ci1(L) e H (X, QE,(I]) gives rise to an extension

0 -0Ox—>EL—>Tx —>0

and the sheaf E7 is shown to control the deformation theory of the pair (X, L) in the sense that
H'(X, Eyp) is the tangent space to the functor D(x,1) of deformations of the pair (X, L) and
H?(X, Er) is an obstruction space, see e.g. [85, Theorem 3.3.11]. The proof there is written
for nonsingular projective varieties only, however, the argument is the same for locally trivial
deformations of compact complex spaces. The rest of the proof is exactly as in [44, 1.14]. D

5. The Beauville-Bogomolov-Fujiki form and local Torelli

In this section, we develop the theory of the Beauville-Bogomolov-Fujiki (BBF) form
for primitive symplectic varieties. Thanks to previous works by several authors (see Sec-
tion 5.1) such a form exists and was known to share many properties with its counterpart in
the smooth case. After a brief summary of these results with no claim for originality, the first
fundamentally new result is the local Torelli theorem for locally trivial deformations, see Propo-
sition 5.5, which was established for Q-factorial terminal varieties by Namikawa [71, Theo-
rem 8]. With this at hand, we prove many advanced features of the BBF form that are known in
the smooth case: the higher degree Fujiki relations in Proposition 5.15, a Riemann—Roch-type
formula in Corollary 5.16, and the non-existence of subvarieties of odd dimension on a general
deformation in Corollary 5.18.

The material developed in this section is essential in the proof of the projectivity criterion
in Section 6.

5.1. The Beauville-Bogomolov-Fujiki form. Let X be a primitive symplectic variety.
Due to the work of Namikawa [71], Kirschner [55], Matsushita [66], and Schwald [84] there
is a nondegenerate quadratic form gy : H?(X,R) — R whose associated bilinear form has
signature (3, b2(X) — 3). As for irreducible symplectic manifolds, we will refer to gx as the
Beauville-Bogomolov—Fujiki (BBF) form, see Definition 5.4. We will use it to establish a local
Torelli theorem in Proposition 5.5 and we will see in Proposition 5.15 that it satisfies analogous
Fujiki relations as it does for irreducible symplectic manifolds.
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We will first recall the following definition, see [55, Definition 3.2.7] and also [84, Defi-
nition 20].

Definition 5.2. Let X be a compact complex variety of Fujiki class ¢ and dimension 2n
with rational singularities let o € H2:°(X) be the cohomology class of a holomorphic 2-form
on X' (recall from Lemma 2.1 that the Hodge structure on H?(X, Z) is pure). We denote by
/. y H 4n(X,7Z) — Z the cap product with the fundamental class. Then one defines a quadratic
form gx » : H*(X,C) — C via

(5.1) gx.o () = ’—Z/(Gc})"_la2+(1 —n)/ 0”6"_105/ o" 15",
2 Jx b X

If X is a primitive symplectic variety, one can also define a form gy, on a resolution
of singularities 7 : ¥ — X by the analog of formula (5.1), where o is replaced by the exten-
sion of the symplectic form to Y and gx , is the restriction to H 2(X,Q) C H*(Y,Q). This
is Namikawa’s approach, see [71], and both are equivalent by [84, Corollary 22]. Note that
Schwald assumes X to be projective but this is in fact not used in the argument.

The following result is already contained in the work of Namikawa [71], Matsushita
[65], Kirschner [55], Schwald [84]. Let us emphasize that the projectivity hypothesis which
is sometimes made is in fact not necessary. Denote by b; (X) := dimg H'(X,Q), i € Ny the
i-th Betti number.

Lemma 5.3. Let X be as in Definition 5.2. Then the quadratic form
ax.o - H*(X.R) ® H*(X.R) > R(-2)

is a morphism of R-Hodge structures. If X is a primitive symplectic variety, then qx o is nonde-
generate and has signature (3, by(X)—3). Furthermore, if o is chosen such that | y(0o)" =1,
then qx o does not depend on o.

Proof. It is immediate from (5.1) that gx  is defined over R so that the statements of
the lemma make sense. The first statement is easily verified. The statement about the signature
(and hence also nondegeneracy) is [84, Theorem 2]. The statement about independence of gx »
for normalized o is [84, Lemma 24]. O

Definition 5.4. Let X be a primitive symplectic variety of dimension 2n and let
o € H>%(X) be the cohomology class of a holomorphic symplectic 2-form on X™¢ satis-
fying [y (06)" = 1. Then the Beauville—-Bogomolov—Fujiki (BBF) form is the quadratic form

qx = qx,s, up to scaling.

It is not hard now to deduce a local Torelli theorem for locally trivial deformations. Pre-
liminary versions have been established by Namikawa [70], Kirschner [55, Theorem 3.4.12],
Matsushita [66], and the authors [5].

Proposition 5.5 (Local Torelli theorem). Let X be a primitive symplectic variety, let gx
be its BBF form, and let

Q(X) = {lo] € P(H*(X,C)) | gx(0) = 0, gx (0,5) > 0}
be the period domain for X inside P(H?*(X,C)). If f : 2 — Def'(X) denotes the universal
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locally trivial deformation of X and X; := f~1(t), then the local period map
(5.2) o :Def'(X) - Q(X), 1+~ H>°X)).

is a local isomorphism.

Proof. Letusdenote by j : % — 2 the inclusion of the regular locus. By Lemma 4.5,
the sheaf L := (f o j)*SZ%Z/ /s is invertible and compatible with arbitrary base change. From
this and [5, Corollary 2.3] we deduce that the subbundle L C H?(X,C) ® Opefi(x) defines
the period map Def''(X) — P(H?(X, C)) which therefore is holomorphic. We will argue as
in [6, Théoréme 5] to prove that it takes values in 2(X). The statement is local, so it suffices to
show that gy (0;) = 0, where oy is a section of f*ny{ /s evaluated at t € S for ¢ sufficiently
close to the origin. This is done in the same way as in the first paragraph of the proof of
[6, Théoreme 5 (b)]. Let j : U < X denote the inclusion of the regular part. It is well known
that the differential of g at zero can be described as the map

H'(X,Tx) — Hom(H (X, jxQ3), H (X, j«Qp))

given by cup product and contraction. This is clearly an isomorphism as H%(X, j*Q%]) is
spanned by the symplectic form. Therefore, the map (5.2) is an isomorphism in a neighborhood
of zero. ]

Remark 5.6. Namikawa assumes Q-factorial terminal singularities for his local Torelli
theorem [71, Theorem 8], and in this case all deformations are locally trivial. Proposition 5.5
shows that in fact local triviality (and not the kind of singularities) is the essential ingredient.

The local Torelli theorem can be exploited just as for irreducible symplectic manifolds.
We start with the integrality of the quadratic form.

Lemma 5.7. The BBF form qx is up to a multiple a nondegenerate quadratic form
H?(X,7) — 7. Moreover, it is invariant under locally trivial deformations.

Proof. The second statement is a consequence of the first, so we are left to prove inte-
grality. This is done as in [6, Théoreme 5 (a)]: we deduce from the local Torelli Theorem 5.5 the
following formula. For every A € H?(X, C) we denote v(A) := Jx A2" where 2n = dim X.
Note that for a locally trivial deformation f : 2" — S of X, if A is a section of R? f;C,
then v(A) is locally constant as it can be computed on a simultaneous resolution. For every
a € H*(X,C) we have

2
(5.3) v(A)%gx (@) = gx (A)((Zn — Dv(d) / A2 202 — (2n —2) ( / AZ"—la) )
X X
This formula immediately shows that some real multiple of gx is defined over Z. O

Remark 5.8. As aconsequence of Lemma 5.7, we will always normalize the BBF form
qx so it is a (usually primitive) integral form.

For the sake of completeness, let us summarize a statement that is well known in the
smooth case.
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Corollary 5.9. Let X be a primitive symplectic variety and let L be a line bundle on it.
Under the local isomorphism Def'(X) — Q(X) by the period map, the subspace Def'(X, L)
of deformations of the pair (X, L) is identified with P (c1 (L)1) N Q(X). m]

We will frequently simply write o+ instead of P () N Q(X) foraclass e € H?(X, C).

