Generating Topic-Preserving Synthetic News

Ahmadreza Mosallanezhad
Computer Science and Engineering
Arizona State University
amosalla@asu.edu

Abstract—The text generation methods have witnessed great
success in text summarization, machine translation, and synthetic
news generation. However, these techniques may be abused to
generate disinformation and fake news. To better understand the
potential threats of synthetic news, we develop a novel generation
method RLTG to generate topic-preserving news content. The
majority of existing text generation methods are either controlled
by specific attributes or lack topic consistency between the input
claims and output news, making synthetic news less coherent
and realistic. In this paper, we study the problem of topic-
preserving synthetic news generation by proposing a novel deep
reinforcement learning-based method to control the output of
large pre-trained language models. Experiment results on real-
world datasets demonstrate that the news contents generated by
RLTG are topic-consistent and realistic.

Index Terms—Text Generation, Reinforcement Learning, Ad-
versarial Training

I. INTRODUCTION

Text generation is an important task for Natural Language
Processing (NLP). With the rise of deep neural networks
such as Recurrent Neural Networks (RNNs) and Long Shot
Term Memory (LSTM) cells [1], there has been significant
performance improvement in language modeling and text
generation. Text generation has many different applications
such as paraphrase generation and data augmentation. One
important application of text generation in NLP is synthetic
news content generation [2].

Recently, internet has proliferated a plethora of disinforma-
tion and fake news [3], [4]. Moreover, recent advancements
in language models such as GPT-2 [5] allow one to generate
synthetic news based on limited information. For example,
models like Generative Adversarial Network (GAN) [6] can
generate long readable text from noise, and GPT-2 [5] can
write news stories and fiction stories given simple contexts
such as part of a sentence or a topic. In the context of news
generation, Grover is a causal language model that can gener-
ate fake news using different variables such as domain, date,
authors, and headline [2]. While Grover is shown effective, it
requires many conditional variables to generate relevant news.
To study machine-generated news, we propose a model to
generate realistic synthetic news. Throughout this paper, we
refer to realistic news as news similar to human-written words.
The crucial task of synthetic news generation enables us to (1)
automatically generate news and (2) use the synthetic news to
study the differences between human-generated and machine-
generated news. For example, one major problem in fake news

Kai Shu
Department of Computer Science
Lllinois Institute of Technology
kshu@iit.edu

Huan Liu
Computer Science and Engineering
Arizona State University
huanliu@asu.edu

detection is the challenge to differentiate between human and
machine-generated text [2].

With the advances in language models (e.g., GPT-2 and
GPT-3), miscreants can leverage them to spread fake news
through social media. To tackle this problem, as the first step,
we need ample synthetic news with which researchers can
study the nuances between human- and machine-generated text
to detect disinformation on social media.

Existing methods may fall short when generating realistic
news controlled by a specific context. For instance, fake news
usually has a catchy style and should stay on topic to make
its audience believe it, as in the example of “A shocking
news report claims Kourtney Kardashian’s pregnant again”.
The shortcomings in existing language models and the lack
of a proper machine-generated news dataset underscore the
importance of topic-preserving and stylized synthetic news
generation. Moreover, fine-tuning language models does not
help us in this matter as it is non-trivial to enforce topic-
preservation on a language model directly. In essence, we
address the challenge of generating topic-preserving realistic
synthetic news.

Our solutions to these challenges result in a novel frame-
work RLTG (Reinforcement Learning-based Text Generator),
for generating topic-preserving realistic news. The proposed
framework RLTG consists of three major components: (1)
a language model component to generate a probability dis-
tribution over a vocabulary for the next word, given a text
input; (2) a Reinforcement Learning (RL) component capable
of leveraging the language model to control news generation;
and (3) a fake news detection module as an adversary to
help the RL agent generate realistic fake news contents. This
work can be used as a stepping stone to further study the
differences between human- and machine-generated news, and
improving fake news detection methods. Our contributions are
summarized as follows:

e We study a novel problem of topic-preserving and realistic
synthetic news content generation.

e We propose a principled framework, RLTG, which uses
language model and deep reinforcement learning along with
adversary regularization to generate realistic synthetic news
contents.

e We conduct experiments on real-world datasets using quan-
titative and qualitative metrics to demonstrate the effectiveness
of RLTG for synthetic news generation.

II. RELATED WORK

In this section, we briefly describe the related work on
(1) neural news generation; (2) adversarial training; and (3)
reinforcement learning for text generation:

A. Neural news generation

Text generation is a crucial task in NLP and is used in
its different applications [7], [8]. Many early methods for
text generation use different techniques to train Generative
Adversarial Networks (GAN). As GANs cannot be used for
text generation due to the discrete nature of the problem, the
early work try to solve the problem of back propagation for
updating the generator. Several methods [6], [9], [10] have
been proposed to alleviate this problem. MaskGAN [10] tries
to generate text using both GAN and actor-critic networks.
Another method from [9] uses a new training method for
the discriminator in a GAN to learn a better text generator
against the discriminator. Finally, in LeakGAN [6], unlike
other GAN-based methods that the discriminator and generator
are trained against each other, it uses the discriminator to help
the generator predict the next word.

To solve the problem of controllable text generation for a
specific topic, Hu et al. propose a method for controlling the
text generation process using different classifiers as discrim-
inators in a GAN [11]. Another recent work by Dathathri et
al. proposed PPLM that uses gradient difference on a pre-
trained language model to control its output toward a given
attribute. They further use different classifiers to calculate
the gradient difference [12]. Moreover, Hu et al. proposed
to use several discriminators in a GAN to control the text
generation process [11]. What makes our work different than
these methods is that in our work we focus on controlling
the output toward a given topic, instead of a given class
attribute. Lastly, Zellers et al. [2] use transformers to build
a causal language model in order to generate text given a
desired article’s parameters.

