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Abstract—The text generation methods have witnessed great
success in text summarization, machine translation, and synthetic
news generation. However, these techniques may be abused to
generate disinformation and fake news. To better understand the
potential threats of synthetic news, we develop a novel generation
method RLTG to generate topic-preserving news content. The
majority of existing text generation methods are either controlled
by specific attributes or lack topic consistency between the input
claims and output news, making synthetic news less coherent
and realistic. In this paper, we study the problem of topic-
preserving synthetic news generation by proposing a novel deep
reinforcement learning-based method to control the output of
large pre-trained language models. Experiment results on real-
world datasets demonstrate that the news contents generated by
RLTG are topic-consistent and realistic.

Index Terms—Text Generation, Reinforcement Learning, Ad-
versarial Training

I. INTRODUCTION

Text generation is an important task for Natural Language

Processing (NLP). With the rise of deep neural networks

such as Recurrent Neural Networks (RNNs) and Long Shot

Term Memory (LSTM) cells [1], there has been significant

performance improvement in language modeling and text

generation. Text generation has many different applications

such as paraphrase generation and data augmentation. One

important application of text generation in NLP is synthetic

news content generation [2].

Recently, internet has proliferated a plethora of disinforma-

tion and fake news [3], [4]. Moreover, recent advancements

in language models such as GPT-2 [5] allow one to generate

synthetic news based on limited information. For example,

models like Generative Adversarial Network (GAN) [6] can

generate long readable text from noise, and GPT-2 [5] can

write news stories and fiction stories given simple contexts

such as part of a sentence or a topic. In the context of news

generation, Grover is a causal language model that can gener-

ate fake news using different variables such as domain, date,

authors, and headline [2]. While Grover is shown effective, it

requires many conditional variables to generate relevant news.

To study machine-generated news, we propose a model to

generate realistic synthetic news. Throughout this paper, we

refer to realistic news as news similar to human-written words.

The crucial task of synthetic news generation enables us to (1)

automatically generate news and (2) use the synthetic news to

study the differences between human-generated and machine-

generated news. For example, one major problem in fake news

detection is the challenge to differentiate between human and

machine-generated text [2].

With the advances in language models (e.g., GPT-2 and

GPT-3), miscreants can leverage them to spread fake news

through social media. To tackle this problem, as the first step,

we need ample synthetic news with which researchers can

study the nuances between human- and machine-generated text

to detect disinformation on social media.

Existing methods may fall short when generating realistic

news controlled by a specific context. For instance, fake news

usually has a catchy style and should stay on topic to make

its audience believe it, as in the example of “A shocking

news report claims Kourtney Kardashian’s pregnant again”.

The shortcomings in existing language models and the lack

of a proper machine-generated news dataset underscore the

importance of topic-preserving and stylized synthetic news

generation. Moreover, fine-tuning language models does not

help us in this matter as it is non-trivial to enforce topic-

preservation on a language model directly. In essence, we

address the challenge of generating topic-preserving realistic

synthetic news.

Our solutions to these challenges result in a novel frame-

work RLTG (Reinforcement Learning-based Text Generator),

for generating topic-preserving realistic news. The proposed

framework RLTG consists of three major components: (1)

a language model component to generate a probability dis-

tribution over a vocabulary for the next word, given a text

input; (2) a Reinforcement Learning (RL) component capable

of leveraging the language model to control news generation;

and (3) a fake news detection module as an adversary to

help the RL agent generate realistic fake news contents. This

work can be used as a stepping stone to further study the

differences between human- and machine-generated news, and

improving fake news detection methods. Our contributions are

summarized as follows:

• We study a novel problem of topic-preserving and realistic

synthetic news content generation.

• We propose a principled framework, RLTG, which uses

language model and deep reinforcement learning along with

adversary regularization to generate realistic synthetic news

contents.

• We conduct experiments on real-world datasets using quan-

titative and qualitative metrics to demonstrate the effectiveness

of RLTG for synthetic news generation.