5.10. A theorem of Verbitsky. Let X be a primitive symplectic variety of dimen-
sion 2n = dim X. In Section 7 we will need the following analog of a theorem of Verbitsky
[87, Theorem 1.5] (see also [10] and [38, Proposition 24.1]):

Proposition 5.11. Let S* H2(X, C) be the image of the cup product map
Sym*H?(X,C) — H*(X,C).

Then
S*H?*(X,C) = Sym*H?(X,C)/(x"*! | gx (x) = 0).

Proof.  The proof in [10] carries through with very mild modifications, and we summa-
rize the main points. We have the following purely algebraic fact:

Lemma 5.12. Let (H, q) be a complex vector space with a nondegenerate quadratic
form q, and let A* be a graded quotient of Sym* H by a graded ideal I1* such that:

(1) 42" #0,
2) I* D (x"*T1 | g(x) = 0).
Then I* = (x"T1 | g(x) = 0).

Take (H,q) = (H*(X,C),gx) and A* = S* H?(X, C). Observe that the first condition
in the lemma is met. Indeed, let w be a generator of the H2%-part of H?(X, C). Since for
any resolution 7 : ¥ — X we have an injection 7* : H%(X,C) — H?(Y,C), it follows that
m*w is the class of an extension of a symplectic form. As (7 *w)" (7*w)" # 0, we then have
w"w" # 0.

Thus, it remains to verify the second condition. We have the following:

Lemma 5.13. We have w"t! = 0.

Proof. For aresolution 7 : Y — X, the map 7™ : gr,‘fl/H’"(X, C)— H™(Y,C) is injec-
tive. Thus, the (m, 0)-part of the mixed Hodge structure on H" (X, C) is O for m > 2n. |

To finish, just as in [10], since the period map is an étale map of Def''(X) onto the
irreducible quadric (¢x = 0) by Proposition 5.5, applying Lemma 5.13 to nearby deformations
yields (gx (x) = 0) C (x"*! = 0). o

5.14. Fujiki relations. Fujiki [30, Theorem 4.7] first established interesting relations
between the self intersection of a given cohomology class and powers of the BBF form on
symplectic manifolds. It seems that Matsushita [65, Theorem 1.2], [66, Proposition 4.1] was the
first to prove the (k = dim X) Fujiki relation in the singular setting. He required the varieties
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to be projective and to have Q-factorial, terminal singularities only and Schwald extended his
statement to projective primitive symplectic varieties in [84]. We need a more general statement
for the projectivity criterion in the next paragraph. Generalizing to the Kéhler setup is not
difficult, basically the existing proofs in the projective case work literally.

A small argument instead is needed when comparing powers of the BBF form to integra-
tion over certain very general homology classes. The first results in this direction in the singular
case can be found in [65, Lemma 2.4].

Proposition 5.15 (Fujiki relations). Let X be a primitive symplectic variety and let
¢ € SymkHz(X, Q)Y which is of type (—k,—k) for all small deformations of X. Then if k
is odd, we have ¢ = 0, while if k is even, there exists a constant ¢ = c(¢) € Q such that
o= cq§/2, where q)];/z € Symk/sz(X, R)Y is the symmetrization oquk/z. In particular, for
alla € H*(X, C) we have

$*) = c-qx (@),

Proof. Using Proposition 5.5, we see that the Mumford—Tate group of H?(X’, Z) for
a very general locally trivial deformation X’ of X is SO(H?(X’,Q), gx-). The representation
of SO(H?(X,Q), gx) on SymkHz(X, Q)Y has no invariants for odd k, while for even k the
only invariant is gy 2 up to scaling. D

Corollary 5.16. Let X be a primitive symplectic variety. There is a (unique) polynomial
fx (t) € Q[t] such that for any line bundle L on X, y(L) = fx(gx(c1(L))) and fx: = fx for

any locally trivial deformation X' of X. Moreover,

Proof. As X has rational singularities, for a resolution 7 : ¥ — X we have

x(L) = x(z*L) = / m*ch(L)td(Y).
Y
Since 7* : H?(X,Q) — H?(Y, Q) is an injection of Hodge structures, it follows that

x(L) =) dr(er(L))
k

for Hodge classes ¢ € SymkH 2(X,Q)V. Moreover, from the existence of a simultaneous
resolution % — 2~ of the universal locally trivial deformation 2~ of X, it follows that the ¢
are locally constant and of type (—k, —k) everywhere. Now apply the proposition. m]

For a compact complex space W of dimension k, we denote by [W] € Hyp (W, Z) the
cycle class, that is, the sum over the fundamental classes of the irreducible components of
dimension k weighted by their multiplicities. We write fW : H2k(W,Z) — Z for the cap
product with the cycle class. Hodge classes as in Proposition 5.15 can be constructed via the
following lemma.

Lemma 5.17. Let X be a primitive symplectic variety and . 2~ — S a locally trivial
deformation. Let W C 2 be a closed subvariety that is flat over S with fiberwise dimension k.
Then va defines a section ofSymksz*QV which is of type (—k, —k).
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Proof. It suffices to show that for any sufficiently small Euclidean open set U C S, the
cycle class [#;] is constant in Borel-Moore homology Hf,i“( f~YU), Q). This is done as in
[31, Lemma 19.1.3]. O

For the following corollary, the term very general is to be interpreted in terms of locally
trivial deformations, i.e., outside a countable union of proper subvarieties in the base of the
locally trivial Kuranishi family.

Corollary 5.18. Let X be a very general primitive symplectic variety. Then X does not
contain odd-dimensional closed subvarieties.

Proof. By the lemma, for a k-dimensional subvariety W we have a Hodge class ¢ = |, w
in Symk H?(X,Q)V.By taking a Kihler class w € H?(X,R), we see that Jw ¥ > 0and thus
¢ is nonzero, a contradiction. ]

5.19. Q-factoriality and Q-factorial terminalizations. We first deduce the invariance
of Q-factoriality under locally trivial deformations for primitive symplectic varieties.

Lemma 5.20. Let X be a primitive symplectic variety. Then every small locally trivial
deformation of X is Q-factorial if and only if X is Q-factorial.

Proof. Let m :Y — X be a resolution and consider H2(X,Q) C H?(Y, Q) via pull-
back. Using Lemma 4.9, we choose a simultaneous resolution % — .2 of the universal locally
trivial deformation 2~ — Def"'(X). Recall that by Proposition 5.5, we can think of Def''(X)
as an open subset of the local period domain (X).

For an element A € H?(X, Q) with gx (1) > 0, let T3, C Q(X) be the locus for which
A e H*9(X) @ H%2(X). Note that T}, is a totally real half-dimensional closed subvariety of
Q(X) (see Section 8.3). We first claim that we may choose the element A so that T meets the
image of Def''(X). Indeed, note that gx (o) = 0 is equivalent to gx (Re(o)) = gx (Im(c)) and
gx (Re(0),Im(0)) = 0. Thus, taking A to be a rational class sufficiently close to Re(o), then
taking R = A and I to be the projection of Im(c) to R scaled so that gy (R) = gx (1), we
can make 0’ = R + il € T arbitrarily close to o.

Now, choosing such a A, in the notation of Lemma 5.7 we have that v(1) # 0 by Propo-
sition 5.15. Observe that the Fujiki constant is nonzero since gx (0 + 0) # 0 # v(o + 7).
Define a quadratic form Q; on H?(Y, Q) by the right-hand side of equation (5.3) divided by
qv.0c(A) = gx,0(A). Note that:

(1) Q, isrational.

(2) Q; restricts to (a nonzero multiple of) gy on H?(X, Q).
3) If L € H>%(X) @ H%?(X), then

U(A)quo () = 4X,o (A)Qx(a)
foralla € H?(Y,C), as in [6, Théoreme 5 (c)].