B. Adversarial training on discrete variables

Recently, interesting works has been done that use adver-
sarial training over discrete sequence data [13]-[17]. Lamb et
al.propose providing the discriminator with the intermediate
hidden state vectors rather than its sequence outputs, which
makes the loss function differentiable for back propagation
training [16]. Due to the problems in generating text with
Recurrent Neural Netowrks such as quality deterioration in
long sentences, Bengio et al. propose a method to overcome
this problem by using scheduled sampling. They call the
quality deterioration as exposure bias in RNNs [13]. However,
Huszar et al. showed that the scheduled sampling method is
inconsistent and can result in an unstable results [14].

Yu et al. propose a novel method named SeqGAN. They
apply a Generative Adversarial Network [18] to discrete se-
quence generation by directly optimizing the discriminator’s
rewards using policy gradient reinforcement learning [15].
Other approaches use continuous approximation to represent

discrete tokens to facilitate the gradient propagation pro-
cess [11], [19]. Continuous approximation uses the Gumbel-
softmax function [20] to transform the one-hot vector into a
probabilistic vector that is differentiable for training.

Efforts have been made to generate diverse and high-quality
text [6], [21]. Guo et al. propose a new method for generating
long text using adversarial training. They leverage the hidden
states of an adversary as leaked information in order to
optimize a GAN to generate long text [6]. To broaden the
domains of generated text Wang et al. propose a method which
uses a multi-class classifier as a discriminator. It further uses
multiple generators alongside the discriminator to optimize the
model [22]. Moreover, Zhang et al. propose a novel method,
TextGAN, to alleviate the problems of generating text using
GAN. They use LSTM as a generator, and a Convolutional
Neural Network as a discriminator [21].

C. Reinforcement learning in text generation

In the past years, reinforcement learning has shown to be
useful in improving model parameters [23], [24]. Furthermore,
it can be used as a standalone algorithm for different purposes
such as dialog or paraphrase generation. Fedus et al. propose
a method for overcoming the problems of generating text via
GAN. They use reinforcement learning to tune parameters for
an LSTM based generator [10]. Zichao Li et al. propose a
method for generating paraphrase using inverse reinforcement
learning. They use an RL setting to tune a generator’s parame-
ter toward generating paraphrases [24]. Another inspiring work
by Jwei Li et al. shows using reinforcement learning we can
build an agent capable of engaging in a two-person dialog [23].
To generate diverse text, Shi et al. propose a method which
uses a generator in an RL setting. The difference between
their work and other similar work is that they also change
the parameters of the reward function during the training
process [25]. Fan et al. [26] propose using inverse RL to solve
the problem of mode collapse in GAN, meaning that during
the training of GAN, the discriminator becomes too powerful
that we cannot train a generator against it. Another work [27]
models the problem of GAN text generation using RL. They
use a reward function as a feedback to the generator. Although
these methods can be used to generate text, they cannot be
used to generate text for a specific domain.

Inspired by these methods, we study the novel problem of
topic-preserving synthetic news generation using RL. Earlier
research uses RL to update a model’s parameters, but in this
work, we focus on using RL alongside a language model to
control its output towards news generation. We use this novel
model to train an agent that uses a language model’s output to
control the generation process according to a reward function
that considers topic similarity and other quality control factors.

III. PROPOSED MODEL - RLTG

In this section, we discuss the adversarial reinforcement
learning-based synthetic news content generator. The input of
this model is a topic Sg = {w}, w3, ..., w; }. Our model, then,

generates a new sequence St = {wq, ..., Wk, Wk41, ..., WT }
which is the generated news content.

In this paper our goal is to generate synthetic news content
St given topic Sg. The generated news content St should
be related to the given topic Sgp and it should have a similar
style to real news. A piece of news content has a similar style
to real news if it cannot be detected as fake news using a

classifier. Here, we study the following problem:

Problem Statement: Let X = {(S§,x1),(S3,x2),...,
(SN, xn)} denote a set of N news with topic So and
content x. Both topic So = {wf,w{,...,w;} and news
content x = {wg,ws,...,w;} consist of words w. We
consider topic as the news title or the first few words of
a news content. In general, S; shows the generated text at
time ¢. Given a set of news dataset X, learn a reinforcement
learning agent F' that can generate news content St based
on a given topic Sg such that: (1) St is related to the given
topic Sg; and (2) St has a similar style to real news.

Our model consists of several components: (1) a language
model component that is in charge of generating a probability
distribution over vocabulary words ; (2) an RL component
that will select a word based on the language model’s output;
and (3) an adversarial component that will help the RL agent
choose proper words from the language model’s output. First,
we go through news content generation using adversarial RL,
and then we discuss using an adversary to generate realistic
fake news.

A. Topic-preserving News Generation

Existing language models are proposed to generate general
or domain-specific texts [5], [28]. Although we can fine-
tune these models (e.g., fine-tuning GPT-2) according to our
need using a related dataset, we do not have control over
its output because we cannot enforce topic-preservation or
realistic synthetic news generation on the model. Following
the success of Reinforcement Learning (RL) [25], we propose
an adversarial RL method to control the generated output of a
language model. In recent studies, RL has been used to update
a model’s parameters [23], [24]. In this work we explore a
new direction by using RL as a standalone component to
leverage the language model’s output to generate text. The
main advantage of using RL alongside GPT-2 is that we can
use non-differential metrics in the reward function to generate
a coherent text. Moreover, it enables us to have more control
on the output of the language model by leveraging adversaries
or changing the reward function.

In adversarial RL an agent keeps interacting with a defined
environment to learn an optimized action selection policy 7(s)
for each state. An RL agent is trained to choose the next
word w for current generated news St according to a reward
function and an adversary.