II. RELATED WORK

In this section, we briefly describe the related work on

(1) neural news generation; (2) adversarial training; and (3)

reinforcement learning for text generation:

A. Neural news generation

Text generation is a crucial task in NLP and is used in

its different applications [7], [8]. Many early methods for

text generation use different techniques to train Generative

Adversarial Networks (GAN). As GANs cannot be used for

text generation due to the discrete nature of the problem, the

early work try to solve the problem of back propagation for

updating the generator. Several methods [6], [9], [10] have

been proposed to alleviate this problem. MaskGAN [10] tries

to generate text using both GAN and actor-critic networks.

Another method from [9] uses a new training method for

the discriminator in a GAN to learn a better text generator

against the discriminator. Finally, in LeakGAN [6], unlike

other GAN-based methods that the discriminator and generator

are trained against each other, it uses the discriminator to help

the generator predict the next word.

To solve the problem of controllable text generation for a

specific topic, Hu et al. propose a method for controlling the

text generation process using different classifiers as discrim-

inators in a GAN [11]. Another recent work by Dathathri et

al. proposed PPLM that uses gradient difference on a pre-

trained language model to control its output toward a given

attribute. They further use different classifiers to calculate

the gradient difference [12]. Moreover, Hu et al. proposed

to use several discriminators in a GAN to control the text

generation process [11]. What makes our work different than

these methods is that in our work we focus on controlling

the output toward a given topic, instead of a given class

attribute. Lastly, Zellers et al. [2] use transformers to build

a causal language model in order to generate text given a

desired article’s parameters.

B. Adversarial training on discrete variables

Recently, interesting works has been done that use adver-

sarial training over discrete sequence data [13]–[17]. Lamb et

al.propose providing the discriminator with the intermediate

hidden state vectors rather than its sequence outputs, which

makes the loss function differentiable for back propagation

training [16]. Due to the problems in generating text with

Recurrent Neural Netowrks such as quality deterioration in

long sentences, Bengio et al. propose a method to overcome

this problem by using scheduled sampling. They call the

quality deterioration as exposure bias in RNNs [13]. However,

Huszar et al. showed that the scheduled sampling method is

inconsistent and can result in an unstable results [14].

Yu et al. propose a novel method named SeqGAN. They

apply a Generative Adversarial Network [18] to discrete se-

quence generation by directly optimizing the discriminator’s

rewards using policy gradient reinforcement learning [15].

Other approaches use continuous approximation to represent

discrete tokens to facilitate the gradient propagation pro-

cess [11], [19]. Continuous approximation uses the Gumbel-

softmax function [20] to transform the one-hot vector into a

probabilistic vector that is differentiable for training.

Efforts have been made to generate diverse and high-quality

text [6], [21]. Guo et al. propose a new method for generating

long text using adversarial training. They leverage the hidden

states of an adversary as leaked information in order to

optimize a GAN to generate long text [6]. To broaden the

domains of generated text Wang et al. propose a method which

uses a multi-class classifier as a discriminator. It further uses

multiple generators alongside the discriminator to optimize the

model [22]. Moreover, Zhang et al. propose a novel method,

TextGAN, to alleviate the problems of generating text using

GAN. They use LSTM as a generator, and a Convolutional

Neural Network as a discriminator [21].

C. Reinforcement learning in text generation

In the past years, reinforcement learning has shown to be

useful in improving model parameters [23], [24]. Furthermore,

it can be used as a standalone algorithm for different purposes

such as dialog or paraphrase generation. Fedus et al. propose

a method for overcoming the problems of generating text via

GAN. They use reinforcement learning to tune parameters for

an LSTM based generator [10]. Zichao Li et al. propose a

method for generating paraphrase using inverse reinforcement

learning. They use an RL setting to tune a generator’s parame-

ter toward generating paraphrases [24]. Another inspiring work

by Jwei Li et al. shows using reinforcement learning we can

build an agent capable of engaging in a two-person dialog [23].

To generate diverse text, Shi et al. propose a method which

uses a generator in an RL setting. The difference between

their work and other similar work is that they also change

the parameters of the reward function during the training

process [25]. Fan et al. [26] propose using inverse RL to solve

the problem of mode collapse in GAN, meaning that during

the training of GAN, the discriminator becomes too powerful

that we cannot train a generator against it. Another work [27]

models the problem of GAN text generation using RL. They

use a reward function as a feedback to the generator. Although

these methods can be used to generate text, they cannot be

used to generate text for a specific domain.