We now claim that O is a morphism of Hodge structures. For this, we consider Q) as
a quadratic from on the local system of weight two Hodge structures associated to the family
% — Def'(X) C Q(X). In view of (1), it suffices to show that Q  is a morphism of R-Hodge
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structures. By (3) and Lemma 5.3, this is the case for all periods in T N Def''(X) and this
set is nonempty and open in T by the above. But the Hodge locus of Q) is certainly an
analytic subset of Def'(X) and therefore must be all of Def''(X) as T} is totally real and
dimg T, = dimc Def''(X).

Now, gx is nondegenerate by Lemma 5.3, so by property (2) the Q -orthogonal space
H?(X,Q)*+ c H%(Y,Q) is a rational complement to H2(X,Q) and is Hodge—Tate. Thus,
condition (2.5) is equivalent to (2.4). Using Lemma 4.9 again, we see that the validity of
(2.4) is clearly invariant under locally trivial deformations. We therefore conclude by Proposi-
tion 2.15. D

The rest of this section will be devoted to relating the locally trivial deformation theory
of a projective primitive symplectic variety X to that of a QQ-factorial terminalization, which
will play a role in the proof of surjectivity of the period map. We start with the following slight
generalization of [5, Lemma 3.5]. The proof is literally the same as in [5] so we omit it here.

Lemma 5.21. Letw : Y — X be a proper bimeromorphic morphism between primitive
symplectic varieties. Then n* : H*(X,C) — H?(Y, C) is injective and the restriction of qy
to H*(X, C) is equal to qx. We have an orthogonal decomposition

H*(Y.Q) = n"H*(X.Q) & No.
where N = Zi;l (N1(Y /X)), which is negative definite. m|

Let X, Y be normal compact complex varieties with rational singularitiesand 7 : ¥ — X
a proper bimeromorphic morphism. It follows that 74Oy = Ox and R!7,Oy = 0 so that by
[58, Proposition 11.4], there is a commutative diagram

(5.4) vy g

Lo,

Def(Y) —2— Def(X)

for the miniversal families of deformations of X and Y. Consider the case that 7 : ¥ — X is
a Q-factorial terminalization of a projective primitive symplectic variety. We will show below
(Proposition 5.22) that the locally trivial deformations of X are identified via p with the locus
of deformations of ¥ where the classes of contracted curves remain Hodge.

Proposition 5.22. Let X, Y be projective primitive symplectic varietiesandw : Y — X
a proper bimeromorphic morphism. Assume Y is Q-factorial and terminal. Let N C H?*(Y, C)
be the qy-orthogonal complement to H*(X,C) C H*(Y,C) and consider diagram (5.4).
Denote by Def(Y, N) C Def(Y) the subspace of deformations such that classes in N remain
of type (1, 1). Then the following holds:

(1) p~1(Defl'(X)) = Def(Y, N) C Def(Y).
(2) The restriction p : Def(Y, N) — Def''(X) is an isomorphism.

Proof. By Theorem 4.7 respectively [73, Main Theorem], the two spaces Def'(X) and
Def(Y) are smooth of dimension 21!(X) and h'>1(Y), respectively. Moreover, by [73, Theo-
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rem 1], Def(X) is smooth while p : Def(Y) — Def(X) is finite and, as both are of the same
dimension, surjective.

Now, Def(Y, N) C Def(Y) is a smooth subvariety of codimension m := dim N whose
tangent space is identified with H "1 (X) under the period map, see Lemma 4.13. By Corol-
lary 4.11, the fibers of the universal deformations % — Def(Y) and 2" — Def'(X) are prim-
itive symplectic varieties. Therefore, [5, Lemma 2.2] entails that the second cohomology of
locally trivial deformations of X form a vector bundle on Defl'(X), in particular, we have
WYY (2 @y) = hP1(X). Thus, by the decomposition H2(Y,C) = N & H*(X, C) from Lem-
ma 5.21 we see that the space N1(%;/%Zp)) of curves contracted by P; : % — Z; has
dimension m for all ¢t € p~!(Def(X)). As N is the orthogonal complement of H2(X, C), it
also varies in a local system. Using the period map this shows that p~1(Def"'(X)) = Def(Y, N).

One shows as in [63, Proposition 2.3 (ii)] that p is an isomorphism, see also [5, Proposi-
tion 4.5]. O

We will need the following corollary in Section 8. For a projective primitive sym-
plectic variety X and a Q-factorial terminalization 7 : Y — X, let g : % — Def(Y) and
[+ Z — Def(X) be the universal deformations, and let " : 2”7 — Def(Y) be the pullback
of 2 to Def(Y) along p as in (5.4). Then P’ : % — 2" is a simultaneous Q-factorial termi-
nalization by [73, Main Theorem] and Lemma 5.20. Consider the constant second Betti number
locus

By :={t € Def(Y) | tk(R* f{Q2"); = ba(X)}

which is a (reduced) closed analytic subspace of Def(Y).
Corollary 5.23. In the above setup, Bx = Def(Y, N).

Proof. Certainly By D Def(Y, N) by the proposition and [5, Lemma 2.4]. By Lem-
ma 5.21 and proper base change we have an injection

0= (R? Qa1 — (R*g:«Qa):

for all # € Def(Y). The restrictions (R?>g+Q 27)|g, and (R? f/Qu)|B, are local systems as
therefore is the orthogonal (R? f/Q g}j/)Hg‘X in (R? f/Qu)|B, . We must then have the equal-
ity (R2f/Q )+ = N forall t € By, but since (R? f/Q gg/)f- is Hodge-Tate, we obtain the
reverse inclusion By C Def(Y, N). m]

6. The projectivity criterion

In this section we formulate and prove an analog of Huybrechts’ projectivity criterion
[44, Theorem 3.11] (see also [45]) in the singular setup. Note that for orbifold singularities, the
question has been examined by Menet [67]. We use several of his as well as of Huybrechts’
arguments.

6.1. A singular version of the Demailly-Paun theorem. We do not know whether
the analog of Demailly—Pdun’s celebrated theorem [21, Main Theorem 0.1] on the numerical
characterization of the Kdhler cone of a compact Kidhler manifold holds for singular varieties.
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One may however easily deduce from it that a similar statement holds which is good enough
for our purposes. For this purpose, we introduce a notion for cohomology classes that behave
as if they were Kihler classes.

Recall from (2.3) that we defined H "1 (X, R) = F1H?(X,C)NH?(X,R) for a reduced
compact complex space of class €.

Definition 6.2. Let X be a reduced compact complex space of class 4 and consider
aclass k € HV1(X,R). We say that « is Demailly—Pcun if for every compact complex mani-
fold V and for every generically finite morphism f : V — X the class f*k is big and nef. We
denote by DP(X) C H'!(X,R) the convex cone consisting of all Demailly—Pzun classes. We
refer to it as the Demailly—Pdun cone.

This definition deserves a couple of comments.

Remark 6.3. (1) Every Kihler class is Demailly—Paun, in particular, DP(X) # @ if X
is Kéhler. Indeed, every Kéhler class is a (1, 1)-class by Proposition 2.8. Then the claim follows
as the pullback of a Kéhler class under a generically finite morphism from a smooth variety is
big and nef.

(2) We do not know of an example of a class that is Demailly—Paun but not Kihler.
It seems likely that Demailly—Paun classes are the same as Kihler classes. Apart from the
Demailly—Pdun theorem [21, Main Theorem 0.1], evidence for this presumption is given in (3).

(3) Every rational Demailly—Pdun class is Kahler. Indeed, a multiple of such a class is
the first Chern class of a big line bundle L. Therefore, X is Moishezon and L is ample by
the Nakai—Moishezon criterion. Note that the Nakai—-Moishezon criterion holds for big line
bundles on Moishezon varieties, see e.g. [56, 3.11 Theorem].

(4) A closed subvariety of a class ¢ variety is again dominated by a compact Kéhler
manifold, see Proposition 2.7, and so it is itself class €. Then it is immediate that the restriction
of a Demailly—Pdun class to a subvariety is again Demailly—Paun.