Figure 1 shows the high-level structure of RLTG. In this
model, the adversarial reinforcement learning agent gets a
state s; as input, then returns an action a; which indicates an
index to one of the top words from the language model L’s

output. Each interaction between the agent and the environ-
ment creates an experience tuple (S, a¢, S¢41,7t+1), meaning
that the agent chose action a; given the state s;. After action
at, the state will change to s;;; and the environment returns
reward r,11. This tuple is then used to train the agent. An RL
model relies on four main parts: environment, state, action,
and reward function.

e Environment is where the RL agent interacts with to learn
the best action for each state. In our problem, the environment
includes a language model L, an adversary ADV, and a state
creator component M. The language model L takes an input
text and returns a probability distribution over vocabulary P €
IRVI and hidden states H € IR'*¢, where e indicates the
embedding size. The adversary ADV gets an input text and
returns a score for the reward function. Finally, the state creator
M gets the outputs of the language model as input and returns
a vector s € IR' %l (|s| shows state size) which acts as the
input state s for the agent.

e State shows the agent’s current situation. The agent uses
the state to determine a subsequent optimal action. The state
is the output of the state creator component M. Because our
goal is to select the best next word for the current generated
news Si; at time ¢, the state should contain information
about both the context of the current generated news Sg,
and information about the next word choices. To this end,
we design two separate neural networks AE' and AE? to
encode this information. AE! is used to create the context
vector ¢, using hidden state H from the language model L’s
output, while the AE? is used to create a context vector
¢y given previous top K words of the language model L’s
output. For both cases, we train and use autoencoders [29]. An
autoencoder is an unsupervised neural network which learns
to compress and encode data and then to reconstruct the input
using the encoded data. It has two components, an encoder and
a decoder. The encoder takes an input and returns a vector v
which is interpreted as the context vector, containing important
information about the input. The decoder is the reverse of the
encoder: given the encoded vector v, it tries to reconstruct the
original input to the network. After training an autoencoder, we
can use the context vector v containing important information
about the input [29].

In our method, the first autoencoder AE?, gets the hidden
state H as input and returns the reconstructed hidden state
H'. This autoencoder uses Multi Layer Perceptron (MLP)
networks as both encoder and decoder. The purpose of this
autoencoder is to reduce dimension of the hidden state H.
After training this autoencoder on a set of hidden states H,
we get the output of the encoder as context vector cg.

The second autoencoder AE2, inspired by [30], uses Convo-
lutional Neural Network (CNN) as both encoder and decoder.
To this end, each word from top K words is passed through
an embedding layer to convert it to a vector w € IR'*¢. The
embedded words w are then concatenated to form a matrix m
with size of (K x e). After training this autoencoder using dif-
ferent top K words, we consider the output of the encoder as
the context vector cy,. Having both context vectors ¢, and c,,,

Environment

Reward 741
Reward Function

Hidden State H

Language Confidence
Model L Cy :

State

Top K Words

Generated Adversarial
News Content Component
SH.] Adv

Action a;

Fig. 1: The proposed model architecture. The environment
consists of a language model L, reward function, state creator
M, and adversary Adv. The agent keeps interacting with the
environment to find the best action a for each given state s.

we then concatenate both context vectors s = Concat(cg, Cw)
to create the state for the RL environment.

e Actions indicate the agent’s response to a given state
s. As the agent’s goal is to select words, the action set A
can be equal to choosing a word from the vocabulary set V.
By choosing V as the agent’s action set, we encounter two
problems: First, it takes a long time to train an agent on a
large action set as the agent should try every action to find the
best action a for each given state s [31]. Secondly, by having
a large action set A, the agent may not be able to see every
state-action set (s,a) in a limited time, and, it may result in
underfitting [31]. To solve these problems, we make use of the
language model L’s output. One of the outputs of the language
model is the probability distribution over vocabulary V. The
probability distribution indicates what are the best options to
sample the next word for a given text S¢. In this paper, we
select top K words of the probability distribution as the action
set, leading to a small action set.

e Reward Function evaluates agent’s actions for each given
set (s¢, ay). During training, the agent uses the reward function
to learn the best strategy for selecting actions. In this paper, the
goal is to generate a synthetic news content which is related
to a given topic. To this end, we use cosine similarity to
measure similarity between the given embedded topic Sg and
the current generated synthetic news Si. The reason behind
using the embedded topic and generated synthetic news at
time ¢, is that using the exact words in the Cosine similarity
function may result in an agent that chooses topic word to
maximize this similarity:

Sp - S

CosineSim(Sg,St) =
R EATRIEAT

(D
where S’ is the embedded topic/news using the language
model L. We use the language model L’s hidden state H as
the embedding for an input text as it shows the context of an
input text [32].

Furthermore, for generating news content, the model should
consider the writing style of news content. In this paper, we
define style as having a similar word sequence as the reference
news. To this end, for a given synthetic generated news S, we
calculate the BLEU score [33] between Sy and news contents

‘ Encoder * N “Decoder ~ ®
H 1 1 1 1 ,
Hidden State H 1 o, 1 Cg 1 Reconstructed H
— ™ —> —
H 1 o 1 1 1
1 1 1 1
1 1 1 1 .
______ 4) JUppR R 6 State s
------- ~ e T == '
: + Encoder | Decoder :
Top K Words | ' ! f
| : ' Cw : | : Reconstructed Top
') \ ; K Words

..............

Fig. 2: The architecture of state creator M. It leverages two
autoencoders to create state s for the RL agent.

X to maintain news style. The BLEU score simply measures
how many words overlap between the generated news S and
the reference news contents X. As the BLEU metric gives
higher scores to similar sequential words, it can be used as
a fluency metric in the designed reward function. The reward
function is defined as follow:

re = aCosineSim(S¢, S,) + BBLEU(Sy, X) (2)

where « controls the contribution of Cosine similarity term,
and 3 controls the contribution of BLEU score.