Inspired by these methods, we study the novel problem of

topic-preserving synthetic news generation using RL. Earlier

research uses RL to update a model’s parameters, but in this

work, we focus on using RL alongside a language model to

control its output towards news generation. We use this novel

model to train an agent that uses a language model’s output to

control the generation process according to a reward function

that considers topic similarity and other quality control factors.

III. PROPOSED MODEL - RLTG

In this section, we discuss the adversarial reinforcement

learning-based synthetic news content generator. The input of

this model is a topic S0 = {ws
1, w

s
2, ..., w

s
k}. Our model, then,



generates a new sequence ST = {w1, ..., wk, wk+1, ..., wT }
which is the generated news content.

In this paper our goal is to generate synthetic news content

ST given topic S0. The generated news content ST should

be related to the given topic S0 and it should have a similar

style to real news. A piece of news content has a similar style

to real news if it cannot be detected as fake news using a

classifier. Here, we study the following problem:

Problem Statement: Let X = {(S1
0,x1), (S

2
0,x2), ...,

(SN
0 ,xN)} denote a set of N news with topic S0 and

content x. Both topic S0 = {ws
0, w

s
1, ..., w

s
k} and news

content x = {w0, w1, ..., wl} consist of words w. We

consider topic as the news title or the first few words of

a news content. In general, St shows the generated text at

time t. Given a set of news dataset X , learn a reinforcement

learning agent F that can generate news content ST based

on a given topic S0 such that: (1) ST is related to the given

topic S0; and (2) ST has a similar style to real news.

Our model consists of several components: (1) a language

model component that is in charge of generating a probability

distribution over vocabulary words ; (2) an RL component

that will select a word based on the language model’s output;

and (3) an adversarial component that will help the RL agent

choose proper words from the language model’s output. First,

we go through news content generation using adversarial RL,

and then we discuss using an adversary to generate realistic

fake news.

A. Topic-preserving News Generation

Existing language models are proposed to generate general

or domain-specific texts [5], [28]. Although we can fine-

tune these models (e.g., fine-tuning GPT-2) according to our

need using a related dataset, we do not have control over

its output because we cannot enforce topic-preservation or

realistic synthetic news generation on the model. Following

the success of Reinforcement Learning (RL) [25], we propose

an adversarial RL method to control the generated output of a

language model. In recent studies, RL has been used to update

a model’s parameters [23], [24]. In this work we explore a

new direction by using RL as a standalone component to

leverage the language model’s output to generate text. The

main advantage of using RL alongside GPT-2 is that we can

use non-differential metrics in the reward function to generate

a coherent text. Moreover, it enables us to have more control

on the output of the language model by leveraging adversaries

or changing the reward function.

In adversarial RL an agent keeps interacting with a defined

environment to learn an optimized action selection policy π(s)
for each state. An RL agent is trained to choose the next

word w for current generated news St according to a reward

function and an adversary.

Figure 1 shows the high-level structure of RLTG. In this

model, the adversarial reinforcement learning agent gets a

state st as input, then returns an action at which indicates an

index to one of the top words from the language model L’s

output. Each interaction between the agent and the environ-

ment creates an experience tuple (st, at, st+1, rt+1), meaning

that the agent chose action at given the state st. After action

at, the state will change to st+1 and the environment returns

reward rt+1. This tuple is then used to train the agent. An RL

model relies on four main parts: environment, state, action,

and reward function.

• Environment is where the RL agent interacts with to learn

the best action for each state. In our problem, the environment

includes a language model L, an adversary ADV, and a state

creator component M . The language model L takes an input

text and returns a probability distribution over vocabulary P ∈
IR1×|V | and hidden states H ∈ IR1×e, where e indicates the

embedding size. The adversary ADV gets an input text and

returns a score for the reward function. Finally, the state creator

M gets the outputs of the language model as input and returns

a vector s ∈ IR1×|s| (|s| shows state size) which acts as the

input state s for the agent.