(5) The assumption that X be of class % is somewhat redundant but simplifies the expo-
sition. If for some k € Halé’l(X ,R) the pullback 7*k along a resolution 7 : ¥ — X is big,
then Y (and hence also X) are of class ¢ by [21, Theorem 0.7].

Lemma 6.4. Let X be a compact variety of class € and let k € HV1 (X, R). Then «
is Demailly—Pdun if and only if for every compact complex manifold W and for every holo-
morphic map 7 : W — X which is bimeromorphic onto its image the class 7*k is big and nef.
Moreover, the pullback of a Demailly—Pdun class to an arbitrary compact complex manifold
is nef.

Proof. 'To prove the non-trivial direction of the first claim, let 7 : ' — X be a holo-
morphic map from a compact complexnmanifojld which is generically finite onto its image. We
denote V := x(V) and factor 7 as V' 2L 7 2 X. We then chose a diagram

WZL}V



Bakker and Lehn, The global moduli theory of symplectic varieties 27

where Wy, W, are compact Kihler manifolds and W; — V, W, — V are bimeromorphic. By
assumption, « := ¥ *75k is big and nef. By a result of Paun [77, Théoréme 1], nefness of o
is equivalent to f*« being nef. Bigness is preserved under generically finite pullbacks so that
f*a is big and nef. Since W, — V is bimeromorphic between compact complex manifolds,
¥k is big and nef as ¢*7*k = f*a is.

For the second statement, let 7 : V' — X be a morphism from a compact complex mani-
fold. We change the above diagram accordingly and deduce the claim by invoking Pdun’s result
once more. O

The main result of this section is deduced from the smooth Demailly—Paun theorem and
Pdun’s results in [77] via an inductive argument. Note that while our result is not essentially
new compared to the Demailly—Pdun theorem, it should be mentioned that Collins and Tosatti
proved in [15, Theorem 1.1] a true generalization of the Demailly—Paun theorem for possibly
singular compact subvarieties of Kihler manifolds.

Theorem 6.5. Let X be a reduced compact complex space of class € and consider the
cone P C HV1(X,R) of all classes o on X such that for all closed analytic subsets V. C X

we have
/ adimV > 0
1%4

Then the Demailly—Pdun cone DP(X) is empty or a connected component of P. If X is Kdhler,
DP(X) is the connected component of P containing the Kiihler cone.

Proof. Clearly, DP(X) C P and as the Demailly—Paun cone is convex, it is contained
in a connected component of P. Moreover, if X is Kihler, then the K&hler cone is contained
in DP(X).

For the converse, we may assume that DP(X) is non-empty, otherwise there is nothing to
prove. Let @ € P be a class in the same connected component as DP(X). We will prove that
the restriction of « to any subvariety of X is Demailly—Pdun by induction on the dimension of
the subvariety.

For d = 0 the statement is trivial. Let V' C X be a subvariety of dimension d and assume
that o is Demailly—Paun on every subvariety of X of dimension strictly smaller than d. We
denote by m : W — X the composition of a resolution of singularities of V' with the inclu-
sion V' C X where W is a compact Kéhler manifold of dimension d. Such a resolution exists
thanks to Proposition 2.7. By Lemma 6.4 it suffices to prove that 7 *« is big and nef. Clearly,
a|y fulfills the hypotheses of the theorem if & does. We show first that 7 *« is nef on W using
the Demailly—P&un theorem on W. Let us take a Kéhler class k on W. For 0 < ¢ < 1 the class
aw = 7*a + ek satisfies oz{',lV > (0. If Z C W is a proper analytic subvariety of dimension e,
then (Z) C V is also a proper subvariety and thus | (z) is Demailly—Paun by the inductive
hypothesis. We will show that /. 7 @y > 0. But this can be computed on a resolution of singu-
larities, so we may without loss of generality assume that Z is nonsingular. Then 7 *«|z is nef
by Lemma 6.4 and therefore oy | 7z has positive top self intersection.

As « is in the same connected component of P = P (V') as the Demailly—Paun classes
on V, also ayy is in the same connected component P (W) as the Demailly—Paun classes on W
But by [21, Main Theorem 0.1], we have DP(W) = K (W), where K (W) denotes the Kihler
cone. Hence, the Demailly—P&dun theorem applies and ayy is Kéhler. Moreover, 7 *« is nef on
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W because ¢ was arbitrarily small. But certainly fW (7*a)? > 0 and therefore 7 *« is also big
on W by [21, 0.4 Theorem]. This concludes the proof. O

6.6. Projectivity criterion. In this subsection, the term very general is to be interpreted
in terms of locally trivial deformations, i.e., outside a countable union of proper subvarieties in
the base of the locally trivial Kuranishi family.

Definition 6.7. Let X be a primitive symplectic variety and gy its BBF form. We define
the positive cone
€x :={a e H''(X,R) | gx(a) > 0},

where k denotes the connected component containing the Kéhler cone.

Theorem 6.8. For a very general primitive symplectic variety X, the positive cone
equals the Demailly—Pdun cone:
DP(X) = €.

Proof. The Demailly—Pdun cone is always contained in the positive cone by Theo-
rem 6.5. Let us prove the other inclusion. By Corollary 5.18, X does not contain any odd-
dimensional subvarieties. Let Z C X be a subvariety and denote by 2d its dimension. Choose
a Kihler class « on X . Then by the Fujiki relations, Proposition 5.15, there is a constant cz € R
such that for every « € H?(X, C) the equality

¢z / @S + kT4 = gy @S +kT)? = (¢x(@)S? + 24x (@ ST + gx () T)°
7z

of polynomials in the indeterminates S and 7" holds. Choosing @ = «, we see that ¢z has
to be strictly positive. From now on let @ € €x. As also x € €y, Lemma 5.3 implies that
gx (o, k) > 0. The coefficients of the polynomial on the right-hand side are manifestly all pos-
itive. We conclude from looking at the left-hand side that for every 0 < A < 1 we have that
Ao + (1 — A)k lies in the cone P from Theorem 6.5. In particular, o is in the connected
component of P containing the Kihler cone K (X). We conclude from Theorem 6.5 that
a € DP(X). m]

The following is the singular version of [46, Theorem 3.11] and the proof relies on impor-
tant ideas of his and of Menet [67], see section 4 of Menet’s article. The presentation follows
[38, Proposition 26.13].

Theorem 6.9. Let X be a primitive symplectic variety and o € H*(X,Z) a (1, 1)-class.
If g(a) > 0, then X is projective.

Note that the existence of such a class can be read off only from the period.

Proof. By the Lefschetz (1, 1)-theorem, there is a line bundle L on X with first Chern
class ¢ (L) = a. We show that L is big. It suffices to do this on a resolution, say 7 : ¥ — X,
as bigness of a line bundle is a birationally invariant notion. Bigness of the line bundle 7* L
is implied by bigness of 7*«, see [49, Theorem 4.6]. The strategy is to infer bigness of @ by
approximating o on a resolution with Kihler currents on nearby varieties.
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Consider the locally trivial Kuranishi family 2~ — S := Def!'(X) and take a simultane-
ous resolution % — 2~ which is possible by Lemma 4.9. From now on we choose 7 : ¥ — X
to be the special fiber of % — 2. For a very general ¢t € § the corresponding primitive
symplectic varieties 2 satisfy DP(Z;) = €4, thanks to Theorem 6.8. Therefore, o can be
approximated by Demailly—Pdun classes o; on 23, where t; — 0 € S fori — oo, where X is
the fiber of 2~ — S over 0. Consequently, 77 *« can be approximated by big classes on nearby
fibers %;, and as in [19, Proposition 6.1], see also the proof of [38, Proposition 26.13], we
deduce that 7*« is big. The key point here is to see that in the above approximation proce-
dure, the limit of a sequence of closed positive currents are again closed and positive. This
is explained in detail in the appendix by Diverio to [3]. As explained before, bigness of 7*«
implies that 7* L and hence L is big. Thus, X is Moishezon. Being Kihler and having rational
singularities, it must be projective by [72, Theorem 1.6]. |

The following result is the singular analog of [29, Theorem 4.8 2)], see also [44, Theo-
rem 3.5] and [38, Proposition 26.6]. We have to change the proof slightly in the singular
setting.