B. Using Adversaries to Generate Realistic Synthetic News

Up to this point, we have considered the style and topic-
preservation. To ensure that the generated news has a similar
writing to real news, we use a fake news detection component
as an adversary to determine whether the generated news is
considered fake or true. Thus, we add an additional term to
the reward function:

re =aCosineSim(Sy, S})+ (3)
+ BBLEU(S¢, X) + A(1 — C¢(Sy))
Where Cy € [0,1] is the confidence of the fake news

classifier given an input, and A shows the importance of this
term. The confidence shows the probability of a news content

being fake.
For training the agent, we use news dataset X =
{(S%,x1),(S3,%x2) ..., (S, xn)} in which Si shows the

topic of i'” news and x; shows the content of that news.
During training, the agent chooses an action a; leading to
selecting word wy; € V, which is then added to current
generated news Sy = {wi,ws,...,wg,...,w;} to generate
St+1 = {w1,..., Wk, ..., w, w11 }. The modified text S¢yq
is then passed to the adversary C'; and the reward function to
calculate the reward value r,y; considering news content Xx.
Furthermore, the modified text St is passed to the language
model L. Using the outputs of the language model L the
environment generates next state s;;. In the following we
discuss the details of using adversarial reinforcement learning.

In adversarial reinforcement learning, the goal is to learn
an action policy 7(s) which leads to maximum amount of
accumulated reward R = Zzg ry where T is the terminal
time. To find the best action selection policy 7(s), we use

experiences in form of (s, a, S¢11,7¢41) to train the agent.
There are different algorithms to train an agent. Policy gradient
and Q-Learning are two popular algorithms for training an
agent [34]. In this paper we use Deep Q-Learning which is an
advanced variant of Q-Learning.

In Deep Q-Learning (DQL), the agent uses a neural network
as a function approximator to find an action regarding a given
state s. The input of this neural network is state s and the
outputs are the values for (s, a;) L’ilo where |A| is the number
of actions. In DQL, the goal is to learn the following function:

Q*(st,ar) =By, [re41 +ymazey Q* (si41,a")] ()

where Q-function (s, a) returns the expected accumulated
reward R if the agent selects action a in response to state s
and Q* (s, a) denotes the optimal Q-function which returns the
maximum possible accumulated reward R using the optimal
policy 7(s). In this formula, the future rewards are discounted
using the v parameter. We adjust v with respect to the
importance of future rewards.

In practice, it is not feasible to estimate Q*(s, a) in Equa-
tion 4. To overcome this problem, we use a function approxi-
mator to estimate the Q-function Q*(s,a) = Q(s,a;0). As
neural networks are excellent function approximators [35],
DQL leverages a neural network with parameters 6 called
Deep Q-Network (DQN) to find the Q-function Q(s,a;6) by
minimizing the following loss function:

L(@) = IESt,at78t+1,7‘t+1 [(y - Q(37 a; 9))2] (5)
where y is the target Q-value calculated using Equation 6:
y =B, [re41 +7Q(s¢41,0";6')] (6)

where 6’ is the DQN’s parameters from the previous iteration.
Finally, we update the DQN parameters using the derivation
of Equation 5 with respect to 6:

VQL(Q) :IEStyat75t+177't+1 [(T + ’Ymaxa/Q(st+l7 a’l; 0/)_ (7)

— Q(s¢,a1;0))VaQ(st, ar; 0)]

In this paper, we have specifically used DQL with memory
replay and two networks as target and policy, respectively. The
memory replay helps the agent to remember past experiences.
The training algorithm is presented in Algorithm 1!,

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of our method. In these experiments, we try to
answer the following questions: Q1: How well our method can
generate synthetic news in comparison to existing methods in
terms of topic similarity? Q2: How fluent is the generated
synthetic news using RLTG? and Q3: How well humans
evaluate the RLTG’s generated synthetic news?

To answer the first question Q1, we consider Cosine similar-
ity; for Q2, we use ROUGE-L metric; and for Q3, we perform
human evaluation using a survey to assess RLTG’s generated
synthetic news in terms of content, title, overall readability,
and being realistic or not.

IThe source code will become publicly available upon acceptance.

Algorithm 1 The Learning Process of RLTG

Require: L,e, T, M.
1: Initialize replay memory R, environment, policy, and target networks
2: while training is not terminal do

3: H,topK < L(topic)

4: s4 + M(H,topK)

5 for t € {0,1,...,T} do

6: Choose action a; using e-greedy

7: Perform a; on s and get (St+1,7¢4+1)

8: R<—R+(St7at,7“t+1,81+1)

9 St < St+1

10 for (s,a,s’,r) € sampled mini-batch b from R do

11: Update DQN weights using Eq. 7 w.r.t. policy and target
networks

12: end for

13: if exchange condition met then

14: Exchange weights between policy and target network

15: end if

16: end for

17: end while

A. Data

We utilize FakeNewsNet dataset [36] to fine-tune GPT-2 and
train our model. This dataset consists of news data X from
two different platforms GossipCop and Politifact. GossipCop
is a fact-checking website, which reports on celebrity news.
Politifact is a similar platform, which checks the truth of
political news and reports. In this dataset, news are classified
into real or fake. Politifact contains 2,645 true and 2, 770 fake
news, while the GossipCop includes 3, 586 true and 2, 230 fake
news respectively. Dataset statistics are shown in Table I. In
this paper, we consider the first few words of each news z;
content as topic Sg.

Platform G P

True news 3,586 2,645
Fake news 2,230 2,770
Total News | 5,816 5415

TABLE I: The statistics of the FakeNewsNet dataset

B. Implementation Details

In this part we go through the parameters and implementa-
tion details of RLTG. In our model, we use a fine-tuned GPT-2
language model as L. To fine-tune the GPT-2 language model,
we first load a pre-trained "GPT-2 medium”, then we use
FakeNewsNet dataset for 5 iterations to fine-tune the language
model. Note that this language model has 12 hidden layers.
Each hidden layer returns a tensor with size of (batch size,
sequence length, hidden size), where the hidden size in "GPT-
2 medium” is 768.