• State shows the agent’s current situation. The agent uses

the state to determine a subsequent optimal action. The state

is the output of the state creator component M . Because our

goal is to select the best next word for the current generated

news St at time t, the state should contain information

about both the context of the current generated news St,

and information about the next word choices. To this end,

we design two separate neural networks AE1 and AE2 to

encode this information. AE1 is used to create the context

vector cg using hidden state H from the language model L’s

output, while the AE2 is used to create a context vector

cw given previous top K words of the language model L’s

output. For both cases, we train and use autoencoders [29]. An

autoencoder is an unsupervised neural network which learns

to compress and encode data and then to reconstruct the input

using the encoded data. It has two components, an encoder and

a decoder. The encoder takes an input and returns a vector v

which is interpreted as the context vector, containing important

information about the input. The decoder is the reverse of the

encoder: given the encoded vector v, it tries to reconstruct the

original input to the network. After training an autoencoder, we

can use the context vector v containing important information

about the input [29].

In our method, the first autoencoder AE1, gets the hidden

state H as input and returns the reconstructed hidden state

H
′. This autoencoder uses Multi Layer Perceptron (MLP)

networks as both encoder and decoder. The purpose of this

autoencoder is to reduce dimension of the hidden state H.

After training this autoencoder on a set of hidden states H,

we get the output of the encoder as context vector cg.

The second autoencoder AE2, inspired by [30], uses Convo-

lutional Neural Network (CNN) as both encoder and decoder.

To this end, each word from top K words is passed through

an embedding layer to convert it to a vector w ∈ IR1×e. The

embedded words w are then concatenated to form a matrix m

with size of (K×e). After training this autoencoder using dif-

ferent top K words, we consider the output of the encoder as

the context vector cw. Having both context vectors cg and cw,





experiences in form of (st, at, st+1, rt+1) to train the agent.

There are different algorithms to train an agent. Policy gradient

and Q-Learning are two popular algorithms for training an

agent [34]. In this paper we use Deep Q-Learning which is an

advanced variant of Q-Learning.

In Deep Q-Learning (DQL), the agent uses a neural network

as a function approximator to find an action regarding a given

state s. The input of this neural network is state s and the

outputs are the values for (s, ai)
|A|
i=0

where |A| is the number

of actions. In DQL, the goal is to learn the following function:

Q∗(st, at) = IEst+1
[rt+1 + γmaxa′Q∗(st+1, a

′)] (4)

where Q-function Q(s, a) returns the expected accumulated

reward R if the agent selects action a in response to state s

and Q∗(s, a) denotes the optimal Q-function which returns the

maximum possible accumulated reward R using the optimal

policy π(s). In this formula, the future rewards are discounted

using the γ parameter. We adjust γ with respect to the

importance of future rewards.

In practice, it is not feasible to estimate Q∗(s, a) in Equa-

tion 4. To overcome this problem, we use a function approxi-

mator to estimate the Q-function Q∗(s, a) ∼= Q(s, a; θ). As

neural networks are excellent function approximators [35],

DQL leverages a neural network with parameters θ called

Deep Q-Network (DQN) to find the Q-function Q(s, a; θ) by

minimizing the following loss function:

L(θ) = IEst,at,st+1,rt+1
[(y −Q(s, a; θ))2] (5)

where y is the target Q-value calculated using Equation 6:

y = IEst+1
[rt+1 + γQ(st+1, a

′; θ′)] (6)

where θ′ is the DQN’s parameters from the previous iteration.

Finally, we update the DQN parameters using the derivation

of Equation 5 with respect to θ:

∇θL(θ) =IEst,at,st+1,rt+1
[(r + γmaxa′Q(st+1, a

′; θ′)− (7)

−Q(st, at; θ))∇θQ(st, at; θ)]

In this paper, we have specifically used DQL with memory

replay and two networks as target and policy, respectively. The

memory replay helps the agent to remember past experiences.

The training algorithm is presented in Algorithm 11.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the

performance of our method. In these experiments, we try to

answer the following questions: Q1: How well our method can

generate synthetic news in comparison to existing methods in

terms of topic similarity? Q2: How fluent is the generated

synthetic news using RLTG? and Q3: How well humans

evaluate the RLTG’s generated synthetic news?

To answer the first question Q1, we consider Cosine similar-

ity; for Q2, we use ROUGE-L metric; and for Q3, we perform

human evaluation using a survey to assess RLTG’s generated

synthetic news in terms of content, title, overall readability,

and being realistic or not.

1The source code will become publicly available upon acceptance.