Corollary 6.10. Let X be a primitive symplectic variety, f : 2 — Def'(X) the uni-
versal locally trivial deformation of X = f~1(0), and S C Def'(X) a positive-dimensional
subvariety through 0 € Def''(X). Then in every open neighborhood U C S of 0 there is a point
s € U such that the fiber Zy is projective.

Proof. The proof is almost the same as in [29, Theorem 4.8 2)] respectively [44, Theo-
rem 3.5]. We refer to these references for details and content ourselves with a sketch of proof.
One restricts to a one-dimensional disk S C Def''(X) and chooses a Kihler form w on X
such that the locus Sp,) C Def'(X) where the class [w] remains of type (1, 1) intersects S
transversally. Next one chooses classes «; € H?(X, Q) converging to [w] such that the «; are
not of type (1,1) on X. Then the (1, 1)-locus Sy; C Def!'(X) intersects S in points #; # 0
converging to 0. Now the idea is that the (1, 1)-class o; is Kihler on 27, for ¢; sufficiently
close to 0. In [44, Theorem 3.5] this is seen via harmonic representatives. As X is singular,
we cannot argue literally the same. However, due to Lemma 4.9 we may take a simultaneous
resolution 7 : % — 2 obtained by successive blow ups. In particular, there is an R-linear
combination E of exceptional divisors such that for e := ¢y (O(E)) we have that o; — e is
Kihler on Y := 7~ !(X). Now we apply the argument involving harmonic representatives to
a; — e and deduce that for #; sufficiently close to O the variety %;; is projective. Hence, also the
corresponding 27, is projective by [72, Theorem 1.6]. |

We immediately deduce:

Corollary 6.11. Let X be a primitive symplectic variety and let f : 2~ — Def''(X) be
the universal locally trivial deformation of X = f~1(0). Then for every positive-dimensional
subvariety S C Def''(X) the set of points  C S with projective fiber is dense. O

6.12. Inseparability and moduli. Given a primitive symplectic variety X and a lattice
A with quadratic form ¢, a A-marking of X is an isomorphism

w (H*(X, Z)e. qx) = (A, q).
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A A-marked primitive symplectic variety is a pair (X, i), where X is a primitive symplectic
variety and p is a A-marking of X. Two A-marked primitive symplectic varieties (X, u) and
(X', ') are isomorphic if there is an isomorphism ¢ : X — X’ such that 1’ = p o ¢*.

Definition 6.13. Given a lattice A as above, we denote by 9t the analytic coarse
moduli space of A-marked primitive symplectic varieties. As a set, 3t A consists of isomor-
phism classes of A-marked primitive symplectic varieties (X, i), and it is given the structure
of a not-necessarily-Hausdorff complex manifold using Theorem 4.7 by identifying points in
the bases of locally trivial Kuranishi families over which the fibers are isomorphic as A-marked
varieties.

Note that this definition coincides with the usual one [44, 1.18] for irreducible symplec-
tic manifolds due to the fact that all deformations of smooth varieties are locally trivial. The
following statement of Huybrechts’ carries over together with its proof.

Theorem 6.14. Let X, X' be primitive symplectic varieties such that for some choice
of marking j : H*(X, Z)¢ — A, ' : H*(X', Z)¢ — A the pairs (X, i), (X', ;i) define non-
separated points in the A-marked moduli space. Then there is a bimeromorphic map

X -—— X
Proof. Identical to [44, Theorem 4.3] using a simultaneous resolution. O

Corollary 6.15. If (X, ) and (X', ') are inseparable in moduli with Mumford-Tate
general periods, then (X, ) = (X', u').

Proof. By the theorem, there is a bimeromorphic ¢ : X --> X’. Mumford-Tate gen-
erality implies that neither X nor X’ contain compact curves. Indeed, such a curve would
define a non-zero Hodge class, e.g., in H>(X,Q), so by the BBF form we also had a non-
zero Hodge class in H?(X,Q). By a standard argument, bimeromorphic maps between nor-
mal varieties without curves are necessarily isomorphisms.” We therefore obtain an isomor-
phism of Hodge structures H?(X, Z)¢ — H?*(X', Z) which maps a Kihler class to a Kihler
class. The claim follows since the automorphism group of a Mumford-Tate general period
Autygg (H2(X, Z)i) = {%1}, since End(H2(X, Q), gx)SCH*X-Q).4x) — Qid. D

We denote by A = {z € C | |z| < 1} the complex unit disk and by A* := A\ {0} the
complement of the origin. Recall that if two not necessarily (Q-factorial complex varieties are
bimeromorphic, it is not in general true that we can push forward (or pull back) line bundles
along the bimeromorphic map.

Theorem 6.16. Let X, X' be projective primitive symplectic varieties and ¢ : X --> X'
a birational map which is an isomorphism in codimension 1 such that

¢« : Pic(X)g — Pic(X')g

5) This can be seen exactly as for projective algebraic varieties of Picard rank one by applying, e.g.,
[16, Lemma 1.15 (b)] to a resolution of indeterminacies and its inverse.
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is well defined and an isomorphism. Then there are one parameter locally trivial deforma-
tions f : 2 — A, [ 27— A such that 2" and 2"’ are birational over A and such that
2 = f7HAY) = ()Y = (2"

Proof. The basic strategy of [44, Theorem 4.6] remains unchanged, we will therefore
only explain where we need to deviate from it. By Corollary 5.16, there are polynomials fy (¢)
and fx(¢) with rational coefficients of degree n = % such that for any line bundle L on X
a Hirzebruch-Riemann—Roch statement of the form y(X, L) = fx(gx(c1(L))) holds and sim-
ilarly for X’. We may assume that fy > fx with respect to the lexicographic order and choose
an ample line bundle L" on X’ and denote by L the corresponding Q-line bundle on X . Replac-
ing L’ by a multiple, we may assume that L is integral. Let 7 : (27,.Z) — S be a locally
trivial deformation of (X, L) over a smooth one-dimensional base such that the Picard number
of the general fiber of 2~ — S is one. As in [44, Theorem 4.6], using the projectivity crite-
rion from Theorem 6.9, one shows that hO(.,Sf,@m ) for m > 0 does not depend on ¢ € S that
the associated linear system gives a meromorphic S-morphism 2~ --> Pg(74«.Z") which is
bimeromorphic onto its image. We obtain .2”" — S as the closure of this image and one verifies
as in [43, Proposition 4.2] that 2" — S has the desired properties, in particular, that its central

fiber is X'. |
This result can be reformulated as follows.

Corollary 6.17. Let X and X' be projective primitive symplectic varieties, and let
¢ : X —-> X' be a birational map which is an isomorphism in codimension 1 such that

¢« : Pic(X)g — Pic(X)q

is well defined and an isomorphism. Then for every choice of a marking v : H*(X,Z)¢ — A
there exists a marking 1’ : H*(X',Z) — A such that the points (X, ) and (X', /') are
inseparable points in the moduli space I 4.

7. Projective degenerations

The main goal of this section is to prove the following result, which will be needed for
the surjectivity of the period map in Section 8:

Theorem 7.1. Let f : 27* — A* be a projective locally trivial family of primitive sym-
plectic varieties with Q-factorial terminal singularities such that the monodromy of R? fQ o
is finite. Then there is a proper locally trivial family g : % — A of primitive symplectic vari-
eties whose restriction % |pax — A* is isomorphic to the restriction of the base-change of
Z* — A* along a finite étale cover A* — A*.

Theorem 7.1 is proven for smooth 2™* — A* in [57, Theorem 1.7], and the proof in our
slightly more general setting involves very mild modifications of the same arguments given
Proposition 5.11, albeit rearranged slightly and with some simplifications.