As it is mentioned in the proposed method, the RL agent
has a neural network which acts as a function approximator.
This network gets a state as input and returns the Q-value for
each (s, a;)X | set. This network has 3 layers. The first hidden
layer has 1024 nodes, the second and third layer has 512 and
256 nodes, respectively. The output size of this network is
equal to the number of actions. In this paper, the number of
actions is 50, meaning that the agent chooses between the
top 50 words of GPT-2’s output probability. The reason we

chose 50 is that among values {10, 25,50, 75}, it showed a
better reward performance than others, with K = 75 having
a similar performance. Moreover, the the output size of the
DQN network is equal to the size of state s. To construct
state s, as in Figure 2, we have trained 2 autoencoders and
concatenate the output of each encoder to create the state.
The first autoencoder is considered for extracting the context
of generated news using hidden state /7. This autoencoder uses
Multi-Layer Perceptron (MLP) to encode and reconstruct the
hidden state H. The output of encoder part has 256 nodes.
The second autoencoder uses Convolutional Neural Networks
(CNN) to extract information about best words positions. The
encoder of this autoencoder has an output layer with size of
128. The final size of state s is 384.

The RL agent is trained on randomly selected topics for
50000 episodes. The agent can choose between top K = 50
words from the language model L’s output. Each episode has
a terminal time of 7" = 50. As the final generated news is more
important than the early generated news, a high discount factor
v = 0.9 is used. As it is mentioned in the proposed method
section, we use Deep Q-Learning to train our RL agent. In
this algorithm we construct a memory with size 10000 to save
the experiences (s, ay, St+1,7t+1). Each experience means
that the RL agent chose action a; in state s;. The selected
action a; resulted in transition to a new state s;;; and the
environment returned a reward ;4 ;. We then use the memory
array to update our model using Equation 5. The batch size
for sampling experiences from memory is 32. During the
training process we use e-greedy to choose action a;. This
algorithm considers a random action with probability of € and
chooses the best action based on Q-values with a probability
of 1 —e. We use the following decay function to lower the
value of e. This function lower the € according to the number
of past iterations and exponentially decreases it by a constant
rate € = €min + (Emaz — emm)e% where steps is the
number of past iterations and decay_rate controls how fast
the € should decrease. We use €,,4,. = 0.98, €nin = 0.02
and the decay rate equal to 5,000.As for the reward function
parameters, we set « = 3 = A = 0.5. In this case r € [0,1.5].

As illustrated in Figure 1, we use a fake news classifier as
an adversary to calculate the value of reward function. The
architecture of the fake news classifier is shown in Figure 3.
The hidden size of bi-directional GRU is 128, resulting in a
context vector of 256. The neural network classifier has an
input size of 256, hidden size of 128, and output size of 1.
We train this classifier before training the agent using Binary
Cross Entropy (BCE) loss function. As DQL has a variance
during training, we train our model 5 times independently,
then we select the agent with the highest average rewards.

To train the RLTG model, we used a publicly available
dataset, FakeNewsNet [36] that can be accessed through https:
//github.com/KaiDMML/FakeNewsNet. To compare RLTG to
GPT-2, we have used the Hugging Face package (https:
//huggingface.co) to use and fine-tuned the GPT-2 model.
The GPT-2 model is fine-tuned for 2 iterations using the
FakeNewsNet dataset. Moreover, to run the experiments on

Grover [2], we used their publicly available package through
https://rowanzellers.com/grover.

C. Experimental Design

We use different baselines for comparison. As our proposed
model is based on the OpenAl’s GPT-2 language model, we
use this language model alone as a baseline to determine how
using an RL agent on this model can improve its results. Fur-
thermore, we also include the RL agent alone as a baseline to
generate synthetic news. Our main goal, generating synthetic
news content, is close to the Grover [2], so we have selected
this work as a baseline. Finally we select the SeqGAN method
because it incorporates GAN with reinforcement learning.
Following is the description of the baselines:

o GPT-2 [5]: a language model capable of generating long
text. This language model is based on transformers and
has three different variations based on it’s number of lay-
ers and parameters: small (117M parameters) , medium
(345M parameters), and large (774M parameters). In this
paper we use GPT-2 medium as fine-tuning it needs less
resources.

e Fine-tuned GPT-2 (FTGPT-2): similar to GPT-2, but
has been fine-tuned using FakeNewsNet dataset.

e RL: in this baseline we use RL technique without using
a language model to train an agent. In this case, all
components except the actions are the same as the
proposed RLTG method. The action set in this baseline
is all word in the vocabulary set V. The training process
of this baseline is similar to our model.

e Grover [2]: a conditional language model which can
generate text based on given parameters: domain, date,
authors, and headline. The goal of Grover is to generate
news content based on different parameters. While the
results are promising, it seems this language model is
very dependent on domain parameter, which we will
explore during our evaluation.

e SeqGAN (SeqG) [15]: is a text generation method,
which models data generator as a stochastic policy in
reinforcement learning. They then use policy gradient
method to train their model.

o« PPLM [12]: is a method that leverages GPT-2 to gen-
erate domain-specific text. We have used our pre-trained
fakenews classifier to generate fakenews related text.

D. Experimental Results

We evaluate our model’s performance regarding Q1 - Q3.

Topic Similarity (Q1). To answer this question, we use
cosine similarity as in Equation 1 to calculate the similarity be-
tween the embedding of the given topic S and the generated
news St. We do not want the RL agent to exactly select topic
words to maximize its reward, so we use text embeddings to
calculate the similarity. In this case, the agent chooses words to
maximize the context similarity between both the topic and the
generated text. For a fair comparison, we use a fixed sentence
length of 200 for text generation.

N
).

w ¥ m RN [RNN=>| [1ommmmmmmmmmneeeees :
' H |'3|'| P4 1

e 2 :
(=3 = . . !

wy—3 S g Tanh Sigmoid _, ¢ .
'@ = Layer Layer |
e 2 ;
I (]
(| =

wn—» " [>[RNN| [RNN |1

Fig. 3: The architecture of fake news classifier. It uses bi-
directional GRU and an attention layer to create context vector,
then uses a three layer neural network to classify the news as
fake or true.