Algorithm 1 The Learning Process of RLTG

Require: L, ε, T , M .
1: Initialize replay memory R, environment, policy, and target networks
2: while training is not terminal do

3: H, topK ← L(topic)
4: st ←M(H, topK)
5: for t ∈ {0, 1, ..., T} do

6: Choose action at using ε-greedy
7: Perform at on st and get (st+1, rt+1)
8: R← R+ (st, at, rt+1, st+1)
9: st ← st+1

10: for (s, a, s′, r) ∈ sampled mini-batch b from R do

11: Update DQN weights using Eq. 7 w.r.t. policy and target
networks

12: end for

13: if exchange condition met then

14: Exchange weights between policy and target network
15: end if

16: end for

17: end while

A. Data

We utilize FakeNewsNet dataset [36] to fine-tune GPT-2 and

train our model. This dataset consists of news data X from

two different platforms GossipCop and Politifact. GossipCop

is a fact-checking website, which reports on celebrity news.

Politifact is a similar platform, which checks the truth of

political news and reports. In this dataset, news are classified

into real or fake. Politifact contains 2, 645 true and 2, 770 fake

news, while the GossipCop includes 3, 586 true and 2, 230 fake

news respectively. Dataset statistics are shown in Table I. In

this paper, we consider the first few words of each news xi

content as topic S0.

Platform G P

# True news 3,586 2,645
# Fake news 2,230 2,770
# Total News 5,816 5,415

TABLE I: The statistics of the FakeNewsNet dataset

B. Implementation Details

In this part we go through the parameters and implementa-

tion details of RLTG. In our model, we use a fine-tuned GPT-2

language model as L. To fine-tune the GPT-2 language model,

we first load a pre-trained ”GPT-2 medium”, then we use

FakeNewsNet dataset for 5 iterations to fine-tune the language

model. Note that this language model has 12 hidden layers.

Each hidden layer returns a tensor with size of (batch size,

sequence length, hidden size), where the hidden size in ”GPT-

2 medium” is 768.

As it is mentioned in the proposed method, the RL agent

has a neural network which acts as a function approximator.

This network gets a state as input and returns the Q-value for

each (s, ai)
K
i=1 set. This network has 3 layers. The first hidden

layer has 1024 nodes, the second and third layer has 512 and

256 nodes, respectively. The output size of this network is

equal to the number of actions. In this paper, the number of

actions is 50, meaning that the agent chooses between the

top 50 words of GPT-2’s output probability. The reason we



chose 50 is that among values {10, 25, 50, 75}, it showed a

better reward performance than others, with K = 75 having

a similar performance. Moreover, the the output size of the

DQN network is equal to the size of state s. To construct

state s, as in Figure 2, we have trained 2 autoencoders and

concatenate the output of each encoder to create the state.

The first autoencoder is considered for extracting the context

of generated news using hidden state H . This autoencoder uses

Multi-Layer Perceptron (MLP) to encode and reconstruct the

hidden state H . The output of encoder part has 256 nodes.

The second autoencoder uses Convolutional Neural Networks

(CNN) to extract information about best words positions. The

encoder of this autoencoder has an output layer with size of

128. The final size of state s is 384.

The RL agent is trained on randomly selected topics for

50000 episodes. The agent can choose between top K = 50
words from the language model L’s output. Each episode has

a terminal time of T = 50. As the final generated news is more

important than the early generated news, a high discount factor

γ = 0.9 is used. As it is mentioned in the proposed method

section, we use Deep Q-Learning to train our RL agent. In

this algorithm we construct a memory with size 10000 to save

the experiences (st, at, st+1, rt+1). Each experience means

that the RL agent chose action at in state st. The selected

action at resulted in transition to a new state st+1 and the

environment returned a reward rt+1. We then use the memory

array to update our model using Equation 5. The batch size

for sampling experiences from memory is 32. During the

training process we use ε-greedy to choose action at. This

algorithm considers a random action with probability of ε and

chooses the best action based on Q-values with a probability

of 1 − ε. We use the following decay function to lower the

value of ε. This function lower the ε according to the number

of past iterations and exponentially decreases it by a constant

rate ε = εmin + (εmax − εmin)e
−steps

decay rate where steps is the

number of past iterations and decay rate controls how fast

the ε should decrease. We use εmax = 0.98, εmin = 0.02
and the decay rate equal to 5, 000.As for the reward function

parameters, we set α = β = λ = 0.5. In this case r ∈ [0, 1.5].
As illustrated in Figure 1, we use a fake news classifier as

an adversary to calculate the value of reward function. The

architecture of the fake news classifier is shown in Figure 3.