A crucial step is the following version of [57, Theorem 2.1] which uses the MMP to
produce nice models for degenerations of K-trivial varieties.
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Theorem 7.2 ([57, Theorem 2.1 and Remarks 2.3 and 2.4]). Let f : 2" — A be a pro-
Jective family whose generic fiber is a K -trivial variety with Q-factorial terminal singularities
and such that at least one component of the special fiber is not uniruled. Then there is a projec-
tive family g : % — A for which:

(1) the restriction % | A — A* is isomorphic to the restriction of the base-change of 2" — A
along a finite cover A — A,

(2) the special fiber is a K -trivial variety with canonical singularities,

(3) the total space % has terminal singularities.

Note that the third statement follows from the proof in [57]. Theorem 7.2 reduces the
proof of Theorem 7.1 to showing that the assumption on the local monodromy implies that
some component of a degeneration must be non-uniruled, and this is accomplished by the
following:

Proposition 7.3. Let f : 2~ — A be a flat projective family such that:

(1) the restriction Z* := X |a+ — A* is a locally trivial family of primitive symplectic
varieties,

(2) the local monodromy of R? fxQ o is trivial,
(3) the special fiber X has no multiple components,
(4) the total space X has log terminal singularities.

Then a resolution of some component of the special fiber X has a generically nondegenerate
holomorphic 2-form.

Proof. Let 2n be the fiber dimension of f and take 7 : (#,Y) — (2", X) to be a log
resolution and g := f om : % — A. After possible shrinking A, % — 2" is a fiberwise reso-
lution over A*. Recall that there is a specialization map sp : H*(Y, Q) > H* (%50, Q) which
is topologically constructed as follows. After possibly shrinking A we let %, = e*%*, where
e : H — A* is the universal cover. Then sp is the pullback along the natural map %o — %
composed with the isomorphism induced by the inclusion ¥ — % which is a homotopy equiv-
alence. Note that sp is a ring homomorphism, and that the inclusion %; — %4, of a fiber above
t € A* is also a homotopy equivalence, as locally trivial families are topologically (even real
analytically) trivial [1, Proposition 5.1]. We can also view H* (%50, Q) as the nearby cycles
VR f+ Qg (up to a shift) and the specialization map as the natural map i * RfxQu — ¥R fx Qo
by proper base-change, where i : {0} — A is the inclusion. By Saito’s theory [81, 82], this is
a morphism of mixed Hodge structures, the mixed Hodge structure on ¥R Qg being the
limit mixed Hodge structure.

Now for t € A*, we have that the pullback 7/ : H*(%Z;,Q) - H*(#%;,Q) induces an
injection gr,?Hk(%, Q) — Hk(@,, Q) for all k. By Theorem 5.11, for kK < n we have an
induced injection

Sym* H*(2:.Q) — H*(%,.Q)

and therefore also an injection

SymF H2( 200, Q) = H?* (%50, Q).
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Claim. The image of the specialization sp : H2*(Y, Q) — H?*(%s. Q) contains the
image ofSymkHz(%m, Q) fork < n.

Proof. By the semisimplicity of the category of variations of polarized integral Hodge
structures, Symk R2 f,Q 4+ is a summand of R?Kg,Qu« for k < n. By the decomposition
theorem [81, Section 15.3], the intermediate extension ji,(Sym* R2 £, Q o+ [1])[-2k — 1] is
a summand of Rg.Qg, where j : A* — A is the inclusion. Because the monodromy of
Sym* R2 £,,Q 4« is trivial, the specialization map

i* j1x(Sym* R? f,Q 9+ [1]) — Yjis(Sym* R? f,Q 4+[1])

is an isomorphism, hence the claim. |

Now, H?(%, Q) has the same Hodge numbers as the general fiber (since the mon-
odromy is trivial), and it follows that there is an element w € 12°H?(Y, Q) mapping to
a generator of 120 H?(%s, Q). Here, 1%° denotes the (2,0)-part of the Deligne splitting,
see e.g. [78, Lemma-Definition 3.4]. Moreover, w” # 0 by the claim. The same is true on the
normalization ¥ — Y, so some component of ¥ has a generically nondegenerate holomorphic
2-form. Finally, since 2" is log terminal, by [40, Corollary 1.5] the exceptional divisors of
7w % — 4 are uniruled, so the same must be true of X. ]

Proof of Theorem 7.1.  Obviously we may assume the monodromy of R? f5Q -+ is triv-
ial. Let f : 2 — A be a flat projective family restricting to the base change of .2™* over
A*; we may assume the special fiber has no multiple component. By running the MMP as
in the first part of [57, Theorem 2.1], we may assume 2~ has terminal singularities, and so
by Proposition 7.3 and Theorem 7.2 we may assume the special fiber X is a K-trivial vari-
ety with canonical singularities. By the proposition again and Theorem 3.4, X is symplectic.
Take a Q-factorial terminalization 7 : ¥ — X and consider the diagram (5.4) for 7. With the
notations used there, the deformation % — Def(Y) is locally trivial by [73, Main Theorem)].
By [73, Theorem 1] the induced map p : Def(Y') — Def(X) is finite and surjective. Thus, the
classifying map A — Def(X) of the family 2" — A can be lifted to Def(Y) over a finite
cover A’ — A. The pullback %,/ is then the claimed family; it only remains to show that it
is isomorphic to the pullback 2o+ outside the central fiber. This is because for ¢’ € A”™* map-
ping to 1 € A* we have that %, — 27 is a proper birational morphism between Q-factorial
terminal K-trivial varieties and thus is an isomorphism. o

Remark 7.4. The techniques of [57] are used to fill in varieties over projective period
points in the interior of the period domain. We would like to point out that in the smooth
case this technique of “filling holes” has been used independently by Odaka and Oshima for a
different purpose, see [75, second paragraph in the first proof of Claim 8.10].

8. Monodromy and Torelli theorems

Fix a lattice A and denote its quadratic form by g.

Definition 8.1. A Hodge structure on A is semi-polarized (by q)if g : A Q@ A — Z(-2)
is a morphism of Hodge structures. We furthermore say a semi-polarized Hodge structure is



34 Bakker and Lehn, The global moduli theory of symplectic varieties

hyperkdhler if it is pure of weight two with #2:0 = h%2 = 1, the signature of ¢ is (3, b, — 3),
and ¢ is positive-definite on the real space underlying H%° @ H%2. Hyperkihler Hodge
structures on A are parametrized by the period domain

Qp = {lo] € P(Ac) | q(0) =0, g(0.0) > 0j.

Let X ™ be a primitive symplectic variety with
(HZ(X+’ Z)tfv QX-i-) = (A’ q)a

and let M ™ be the moduli space of A-marked locally trivial deformations of X +. Note that
INT is a union of connected components of the full moduli space M A of A-marked primitive
symplectic varieties from Section 6.12.

Set  := Q. We have a period map P : MM — Q which is a local isomorphism by
the local Torelli theorem (Proposition 5.5). Furthermore, inseparable points of T lie above
proper Mumford-Tate subdomains of by Corollary 6.15, so as in® [47, Corollary 4.10] we

have a factorization
—
m
2N
+
it p Q,

where H is the Hausdorff reduction of M* and P is a local homeomorphism. For each
X € @Jr, a local basis is provided by images H(B) of open balls x € B C IN™ over which
there is a universal family for x.

Note that O(A) acts on each of M, @4_, and 2 by changing the marking, and the
three maps H, P, P respect these actions. For any connected component 0 of MM+, we define
Mon(Jt) C O(A) to be the image of the monodromy representation on second cohomology,
which is defined up to conjugation.

The goal of this section is to show:

Theorem 8.2. Assume rk(A) > 5 and let W be a connected component of N .
(1) The monodromy group Mon(I) C O(A) is of finite index.

(2) P is an isomorphism of M onto the complement in Q2 of countably many maximal Picard
rank periods.

(3) If X is Q-factorial and terminal, then the same is true of every point (X, ) € M and
P is an isomorphism of I onto Q2.