Table II shows the performance of RLTG against other
baselines. RLTG can outperform other baselines because it
considers topic similarity during the training process. Al-
though fine-tuned GPT-2 falls behind RLTG and Grover, it
has achieved a high similarity comparing to other methods.
This is due to the fact that the fine-tuned GPT-2 tends to
repeat itself. Note that the performance of the RL baseline is
behind all models. The reason behind it is that the action set
in this case is very large and the agent cannot converge easily.
Furthermore, using a language model to narrow down the
possible actions can have a huge impact on training the model.
Finally, comparing the performance of RLTG and baselines to
PPLM shows that PPLM lacks fluency. We suspect this is due
to the used classifier and the fact that the GPT-2 used in this
model cannot generate text in the news domain.

Fluency Test (Q2). To answer this question we use both
perplexity and ROUGE-L metrics. Perplexity may not be
suitable for showing the effectiveness of a model in open-
domain text generation [37], but in our case, we focus on
domain-specific news generation. Table II shows the results
for fluency test. Lower perplexity means the generated news
is more concentrated and it is less variant. Furthermore,
the ROUGE-L score applies Longest Common Subsequence
between the news contents X’ and generated news content St
to calculate the final score. We select ROUGE-L metric for
evaluation because our method is trained to achieve a high
BLEU score, and using BLEU score for evaluation is not
fair. ROUGE-L measures how many words from the reference
sentences have appeared in the generated news. ROUGE-L
gives higher scores to sequential words, and can be used as a
fluency metric. In this paper we use the FakeNewsNet dataset
as the reference sentences. A higher ROUGE-L score means
the generated news is more fluent.

RLTG GPT-2 FTGPT-2 Grover SeqG PPLM RL
Similarity 0.342 0.176 0.241 0.313 0.301 0.254 0.153
Perplexity 14.8 223 19.8 153 17.4 21.8 30.4
ROUGE-L 284% 23.1% 24.6% 273% 21.5% 18.6% 172%

TABLE II: Topic similarity (1 better), perplexity (| better),
and ROUGE-L score (1 better) for model’s generated news.

Human Evaluation (Q3). To further investigate the quality

Measure Question

Is the style of this article consistent? (3). Yes, this
sounds like an article I would find at an online news
source. (2). Sort of, but there are certain sentences that
are awkward or strange. (1). No, it reads like it’s written
by a madman.

Does the content of this article make sense? (3). Yes,
this article reads coherently. (2). Sort of, but I don’t
understand what the author means in certain places.
(1). No, I have no (or almost no) idea what the author
is trying to say.

Does the article sound like it’s around a topic? (3). Yes,
I feel that this article is talking about a single topic.
(2). Sort of, I'm not sure what the article is about. (1).
No, it seems this article is gibberish.

Does the article read like it comes from a trustworthy
source? (3). Yes, I feel that this article could come from
a news source I would trust. (2). Sort of, but something
seems a bit fishy. (1). No, this seems like it comes from
an unreliable source.

1 Realistic

2 Content

3 Title

4 Overall

TABLE III: Human evaluation questionnaire

BN Human Generated Text
RLTG Generated Text
B Grover Generated Text

Overall

Realistic

Content Topic

Fig. 4: Human evaluation results. Each participants evaluated
each articles based on its style, topic similarity, content quality,
and overall evaluation. Higher score is better.

of the generated text, we conduct a human study to evaluate
the generated news without knowing the origin of the news
(human or machine generated). In this human study, we asked
the participants to give a score from 1 to 3 about topic
similarity, writing style, content quality, and overall evaluation
of the given text. Table III shows the designed questionnaire
for evaluating the performance of the language models. We
used a similar measure as [2] and included a new question
regarding the topic similarity.

For comparison, we consider best performing models,
RLTG and Grover. We include 75 articles (25 human gen-
erated, 25 RLTG generated, and 25 Grover generated). The
results are provided in Figure 4.

E. Parameter Analysis

In this part, we study the effects of different parameters
of our model on the quality of the generated news. These
parameters include the reward function’s parameters, «, 03,
and v. The « parameter indicates the importance of topic
similarity, 8 shows the importance of readability according to
the BLEU score, and v shows the importance of the adversary
which is the fake news classifier.

08

06

04

Adversary's Confidence

400 800

Iteration

0 200 600

(a) The reverse confidence of fake news classifier
(1 —Cy) from different episodes during training.

Reward

0.1

0 500 1000 1500 2000 2500 3000 3500 4000
Episode

(b) Average of agent’s reward from episodes
1 to 4000.

Fig. 5: The reverse of adversary’s confidence (1 — Cy) and RL agent’s rewards show the learning process.

=
~
o

026

=]
~
o}

=
I
b4

- 024
u

S

ROUGE-L

2
2023

=
~
w

=
N
N}

022

=]
o
=

~

050 075 025

a

025

(a) Impact of «

050

B

(b) Impact of 3

050 075

A

075 025

(c) Impact of A\

Fig. 6: Impact of different reward function parameters on RLTG’s ROUGE-L score.

Furthermore, in Figure 5 we show the reverse confidence of
classifier (1—C'y) of the fake news classifier for several periods
of training iterations. This figure shows the confidence for the
final generated news at terminal time 7'. From this figure we
conclude that the agent can generate realistic fake news.

First, we assess the convergence of the training algorithm by
showing the RL algorithm’s reward values during the training.
Figure 5 shows the mean reward for each episode over for each
iteration. The results indicates that the average reward of agent
is increasing over time, meaning that the agent is learning a
policy 7(s) which can result in larger reward values. At first
the rewards are low which is as a result of randomness during
early episodes, but it increases as the agent learns better actions
for each state s. Note that in Figure 5 we only show the reward
values for first 4000 iterations to show its increasing behavior.