The hidden size of bi-directional GRU is 128, resulting in a

context vector of 256. The neural network classifier has an

input size of 256, hidden size of 128, and output size of 1.

We train this classifier before training the agent using Binary

Cross Entropy (BCE) loss function. As DQL has a variance

during training, we train our model 5 times independently,

then we select the agent with the highest average rewards.

To train the RLTG model, we used a publicly available

dataset, FakeNewsNet [36] that can be accessed through https:

//github.com/KaiDMML/FakeNewsNet. To compare RLTG to

GPT-2, we have used the Hugging Face package (https:

//huggingface.co) to use and fine-tuned the GPT-2 model.

The GPT-2 model is fine-tuned for 2 iterations using the

FakeNewsNet dataset. Moreover, to run the experiments on

Grover [2], we used their publicly available package through

https://rowanzellers.com/grover.

C. Experimental Design

We use different baselines for comparison. As our proposed

model is based on the OpenAI’s GPT-2 language model, we

use this language model alone as a baseline to determine how

using an RL agent on this model can improve its results. Fur-

thermore, we also include the RL agent alone as a baseline to

generate synthetic news. Our main goal, generating synthetic

news content, is close to the Grover [2], so we have selected

this work as a baseline. Finally we select the SeqGAN method

because it incorporates GAN with reinforcement learning.

Following is the description of the baselines:

• GPT-2 [5]: a language model capable of generating long

text. This language model is based on transformers and

has three different variations based on it’s number of lay-

ers and parameters: small (117M parameters) , medium

(345M parameters), and large (774M parameters). In this

paper we use GPT-2 medium as fine-tuning it needs less

resources.

• Fine-tuned GPT-2 (FTGPT-2): similar to GPT-2, but

has been fine-tuned using FakeNewsNet dataset.

• RL: in this baseline we use RL technique without using

a language model to train an agent. In this case, all

components except the actions are the same as the

proposed RLTG method. The action set in this baseline

is all word in the vocabulary set V . The training process

of this baseline is similar to our model.

• Grover [2]: a conditional language model which can

generate text based on given parameters: domain, date,

authors, and headline. The goal of Grover is to generate

news content based on different parameters. While the

results are promising, it seems this language model is

very dependent on domain parameter, which we will

explore during our evaluation.

• SeqGAN (SeqG) [15]: is a text generation method,

which models data generator as a stochastic policy in

reinforcement learning. They then use policy gradient

method to train their model.

• PPLM [12]: is a method that leverages GPT-2 to gen-

erate domain-specific text. We have used our pre-trained

fakenews classifier to generate fakenews related text.

D. Experimental Results

We evaluate our model’s performance regarding Q1 - Q3.

Topic Similarity (Q1). To answer this question, we use

cosine similarity as in Equation 1 to calculate the similarity be-

tween the embedding of the given topic S0 and the generated

news ST. We do not want the RL agent to exactly select topic

words to maximize its reward, so we use text embeddings to

calculate the similarity. In this case, the agent chooses words to

maximize the context similarity between both the topic and the

generated text. For a fair comparison, we use a fixed sentence

length of 200 for text generation.







Model Text

RLTG

the wedding of prince harry and meghan markle was held with royal family guests attending the ceremony. After nearly four hours on site,
they met again with wedding guests from a host community to gather for one particular special day. In May there would been even-clothing
on all royal guests arriving as many couples wore the customised royal gown...

FTGPT-2
the wedding of prince harry and meghan markle was held on the grounds of St. George’s Chapel in Windsor, England, on May 19, 1814.
The bride and groom were Prince William and Kate Middleton, and the groom was Prince Charles. The bride...

GPT-2
the wedding of prince harry and meghan markle was held on the wedding of prince harry and meghan markle was held on the day of the
wedding of prince harry and meghan markle was held on the day...