Theorem 8.2 immediately yields parts (1), (3), and (4) of Theorem 1.1. Before the proof,
we briefly recall the classification of orbit closures in €2 under an arithmetic lattice, which is
crucial to the argument.

8.3. Reminder on orbit closures.

Definition 8.4. The rational rank of a hyperkéhler period p € 2 is defined as
rrk(p) = dimg ((H*° & H>?) N Ag) € {0, 1,2}.

6 Huybrechts uses that the inseparability only occurs above Noether—Lefschetz loci, but the same argument
works for any countable union of proper complex analytic subvarieties.
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We define the rational rank of a primitive symplectic variety to be the rational rank of its Hodge
structure on second cohomology.

Recall that the period domain €2 can be thought of as the oriented positive Grassmannian
Grt1(2, AR). For a rational positive-definite sublattice £ C Ag with rk(£) < 2, we define 7,
to be the locus of periods for which £ C (H%* @ H%?2)g. Obviously we have that Ty D Ty
if £ C £'. Note that if tk(¢) = 2, then Ty is a pair of conjugate maximal Picard rank points
(and all such pairs arise this way). For rk(£) = 1, the set T is isomorphic to the space ST (E]f{;)
positive unit-norm vectors in (iﬁ, which is a totally real submanifold of €2 of real dimen-
sion rk(A) — 2.

The important point is that orbit closures for the action of a finite index subgroup I'
of O(A) on the period domain €2 are classified according to rational rank.

Proposition 8.5 ([89, Theorem 4.8] and [90, Theorem 2.5]). Assume rk(A) > 5. We
have for p € Q:

(1) If irk(p) =0, thenT - p = Q.
(2) If tk(p) = 1, then T - p is a (countable) union of Ty with tk(£) = 1.
(3) If rrk(p) = 2, then T - p is a (countable) union of Ty with tk(£) = 2.

8.6. Proof of Theorem 8.2. We divide the proof into five steps. Parts (1), (2), and (3)
are proven in Steps 4, 5 (a), and 5 (b), respectively.

Step 1. Let p € Q be a very general period with Picard group generated by a positive
vector. Then P~ Y(p) is finite.

Proof. In fact, its equivalent to show P~!(p) is finite by the assumption on the Picard
rank. For the following lemma, we say an ample line bundle L on a primitive symplectic
variety X has BBF square d if gx(c1(L)) = d.

Proposition 8.7. Pairs (X, L) consisting of a primitive symplectic variety X of a fixed
locally trivial deformation type and an ample line bundle L with fixed BBF square form
a bounded family.

Proof. Using that the Fujiki constants are locally trivially deformation-invariant and
[64, Theorem 2.4], for any such pair (X, L), the variety X can be embedded with bounded
degree in PV for some fixed N via the sections of some fixed power Lk Let H be the cor-
responding Hilbert scheme of subschemes of P of bounded degree, and let f : 2" — H be
the universal family. Let H' C H denote the subset over which the fibers of f are primitive
symplectic. By semi-continuity and openness of symplecticity, H' C H is open.

Lemma 8.8. There is a stratification of H' by locally closed reduced subschemes over
which 2 is locally trivial.

Proof. There is a stratification H; of H’ by locally closed reduced subschemes along
which the second Betti numbers (R? fQ 2-), are constant, for instance by using étale cohomol-
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ogy. By Corollary 5.23, 2" is locally trivial in an analytic neighborhood of every point ¢ in
each H;, and so 2 is locally trivial on each H;. O

It follows from the lemma that the set of pairs (X, L) as in the statement of the proposi-
tion together with a choice of an embedding into PV as above is a locally closed subscheme
U of H. The C-points of the quotient stack [PGLy1\U] then parametrize isomorphism
classes of the pairs (X, L). The PGLy 41 action has finite stabilizers on U by Lemma 4.6,
so by general theory [PGL y +1\U] is a Deligne-Mumford stack and there is a finite-type étale
atlas S — [PGLy+1\U].

To summarize, there is (depending on the fixed locally trivial deformation type and the
fixed BBF square) a finite-type scheme S and a locally trivial family 2" — S of primitive
symplectic varieties and a relatively ample . on 2~ which has the property that every (X, L)
as in the statement of the lemma appears finitely many times (and at least once) as a fiber. O

Each component Sg of the scheme S constructed in the proof of the lemma has a period
map of the form P, : So — O(v1)\Q,. for some v € A with fixed square ¢(v) = d, where
we think of Q,1 = P(v1) N Q. Moreover, P, is a local isomorphism and therefore quasifinite,
as by, e.g., [11, Theorem 3.10] the fibers are algebraic.

Now, for p € 2 as in the original claim, suppose ¢(v) = d for a generator v of the Picard
group. It follows that there are finitely many isomorphism classes of pairs (X, L), where X is
a primitive symplectic variety that is locally trivially deformation-equivalent to X ™, and L is
an ample bundle of BBF square d, and the primitive parts of H2(X,Z) and p are abstractly
isomorphic as polarized Hodge structures. By the assumption on the Picard rank, there are
then finitely many isomorphism classes of projective X locally-trivially deformation equivalent
to X and with H?(X, Z) abstractly isomorphic to p as semi-polarized Hodge structures.
Moreover, Aut(p) = %1, so for each such X there are finitely many such isomorphisms.

To finish, by Theorem 6.9 every point in P ~!(p) is projective and uniquely polarized by
a class of BBF square d, and the claim follows. O

For the next step, let Qx=¢ C 2 be the rational-rank-zero locus, let ﬁjﬁ;o C @4- be
the preimage of Q=0 under P, and let P.x—¢ be the restriction of P to EIR:IFO. Note that
since we are assuming rk(A) > 5, every p € Q=0 has dense O(A)-orbit, by Proposition 8.5.

Step 2. The map Pux—o is a covering map onto Q—o.
Proof. The claim follows from the following two lemmas.

Lemma 8.9. The map P—o has finite fibers of constant size. In particular, it is surjec-
tive onto Qrk=0.

Proof. By the previous step there is a point pg € Q=0 over which P ~1(py) is finite
of size N, and therefore P ~!(p) is finite of size < N for every point p € Qp=o. Indeed, if
some p € Qux=o had at least N + 1 preimages, then by Hausdorffness we can find pairwise
non-intersecting open neighborhoods around any N + 1 points in the fiber P~!(p) that map
isomorphically to the same open neighborhood V of p, but pg has dense orbit. Interchanging
po and p, we see that in fact the fibers are finite of constant size. O
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Lemma 8.10. Suppose [ : X — Y is alocal homeomorphism between two Hausdorff"
topological spaces. If f has finite fibers of constant size, it is a covering map onto its image.

Proof. Forany y € Y, because f~!(y) is finite we may find nonintersecting open sets
U, around each point x € f~!(y) on which f is a homeomorphism, and by shrinking we may
further assume all the Uy have the same image U . It follows from the assumption on fiber size

that f_l(U) = Uxef—l(y) Ux. O
The claim is proved. |
Step 3. The map Frrkzo is an isomorphism of ﬁrrkzo onto Qrk=o.

Proof. The rational-rank-zero locus is, in the notation of Section 8.3,

Qune=o := @\ | J 7o
L#0

and each 7} is a closed submanifold of real codimension rk(A) — 2. Assuming rk(A) > 5,
we have that Qx—¢ is locally path-connected and path-connected by [88, Lemma 4.10] and
moreover locally simply connected and simply connected by the following lemma, as the same
is true of Q.

Lemma 8.11. [If M is a simply connected smooth manifold and S is a countable union
of closed submanifolds of (real) codimension > 3, then M \ S is simply connected.

Proof. This argument is taken from a MathOverflow answer of Martin M. W. [93]. The
result is well known when § is a single closed submanifold of codimension > 3. The space of
nullhomotopies S! x [0, 1] — M of a given path with the compact open topology is a Baire
space and the set of homotopies avoiding a single closed submanifold of codimension > 3 is
a dense open subset. Therefore, the set of homotopies avoiding S is nonempty (and in fact
dense) by definition of a Baire space. m|

Thus, the claim follows from the previous step. |

Step 4. The subgroup Mon(IR) has finite index in O(A).