To measure the impact of different components in RLTG,
we perform two different tests. On a high level, RLTG is
composed of two main components, the GPT-2 language
model, and the RL agent. In the first test, we study the
performance of each high level component, RL and GPT-2,
in RLTG. Table II indicates the performance for RL, GPT-
2, and RLTG. We notice that the RL model performs poorly
which is expected due to the GPT-2’s superior architecture.
In the second test, we study the importance of different
components in the RL part of the RLTG by analyzing the
effects of «, 3, and v on the reward function in Equation
3. The effect of these parameters is illustrated by changing
them as o, 8,\ € {0.0,0.25,0.5,0.75,1.0} and calculating

the ROUGE-L score.

Figure 6 shows the effect of each component on the
ROUGE-L score. For each parameter, we consider other
parameter values as 0.5. While o and A have little effect on
the ROUGE-L score, the 3 parameter has a larger impact as it
considers how well the generated news content overlaps with
the given domain according to dataset X’

We further study the effect of using a fake news detection
classifier as an adversary to see if the generated news is
realistic enough not to be detected as fake. By studying the
reward values in Figure 5, we can see that the agent can
generate news content which the adversary cannot easily detect
as fake. The trained adversary has an accuracy of %81.3 and
AUC of %75.3. Although it seems that the ~ parameter does
not contribute to generating a higher-quality text, according to
the confidence values presented in Figure 5, RLTG can avoid
producing obvious fake synthetic news by using features that
bypasses the adversary.

E Case Studies of Generated Synthetic News

For illustration purposes, we show some examples of the
synthetic news generated by RLTG and by the baselines.
Table IV shows two examples of generated news by different
models. The topic-related words are highlighted to show how
well RLTG preserves the given topic in the generated synthetic
news. Finally, Table V illustrates the results of the human
evaluation experiment for five generated synthetic news.

Model

Text

the wedding of prince harry and meghan markle was held with royal family guests attending the ceremony. After nearly four hours on site,

RLTG they met again with wedding guests from a host community to gather for one particular special day. In May there would been even-clothing
on all royal guests arriving as many couples wore the customised royal gown...
FTGPT-2 the wedding of prince harry and meghan markle was held on the grounds of St. George’s Chapel in Windsor, England, on May 19, 1814.
B The bride and groom were Prince William and Kate Middleton, and the groom was Prince Charles. The bride...
the wedding of prince harry and meghan markle was held on the wedding of prince harry and meghan markle was held on the day of the
GPT-2 : .
wedding of prince harry and meghan markle was held on the day...
the wedding of prince harry and meghan markle. Like many of the gala trends we celebrate today, the wedding of prince harry and
Grover meghan markle has taken center stage at the MWC. The mom and pop couples still roping in floral designs, staging weddings, and of course,
speaking on stage at the hands of this mortal pair.
kim kardashian and kanye west are reportedly getting married in florence, Italy! Kim confirmed it this evening after receiving numerous
RLTG
texts during Sunday. We will certainly keep up this morning’s news, as long as this story reaches our lips...
kim kardashian and kanye west are reportedly getting married in florence. The couple, who have been dating since 2015, have been
FTGPT-2 spotted fogether in the city of L.A. and are reportedly spending time fogether. The couple, who have been dating since 2015, have been
spotted fogether in the city of L.A. and are reportedly spending time together...
GPT2 kim kardashian and kanye west are reportedly getting married in florence. The couple is reportedly planning to have a baby rogether.
The couple is reportedly planning to have a baby...
Grover kim kardashian and kanye west are reportedly getting married in florence. According to BeBe, whose team is developing ready-made

phones. Kim Kardashian West and Kanye West have called it quits on their engagement. ”Kim Kardashian and Kanye West announce divorce...

TABLE IV: Sample generated news given a news topic. The topic is in bold text and the highlighted words are the most

related words to the topic according to their representations’ cosine similarity.

Generated news (The bold part is the given topic)

Mean score

The star who was accused of rape late last year is getting on an international show: “because I will bring awareness by supporting our
families from India for this year on and up! I need every bit it might. this week has turned one world back”. Pranta had previously made

some serious noises over India-friendly topics ...

2.33

meghan markle and prince harry on monday: the british royal family are not welcome. "They do not like me, but are happy that we

got married. we can be proud and have some nice holidays together.”

2.33

share fans of netflix’s cult favorite scifi drama series sense8 have a very special gift of nostalgia from them that can never truly forget.
a beloved franchise in some small but undeniable shape. So this, we know how fans would look after that they would not enjoy being
seen. it will become apparent soon when people who enjoy being on such shows, may also like to share these experiences on facebook to

have them see those great and unique stories.

225

jade is my first friend to ever be pregnant in her mid 30ies. I can feel good about the baby! she will make an excellent wife. I just
don’t expect a kind person or family who wants the support of an anesthesia for that to occur to a man with diabetes.

2.00

imdbcom inc takes no responsibility for the content or accuracy of its claims. It has taken place today (August 21), when an article
appeared at Wired, which says: “there will be one man with guns on their faces who at a certain level who can take on ISIS”. It has gone
into further information on what constitutes terrorist threats (or just about all terrorist activity).

2.50

robert pattinson says he was just kidding around about being asked by anorexist about a possible relationship, ”so we were like, I
don’t know if he’s a guy that I want. We're just trying something out, and we just don’t have that. So he said I don’t want that. He was
like a little boy and I don’t want it.” I have no plans that are to go into this story.

2.67

TABLE V: Sample generated news and their average human evaluation scores given a news topic using RLTG.

V. CONCLUSION AND FUTURE WORK

Text generation is crucial and can be used in different
NLP applications. One application of text generation is news
content generation. In this paper we challenge the problem
of generating realistic topic-preserving news by leveraging
a pre-trained language model. To this end, we propose a
reinforced model RLTG to control a language model toward
news content generation. This model uses Deep Q-Learning
to train an agent capable of selecting words from a language
model’s output to generate realistic topic-preserving news.
There are various future directions that can benefit from this
work. One future direction is to study different types of biases
in the generated news and create a de-biasing model that
removes bias and unfairness from pre-trained text generation
models. Most importantly, we can study and analyze the
hidden features and differences between real and synthetic

news content. Because language models are advancing quickly
and they are capable of generating believable fake news, this
work can help us to detect machine generated fake news in
future.