Grover
the wedding of prince harry and meghan markle. Like many of the gala trends we celebrate today, the wedding of prince harry and
meghan markle has taken center stage at the MWC. The mom and pop couples still roping in floral designs, staging weddings, and of course,
speaking on stage at the hands of this mortal pair.

RLTG
kim kardashian and kanye west are reportedly getting married in florence, Italy! Kim confirmed it this evening after receiving numerous
texts during Sunday. We will certainly keep up this morning’s news, as long as this story reaches our lips...

FTGPT-2

kim kardashian and kanye west are reportedly getting married in florence. The couple, who have been dating since 2015, have been
spotted together in the city of L.A. and are reportedly spending time together. The couple, who have been dating since 2015, have been
spotted together in the city of L.A. and are reportedly spending time together...

GPT-2
kim kardashian and kanye west are reportedly getting married in florence. The couple is reportedly planning to have a baby together.
The couple is reportedly planning to have a baby...

Grover
kim kardashian and kanye west are reportedly getting married in florence. According to BeBe, whose team is developing ready-made
phones. Kim Kardashian West and Kanye West have called it quits on their engagement. ”Kim Kardashian and Kanye West announce divorce...

TABLE IV: Sample generated news given a news topic. The topic is in bold text and the highlighted words are the most

related words to the topic according to their representations’ cosine similarity.

Generated news (The bold part is the given topic) Mean score

The star who was accused of rape late last year is getting on an international show: “because I will bring awareness by supporting our
families from India for this year on and up! I need every bit it might. this week has turned one world back”. Pranta had previously made
some serious noises over India-friendly topics ...

2.33

meghan markle and prince harry on monday: the british royal family are not welcome. ”They do not like me, but are happy that we
got married. we can be proud and have some nice holidays together.”

2.33

share fans of netflix’s cult favorite scifi drama series sense8 have a very special gift of nostalgia from them that can never truly forget.
a beloved franchise in some small but undeniable shape. So this, we know how fans would look after that they would not enjoy being
seen. it will become apparent soon when people who enjoy being on such shows, may also like to share these experiences on facebook to
have them see those great and unique stories.

2.25

jade is my first friend to ever be pregnant in her mid 30ies. I can feel good about the baby! she will make an excellent wife. I just
don’t expect a kind person or family who wants the support of an anesthesia for that to occur to a man with diabetes.

2.00

imdbcom inc takes no responsibility for the content or accuracy of its claims. It has taken place today (August 21), when an article
appeared at Wired, which says: ”there will be one man with guns on their faces who at a certain level who can take on ISIS”. It has gone
into further information on what constitutes terrorist threats (or just about all terrorist activity).

2.50

robert pattinson says he was just kidding around about being asked by anorexist about a possible relationship, ”so we were like, I
don’t know if he’s a guy that I want. We’re just trying something out, and we just don’t have that. So he said I don’t want that. He was
like a little boy and I don’t want it.” I have no plans that are to go into this story.

2.67

TABLE V: Sample generated news and their average human evaluation scores given a news topic using RLTG.

V. CONCLUSION AND FUTURE WORK

Text generation is crucial and can be used in different

NLP applications. One application of text generation is news

content generation. In this paper we challenge the problem

of generating realistic topic-preserving news by leveraging

a pre-trained language model. To this end, we propose a

reinforced model RLTG to control a language model toward

news content generation. This model uses Deep Q-Learning

to train an agent capable of selecting words from a language

model’s output to generate realistic topic-preserving news.

There are various future directions that can benefit from this

work. One future direction is to study different types of biases

in the generated news and create a de-biasing model that

removes bias and unfairness from pre-trained text generation

models. Most importantly, we can study and analyze the

hidden features and differences between real and synthetic

news content. Because language models are advancing quickly

and they are capable of generating believable fake news, this

work can help us to detect machine generated fake news in

future.

VI. ETHICS STATEMENT

This work aims to advance research efforts in synthetic news

generation, a topic that has yet to be studied extensively. Here,

considering current solutions, much work remains to elucidate

how to build an effective news generation model. We believe

that generating synthetic news is a stepping stone that enable

us to further investigate and detect machine-generated fake

news. We are committed to preventing fake news on social

media. To this end, we plan to release a limited version of

our trained model that can be only used for specific topics.

Moreover, we will share a large set of generated news using

our model that researchers can use in their experiments.
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