Proof. The map P: ﬁ:rrkzo — Qpk=0 has finite degree and 2,x—¢ is path-connected.
Therefore, MM T has finitely many connected components. The group Mon(IN) is the stabilizer

of the component i, and is therefore finite index. O

Step 5(a). The map P is an isomorphism of M onto the complement in Q2 of countably
many maximal Picard rank periods.

Proof. By Step 3, it is enough to show that the image of )t under P contains the
locus 2;rx<1 of non-maximal Picard rank periods. The image is open and Mon(0)-invariant,
whereas by Proposition 8.5 and the previous step a Mon(9Jt) orbit closure in €2 must be a union

7 In fact, only Hausdorffness on the source is used.
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of Ty or all of Q. It is therefore enough to show that for any rank one sublattice £ C A, a very
general point of Ty is contained in P ().

Considering a projective (X, ) € M with a polarization v that is orthogonal to £, we
obtain a period map Py : So — O(v1)\Q,. as in Step 1 corresponding to a family of locally
trivial deformations of X over So. The complement of P, (Sp) is a locally closed subvariety of
O(UJ‘)\QUJ_ and its preimage V' in €2, is therefore also a locally closed analytic subvariety.

It suffices to show that 7; N €2,,1 is not contained in V. But 77 is totally real and has half
the (real) dimension of €2, so the tangent space to Ty N 2,1 at a point p is not contained in
any proper complex subspace of T,€2,, 1. It follows that if 7; were contained in V, it must be
contained in the singular locus of V', and so by induction we get a contradiction. O

Step 5(b). When X T is Q-factorici and terminal, then the same is true of every point
(X, 1) € M and P is an isomorphism of M onto Q.

Proof. The first claim follows from Lemma 5.20. For the second claim, by the previous
step, it remains to show P (J)t) contains all maximal Picard rank points, which are in particular
projective by Theorem 6.9.

Now for any maximal Picard rank period p, let v € A be a positive vector which is
Hodge with respect to p. A very general deformation of p for which v remains algebraic is in
the image of P, and the period map P, : So — O(v)\Q,. from Step 1 is dominant, so we
can find a curve B C O(UJ')\SZU¢ through p such that an open set U C B lifts to Sp, possibly
after a base change. Now apply® Proposition 7.1. O

This concludes the proof.

Remark 8.12. The argument given in Step 1 of the proof of the theorem together with
Huybrechts’ surjectivity of the period map [44, Theorem 8.1] implies that the monodromy
group is of finite index for irreducible symplectic manifolds even when b, = 4 (for b, = 3 it
is automatic). For an argument not using Huybrechts’ theorem, see [91, Theorem 2.6].

Remark 8.13. Some ideas similar to those appearing in the proof of Theorem 8.2 have
also been used recently by Huybrechts [48] to prove some finiteness results for hyperkéhler
manifolds, and these arguments can likely be adapted to the singular setting.

9. Q-factorial terminalizations

If X is an algebraic variety, then by [9, Corollary 1.4.3] there exists Q-factorial termi-
nalization 7 : ¥ — X. This is often crucial in the theory of singular symplectic varieties. On
the other hand, even if you are mainly interested in projective symplectic varieties, it is often
necessary to consider also compact Kéhler varieties and certainly the methods of [9] are not yet
established in the Kihler case. The main result of this section, Theorem 9.1, partially remedies
this in the case of primitive symplectic varieties. If we start with a primitive symplectic variety
with second Betti number > 5, it establishes the existence of Q-factorial terminalizations on a
bimeromorphic model which is locally trivially deformation equivalent to the initial variety.

8 Or [57, Theorem 1.7] in the smooth case.
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In fact, by Theorem 6.14 the following is slightly stronger, though we expect it to be
equivalent. For a normal variety X we denote by wx the push forward of the canonical bundle
along the inclusion of the regular locus.

Theorem 9.1. Let X be a primitive symplectic variety satisfying by (X) > 5. Then there
exist a primitive symplectic variety X' which is inseparable from X in (locally trivial) moduli
and a Q-factorial terminalization of X', i.e., a proper bimeromorphic morphism 7w : Y — X’
such that Y has only Q-factorial terminal singularities and w*wyx: = wy = Oy. In particular,
Y is a primitive symplectic variety.

As a consequence of the fact that bimeromorphic varieties without compact curves are
isomorphic, see e.g. the proof of Corollary 6.15, we obtain:

Corollary 9.2. Let X be as in Theorem 9.1, and additionally assume it has Picard rank
zero. Then X has a Q-factorial terminalization. O

The proof of Theorem 9.1 is obtained by combining Proposition 5.22 with Corollary 6.11,
Theorems 6.14 and 8.2, and the existence of Q-factorial terminalizations of projective varieties.

Proof of Theorem 9.1.  Consider the universal locally trivial deformation 2" — Def''(X)
and choose ¢ € Def''(X) nearby such that Xo := 27 is projective. Take a Q-factorial termi-
nalization Yo — X, denote N the gy,-orthogonal complement of H?(Xo, Q) in H? (Y, Q),
and consider the universal deformation of the pair

Y —— 2o

| |

Def(Yy, N) —2— Defl'(X,)

given by Proposition 5.22. By Lemma 5.20, we may assume that every fiber of the map
%y — Def(Yp, N) is Q-factorial and by local triviality and Theorem 3.4, every fiber has ter-
minal singularities. In other words, for all s € Def(Yg, N) the morphism (%p)s — (Z£0)p(s) 18
a (Q-factorial terminalization.

If rrk(X) = 0, then by Proposition 8.5 and Theorem 8.2 there is a point ¢’ € Def'"(Xy)
such that the fiber X’ := (%29), and X are inseparable in moduli. By construction, X’ has
a Q-factorial terminalization, and by Theorem 6.14, X’ is bimeromorphic to X . If rrk(X) = 1,
projective periods are still dense in the orbit closure of the period of X by Theorem 6.9, so the
same argument can be applied by choosing the period of Xy to be in the orbit closure of the
period of X. Finally, varieties X with rrk(X) = 2 are projective so there the result is known
anyway by [9, Corollary 1.4.3]. m]

As an application, we can give examples of divisorially QQ-factorial but not Q-factorial
varieties.

Example 9.3. Consider a projective irreducible symplectic manifold Y of dimension
2n admitting a small contraction 7 : ¥ — X, where X is a projective primitive symplectic
variety and the exceptional locus of 7 is isomorphic to P”. As & has connected fibers, P”
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must be contracted to a point and thus X has an isolated singularity. Such examples can be
realized on the Hilbert scheme ¥ = S of n points on a K3 surface S containing a smooth
rational curve. As the contraction is small, the variety X is not Q-factorial. By [5, Theorem 4.1,
Propositions 4.5 and 5.8], this contraction deforms over a smooth hypersurface in Def(Y').

Let us denote by £ C P” C Y a line and by L the unique line bundle on Y satisfying

qy (c1(L),-) = (£,-), where the right-hand side denotes the pairing N1 (Y )g ® N1 (Y)g — Q.
It follows that c1 (L) is g-orthogonal to the pullback of any ample divisor on X, hence we have
qy (c1(L)) = gy (£) < 0. Replacing X by a small locally trivial deformation, we may assume:

(1) The contraction i : ¥ — X deforms and has P” as its exceptional set.

(2) The varieties X and Y are Kéhler and non-algebraic such that the Picard group of X is

trivial and Pic(Y') has rank one.

(3) There are no divisors on Y, in particular, X is not Q-factorial but divisorially Q-factorial

in the sense of Definition 2.14.

For (3), if L™ were represented by an effective divisor D, then since gy (D) < 0 it is excep-
tional [12, Theorem 4.5] and hence uniruled [12, Proposition 4.7]. However, the only curves
on Y are the ones contracted by 7.
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