VI. ETHICS STATEMENT

This work aims to advance research efforts in synthetic news
generation, a topic that has yet to be studied extensively. Here,
considering current solutions, much work remains to elucidate
how to build an effective news generation model. We believe
that generating synthetic news is a stepping stone that enable
us to further investigate and detect machine-generated fake
news. We are committed to preventing fake news on social
media. To this end, we plan to release a limited version of
our trained model that can be only used for specific topics.
Moreover, we will share a large set of generated news using
our model that researchers can use in their experiments.

VII. ACKNOWLEDGEMENTS

This material is based upon the work supported, in
part, by ONR N00014-21-1-4002 and AFRL FA8650-15-D-
6583/FA8650-17-F-6820. Kai Shu is supported by the NSF
award #2109316.

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with Istm,” 1999.

R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner,
and Y. Choi, “Defending against neural fake news,” arXiv preprint
arXiv:1905.12616, 2019.

H. Allcott and M. Gentzkow, “Social media and fake news in the 2016
election,” Journal of economic perspectives, vol. 31, no. 2, pp. 211-36,
2017.

K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on
social media: A data mining perspective,” ACM SIGKDD Explorations
Newsletter, vol. 19, no. 1, pp. 22-36, 2017.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and 1. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl Blog,
vol. 1, no. 8, 2019.

J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

A. Fan, M. Lewis, and Y. Dauphin, “Strategies for structuring story
generation,” arXiv preprint arXiv:1902.01109, 2019.

R. Puduppully, L. Dong, and M. Lapata, “Data-to-text generation with
content selection and planning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 6908—6915.

K. Lin, D. Li, X. He, Z. Zhang, and M.-T. Sun, “Adversarial ranking
for language generation,” in Advances in Neural Information Processing
Systems, 2017, pp. 3155-3165.

W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: better text gener-
ation via filling in the_,” arXiv preprint arXiv:1801.07736, 2018.

Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward
controlled generation of text,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1587-1596.

S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosin-
ski, and R. Liu, “Plug and play language models: a simple approach to
controlled text generation,” arXiv preprint arXiv:1912.02164, 2019.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 1171-1179.

F. Huszér, “How (not) to train your generative model: Scheduled sam-
pling, likelihood, adversary?” arXiv preprint arXiv:1511.05101, 2015.
L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

A. M. Lamb, A. G. A. P. GOYAL, Y. Zhang, S. Zhang, A. C. Courville,
and Y. Bengio, “Professor forcing: A new algorithm for training recur-
rent networks,” in Advances In Neural Information Processing Systems,
2016, pp. 4601-4609.

Y. Li, Q. Pan, S. Wang, T. Yang, and E. Cambria, “A generative model
for category text generation,” Information Sciences, vol. 450, pp. 301-
315, 2018.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NIPS, 2014, pp. 2672-2680.

M. J. Kusner and J. M. Hernidndez-Lobato, “Gans for sequences of
discrete elements with the gumbel-softmax distribution,” arXiv preprint
arXiv:1611.04051, 2016.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin,
“Adversarial feature matching for text generation,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70, 2017.
K. Wang and X. Wan, “Sentigan: Generating sentimental texts via
mixture adversarial networks.” in IJCAI 2018, pp. 4446-4452.

J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky,
“Deep reinforcement learning for dialogue generation,” arXiv preprint
arXiv:1606.01541, 2016.

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[34]

[35]

[36]

(37]

Z. Li, X. Jiang, L. Shang, and H. Li, “Paraphrase generation with deep
reinforcement learning,” arXiv preprint arXiv:1711.00279, 2017.

Z. Shi, X. Chen, X. Qiu, and X. Huang, “Toward diverse text generation
with inverse reinforcement learning,” arXiv preprint arXiv:1804.11258,
2018.

Z. Fan, Z. Wei, S. Wang, Y. Liu, and X.-J. Huang, “A reinforce-
ment learning framework for natural question generation using bi-
discriminators,” in Proceedings of the 27th ICCL, 2018, pp. 1763-1774.
P. Ke, F. Huang, M. Huang, and X. Zhu, “Araml: A stable ad-
versarial training framework for text generation,” arXiv preprint
arXiv:1908.07195, 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

S. C. AP, S. Lauly, H. Larochelle, M. Khapra, B. Ravindran, V. C.
Raykar, and A. Saha, “An autoencoder approach to learning bilingual
word representations,” in Advances in neural information processing
systems, 2014, pp. 1853-1861.

A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very
deep convolutional networks for text classification,” arXiv preprint
arXiv:1606.01781, 2016.

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

P. Budzianowski and I. Vuli¢, “Hello, it’s gpt-2-how can i help you?
towards the use of pretrained language models for task-oriented dialogue
systems,” arXiv preprint arXiv:1907.05774, 2019.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting on association for computational linguistics. ~ ACL,
2002, pp. 311-318.

R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303-314,
1989.

K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu, “Fakenewsnet:
A data repository with news content, social context and dynamic
information for studying fake news on social media,” arXiv preprint
arXiv:1809.01286, 2018.

C.-W. Liu, R. Lowe, I. V. Serban, M. Noseworthy, L. Charlin, and
J. Pineau, “How not to evaluate your dialogue system: An empirical
study of unsupervised evaluation metrics for dialogue response genera-
tion,” arXiv preprint arXiv:1603.08023, 2016.

	Introduction
	Related Work
	Neural news generation
	Adversarial training on discrete variables
	Reinforcement learning in text generation

	Proposed Model - RLTG
	Topic-preserving News Generation
	Using Adversaries to Generate Realistic Synthetic News

	Experiments
	Data
	Implementation Details
	Experimental Design
	Experimental Results
	Parameter Analysis
	Case Studies of Generated Synthetic News

	Conclusion and Future Work
	Ethics Statement
	Acknowledgements
	References

